Fixed some bugs.
[llvm/zpu.git] / lib / Analysis / Lint.cpp
blobb27ca47142f160579ad0e30940e21cd3cbb3ee7c
1 //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass statically checks for common and easily-identified constructs
11 // which produce undefined or likely unintended behavior in LLVM IR.
13 // It is not a guarantee of correctness, in two ways. First, it isn't
14 // comprehensive. There are checks which could be done statically which are
15 // not yet implemented. Some of these are indicated by TODO comments, but
16 // those aren't comprehensive either. Second, many conditions cannot be
17 // checked statically. This pass does no dynamic instrumentation, so it
18 // can't check for all possible problems.
19 //
20 // Another limitation is that it assumes all code will be executed. A store
21 // through a null pointer in a basic block which is never reached is harmless,
22 // but this pass will warn about it anyway. This is the main reason why most
23 // of these checks live here instead of in the Verifier pass.
25 // Optimization passes may make conditions that this pass checks for more or
26 // less obvious. If an optimization pass appears to be introducing a warning,
27 // it may be that the optimization pass is merely exposing an existing
28 // condition in the code.
29 //
30 // This code may be run before instcombine. In many cases, instcombine checks
31 // for the same kinds of things and turns instructions with undefined behavior
32 // into unreachable (or equivalent). Because of this, this pass makes some
33 // effort to look through bitcasts and so on.
34 //
35 //===----------------------------------------------------------------------===//
37 #include "llvm/Analysis/Passes.h"
38 #include "llvm/Analysis/AliasAnalysis.h"
39 #include "llvm/Analysis/InstructionSimplify.h"
40 #include "llvm/Analysis/ConstantFolding.h"
41 #include "llvm/Analysis/Dominators.h"
42 #include "llvm/Analysis/Lint.h"
43 #include "llvm/Analysis/Loads.h"
44 #include "llvm/Analysis/ValueTracking.h"
45 #include "llvm/Assembly/Writer.h"
46 #include "llvm/Target/TargetData.h"
47 #include "llvm/Pass.h"
48 #include "llvm/PassManager.h"
49 #include "llvm/IntrinsicInst.h"
50 #include "llvm/Function.h"
51 #include "llvm/Support/CallSite.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/InstVisitor.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/ADT/STLExtras.h"
56 using namespace llvm;
58 namespace {
59 namespace MemRef {
60 static unsigned Read = 1;
61 static unsigned Write = 2;
62 static unsigned Callee = 4;
63 static unsigned Branchee = 8;
66 class Lint : public FunctionPass, public InstVisitor<Lint> {
67 friend class InstVisitor<Lint>;
69 void visitFunction(Function &F);
71 void visitCallSite(CallSite CS);
72 void visitMemoryReference(Instruction &I, Value *Ptr,
73 uint64_t Size, unsigned Align,
74 const Type *Ty, unsigned Flags);
76 void visitCallInst(CallInst &I);
77 void visitInvokeInst(InvokeInst &I);
78 void visitReturnInst(ReturnInst &I);
79 void visitLoadInst(LoadInst &I);
80 void visitStoreInst(StoreInst &I);
81 void visitXor(BinaryOperator &I);
82 void visitSub(BinaryOperator &I);
83 void visitLShr(BinaryOperator &I);
84 void visitAShr(BinaryOperator &I);
85 void visitShl(BinaryOperator &I);
86 void visitSDiv(BinaryOperator &I);
87 void visitUDiv(BinaryOperator &I);
88 void visitSRem(BinaryOperator &I);
89 void visitURem(BinaryOperator &I);
90 void visitAllocaInst(AllocaInst &I);
91 void visitVAArgInst(VAArgInst &I);
92 void visitIndirectBrInst(IndirectBrInst &I);
93 void visitExtractElementInst(ExtractElementInst &I);
94 void visitInsertElementInst(InsertElementInst &I);
95 void visitUnreachableInst(UnreachableInst &I);
97 Value *findValue(Value *V, bool OffsetOk) const;
98 Value *findValueImpl(Value *V, bool OffsetOk,
99 SmallPtrSet<Value *, 4> &Visited) const;
101 public:
102 Module *Mod;
103 AliasAnalysis *AA;
104 DominatorTree *DT;
105 TargetData *TD;
107 std::string Messages;
108 raw_string_ostream MessagesStr;
110 static char ID; // Pass identification, replacement for typeid
111 Lint() : FunctionPass(ID), MessagesStr(Messages) {
112 initializeLintPass(*PassRegistry::getPassRegistry());
115 virtual bool runOnFunction(Function &F);
117 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
118 AU.setPreservesAll();
119 AU.addRequired<AliasAnalysis>();
120 AU.addRequired<DominatorTree>();
122 virtual void print(raw_ostream &O, const Module *M) const {}
124 void WriteValue(const Value *V) {
125 if (!V) return;
126 if (isa<Instruction>(V)) {
127 MessagesStr << *V << '\n';
128 } else {
129 WriteAsOperand(MessagesStr, V, true, Mod);
130 MessagesStr << '\n';
134 // CheckFailed - A check failed, so print out the condition and the message
135 // that failed. This provides a nice place to put a breakpoint if you want
136 // to see why something is not correct.
137 void CheckFailed(const Twine &Message,
138 const Value *V1 = 0, const Value *V2 = 0,
139 const Value *V3 = 0, const Value *V4 = 0) {
140 MessagesStr << Message.str() << "\n";
141 WriteValue(V1);
142 WriteValue(V2);
143 WriteValue(V3);
144 WriteValue(V4);
149 char Lint::ID = 0;
150 INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR",
151 false, true)
152 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
153 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
154 INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
155 false, true)
157 // Assert - We know that cond should be true, if not print an error message.
158 #define Assert(C, M) \
159 do { if (!(C)) { CheckFailed(M); return; } } while (0)
160 #define Assert1(C, M, V1) \
161 do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
162 #define Assert2(C, M, V1, V2) \
163 do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
164 #define Assert3(C, M, V1, V2, V3) \
165 do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
166 #define Assert4(C, M, V1, V2, V3, V4) \
167 do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
169 // Lint::run - This is the main Analysis entry point for a
170 // function.
172 bool Lint::runOnFunction(Function &F) {
173 Mod = F.getParent();
174 AA = &getAnalysis<AliasAnalysis>();
175 DT = &getAnalysis<DominatorTree>();
176 TD = getAnalysisIfAvailable<TargetData>();
177 visit(F);
178 dbgs() << MessagesStr.str();
179 Messages.clear();
180 return false;
183 void Lint::visitFunction(Function &F) {
184 // This isn't undefined behavior, it's just a little unusual, and it's a
185 // fairly common mistake to neglect to name a function.
186 Assert1(F.hasName() || F.hasLocalLinkage(),
187 "Unusual: Unnamed function with non-local linkage", &F);
189 // TODO: Check for irreducible control flow.
192 void Lint::visitCallSite(CallSite CS) {
193 Instruction &I = *CS.getInstruction();
194 Value *Callee = CS.getCalledValue();
196 visitMemoryReference(I, Callee, AliasAnalysis::UnknownSize,
197 0, 0, MemRef::Callee);
199 if (Function *F = dyn_cast<Function>(findValue(Callee, /*OffsetOk=*/false))) {
200 Assert1(CS.getCallingConv() == F->getCallingConv(),
201 "Undefined behavior: Caller and callee calling convention differ",
202 &I);
204 const FunctionType *FT = F->getFunctionType();
205 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
207 Assert1(FT->isVarArg() ?
208 FT->getNumParams() <= NumActualArgs :
209 FT->getNumParams() == NumActualArgs,
210 "Undefined behavior: Call argument count mismatches callee "
211 "argument count", &I);
213 Assert1(FT->getReturnType() == I.getType(),
214 "Undefined behavior: Call return type mismatches "
215 "callee return type", &I);
217 // Check argument types (in case the callee was casted) and attributes.
218 // TODO: Verify that caller and callee attributes are compatible.
219 Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
220 CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
221 for (; AI != AE; ++AI) {
222 Value *Actual = *AI;
223 if (PI != PE) {
224 Argument *Formal = PI++;
225 Assert1(Formal->getType() == Actual->getType(),
226 "Undefined behavior: Call argument type mismatches "
227 "callee parameter type", &I);
229 // Check that noalias arguments don't alias other arguments. The
230 // AliasAnalysis API isn't expressive enough for what we really want
231 // to do. Known partial overlap is not distinguished from the case
232 // where nothing is known.
233 if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy())
234 for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE; ++BI) {
235 Assert1(AI == BI || AA->alias(*AI, *BI) != AliasAnalysis::MustAlias,
236 "Unusual: noalias argument aliases another argument", &I);
239 // Check that an sret argument points to valid memory.
240 if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
241 const Type *Ty =
242 cast<PointerType>(Formal->getType())->getElementType();
243 visitMemoryReference(I, Actual, AA->getTypeStoreSize(Ty),
244 TD ? TD->getABITypeAlignment(Ty) : 0,
245 Ty, MemRef::Read | MemRef::Write);
251 if (CS.isCall() && cast<CallInst>(CS.getInstruction())->isTailCall())
252 for (CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
253 AI != AE; ++AI) {
254 Value *Obj = findValue(*AI, /*OffsetOk=*/true);
255 Assert1(!isa<AllocaInst>(Obj),
256 "Undefined behavior: Call with \"tail\" keyword references "
257 "alloca", &I);
261 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
262 switch (II->getIntrinsicID()) {
263 default: break;
265 // TODO: Check more intrinsics
267 case Intrinsic::memcpy: {
268 MemCpyInst *MCI = cast<MemCpyInst>(&I);
269 // TODO: If the size is known, use it.
270 visitMemoryReference(I, MCI->getDest(), AliasAnalysis::UnknownSize,
271 MCI->getAlignment(), 0,
272 MemRef::Write);
273 visitMemoryReference(I, MCI->getSource(), AliasAnalysis::UnknownSize,
274 MCI->getAlignment(), 0,
275 MemRef::Read);
277 // Check that the memcpy arguments don't overlap. The AliasAnalysis API
278 // isn't expressive enough for what we really want to do. Known partial
279 // overlap is not distinguished from the case where nothing is known.
280 uint64_t Size = 0;
281 if (const ConstantInt *Len =
282 dyn_cast<ConstantInt>(findValue(MCI->getLength(),
283 /*OffsetOk=*/false)))
284 if (Len->getValue().isIntN(32))
285 Size = Len->getValue().getZExtValue();
286 Assert1(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
287 AliasAnalysis::MustAlias,
288 "Undefined behavior: memcpy source and destination overlap", &I);
289 break;
291 case Intrinsic::memmove: {
292 MemMoveInst *MMI = cast<MemMoveInst>(&I);
293 // TODO: If the size is known, use it.
294 visitMemoryReference(I, MMI->getDest(), AliasAnalysis::UnknownSize,
295 MMI->getAlignment(), 0,
296 MemRef::Write);
297 visitMemoryReference(I, MMI->getSource(), AliasAnalysis::UnknownSize,
298 MMI->getAlignment(), 0,
299 MemRef::Read);
300 break;
302 case Intrinsic::memset: {
303 MemSetInst *MSI = cast<MemSetInst>(&I);
304 // TODO: If the size is known, use it.
305 visitMemoryReference(I, MSI->getDest(), AliasAnalysis::UnknownSize,
306 MSI->getAlignment(), 0,
307 MemRef::Write);
308 break;
311 case Intrinsic::vastart:
312 Assert1(I.getParent()->getParent()->isVarArg(),
313 "Undefined behavior: va_start called in a non-varargs function",
314 &I);
316 visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
317 0, 0, MemRef::Read | MemRef::Write);
318 break;
319 case Intrinsic::vacopy:
320 visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
321 0, 0, MemRef::Write);
322 visitMemoryReference(I, CS.getArgument(1), AliasAnalysis::UnknownSize,
323 0, 0, MemRef::Read);
324 break;
325 case Intrinsic::vaend:
326 visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
327 0, 0, MemRef::Read | MemRef::Write);
328 break;
330 case Intrinsic::stackrestore:
331 // Stackrestore doesn't read or write memory, but it sets the
332 // stack pointer, which the compiler may read from or write to
333 // at any time, so check it for both readability and writeability.
334 visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
335 0, 0, MemRef::Read | MemRef::Write);
336 break;
340 void Lint::visitCallInst(CallInst &I) {
341 return visitCallSite(&I);
344 void Lint::visitInvokeInst(InvokeInst &I) {
345 return visitCallSite(&I);
348 void Lint::visitReturnInst(ReturnInst &I) {
349 Function *F = I.getParent()->getParent();
350 Assert1(!F->doesNotReturn(),
351 "Unusual: Return statement in function with noreturn attribute",
352 &I);
354 if (Value *V = I.getReturnValue()) {
355 Value *Obj = findValue(V, /*OffsetOk=*/true);
356 Assert1(!isa<AllocaInst>(Obj),
357 "Unusual: Returning alloca value", &I);
361 // TODO: Check that the reference is in bounds.
362 // TODO: Check readnone/readonly function attributes.
363 void Lint::visitMemoryReference(Instruction &I,
364 Value *Ptr, uint64_t Size, unsigned Align,
365 const Type *Ty, unsigned Flags) {
366 // If no memory is being referenced, it doesn't matter if the pointer
367 // is valid.
368 if (Size == 0)
369 return;
371 Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
372 Assert1(!isa<ConstantPointerNull>(UnderlyingObject),
373 "Undefined behavior: Null pointer dereference", &I);
374 Assert1(!isa<UndefValue>(UnderlyingObject),
375 "Undefined behavior: Undef pointer dereference", &I);
376 Assert1(!isa<ConstantInt>(UnderlyingObject) ||
377 !cast<ConstantInt>(UnderlyingObject)->isAllOnesValue(),
378 "Unusual: All-ones pointer dereference", &I);
379 Assert1(!isa<ConstantInt>(UnderlyingObject) ||
380 !cast<ConstantInt>(UnderlyingObject)->isOne(),
381 "Unusual: Address one pointer dereference", &I);
383 if (Flags & MemRef::Write) {
384 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
385 Assert1(!GV->isConstant(),
386 "Undefined behavior: Write to read-only memory", &I);
387 Assert1(!isa<Function>(UnderlyingObject) &&
388 !isa<BlockAddress>(UnderlyingObject),
389 "Undefined behavior: Write to text section", &I);
391 if (Flags & MemRef::Read) {
392 Assert1(!isa<Function>(UnderlyingObject),
393 "Unusual: Load from function body", &I);
394 Assert1(!isa<BlockAddress>(UnderlyingObject),
395 "Undefined behavior: Load from block address", &I);
397 if (Flags & MemRef::Callee) {
398 Assert1(!isa<BlockAddress>(UnderlyingObject),
399 "Undefined behavior: Call to block address", &I);
401 if (Flags & MemRef::Branchee) {
402 Assert1(!isa<Constant>(UnderlyingObject) ||
403 isa<BlockAddress>(UnderlyingObject),
404 "Undefined behavior: Branch to non-blockaddress", &I);
407 if (TD) {
408 if (Align == 0 && Ty) Align = TD->getABITypeAlignment(Ty);
410 if (Align != 0) {
411 unsigned BitWidth = TD->getTypeSizeInBits(Ptr->getType());
412 APInt Mask = APInt::getAllOnesValue(BitWidth),
413 KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
414 ComputeMaskedBits(Ptr, Mask, KnownZero, KnownOne, TD);
415 Assert1(!(KnownOne & APInt::getLowBitsSet(BitWidth, Log2_32(Align))),
416 "Undefined behavior: Memory reference address is misaligned", &I);
421 void Lint::visitLoadInst(LoadInst &I) {
422 visitMemoryReference(I, I.getPointerOperand(),
423 AA->getTypeStoreSize(I.getType()), I.getAlignment(),
424 I.getType(), MemRef::Read);
427 void Lint::visitStoreInst(StoreInst &I) {
428 visitMemoryReference(I, I.getPointerOperand(),
429 AA->getTypeStoreSize(I.getOperand(0)->getType()),
430 I.getAlignment(),
431 I.getOperand(0)->getType(), MemRef::Write);
434 void Lint::visitXor(BinaryOperator &I) {
435 Assert1(!isa<UndefValue>(I.getOperand(0)) ||
436 !isa<UndefValue>(I.getOperand(1)),
437 "Undefined result: xor(undef, undef)", &I);
440 void Lint::visitSub(BinaryOperator &I) {
441 Assert1(!isa<UndefValue>(I.getOperand(0)) ||
442 !isa<UndefValue>(I.getOperand(1)),
443 "Undefined result: sub(undef, undef)", &I);
446 void Lint::visitLShr(BinaryOperator &I) {
447 if (ConstantInt *CI =
448 dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
449 Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
450 "Undefined result: Shift count out of range", &I);
453 void Lint::visitAShr(BinaryOperator &I) {
454 if (ConstantInt *CI =
455 dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
456 Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
457 "Undefined result: Shift count out of range", &I);
460 void Lint::visitShl(BinaryOperator &I) {
461 if (ConstantInt *CI =
462 dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
463 Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
464 "Undefined result: Shift count out of range", &I);
467 static bool isZero(Value *V, TargetData *TD) {
468 // Assume undef could be zero.
469 if (isa<UndefValue>(V)) return true;
471 unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
472 APInt Mask = APInt::getAllOnesValue(BitWidth),
473 KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
474 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD);
475 return KnownZero.isAllOnesValue();
478 void Lint::visitSDiv(BinaryOperator &I) {
479 Assert1(!isZero(I.getOperand(1), TD),
480 "Undefined behavior: Division by zero", &I);
483 void Lint::visitUDiv(BinaryOperator &I) {
484 Assert1(!isZero(I.getOperand(1), TD),
485 "Undefined behavior: Division by zero", &I);
488 void Lint::visitSRem(BinaryOperator &I) {
489 Assert1(!isZero(I.getOperand(1), TD),
490 "Undefined behavior: Division by zero", &I);
493 void Lint::visitURem(BinaryOperator &I) {
494 Assert1(!isZero(I.getOperand(1), TD),
495 "Undefined behavior: Division by zero", &I);
498 void Lint::visitAllocaInst(AllocaInst &I) {
499 if (isa<ConstantInt>(I.getArraySize()))
500 // This isn't undefined behavior, it's just an obvious pessimization.
501 Assert1(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
502 "Pessimization: Static alloca outside of entry block", &I);
504 // TODO: Check for an unusual size (MSB set?)
507 void Lint::visitVAArgInst(VAArgInst &I) {
508 visitMemoryReference(I, I.getOperand(0), AliasAnalysis::UnknownSize, 0, 0,
509 MemRef::Read | MemRef::Write);
512 void Lint::visitIndirectBrInst(IndirectBrInst &I) {
513 visitMemoryReference(I, I.getAddress(), AliasAnalysis::UnknownSize, 0, 0,
514 MemRef::Branchee);
516 Assert1(I.getNumDestinations() != 0,
517 "Undefined behavior: indirectbr with no destinations", &I);
520 void Lint::visitExtractElementInst(ExtractElementInst &I) {
521 if (ConstantInt *CI =
522 dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
523 /*OffsetOk=*/false)))
524 Assert1(CI->getValue().ult(I.getVectorOperandType()->getNumElements()),
525 "Undefined result: extractelement index out of range", &I);
528 void Lint::visitInsertElementInst(InsertElementInst &I) {
529 if (ConstantInt *CI =
530 dyn_cast<ConstantInt>(findValue(I.getOperand(2),
531 /*OffsetOk=*/false)))
532 Assert1(CI->getValue().ult(I.getType()->getNumElements()),
533 "Undefined result: insertelement index out of range", &I);
536 void Lint::visitUnreachableInst(UnreachableInst &I) {
537 // This isn't undefined behavior, it's merely suspicious.
538 Assert1(&I == I.getParent()->begin() ||
539 prior(BasicBlock::iterator(&I))->mayHaveSideEffects(),
540 "Unusual: unreachable immediately preceded by instruction without "
541 "side effects", &I);
544 /// findValue - Look through bitcasts and simple memory reference patterns
545 /// to identify an equivalent, but more informative, value. If OffsetOk
546 /// is true, look through getelementptrs with non-zero offsets too.
548 /// Most analysis passes don't require this logic, because instcombine
549 /// will simplify most of these kinds of things away. But it's a goal of
550 /// this Lint pass to be useful even on non-optimized IR.
551 Value *Lint::findValue(Value *V, bool OffsetOk) const {
552 SmallPtrSet<Value *, 4> Visited;
553 return findValueImpl(V, OffsetOk, Visited);
556 /// findValueImpl - Implementation helper for findValue.
557 Value *Lint::findValueImpl(Value *V, bool OffsetOk,
558 SmallPtrSet<Value *, 4> &Visited) const {
559 // Detect self-referential values.
560 if (!Visited.insert(V))
561 return UndefValue::get(V->getType());
563 // TODO: Look through sext or zext cast, when the result is known to
564 // be interpreted as signed or unsigned, respectively.
565 // TODO: Look through eliminable cast pairs.
566 // TODO: Look through calls with unique return values.
567 // TODO: Look through vector insert/extract/shuffle.
568 V = OffsetOk ? V->getUnderlyingObject() : V->stripPointerCasts();
569 if (LoadInst *L = dyn_cast<LoadInst>(V)) {
570 BasicBlock::iterator BBI = L;
571 BasicBlock *BB = L->getParent();
572 SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
573 for (;;) {
574 if (!VisitedBlocks.insert(BB)) break;
575 if (Value *U = FindAvailableLoadedValue(L->getPointerOperand(),
576 BB, BBI, 6, AA))
577 return findValueImpl(U, OffsetOk, Visited);
578 if (BBI != BB->begin()) break;
579 BB = BB->getUniquePredecessor();
580 if (!BB) break;
581 BBI = BB->end();
583 } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
584 if (Value *W = PN->hasConstantValue(DT))
585 return findValueImpl(W, OffsetOk, Visited);
586 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
587 if (CI->isNoopCast(TD ? TD->getIntPtrType(V->getContext()) :
588 Type::getInt64Ty(V->getContext())))
589 return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
590 } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
591 if (Value *W = FindInsertedValue(Ex->getAggregateOperand(),
592 Ex->idx_begin(),
593 Ex->idx_end()))
594 if (W != V)
595 return findValueImpl(W, OffsetOk, Visited);
596 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
597 // Same as above, but for ConstantExpr instead of Instruction.
598 if (Instruction::isCast(CE->getOpcode())) {
599 if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
600 CE->getOperand(0)->getType(),
601 CE->getType(),
602 TD ? TD->getIntPtrType(V->getContext()) :
603 Type::getInt64Ty(V->getContext())))
604 return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
605 } else if (CE->getOpcode() == Instruction::ExtractValue) {
606 const SmallVector<unsigned, 4> &Indices = CE->getIndices();
607 if (Value *W = FindInsertedValue(CE->getOperand(0),
608 Indices.begin(),
609 Indices.end()))
610 if (W != V)
611 return findValueImpl(W, OffsetOk, Visited);
615 // As a last resort, try SimplifyInstruction or constant folding.
616 if (Instruction *Inst = dyn_cast<Instruction>(V)) {
617 if (Value *W = SimplifyInstruction(Inst, TD))
618 if (W != Inst)
619 return findValueImpl(W, OffsetOk, Visited);
620 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
621 if (Value *W = ConstantFoldConstantExpression(CE, TD))
622 if (W != V)
623 return findValueImpl(W, OffsetOk, Visited);
626 return V;
629 //===----------------------------------------------------------------------===//
630 // Implement the public interfaces to this file...
631 //===----------------------------------------------------------------------===//
633 FunctionPass *llvm::createLintPass() {
634 return new Lint();
637 /// lintFunction - Check a function for errors, printing messages on stderr.
639 void llvm::lintFunction(const Function &f) {
640 Function &F = const_cast<Function&>(f);
641 assert(!F.isDeclaration() && "Cannot lint external functions");
643 FunctionPassManager FPM(F.getParent());
644 Lint *V = new Lint();
645 FPM.add(V);
646 FPM.run(F);
649 /// lintModule - Check a module for errors, printing messages on stderr.
651 void llvm::lintModule(const Module &M) {
652 PassManager PM;
653 Lint *V = new Lint();
654 PM.add(V);
655 PM.run(const_cast<Module&>(M));