Fixed some bugs.
[llvm/zpu.git] / lib / Analysis / PHITransAddr.cpp
blob8e4fa03f213481762a31fcdd3dc73c819382709c
1 //===- PHITransAddr.cpp - PHI Translation for Addresses -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PHITransAddr class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/PHITransAddr.h"
15 #include "llvm/Analysis/Dominators.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/raw_ostream.h"
19 using namespace llvm;
21 static bool CanPHITrans(Instruction *Inst) {
22 if (isa<PHINode>(Inst) ||
23 isa<BitCastInst>(Inst) ||
24 isa<GetElementPtrInst>(Inst))
25 return true;
27 if (Inst->getOpcode() == Instruction::Add &&
28 isa<ConstantInt>(Inst->getOperand(1)))
29 return true;
31 // cerr << "MEMDEP: Could not PHI translate: " << *Pointer;
32 // if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst))
33 // cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0);
34 return false;
37 void PHITransAddr::dump() const {
38 if (Addr == 0) {
39 dbgs() << "PHITransAddr: null\n";
40 return;
42 dbgs() << "PHITransAddr: " << *Addr << "\n";
43 for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
44 dbgs() << " Input #" << i << " is " << *InstInputs[i] << "\n";
48 static bool VerifySubExpr(Value *Expr,
49 SmallVectorImpl<Instruction*> &InstInputs) {
50 // If this is a non-instruction value, there is nothing to do.
51 Instruction *I = dyn_cast<Instruction>(Expr);
52 if (I == 0) return true;
54 // If it's an instruction, it is either in Tmp or its operands recursively
55 // are.
56 SmallVectorImpl<Instruction*>::iterator Entry =
57 std::find(InstInputs.begin(), InstInputs.end(), I);
58 if (Entry != InstInputs.end()) {
59 InstInputs.erase(Entry);
60 return true;
63 // If it isn't in the InstInputs list it is a subexpr incorporated into the
64 // address. Sanity check that it is phi translatable.
65 if (!CanPHITrans(I)) {
66 errs() << "Non phi translatable instruction found in PHITransAddr, either "
67 "something is missing from InstInputs or CanPHITrans is wrong:\n";
68 errs() << *I << '\n';
69 return false;
72 // Validate the operands of the instruction.
73 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
74 if (!VerifySubExpr(I->getOperand(i), InstInputs))
75 return false;
77 return true;
80 /// Verify - Check internal consistency of this data structure. If the
81 /// structure is valid, it returns true. If invalid, it prints errors and
82 /// returns false.
83 bool PHITransAddr::Verify() const {
84 if (Addr == 0) return true;
86 SmallVector<Instruction*, 8> Tmp(InstInputs.begin(), InstInputs.end());
88 if (!VerifySubExpr(Addr, Tmp))
89 return false;
91 if (!Tmp.empty()) {
92 errs() << "PHITransAddr inconsistent, contains extra instructions:\n";
93 for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
94 errs() << " InstInput #" << i << " is " << *InstInputs[i] << "\n";
95 return false;
98 // a-ok.
99 return true;
103 /// IsPotentiallyPHITranslatable - If this needs PHI translation, return true
104 /// if we have some hope of doing it. This should be used as a filter to
105 /// avoid calling PHITranslateValue in hopeless situations.
106 bool PHITransAddr::IsPotentiallyPHITranslatable() const {
107 // If the input value is not an instruction, or if it is not defined in CurBB,
108 // then we don't need to phi translate it.
109 Instruction *Inst = dyn_cast<Instruction>(Addr);
110 return Inst == 0 || CanPHITrans(Inst);
114 static void RemoveInstInputs(Value *V,
115 SmallVectorImpl<Instruction*> &InstInputs) {
116 Instruction *I = dyn_cast<Instruction>(V);
117 if (I == 0) return;
119 // If the instruction is in the InstInputs list, remove it.
120 SmallVectorImpl<Instruction*>::iterator Entry =
121 std::find(InstInputs.begin(), InstInputs.end(), I);
122 if (Entry != InstInputs.end()) {
123 InstInputs.erase(Entry);
124 return;
127 assert(!isa<PHINode>(I) && "Error, removing something that isn't an input");
129 // Otherwise, it must have instruction inputs itself. Zap them recursively.
130 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
131 if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i)))
132 RemoveInstInputs(Op, InstInputs);
136 Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB,
137 BasicBlock *PredBB,
138 const DominatorTree *DT) {
139 // If this is a non-instruction value, it can't require PHI translation.
140 Instruction *Inst = dyn_cast<Instruction>(V);
141 if (Inst == 0) return V;
143 // Determine whether 'Inst' is an input to our PHI translatable expression.
144 bool isInput = std::count(InstInputs.begin(), InstInputs.end(), Inst);
146 // Handle inputs instructions if needed.
147 if (isInput) {
148 if (Inst->getParent() != CurBB) {
149 // If it is an input defined in a different block, then it remains an
150 // input.
151 return Inst;
154 // If 'Inst' is defined in this block and is an input that needs to be phi
155 // translated, we need to incorporate the value into the expression or fail.
157 // In either case, the instruction itself isn't an input any longer.
158 InstInputs.erase(std::find(InstInputs.begin(), InstInputs.end(), Inst));
160 // If this is a PHI, go ahead and translate it.
161 if (PHINode *PN = dyn_cast<PHINode>(Inst))
162 return AddAsInput(PN->getIncomingValueForBlock(PredBB));
164 // If this is a non-phi value, and it is analyzable, we can incorporate it
165 // into the expression by making all instruction operands be inputs.
166 if (!CanPHITrans(Inst))
167 return 0;
169 // All instruction operands are now inputs (and of course, they may also be
170 // defined in this block, so they may need to be phi translated themselves.
171 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
172 if (Instruction *Op = dyn_cast<Instruction>(Inst->getOperand(i)))
173 InstInputs.push_back(Op);
176 // Ok, it must be an intermediate result (either because it started that way
177 // or because we just incorporated it into the expression). See if its
178 // operands need to be phi translated, and if so, reconstruct it.
180 if (BitCastInst *BC = dyn_cast<BitCastInst>(Inst)) {
181 Value *PHIIn = PHITranslateSubExpr(BC->getOperand(0), CurBB, PredBB, DT);
182 if (PHIIn == 0) return 0;
183 if (PHIIn == BC->getOperand(0))
184 return BC;
186 // Find an available version of this cast.
188 // Constants are trivial to find.
189 if (Constant *C = dyn_cast<Constant>(PHIIn))
190 return AddAsInput(ConstantExpr::getBitCast(C, BC->getType()));
192 // Otherwise we have to see if a bitcasted version of the incoming pointer
193 // is available. If so, we can use it, otherwise we have to fail.
194 for (Value::use_iterator UI = PHIIn->use_begin(), E = PHIIn->use_end();
195 UI != E; ++UI) {
196 if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI))
197 if (BCI->getType() == BC->getType() &&
198 (!DT || DT->dominates(BCI->getParent(), PredBB)))
199 return BCI;
201 return 0;
204 // Handle getelementptr with at least one PHI translatable operand.
205 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
206 SmallVector<Value*, 8> GEPOps;
207 bool AnyChanged = false;
208 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
209 Value *GEPOp = PHITranslateSubExpr(GEP->getOperand(i), CurBB, PredBB, DT);
210 if (GEPOp == 0) return 0;
212 AnyChanged |= GEPOp != GEP->getOperand(i);
213 GEPOps.push_back(GEPOp);
216 if (!AnyChanged)
217 return GEP;
219 // Simplify the GEP to handle 'gep x, 0' -> x etc.
220 if (Value *V = SimplifyGEPInst(&GEPOps[0], GEPOps.size(), TD)) {
221 for (unsigned i = 0, e = GEPOps.size(); i != e; ++i)
222 RemoveInstInputs(GEPOps[i], InstInputs);
224 return AddAsInput(V);
227 // Scan to see if we have this GEP available.
228 Value *APHIOp = GEPOps[0];
229 for (Value::use_iterator UI = APHIOp->use_begin(), E = APHIOp->use_end();
230 UI != E; ++UI) {
231 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI))
232 if (GEPI->getType() == GEP->getType() &&
233 GEPI->getNumOperands() == GEPOps.size() &&
234 GEPI->getParent()->getParent() == CurBB->getParent() &&
235 (!DT || DT->dominates(GEPI->getParent(), PredBB))) {
236 bool Mismatch = false;
237 for (unsigned i = 0, e = GEPOps.size(); i != e; ++i)
238 if (GEPI->getOperand(i) != GEPOps[i]) {
239 Mismatch = true;
240 break;
242 if (!Mismatch)
243 return GEPI;
246 return 0;
249 // Handle add with a constant RHS.
250 if (Inst->getOpcode() == Instruction::Add &&
251 isa<ConstantInt>(Inst->getOperand(1))) {
252 // PHI translate the LHS.
253 Constant *RHS = cast<ConstantInt>(Inst->getOperand(1));
254 bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap();
255 bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap();
257 Value *LHS = PHITranslateSubExpr(Inst->getOperand(0), CurBB, PredBB, DT);
258 if (LHS == 0) return 0;
260 // If the PHI translated LHS is an add of a constant, fold the immediates.
261 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS))
262 if (BOp->getOpcode() == Instruction::Add)
263 if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
264 LHS = BOp->getOperand(0);
265 RHS = ConstantExpr::getAdd(RHS, CI);
266 isNSW = isNUW = false;
268 // If the old 'LHS' was an input, add the new 'LHS' as an input.
269 if (std::count(InstInputs.begin(), InstInputs.end(), BOp)) {
270 RemoveInstInputs(BOp, InstInputs);
271 AddAsInput(LHS);
275 // See if the add simplifies away.
276 if (Value *Res = SimplifyAddInst(LHS, RHS, isNSW, isNUW, TD)) {
277 // If we simplified the operands, the LHS is no longer an input, but Res
278 // is.
279 RemoveInstInputs(LHS, InstInputs);
280 return AddAsInput(Res);
283 // If we didn't modify the add, just return it.
284 if (LHS == Inst->getOperand(0) && RHS == Inst->getOperand(1))
285 return Inst;
287 // Otherwise, see if we have this add available somewhere.
288 for (Value::use_iterator UI = LHS->use_begin(), E = LHS->use_end();
289 UI != E; ++UI) {
290 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(*UI))
291 if (BO->getOpcode() == Instruction::Add &&
292 BO->getOperand(0) == LHS && BO->getOperand(1) == RHS &&
293 BO->getParent()->getParent() == CurBB->getParent() &&
294 (!DT || DT->dominates(BO->getParent(), PredBB)))
295 return BO;
298 return 0;
301 // Otherwise, we failed.
302 return 0;
306 /// PHITranslateValue - PHI translate the current address up the CFG from
307 /// CurBB to Pred, updating our state to reflect any needed changes. If the
308 /// dominator tree DT is non-null, the translated value must dominate
309 /// PredBB. This returns true on failure and sets Addr to null.
310 bool PHITransAddr::PHITranslateValue(BasicBlock *CurBB, BasicBlock *PredBB,
311 const DominatorTree *DT) {
312 assert(Verify() && "Invalid PHITransAddr!");
313 Addr = PHITranslateSubExpr(Addr, CurBB, PredBB, DT);
314 assert(Verify() && "Invalid PHITransAddr!");
316 if (DT) {
317 // Make sure the value is live in the predecessor.
318 if (Instruction *Inst = dyn_cast_or_null<Instruction>(Addr))
319 if (!DT->dominates(Inst->getParent(), PredBB))
320 Addr = 0;
323 return Addr == 0;
326 /// PHITranslateWithInsertion - PHI translate this value into the specified
327 /// predecessor block, inserting a computation of the value if it is
328 /// unavailable.
330 /// All newly created instructions are added to the NewInsts list. This
331 /// returns null on failure.
333 Value *PHITransAddr::
334 PHITranslateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB,
335 const DominatorTree &DT,
336 SmallVectorImpl<Instruction*> &NewInsts) {
337 unsigned NISize = NewInsts.size();
339 // Attempt to PHI translate with insertion.
340 Addr = InsertPHITranslatedSubExpr(Addr, CurBB, PredBB, DT, NewInsts);
342 // If successful, return the new value.
343 if (Addr) return Addr;
345 // If not, destroy any intermediate instructions inserted.
346 while (NewInsts.size() != NISize)
347 NewInsts.pop_back_val()->eraseFromParent();
348 return 0;
352 /// InsertPHITranslatedPointer - Insert a computation of the PHI translated
353 /// version of 'V' for the edge PredBB->CurBB into the end of the PredBB
354 /// block. All newly created instructions are added to the NewInsts list.
355 /// This returns null on failure.
357 Value *PHITransAddr::
358 InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB,
359 BasicBlock *PredBB, const DominatorTree &DT,
360 SmallVectorImpl<Instruction*> &NewInsts) {
361 // See if we have a version of this value already available and dominating
362 // PredBB. If so, there is no need to insert a new instance of it.
363 PHITransAddr Tmp(InVal, TD);
364 if (!Tmp.PHITranslateValue(CurBB, PredBB, &DT))
365 return Tmp.getAddr();
367 // If we don't have an available version of this value, it must be an
368 // instruction.
369 Instruction *Inst = cast<Instruction>(InVal);
371 // Handle bitcast of PHI translatable value.
372 if (BitCastInst *BC = dyn_cast<BitCastInst>(Inst)) {
373 Value *OpVal = InsertPHITranslatedSubExpr(BC->getOperand(0),
374 CurBB, PredBB, DT, NewInsts);
375 if (OpVal == 0) return 0;
377 // Otherwise insert a bitcast at the end of PredBB.
378 BitCastInst *New = new BitCastInst(OpVal, InVal->getType(),
379 InVal->getName()+".phi.trans.insert",
380 PredBB->getTerminator());
381 NewInsts.push_back(New);
382 return New;
385 // Handle getelementptr with at least one PHI operand.
386 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
387 SmallVector<Value*, 8> GEPOps;
388 BasicBlock *CurBB = GEP->getParent();
389 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
390 Value *OpVal = InsertPHITranslatedSubExpr(GEP->getOperand(i),
391 CurBB, PredBB, DT, NewInsts);
392 if (OpVal == 0) return 0;
393 GEPOps.push_back(OpVal);
396 GetElementPtrInst *Result =
397 GetElementPtrInst::Create(GEPOps[0], GEPOps.begin()+1, GEPOps.end(),
398 InVal->getName()+".phi.trans.insert",
399 PredBB->getTerminator());
400 Result->setIsInBounds(GEP->isInBounds());
401 NewInsts.push_back(Result);
402 return Result;
405 #if 0
406 // FIXME: This code works, but it is unclear that we actually want to insert
407 // a big chain of computation in order to make a value available in a block.
408 // This needs to be evaluated carefully to consider its cost trade offs.
410 // Handle add with a constant RHS.
411 if (Inst->getOpcode() == Instruction::Add &&
412 isa<ConstantInt>(Inst->getOperand(1))) {
413 // PHI translate the LHS.
414 Value *OpVal = InsertPHITranslatedSubExpr(Inst->getOperand(0),
415 CurBB, PredBB, DT, NewInsts);
416 if (OpVal == 0) return 0;
418 BinaryOperator *Res = BinaryOperator::CreateAdd(OpVal, Inst->getOperand(1),
419 InVal->getName()+".phi.trans.insert",
420 PredBB->getTerminator());
421 Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap());
422 Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap());
423 NewInsts.push_back(Res);
424 return Res;
426 #endif
428 return 0;