Fixed some bugs.
[llvm/zpu.git] / lib / Analysis / MemoryDependenceAnalysis.cpp
blobc72cd1e83a84d86041ce332706af0ea5e607a9b2
1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation --*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements an analysis that determines, for a given memory
11 // operation, what preceding memory operations it depends on. It builds on
12 // alias analysis information, and tries to provide a lazy, caching interface to
13 // a common kind of alias information query.
15 //===----------------------------------------------------------------------===//
17 #define DEBUG_TYPE "memdep"
18 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/IntrinsicInst.h"
21 #include "llvm/Function.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/Dominators.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/PHITransAddr.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/Support/PredIteratorCache.h"
31 #include "llvm/Support/Debug.h"
32 using namespace llvm;
34 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
35 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
36 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
38 STATISTIC(NumCacheNonLocalPtr,
39 "Number of fully cached non-local ptr responses");
40 STATISTIC(NumCacheDirtyNonLocalPtr,
41 "Number of cached, but dirty, non-local ptr responses");
42 STATISTIC(NumUncacheNonLocalPtr,
43 "Number of uncached non-local ptr responses");
44 STATISTIC(NumCacheCompleteNonLocalPtr,
45 "Number of block queries that were completely cached");
47 char MemoryDependenceAnalysis::ID = 0;
49 // Register this pass...
50 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep",
51 "Memory Dependence Analysis", false, true)
52 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
53 INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep",
54 "Memory Dependence Analysis", false, true)
56 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
57 : FunctionPass(ID), PredCache(0) {
58 initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry());
60 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
63 /// Clean up memory in between runs
64 void MemoryDependenceAnalysis::releaseMemory() {
65 LocalDeps.clear();
66 NonLocalDeps.clear();
67 NonLocalPointerDeps.clear();
68 ReverseLocalDeps.clear();
69 ReverseNonLocalDeps.clear();
70 ReverseNonLocalPtrDeps.clear();
71 PredCache->clear();
76 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis.
77 ///
78 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
79 AU.setPreservesAll();
80 AU.addRequiredTransitive<AliasAnalysis>();
83 bool MemoryDependenceAnalysis::runOnFunction(Function &) {
84 AA = &getAnalysis<AliasAnalysis>();
85 if (PredCache == 0)
86 PredCache.reset(new PredIteratorCache());
87 return false;
90 /// RemoveFromReverseMap - This is a helper function that removes Val from
91 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry.
92 template <typename KeyTy>
93 static void RemoveFromReverseMap(DenseMap<Instruction*,
94 SmallPtrSet<KeyTy, 4> > &ReverseMap,
95 Instruction *Inst, KeyTy Val) {
96 typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
97 InstIt = ReverseMap.find(Inst);
98 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
99 bool Found = InstIt->second.erase(Val);
100 assert(Found && "Invalid reverse map!"); Found=Found;
101 if (InstIt->second.empty())
102 ReverseMap.erase(InstIt);
106 /// getCallSiteDependencyFrom - Private helper for finding the local
107 /// dependencies of a call site.
108 MemDepResult MemoryDependenceAnalysis::
109 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
110 BasicBlock::iterator ScanIt, BasicBlock *BB) {
111 // Walk backwards through the block, looking for dependencies
112 while (ScanIt != BB->begin()) {
113 Instruction *Inst = --ScanIt;
115 // If this inst is a memory op, get the pointer it accessed
116 AliasAnalysis::Location Loc;
117 if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
118 Loc = AliasAnalysis::Location(S->getPointerOperand(),
119 AA->getTypeStoreSize(S->getValueOperand()
120 ->getType()),
121 S->getMetadata(LLVMContext::MD_tbaa));
122 } else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
123 Loc = AliasAnalysis::Location(V->getPointerOperand(),
124 AA->getTypeStoreSize(V->getType()),
125 V->getMetadata(LLVMContext::MD_tbaa));
126 } else if (const CallInst *CI = isFreeCall(Inst)) {
127 // calls to free() erase the entire structure
128 Loc = AliasAnalysis::Location(CI->getArgOperand(0));
129 } else if (CallSite InstCS = cast<Value>(Inst)) {
130 // Debug intrinsics don't cause dependences.
131 if (isa<DbgInfoIntrinsic>(Inst)) continue;
132 // If these two calls do not interfere, look past it.
133 switch (AA->getModRefInfo(CS, InstCS)) {
134 case AliasAnalysis::NoModRef:
135 // If the two calls are the same, return InstCS as a Def, so that
136 // CS can be found redundant and eliminated.
137 if (isReadOnlyCall && InstCS.onlyReadsMemory() &&
138 CS.getInstruction()->isIdenticalToWhenDefined(Inst))
139 return MemDepResult::getDef(Inst);
141 // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
142 // keep scanning.
143 continue;
144 default:
145 return MemDepResult::getClobber(Inst);
147 } else {
148 // Non-memory instruction.
149 continue;
152 if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef)
153 return MemDepResult::getClobber(Inst);
156 // No dependence found. If this is the entry block of the function, it is a
157 // clobber, otherwise it is non-local.
158 if (BB != &BB->getParent()->getEntryBlock())
159 return MemDepResult::getNonLocal();
160 return MemDepResult::getClobber(ScanIt);
163 /// getPointerDependencyFrom - Return the instruction on which a memory
164 /// location depends. If isLoad is true, this routine ignores may-aliases with
165 /// read-only operations. If isLoad is false, this routine ignores may-aliases
166 /// with reads from read-only locations.
167 MemDepResult MemoryDependenceAnalysis::
168 getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad,
169 BasicBlock::iterator ScanIt, BasicBlock *BB) {
171 Value *InvariantTag = 0;
173 // Walk backwards through the basic block, looking for dependencies.
174 while (ScanIt != BB->begin()) {
175 Instruction *Inst = --ScanIt;
177 // If we're in an invariant region, no dependencies can be found before
178 // we pass an invariant-begin marker.
179 if (InvariantTag == Inst) {
180 InvariantTag = 0;
181 continue;
184 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
185 // Debug intrinsics don't (and can't) cause dependences.
186 if (isa<DbgInfoIntrinsic>(II)) continue;
188 // If we pass an invariant-end marker, then we've just entered an
189 // invariant region and can start ignoring dependencies.
190 if (II->getIntrinsicID() == Intrinsic::invariant_end) {
191 // FIXME: This only considers queries directly on the invariant-tagged
192 // pointer, not on query pointers that are indexed off of them. It'd
193 // be nice to handle that at some point.
194 AliasAnalysis::AliasResult R =
195 AA->alias(AliasAnalysis::Location(II->getArgOperand(2)), MemLoc);
196 if (R == AliasAnalysis::MustAlias)
197 InvariantTag = II->getArgOperand(0);
199 continue;
202 // If we reach a lifetime begin or end marker, then the query ends here
203 // because the value is undefined.
204 if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
205 // FIXME: This only considers queries directly on the invariant-tagged
206 // pointer, not on query pointers that are indexed off of them. It'd
207 // be nice to handle that at some point.
208 AliasAnalysis::AliasResult R =
209 AA->alias(AliasAnalysis::Location(II->getArgOperand(1)), MemLoc);
210 if (R == AliasAnalysis::MustAlias)
211 return MemDepResult::getDef(II);
212 continue;
216 // If we're querying on a load and we're in an invariant region, we're done
217 // at this point. Nothing a load depends on can live in an invariant region.
219 // FIXME: this will prevent us from returning load/load must-aliases, so GVN
220 // won't remove redundant loads.
221 if (isLoad && InvariantTag) continue;
223 // Values depend on loads if the pointers are must aliased. This means that
224 // a load depends on another must aliased load from the same value.
225 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
226 Value *Pointer = LI->getPointerOperand();
227 uint64_t PointerSize = AA->getTypeStoreSize(LI->getType());
228 MDNode *TBAATag = LI->getMetadata(LLVMContext::MD_tbaa);
229 AliasAnalysis::Location LoadLoc(Pointer, PointerSize, TBAATag);
231 // If we found a pointer, check if it could be the same as our pointer.
232 AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc);
233 if (R == AliasAnalysis::NoAlias)
234 continue;
236 // May-alias loads don't depend on each other without a dependence.
237 if (isLoad && R == AliasAnalysis::MayAlias)
238 continue;
240 // Stores don't alias loads from read-only memory.
241 if (!isLoad && AA->pointsToConstantMemory(LoadLoc))
242 continue;
244 // Stores depend on may and must aliased loads, loads depend on must-alias
245 // loads.
246 return MemDepResult::getDef(Inst);
249 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
250 // There can't be stores to the value we care about inside an
251 // invariant region.
252 if (InvariantTag) continue;
254 // If alias analysis can tell that this store is guaranteed to not modify
255 // the query pointer, ignore it. Use getModRefInfo to handle cases where
256 // the query pointer points to constant memory etc.
257 if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef)
258 continue;
260 // Ok, this store might clobber the query pointer. Check to see if it is
261 // a must alias: in this case, we want to return this as a def.
262 Value *Pointer = SI->getPointerOperand();
263 uint64_t PointerSize = AA->getTypeStoreSize(SI->getOperand(0)->getType());
264 MDNode *TBAATag = SI->getMetadata(LLVMContext::MD_tbaa);
266 // If we found a pointer, check if it could be the same as our pointer.
267 AliasAnalysis::AliasResult R =
268 AA->alias(AliasAnalysis::Location(Pointer, PointerSize, TBAATag),
269 MemLoc);
271 if (R == AliasAnalysis::NoAlias)
272 continue;
273 if (R == AliasAnalysis::MayAlias)
274 return MemDepResult::getClobber(Inst);
275 return MemDepResult::getDef(Inst);
278 // If this is an allocation, and if we know that the accessed pointer is to
279 // the allocation, return Def. This means that there is no dependence and
280 // the access can be optimized based on that. For example, a load could
281 // turn into undef.
282 // Note: Only determine this to be a malloc if Inst is the malloc call, not
283 // a subsequent bitcast of the malloc call result. There can be stores to
284 // the malloced memory between the malloc call and its bitcast uses, and we
285 // need to continue scanning until the malloc call.
286 if (isa<AllocaInst>(Inst) ||
287 (isa<CallInst>(Inst) && extractMallocCall(Inst))) {
288 const Value *AccessPtr = MemLoc.Ptr->getUnderlyingObject();
290 if (AccessPtr == Inst ||
291 AA->alias(Inst, 1, AccessPtr, 1) == AliasAnalysis::MustAlias)
292 return MemDepResult::getDef(Inst);
293 continue;
296 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
297 switch (AA->getModRefInfo(Inst, MemLoc)) {
298 case AliasAnalysis::NoModRef:
299 // If the call has no effect on the queried pointer, just ignore it.
300 continue;
301 case AliasAnalysis::Mod:
302 // If we're in an invariant region, we can ignore calls that ONLY
303 // modify the pointer.
304 if (InvariantTag) continue;
305 return MemDepResult::getClobber(Inst);
306 case AliasAnalysis::Ref:
307 // If the call is known to never store to the pointer, and if this is a
308 // load query, we can safely ignore it (scan past it).
309 if (isLoad)
310 continue;
311 default:
312 // Otherwise, there is a potential dependence. Return a clobber.
313 return MemDepResult::getClobber(Inst);
317 // No dependence found. If this is the entry block of the function, it is a
318 // clobber, otherwise it is non-local.
319 if (BB != &BB->getParent()->getEntryBlock())
320 return MemDepResult::getNonLocal();
321 return MemDepResult::getClobber(ScanIt);
324 /// getDependency - Return the instruction on which a memory operation
325 /// depends.
326 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
327 Instruction *ScanPos = QueryInst;
329 // Check for a cached result
330 MemDepResult &LocalCache = LocalDeps[QueryInst];
332 // If the cached entry is non-dirty, just return it. Note that this depends
333 // on MemDepResult's default constructing to 'dirty'.
334 if (!LocalCache.isDirty())
335 return LocalCache;
337 // Otherwise, if we have a dirty entry, we know we can start the scan at that
338 // instruction, which may save us some work.
339 if (Instruction *Inst = LocalCache.getInst()) {
340 ScanPos = Inst;
342 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
345 BasicBlock *QueryParent = QueryInst->getParent();
347 AliasAnalysis::Location MemLoc;
349 // Do the scan.
350 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
351 // No dependence found. If this is the entry block of the function, it is a
352 // clobber, otherwise it is non-local.
353 if (QueryParent != &QueryParent->getParent()->getEntryBlock())
354 LocalCache = MemDepResult::getNonLocal();
355 else
356 LocalCache = MemDepResult::getClobber(QueryInst);
357 } else if (StoreInst *SI = dyn_cast<StoreInst>(QueryInst)) {
358 // If this is a volatile store, don't mess around with it. Just return the
359 // previous instruction as a clobber.
360 if (SI->isVolatile())
361 LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
362 else
363 MemLoc = AliasAnalysis::Location(SI->getPointerOperand(),
364 AA->getTypeStoreSize(SI->getOperand(0)
365 ->getType()),
366 SI->getMetadata(LLVMContext::MD_tbaa));
367 } else if (LoadInst *LI = dyn_cast<LoadInst>(QueryInst)) {
368 // If this is a volatile load, don't mess around with it. Just return the
369 // previous instruction as a clobber.
370 if (LI->isVolatile())
371 LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
372 else
373 MemLoc = AliasAnalysis::Location(LI->getPointerOperand(),
374 AA->getTypeStoreSize(LI->getType()),
375 LI->getMetadata(LLVMContext::MD_tbaa));
376 } else if (const CallInst *CI = isFreeCall(QueryInst)) {
377 // calls to free() erase the entire structure, not just a field.
378 MemLoc = AliasAnalysis::Location(CI->getArgOperand(0));
379 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
380 int IntrinsicID = 0; // Intrinsic IDs start at 1.
381 IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst);
382 if (II)
383 IntrinsicID = II->getIntrinsicID();
385 switch (IntrinsicID) {
386 case Intrinsic::lifetime_start:
387 case Intrinsic::lifetime_end:
388 case Intrinsic::invariant_start:
389 MemLoc = AliasAnalysis::Location(II->getArgOperand(1),
390 cast<ConstantInt>(II->getArgOperand(0))
391 ->getZExtValue(),
392 II->getMetadata(LLVMContext::MD_tbaa));
393 break;
394 case Intrinsic::invariant_end:
395 MemLoc = AliasAnalysis::Location(II->getArgOperand(2),
396 cast<ConstantInt>(II->getArgOperand(1))
397 ->getZExtValue(),
398 II->getMetadata(LLVMContext::MD_tbaa));
399 break;
400 default:
401 CallSite QueryCS(QueryInst);
402 bool isReadOnly = AA->onlyReadsMemory(QueryCS);
403 LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
404 QueryParent);
405 break;
407 } else {
408 // Non-memory instruction.
409 LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
412 // If we need to do a pointer scan, make it happen.
413 if (MemLoc.Ptr) {
414 bool isLoad = !QueryInst->mayWriteToMemory();
415 if (IntrinsicInst *II = dyn_cast<MemoryUseIntrinsic>(QueryInst)) {
416 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_end;
418 LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos,
419 QueryParent);
422 // Remember the result!
423 if (Instruction *I = LocalCache.getInst())
424 ReverseLocalDeps[I].insert(QueryInst);
426 return LocalCache;
429 #ifndef NDEBUG
430 /// AssertSorted - This method is used when -debug is specified to verify that
431 /// cache arrays are properly kept sorted.
432 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
433 int Count = -1) {
434 if (Count == -1) Count = Cache.size();
435 if (Count == 0) return;
437 for (unsigned i = 1; i != unsigned(Count); ++i)
438 assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!");
440 #endif
442 /// getNonLocalCallDependency - Perform a full dependency query for the
443 /// specified call, returning the set of blocks that the value is
444 /// potentially live across. The returned set of results will include a
445 /// "NonLocal" result for all blocks where the value is live across.
447 /// This method assumes the instruction returns a "NonLocal" dependency
448 /// within its own block.
450 /// This returns a reference to an internal data structure that may be
451 /// invalidated on the next non-local query or when an instruction is
452 /// removed. Clients must copy this data if they want it around longer than
453 /// that.
454 const MemoryDependenceAnalysis::NonLocalDepInfo &
455 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
456 assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
457 "getNonLocalCallDependency should only be used on calls with non-local deps!");
458 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
459 NonLocalDepInfo &Cache = CacheP.first;
461 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In
462 /// the cached case, this can happen due to instructions being deleted etc. In
463 /// the uncached case, this starts out as the set of predecessors we care
464 /// about.
465 SmallVector<BasicBlock*, 32> DirtyBlocks;
467 if (!Cache.empty()) {
468 // Okay, we have a cache entry. If we know it is not dirty, just return it
469 // with no computation.
470 if (!CacheP.second) {
471 ++NumCacheNonLocal;
472 return Cache;
475 // If we already have a partially computed set of results, scan them to
476 // determine what is dirty, seeding our initial DirtyBlocks worklist.
477 for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
478 I != E; ++I)
479 if (I->getResult().isDirty())
480 DirtyBlocks.push_back(I->getBB());
482 // Sort the cache so that we can do fast binary search lookups below.
483 std::sort(Cache.begin(), Cache.end());
485 ++NumCacheDirtyNonLocal;
486 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
487 // << Cache.size() << " cached: " << *QueryInst;
488 } else {
489 // Seed DirtyBlocks with each of the preds of QueryInst's block.
490 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
491 for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
492 DirtyBlocks.push_back(*PI);
493 ++NumUncacheNonLocal;
496 // isReadonlyCall - If this is a read-only call, we can be more aggressive.
497 bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
499 SmallPtrSet<BasicBlock*, 64> Visited;
501 unsigned NumSortedEntries = Cache.size();
502 DEBUG(AssertSorted(Cache));
504 // Iterate while we still have blocks to update.
505 while (!DirtyBlocks.empty()) {
506 BasicBlock *DirtyBB = DirtyBlocks.back();
507 DirtyBlocks.pop_back();
509 // Already processed this block?
510 if (!Visited.insert(DirtyBB))
511 continue;
513 // Do a binary search to see if we already have an entry for this block in
514 // the cache set. If so, find it.
515 DEBUG(AssertSorted(Cache, NumSortedEntries));
516 NonLocalDepInfo::iterator Entry =
517 std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
518 NonLocalDepEntry(DirtyBB));
519 if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB)
520 --Entry;
522 NonLocalDepEntry *ExistingResult = 0;
523 if (Entry != Cache.begin()+NumSortedEntries &&
524 Entry->getBB() == DirtyBB) {
525 // If we already have an entry, and if it isn't already dirty, the block
526 // is done.
527 if (!Entry->getResult().isDirty())
528 continue;
530 // Otherwise, remember this slot so we can update the value.
531 ExistingResult = &*Entry;
534 // If the dirty entry has a pointer, start scanning from it so we don't have
535 // to rescan the entire block.
536 BasicBlock::iterator ScanPos = DirtyBB->end();
537 if (ExistingResult) {
538 if (Instruction *Inst = ExistingResult->getResult().getInst()) {
539 ScanPos = Inst;
540 // We're removing QueryInst's use of Inst.
541 RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
542 QueryCS.getInstruction());
546 // Find out if this block has a local dependency for QueryInst.
547 MemDepResult Dep;
549 if (ScanPos != DirtyBB->begin()) {
550 Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
551 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
552 // No dependence found. If this is the entry block of the function, it is
553 // a clobber, otherwise it is non-local.
554 Dep = MemDepResult::getNonLocal();
555 } else {
556 Dep = MemDepResult::getClobber(ScanPos);
559 // If we had a dirty entry for the block, update it. Otherwise, just add
560 // a new entry.
561 if (ExistingResult)
562 ExistingResult->setResult(Dep);
563 else
564 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
566 // If the block has a dependency (i.e. it isn't completely transparent to
567 // the value), remember the association!
568 if (!Dep.isNonLocal()) {
569 // Keep the ReverseNonLocalDeps map up to date so we can efficiently
570 // update this when we remove instructions.
571 if (Instruction *Inst = Dep.getInst())
572 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
573 } else {
575 // If the block *is* completely transparent to the load, we need to check
576 // the predecessors of this block. Add them to our worklist.
577 for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
578 DirtyBlocks.push_back(*PI);
582 return Cache;
585 /// getNonLocalPointerDependency - Perform a full dependency query for an
586 /// access to the specified (non-volatile) memory location, returning the
587 /// set of instructions that either define or clobber the value.
589 /// This method assumes the pointer has a "NonLocal" dependency within its
590 /// own block.
592 void MemoryDependenceAnalysis::
593 getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad,
594 BasicBlock *FromBB,
595 SmallVectorImpl<NonLocalDepResult> &Result) {
596 assert(Loc.Ptr->getType()->isPointerTy() &&
597 "Can't get pointer deps of a non-pointer!");
598 Result.clear();
600 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), TD);
602 // This is the set of blocks we've inspected, and the pointer we consider in
603 // each block. Because of critical edges, we currently bail out if querying
604 // a block with multiple different pointers. This can happen during PHI
605 // translation.
606 DenseMap<BasicBlock*, Value*> Visited;
607 if (!getNonLocalPointerDepFromBB(Address, Loc, isLoad, FromBB,
608 Result, Visited, true))
609 return;
610 Result.clear();
611 Result.push_back(NonLocalDepResult(FromBB,
612 MemDepResult::getClobber(FromBB->begin()),
613 const_cast<Value *>(Loc.Ptr)));
616 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with
617 /// Pointer/PointeeSize using either cached information in Cache or by doing a
618 /// lookup (which may use dirty cache info if available). If we do a lookup,
619 /// add the result to the cache.
620 MemDepResult MemoryDependenceAnalysis::
621 GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc,
622 bool isLoad, BasicBlock *BB,
623 NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
625 // Do a binary search to see if we already have an entry for this block in
626 // the cache set. If so, find it.
627 NonLocalDepInfo::iterator Entry =
628 std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
629 NonLocalDepEntry(BB));
630 if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
631 --Entry;
633 NonLocalDepEntry *ExistingResult = 0;
634 if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
635 ExistingResult = &*Entry;
637 // If we have a cached entry, and it is non-dirty, use it as the value for
638 // this dependency.
639 if (ExistingResult && !ExistingResult->getResult().isDirty()) {
640 ++NumCacheNonLocalPtr;
641 return ExistingResult->getResult();
644 // Otherwise, we have to scan for the value. If we have a dirty cache
645 // entry, start scanning from its position, otherwise we scan from the end
646 // of the block.
647 BasicBlock::iterator ScanPos = BB->end();
648 if (ExistingResult && ExistingResult->getResult().getInst()) {
649 assert(ExistingResult->getResult().getInst()->getParent() == BB &&
650 "Instruction invalidated?");
651 ++NumCacheDirtyNonLocalPtr;
652 ScanPos = ExistingResult->getResult().getInst();
654 // Eliminating the dirty entry from 'Cache', so update the reverse info.
655 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
656 RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
657 } else {
658 ++NumUncacheNonLocalPtr;
661 // Scan the block for the dependency.
662 MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB);
664 // If we had a dirty entry for the block, update it. Otherwise, just add
665 // a new entry.
666 if (ExistingResult)
667 ExistingResult->setResult(Dep);
668 else
669 Cache->push_back(NonLocalDepEntry(BB, Dep));
671 // If the block has a dependency (i.e. it isn't completely transparent to
672 // the value), remember the reverse association because we just added it
673 // to Cache!
674 if (Dep.isNonLocal())
675 return Dep;
677 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
678 // update MemDep when we remove instructions.
679 Instruction *Inst = Dep.getInst();
680 assert(Inst && "Didn't depend on anything?");
681 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
682 ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
683 return Dep;
686 /// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
687 /// number of elements in the array that are already properly ordered. This is
688 /// optimized for the case when only a few entries are added.
689 static void
690 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
691 unsigned NumSortedEntries) {
692 switch (Cache.size() - NumSortedEntries) {
693 case 0:
694 // done, no new entries.
695 break;
696 case 2: {
697 // Two new entries, insert the last one into place.
698 NonLocalDepEntry Val = Cache.back();
699 Cache.pop_back();
700 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
701 std::upper_bound(Cache.begin(), Cache.end()-1, Val);
702 Cache.insert(Entry, Val);
703 // FALL THROUGH.
705 case 1:
706 // One new entry, Just insert the new value at the appropriate position.
707 if (Cache.size() != 1) {
708 NonLocalDepEntry Val = Cache.back();
709 Cache.pop_back();
710 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
711 std::upper_bound(Cache.begin(), Cache.end(), Val);
712 Cache.insert(Entry, Val);
714 break;
715 default:
716 // Added many values, do a full scale sort.
717 std::sort(Cache.begin(), Cache.end());
718 break;
722 /// getNonLocalPointerDepFromBB - Perform a dependency query based on
723 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def
724 /// results to the results vector and keep track of which blocks are visited in
725 /// 'Visited'.
727 /// This has special behavior for the first block queries (when SkipFirstBlock
728 /// is true). In this special case, it ignores the contents of the specified
729 /// block and starts returning dependence info for its predecessors.
731 /// This function returns false on success, or true to indicate that it could
732 /// not compute dependence information for some reason. This should be treated
733 /// as a clobber dependence on the first instruction in the predecessor block.
734 bool MemoryDependenceAnalysis::
735 getNonLocalPointerDepFromBB(const PHITransAddr &Pointer,
736 const AliasAnalysis::Location &Loc,
737 bool isLoad, BasicBlock *StartBB,
738 SmallVectorImpl<NonLocalDepResult> &Result,
739 DenseMap<BasicBlock*, Value*> &Visited,
740 bool SkipFirstBlock) {
742 // Look up the cached info for Pointer.
743 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
744 NonLocalPointerInfo *CacheInfo = &NonLocalPointerDeps[CacheKey];
746 // If this query's TBAATag is inconsistent with the cached one, discard the
747 // tag and restart the query.
748 if (CacheInfo->TBAATag != Loc.TBAATag) {
749 CacheInfo->TBAATag = 0;
750 NonLocalPointerDeps.erase(CacheKey);
751 return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutTBAATag(),
752 isLoad, StartBB, Result, Visited,
753 SkipFirstBlock);
756 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
758 // If we have valid cached information for exactly the block we are
759 // investigating, just return it with no recomputation.
760 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
761 // We have a fully cached result for this query then we can just return the
762 // cached results and populate the visited set. However, we have to verify
763 // that we don't already have conflicting results for these blocks. Check
764 // to ensure that if a block in the results set is in the visited set that
765 // it was for the same pointer query.
766 if (!Visited.empty()) {
767 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
768 I != E; ++I) {
769 DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
770 if (VI == Visited.end() || VI->second == Pointer.getAddr())
771 continue;
773 // We have a pointer mismatch in a block. Just return clobber, saying
774 // that something was clobbered in this result. We could also do a
775 // non-fully cached query, but there is little point in doing this.
776 return true;
780 Value *Addr = Pointer.getAddr();
781 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
782 I != E; ++I) {
783 Visited.insert(std::make_pair(I->getBB(), Addr));
784 if (!I->getResult().isNonLocal())
785 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr));
787 ++NumCacheCompleteNonLocalPtr;
788 return false;
791 // Otherwise, either this is a new block, a block with an invalid cache
792 // pointer or one that we're about to invalidate by putting more info into it
793 // than its valid cache info. If empty, the result will be valid cache info,
794 // otherwise it isn't.
795 if (Cache->empty())
796 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
797 else {
798 CacheInfo->Pair = BBSkipFirstBlockPair();
799 CacheInfo->TBAATag = 0;
802 SmallVector<BasicBlock*, 32> Worklist;
803 Worklist.push_back(StartBB);
805 // Keep track of the entries that we know are sorted. Previously cached
806 // entries will all be sorted. The entries we add we only sort on demand (we
807 // don't insert every element into its sorted position). We know that we
808 // won't get any reuse from currently inserted values, because we don't
809 // revisit blocks after we insert info for them.
810 unsigned NumSortedEntries = Cache->size();
811 DEBUG(AssertSorted(*Cache));
813 while (!Worklist.empty()) {
814 BasicBlock *BB = Worklist.pop_back_val();
816 // Skip the first block if we have it.
817 if (!SkipFirstBlock) {
818 // Analyze the dependency of *Pointer in FromBB. See if we already have
819 // been here.
820 assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
822 // Get the dependency info for Pointer in BB. If we have cached
823 // information, we will use it, otherwise we compute it.
824 DEBUG(AssertSorted(*Cache, NumSortedEntries));
825 MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache,
826 NumSortedEntries);
828 // If we got a Def or Clobber, add this to the list of results.
829 if (!Dep.isNonLocal()) {
830 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
831 continue;
835 // If 'Pointer' is an instruction defined in this block, then we need to do
836 // phi translation to change it into a value live in the predecessor block.
837 // If not, we just add the predecessors to the worklist and scan them with
838 // the same Pointer.
839 if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
840 SkipFirstBlock = false;
841 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
842 // Verify that we haven't looked at this block yet.
843 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
844 InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr()));
845 if (InsertRes.second) {
846 // First time we've looked at *PI.
847 Worklist.push_back(*PI);
848 continue;
851 // If we have seen this block before, but it was with a different
852 // pointer then we have a phi translation failure and we have to treat
853 // this as a clobber.
854 if (InsertRes.first->second != Pointer.getAddr())
855 goto PredTranslationFailure;
857 continue;
860 // We do need to do phi translation, if we know ahead of time we can't phi
861 // translate this value, don't even try.
862 if (!Pointer.IsPotentiallyPHITranslatable())
863 goto PredTranslationFailure;
865 // We may have added values to the cache list before this PHI translation.
866 // If so, we haven't done anything to ensure that the cache remains sorted.
867 // Sort it now (if needed) so that recursive invocations of
868 // getNonLocalPointerDepFromBB and other routines that could reuse the cache
869 // value will only see properly sorted cache arrays.
870 if (Cache && NumSortedEntries != Cache->size()) {
871 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
872 NumSortedEntries = Cache->size();
874 Cache = 0;
876 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
877 BasicBlock *Pred = *PI;
879 // Get the PHI translated pointer in this predecessor. This can fail if
880 // not translatable, in which case the getAddr() returns null.
881 PHITransAddr PredPointer(Pointer);
882 PredPointer.PHITranslateValue(BB, Pred, 0);
884 Value *PredPtrVal = PredPointer.getAddr();
886 // Check to see if we have already visited this pred block with another
887 // pointer. If so, we can't do this lookup. This failure can occur
888 // with PHI translation when a critical edge exists and the PHI node in
889 // the successor translates to a pointer value different than the
890 // pointer the block was first analyzed with.
891 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
892 InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
894 if (!InsertRes.second) {
895 // If the predecessor was visited with PredPtr, then we already did
896 // the analysis and can ignore it.
897 if (InsertRes.first->second == PredPtrVal)
898 continue;
900 // Otherwise, the block was previously analyzed with a different
901 // pointer. We can't represent the result of this case, so we just
902 // treat this as a phi translation failure.
903 goto PredTranslationFailure;
906 // If PHI translation was unable to find an available pointer in this
907 // predecessor, then we have to assume that the pointer is clobbered in
908 // that predecessor. We can still do PRE of the load, which would insert
909 // a computation of the pointer in this predecessor.
910 if (PredPtrVal == 0) {
911 // Add the entry to the Result list.
912 NonLocalDepResult Entry(Pred,
913 MemDepResult::getClobber(Pred->getTerminator()),
914 PredPtrVal);
915 Result.push_back(Entry);
917 // Since we had a phi translation failure, the cache for CacheKey won't
918 // include all of the entries that we need to immediately satisfy future
919 // queries. Mark this in NonLocalPointerDeps by setting the
920 // BBSkipFirstBlockPair pointer to null. This requires reuse of the
921 // cached value to do more work but not miss the phi trans failure.
922 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
923 NLPI.Pair = BBSkipFirstBlockPair();
924 NLPI.TBAATag = 0;
925 continue;
928 // FIXME: it is entirely possible that PHI translating will end up with
929 // the same value. Consider PHI translating something like:
930 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need*
931 // to recurse here, pedantically speaking.
933 // If we have a problem phi translating, fall through to the code below
934 // to handle the failure condition.
935 if (getNonLocalPointerDepFromBB(PredPointer,
936 Loc.getWithNewPtr(PredPointer.getAddr()),
937 isLoad, Pred,
938 Result, Visited))
939 goto PredTranslationFailure;
942 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
943 CacheInfo = &NonLocalPointerDeps[CacheKey];
944 Cache = &CacheInfo->NonLocalDeps;
945 NumSortedEntries = Cache->size();
947 // Since we did phi translation, the "Cache" set won't contain all of the
948 // results for the query. This is ok (we can still use it to accelerate
949 // specific block queries) but we can't do the fastpath "return all
950 // results from the set" Clear out the indicator for this.
951 CacheInfo->Pair = BBSkipFirstBlockPair();
952 CacheInfo->TBAATag = 0;
953 SkipFirstBlock = false;
954 continue;
956 PredTranslationFailure:
958 if (Cache == 0) {
959 // Refresh the CacheInfo/Cache pointer if it got invalidated.
960 CacheInfo = &NonLocalPointerDeps[CacheKey];
961 Cache = &CacheInfo->NonLocalDeps;
962 NumSortedEntries = Cache->size();
965 // Since we failed phi translation, the "Cache" set won't contain all of the
966 // results for the query. This is ok (we can still use it to accelerate
967 // specific block queries) but we can't do the fastpath "return all
968 // results from the set". Clear out the indicator for this.
969 CacheInfo->Pair = BBSkipFirstBlockPair();
970 CacheInfo->TBAATag = 0;
972 // If *nothing* works, mark the pointer as being clobbered by the first
973 // instruction in this block.
975 // If this is the magic first block, return this as a clobber of the whole
976 // incoming value. Since we can't phi translate to one of the predecessors,
977 // we have to bail out.
978 if (SkipFirstBlock)
979 return true;
981 for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
982 assert(I != Cache->rend() && "Didn't find current block??");
983 if (I->getBB() != BB)
984 continue;
986 assert(I->getResult().isNonLocal() &&
987 "Should only be here with transparent block");
988 I->setResult(MemDepResult::getClobber(BB->begin()));
989 ReverseNonLocalPtrDeps[BB->begin()].insert(CacheKey);
990 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(),
991 Pointer.getAddr()));
992 break;
996 // Okay, we're done now. If we added new values to the cache, re-sort it.
997 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
998 DEBUG(AssertSorted(*Cache));
999 return false;
1002 /// RemoveCachedNonLocalPointerDependencies - If P exists in
1003 /// CachedNonLocalPointerInfo, remove it.
1004 void MemoryDependenceAnalysis::
1005 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
1006 CachedNonLocalPointerInfo::iterator It =
1007 NonLocalPointerDeps.find(P);
1008 if (It == NonLocalPointerDeps.end()) return;
1010 // Remove all of the entries in the BB->val map. This involves removing
1011 // instructions from the reverse map.
1012 NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1014 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1015 Instruction *Target = PInfo[i].getResult().getInst();
1016 if (Target == 0) continue; // Ignore non-local dep results.
1017 assert(Target->getParent() == PInfo[i].getBB());
1019 // Eliminating the dirty entry from 'Cache', so update the reverse info.
1020 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1023 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1024 NonLocalPointerDeps.erase(It);
1028 /// invalidateCachedPointerInfo - This method is used to invalidate cached
1029 /// information about the specified pointer, because it may be too
1030 /// conservative in memdep. This is an optional call that can be used when
1031 /// the client detects an equivalence between the pointer and some other
1032 /// value and replaces the other value with ptr. This can make Ptr available
1033 /// in more places that cached info does not necessarily keep.
1034 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
1035 // If Ptr isn't really a pointer, just ignore it.
1036 if (!Ptr->getType()->isPointerTy()) return;
1037 // Flush store info for the pointer.
1038 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1039 // Flush load info for the pointer.
1040 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1043 /// invalidateCachedPredecessors - Clear the PredIteratorCache info.
1044 /// This needs to be done when the CFG changes, e.g., due to splitting
1045 /// critical edges.
1046 void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
1047 PredCache->clear();
1050 /// removeInstruction - Remove an instruction from the dependence analysis,
1051 /// updating the dependence of instructions that previously depended on it.
1052 /// This method attempts to keep the cache coherent using the reverse map.
1053 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
1054 // Walk through the Non-local dependencies, removing this one as the value
1055 // for any cached queries.
1056 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1057 if (NLDI != NonLocalDeps.end()) {
1058 NonLocalDepInfo &BlockMap = NLDI->second.first;
1059 for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
1060 DI != DE; ++DI)
1061 if (Instruction *Inst = DI->getResult().getInst())
1062 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1063 NonLocalDeps.erase(NLDI);
1066 // If we have a cached local dependence query for this instruction, remove it.
1068 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1069 if (LocalDepEntry != LocalDeps.end()) {
1070 // Remove us from DepInst's reverse set now that the local dep info is gone.
1071 if (Instruction *Inst = LocalDepEntry->second.getInst())
1072 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1074 // Remove this local dependency info.
1075 LocalDeps.erase(LocalDepEntry);
1078 // If we have any cached pointer dependencies on this instruction, remove
1079 // them. If the instruction has non-pointer type, then it can't be a pointer
1080 // base.
1082 // Remove it from both the load info and the store info. The instruction
1083 // can't be in either of these maps if it is non-pointer.
1084 if (RemInst->getType()->isPointerTy()) {
1085 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1086 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1089 // Loop over all of the things that depend on the instruction we're removing.
1091 SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
1093 // If we find RemInst as a clobber or Def in any of the maps for other values,
1094 // we need to replace its entry with a dirty version of the instruction after
1095 // it. If RemInst is a terminator, we use a null dirty value.
1097 // Using a dirty version of the instruction after RemInst saves having to scan
1098 // the entire block to get to this point.
1099 MemDepResult NewDirtyVal;
1100 if (!RemInst->isTerminator())
1101 NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
1103 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1104 if (ReverseDepIt != ReverseLocalDeps.end()) {
1105 SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
1106 // RemInst can't be the terminator if it has local stuff depending on it.
1107 assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
1108 "Nothing can locally depend on a terminator");
1110 for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
1111 E = ReverseDeps.end(); I != E; ++I) {
1112 Instruction *InstDependingOnRemInst = *I;
1113 assert(InstDependingOnRemInst != RemInst &&
1114 "Already removed our local dep info");
1116 LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1118 // Make sure to remember that new things depend on NewDepInst.
1119 assert(NewDirtyVal.getInst() && "There is no way something else can have "
1120 "a local dep on this if it is a terminator!");
1121 ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
1122 InstDependingOnRemInst));
1125 ReverseLocalDeps.erase(ReverseDepIt);
1127 // Add new reverse deps after scanning the set, to avoid invalidating the
1128 // 'ReverseDeps' reference.
1129 while (!ReverseDepsToAdd.empty()) {
1130 ReverseLocalDeps[ReverseDepsToAdd.back().first]
1131 .insert(ReverseDepsToAdd.back().second);
1132 ReverseDepsToAdd.pop_back();
1136 ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1137 if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1138 SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
1139 for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
1140 I != E; ++I) {
1141 assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
1143 PerInstNLInfo &INLD = NonLocalDeps[*I];
1144 // The information is now dirty!
1145 INLD.second = true;
1147 for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
1148 DE = INLD.first.end(); DI != DE; ++DI) {
1149 if (DI->getResult().getInst() != RemInst) continue;
1151 // Convert to a dirty entry for the subsequent instruction.
1152 DI->setResult(NewDirtyVal);
1154 if (Instruction *NextI = NewDirtyVal.getInst())
1155 ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
1159 ReverseNonLocalDeps.erase(ReverseDepIt);
1161 // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1162 while (!ReverseDepsToAdd.empty()) {
1163 ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
1164 .insert(ReverseDepsToAdd.back().second);
1165 ReverseDepsToAdd.pop_back();
1169 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1170 // value in the NonLocalPointerDeps info.
1171 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1172 ReverseNonLocalPtrDeps.find(RemInst);
1173 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1174 SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
1175 SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
1177 for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
1178 E = Set.end(); I != E; ++I) {
1179 ValueIsLoadPair P = *I;
1180 assert(P.getPointer() != RemInst &&
1181 "Already removed NonLocalPointerDeps info for RemInst");
1183 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1185 // The cache is not valid for any specific block anymore.
1186 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1187 NonLocalPointerDeps[P].TBAATag = 0;
1189 // Update any entries for RemInst to use the instruction after it.
1190 for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
1191 DI != DE; ++DI) {
1192 if (DI->getResult().getInst() != RemInst) continue;
1194 // Convert to a dirty entry for the subsequent instruction.
1195 DI->setResult(NewDirtyVal);
1197 if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1198 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1201 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its
1202 // subsequent value may invalidate the sortedness.
1203 std::sort(NLPDI.begin(), NLPDI.end());
1206 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1208 while (!ReversePtrDepsToAdd.empty()) {
1209 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
1210 .insert(ReversePtrDepsToAdd.back().second);
1211 ReversePtrDepsToAdd.pop_back();
1216 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1217 AA->deleteValue(RemInst);
1218 DEBUG(verifyRemoved(RemInst));
1220 /// verifyRemoved - Verify that the specified instruction does not occur
1221 /// in our internal data structures.
1222 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
1223 for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
1224 E = LocalDeps.end(); I != E; ++I) {
1225 assert(I->first != D && "Inst occurs in data structures");
1226 assert(I->second.getInst() != D &&
1227 "Inst occurs in data structures");
1230 for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
1231 E = NonLocalPointerDeps.end(); I != E; ++I) {
1232 assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
1233 const NonLocalDepInfo &Val = I->second.NonLocalDeps;
1234 for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
1235 II != E; ++II)
1236 assert(II->getResult().getInst() != D && "Inst occurs as NLPD value");
1239 for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
1240 E = NonLocalDeps.end(); I != E; ++I) {
1241 assert(I->first != D && "Inst occurs in data structures");
1242 const PerInstNLInfo &INLD = I->second;
1243 for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
1244 EE = INLD.first.end(); II != EE; ++II)
1245 assert(II->getResult().getInst() != D && "Inst occurs in data structures");
1248 for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
1249 E = ReverseLocalDeps.end(); I != E; ++I) {
1250 assert(I->first != D && "Inst occurs in data structures");
1251 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1252 EE = I->second.end(); II != EE; ++II)
1253 assert(*II != D && "Inst occurs in data structures");
1256 for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
1257 E = ReverseNonLocalDeps.end();
1258 I != E; ++I) {
1259 assert(I->first != D && "Inst occurs in data structures");
1260 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1261 EE = I->second.end(); II != EE; ++II)
1262 assert(*II != D && "Inst occurs in data structures");
1265 for (ReverseNonLocalPtrDepTy::const_iterator
1266 I = ReverseNonLocalPtrDeps.begin(),
1267 E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
1268 assert(I->first != D && "Inst occurs in rev NLPD map");
1270 for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
1271 E = I->second.end(); II != E; ++II)
1272 assert(*II != ValueIsLoadPair(D, false) &&
1273 *II != ValueIsLoadPair(D, true) &&
1274 "Inst occurs in ReverseNonLocalPtrDeps map");