1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation --*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements an analysis that determines, for a given memory
11 // operation, what preceding memory operations it depends on. It builds on
12 // alias analysis information, and tries to provide a lazy, caching interface to
13 // a common kind of alias information query.
15 //===----------------------------------------------------------------------===//
17 #define DEBUG_TYPE "memdep"
18 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/IntrinsicInst.h"
21 #include "llvm/Function.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/Dominators.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/PHITransAddr.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/Support/PredIteratorCache.h"
31 #include "llvm/Support/Debug.h"
34 STATISTIC(NumCacheNonLocal
, "Number of fully cached non-local responses");
35 STATISTIC(NumCacheDirtyNonLocal
, "Number of dirty cached non-local responses");
36 STATISTIC(NumUncacheNonLocal
, "Number of uncached non-local responses");
38 STATISTIC(NumCacheNonLocalPtr
,
39 "Number of fully cached non-local ptr responses");
40 STATISTIC(NumCacheDirtyNonLocalPtr
,
41 "Number of cached, but dirty, non-local ptr responses");
42 STATISTIC(NumUncacheNonLocalPtr
,
43 "Number of uncached non-local ptr responses");
44 STATISTIC(NumCacheCompleteNonLocalPtr
,
45 "Number of block queries that were completely cached");
47 char MemoryDependenceAnalysis::ID
= 0;
49 // Register this pass...
50 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis
, "memdep",
51 "Memory Dependence Analysis", false, true)
52 INITIALIZE_AG_DEPENDENCY(AliasAnalysis
)
53 INITIALIZE_PASS_END(MemoryDependenceAnalysis
, "memdep",
54 "Memory Dependence Analysis", false, true)
56 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
57 : FunctionPass(ID
), PredCache(0) {
58 initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry());
60 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
63 /// Clean up memory in between runs
64 void MemoryDependenceAnalysis::releaseMemory() {
67 NonLocalPointerDeps
.clear();
68 ReverseLocalDeps
.clear();
69 ReverseNonLocalDeps
.clear();
70 ReverseNonLocalPtrDeps
.clear();
76 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis.
78 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage
&AU
) const {
80 AU
.addRequiredTransitive
<AliasAnalysis
>();
83 bool MemoryDependenceAnalysis::runOnFunction(Function
&) {
84 AA
= &getAnalysis
<AliasAnalysis
>();
86 PredCache
.reset(new PredIteratorCache());
90 /// RemoveFromReverseMap - This is a helper function that removes Val from
91 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry.
92 template <typename KeyTy
>
93 static void RemoveFromReverseMap(DenseMap
<Instruction
*,
94 SmallPtrSet
<KeyTy
, 4> > &ReverseMap
,
95 Instruction
*Inst
, KeyTy Val
) {
96 typename DenseMap
<Instruction
*, SmallPtrSet
<KeyTy
, 4> >::iterator
97 InstIt
= ReverseMap
.find(Inst
);
98 assert(InstIt
!= ReverseMap
.end() && "Reverse map out of sync?");
99 bool Found
= InstIt
->second
.erase(Val
);
100 assert(Found
&& "Invalid reverse map!"); Found
=Found
;
101 if (InstIt
->second
.empty())
102 ReverseMap
.erase(InstIt
);
106 /// getCallSiteDependencyFrom - Private helper for finding the local
107 /// dependencies of a call site.
108 MemDepResult
MemoryDependenceAnalysis::
109 getCallSiteDependencyFrom(CallSite CS
, bool isReadOnlyCall
,
110 BasicBlock::iterator ScanIt
, BasicBlock
*BB
) {
111 // Walk backwards through the block, looking for dependencies
112 while (ScanIt
!= BB
->begin()) {
113 Instruction
*Inst
= --ScanIt
;
115 // If this inst is a memory op, get the pointer it accessed
116 AliasAnalysis::Location Loc
;
117 if (StoreInst
*S
= dyn_cast
<StoreInst
>(Inst
)) {
118 Loc
= AliasAnalysis::Location(S
->getPointerOperand(),
119 AA
->getTypeStoreSize(S
->getValueOperand()
121 S
->getMetadata(LLVMContext::MD_tbaa
));
122 } else if (VAArgInst
*V
= dyn_cast
<VAArgInst
>(Inst
)) {
123 Loc
= AliasAnalysis::Location(V
->getPointerOperand(),
124 AA
->getTypeStoreSize(V
->getType()),
125 V
->getMetadata(LLVMContext::MD_tbaa
));
126 } else if (const CallInst
*CI
= isFreeCall(Inst
)) {
127 // calls to free() erase the entire structure
128 Loc
= AliasAnalysis::Location(CI
->getArgOperand(0));
129 } else if (CallSite InstCS
= cast
<Value
>(Inst
)) {
130 // Debug intrinsics don't cause dependences.
131 if (isa
<DbgInfoIntrinsic
>(Inst
)) continue;
132 // If these two calls do not interfere, look past it.
133 switch (AA
->getModRefInfo(CS
, InstCS
)) {
134 case AliasAnalysis::NoModRef
:
135 // If the two calls are the same, return InstCS as a Def, so that
136 // CS can be found redundant and eliminated.
137 if (isReadOnlyCall
&& InstCS
.onlyReadsMemory() &&
138 CS
.getInstruction()->isIdenticalToWhenDefined(Inst
))
139 return MemDepResult::getDef(Inst
);
141 // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
145 return MemDepResult::getClobber(Inst
);
148 // Non-memory instruction.
152 if (AA
->getModRefInfo(CS
, Loc
) != AliasAnalysis::NoModRef
)
153 return MemDepResult::getClobber(Inst
);
156 // No dependence found. If this is the entry block of the function, it is a
157 // clobber, otherwise it is non-local.
158 if (BB
!= &BB
->getParent()->getEntryBlock())
159 return MemDepResult::getNonLocal();
160 return MemDepResult::getClobber(ScanIt
);
163 /// getPointerDependencyFrom - Return the instruction on which a memory
164 /// location depends. If isLoad is true, this routine ignores may-aliases with
165 /// read-only operations. If isLoad is false, this routine ignores may-aliases
166 /// with reads from read-only locations.
167 MemDepResult
MemoryDependenceAnalysis::
168 getPointerDependencyFrom(const AliasAnalysis::Location
&MemLoc
, bool isLoad
,
169 BasicBlock::iterator ScanIt
, BasicBlock
*BB
) {
171 Value
*InvariantTag
= 0;
173 // Walk backwards through the basic block, looking for dependencies.
174 while (ScanIt
!= BB
->begin()) {
175 Instruction
*Inst
= --ScanIt
;
177 // If we're in an invariant region, no dependencies can be found before
178 // we pass an invariant-begin marker.
179 if (InvariantTag
== Inst
) {
184 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Inst
)) {
185 // Debug intrinsics don't (and can't) cause dependences.
186 if (isa
<DbgInfoIntrinsic
>(II
)) continue;
188 // If we pass an invariant-end marker, then we've just entered an
189 // invariant region and can start ignoring dependencies.
190 if (II
->getIntrinsicID() == Intrinsic::invariant_end
) {
191 // FIXME: This only considers queries directly on the invariant-tagged
192 // pointer, not on query pointers that are indexed off of them. It'd
193 // be nice to handle that at some point.
194 AliasAnalysis::AliasResult R
=
195 AA
->alias(AliasAnalysis::Location(II
->getArgOperand(2)), MemLoc
);
196 if (R
== AliasAnalysis::MustAlias
)
197 InvariantTag
= II
->getArgOperand(0);
202 // If we reach a lifetime begin or end marker, then the query ends here
203 // because the value is undefined.
204 if (II
->getIntrinsicID() == Intrinsic::lifetime_start
) {
205 // FIXME: This only considers queries directly on the invariant-tagged
206 // pointer, not on query pointers that are indexed off of them. It'd
207 // be nice to handle that at some point.
208 AliasAnalysis::AliasResult R
=
209 AA
->alias(AliasAnalysis::Location(II
->getArgOperand(1)), MemLoc
);
210 if (R
== AliasAnalysis::MustAlias
)
211 return MemDepResult::getDef(II
);
216 // If we're querying on a load and we're in an invariant region, we're done
217 // at this point. Nothing a load depends on can live in an invariant region.
219 // FIXME: this will prevent us from returning load/load must-aliases, so GVN
220 // won't remove redundant loads.
221 if (isLoad
&& InvariantTag
) continue;
223 // Values depend on loads if the pointers are must aliased. This means that
224 // a load depends on another must aliased load from the same value.
225 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(Inst
)) {
226 Value
*Pointer
= LI
->getPointerOperand();
227 uint64_t PointerSize
= AA
->getTypeStoreSize(LI
->getType());
228 MDNode
*TBAATag
= LI
->getMetadata(LLVMContext::MD_tbaa
);
229 AliasAnalysis::Location
LoadLoc(Pointer
, PointerSize
, TBAATag
);
231 // If we found a pointer, check if it could be the same as our pointer.
232 AliasAnalysis::AliasResult R
= AA
->alias(LoadLoc
, MemLoc
);
233 if (R
== AliasAnalysis::NoAlias
)
236 // May-alias loads don't depend on each other without a dependence.
237 if (isLoad
&& R
== AliasAnalysis::MayAlias
)
240 // Stores don't alias loads from read-only memory.
241 if (!isLoad
&& AA
->pointsToConstantMemory(LoadLoc
))
244 // Stores depend on may and must aliased loads, loads depend on must-alias
246 return MemDepResult::getDef(Inst
);
249 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
)) {
250 // There can't be stores to the value we care about inside an
252 if (InvariantTag
) continue;
254 // If alias analysis can tell that this store is guaranteed to not modify
255 // the query pointer, ignore it. Use getModRefInfo to handle cases where
256 // the query pointer points to constant memory etc.
257 if (AA
->getModRefInfo(SI
, MemLoc
) == AliasAnalysis::NoModRef
)
260 // Ok, this store might clobber the query pointer. Check to see if it is
261 // a must alias: in this case, we want to return this as a def.
262 Value
*Pointer
= SI
->getPointerOperand();
263 uint64_t PointerSize
= AA
->getTypeStoreSize(SI
->getOperand(0)->getType());
264 MDNode
*TBAATag
= SI
->getMetadata(LLVMContext::MD_tbaa
);
266 // If we found a pointer, check if it could be the same as our pointer.
267 AliasAnalysis::AliasResult R
=
268 AA
->alias(AliasAnalysis::Location(Pointer
, PointerSize
, TBAATag
),
271 if (R
== AliasAnalysis::NoAlias
)
273 if (R
== AliasAnalysis::MayAlias
)
274 return MemDepResult::getClobber(Inst
);
275 return MemDepResult::getDef(Inst
);
278 // If this is an allocation, and if we know that the accessed pointer is to
279 // the allocation, return Def. This means that there is no dependence and
280 // the access can be optimized based on that. For example, a load could
282 // Note: Only determine this to be a malloc if Inst is the malloc call, not
283 // a subsequent bitcast of the malloc call result. There can be stores to
284 // the malloced memory between the malloc call and its bitcast uses, and we
285 // need to continue scanning until the malloc call.
286 if (isa
<AllocaInst
>(Inst
) ||
287 (isa
<CallInst
>(Inst
) && extractMallocCall(Inst
))) {
288 const Value
*AccessPtr
= MemLoc
.Ptr
->getUnderlyingObject();
290 if (AccessPtr
== Inst
||
291 AA
->alias(Inst
, 1, AccessPtr
, 1) == AliasAnalysis::MustAlias
)
292 return MemDepResult::getDef(Inst
);
296 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
297 switch (AA
->getModRefInfo(Inst
, MemLoc
)) {
298 case AliasAnalysis::NoModRef
:
299 // If the call has no effect on the queried pointer, just ignore it.
301 case AliasAnalysis::Mod
:
302 // If we're in an invariant region, we can ignore calls that ONLY
303 // modify the pointer.
304 if (InvariantTag
) continue;
305 return MemDepResult::getClobber(Inst
);
306 case AliasAnalysis::Ref
:
307 // If the call is known to never store to the pointer, and if this is a
308 // load query, we can safely ignore it (scan past it).
312 // Otherwise, there is a potential dependence. Return a clobber.
313 return MemDepResult::getClobber(Inst
);
317 // No dependence found. If this is the entry block of the function, it is a
318 // clobber, otherwise it is non-local.
319 if (BB
!= &BB
->getParent()->getEntryBlock())
320 return MemDepResult::getNonLocal();
321 return MemDepResult::getClobber(ScanIt
);
324 /// getDependency - Return the instruction on which a memory operation
326 MemDepResult
MemoryDependenceAnalysis::getDependency(Instruction
*QueryInst
) {
327 Instruction
*ScanPos
= QueryInst
;
329 // Check for a cached result
330 MemDepResult
&LocalCache
= LocalDeps
[QueryInst
];
332 // If the cached entry is non-dirty, just return it. Note that this depends
333 // on MemDepResult's default constructing to 'dirty'.
334 if (!LocalCache
.isDirty())
337 // Otherwise, if we have a dirty entry, we know we can start the scan at that
338 // instruction, which may save us some work.
339 if (Instruction
*Inst
= LocalCache
.getInst()) {
342 RemoveFromReverseMap(ReverseLocalDeps
, Inst
, QueryInst
);
345 BasicBlock
*QueryParent
= QueryInst
->getParent();
347 AliasAnalysis::Location MemLoc
;
350 if (BasicBlock::iterator(QueryInst
) == QueryParent
->begin()) {
351 // No dependence found. If this is the entry block of the function, it is a
352 // clobber, otherwise it is non-local.
353 if (QueryParent
!= &QueryParent
->getParent()->getEntryBlock())
354 LocalCache
= MemDepResult::getNonLocal();
356 LocalCache
= MemDepResult::getClobber(QueryInst
);
357 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(QueryInst
)) {
358 // If this is a volatile store, don't mess around with it. Just return the
359 // previous instruction as a clobber.
360 if (SI
->isVolatile())
361 LocalCache
= MemDepResult::getClobber(--BasicBlock::iterator(ScanPos
));
363 MemLoc
= AliasAnalysis::Location(SI
->getPointerOperand(),
364 AA
->getTypeStoreSize(SI
->getOperand(0)
366 SI
->getMetadata(LLVMContext::MD_tbaa
));
367 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(QueryInst
)) {
368 // If this is a volatile load, don't mess around with it. Just return the
369 // previous instruction as a clobber.
370 if (LI
->isVolatile())
371 LocalCache
= MemDepResult::getClobber(--BasicBlock::iterator(ScanPos
));
373 MemLoc
= AliasAnalysis::Location(LI
->getPointerOperand(),
374 AA
->getTypeStoreSize(LI
->getType()),
375 LI
->getMetadata(LLVMContext::MD_tbaa
));
376 } else if (const CallInst
*CI
= isFreeCall(QueryInst
)) {
377 // calls to free() erase the entire structure, not just a field.
378 MemLoc
= AliasAnalysis::Location(CI
->getArgOperand(0));
379 } else if (isa
<CallInst
>(QueryInst
) || isa
<InvokeInst
>(QueryInst
)) {
380 int IntrinsicID
= 0; // Intrinsic IDs start at 1.
381 IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(QueryInst
);
383 IntrinsicID
= II
->getIntrinsicID();
385 switch (IntrinsicID
) {
386 case Intrinsic::lifetime_start
:
387 case Intrinsic::lifetime_end
:
388 case Intrinsic::invariant_start
:
389 MemLoc
= AliasAnalysis::Location(II
->getArgOperand(1),
390 cast
<ConstantInt
>(II
->getArgOperand(0))
392 II
->getMetadata(LLVMContext::MD_tbaa
));
394 case Intrinsic::invariant_end
:
395 MemLoc
= AliasAnalysis::Location(II
->getArgOperand(2),
396 cast
<ConstantInt
>(II
->getArgOperand(1))
398 II
->getMetadata(LLVMContext::MD_tbaa
));
401 CallSite
QueryCS(QueryInst
);
402 bool isReadOnly
= AA
->onlyReadsMemory(QueryCS
);
403 LocalCache
= getCallSiteDependencyFrom(QueryCS
, isReadOnly
, ScanPos
,
408 // Non-memory instruction.
409 LocalCache
= MemDepResult::getClobber(--BasicBlock::iterator(ScanPos
));
412 // If we need to do a pointer scan, make it happen.
414 bool isLoad
= !QueryInst
->mayWriteToMemory();
415 if (IntrinsicInst
*II
= dyn_cast
<MemoryUseIntrinsic
>(QueryInst
)) {
416 isLoad
|= II
->getIntrinsicID() == Intrinsic::lifetime_end
;
418 LocalCache
= getPointerDependencyFrom(MemLoc
, isLoad
, ScanPos
,
422 // Remember the result!
423 if (Instruction
*I
= LocalCache
.getInst())
424 ReverseLocalDeps
[I
].insert(QueryInst
);
430 /// AssertSorted - This method is used when -debug is specified to verify that
431 /// cache arrays are properly kept sorted.
432 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo
&Cache
,
434 if (Count
== -1) Count
= Cache
.size();
435 if (Count
== 0) return;
437 for (unsigned i
= 1; i
!= unsigned(Count
); ++i
)
438 assert(!(Cache
[i
] < Cache
[i
-1]) && "Cache isn't sorted!");
442 /// getNonLocalCallDependency - Perform a full dependency query for the
443 /// specified call, returning the set of blocks that the value is
444 /// potentially live across. The returned set of results will include a
445 /// "NonLocal" result for all blocks where the value is live across.
447 /// This method assumes the instruction returns a "NonLocal" dependency
448 /// within its own block.
450 /// This returns a reference to an internal data structure that may be
451 /// invalidated on the next non-local query or when an instruction is
452 /// removed. Clients must copy this data if they want it around longer than
454 const MemoryDependenceAnalysis::NonLocalDepInfo
&
455 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS
) {
456 assert(getDependency(QueryCS
.getInstruction()).isNonLocal() &&
457 "getNonLocalCallDependency should only be used on calls with non-local deps!");
458 PerInstNLInfo
&CacheP
= NonLocalDeps
[QueryCS
.getInstruction()];
459 NonLocalDepInfo
&Cache
= CacheP
.first
;
461 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In
462 /// the cached case, this can happen due to instructions being deleted etc. In
463 /// the uncached case, this starts out as the set of predecessors we care
465 SmallVector
<BasicBlock
*, 32> DirtyBlocks
;
467 if (!Cache
.empty()) {
468 // Okay, we have a cache entry. If we know it is not dirty, just return it
469 // with no computation.
470 if (!CacheP
.second
) {
475 // If we already have a partially computed set of results, scan them to
476 // determine what is dirty, seeding our initial DirtyBlocks worklist.
477 for (NonLocalDepInfo::iterator I
= Cache
.begin(), E
= Cache
.end();
479 if (I
->getResult().isDirty())
480 DirtyBlocks
.push_back(I
->getBB());
482 // Sort the cache so that we can do fast binary search lookups below.
483 std::sort(Cache
.begin(), Cache
.end());
485 ++NumCacheDirtyNonLocal
;
486 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
487 // << Cache.size() << " cached: " << *QueryInst;
489 // Seed DirtyBlocks with each of the preds of QueryInst's block.
490 BasicBlock
*QueryBB
= QueryCS
.getInstruction()->getParent();
491 for (BasicBlock
**PI
= PredCache
->GetPreds(QueryBB
); *PI
; ++PI
)
492 DirtyBlocks
.push_back(*PI
);
493 ++NumUncacheNonLocal
;
496 // isReadonlyCall - If this is a read-only call, we can be more aggressive.
497 bool isReadonlyCall
= AA
->onlyReadsMemory(QueryCS
);
499 SmallPtrSet
<BasicBlock
*, 64> Visited
;
501 unsigned NumSortedEntries
= Cache
.size();
502 DEBUG(AssertSorted(Cache
));
504 // Iterate while we still have blocks to update.
505 while (!DirtyBlocks
.empty()) {
506 BasicBlock
*DirtyBB
= DirtyBlocks
.back();
507 DirtyBlocks
.pop_back();
509 // Already processed this block?
510 if (!Visited
.insert(DirtyBB
))
513 // Do a binary search to see if we already have an entry for this block in
514 // the cache set. If so, find it.
515 DEBUG(AssertSorted(Cache
, NumSortedEntries
));
516 NonLocalDepInfo::iterator Entry
=
517 std::upper_bound(Cache
.begin(), Cache
.begin()+NumSortedEntries
,
518 NonLocalDepEntry(DirtyBB
));
519 if (Entry
!= Cache
.begin() && prior(Entry
)->getBB() == DirtyBB
)
522 NonLocalDepEntry
*ExistingResult
= 0;
523 if (Entry
!= Cache
.begin()+NumSortedEntries
&&
524 Entry
->getBB() == DirtyBB
) {
525 // If we already have an entry, and if it isn't already dirty, the block
527 if (!Entry
->getResult().isDirty())
530 // Otherwise, remember this slot so we can update the value.
531 ExistingResult
= &*Entry
;
534 // If the dirty entry has a pointer, start scanning from it so we don't have
535 // to rescan the entire block.
536 BasicBlock::iterator ScanPos
= DirtyBB
->end();
537 if (ExistingResult
) {
538 if (Instruction
*Inst
= ExistingResult
->getResult().getInst()) {
540 // We're removing QueryInst's use of Inst.
541 RemoveFromReverseMap(ReverseNonLocalDeps
, Inst
,
542 QueryCS
.getInstruction());
546 // Find out if this block has a local dependency for QueryInst.
549 if (ScanPos
!= DirtyBB
->begin()) {
550 Dep
= getCallSiteDependencyFrom(QueryCS
, isReadonlyCall
,ScanPos
, DirtyBB
);
551 } else if (DirtyBB
!= &DirtyBB
->getParent()->getEntryBlock()) {
552 // No dependence found. If this is the entry block of the function, it is
553 // a clobber, otherwise it is non-local.
554 Dep
= MemDepResult::getNonLocal();
556 Dep
= MemDepResult::getClobber(ScanPos
);
559 // If we had a dirty entry for the block, update it. Otherwise, just add
562 ExistingResult
->setResult(Dep
);
564 Cache
.push_back(NonLocalDepEntry(DirtyBB
, Dep
));
566 // If the block has a dependency (i.e. it isn't completely transparent to
567 // the value), remember the association!
568 if (!Dep
.isNonLocal()) {
569 // Keep the ReverseNonLocalDeps map up to date so we can efficiently
570 // update this when we remove instructions.
571 if (Instruction
*Inst
= Dep
.getInst())
572 ReverseNonLocalDeps
[Inst
].insert(QueryCS
.getInstruction());
575 // If the block *is* completely transparent to the load, we need to check
576 // the predecessors of this block. Add them to our worklist.
577 for (BasicBlock
**PI
= PredCache
->GetPreds(DirtyBB
); *PI
; ++PI
)
578 DirtyBlocks
.push_back(*PI
);
585 /// getNonLocalPointerDependency - Perform a full dependency query for an
586 /// access to the specified (non-volatile) memory location, returning the
587 /// set of instructions that either define or clobber the value.
589 /// This method assumes the pointer has a "NonLocal" dependency within its
592 void MemoryDependenceAnalysis::
593 getNonLocalPointerDependency(const AliasAnalysis::Location
&Loc
, bool isLoad
,
595 SmallVectorImpl
<NonLocalDepResult
> &Result
) {
596 assert(Loc
.Ptr
->getType()->isPointerTy() &&
597 "Can't get pointer deps of a non-pointer!");
600 PHITransAddr
Address(const_cast<Value
*>(Loc
.Ptr
), TD
);
602 // This is the set of blocks we've inspected, and the pointer we consider in
603 // each block. Because of critical edges, we currently bail out if querying
604 // a block with multiple different pointers. This can happen during PHI
606 DenseMap
<BasicBlock
*, Value
*> Visited
;
607 if (!getNonLocalPointerDepFromBB(Address
, Loc
, isLoad
, FromBB
,
608 Result
, Visited
, true))
611 Result
.push_back(NonLocalDepResult(FromBB
,
612 MemDepResult::getClobber(FromBB
->begin()),
613 const_cast<Value
*>(Loc
.Ptr
)));
616 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with
617 /// Pointer/PointeeSize using either cached information in Cache or by doing a
618 /// lookup (which may use dirty cache info if available). If we do a lookup,
619 /// add the result to the cache.
620 MemDepResult
MemoryDependenceAnalysis::
621 GetNonLocalInfoForBlock(const AliasAnalysis::Location
&Loc
,
622 bool isLoad
, BasicBlock
*BB
,
623 NonLocalDepInfo
*Cache
, unsigned NumSortedEntries
) {
625 // Do a binary search to see if we already have an entry for this block in
626 // the cache set. If so, find it.
627 NonLocalDepInfo::iterator Entry
=
628 std::upper_bound(Cache
->begin(), Cache
->begin()+NumSortedEntries
,
629 NonLocalDepEntry(BB
));
630 if (Entry
!= Cache
->begin() && (Entry
-1)->getBB() == BB
)
633 NonLocalDepEntry
*ExistingResult
= 0;
634 if (Entry
!= Cache
->begin()+NumSortedEntries
&& Entry
->getBB() == BB
)
635 ExistingResult
= &*Entry
;
637 // If we have a cached entry, and it is non-dirty, use it as the value for
639 if (ExistingResult
&& !ExistingResult
->getResult().isDirty()) {
640 ++NumCacheNonLocalPtr
;
641 return ExistingResult
->getResult();
644 // Otherwise, we have to scan for the value. If we have a dirty cache
645 // entry, start scanning from its position, otherwise we scan from the end
647 BasicBlock::iterator ScanPos
= BB
->end();
648 if (ExistingResult
&& ExistingResult
->getResult().getInst()) {
649 assert(ExistingResult
->getResult().getInst()->getParent() == BB
&&
650 "Instruction invalidated?");
651 ++NumCacheDirtyNonLocalPtr
;
652 ScanPos
= ExistingResult
->getResult().getInst();
654 // Eliminating the dirty entry from 'Cache', so update the reverse info.
655 ValueIsLoadPair
CacheKey(Loc
.Ptr
, isLoad
);
656 RemoveFromReverseMap(ReverseNonLocalPtrDeps
, ScanPos
, CacheKey
);
658 ++NumUncacheNonLocalPtr
;
661 // Scan the block for the dependency.
662 MemDepResult Dep
= getPointerDependencyFrom(Loc
, isLoad
, ScanPos
, BB
);
664 // If we had a dirty entry for the block, update it. Otherwise, just add
667 ExistingResult
->setResult(Dep
);
669 Cache
->push_back(NonLocalDepEntry(BB
, Dep
));
671 // If the block has a dependency (i.e. it isn't completely transparent to
672 // the value), remember the reverse association because we just added it
674 if (Dep
.isNonLocal())
677 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
678 // update MemDep when we remove instructions.
679 Instruction
*Inst
= Dep
.getInst();
680 assert(Inst
&& "Didn't depend on anything?");
681 ValueIsLoadPair
CacheKey(Loc
.Ptr
, isLoad
);
682 ReverseNonLocalPtrDeps
[Inst
].insert(CacheKey
);
686 /// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
687 /// number of elements in the array that are already properly ordered. This is
688 /// optimized for the case when only a few entries are added.
690 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo
&Cache
,
691 unsigned NumSortedEntries
) {
692 switch (Cache
.size() - NumSortedEntries
) {
694 // done, no new entries.
697 // Two new entries, insert the last one into place.
698 NonLocalDepEntry Val
= Cache
.back();
700 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry
=
701 std::upper_bound(Cache
.begin(), Cache
.end()-1, Val
);
702 Cache
.insert(Entry
, Val
);
706 // One new entry, Just insert the new value at the appropriate position.
707 if (Cache
.size() != 1) {
708 NonLocalDepEntry Val
= Cache
.back();
710 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry
=
711 std::upper_bound(Cache
.begin(), Cache
.end(), Val
);
712 Cache
.insert(Entry
, Val
);
716 // Added many values, do a full scale sort.
717 std::sort(Cache
.begin(), Cache
.end());
722 /// getNonLocalPointerDepFromBB - Perform a dependency query based on
723 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def
724 /// results to the results vector and keep track of which blocks are visited in
727 /// This has special behavior for the first block queries (when SkipFirstBlock
728 /// is true). In this special case, it ignores the contents of the specified
729 /// block and starts returning dependence info for its predecessors.
731 /// This function returns false on success, or true to indicate that it could
732 /// not compute dependence information for some reason. This should be treated
733 /// as a clobber dependence on the first instruction in the predecessor block.
734 bool MemoryDependenceAnalysis::
735 getNonLocalPointerDepFromBB(const PHITransAddr
&Pointer
,
736 const AliasAnalysis::Location
&Loc
,
737 bool isLoad
, BasicBlock
*StartBB
,
738 SmallVectorImpl
<NonLocalDepResult
> &Result
,
739 DenseMap
<BasicBlock
*, Value
*> &Visited
,
740 bool SkipFirstBlock
) {
742 // Look up the cached info for Pointer.
743 ValueIsLoadPair
CacheKey(Pointer
.getAddr(), isLoad
);
744 NonLocalPointerInfo
*CacheInfo
= &NonLocalPointerDeps
[CacheKey
];
746 // If this query's TBAATag is inconsistent with the cached one, discard the
747 // tag and restart the query.
748 if (CacheInfo
->TBAATag
!= Loc
.TBAATag
) {
749 CacheInfo
->TBAATag
= 0;
750 NonLocalPointerDeps
.erase(CacheKey
);
751 return getNonLocalPointerDepFromBB(Pointer
, Loc
.getWithoutTBAATag(),
752 isLoad
, StartBB
, Result
, Visited
,
756 NonLocalDepInfo
*Cache
= &CacheInfo
->NonLocalDeps
;
758 // If we have valid cached information for exactly the block we are
759 // investigating, just return it with no recomputation.
760 if (CacheInfo
->Pair
== BBSkipFirstBlockPair(StartBB
, SkipFirstBlock
)) {
761 // We have a fully cached result for this query then we can just return the
762 // cached results and populate the visited set. However, we have to verify
763 // that we don't already have conflicting results for these blocks. Check
764 // to ensure that if a block in the results set is in the visited set that
765 // it was for the same pointer query.
766 if (!Visited
.empty()) {
767 for (NonLocalDepInfo::iterator I
= Cache
->begin(), E
= Cache
->end();
769 DenseMap
<BasicBlock
*, Value
*>::iterator VI
= Visited
.find(I
->getBB());
770 if (VI
== Visited
.end() || VI
->second
== Pointer
.getAddr())
773 // We have a pointer mismatch in a block. Just return clobber, saying
774 // that something was clobbered in this result. We could also do a
775 // non-fully cached query, but there is little point in doing this.
780 Value
*Addr
= Pointer
.getAddr();
781 for (NonLocalDepInfo::iterator I
= Cache
->begin(), E
= Cache
->end();
783 Visited
.insert(std::make_pair(I
->getBB(), Addr
));
784 if (!I
->getResult().isNonLocal())
785 Result
.push_back(NonLocalDepResult(I
->getBB(), I
->getResult(), Addr
));
787 ++NumCacheCompleteNonLocalPtr
;
791 // Otherwise, either this is a new block, a block with an invalid cache
792 // pointer or one that we're about to invalidate by putting more info into it
793 // than its valid cache info. If empty, the result will be valid cache info,
794 // otherwise it isn't.
796 CacheInfo
->Pair
= BBSkipFirstBlockPair(StartBB
, SkipFirstBlock
);
798 CacheInfo
->Pair
= BBSkipFirstBlockPair();
799 CacheInfo
->TBAATag
= 0;
802 SmallVector
<BasicBlock
*, 32> Worklist
;
803 Worklist
.push_back(StartBB
);
805 // Keep track of the entries that we know are sorted. Previously cached
806 // entries will all be sorted. The entries we add we only sort on demand (we
807 // don't insert every element into its sorted position). We know that we
808 // won't get any reuse from currently inserted values, because we don't
809 // revisit blocks after we insert info for them.
810 unsigned NumSortedEntries
= Cache
->size();
811 DEBUG(AssertSorted(*Cache
));
813 while (!Worklist
.empty()) {
814 BasicBlock
*BB
= Worklist
.pop_back_val();
816 // Skip the first block if we have it.
817 if (!SkipFirstBlock
) {
818 // Analyze the dependency of *Pointer in FromBB. See if we already have
820 assert(Visited
.count(BB
) && "Should check 'visited' before adding to WL");
822 // Get the dependency info for Pointer in BB. If we have cached
823 // information, we will use it, otherwise we compute it.
824 DEBUG(AssertSorted(*Cache
, NumSortedEntries
));
825 MemDepResult Dep
= GetNonLocalInfoForBlock(Loc
, isLoad
, BB
, Cache
,
828 // If we got a Def or Clobber, add this to the list of results.
829 if (!Dep
.isNonLocal()) {
830 Result
.push_back(NonLocalDepResult(BB
, Dep
, Pointer
.getAddr()));
835 // If 'Pointer' is an instruction defined in this block, then we need to do
836 // phi translation to change it into a value live in the predecessor block.
837 // If not, we just add the predecessors to the worklist and scan them with
839 if (!Pointer
.NeedsPHITranslationFromBlock(BB
)) {
840 SkipFirstBlock
= false;
841 for (BasicBlock
**PI
= PredCache
->GetPreds(BB
); *PI
; ++PI
) {
842 // Verify that we haven't looked at this block yet.
843 std::pair
<DenseMap
<BasicBlock
*,Value
*>::iterator
, bool>
844 InsertRes
= Visited
.insert(std::make_pair(*PI
, Pointer
.getAddr()));
845 if (InsertRes
.second
) {
846 // First time we've looked at *PI.
847 Worklist
.push_back(*PI
);
851 // If we have seen this block before, but it was with a different
852 // pointer then we have a phi translation failure and we have to treat
853 // this as a clobber.
854 if (InsertRes
.first
->second
!= Pointer
.getAddr())
855 goto PredTranslationFailure
;
860 // We do need to do phi translation, if we know ahead of time we can't phi
861 // translate this value, don't even try.
862 if (!Pointer
.IsPotentiallyPHITranslatable())
863 goto PredTranslationFailure
;
865 // We may have added values to the cache list before this PHI translation.
866 // If so, we haven't done anything to ensure that the cache remains sorted.
867 // Sort it now (if needed) so that recursive invocations of
868 // getNonLocalPointerDepFromBB and other routines that could reuse the cache
869 // value will only see properly sorted cache arrays.
870 if (Cache
&& NumSortedEntries
!= Cache
->size()) {
871 SortNonLocalDepInfoCache(*Cache
, NumSortedEntries
);
872 NumSortedEntries
= Cache
->size();
876 for (BasicBlock
**PI
= PredCache
->GetPreds(BB
); *PI
; ++PI
) {
877 BasicBlock
*Pred
= *PI
;
879 // Get the PHI translated pointer in this predecessor. This can fail if
880 // not translatable, in which case the getAddr() returns null.
881 PHITransAddr
PredPointer(Pointer
);
882 PredPointer
.PHITranslateValue(BB
, Pred
, 0);
884 Value
*PredPtrVal
= PredPointer
.getAddr();
886 // Check to see if we have already visited this pred block with another
887 // pointer. If so, we can't do this lookup. This failure can occur
888 // with PHI translation when a critical edge exists and the PHI node in
889 // the successor translates to a pointer value different than the
890 // pointer the block was first analyzed with.
891 std::pair
<DenseMap
<BasicBlock
*,Value
*>::iterator
, bool>
892 InsertRes
= Visited
.insert(std::make_pair(Pred
, PredPtrVal
));
894 if (!InsertRes
.second
) {
895 // If the predecessor was visited with PredPtr, then we already did
896 // the analysis and can ignore it.
897 if (InsertRes
.first
->second
== PredPtrVal
)
900 // Otherwise, the block was previously analyzed with a different
901 // pointer. We can't represent the result of this case, so we just
902 // treat this as a phi translation failure.
903 goto PredTranslationFailure
;
906 // If PHI translation was unable to find an available pointer in this
907 // predecessor, then we have to assume that the pointer is clobbered in
908 // that predecessor. We can still do PRE of the load, which would insert
909 // a computation of the pointer in this predecessor.
910 if (PredPtrVal
== 0) {
911 // Add the entry to the Result list.
912 NonLocalDepResult
Entry(Pred
,
913 MemDepResult::getClobber(Pred
->getTerminator()),
915 Result
.push_back(Entry
);
917 // Since we had a phi translation failure, the cache for CacheKey won't
918 // include all of the entries that we need to immediately satisfy future
919 // queries. Mark this in NonLocalPointerDeps by setting the
920 // BBSkipFirstBlockPair pointer to null. This requires reuse of the
921 // cached value to do more work but not miss the phi trans failure.
922 NonLocalPointerInfo
&NLPI
= NonLocalPointerDeps
[CacheKey
];
923 NLPI
.Pair
= BBSkipFirstBlockPair();
928 // FIXME: it is entirely possible that PHI translating will end up with
929 // the same value. Consider PHI translating something like:
930 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need*
931 // to recurse here, pedantically speaking.
933 // If we have a problem phi translating, fall through to the code below
934 // to handle the failure condition.
935 if (getNonLocalPointerDepFromBB(PredPointer
,
936 Loc
.getWithNewPtr(PredPointer
.getAddr()),
939 goto PredTranslationFailure
;
942 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
943 CacheInfo
= &NonLocalPointerDeps
[CacheKey
];
944 Cache
= &CacheInfo
->NonLocalDeps
;
945 NumSortedEntries
= Cache
->size();
947 // Since we did phi translation, the "Cache" set won't contain all of the
948 // results for the query. This is ok (we can still use it to accelerate
949 // specific block queries) but we can't do the fastpath "return all
950 // results from the set" Clear out the indicator for this.
951 CacheInfo
->Pair
= BBSkipFirstBlockPair();
952 CacheInfo
->TBAATag
= 0;
953 SkipFirstBlock
= false;
956 PredTranslationFailure
:
959 // Refresh the CacheInfo/Cache pointer if it got invalidated.
960 CacheInfo
= &NonLocalPointerDeps
[CacheKey
];
961 Cache
= &CacheInfo
->NonLocalDeps
;
962 NumSortedEntries
= Cache
->size();
965 // Since we failed phi translation, the "Cache" set won't contain all of the
966 // results for the query. This is ok (we can still use it to accelerate
967 // specific block queries) but we can't do the fastpath "return all
968 // results from the set". Clear out the indicator for this.
969 CacheInfo
->Pair
= BBSkipFirstBlockPair();
970 CacheInfo
->TBAATag
= 0;
972 // If *nothing* works, mark the pointer as being clobbered by the first
973 // instruction in this block.
975 // If this is the magic first block, return this as a clobber of the whole
976 // incoming value. Since we can't phi translate to one of the predecessors,
977 // we have to bail out.
981 for (NonLocalDepInfo::reverse_iterator I
= Cache
->rbegin(); ; ++I
) {
982 assert(I
!= Cache
->rend() && "Didn't find current block??");
983 if (I
->getBB() != BB
)
986 assert(I
->getResult().isNonLocal() &&
987 "Should only be here with transparent block");
988 I
->setResult(MemDepResult::getClobber(BB
->begin()));
989 ReverseNonLocalPtrDeps
[BB
->begin()].insert(CacheKey
);
990 Result
.push_back(NonLocalDepResult(I
->getBB(), I
->getResult(),
996 // Okay, we're done now. If we added new values to the cache, re-sort it.
997 SortNonLocalDepInfoCache(*Cache
, NumSortedEntries
);
998 DEBUG(AssertSorted(*Cache
));
1002 /// RemoveCachedNonLocalPointerDependencies - If P exists in
1003 /// CachedNonLocalPointerInfo, remove it.
1004 void MemoryDependenceAnalysis::
1005 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P
) {
1006 CachedNonLocalPointerInfo::iterator It
=
1007 NonLocalPointerDeps
.find(P
);
1008 if (It
== NonLocalPointerDeps
.end()) return;
1010 // Remove all of the entries in the BB->val map. This involves removing
1011 // instructions from the reverse map.
1012 NonLocalDepInfo
&PInfo
= It
->second
.NonLocalDeps
;
1014 for (unsigned i
= 0, e
= PInfo
.size(); i
!= e
; ++i
) {
1015 Instruction
*Target
= PInfo
[i
].getResult().getInst();
1016 if (Target
== 0) continue; // Ignore non-local dep results.
1017 assert(Target
->getParent() == PInfo
[i
].getBB());
1019 // Eliminating the dirty entry from 'Cache', so update the reverse info.
1020 RemoveFromReverseMap(ReverseNonLocalPtrDeps
, Target
, P
);
1023 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1024 NonLocalPointerDeps
.erase(It
);
1028 /// invalidateCachedPointerInfo - This method is used to invalidate cached
1029 /// information about the specified pointer, because it may be too
1030 /// conservative in memdep. This is an optional call that can be used when
1031 /// the client detects an equivalence between the pointer and some other
1032 /// value and replaces the other value with ptr. This can make Ptr available
1033 /// in more places that cached info does not necessarily keep.
1034 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value
*Ptr
) {
1035 // If Ptr isn't really a pointer, just ignore it.
1036 if (!Ptr
->getType()->isPointerTy()) return;
1037 // Flush store info for the pointer.
1038 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr
, false));
1039 // Flush load info for the pointer.
1040 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr
, true));
1043 /// invalidateCachedPredecessors - Clear the PredIteratorCache info.
1044 /// This needs to be done when the CFG changes, e.g., due to splitting
1046 void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
1050 /// removeInstruction - Remove an instruction from the dependence analysis,
1051 /// updating the dependence of instructions that previously depended on it.
1052 /// This method attempts to keep the cache coherent using the reverse map.
1053 void MemoryDependenceAnalysis::removeInstruction(Instruction
*RemInst
) {
1054 // Walk through the Non-local dependencies, removing this one as the value
1055 // for any cached queries.
1056 NonLocalDepMapType::iterator NLDI
= NonLocalDeps
.find(RemInst
);
1057 if (NLDI
!= NonLocalDeps
.end()) {
1058 NonLocalDepInfo
&BlockMap
= NLDI
->second
.first
;
1059 for (NonLocalDepInfo::iterator DI
= BlockMap
.begin(), DE
= BlockMap
.end();
1061 if (Instruction
*Inst
= DI
->getResult().getInst())
1062 RemoveFromReverseMap(ReverseNonLocalDeps
, Inst
, RemInst
);
1063 NonLocalDeps
.erase(NLDI
);
1066 // If we have a cached local dependence query for this instruction, remove it.
1068 LocalDepMapType::iterator LocalDepEntry
= LocalDeps
.find(RemInst
);
1069 if (LocalDepEntry
!= LocalDeps
.end()) {
1070 // Remove us from DepInst's reverse set now that the local dep info is gone.
1071 if (Instruction
*Inst
= LocalDepEntry
->second
.getInst())
1072 RemoveFromReverseMap(ReverseLocalDeps
, Inst
, RemInst
);
1074 // Remove this local dependency info.
1075 LocalDeps
.erase(LocalDepEntry
);
1078 // If we have any cached pointer dependencies on this instruction, remove
1079 // them. If the instruction has non-pointer type, then it can't be a pointer
1082 // Remove it from both the load info and the store info. The instruction
1083 // can't be in either of these maps if it is non-pointer.
1084 if (RemInst
->getType()->isPointerTy()) {
1085 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst
, false));
1086 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst
, true));
1089 // Loop over all of the things that depend on the instruction we're removing.
1091 SmallVector
<std::pair
<Instruction
*, Instruction
*>, 8> ReverseDepsToAdd
;
1093 // If we find RemInst as a clobber or Def in any of the maps for other values,
1094 // we need to replace its entry with a dirty version of the instruction after
1095 // it. If RemInst is a terminator, we use a null dirty value.
1097 // Using a dirty version of the instruction after RemInst saves having to scan
1098 // the entire block to get to this point.
1099 MemDepResult NewDirtyVal
;
1100 if (!RemInst
->isTerminator())
1101 NewDirtyVal
= MemDepResult::getDirty(++BasicBlock::iterator(RemInst
));
1103 ReverseDepMapType::iterator ReverseDepIt
= ReverseLocalDeps
.find(RemInst
);
1104 if (ReverseDepIt
!= ReverseLocalDeps
.end()) {
1105 SmallPtrSet
<Instruction
*, 4> &ReverseDeps
= ReverseDepIt
->second
;
1106 // RemInst can't be the terminator if it has local stuff depending on it.
1107 assert(!ReverseDeps
.empty() && !isa
<TerminatorInst
>(RemInst
) &&
1108 "Nothing can locally depend on a terminator");
1110 for (SmallPtrSet
<Instruction
*, 4>::iterator I
= ReverseDeps
.begin(),
1111 E
= ReverseDeps
.end(); I
!= E
; ++I
) {
1112 Instruction
*InstDependingOnRemInst
= *I
;
1113 assert(InstDependingOnRemInst
!= RemInst
&&
1114 "Already removed our local dep info");
1116 LocalDeps
[InstDependingOnRemInst
] = NewDirtyVal
;
1118 // Make sure to remember that new things depend on NewDepInst.
1119 assert(NewDirtyVal
.getInst() && "There is no way something else can have "
1120 "a local dep on this if it is a terminator!");
1121 ReverseDepsToAdd
.push_back(std::make_pair(NewDirtyVal
.getInst(),
1122 InstDependingOnRemInst
));
1125 ReverseLocalDeps
.erase(ReverseDepIt
);
1127 // Add new reverse deps after scanning the set, to avoid invalidating the
1128 // 'ReverseDeps' reference.
1129 while (!ReverseDepsToAdd
.empty()) {
1130 ReverseLocalDeps
[ReverseDepsToAdd
.back().first
]
1131 .insert(ReverseDepsToAdd
.back().second
);
1132 ReverseDepsToAdd
.pop_back();
1136 ReverseDepIt
= ReverseNonLocalDeps
.find(RemInst
);
1137 if (ReverseDepIt
!= ReverseNonLocalDeps
.end()) {
1138 SmallPtrSet
<Instruction
*, 4> &Set
= ReverseDepIt
->second
;
1139 for (SmallPtrSet
<Instruction
*, 4>::iterator I
= Set
.begin(), E
= Set
.end();
1141 assert(*I
!= RemInst
&& "Already removed NonLocalDep info for RemInst");
1143 PerInstNLInfo
&INLD
= NonLocalDeps
[*I
];
1144 // The information is now dirty!
1147 for (NonLocalDepInfo::iterator DI
= INLD
.first
.begin(),
1148 DE
= INLD
.first
.end(); DI
!= DE
; ++DI
) {
1149 if (DI
->getResult().getInst() != RemInst
) continue;
1151 // Convert to a dirty entry for the subsequent instruction.
1152 DI
->setResult(NewDirtyVal
);
1154 if (Instruction
*NextI
= NewDirtyVal
.getInst())
1155 ReverseDepsToAdd
.push_back(std::make_pair(NextI
, *I
));
1159 ReverseNonLocalDeps
.erase(ReverseDepIt
);
1161 // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1162 while (!ReverseDepsToAdd
.empty()) {
1163 ReverseNonLocalDeps
[ReverseDepsToAdd
.back().first
]
1164 .insert(ReverseDepsToAdd
.back().second
);
1165 ReverseDepsToAdd
.pop_back();
1169 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1170 // value in the NonLocalPointerDeps info.
1171 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt
=
1172 ReverseNonLocalPtrDeps
.find(RemInst
);
1173 if (ReversePtrDepIt
!= ReverseNonLocalPtrDeps
.end()) {
1174 SmallPtrSet
<ValueIsLoadPair
, 4> &Set
= ReversePtrDepIt
->second
;
1175 SmallVector
<std::pair
<Instruction
*, ValueIsLoadPair
>,8> ReversePtrDepsToAdd
;
1177 for (SmallPtrSet
<ValueIsLoadPair
, 4>::iterator I
= Set
.begin(),
1178 E
= Set
.end(); I
!= E
; ++I
) {
1179 ValueIsLoadPair P
= *I
;
1180 assert(P
.getPointer() != RemInst
&&
1181 "Already removed NonLocalPointerDeps info for RemInst");
1183 NonLocalDepInfo
&NLPDI
= NonLocalPointerDeps
[P
].NonLocalDeps
;
1185 // The cache is not valid for any specific block anymore.
1186 NonLocalPointerDeps
[P
].Pair
= BBSkipFirstBlockPair();
1187 NonLocalPointerDeps
[P
].TBAATag
= 0;
1189 // Update any entries for RemInst to use the instruction after it.
1190 for (NonLocalDepInfo::iterator DI
= NLPDI
.begin(), DE
= NLPDI
.end();
1192 if (DI
->getResult().getInst() != RemInst
) continue;
1194 // Convert to a dirty entry for the subsequent instruction.
1195 DI
->setResult(NewDirtyVal
);
1197 if (Instruction
*NewDirtyInst
= NewDirtyVal
.getInst())
1198 ReversePtrDepsToAdd
.push_back(std::make_pair(NewDirtyInst
, P
));
1201 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its
1202 // subsequent value may invalidate the sortedness.
1203 std::sort(NLPDI
.begin(), NLPDI
.end());
1206 ReverseNonLocalPtrDeps
.erase(ReversePtrDepIt
);
1208 while (!ReversePtrDepsToAdd
.empty()) {
1209 ReverseNonLocalPtrDeps
[ReversePtrDepsToAdd
.back().first
]
1210 .insert(ReversePtrDepsToAdd
.back().second
);
1211 ReversePtrDepsToAdd
.pop_back();
1216 assert(!NonLocalDeps
.count(RemInst
) && "RemInst got reinserted?");
1217 AA
->deleteValue(RemInst
);
1218 DEBUG(verifyRemoved(RemInst
));
1220 /// verifyRemoved - Verify that the specified instruction does not occur
1221 /// in our internal data structures.
1222 void MemoryDependenceAnalysis::verifyRemoved(Instruction
*D
) const {
1223 for (LocalDepMapType::const_iterator I
= LocalDeps
.begin(),
1224 E
= LocalDeps
.end(); I
!= E
; ++I
) {
1225 assert(I
->first
!= D
&& "Inst occurs in data structures");
1226 assert(I
->second
.getInst() != D
&&
1227 "Inst occurs in data structures");
1230 for (CachedNonLocalPointerInfo::const_iterator I
=NonLocalPointerDeps
.begin(),
1231 E
= NonLocalPointerDeps
.end(); I
!= E
; ++I
) {
1232 assert(I
->first
.getPointer() != D
&& "Inst occurs in NLPD map key");
1233 const NonLocalDepInfo
&Val
= I
->second
.NonLocalDeps
;
1234 for (NonLocalDepInfo::const_iterator II
= Val
.begin(), E
= Val
.end();
1236 assert(II
->getResult().getInst() != D
&& "Inst occurs as NLPD value");
1239 for (NonLocalDepMapType::const_iterator I
= NonLocalDeps
.begin(),
1240 E
= NonLocalDeps
.end(); I
!= E
; ++I
) {
1241 assert(I
->first
!= D
&& "Inst occurs in data structures");
1242 const PerInstNLInfo
&INLD
= I
->second
;
1243 for (NonLocalDepInfo::const_iterator II
= INLD
.first
.begin(),
1244 EE
= INLD
.first
.end(); II
!= EE
; ++II
)
1245 assert(II
->getResult().getInst() != D
&& "Inst occurs in data structures");
1248 for (ReverseDepMapType::const_iterator I
= ReverseLocalDeps
.begin(),
1249 E
= ReverseLocalDeps
.end(); I
!= E
; ++I
) {
1250 assert(I
->first
!= D
&& "Inst occurs in data structures");
1251 for (SmallPtrSet
<Instruction
*, 4>::const_iterator II
= I
->second
.begin(),
1252 EE
= I
->second
.end(); II
!= EE
; ++II
)
1253 assert(*II
!= D
&& "Inst occurs in data structures");
1256 for (ReverseDepMapType::const_iterator I
= ReverseNonLocalDeps
.begin(),
1257 E
= ReverseNonLocalDeps
.end();
1259 assert(I
->first
!= D
&& "Inst occurs in data structures");
1260 for (SmallPtrSet
<Instruction
*, 4>::const_iterator II
= I
->second
.begin(),
1261 EE
= I
->second
.end(); II
!= EE
; ++II
)
1262 assert(*II
!= D
&& "Inst occurs in data structures");
1265 for (ReverseNonLocalPtrDepTy::const_iterator
1266 I
= ReverseNonLocalPtrDeps
.begin(),
1267 E
= ReverseNonLocalPtrDeps
.end(); I
!= E
; ++I
) {
1268 assert(I
->first
!= D
&& "Inst occurs in rev NLPD map");
1270 for (SmallPtrSet
<ValueIsLoadPair
, 4>::const_iterator II
= I
->second
.begin(),
1271 E
= I
->second
.end(); II
!= E
; ++II
)
1272 assert(*II
!= ValueIsLoadPair(D
, false) &&
1273 *II
!= ValueIsLoadPair(D
, true) &&
1274 "Inst occurs in ReverseNonLocalPtrDeps map");