1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements routines for folding instructions into simpler forms
11 // that do not require creating new instructions. For example, this does
12 // constant folding, and can handle identities like (X&0)->0.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Support/ValueHandle.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Support/PatternMatch.h"
22 using namespace llvm::PatternMatch
;
24 /// SimplifyAddInst - Given operands for an Add, see if we can
25 /// fold the result. If not, this returns null.
26 Value
*llvm::SimplifyAddInst(Value
*Op0
, Value
*Op1
, bool isNSW
, bool isNUW
,
27 const TargetData
*TD
) {
28 if (Constant
*CLHS
= dyn_cast
<Constant
>(Op0
)) {
29 if (Constant
*CRHS
= dyn_cast
<Constant
>(Op1
)) {
30 Constant
*Ops
[] = { CLHS
, CRHS
};
31 return ConstantFoldInstOperands(Instruction::Add
, CLHS
->getType(),
35 // Canonicalize the constant to the RHS.
39 if (Constant
*Op1C
= dyn_cast
<Constant
>(Op1
)) {
41 if (isa
<UndefValue
>(Op1C
))
45 if (Op1C
->isNullValue())
49 // FIXME: Could pull several more out of instcombine.
53 /// SimplifyAndInst - Given operands for an And, see if we can
54 /// fold the result. If not, this returns null.
55 Value
*llvm::SimplifyAndInst(Value
*Op0
, Value
*Op1
, const TargetData
*TD
) {
56 if (Constant
*CLHS
= dyn_cast
<Constant
>(Op0
)) {
57 if (Constant
*CRHS
= dyn_cast
<Constant
>(Op1
)) {
58 Constant
*Ops
[] = { CLHS
, CRHS
};
59 return ConstantFoldInstOperands(Instruction::And
, CLHS
->getType(),
63 // Canonicalize the constant to the RHS.
68 if (isa
<UndefValue
>(Op1
))
69 return Constant::getNullValue(Op0
->getType());
76 if (isa
<ConstantAggregateZero
>(Op1
))
80 if (ConstantVector
*CP
= dyn_cast
<ConstantVector
>(Op1
))
81 if (CP
->isAllOnesValue())
84 if (ConstantInt
*Op1CI
= dyn_cast
<ConstantInt
>(Op1
)) {
89 if (Op1CI
->isAllOnesValue())
93 // A & ~A = ~A & A = 0
95 if ((match(Op0
, m_Not(m_Value(A
))) && A
== Op1
) ||
96 (match(Op1
, m_Not(m_Value(A
))) && A
== Op0
))
97 return Constant::getNullValue(Op0
->getType());
100 if (match(Op0
, m_Or(m_Value(A
), m_Value(B
))) &&
101 (A
== Op1
|| B
== Op1
))
105 if (match(Op1
, m_Or(m_Value(A
), m_Value(B
))) &&
106 (A
== Op0
|| B
== Op0
))
109 // (A & B) & A -> A & B
110 if (match(Op0
, m_And(m_Value(A
), m_Value(B
))) &&
111 (A
== Op1
|| B
== Op1
))
114 // A & (A & B) -> A & B
115 if (match(Op1
, m_And(m_Value(A
), m_Value(B
))) &&
116 (A
== Op0
|| B
== Op0
))
122 /// SimplifyOrInst - Given operands for an Or, see if we can
123 /// fold the result. If not, this returns null.
124 Value
*llvm::SimplifyOrInst(Value
*Op0
, Value
*Op1
, const TargetData
*TD
) {
125 if (Constant
*CLHS
= dyn_cast
<Constant
>(Op0
)) {
126 if (Constant
*CRHS
= dyn_cast
<Constant
>(Op1
)) {
127 Constant
*Ops
[] = { CLHS
, CRHS
};
128 return ConstantFoldInstOperands(Instruction::Or
, CLHS
->getType(),
132 // Canonicalize the constant to the RHS.
137 if (isa
<UndefValue
>(Op1
))
138 return Constant::getAllOnesValue(Op0
->getType());
145 if (isa
<ConstantAggregateZero
>(Op1
))
148 // X | <-1,-1> = <-1,-1>
149 if (ConstantVector
*CP
= dyn_cast
<ConstantVector
>(Op1
))
150 if (CP
->isAllOnesValue())
153 if (ConstantInt
*Op1CI
= dyn_cast
<ConstantInt
>(Op1
)) {
158 if (Op1CI
->isAllOnesValue())
162 // A | ~A = ~A | A = -1
164 if ((match(Op0
, m_Not(m_Value(A
))) && A
== Op1
) ||
165 (match(Op1
, m_Not(m_Value(A
))) && A
== Op0
))
166 return Constant::getAllOnesValue(Op0
->getType());
169 if (match(Op0
, m_And(m_Value(A
), m_Value(B
))) &&
170 (A
== Op1
|| B
== Op1
))
174 if (match(Op1
, m_And(m_Value(A
), m_Value(B
))) &&
175 (A
== Op0
|| B
== Op0
))
178 // (A | B) | A -> A | B
179 if (match(Op0
, m_Or(m_Value(A
), m_Value(B
))) &&
180 (A
== Op1
|| B
== Op1
))
183 // A | (A | B) -> A | B
184 if (match(Op1
, m_Or(m_Value(A
), m_Value(B
))) &&
185 (A
== Op0
|| B
== Op0
))
192 static const Type
*GetCompareTy(Value
*Op
) {
193 return CmpInst::makeCmpResultType(Op
->getType());
197 /// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
198 /// fold the result. If not, this returns null.
199 Value
*llvm::SimplifyICmpInst(unsigned Predicate
, Value
*LHS
, Value
*RHS
,
200 const TargetData
*TD
) {
201 CmpInst::Predicate Pred
= (CmpInst::Predicate
)Predicate
;
202 assert(CmpInst::isIntPredicate(Pred
) && "Not an integer compare!");
204 if (Constant
*CLHS
= dyn_cast
<Constant
>(LHS
)) {
205 if (Constant
*CRHS
= dyn_cast
<Constant
>(RHS
))
206 return ConstantFoldCompareInstOperands(Pred
, CLHS
, CRHS
, TD
);
208 // If we have a constant, make sure it is on the RHS.
210 Pred
= CmpInst::getSwappedPredicate(Pred
);
213 // ITy - This is the return type of the compare we're considering.
214 const Type
*ITy
= GetCompareTy(LHS
);
216 // icmp X, X -> true/false
217 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false
218 // because X could be 0.
219 if (LHS
== RHS
|| isa
<UndefValue
>(RHS
))
220 return ConstantInt::get(ITy
, CmpInst::isTrueWhenEqual(Pred
));
222 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
223 // addresses never equal each other! We already know that Op0 != Op1.
224 if ((isa
<GlobalValue
>(LHS
) || isa
<AllocaInst
>(LHS
) ||
225 isa
<ConstantPointerNull
>(LHS
)) &&
226 (isa
<GlobalValue
>(RHS
) || isa
<AllocaInst
>(RHS
) ||
227 isa
<ConstantPointerNull
>(RHS
)))
228 return ConstantInt::get(ITy
, CmpInst::isFalseWhenEqual(Pred
));
230 // See if we are doing a comparison with a constant.
231 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(RHS
)) {
232 // If we have an icmp le or icmp ge instruction, turn it into the
233 // appropriate icmp lt or icmp gt instruction. This allows us to rely on
234 // them being folded in the code below.
237 case ICmpInst::ICMP_ULE
:
238 if (CI
->isMaxValue(false)) // A <=u MAX -> TRUE
239 return ConstantInt::getTrue(CI
->getContext());
241 case ICmpInst::ICMP_SLE
:
242 if (CI
->isMaxValue(true)) // A <=s MAX -> TRUE
243 return ConstantInt::getTrue(CI
->getContext());
245 case ICmpInst::ICMP_UGE
:
246 if (CI
->isMinValue(false)) // A >=u MIN -> TRUE
247 return ConstantInt::getTrue(CI
->getContext());
249 case ICmpInst::ICMP_SGE
:
250 if (CI
->isMinValue(true)) // A >=s MIN -> TRUE
251 return ConstantInt::getTrue(CI
->getContext());
260 /// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
261 /// fold the result. If not, this returns null.
262 Value
*llvm::SimplifyFCmpInst(unsigned Predicate
, Value
*LHS
, Value
*RHS
,
263 const TargetData
*TD
) {
264 CmpInst::Predicate Pred
= (CmpInst::Predicate
)Predicate
;
265 assert(CmpInst::isFPPredicate(Pred
) && "Not an FP compare!");
267 if (Constant
*CLHS
= dyn_cast
<Constant
>(LHS
)) {
268 if (Constant
*CRHS
= dyn_cast
<Constant
>(RHS
))
269 return ConstantFoldCompareInstOperands(Pred
, CLHS
, CRHS
, TD
);
271 // If we have a constant, make sure it is on the RHS.
273 Pred
= CmpInst::getSwappedPredicate(Pred
);
276 // Fold trivial predicates.
277 if (Pred
== FCmpInst::FCMP_FALSE
)
278 return ConstantInt::get(GetCompareTy(LHS
), 0);
279 if (Pred
== FCmpInst::FCMP_TRUE
)
280 return ConstantInt::get(GetCompareTy(LHS
), 1);
282 if (isa
<UndefValue
>(RHS
)) // fcmp pred X, undef -> undef
283 return UndefValue::get(GetCompareTy(LHS
));
285 // fcmp x,x -> true/false. Not all compares are foldable.
287 if (CmpInst::isTrueWhenEqual(Pred
))
288 return ConstantInt::get(GetCompareTy(LHS
), 1);
289 if (CmpInst::isFalseWhenEqual(Pred
))
290 return ConstantInt::get(GetCompareTy(LHS
), 0);
293 // Handle fcmp with constant RHS
294 if (Constant
*RHSC
= dyn_cast
<Constant
>(RHS
)) {
295 // If the constant is a nan, see if we can fold the comparison based on it.
296 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(RHSC
)) {
297 if (CFP
->getValueAPF().isNaN()) {
298 if (FCmpInst::isOrdered(Pred
)) // True "if ordered and foo"
299 return ConstantInt::getFalse(CFP
->getContext());
300 assert(FCmpInst::isUnordered(Pred
) &&
301 "Comparison must be either ordered or unordered!");
302 // True if unordered.
303 return ConstantInt::getTrue(CFP
->getContext());
305 // Check whether the constant is an infinity.
306 if (CFP
->getValueAPF().isInfinity()) {
307 if (CFP
->getValueAPF().isNegative()) {
309 case FCmpInst::FCMP_OLT
:
310 // No value is ordered and less than negative infinity.
311 return ConstantInt::getFalse(CFP
->getContext());
312 case FCmpInst::FCMP_UGE
:
313 // All values are unordered with or at least negative infinity.
314 return ConstantInt::getTrue(CFP
->getContext());
320 case FCmpInst::FCMP_OGT
:
321 // No value is ordered and greater than infinity.
322 return ConstantInt::getFalse(CFP
->getContext());
323 case FCmpInst::FCMP_ULE
:
324 // All values are unordered with and at most infinity.
325 return ConstantInt::getTrue(CFP
->getContext());
337 /// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
338 /// the result. If not, this returns null.
339 Value
*llvm::SimplifySelectInst(Value
*CondVal
, Value
*TrueVal
, Value
*FalseVal
,
340 const TargetData
*TD
) {
341 // select true, X, Y -> X
342 // select false, X, Y -> Y
343 if (ConstantInt
*CB
= dyn_cast
<ConstantInt
>(CondVal
))
344 return CB
->getZExtValue() ? TrueVal
: FalseVal
;
346 // select C, X, X -> X
347 if (TrueVal
== FalseVal
)
350 if (isa
<UndefValue
>(TrueVal
)) // select C, undef, X -> X
352 if (isa
<UndefValue
>(FalseVal
)) // select C, X, undef -> X
354 if (isa
<UndefValue
>(CondVal
)) { // select undef, X, Y -> X or Y
355 if (isa
<Constant
>(TrueVal
))
366 /// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
367 /// fold the result. If not, this returns null.
368 Value
*llvm::SimplifyGEPInst(Value
*const *Ops
, unsigned NumOps
,
369 const TargetData
*TD
) {
370 // getelementptr P -> P.
375 //if (isa<UndefValue>(Ops[0]))
376 // return UndefValue::get(GEP.getType());
378 // getelementptr P, 0 -> P.
380 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(Ops
[1]))
384 // Check to see if this is constant foldable.
385 for (unsigned i
= 0; i
!= NumOps
; ++i
)
386 if (!isa
<Constant
>(Ops
[i
]))
389 return ConstantExpr::getGetElementPtr(cast
<Constant
>(Ops
[0]),
390 (Constant
*const*)Ops
+1, NumOps
-1);
394 //=== Helper functions for higher up the class hierarchy.
396 /// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
397 /// fold the result. If not, this returns null.
398 Value
*llvm::SimplifyBinOp(unsigned Opcode
, Value
*LHS
, Value
*RHS
,
399 const TargetData
*TD
) {
401 case Instruction::And
: return SimplifyAndInst(LHS
, RHS
, TD
);
402 case Instruction::Or
: return SimplifyOrInst(LHS
, RHS
, TD
);
404 if (Constant
*CLHS
= dyn_cast
<Constant
>(LHS
))
405 if (Constant
*CRHS
= dyn_cast
<Constant
>(RHS
)) {
406 Constant
*COps
[] = {CLHS
, CRHS
};
407 return ConstantFoldInstOperands(Opcode
, LHS
->getType(), COps
, 2, TD
);
413 /// SimplifyCmpInst - Given operands for a CmpInst, see if we can
415 Value
*llvm::SimplifyCmpInst(unsigned Predicate
, Value
*LHS
, Value
*RHS
,
416 const TargetData
*TD
) {
417 if (CmpInst::isIntPredicate((CmpInst::Predicate
)Predicate
))
418 return SimplifyICmpInst(Predicate
, LHS
, RHS
, TD
);
419 return SimplifyFCmpInst(Predicate
, LHS
, RHS
, TD
);
423 /// SimplifyInstruction - See if we can compute a simplified version of this
424 /// instruction. If not, this returns null.
425 Value
*llvm::SimplifyInstruction(Instruction
*I
, const TargetData
*TD
) {
426 switch (I
->getOpcode()) {
428 return ConstantFoldInstruction(I
, TD
);
429 case Instruction::Add
:
430 return SimplifyAddInst(I
->getOperand(0), I
->getOperand(1),
431 cast
<BinaryOperator
>(I
)->hasNoSignedWrap(),
432 cast
<BinaryOperator
>(I
)->hasNoUnsignedWrap(), TD
);
433 case Instruction::And
:
434 return SimplifyAndInst(I
->getOperand(0), I
->getOperand(1), TD
);
435 case Instruction::Or
:
436 return SimplifyOrInst(I
->getOperand(0), I
->getOperand(1), TD
);
437 case Instruction::ICmp
:
438 return SimplifyICmpInst(cast
<ICmpInst
>(I
)->getPredicate(),
439 I
->getOperand(0), I
->getOperand(1), TD
);
440 case Instruction::FCmp
:
441 return SimplifyFCmpInst(cast
<FCmpInst
>(I
)->getPredicate(),
442 I
->getOperand(0), I
->getOperand(1), TD
);
443 case Instruction::Select
:
444 return SimplifySelectInst(I
->getOperand(0), I
->getOperand(1),
445 I
->getOperand(2), TD
);
446 case Instruction::GetElementPtr
: {
447 SmallVector
<Value
*, 8> Ops(I
->op_begin(), I
->op_end());
448 return SimplifyGEPInst(&Ops
[0], Ops
.size(), TD
);
453 /// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
454 /// delete the From instruction. In addition to a basic RAUW, this does a
455 /// recursive simplification of the newly formed instructions. This catches
456 /// things where one simplification exposes other opportunities. This only
457 /// simplifies and deletes scalar operations, it does not change the CFG.
459 void llvm::ReplaceAndSimplifyAllUses(Instruction
*From
, Value
*To
,
460 const TargetData
*TD
) {
461 assert(From
!= To
&& "ReplaceAndSimplifyAllUses(X,X) is not valid!");
463 // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that
464 // we can know if it gets deleted out from under us or replaced in a
465 // recursive simplification.
466 WeakVH
FromHandle(From
);
469 while (!From
->use_empty()) {
470 // Update the instruction to use the new value.
471 Use
&TheUse
= From
->use_begin().getUse();
472 Instruction
*User
= cast
<Instruction
>(TheUse
.getUser());
475 // Check to see if the instruction can be folded due to the operand
476 // replacement. For example changing (or X, Y) into (or X, -1) can replace
478 Value
*SimplifiedVal
;
480 // Sanity check to make sure 'User' doesn't dangle across
481 // SimplifyInstruction.
482 AssertingVH
<> UserHandle(User
);
484 SimplifiedVal
= SimplifyInstruction(User
, TD
);
485 if (SimplifiedVal
== 0) continue;
488 // Recursively simplify this user to the new value.
489 ReplaceAndSimplifyAllUses(User
, SimplifiedVal
, TD
);
490 From
= dyn_cast_or_null
<Instruction
>((Value
*)FromHandle
);
493 assert(ToHandle
&& "To value deleted by recursive simplification?");
495 // If the recursive simplification ended up revisiting and deleting
496 // 'From' then we're done.
501 // If 'From' has value handles referring to it, do a real RAUW to update them.
502 From
->replaceAllUsesWith(To
);
504 From
->eraseFromParent();