Fixed some bugs.
[llvm/zpu.git] / lib / Analysis / ScalarEvolution.cpp
blob4d750b4464badeba7473f4d32b45f1411cb32b8c
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
14 // There are several aspects to this library. First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. We only create one SCEV of a particular shape, so
18 // pointer-comparisons for equality are legal.
20 // One important aspect of the SCEV objects is that they are never cyclic, even
21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
23 // recurrence) then we represent it directly as a recurrence node, otherwise we
24 // represent it as a SCEVUnknown node.
26 // In addition to being able to represent expressions of various types, we also
27 // have folders that are used to build the *canonical* representation for a
28 // particular expression. These folders are capable of using a variety of
29 // rewrite rules to simplify the expressions.
31 // Once the folders are defined, we can implement the more interesting
32 // higher-level code, such as the code that recognizes PHI nodes of various
33 // types, computes the execution count of a loop, etc.
35 // TODO: We should use these routines and value representations to implement
36 // dependence analysis!
38 //===----------------------------------------------------------------------===//
40 // There are several good references for the techniques used in this analysis.
42 // Chains of recurrences -- a method to expedite the evaluation
43 // of closed-form functions
44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46 // On computational properties of chains of recurrences
47 // Eugene V. Zima
49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50 // Robert A. van Engelen
52 // Efficient Symbolic Analysis for Optimizing Compilers
53 // Robert A. van Engelen
55 // Using the chains of recurrences algebra for data dependence testing and
56 // induction variable substitution
57 // MS Thesis, Johnie Birch
59 //===----------------------------------------------------------------------===//
61 #define DEBUG_TYPE "scalar-evolution"
62 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
63 #include "llvm/Constants.h"
64 #include "llvm/DerivedTypes.h"
65 #include "llvm/GlobalVariable.h"
66 #include "llvm/GlobalAlias.h"
67 #include "llvm/Instructions.h"
68 #include "llvm/LLVMContext.h"
69 #include "llvm/Operator.h"
70 #include "llvm/Analysis/ConstantFolding.h"
71 #include "llvm/Analysis/Dominators.h"
72 #include "llvm/Analysis/LoopInfo.h"
73 #include "llvm/Analysis/ValueTracking.h"
74 #include "llvm/Assembly/Writer.h"
75 #include "llvm/Target/TargetData.h"
76 #include "llvm/Support/CommandLine.h"
77 #include "llvm/Support/ConstantRange.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/ErrorHandling.h"
80 #include "llvm/Support/GetElementPtrTypeIterator.h"
81 #include "llvm/Support/InstIterator.h"
82 #include "llvm/Support/MathExtras.h"
83 #include "llvm/Support/raw_ostream.h"
84 #include "llvm/ADT/Statistic.h"
85 #include "llvm/ADT/STLExtras.h"
86 #include "llvm/ADT/SmallPtrSet.h"
87 #include <algorithm>
88 using namespace llvm;
90 STATISTIC(NumArrayLenItCounts,
91 "Number of trip counts computed with array length");
92 STATISTIC(NumTripCountsComputed,
93 "Number of loops with predictable loop counts");
94 STATISTIC(NumTripCountsNotComputed,
95 "Number of loops without predictable loop counts");
96 STATISTIC(NumBruteForceTripCountsComputed,
97 "Number of loops with trip counts computed by force");
99 static cl::opt<unsigned>
100 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101 cl::desc("Maximum number of iterations SCEV will "
102 "symbolically execute a constant "
103 "derived loop"),
104 cl::init(100));
106 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
107 "Scalar Evolution Analysis", false, true)
108 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
109 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
110 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
111 "Scalar Evolution Analysis", false, true)
112 char ScalarEvolution::ID = 0;
114 //===----------------------------------------------------------------------===//
115 // SCEV class definitions
116 //===----------------------------------------------------------------------===//
118 //===----------------------------------------------------------------------===//
119 // Implementation of the SCEV class.
122 SCEV::~SCEV() {}
124 void SCEV::dump() const {
125 print(dbgs());
126 dbgs() << '\n';
129 bool SCEV::isZero() const {
130 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
131 return SC->getValue()->isZero();
132 return false;
135 bool SCEV::isOne() const {
136 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
137 return SC->getValue()->isOne();
138 return false;
141 bool SCEV::isAllOnesValue() const {
142 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
143 return SC->getValue()->isAllOnesValue();
144 return false;
147 SCEVCouldNotCompute::SCEVCouldNotCompute() :
148 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
150 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
151 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
152 return false;
155 const Type *SCEVCouldNotCompute::getType() const {
156 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
157 return 0;
160 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
161 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
162 return false;
165 bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
166 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
167 return false;
170 void SCEVCouldNotCompute::print(raw_ostream &OS) const {
171 OS << "***COULDNOTCOMPUTE***";
174 bool SCEVCouldNotCompute::classof(const SCEV *S) {
175 return S->getSCEVType() == scCouldNotCompute;
178 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
179 FoldingSetNodeID ID;
180 ID.AddInteger(scConstant);
181 ID.AddPointer(V);
182 void *IP = 0;
183 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
184 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
185 UniqueSCEVs.InsertNode(S, IP);
186 return S;
189 const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
190 return getConstant(ConstantInt::get(getContext(), Val));
193 const SCEV *
194 ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
195 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
196 return getConstant(ConstantInt::get(ITy, V, isSigned));
199 const Type *SCEVConstant::getType() const { return V->getType(); }
201 void SCEVConstant::print(raw_ostream &OS) const {
202 WriteAsOperand(OS, V, false);
205 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
206 unsigned SCEVTy, const SCEV *op, const Type *ty)
207 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
209 bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
210 return Op->dominates(BB, DT);
213 bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
214 return Op->properlyDominates(BB, DT);
217 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
218 const SCEV *op, const Type *ty)
219 : SCEVCastExpr(ID, scTruncate, op, ty) {
220 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
221 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
222 "Cannot truncate non-integer value!");
225 void SCEVTruncateExpr::print(raw_ostream &OS) const {
226 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
229 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
230 const SCEV *op, const Type *ty)
231 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
232 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
233 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
234 "Cannot zero extend non-integer value!");
237 void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
238 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
241 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
242 const SCEV *op, const Type *ty)
243 : SCEVCastExpr(ID, scSignExtend, op, ty) {
244 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
245 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
246 "Cannot sign extend non-integer value!");
249 void SCEVSignExtendExpr::print(raw_ostream &OS) const {
250 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
253 void SCEVCommutativeExpr::print(raw_ostream &OS) const {
254 const char *OpStr = getOperationStr();
255 OS << "(";
256 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
257 OS << **I;
258 if (llvm::next(I) != E)
259 OS << OpStr;
261 OS << ")";
264 bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
265 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
266 if (!(*I)->dominates(BB, DT))
267 return false;
268 return true;
271 bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
272 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
273 if (!(*I)->properlyDominates(BB, DT))
274 return false;
275 return true;
278 bool SCEVNAryExpr::isLoopInvariant(const Loop *L) const {
279 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
280 if (!(*I)->isLoopInvariant(L))
281 return false;
282 return true;
285 // hasComputableLoopEvolution - N-ary expressions have computable loop
286 // evolutions iff they have at least one operand that varies with the loop,
287 // but that all varying operands are computable.
288 bool SCEVNAryExpr::hasComputableLoopEvolution(const Loop *L) const {
289 bool HasVarying = false;
290 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
291 const SCEV *S = *I;
292 if (!S->isLoopInvariant(L)) {
293 if (S->hasComputableLoopEvolution(L))
294 HasVarying = true;
295 else
296 return false;
299 return HasVarying;
302 bool SCEVNAryExpr::hasOperand(const SCEV *O) const {
303 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
304 const SCEV *S = *I;
305 if (O == S || S->hasOperand(O))
306 return true;
308 return false;
311 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
312 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
315 bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
316 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
319 void SCEVUDivExpr::print(raw_ostream &OS) const {
320 OS << "(" << *LHS << " /u " << *RHS << ")";
323 const Type *SCEVUDivExpr::getType() const {
324 // In most cases the types of LHS and RHS will be the same, but in some
325 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
326 // depend on the type for correctness, but handling types carefully can
327 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
328 // a pointer type than the RHS, so use the RHS' type here.
329 return RHS->getType();
332 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
333 // Add recurrences are never invariant in the function-body (null loop).
334 if (!QueryLoop)
335 return false;
337 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
338 if (QueryLoop->contains(L))
339 return false;
341 // This recurrence is invariant w.r.t. QueryLoop if L contains QueryLoop.
342 if (L->contains(QueryLoop))
343 return true;
345 // This recurrence is variant w.r.t. QueryLoop if any of its operands
346 // are variant.
347 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
348 if (!(*I)->isLoopInvariant(QueryLoop))
349 return false;
351 // Otherwise it's loop-invariant.
352 return true;
355 bool
356 SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
357 return DT->dominates(L->getHeader(), BB) &&
358 SCEVNAryExpr::dominates(BB, DT);
361 bool
362 SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
363 // This uses a "dominates" query instead of "properly dominates" query because
364 // the instruction which produces the addrec's value is a PHI, and a PHI
365 // effectively properly dominates its entire containing block.
366 return DT->dominates(L->getHeader(), BB) &&
367 SCEVNAryExpr::properlyDominates(BB, DT);
370 void SCEVAddRecExpr::print(raw_ostream &OS) const {
371 OS << "{" << *Operands[0];
372 for (unsigned i = 1, e = NumOperands; i != e; ++i)
373 OS << ",+," << *Operands[i];
374 OS << "}<";
375 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
376 OS << ">";
379 void SCEVUnknown::deleted() {
380 // Clear this SCEVUnknown from ValuesAtScopes.
381 SE->ValuesAtScopes.erase(this);
383 // Remove this SCEVUnknown from the uniquing map.
384 SE->UniqueSCEVs.RemoveNode(this);
386 // Release the value.
387 setValPtr(0);
390 void SCEVUnknown::allUsesReplacedWith(Value *New) {
391 // Clear this SCEVUnknown from ValuesAtScopes.
392 SE->ValuesAtScopes.erase(this);
394 // Remove this SCEVUnknown from the uniquing map.
395 SE->UniqueSCEVs.RemoveNode(this);
397 // Update this SCEVUnknown to point to the new value. This is needed
398 // because there may still be outstanding SCEVs which still point to
399 // this SCEVUnknown.
400 setValPtr(New);
403 bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
404 // All non-instruction values are loop invariant. All instructions are loop
405 // invariant if they are not contained in the specified loop.
406 // Instructions are never considered invariant in the function body
407 // (null loop) because they are defined within the "loop".
408 if (Instruction *I = dyn_cast<Instruction>(getValue()))
409 return L && !L->contains(I);
410 return true;
413 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
414 if (Instruction *I = dyn_cast<Instruction>(getValue()))
415 return DT->dominates(I->getParent(), BB);
416 return true;
419 bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
420 if (Instruction *I = dyn_cast<Instruction>(getValue()))
421 return DT->properlyDominates(I->getParent(), BB);
422 return true;
425 const Type *SCEVUnknown::getType() const {
426 return getValue()->getType();
429 bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
430 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
431 if (VCE->getOpcode() == Instruction::PtrToInt)
432 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
433 if (CE->getOpcode() == Instruction::GetElementPtr &&
434 CE->getOperand(0)->isNullValue() &&
435 CE->getNumOperands() == 2)
436 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
437 if (CI->isOne()) {
438 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
439 ->getElementType();
440 return true;
443 return false;
446 bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
447 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
448 if (VCE->getOpcode() == Instruction::PtrToInt)
449 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
450 if (CE->getOpcode() == Instruction::GetElementPtr &&
451 CE->getOperand(0)->isNullValue()) {
452 const Type *Ty =
453 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
454 if (const StructType *STy = dyn_cast<StructType>(Ty))
455 if (!STy->isPacked() &&
456 CE->getNumOperands() == 3 &&
457 CE->getOperand(1)->isNullValue()) {
458 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
459 if (CI->isOne() &&
460 STy->getNumElements() == 2 &&
461 STy->getElementType(0)->isIntegerTy(1)) {
462 AllocTy = STy->getElementType(1);
463 return true;
468 return false;
471 bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
472 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
473 if (VCE->getOpcode() == Instruction::PtrToInt)
474 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
475 if (CE->getOpcode() == Instruction::GetElementPtr &&
476 CE->getNumOperands() == 3 &&
477 CE->getOperand(0)->isNullValue() &&
478 CE->getOperand(1)->isNullValue()) {
479 const Type *Ty =
480 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
481 // Ignore vector types here so that ScalarEvolutionExpander doesn't
482 // emit getelementptrs that index into vectors.
483 if (Ty->isStructTy() || Ty->isArrayTy()) {
484 CTy = Ty;
485 FieldNo = CE->getOperand(2);
486 return true;
490 return false;
493 void SCEVUnknown::print(raw_ostream &OS) const {
494 const Type *AllocTy;
495 if (isSizeOf(AllocTy)) {
496 OS << "sizeof(" << *AllocTy << ")";
497 return;
499 if (isAlignOf(AllocTy)) {
500 OS << "alignof(" << *AllocTy << ")";
501 return;
504 const Type *CTy;
505 Constant *FieldNo;
506 if (isOffsetOf(CTy, FieldNo)) {
507 OS << "offsetof(" << *CTy << ", ";
508 WriteAsOperand(OS, FieldNo, false);
509 OS << ")";
510 return;
513 // Otherwise just print it normally.
514 WriteAsOperand(OS, getValue(), false);
517 //===----------------------------------------------------------------------===//
518 // SCEV Utilities
519 //===----------------------------------------------------------------------===//
521 namespace {
522 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
523 /// than the complexity of the RHS. This comparator is used to canonicalize
524 /// expressions.
525 class SCEVComplexityCompare {
526 const LoopInfo *const LI;
527 public:
528 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
530 // Return true or false if LHS is less than, or at least RHS, respectively.
531 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
532 return compare(LHS, RHS) < 0;
535 // Return negative, zero, or positive, if LHS is less than, equal to, or
536 // greater than RHS, respectively. A three-way result allows recursive
537 // comparisons to be more efficient.
538 int compare(const SCEV *LHS, const SCEV *RHS) const {
539 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
540 if (LHS == RHS)
541 return 0;
543 // Primarily, sort the SCEVs by their getSCEVType().
544 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
545 if (LType != RType)
546 return (int)LType - (int)RType;
548 // Aside from the getSCEVType() ordering, the particular ordering
549 // isn't very important except that it's beneficial to be consistent,
550 // so that (a + b) and (b + a) don't end up as different expressions.
551 switch (LType) {
552 case scUnknown: {
553 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
554 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
556 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
557 // not as complete as it could be.
558 const Value *LV = LU->getValue(), *RV = RU->getValue();
560 // Order pointer values after integer values. This helps SCEVExpander
561 // form GEPs.
562 bool LIsPointer = LV->getType()->isPointerTy(),
563 RIsPointer = RV->getType()->isPointerTy();
564 if (LIsPointer != RIsPointer)
565 return (int)LIsPointer - (int)RIsPointer;
567 // Compare getValueID values.
568 unsigned LID = LV->getValueID(),
569 RID = RV->getValueID();
570 if (LID != RID)
571 return (int)LID - (int)RID;
573 // Sort arguments by their position.
574 if (const Argument *LA = dyn_cast<Argument>(LV)) {
575 const Argument *RA = cast<Argument>(RV);
576 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
577 return (int)LArgNo - (int)RArgNo;
580 // For instructions, compare their loop depth, and their operand
581 // count. This is pretty loose.
582 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
583 const Instruction *RInst = cast<Instruction>(RV);
585 // Compare loop depths.
586 const BasicBlock *LParent = LInst->getParent(),
587 *RParent = RInst->getParent();
588 if (LParent != RParent) {
589 unsigned LDepth = LI->getLoopDepth(LParent),
590 RDepth = LI->getLoopDepth(RParent);
591 if (LDepth != RDepth)
592 return (int)LDepth - (int)RDepth;
595 // Compare the number of operands.
596 unsigned LNumOps = LInst->getNumOperands(),
597 RNumOps = RInst->getNumOperands();
598 return (int)LNumOps - (int)RNumOps;
601 return 0;
604 case scConstant: {
605 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
606 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
608 // Compare constant values.
609 const APInt &LA = LC->getValue()->getValue();
610 const APInt &RA = RC->getValue()->getValue();
611 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
612 if (LBitWidth != RBitWidth)
613 return (int)LBitWidth - (int)RBitWidth;
614 return LA.ult(RA) ? -1 : 1;
617 case scAddRecExpr: {
618 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
619 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
621 // Compare addrec loop depths.
622 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
623 if (LLoop != RLoop) {
624 unsigned LDepth = LLoop->getLoopDepth(),
625 RDepth = RLoop->getLoopDepth();
626 if (LDepth != RDepth)
627 return (int)LDepth - (int)RDepth;
630 // Addrec complexity grows with operand count.
631 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
632 if (LNumOps != RNumOps)
633 return (int)LNumOps - (int)RNumOps;
635 // Lexicographically compare.
636 for (unsigned i = 0; i != LNumOps; ++i) {
637 long X = compare(LA->getOperand(i), RA->getOperand(i));
638 if (X != 0)
639 return X;
642 return 0;
645 case scAddExpr:
646 case scMulExpr:
647 case scSMaxExpr:
648 case scUMaxExpr: {
649 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
650 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
652 // Lexicographically compare n-ary expressions.
653 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
654 for (unsigned i = 0; i != LNumOps; ++i) {
655 if (i >= RNumOps)
656 return 1;
657 long X = compare(LC->getOperand(i), RC->getOperand(i));
658 if (X != 0)
659 return X;
661 return (int)LNumOps - (int)RNumOps;
664 case scUDivExpr: {
665 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
666 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
668 // Lexicographically compare udiv expressions.
669 long X = compare(LC->getLHS(), RC->getLHS());
670 if (X != 0)
671 return X;
672 return compare(LC->getRHS(), RC->getRHS());
675 case scTruncate:
676 case scZeroExtend:
677 case scSignExtend: {
678 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
679 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
681 // Compare cast expressions by operand.
682 return compare(LC->getOperand(), RC->getOperand());
685 default:
686 break;
689 llvm_unreachable("Unknown SCEV kind!");
690 return 0;
695 /// GroupByComplexity - Given a list of SCEV objects, order them by their
696 /// complexity, and group objects of the same complexity together by value.
697 /// When this routine is finished, we know that any duplicates in the vector are
698 /// consecutive and that complexity is monotonically increasing.
700 /// Note that we go take special precautions to ensure that we get deterministic
701 /// results from this routine. In other words, we don't want the results of
702 /// this to depend on where the addresses of various SCEV objects happened to
703 /// land in memory.
705 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
706 LoopInfo *LI) {
707 if (Ops.size() < 2) return; // Noop
708 if (Ops.size() == 2) {
709 // This is the common case, which also happens to be trivially simple.
710 // Special case it.
711 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
712 if (SCEVComplexityCompare(LI)(RHS, LHS))
713 std::swap(LHS, RHS);
714 return;
717 // Do the rough sort by complexity.
718 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
720 // Now that we are sorted by complexity, group elements of the same
721 // complexity. Note that this is, at worst, N^2, but the vector is likely to
722 // be extremely short in practice. Note that we take this approach because we
723 // do not want to depend on the addresses of the objects we are grouping.
724 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
725 const SCEV *S = Ops[i];
726 unsigned Complexity = S->getSCEVType();
728 // If there are any objects of the same complexity and same value as this
729 // one, group them.
730 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
731 if (Ops[j] == S) { // Found a duplicate.
732 // Move it to immediately after i'th element.
733 std::swap(Ops[i+1], Ops[j]);
734 ++i; // no need to rescan it.
735 if (i == e-2) return; // Done!
743 //===----------------------------------------------------------------------===//
744 // Simple SCEV method implementations
745 //===----------------------------------------------------------------------===//
747 /// BinomialCoefficient - Compute BC(It, K). The result has width W.
748 /// Assume, K > 0.
749 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
750 ScalarEvolution &SE,
751 const Type* ResultTy) {
752 // Handle the simplest case efficiently.
753 if (K == 1)
754 return SE.getTruncateOrZeroExtend(It, ResultTy);
756 // We are using the following formula for BC(It, K):
758 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
760 // Suppose, W is the bitwidth of the return value. We must be prepared for
761 // overflow. Hence, we must assure that the result of our computation is
762 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
763 // safe in modular arithmetic.
765 // However, this code doesn't use exactly that formula; the formula it uses
766 // is something like the following, where T is the number of factors of 2 in
767 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
768 // exponentiation:
770 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
772 // This formula is trivially equivalent to the previous formula. However,
773 // this formula can be implemented much more efficiently. The trick is that
774 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
775 // arithmetic. To do exact division in modular arithmetic, all we have
776 // to do is multiply by the inverse. Therefore, this step can be done at
777 // width W.
779 // The next issue is how to safely do the division by 2^T. The way this
780 // is done is by doing the multiplication step at a width of at least W + T
781 // bits. This way, the bottom W+T bits of the product are accurate. Then,
782 // when we perform the division by 2^T (which is equivalent to a right shift
783 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
784 // truncated out after the division by 2^T.
786 // In comparison to just directly using the first formula, this technique
787 // is much more efficient; using the first formula requires W * K bits,
788 // but this formula less than W + K bits. Also, the first formula requires
789 // a division step, whereas this formula only requires multiplies and shifts.
791 // It doesn't matter whether the subtraction step is done in the calculation
792 // width or the input iteration count's width; if the subtraction overflows,
793 // the result must be zero anyway. We prefer here to do it in the width of
794 // the induction variable because it helps a lot for certain cases; CodeGen
795 // isn't smart enough to ignore the overflow, which leads to much less
796 // efficient code if the width of the subtraction is wider than the native
797 // register width.
799 // (It's possible to not widen at all by pulling out factors of 2 before
800 // the multiplication; for example, K=2 can be calculated as
801 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
802 // extra arithmetic, so it's not an obvious win, and it gets
803 // much more complicated for K > 3.)
805 // Protection from insane SCEVs; this bound is conservative,
806 // but it probably doesn't matter.
807 if (K > 1000)
808 return SE.getCouldNotCompute();
810 unsigned W = SE.getTypeSizeInBits(ResultTy);
812 // Calculate K! / 2^T and T; we divide out the factors of two before
813 // multiplying for calculating K! / 2^T to avoid overflow.
814 // Other overflow doesn't matter because we only care about the bottom
815 // W bits of the result.
816 APInt OddFactorial(W, 1);
817 unsigned T = 1;
818 for (unsigned i = 3; i <= K; ++i) {
819 APInt Mult(W, i);
820 unsigned TwoFactors = Mult.countTrailingZeros();
821 T += TwoFactors;
822 Mult = Mult.lshr(TwoFactors);
823 OddFactorial *= Mult;
826 // We need at least W + T bits for the multiplication step
827 unsigned CalculationBits = W + T;
829 // Calculate 2^T, at width T+W.
830 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
832 // Calculate the multiplicative inverse of K! / 2^T;
833 // this multiplication factor will perform the exact division by
834 // K! / 2^T.
835 APInt Mod = APInt::getSignedMinValue(W+1);
836 APInt MultiplyFactor = OddFactorial.zext(W+1);
837 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
838 MultiplyFactor = MultiplyFactor.trunc(W);
840 // Calculate the product, at width T+W
841 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
842 CalculationBits);
843 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
844 for (unsigned i = 1; i != K; ++i) {
845 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
846 Dividend = SE.getMulExpr(Dividend,
847 SE.getTruncateOrZeroExtend(S, CalculationTy));
850 // Divide by 2^T
851 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
853 // Truncate the result, and divide by K! / 2^T.
855 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
856 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
859 /// evaluateAtIteration - Return the value of this chain of recurrences at
860 /// the specified iteration number. We can evaluate this recurrence by
861 /// multiplying each element in the chain by the binomial coefficient
862 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
864 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
866 /// where BC(It, k) stands for binomial coefficient.
868 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
869 ScalarEvolution &SE) const {
870 const SCEV *Result = getStart();
871 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
872 // The computation is correct in the face of overflow provided that the
873 // multiplication is performed _after_ the evaluation of the binomial
874 // coefficient.
875 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
876 if (isa<SCEVCouldNotCompute>(Coeff))
877 return Coeff;
879 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
881 return Result;
884 //===----------------------------------------------------------------------===//
885 // SCEV Expression folder implementations
886 //===----------------------------------------------------------------------===//
888 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
889 const Type *Ty) {
890 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
891 "This is not a truncating conversion!");
892 assert(isSCEVable(Ty) &&
893 "This is not a conversion to a SCEVable type!");
894 Ty = getEffectiveSCEVType(Ty);
896 FoldingSetNodeID ID;
897 ID.AddInteger(scTruncate);
898 ID.AddPointer(Op);
899 ID.AddPointer(Ty);
900 void *IP = 0;
901 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
903 // Fold if the operand is constant.
904 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
905 return getConstant(
906 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
907 getEffectiveSCEVType(Ty))));
909 // trunc(trunc(x)) --> trunc(x)
910 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
911 return getTruncateExpr(ST->getOperand(), Ty);
913 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
914 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
915 return getTruncateOrSignExtend(SS->getOperand(), Ty);
917 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
918 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
919 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
921 // If the input value is a chrec scev, truncate the chrec's operands.
922 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
923 SmallVector<const SCEV *, 4> Operands;
924 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
925 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
926 return getAddRecExpr(Operands, AddRec->getLoop());
929 // As a special case, fold trunc(undef) to undef. We don't want to
930 // know too much about SCEVUnknowns, but this special case is handy
931 // and harmless.
932 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
933 if (isa<UndefValue>(U->getValue()))
934 return getSCEV(UndefValue::get(Ty));
936 // The cast wasn't folded; create an explicit cast node. We can reuse
937 // the existing insert position since if we get here, we won't have
938 // made any changes which would invalidate it.
939 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
940 Op, Ty);
941 UniqueSCEVs.InsertNode(S, IP);
942 return S;
945 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
946 const Type *Ty) {
947 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
948 "This is not an extending conversion!");
949 assert(isSCEVable(Ty) &&
950 "This is not a conversion to a SCEVable type!");
951 Ty = getEffectiveSCEVType(Ty);
953 // Fold if the operand is constant.
954 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
955 return getConstant(
956 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
957 getEffectiveSCEVType(Ty))));
959 // zext(zext(x)) --> zext(x)
960 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
961 return getZeroExtendExpr(SZ->getOperand(), Ty);
963 // Before doing any expensive analysis, check to see if we've already
964 // computed a SCEV for this Op and Ty.
965 FoldingSetNodeID ID;
966 ID.AddInteger(scZeroExtend);
967 ID.AddPointer(Op);
968 ID.AddPointer(Ty);
969 void *IP = 0;
970 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
972 // If the input value is a chrec scev, and we can prove that the value
973 // did not overflow the old, smaller, value, we can zero extend all of the
974 // operands (often constants). This allows analysis of something like
975 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
976 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
977 if (AR->isAffine()) {
978 const SCEV *Start = AR->getStart();
979 const SCEV *Step = AR->getStepRecurrence(*this);
980 unsigned BitWidth = getTypeSizeInBits(AR->getType());
981 const Loop *L = AR->getLoop();
983 // If we have special knowledge that this addrec won't overflow,
984 // we don't need to do any further analysis.
985 if (AR->hasNoUnsignedWrap())
986 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
987 getZeroExtendExpr(Step, Ty),
990 // Check whether the backedge-taken count is SCEVCouldNotCompute.
991 // Note that this serves two purposes: It filters out loops that are
992 // simply not analyzable, and it covers the case where this code is
993 // being called from within backedge-taken count analysis, such that
994 // attempting to ask for the backedge-taken count would likely result
995 // in infinite recursion. In the later case, the analysis code will
996 // cope with a conservative value, and it will take care to purge
997 // that value once it has finished.
998 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
999 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1000 // Manually compute the final value for AR, checking for
1001 // overflow.
1003 // Check whether the backedge-taken count can be losslessly casted to
1004 // the addrec's type. The count is always unsigned.
1005 const SCEV *CastedMaxBECount =
1006 getTruncateOrZeroExtend(MaxBECount, Start->getType());
1007 const SCEV *RecastedMaxBECount =
1008 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1009 if (MaxBECount == RecastedMaxBECount) {
1010 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1011 // Check whether Start+Step*MaxBECount has no unsigned overflow.
1012 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
1013 const SCEV *Add = getAddExpr(Start, ZMul);
1014 const SCEV *OperandExtendedAdd =
1015 getAddExpr(getZeroExtendExpr(Start, WideTy),
1016 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1017 getZeroExtendExpr(Step, WideTy)));
1018 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
1019 // Return the expression with the addrec on the outside.
1020 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1021 getZeroExtendExpr(Step, Ty),
1024 // Similar to above, only this time treat the step value as signed.
1025 // This covers loops that count down.
1026 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1027 Add = getAddExpr(Start, SMul);
1028 OperandExtendedAdd =
1029 getAddExpr(getZeroExtendExpr(Start, WideTy),
1030 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1031 getSignExtendExpr(Step, WideTy)));
1032 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
1033 // Return the expression with the addrec on the outside.
1034 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1035 getSignExtendExpr(Step, Ty),
1039 // If the backedge is guarded by a comparison with the pre-inc value
1040 // the addrec is safe. Also, if the entry is guarded by a comparison
1041 // with the start value and the backedge is guarded by a comparison
1042 // with the post-inc value, the addrec is safe.
1043 if (isKnownPositive(Step)) {
1044 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1045 getUnsignedRange(Step).getUnsignedMax());
1046 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1047 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1048 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1049 AR->getPostIncExpr(*this), N)))
1050 // Return the expression with the addrec on the outside.
1051 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1052 getZeroExtendExpr(Step, Ty),
1054 } else if (isKnownNegative(Step)) {
1055 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1056 getSignedRange(Step).getSignedMin());
1057 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1058 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1059 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1060 AR->getPostIncExpr(*this), N)))
1061 // Return the expression with the addrec on the outside.
1062 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1063 getSignExtendExpr(Step, Ty),
1069 // The cast wasn't folded; create an explicit cast node.
1070 // Recompute the insert position, as it may have been invalidated.
1071 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1072 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1073 Op, Ty);
1074 UniqueSCEVs.InsertNode(S, IP);
1075 return S;
1078 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1079 const Type *Ty) {
1080 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1081 "This is not an extending conversion!");
1082 assert(isSCEVable(Ty) &&
1083 "This is not a conversion to a SCEVable type!");
1084 Ty = getEffectiveSCEVType(Ty);
1086 // Fold if the operand is constant.
1087 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1088 return getConstant(
1089 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1090 getEffectiveSCEVType(Ty))));
1092 // sext(sext(x)) --> sext(x)
1093 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1094 return getSignExtendExpr(SS->getOperand(), Ty);
1096 // Before doing any expensive analysis, check to see if we've already
1097 // computed a SCEV for this Op and Ty.
1098 FoldingSetNodeID ID;
1099 ID.AddInteger(scSignExtend);
1100 ID.AddPointer(Op);
1101 ID.AddPointer(Ty);
1102 void *IP = 0;
1103 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1105 // If the input value is a chrec scev, and we can prove that the value
1106 // did not overflow the old, smaller, value, we can sign extend all of the
1107 // operands (often constants). This allows analysis of something like
1108 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
1109 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1110 if (AR->isAffine()) {
1111 const SCEV *Start = AR->getStart();
1112 const SCEV *Step = AR->getStepRecurrence(*this);
1113 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1114 const Loop *L = AR->getLoop();
1116 // If we have special knowledge that this addrec won't overflow,
1117 // we don't need to do any further analysis.
1118 if (AR->hasNoSignedWrap())
1119 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1120 getSignExtendExpr(Step, Ty),
1123 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1124 // Note that this serves two purposes: It filters out loops that are
1125 // simply not analyzable, and it covers the case where this code is
1126 // being called from within backedge-taken count analysis, such that
1127 // attempting to ask for the backedge-taken count would likely result
1128 // in infinite recursion. In the later case, the analysis code will
1129 // cope with a conservative value, and it will take care to purge
1130 // that value once it has finished.
1131 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1132 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1133 // Manually compute the final value for AR, checking for
1134 // overflow.
1136 // Check whether the backedge-taken count can be losslessly casted to
1137 // the addrec's type. The count is always unsigned.
1138 const SCEV *CastedMaxBECount =
1139 getTruncateOrZeroExtend(MaxBECount, Start->getType());
1140 const SCEV *RecastedMaxBECount =
1141 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1142 if (MaxBECount == RecastedMaxBECount) {
1143 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1144 // Check whether Start+Step*MaxBECount has no signed overflow.
1145 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1146 const SCEV *Add = getAddExpr(Start, SMul);
1147 const SCEV *OperandExtendedAdd =
1148 getAddExpr(getSignExtendExpr(Start, WideTy),
1149 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1150 getSignExtendExpr(Step, WideTy)));
1151 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1152 // Return the expression with the addrec on the outside.
1153 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1154 getSignExtendExpr(Step, Ty),
1157 // Similar to above, only this time treat the step value as unsigned.
1158 // This covers loops that count up with an unsigned step.
1159 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
1160 Add = getAddExpr(Start, UMul);
1161 OperandExtendedAdd =
1162 getAddExpr(getSignExtendExpr(Start, WideTy),
1163 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1164 getZeroExtendExpr(Step, WideTy)));
1165 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1166 // Return the expression with the addrec on the outside.
1167 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1168 getZeroExtendExpr(Step, Ty),
1172 // If the backedge is guarded by a comparison with the pre-inc value
1173 // the addrec is safe. Also, if the entry is guarded by a comparison
1174 // with the start value and the backedge is guarded by a comparison
1175 // with the post-inc value, the addrec is safe.
1176 if (isKnownPositive(Step)) {
1177 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1178 getSignedRange(Step).getSignedMax());
1179 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
1180 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
1181 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1182 AR->getPostIncExpr(*this), N)))
1183 // Return the expression with the addrec on the outside.
1184 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1185 getSignExtendExpr(Step, Ty),
1187 } else if (isKnownNegative(Step)) {
1188 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1189 getSignedRange(Step).getSignedMin());
1190 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
1191 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
1192 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1193 AR->getPostIncExpr(*this), N)))
1194 // Return the expression with the addrec on the outside.
1195 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1196 getSignExtendExpr(Step, Ty),
1202 // The cast wasn't folded; create an explicit cast node.
1203 // Recompute the insert position, as it may have been invalidated.
1204 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1205 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1206 Op, Ty);
1207 UniqueSCEVs.InsertNode(S, IP);
1208 return S;
1211 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
1212 /// unspecified bits out to the given type.
1214 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1215 const Type *Ty) {
1216 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1217 "This is not an extending conversion!");
1218 assert(isSCEVable(Ty) &&
1219 "This is not a conversion to a SCEVable type!");
1220 Ty = getEffectiveSCEVType(Ty);
1222 // Sign-extend negative constants.
1223 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1224 if (SC->getValue()->getValue().isNegative())
1225 return getSignExtendExpr(Op, Ty);
1227 // Peel off a truncate cast.
1228 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1229 const SCEV *NewOp = T->getOperand();
1230 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1231 return getAnyExtendExpr(NewOp, Ty);
1232 return getTruncateOrNoop(NewOp, Ty);
1235 // Next try a zext cast. If the cast is folded, use it.
1236 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1237 if (!isa<SCEVZeroExtendExpr>(ZExt))
1238 return ZExt;
1240 // Next try a sext cast. If the cast is folded, use it.
1241 const SCEV *SExt = getSignExtendExpr(Op, Ty);
1242 if (!isa<SCEVSignExtendExpr>(SExt))
1243 return SExt;
1245 // Force the cast to be folded into the operands of an addrec.
1246 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1247 SmallVector<const SCEV *, 4> Ops;
1248 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1249 I != E; ++I)
1250 Ops.push_back(getAnyExtendExpr(*I, Ty));
1251 return getAddRecExpr(Ops, AR->getLoop());
1254 // As a special case, fold anyext(undef) to undef. We don't want to
1255 // know too much about SCEVUnknowns, but this special case is handy
1256 // and harmless.
1257 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1258 if (isa<UndefValue>(U->getValue()))
1259 return getSCEV(UndefValue::get(Ty));
1261 // If the expression is obviously signed, use the sext cast value.
1262 if (isa<SCEVSMaxExpr>(Op))
1263 return SExt;
1265 // Absent any other information, use the zext cast value.
1266 return ZExt;
1269 /// CollectAddOperandsWithScales - Process the given Ops list, which is
1270 /// a list of operands to be added under the given scale, update the given
1271 /// map. This is a helper function for getAddRecExpr. As an example of
1272 /// what it does, given a sequence of operands that would form an add
1273 /// expression like this:
1275 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1277 /// where A and B are constants, update the map with these values:
1279 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1281 /// and add 13 + A*B*29 to AccumulatedConstant.
1282 /// This will allow getAddRecExpr to produce this:
1284 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1286 /// This form often exposes folding opportunities that are hidden in
1287 /// the original operand list.
1289 /// Return true iff it appears that any interesting folding opportunities
1290 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
1291 /// the common case where no interesting opportunities are present, and
1292 /// is also used as a check to avoid infinite recursion.
1294 static bool
1295 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1296 SmallVector<const SCEV *, 8> &NewOps,
1297 APInt &AccumulatedConstant,
1298 const SCEV *const *Ops, size_t NumOperands,
1299 const APInt &Scale,
1300 ScalarEvolution &SE) {
1301 bool Interesting = false;
1303 // Iterate over the add operands. They are sorted, with constants first.
1304 unsigned i = 0;
1305 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1306 ++i;
1307 // Pull a buried constant out to the outside.
1308 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1309 Interesting = true;
1310 AccumulatedConstant += Scale * C->getValue()->getValue();
1313 // Next comes everything else. We're especially interested in multiplies
1314 // here, but they're in the middle, so just visit the rest with one loop.
1315 for (; i != NumOperands; ++i) {
1316 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1317 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1318 APInt NewScale =
1319 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1320 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1321 // A multiplication of a constant with another add; recurse.
1322 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1323 Interesting |=
1324 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1325 Add->op_begin(), Add->getNumOperands(),
1326 NewScale, SE);
1327 } else {
1328 // A multiplication of a constant with some other value. Update
1329 // the map.
1330 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1331 const SCEV *Key = SE.getMulExpr(MulOps);
1332 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1333 M.insert(std::make_pair(Key, NewScale));
1334 if (Pair.second) {
1335 NewOps.push_back(Pair.first->first);
1336 } else {
1337 Pair.first->second += NewScale;
1338 // The map already had an entry for this value, which may indicate
1339 // a folding opportunity.
1340 Interesting = true;
1343 } else {
1344 // An ordinary operand. Update the map.
1345 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1346 M.insert(std::make_pair(Ops[i], Scale));
1347 if (Pair.second) {
1348 NewOps.push_back(Pair.first->first);
1349 } else {
1350 Pair.first->second += Scale;
1351 // The map already had an entry for this value, which may indicate
1352 // a folding opportunity.
1353 Interesting = true;
1358 return Interesting;
1361 namespace {
1362 struct APIntCompare {
1363 bool operator()(const APInt &LHS, const APInt &RHS) const {
1364 return LHS.ult(RHS);
1369 /// getAddExpr - Get a canonical add expression, or something simpler if
1370 /// possible.
1371 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1372 bool HasNUW, bool HasNSW) {
1373 assert(!Ops.empty() && "Cannot get empty add!");
1374 if (Ops.size() == 1) return Ops[0];
1375 #ifndef NDEBUG
1376 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1377 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1378 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1379 "SCEVAddExpr operand types don't match!");
1380 #endif
1382 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1383 if (!HasNUW && HasNSW) {
1384 bool All = true;
1385 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1386 E = Ops.end(); I != E; ++I)
1387 if (!isKnownNonNegative(*I)) {
1388 All = false;
1389 break;
1391 if (All) HasNUW = true;
1394 // Sort by complexity, this groups all similar expression types together.
1395 GroupByComplexity(Ops, LI);
1397 // If there are any constants, fold them together.
1398 unsigned Idx = 0;
1399 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1400 ++Idx;
1401 assert(Idx < Ops.size());
1402 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1403 // We found two constants, fold them together!
1404 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1405 RHSC->getValue()->getValue());
1406 if (Ops.size() == 2) return Ops[0];
1407 Ops.erase(Ops.begin()+1); // Erase the folded element
1408 LHSC = cast<SCEVConstant>(Ops[0]);
1411 // If we are left with a constant zero being added, strip it off.
1412 if (LHSC->getValue()->isZero()) {
1413 Ops.erase(Ops.begin());
1414 --Idx;
1417 if (Ops.size() == 1) return Ops[0];
1420 // Okay, check to see if the same value occurs in the operand list more than
1421 // once. If so, merge them together into an multiply expression. Since we
1422 // sorted the list, these values are required to be adjacent.
1423 const Type *Ty = Ops[0]->getType();
1424 bool FoundMatch = false;
1425 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
1426 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
1427 // Scan ahead to count how many equal operands there are.
1428 unsigned Count = 2;
1429 while (i+Count != e && Ops[i+Count] == Ops[i])
1430 ++Count;
1431 // Merge the values into a multiply.
1432 const SCEV *Scale = getConstant(Ty, Count);
1433 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1434 if (Ops.size() == Count)
1435 return Mul;
1436 Ops[i] = Mul;
1437 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
1438 --i; e -= Count - 1;
1439 FoundMatch = true;
1441 if (FoundMatch)
1442 return getAddExpr(Ops, HasNUW, HasNSW);
1444 // Check for truncates. If all the operands are truncated from the same
1445 // type, see if factoring out the truncate would permit the result to be
1446 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1447 // if the contents of the resulting outer trunc fold to something simple.
1448 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1449 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1450 const Type *DstType = Trunc->getType();
1451 const Type *SrcType = Trunc->getOperand()->getType();
1452 SmallVector<const SCEV *, 8> LargeOps;
1453 bool Ok = true;
1454 // Check all the operands to see if they can be represented in the
1455 // source type of the truncate.
1456 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1457 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1458 if (T->getOperand()->getType() != SrcType) {
1459 Ok = false;
1460 break;
1462 LargeOps.push_back(T->getOperand());
1463 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1464 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1465 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1466 SmallVector<const SCEV *, 8> LargeMulOps;
1467 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1468 if (const SCEVTruncateExpr *T =
1469 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1470 if (T->getOperand()->getType() != SrcType) {
1471 Ok = false;
1472 break;
1474 LargeMulOps.push_back(T->getOperand());
1475 } else if (const SCEVConstant *C =
1476 dyn_cast<SCEVConstant>(M->getOperand(j))) {
1477 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1478 } else {
1479 Ok = false;
1480 break;
1483 if (Ok)
1484 LargeOps.push_back(getMulExpr(LargeMulOps));
1485 } else {
1486 Ok = false;
1487 break;
1490 if (Ok) {
1491 // Evaluate the expression in the larger type.
1492 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
1493 // If it folds to something simple, use it. Otherwise, don't.
1494 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1495 return getTruncateExpr(Fold, DstType);
1499 // Skip past any other cast SCEVs.
1500 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1501 ++Idx;
1503 // If there are add operands they would be next.
1504 if (Idx < Ops.size()) {
1505 bool DeletedAdd = false;
1506 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1507 // If we have an add, expand the add operands onto the end of the operands
1508 // list.
1509 Ops.erase(Ops.begin()+Idx);
1510 Ops.append(Add->op_begin(), Add->op_end());
1511 DeletedAdd = true;
1514 // If we deleted at least one add, we added operands to the end of the list,
1515 // and they are not necessarily sorted. Recurse to resort and resimplify
1516 // any operands we just acquired.
1517 if (DeletedAdd)
1518 return getAddExpr(Ops);
1521 // Skip over the add expression until we get to a multiply.
1522 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1523 ++Idx;
1525 // Check to see if there are any folding opportunities present with
1526 // operands multiplied by constant values.
1527 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1528 uint64_t BitWidth = getTypeSizeInBits(Ty);
1529 DenseMap<const SCEV *, APInt> M;
1530 SmallVector<const SCEV *, 8> NewOps;
1531 APInt AccumulatedConstant(BitWidth, 0);
1532 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1533 Ops.data(), Ops.size(),
1534 APInt(BitWidth, 1), *this)) {
1535 // Some interesting folding opportunity is present, so its worthwhile to
1536 // re-generate the operands list. Group the operands by constant scale,
1537 // to avoid multiplying by the same constant scale multiple times.
1538 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1539 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
1540 E = NewOps.end(); I != E; ++I)
1541 MulOpLists[M.find(*I)->second].push_back(*I);
1542 // Re-generate the operands list.
1543 Ops.clear();
1544 if (AccumulatedConstant != 0)
1545 Ops.push_back(getConstant(AccumulatedConstant));
1546 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1547 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1548 if (I->first != 0)
1549 Ops.push_back(getMulExpr(getConstant(I->first),
1550 getAddExpr(I->second)));
1551 if (Ops.empty())
1552 return getConstant(Ty, 0);
1553 if (Ops.size() == 1)
1554 return Ops[0];
1555 return getAddExpr(Ops);
1559 // If we are adding something to a multiply expression, make sure the
1560 // something is not already an operand of the multiply. If so, merge it into
1561 // the multiply.
1562 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1563 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1564 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1565 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1566 if (isa<SCEVConstant>(MulOpSCEV))
1567 continue;
1568 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1569 if (MulOpSCEV == Ops[AddOp]) {
1570 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
1571 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1572 if (Mul->getNumOperands() != 2) {
1573 // If the multiply has more than two operands, we must get the
1574 // Y*Z term.
1575 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1576 Mul->op_begin()+MulOp);
1577 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1578 InnerMul = getMulExpr(MulOps);
1580 const SCEV *One = getConstant(Ty, 1);
1581 const SCEV *AddOne = getAddExpr(One, InnerMul);
1582 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
1583 if (Ops.size() == 2) return OuterMul;
1584 if (AddOp < Idx) {
1585 Ops.erase(Ops.begin()+AddOp);
1586 Ops.erase(Ops.begin()+Idx-1);
1587 } else {
1588 Ops.erase(Ops.begin()+Idx);
1589 Ops.erase(Ops.begin()+AddOp-1);
1591 Ops.push_back(OuterMul);
1592 return getAddExpr(Ops);
1595 // Check this multiply against other multiplies being added together.
1596 for (unsigned OtherMulIdx = Idx+1;
1597 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1598 ++OtherMulIdx) {
1599 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1600 // If MulOp occurs in OtherMul, we can fold the two multiplies
1601 // together.
1602 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1603 OMulOp != e; ++OMulOp)
1604 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1605 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1606 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1607 if (Mul->getNumOperands() != 2) {
1608 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1609 Mul->op_begin()+MulOp);
1610 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1611 InnerMul1 = getMulExpr(MulOps);
1613 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1614 if (OtherMul->getNumOperands() != 2) {
1615 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1616 OtherMul->op_begin()+OMulOp);
1617 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
1618 InnerMul2 = getMulExpr(MulOps);
1620 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1621 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1622 if (Ops.size() == 2) return OuterMul;
1623 Ops.erase(Ops.begin()+Idx);
1624 Ops.erase(Ops.begin()+OtherMulIdx-1);
1625 Ops.push_back(OuterMul);
1626 return getAddExpr(Ops);
1632 // If there are any add recurrences in the operands list, see if any other
1633 // added values are loop invariant. If so, we can fold them into the
1634 // recurrence.
1635 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1636 ++Idx;
1638 // Scan over all recurrences, trying to fold loop invariants into them.
1639 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1640 // Scan all of the other operands to this add and add them to the vector if
1641 // they are loop invariant w.r.t. the recurrence.
1642 SmallVector<const SCEV *, 8> LIOps;
1643 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1644 const Loop *AddRecLoop = AddRec->getLoop();
1645 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1646 if (Ops[i]->isLoopInvariant(AddRecLoop)) {
1647 LIOps.push_back(Ops[i]);
1648 Ops.erase(Ops.begin()+i);
1649 --i; --e;
1652 // If we found some loop invariants, fold them into the recurrence.
1653 if (!LIOps.empty()) {
1654 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
1655 LIOps.push_back(AddRec->getStart());
1657 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1658 AddRec->op_end());
1659 AddRecOps[0] = getAddExpr(LIOps);
1661 // Build the new addrec. Propagate the NUW and NSW flags if both the
1662 // outer add and the inner addrec are guaranteed to have no overflow.
1663 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1664 HasNUW && AddRec->hasNoUnsignedWrap(),
1665 HasNSW && AddRec->hasNoSignedWrap());
1667 // If all of the other operands were loop invariant, we are done.
1668 if (Ops.size() == 1) return NewRec;
1670 // Otherwise, add the folded AddRec by the non-liv parts.
1671 for (unsigned i = 0;; ++i)
1672 if (Ops[i] == AddRec) {
1673 Ops[i] = NewRec;
1674 break;
1676 return getAddExpr(Ops);
1679 // Okay, if there weren't any loop invariants to be folded, check to see if
1680 // there are multiple AddRec's with the same loop induction variable being
1681 // added together. If so, we can fold them.
1682 for (unsigned OtherIdx = Idx+1;
1683 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1684 ++OtherIdx)
1685 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1686 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1687 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1688 AddRec->op_end());
1689 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1690 ++OtherIdx)
1691 if (const SCEVAddRecExpr *OtherAddRec =
1692 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1693 if (OtherAddRec->getLoop() == AddRecLoop) {
1694 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1695 i != e; ++i) {
1696 if (i >= AddRecOps.size()) {
1697 AddRecOps.append(OtherAddRec->op_begin()+i,
1698 OtherAddRec->op_end());
1699 break;
1701 AddRecOps[i] = getAddExpr(AddRecOps[i],
1702 OtherAddRec->getOperand(i));
1704 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1706 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop);
1707 return getAddExpr(Ops);
1710 // Otherwise couldn't fold anything into this recurrence. Move onto the
1711 // next one.
1714 // Okay, it looks like we really DO need an add expr. Check to see if we
1715 // already have one, otherwise create a new one.
1716 FoldingSetNodeID ID;
1717 ID.AddInteger(scAddExpr);
1718 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1719 ID.AddPointer(Ops[i]);
1720 void *IP = 0;
1721 SCEVAddExpr *S =
1722 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1723 if (!S) {
1724 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1725 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1726 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1727 O, Ops.size());
1728 UniqueSCEVs.InsertNode(S, IP);
1730 if (HasNUW) S->setHasNoUnsignedWrap(true);
1731 if (HasNSW) S->setHasNoSignedWrap(true);
1732 return S;
1735 /// getMulExpr - Get a canonical multiply expression, or something simpler if
1736 /// possible.
1737 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1738 bool HasNUW, bool HasNSW) {
1739 assert(!Ops.empty() && "Cannot get empty mul!");
1740 if (Ops.size() == 1) return Ops[0];
1741 #ifndef NDEBUG
1742 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1743 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1744 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1745 "SCEVMulExpr operand types don't match!");
1746 #endif
1748 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1749 if (!HasNUW && HasNSW) {
1750 bool All = true;
1751 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1752 E = Ops.end(); I != E; ++I)
1753 if (!isKnownNonNegative(*I)) {
1754 All = false;
1755 break;
1757 if (All) HasNUW = true;
1760 // Sort by complexity, this groups all similar expression types together.
1761 GroupByComplexity(Ops, LI);
1763 // If there are any constants, fold them together.
1764 unsigned Idx = 0;
1765 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1767 // C1*(C2+V) -> C1*C2 + C1*V
1768 if (Ops.size() == 2)
1769 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1770 if (Add->getNumOperands() == 2 &&
1771 isa<SCEVConstant>(Add->getOperand(0)))
1772 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1773 getMulExpr(LHSC, Add->getOperand(1)));
1775 ++Idx;
1776 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1777 // We found two constants, fold them together!
1778 ConstantInt *Fold = ConstantInt::get(getContext(),
1779 LHSC->getValue()->getValue() *
1780 RHSC->getValue()->getValue());
1781 Ops[0] = getConstant(Fold);
1782 Ops.erase(Ops.begin()+1); // Erase the folded element
1783 if (Ops.size() == 1) return Ops[0];
1784 LHSC = cast<SCEVConstant>(Ops[0]);
1787 // If we are left with a constant one being multiplied, strip it off.
1788 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1789 Ops.erase(Ops.begin());
1790 --Idx;
1791 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1792 // If we have a multiply of zero, it will always be zero.
1793 return Ops[0];
1794 } else if (Ops[0]->isAllOnesValue()) {
1795 // If we have a mul by -1 of an add, try distributing the -1 among the
1796 // add operands.
1797 if (Ops.size() == 2)
1798 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1799 SmallVector<const SCEV *, 4> NewOps;
1800 bool AnyFolded = false;
1801 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1802 I != E; ++I) {
1803 const SCEV *Mul = getMulExpr(Ops[0], *I);
1804 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1805 NewOps.push_back(Mul);
1807 if (AnyFolded)
1808 return getAddExpr(NewOps);
1812 if (Ops.size() == 1)
1813 return Ops[0];
1816 // Skip over the add expression until we get to a multiply.
1817 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1818 ++Idx;
1820 // If there are mul operands inline them all into this expression.
1821 if (Idx < Ops.size()) {
1822 bool DeletedMul = false;
1823 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1824 // If we have an mul, expand the mul operands onto the end of the operands
1825 // list.
1826 Ops.erase(Ops.begin()+Idx);
1827 Ops.append(Mul->op_begin(), Mul->op_end());
1828 DeletedMul = true;
1831 // If we deleted at least one mul, we added operands to the end of the list,
1832 // and they are not necessarily sorted. Recurse to resort and resimplify
1833 // any operands we just acquired.
1834 if (DeletedMul)
1835 return getMulExpr(Ops);
1838 // If there are any add recurrences in the operands list, see if any other
1839 // added values are loop invariant. If so, we can fold them into the
1840 // recurrence.
1841 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1842 ++Idx;
1844 // Scan over all recurrences, trying to fold loop invariants into them.
1845 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1846 // Scan all of the other operands to this mul and add them to the vector if
1847 // they are loop invariant w.r.t. the recurrence.
1848 SmallVector<const SCEV *, 8> LIOps;
1849 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1850 const Loop *AddRecLoop = AddRec->getLoop();
1851 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1852 if (Ops[i]->isLoopInvariant(AddRecLoop)) {
1853 LIOps.push_back(Ops[i]);
1854 Ops.erase(Ops.begin()+i);
1855 --i; --e;
1858 // If we found some loop invariants, fold them into the recurrence.
1859 if (!LIOps.empty()) {
1860 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
1861 SmallVector<const SCEV *, 4> NewOps;
1862 NewOps.reserve(AddRec->getNumOperands());
1863 const SCEV *Scale = getMulExpr(LIOps);
1864 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1865 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1867 // Build the new addrec. Propagate the NUW and NSW flags if both the
1868 // outer mul and the inner addrec are guaranteed to have no overflow.
1869 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop,
1870 HasNUW && AddRec->hasNoUnsignedWrap(),
1871 HasNSW && AddRec->hasNoSignedWrap());
1873 // If all of the other operands were loop invariant, we are done.
1874 if (Ops.size() == 1) return NewRec;
1876 // Otherwise, multiply the folded AddRec by the non-liv parts.
1877 for (unsigned i = 0;; ++i)
1878 if (Ops[i] == AddRec) {
1879 Ops[i] = NewRec;
1880 break;
1882 return getMulExpr(Ops);
1885 // Okay, if there weren't any loop invariants to be folded, check to see if
1886 // there are multiple AddRec's with the same loop induction variable being
1887 // multiplied together. If so, we can fold them.
1888 for (unsigned OtherIdx = Idx+1;
1889 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1890 ++OtherIdx)
1891 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1892 // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L> -->
1893 // {A*C,+,F*D + G*B + B*D}<L>
1894 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1895 ++OtherIdx)
1896 if (const SCEVAddRecExpr *OtherAddRec =
1897 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1898 if (OtherAddRec->getLoop() == AddRecLoop) {
1899 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1900 const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
1901 const SCEV *B = F->getStepRecurrence(*this);
1902 const SCEV *D = G->getStepRecurrence(*this);
1903 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1904 getMulExpr(G, B),
1905 getMulExpr(B, D));
1906 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1907 F->getLoop());
1908 if (Ops.size() == 2) return NewAddRec;
1909 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
1910 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1912 return getMulExpr(Ops);
1915 // Otherwise couldn't fold anything into this recurrence. Move onto the
1916 // next one.
1919 // Okay, it looks like we really DO need an mul expr. Check to see if we
1920 // already have one, otherwise create a new one.
1921 FoldingSetNodeID ID;
1922 ID.AddInteger(scMulExpr);
1923 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1924 ID.AddPointer(Ops[i]);
1925 void *IP = 0;
1926 SCEVMulExpr *S =
1927 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1928 if (!S) {
1929 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1930 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1931 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1932 O, Ops.size());
1933 UniqueSCEVs.InsertNode(S, IP);
1935 if (HasNUW) S->setHasNoUnsignedWrap(true);
1936 if (HasNSW) S->setHasNoSignedWrap(true);
1937 return S;
1940 /// getUDivExpr - Get a canonical unsigned division expression, or something
1941 /// simpler if possible.
1942 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1943 const SCEV *RHS) {
1944 assert(getEffectiveSCEVType(LHS->getType()) ==
1945 getEffectiveSCEVType(RHS->getType()) &&
1946 "SCEVUDivExpr operand types don't match!");
1948 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1949 if (RHSC->getValue()->equalsInt(1))
1950 return LHS; // X udiv 1 --> x
1951 // If the denominator is zero, the result of the udiv is undefined. Don't
1952 // try to analyze it, because the resolution chosen here may differ from
1953 // the resolution chosen in other parts of the compiler.
1954 if (!RHSC->getValue()->isZero()) {
1955 // Determine if the division can be folded into the operands of
1956 // its operands.
1957 // TODO: Generalize this to non-constants by using known-bits information.
1958 const Type *Ty = LHS->getType();
1959 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1960 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
1961 // For non-power-of-two values, effectively round the value up to the
1962 // nearest power of two.
1963 if (!RHSC->getValue()->getValue().isPowerOf2())
1964 ++MaxShiftAmt;
1965 const IntegerType *ExtTy =
1966 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1967 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1968 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1969 if (const SCEVConstant *Step =
1970 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1971 if (!Step->getValue()->getValue()
1972 .urem(RHSC->getValue()->getValue()) &&
1973 getZeroExtendExpr(AR, ExtTy) ==
1974 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1975 getZeroExtendExpr(Step, ExtTy),
1976 AR->getLoop())) {
1977 SmallVector<const SCEV *, 4> Operands;
1978 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1979 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1980 return getAddRecExpr(Operands, AR->getLoop());
1982 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1983 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1984 SmallVector<const SCEV *, 4> Operands;
1985 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1986 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1987 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1988 // Find an operand that's safely divisible.
1989 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1990 const SCEV *Op = M->getOperand(i);
1991 const SCEV *Div = getUDivExpr(Op, RHSC);
1992 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1993 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1994 M->op_end());
1995 Operands[i] = Div;
1996 return getMulExpr(Operands);
2000 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2001 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
2002 SmallVector<const SCEV *, 4> Operands;
2003 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2004 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2005 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2006 Operands.clear();
2007 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2008 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2009 if (isa<SCEVUDivExpr>(Op) ||
2010 getMulExpr(Op, RHS) != A->getOperand(i))
2011 break;
2012 Operands.push_back(Op);
2014 if (Operands.size() == A->getNumOperands())
2015 return getAddExpr(Operands);
2019 // Fold if both operands are constant.
2020 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2021 Constant *LHSCV = LHSC->getValue();
2022 Constant *RHSCV = RHSC->getValue();
2023 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2024 RHSCV)));
2029 FoldingSetNodeID ID;
2030 ID.AddInteger(scUDivExpr);
2031 ID.AddPointer(LHS);
2032 ID.AddPointer(RHS);
2033 void *IP = 0;
2034 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2035 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2036 LHS, RHS);
2037 UniqueSCEVs.InsertNode(S, IP);
2038 return S;
2042 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
2043 /// Simplify the expression as much as possible.
2044 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
2045 const SCEV *Step, const Loop *L,
2046 bool HasNUW, bool HasNSW) {
2047 SmallVector<const SCEV *, 4> Operands;
2048 Operands.push_back(Start);
2049 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2050 if (StepChrec->getLoop() == L) {
2051 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2052 return getAddRecExpr(Operands, L);
2055 Operands.push_back(Step);
2056 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
2059 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
2060 /// Simplify the expression as much as possible.
2061 const SCEV *
2062 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2063 const Loop *L,
2064 bool HasNUW, bool HasNSW) {
2065 if (Operands.size() == 1) return Operands[0];
2066 #ifndef NDEBUG
2067 const Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2068 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2069 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2070 "SCEVAddRecExpr operand types don't match!");
2071 #endif
2073 if (Operands.back()->isZero()) {
2074 Operands.pop_back();
2075 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
2078 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2079 // use that information to infer NUW and NSW flags. However, computing a
2080 // BE count requires calling getAddRecExpr, so we may not yet have a
2081 // meaningful BE count at this point (and if we don't, we'd be stuck
2082 // with a SCEVCouldNotCompute as the cached BE count).
2084 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
2085 if (!HasNUW && HasNSW) {
2086 bool All = true;
2087 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2088 E = Operands.end(); I != E; ++I)
2089 if (!isKnownNonNegative(*I)) {
2090 All = false;
2091 break;
2093 if (All) HasNUW = true;
2096 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2097 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2098 const Loop *NestedLoop = NestedAR->getLoop();
2099 if (L->contains(NestedLoop) ?
2100 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2101 (!NestedLoop->contains(L) &&
2102 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2103 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2104 NestedAR->op_end());
2105 Operands[0] = NestedAR->getStart();
2106 // AddRecs require their operands be loop-invariant with respect to their
2107 // loops. Don't perform this transformation if it would break this
2108 // requirement.
2109 bool AllInvariant = true;
2110 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2111 if (!Operands[i]->isLoopInvariant(L)) {
2112 AllInvariant = false;
2113 break;
2115 if (AllInvariant) {
2116 NestedOperands[0] = getAddRecExpr(Operands, L);
2117 AllInvariant = true;
2118 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2119 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
2120 AllInvariant = false;
2121 break;
2123 if (AllInvariant)
2124 // Ok, both add recurrences are valid after the transformation.
2125 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
2127 // Reset Operands to its original state.
2128 Operands[0] = NestedAR;
2132 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2133 // already have one, otherwise create a new one.
2134 FoldingSetNodeID ID;
2135 ID.AddInteger(scAddRecExpr);
2136 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2137 ID.AddPointer(Operands[i]);
2138 ID.AddPointer(L);
2139 void *IP = 0;
2140 SCEVAddRecExpr *S =
2141 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2142 if (!S) {
2143 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2144 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2145 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2146 O, Operands.size(), L);
2147 UniqueSCEVs.InsertNode(S, IP);
2149 if (HasNUW) S->setHasNoUnsignedWrap(true);
2150 if (HasNSW) S->setHasNoSignedWrap(true);
2151 return S;
2154 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2155 const SCEV *RHS) {
2156 SmallVector<const SCEV *, 2> Ops;
2157 Ops.push_back(LHS);
2158 Ops.push_back(RHS);
2159 return getSMaxExpr(Ops);
2162 const SCEV *
2163 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2164 assert(!Ops.empty() && "Cannot get empty smax!");
2165 if (Ops.size() == 1) return Ops[0];
2166 #ifndef NDEBUG
2167 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2168 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2169 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2170 "SCEVSMaxExpr operand types don't match!");
2171 #endif
2173 // Sort by complexity, this groups all similar expression types together.
2174 GroupByComplexity(Ops, LI);
2176 // If there are any constants, fold them together.
2177 unsigned Idx = 0;
2178 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2179 ++Idx;
2180 assert(Idx < Ops.size());
2181 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2182 // We found two constants, fold them together!
2183 ConstantInt *Fold = ConstantInt::get(getContext(),
2184 APIntOps::smax(LHSC->getValue()->getValue(),
2185 RHSC->getValue()->getValue()));
2186 Ops[0] = getConstant(Fold);
2187 Ops.erase(Ops.begin()+1); // Erase the folded element
2188 if (Ops.size() == 1) return Ops[0];
2189 LHSC = cast<SCEVConstant>(Ops[0]);
2192 // If we are left with a constant minimum-int, strip it off.
2193 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2194 Ops.erase(Ops.begin());
2195 --Idx;
2196 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2197 // If we have an smax with a constant maximum-int, it will always be
2198 // maximum-int.
2199 return Ops[0];
2202 if (Ops.size() == 1) return Ops[0];
2205 // Find the first SMax
2206 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2207 ++Idx;
2209 // Check to see if one of the operands is an SMax. If so, expand its operands
2210 // onto our operand list, and recurse to simplify.
2211 if (Idx < Ops.size()) {
2212 bool DeletedSMax = false;
2213 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2214 Ops.erase(Ops.begin()+Idx);
2215 Ops.append(SMax->op_begin(), SMax->op_end());
2216 DeletedSMax = true;
2219 if (DeletedSMax)
2220 return getSMaxExpr(Ops);
2223 // Okay, check to see if the same value occurs in the operand list twice. If
2224 // so, delete one. Since we sorted the list, these values are required to
2225 // be adjacent.
2226 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2227 // X smax Y smax Y --> X smax Y
2228 // X smax Y --> X, if X is always greater than Y
2229 if (Ops[i] == Ops[i+1] ||
2230 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2231 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2232 --i; --e;
2233 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2234 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2235 --i; --e;
2238 if (Ops.size() == 1) return Ops[0];
2240 assert(!Ops.empty() && "Reduced smax down to nothing!");
2242 // Okay, it looks like we really DO need an smax expr. Check to see if we
2243 // already have one, otherwise create a new one.
2244 FoldingSetNodeID ID;
2245 ID.AddInteger(scSMaxExpr);
2246 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2247 ID.AddPointer(Ops[i]);
2248 void *IP = 0;
2249 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2250 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2251 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2252 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2253 O, Ops.size());
2254 UniqueSCEVs.InsertNode(S, IP);
2255 return S;
2258 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2259 const SCEV *RHS) {
2260 SmallVector<const SCEV *, 2> Ops;
2261 Ops.push_back(LHS);
2262 Ops.push_back(RHS);
2263 return getUMaxExpr(Ops);
2266 const SCEV *
2267 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2268 assert(!Ops.empty() && "Cannot get empty umax!");
2269 if (Ops.size() == 1) return Ops[0];
2270 #ifndef NDEBUG
2271 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2272 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2273 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2274 "SCEVUMaxExpr operand types don't match!");
2275 #endif
2277 // Sort by complexity, this groups all similar expression types together.
2278 GroupByComplexity(Ops, LI);
2280 // If there are any constants, fold them together.
2281 unsigned Idx = 0;
2282 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2283 ++Idx;
2284 assert(Idx < Ops.size());
2285 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2286 // We found two constants, fold them together!
2287 ConstantInt *Fold = ConstantInt::get(getContext(),
2288 APIntOps::umax(LHSC->getValue()->getValue(),
2289 RHSC->getValue()->getValue()));
2290 Ops[0] = getConstant(Fold);
2291 Ops.erase(Ops.begin()+1); // Erase the folded element
2292 if (Ops.size() == 1) return Ops[0];
2293 LHSC = cast<SCEVConstant>(Ops[0]);
2296 // If we are left with a constant minimum-int, strip it off.
2297 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2298 Ops.erase(Ops.begin());
2299 --Idx;
2300 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2301 // If we have an umax with a constant maximum-int, it will always be
2302 // maximum-int.
2303 return Ops[0];
2306 if (Ops.size() == 1) return Ops[0];
2309 // Find the first UMax
2310 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2311 ++Idx;
2313 // Check to see if one of the operands is a UMax. If so, expand its operands
2314 // onto our operand list, and recurse to simplify.
2315 if (Idx < Ops.size()) {
2316 bool DeletedUMax = false;
2317 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2318 Ops.erase(Ops.begin()+Idx);
2319 Ops.append(UMax->op_begin(), UMax->op_end());
2320 DeletedUMax = true;
2323 if (DeletedUMax)
2324 return getUMaxExpr(Ops);
2327 // Okay, check to see if the same value occurs in the operand list twice. If
2328 // so, delete one. Since we sorted the list, these values are required to
2329 // be adjacent.
2330 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2331 // X umax Y umax Y --> X umax Y
2332 // X umax Y --> X, if X is always greater than Y
2333 if (Ops[i] == Ops[i+1] ||
2334 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2335 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2336 --i; --e;
2337 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2338 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2339 --i; --e;
2342 if (Ops.size() == 1) return Ops[0];
2344 assert(!Ops.empty() && "Reduced umax down to nothing!");
2346 // Okay, it looks like we really DO need a umax expr. Check to see if we
2347 // already have one, otherwise create a new one.
2348 FoldingSetNodeID ID;
2349 ID.AddInteger(scUMaxExpr);
2350 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2351 ID.AddPointer(Ops[i]);
2352 void *IP = 0;
2353 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2354 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2355 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2356 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2357 O, Ops.size());
2358 UniqueSCEVs.InsertNode(S, IP);
2359 return S;
2362 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2363 const SCEV *RHS) {
2364 // ~smax(~x, ~y) == smin(x, y).
2365 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2368 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2369 const SCEV *RHS) {
2370 // ~umax(~x, ~y) == umin(x, y)
2371 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2374 const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
2375 // If we have TargetData, we can bypass creating a target-independent
2376 // constant expression and then folding it back into a ConstantInt.
2377 // This is just a compile-time optimization.
2378 if (TD)
2379 return getConstant(TD->getIntPtrType(getContext()),
2380 TD->getTypeAllocSize(AllocTy));
2382 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2383 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2384 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2385 C = Folded;
2386 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2387 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2390 const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2391 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2392 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2393 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2394 C = Folded;
2395 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2396 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2399 const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2400 unsigned FieldNo) {
2401 // If we have TargetData, we can bypass creating a target-independent
2402 // constant expression and then folding it back into a ConstantInt.
2403 // This is just a compile-time optimization.
2404 if (TD)
2405 return getConstant(TD->getIntPtrType(getContext()),
2406 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2408 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2409 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2410 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2411 C = Folded;
2412 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2413 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2416 const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2417 Constant *FieldNo) {
2418 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
2419 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2420 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2421 C = Folded;
2422 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
2423 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2426 const SCEV *ScalarEvolution::getUnknown(Value *V) {
2427 // Don't attempt to do anything other than create a SCEVUnknown object
2428 // here. createSCEV only calls getUnknown after checking for all other
2429 // interesting possibilities, and any other code that calls getUnknown
2430 // is doing so in order to hide a value from SCEV canonicalization.
2432 FoldingSetNodeID ID;
2433 ID.AddInteger(scUnknown);
2434 ID.AddPointer(V);
2435 void *IP = 0;
2436 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2437 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2438 "Stale SCEVUnknown in uniquing map!");
2439 return S;
2441 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2442 FirstUnknown);
2443 FirstUnknown = cast<SCEVUnknown>(S);
2444 UniqueSCEVs.InsertNode(S, IP);
2445 return S;
2448 //===----------------------------------------------------------------------===//
2449 // Basic SCEV Analysis and PHI Idiom Recognition Code
2452 /// isSCEVable - Test if values of the given type are analyzable within
2453 /// the SCEV framework. This primarily includes integer types, and it
2454 /// can optionally include pointer types if the ScalarEvolution class
2455 /// has access to target-specific information.
2456 bool ScalarEvolution::isSCEVable(const Type *Ty) const {
2457 // Integers and pointers are always SCEVable.
2458 return Ty->isIntegerTy() || Ty->isPointerTy();
2461 /// getTypeSizeInBits - Return the size in bits of the specified type,
2462 /// for which isSCEVable must return true.
2463 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
2464 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2466 // If we have a TargetData, use it!
2467 if (TD)
2468 return TD->getTypeSizeInBits(Ty);
2470 // Integer types have fixed sizes.
2471 if (Ty->isIntegerTy())
2472 return Ty->getPrimitiveSizeInBits();
2474 // The only other support type is pointer. Without TargetData, conservatively
2475 // assume pointers are 64-bit.
2476 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2477 return 64;
2480 /// getEffectiveSCEVType - Return a type with the same bitwidth as
2481 /// the given type and which represents how SCEV will treat the given
2482 /// type, for which isSCEVable must return true. For pointer types,
2483 /// this is the pointer-sized integer type.
2484 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
2485 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2487 if (Ty->isIntegerTy())
2488 return Ty;
2490 // The only other support type is pointer.
2491 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
2492 if (TD) return TD->getIntPtrType(getContext());
2494 // Without TargetData, conservatively assume pointers are 64-bit.
2495 return Type::getInt64Ty(getContext());
2498 const SCEV *ScalarEvolution::getCouldNotCompute() {
2499 return &CouldNotCompute;
2502 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2503 /// expression and create a new one.
2504 const SCEV *ScalarEvolution::getSCEV(Value *V) {
2505 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2507 ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2508 if (I != ValueExprMap.end()) return I->second;
2509 const SCEV *S = createSCEV(V);
2511 // The process of creating a SCEV for V may have caused other SCEVs
2512 // to have been created, so it's necessary to insert the new entry
2513 // from scratch, rather than trying to remember the insert position
2514 // above.
2515 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2516 return S;
2519 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2521 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2522 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2523 return getConstant(
2524 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2526 const Type *Ty = V->getType();
2527 Ty = getEffectiveSCEVType(Ty);
2528 return getMulExpr(V,
2529 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2532 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2533 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2534 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2535 return getConstant(
2536 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2538 const Type *Ty = V->getType();
2539 Ty = getEffectiveSCEVType(Ty);
2540 const SCEV *AllOnes =
2541 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2542 return getMinusSCEV(AllOnes, V);
2545 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2547 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2548 const SCEV *RHS) {
2549 // Fast path: X - X --> 0.
2550 if (LHS == RHS)
2551 return getConstant(LHS->getType(), 0);
2553 // X - Y --> X + -Y
2554 return getAddExpr(LHS, getNegativeSCEV(RHS));
2557 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2558 /// input value to the specified type. If the type must be extended, it is zero
2559 /// extended.
2560 const SCEV *
2561 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
2562 const Type *Ty) {
2563 const Type *SrcTy = V->getType();
2564 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2565 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2566 "Cannot truncate or zero extend with non-integer arguments!");
2567 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2568 return V; // No conversion
2569 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2570 return getTruncateExpr(V, Ty);
2571 return getZeroExtendExpr(V, Ty);
2574 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2575 /// input value to the specified type. If the type must be extended, it is sign
2576 /// extended.
2577 const SCEV *
2578 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2579 const Type *Ty) {
2580 const Type *SrcTy = V->getType();
2581 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2582 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2583 "Cannot truncate or zero extend with non-integer arguments!");
2584 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2585 return V; // No conversion
2586 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2587 return getTruncateExpr(V, Ty);
2588 return getSignExtendExpr(V, Ty);
2591 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2592 /// input value to the specified type. If the type must be extended, it is zero
2593 /// extended. The conversion must not be narrowing.
2594 const SCEV *
2595 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
2596 const Type *SrcTy = V->getType();
2597 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2598 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2599 "Cannot noop or zero extend with non-integer arguments!");
2600 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2601 "getNoopOrZeroExtend cannot truncate!");
2602 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2603 return V; // No conversion
2604 return getZeroExtendExpr(V, Ty);
2607 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2608 /// input value to the specified type. If the type must be extended, it is sign
2609 /// extended. The conversion must not be narrowing.
2610 const SCEV *
2611 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
2612 const Type *SrcTy = V->getType();
2613 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2614 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2615 "Cannot noop or sign extend with non-integer arguments!");
2616 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2617 "getNoopOrSignExtend cannot truncate!");
2618 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2619 return V; // No conversion
2620 return getSignExtendExpr(V, Ty);
2623 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2624 /// the input value to the specified type. If the type must be extended,
2625 /// it is extended with unspecified bits. The conversion must not be
2626 /// narrowing.
2627 const SCEV *
2628 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
2629 const Type *SrcTy = V->getType();
2630 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2631 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2632 "Cannot noop or any extend with non-integer arguments!");
2633 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2634 "getNoopOrAnyExtend cannot truncate!");
2635 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2636 return V; // No conversion
2637 return getAnyExtendExpr(V, Ty);
2640 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2641 /// input value to the specified type. The conversion must not be widening.
2642 const SCEV *
2643 ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
2644 const Type *SrcTy = V->getType();
2645 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2646 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2647 "Cannot truncate or noop with non-integer arguments!");
2648 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2649 "getTruncateOrNoop cannot extend!");
2650 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2651 return V; // No conversion
2652 return getTruncateExpr(V, Ty);
2655 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2656 /// the types using zero-extension, and then perform a umax operation
2657 /// with them.
2658 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2659 const SCEV *RHS) {
2660 const SCEV *PromotedLHS = LHS;
2661 const SCEV *PromotedRHS = RHS;
2663 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2664 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2665 else
2666 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2668 return getUMaxExpr(PromotedLHS, PromotedRHS);
2671 /// getUMinFromMismatchedTypes - Promote the operands to the wider of
2672 /// the types using zero-extension, and then perform a umin operation
2673 /// with them.
2674 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2675 const SCEV *RHS) {
2676 const SCEV *PromotedLHS = LHS;
2677 const SCEV *PromotedRHS = RHS;
2679 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2680 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2681 else
2682 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2684 return getUMinExpr(PromotedLHS, PromotedRHS);
2687 /// PushDefUseChildren - Push users of the given Instruction
2688 /// onto the given Worklist.
2689 static void
2690 PushDefUseChildren(Instruction *I,
2691 SmallVectorImpl<Instruction *> &Worklist) {
2692 // Push the def-use children onto the Worklist stack.
2693 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2694 UI != UE; ++UI)
2695 Worklist.push_back(cast<Instruction>(*UI));
2698 /// ForgetSymbolicValue - This looks up computed SCEV values for all
2699 /// instructions that depend on the given instruction and removes them from
2700 /// the ValueExprMapType map if they reference SymName. This is used during PHI
2701 /// resolution.
2702 void
2703 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
2704 SmallVector<Instruction *, 16> Worklist;
2705 PushDefUseChildren(PN, Worklist);
2707 SmallPtrSet<Instruction *, 8> Visited;
2708 Visited.insert(PN);
2709 while (!Worklist.empty()) {
2710 Instruction *I = Worklist.pop_back_val();
2711 if (!Visited.insert(I)) continue;
2713 ValueExprMapType::iterator It =
2714 ValueExprMap.find(static_cast<Value *>(I));
2715 if (It != ValueExprMap.end()) {
2716 // Short-circuit the def-use traversal if the symbolic name
2717 // ceases to appear in expressions.
2718 if (It->second != SymName && !It->second->hasOperand(SymName))
2719 continue;
2721 // SCEVUnknown for a PHI either means that it has an unrecognized
2722 // structure, it's a PHI that's in the progress of being computed
2723 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2724 // additional loop trip count information isn't going to change anything.
2725 // In the second case, createNodeForPHI will perform the necessary
2726 // updates on its own when it gets to that point. In the third, we do
2727 // want to forget the SCEVUnknown.
2728 if (!isa<PHINode>(I) ||
2729 !isa<SCEVUnknown>(It->second) ||
2730 (I != PN && It->second == SymName)) {
2731 ValuesAtScopes.erase(It->second);
2732 ValueExprMap.erase(It);
2736 PushDefUseChildren(I, Worklist);
2740 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2741 /// a loop header, making it a potential recurrence, or it doesn't.
2743 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2744 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2745 if (L->getHeader() == PN->getParent()) {
2746 // The loop may have multiple entrances or multiple exits; we can analyze
2747 // this phi as an addrec if it has a unique entry value and a unique
2748 // backedge value.
2749 Value *BEValueV = 0, *StartValueV = 0;
2750 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2751 Value *V = PN->getIncomingValue(i);
2752 if (L->contains(PN->getIncomingBlock(i))) {
2753 if (!BEValueV) {
2754 BEValueV = V;
2755 } else if (BEValueV != V) {
2756 BEValueV = 0;
2757 break;
2759 } else if (!StartValueV) {
2760 StartValueV = V;
2761 } else if (StartValueV != V) {
2762 StartValueV = 0;
2763 break;
2766 if (BEValueV && StartValueV) {
2767 // While we are analyzing this PHI node, handle its value symbolically.
2768 const SCEV *SymbolicName = getUnknown(PN);
2769 assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
2770 "PHI node already processed?");
2771 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2773 // Using this symbolic name for the PHI, analyze the value coming around
2774 // the back-edge.
2775 const SCEV *BEValue = getSCEV(BEValueV);
2777 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2778 // has a special value for the first iteration of the loop.
2780 // If the value coming around the backedge is an add with the symbolic
2781 // value we just inserted, then we found a simple induction variable!
2782 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2783 // If there is a single occurrence of the symbolic value, replace it
2784 // with a recurrence.
2785 unsigned FoundIndex = Add->getNumOperands();
2786 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2787 if (Add->getOperand(i) == SymbolicName)
2788 if (FoundIndex == e) {
2789 FoundIndex = i;
2790 break;
2793 if (FoundIndex != Add->getNumOperands()) {
2794 // Create an add with everything but the specified operand.
2795 SmallVector<const SCEV *, 8> Ops;
2796 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2797 if (i != FoundIndex)
2798 Ops.push_back(Add->getOperand(i));
2799 const SCEV *Accum = getAddExpr(Ops);
2801 // This is not a valid addrec if the step amount is varying each
2802 // loop iteration, but is not itself an addrec in this loop.
2803 if (Accum->isLoopInvariant(L) ||
2804 (isa<SCEVAddRecExpr>(Accum) &&
2805 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2806 bool HasNUW = false;
2807 bool HasNSW = false;
2809 // If the increment doesn't overflow, then neither the addrec nor
2810 // the post-increment will overflow.
2811 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2812 if (OBO->hasNoUnsignedWrap())
2813 HasNUW = true;
2814 if (OBO->hasNoSignedWrap())
2815 HasNSW = true;
2818 const SCEV *StartVal = getSCEV(StartValueV);
2819 const SCEV *PHISCEV =
2820 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
2822 // Since the no-wrap flags are on the increment, they apply to the
2823 // post-incremented value as well.
2824 if (Accum->isLoopInvariant(L))
2825 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2826 Accum, L, HasNUW, HasNSW);
2828 // Okay, for the entire analysis of this edge we assumed the PHI
2829 // to be symbolic. We now need to go back and purge all of the
2830 // entries for the scalars that use the symbolic expression.
2831 ForgetSymbolicName(PN, SymbolicName);
2832 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
2833 return PHISCEV;
2836 } else if (const SCEVAddRecExpr *AddRec =
2837 dyn_cast<SCEVAddRecExpr>(BEValue)) {
2838 // Otherwise, this could be a loop like this:
2839 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2840 // In this case, j = {1,+,1} and BEValue is j.
2841 // Because the other in-value of i (0) fits the evolution of BEValue
2842 // i really is an addrec evolution.
2843 if (AddRec->getLoop() == L && AddRec->isAffine()) {
2844 const SCEV *StartVal = getSCEV(StartValueV);
2846 // If StartVal = j.start - j.stride, we can use StartVal as the
2847 // initial step of the addrec evolution.
2848 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2849 AddRec->getOperand(1))) {
2850 const SCEV *PHISCEV =
2851 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2853 // Okay, for the entire analysis of this edge we assumed the PHI
2854 // to be symbolic. We now need to go back and purge all of the
2855 // entries for the scalars that use the symbolic expression.
2856 ForgetSymbolicName(PN, SymbolicName);
2857 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
2858 return PHISCEV;
2865 // If the PHI has a single incoming value, follow that value, unless the
2866 // PHI's incoming blocks are in a different loop, in which case doing so
2867 // risks breaking LCSSA form. Instcombine would normally zap these, but
2868 // it doesn't have DominatorTree information, so it may miss cases.
2869 if (Value *V = PN->hasConstantValue(DT)) {
2870 bool AllSameLoop = true;
2871 Loop *PNLoop = LI->getLoopFor(PN->getParent());
2872 for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2873 if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2874 AllSameLoop = false;
2875 break;
2877 if (AllSameLoop)
2878 return getSCEV(V);
2881 // If it's not a loop phi, we can't handle it yet.
2882 return getUnknown(PN);
2885 /// createNodeForGEP - Expand GEP instructions into add and multiply
2886 /// operations. This allows them to be analyzed by regular SCEV code.
2888 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
2890 // Don't blindly transfer the inbounds flag from the GEP instruction to the
2891 // Add expression, because the Instruction may be guarded by control flow
2892 // and the no-overflow bits may not be valid for the expression in any
2893 // context.
2895 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
2896 Value *Base = GEP->getOperand(0);
2897 // Don't attempt to analyze GEPs over unsized objects.
2898 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2899 return getUnknown(GEP);
2900 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
2901 gep_type_iterator GTI = gep_type_begin(GEP);
2902 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
2903 E = GEP->op_end();
2904 I != E; ++I) {
2905 Value *Index = *I;
2906 // Compute the (potentially symbolic) offset in bytes for this index.
2907 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2908 // For a struct, add the member offset.
2909 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2910 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2912 // Add the field offset to the running total offset.
2913 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2914 } else {
2915 // For an array, add the element offset, explicitly scaled.
2916 const SCEV *ElementSize = getSizeOfExpr(*GTI);
2917 const SCEV *IndexS = getSCEV(Index);
2918 // Getelementptr indices are signed.
2919 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2921 // Multiply the index by the element size to compute the element offset.
2922 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
2924 // Add the element offset to the running total offset.
2925 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2929 // Get the SCEV for the GEP base.
2930 const SCEV *BaseS = getSCEV(Base);
2932 // Add the total offset from all the GEP indices to the base.
2933 return getAddExpr(BaseS, TotalOffset);
2936 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2937 /// guaranteed to end in (at every loop iteration). It is, at the same time,
2938 /// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2939 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
2940 uint32_t
2941 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
2942 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2943 return C->getValue()->getValue().countTrailingZeros();
2945 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2946 return std::min(GetMinTrailingZeros(T->getOperand()),
2947 (uint32_t)getTypeSizeInBits(T->getType()));
2949 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2950 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2951 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2952 getTypeSizeInBits(E->getType()) : OpRes;
2955 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2956 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2957 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2958 getTypeSizeInBits(E->getType()) : OpRes;
2961 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2962 // The result is the min of all operands results.
2963 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2964 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2965 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2966 return MinOpRes;
2969 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2970 // The result is the sum of all operands results.
2971 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2972 uint32_t BitWidth = getTypeSizeInBits(M->getType());
2973 for (unsigned i = 1, e = M->getNumOperands();
2974 SumOpRes != BitWidth && i != e; ++i)
2975 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
2976 BitWidth);
2977 return SumOpRes;
2980 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2981 // The result is the min of all operands results.
2982 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2983 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2984 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2985 return MinOpRes;
2988 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2989 // The result is the min of all operands results.
2990 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2991 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2992 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2993 return MinOpRes;
2996 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2997 // The result is the min of all operands results.
2998 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2999 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3000 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3001 return MinOpRes;
3004 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3005 // For a SCEVUnknown, ask ValueTracking.
3006 unsigned BitWidth = getTypeSizeInBits(U->getType());
3007 APInt Mask = APInt::getAllOnesValue(BitWidth);
3008 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3009 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
3010 return Zeros.countTrailingOnes();
3013 // SCEVUDivExpr
3014 return 0;
3017 /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3019 ConstantRange
3020 ScalarEvolution::getUnsignedRange(const SCEV *S) {
3022 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3023 return ConstantRange(C->getValue()->getValue());
3025 unsigned BitWidth = getTypeSizeInBits(S->getType());
3026 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3028 // If the value has known zeros, the maximum unsigned value will have those
3029 // known zeros as well.
3030 uint32_t TZ = GetMinTrailingZeros(S);
3031 if (TZ != 0)
3032 ConservativeResult =
3033 ConstantRange(APInt::getMinValue(BitWidth),
3034 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3036 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3037 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3038 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3039 X = X.add(getUnsignedRange(Add->getOperand(i)));
3040 return ConservativeResult.intersectWith(X);
3043 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3044 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3045 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3046 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
3047 return ConservativeResult.intersectWith(X);
3050 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3051 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3052 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3053 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
3054 return ConservativeResult.intersectWith(X);
3057 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3058 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3059 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3060 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
3061 return ConservativeResult.intersectWith(X);
3064 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3065 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3066 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
3067 return ConservativeResult.intersectWith(X.udiv(Y));
3070 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3071 ConstantRange X = getUnsignedRange(ZExt->getOperand());
3072 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
3075 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3076 ConstantRange X = getUnsignedRange(SExt->getOperand());
3077 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
3080 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3081 ConstantRange X = getUnsignedRange(Trunc->getOperand());
3082 return ConservativeResult.intersectWith(X.truncate(BitWidth));
3085 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3086 // If there's no unsigned wrap, the value will never be less than its
3087 // initial value.
3088 if (AddRec->hasNoUnsignedWrap())
3089 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
3090 if (!C->getValue()->isZero())
3091 ConservativeResult =
3092 ConservativeResult.intersectWith(
3093 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3095 // TODO: non-affine addrec
3096 if (AddRec->isAffine()) {
3097 const Type *Ty = AddRec->getType();
3098 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3099 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3100 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3101 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3103 const SCEV *Start = AddRec->getStart();
3104 const SCEV *Step = AddRec->getStepRecurrence(*this);
3106 ConstantRange StartRange = getUnsignedRange(Start);
3107 ConstantRange StepRange = getSignedRange(Step);
3108 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3109 ConstantRange EndRange =
3110 StartRange.add(MaxBECountRange.multiply(StepRange));
3112 // Check for overflow. This must be done with ConstantRange arithmetic
3113 // because we could be called from within the ScalarEvolution overflow
3114 // checking code.
3115 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3116 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3117 ConstantRange ExtMaxBECountRange =
3118 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3119 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3120 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3121 ExtEndRange)
3122 return ConservativeResult;
3124 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3125 EndRange.getUnsignedMin());
3126 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3127 EndRange.getUnsignedMax());
3128 if (Min.isMinValue() && Max.isMaxValue())
3129 return ConservativeResult;
3130 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
3134 return ConservativeResult;
3137 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3138 // For a SCEVUnknown, ask ValueTracking.
3139 APInt Mask = APInt::getAllOnesValue(BitWidth);
3140 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3141 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
3142 if (Ones == ~Zeros + 1)
3143 return ConservativeResult;
3144 return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
3147 return ConservativeResult;
3150 /// getSignedRange - Determine the signed range for a particular SCEV.
3152 ConstantRange
3153 ScalarEvolution::getSignedRange(const SCEV *S) {
3155 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3156 return ConstantRange(C->getValue()->getValue());
3158 unsigned BitWidth = getTypeSizeInBits(S->getType());
3159 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3161 // If the value has known zeros, the maximum signed value will have those
3162 // known zeros as well.
3163 uint32_t TZ = GetMinTrailingZeros(S);
3164 if (TZ != 0)
3165 ConservativeResult =
3166 ConstantRange(APInt::getSignedMinValue(BitWidth),
3167 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3169 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3170 ConstantRange X = getSignedRange(Add->getOperand(0));
3171 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3172 X = X.add(getSignedRange(Add->getOperand(i)));
3173 return ConservativeResult.intersectWith(X);
3176 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3177 ConstantRange X = getSignedRange(Mul->getOperand(0));
3178 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3179 X = X.multiply(getSignedRange(Mul->getOperand(i)));
3180 return ConservativeResult.intersectWith(X);
3183 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3184 ConstantRange X = getSignedRange(SMax->getOperand(0));
3185 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3186 X = X.smax(getSignedRange(SMax->getOperand(i)));
3187 return ConservativeResult.intersectWith(X);
3190 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3191 ConstantRange X = getSignedRange(UMax->getOperand(0));
3192 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3193 X = X.umax(getSignedRange(UMax->getOperand(i)));
3194 return ConservativeResult.intersectWith(X);
3197 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3198 ConstantRange X = getSignedRange(UDiv->getLHS());
3199 ConstantRange Y = getSignedRange(UDiv->getRHS());
3200 return ConservativeResult.intersectWith(X.udiv(Y));
3203 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3204 ConstantRange X = getSignedRange(ZExt->getOperand());
3205 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
3208 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3209 ConstantRange X = getSignedRange(SExt->getOperand());
3210 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
3213 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3214 ConstantRange X = getSignedRange(Trunc->getOperand());
3215 return ConservativeResult.intersectWith(X.truncate(BitWidth));
3218 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3219 // If there's no signed wrap, and all the operands have the same sign or
3220 // zero, the value won't ever change sign.
3221 if (AddRec->hasNoSignedWrap()) {
3222 bool AllNonNeg = true;
3223 bool AllNonPos = true;
3224 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3225 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3226 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3228 if (AllNonNeg)
3229 ConservativeResult = ConservativeResult.intersectWith(
3230 ConstantRange(APInt(BitWidth, 0),
3231 APInt::getSignedMinValue(BitWidth)));
3232 else if (AllNonPos)
3233 ConservativeResult = ConservativeResult.intersectWith(
3234 ConstantRange(APInt::getSignedMinValue(BitWidth),
3235 APInt(BitWidth, 1)));
3238 // TODO: non-affine addrec
3239 if (AddRec->isAffine()) {
3240 const Type *Ty = AddRec->getType();
3241 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3242 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3243 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3244 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3246 const SCEV *Start = AddRec->getStart();
3247 const SCEV *Step = AddRec->getStepRecurrence(*this);
3249 ConstantRange StartRange = getSignedRange(Start);
3250 ConstantRange StepRange = getSignedRange(Step);
3251 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3252 ConstantRange EndRange =
3253 StartRange.add(MaxBECountRange.multiply(StepRange));
3255 // Check for overflow. This must be done with ConstantRange arithmetic
3256 // because we could be called from within the ScalarEvolution overflow
3257 // checking code.
3258 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3259 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3260 ConstantRange ExtMaxBECountRange =
3261 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3262 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3263 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3264 ExtEndRange)
3265 return ConservativeResult;
3267 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3268 EndRange.getSignedMin());
3269 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3270 EndRange.getSignedMax());
3271 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3272 return ConservativeResult;
3273 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
3277 return ConservativeResult;
3280 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3281 // For a SCEVUnknown, ask ValueTracking.
3282 if (!U->getValue()->getType()->isIntegerTy() && !TD)
3283 return ConservativeResult;
3284 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3285 if (NS == 1)
3286 return ConservativeResult;
3287 return ConservativeResult.intersectWith(
3288 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3289 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
3292 return ConservativeResult;
3295 /// createSCEV - We know that there is no SCEV for the specified value.
3296 /// Analyze the expression.
3298 const SCEV *ScalarEvolution::createSCEV(Value *V) {
3299 if (!isSCEVable(V->getType()))
3300 return getUnknown(V);
3302 unsigned Opcode = Instruction::UserOp1;
3303 if (Instruction *I = dyn_cast<Instruction>(V)) {
3304 Opcode = I->getOpcode();
3306 // Don't attempt to analyze instructions in blocks that aren't
3307 // reachable. Such instructions don't matter, and they aren't required
3308 // to obey basic rules for definitions dominating uses which this
3309 // analysis depends on.
3310 if (!DT->isReachableFromEntry(I->getParent()))
3311 return getUnknown(V);
3312 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3313 Opcode = CE->getOpcode();
3314 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3315 return getConstant(CI);
3316 else if (isa<ConstantPointerNull>(V))
3317 return getConstant(V->getType(), 0);
3318 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3319 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3320 else
3321 return getUnknown(V);
3323 Operator *U = cast<Operator>(V);
3324 switch (Opcode) {
3325 case Instruction::Add: {
3326 // The simple thing to do would be to just call getSCEV on both operands
3327 // and call getAddExpr with the result. However if we're looking at a
3328 // bunch of things all added together, this can be quite inefficient,
3329 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3330 // Instead, gather up all the operands and make a single getAddExpr call.
3331 // LLVM IR canonical form means we need only traverse the left operands.
3332 SmallVector<const SCEV *, 4> AddOps;
3333 AddOps.push_back(getSCEV(U->getOperand(1)));
3334 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3335 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3336 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3337 break;
3338 U = cast<Operator>(Op);
3339 const SCEV *Op1 = getSCEV(U->getOperand(1));
3340 if (Opcode == Instruction::Sub)
3341 AddOps.push_back(getNegativeSCEV(Op1));
3342 else
3343 AddOps.push_back(Op1);
3345 AddOps.push_back(getSCEV(U->getOperand(0)));
3346 return getAddExpr(AddOps);
3348 case Instruction::Mul: {
3349 // See the Add code above.
3350 SmallVector<const SCEV *, 4> MulOps;
3351 MulOps.push_back(getSCEV(U->getOperand(1)));
3352 for (Value *Op = U->getOperand(0);
3353 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3354 Op = U->getOperand(0)) {
3355 U = cast<Operator>(Op);
3356 MulOps.push_back(getSCEV(U->getOperand(1)));
3358 MulOps.push_back(getSCEV(U->getOperand(0)));
3359 return getMulExpr(MulOps);
3361 case Instruction::UDiv:
3362 return getUDivExpr(getSCEV(U->getOperand(0)),
3363 getSCEV(U->getOperand(1)));
3364 case Instruction::Sub:
3365 return getMinusSCEV(getSCEV(U->getOperand(0)),
3366 getSCEV(U->getOperand(1)));
3367 case Instruction::And:
3368 // For an expression like x&255 that merely masks off the high bits,
3369 // use zext(trunc(x)) as the SCEV expression.
3370 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3371 if (CI->isNullValue())
3372 return getSCEV(U->getOperand(1));
3373 if (CI->isAllOnesValue())
3374 return getSCEV(U->getOperand(0));
3375 const APInt &A = CI->getValue();
3377 // Instcombine's ShrinkDemandedConstant may strip bits out of
3378 // constants, obscuring what would otherwise be a low-bits mask.
3379 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3380 // knew about to reconstruct a low-bits mask value.
3381 unsigned LZ = A.countLeadingZeros();
3382 unsigned BitWidth = A.getBitWidth();
3383 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3384 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3385 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3387 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3389 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3390 return
3391 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3392 IntegerType::get(getContext(), BitWidth - LZ)),
3393 U->getType());
3395 break;
3397 case Instruction::Or:
3398 // If the RHS of the Or is a constant, we may have something like:
3399 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3400 // optimizations will transparently handle this case.
3402 // In order for this transformation to be safe, the LHS must be of the
3403 // form X*(2^n) and the Or constant must be less than 2^n.
3404 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3405 const SCEV *LHS = getSCEV(U->getOperand(0));
3406 const APInt &CIVal = CI->getValue();
3407 if (GetMinTrailingZeros(LHS) >=
3408 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3409 // Build a plain add SCEV.
3410 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3411 // If the LHS of the add was an addrec and it has no-wrap flags,
3412 // transfer the no-wrap flags, since an or won't introduce a wrap.
3413 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3414 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3415 if (OldAR->hasNoUnsignedWrap())
3416 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3417 if (OldAR->hasNoSignedWrap())
3418 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3420 return S;
3423 break;
3424 case Instruction::Xor:
3425 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3426 // If the RHS of the xor is a signbit, then this is just an add.
3427 // Instcombine turns add of signbit into xor as a strength reduction step.
3428 if (CI->getValue().isSignBit())
3429 return getAddExpr(getSCEV(U->getOperand(0)),
3430 getSCEV(U->getOperand(1)));
3432 // If the RHS of xor is -1, then this is a not operation.
3433 if (CI->isAllOnesValue())
3434 return getNotSCEV(getSCEV(U->getOperand(0)));
3436 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3437 // This is a variant of the check for xor with -1, and it handles
3438 // the case where instcombine has trimmed non-demanded bits out
3439 // of an xor with -1.
3440 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3441 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3442 if (BO->getOpcode() == Instruction::And &&
3443 LCI->getValue() == CI->getValue())
3444 if (const SCEVZeroExtendExpr *Z =
3445 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3446 const Type *UTy = U->getType();
3447 const SCEV *Z0 = Z->getOperand();
3448 const Type *Z0Ty = Z0->getType();
3449 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3451 // If C is a low-bits mask, the zero extend is serving to
3452 // mask off the high bits. Complement the operand and
3453 // re-apply the zext.
3454 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3455 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3457 // If C is a single bit, it may be in the sign-bit position
3458 // before the zero-extend. In this case, represent the xor
3459 // using an add, which is equivalent, and re-apply the zext.
3460 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3461 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3462 Trunc.isSignBit())
3463 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3464 UTy);
3467 break;
3469 case Instruction::Shl:
3470 // Turn shift left of a constant amount into a multiply.
3471 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3472 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3474 // If the shift count is not less than the bitwidth, the result of
3475 // the shift is undefined. Don't try to analyze it, because the
3476 // resolution chosen here may differ from the resolution chosen in
3477 // other parts of the compiler.
3478 if (SA->getValue().uge(BitWidth))
3479 break;
3481 Constant *X = ConstantInt::get(getContext(),
3482 APInt(BitWidth, 1).shl(SA->getZExtValue()));
3483 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3485 break;
3487 case Instruction::LShr:
3488 // Turn logical shift right of a constant into a unsigned divide.
3489 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3490 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3492 // If the shift count is not less than the bitwidth, the result of
3493 // the shift is undefined. Don't try to analyze it, because the
3494 // resolution chosen here may differ from the resolution chosen in
3495 // other parts of the compiler.
3496 if (SA->getValue().uge(BitWidth))
3497 break;
3499 Constant *X = ConstantInt::get(getContext(),
3500 APInt(BitWidth, 1).shl(SA->getZExtValue()));
3501 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3503 break;
3505 case Instruction::AShr:
3506 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3507 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3508 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
3509 if (L->getOpcode() == Instruction::Shl &&
3510 L->getOperand(1) == U->getOperand(1)) {
3511 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3513 // If the shift count is not less than the bitwidth, the result of
3514 // the shift is undefined. Don't try to analyze it, because the
3515 // resolution chosen here may differ from the resolution chosen in
3516 // other parts of the compiler.
3517 if (CI->getValue().uge(BitWidth))
3518 break;
3520 uint64_t Amt = BitWidth - CI->getZExtValue();
3521 if (Amt == BitWidth)
3522 return getSCEV(L->getOperand(0)); // shift by zero --> noop
3523 return
3524 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3525 IntegerType::get(getContext(),
3526 Amt)),
3527 U->getType());
3529 break;
3531 case Instruction::Trunc:
3532 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3534 case Instruction::ZExt:
3535 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3537 case Instruction::SExt:
3538 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3540 case Instruction::BitCast:
3541 // BitCasts are no-op casts so we just eliminate the cast.
3542 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3543 return getSCEV(U->getOperand(0));
3544 break;
3546 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3547 // lead to pointer expressions which cannot safely be expanded to GEPs,
3548 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3549 // simplifying integer expressions.
3551 case Instruction::GetElementPtr:
3552 return createNodeForGEP(cast<GEPOperator>(U));
3554 case Instruction::PHI:
3555 return createNodeForPHI(cast<PHINode>(U));
3557 case Instruction::Select:
3558 // This could be a smax or umax that was lowered earlier.
3559 // Try to recover it.
3560 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3561 Value *LHS = ICI->getOperand(0);
3562 Value *RHS = ICI->getOperand(1);
3563 switch (ICI->getPredicate()) {
3564 case ICmpInst::ICMP_SLT:
3565 case ICmpInst::ICMP_SLE:
3566 std::swap(LHS, RHS);
3567 // fall through
3568 case ICmpInst::ICMP_SGT:
3569 case ICmpInst::ICMP_SGE:
3570 // a >s b ? a+x : b+x -> smax(a, b)+x
3571 // a >s b ? b+x : a+x -> smin(a, b)+x
3572 if (LHS->getType() == U->getType()) {
3573 const SCEV *LS = getSCEV(LHS);
3574 const SCEV *RS = getSCEV(RHS);
3575 const SCEV *LA = getSCEV(U->getOperand(1));
3576 const SCEV *RA = getSCEV(U->getOperand(2));
3577 const SCEV *LDiff = getMinusSCEV(LA, LS);
3578 const SCEV *RDiff = getMinusSCEV(RA, RS);
3579 if (LDiff == RDiff)
3580 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3581 LDiff = getMinusSCEV(LA, RS);
3582 RDiff = getMinusSCEV(RA, LS);
3583 if (LDiff == RDiff)
3584 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3586 break;
3587 case ICmpInst::ICMP_ULT:
3588 case ICmpInst::ICMP_ULE:
3589 std::swap(LHS, RHS);
3590 // fall through
3591 case ICmpInst::ICMP_UGT:
3592 case ICmpInst::ICMP_UGE:
3593 // a >u b ? a+x : b+x -> umax(a, b)+x
3594 // a >u b ? b+x : a+x -> umin(a, b)+x
3595 if (LHS->getType() == U->getType()) {
3596 const SCEV *LS = getSCEV(LHS);
3597 const SCEV *RS = getSCEV(RHS);
3598 const SCEV *LA = getSCEV(U->getOperand(1));
3599 const SCEV *RA = getSCEV(U->getOperand(2));
3600 const SCEV *LDiff = getMinusSCEV(LA, LS);
3601 const SCEV *RDiff = getMinusSCEV(RA, RS);
3602 if (LDiff == RDiff)
3603 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3604 LDiff = getMinusSCEV(LA, RS);
3605 RDiff = getMinusSCEV(RA, LS);
3606 if (LDiff == RDiff)
3607 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3609 break;
3610 case ICmpInst::ICMP_NE:
3611 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3612 if (LHS->getType() == U->getType() &&
3613 isa<ConstantInt>(RHS) &&
3614 cast<ConstantInt>(RHS)->isZero()) {
3615 const SCEV *One = getConstant(LHS->getType(), 1);
3616 const SCEV *LS = getSCEV(LHS);
3617 const SCEV *LA = getSCEV(U->getOperand(1));
3618 const SCEV *RA = getSCEV(U->getOperand(2));
3619 const SCEV *LDiff = getMinusSCEV(LA, LS);
3620 const SCEV *RDiff = getMinusSCEV(RA, One);
3621 if (LDiff == RDiff)
3622 return getAddExpr(getUMaxExpr(One, LS), LDiff);
3624 break;
3625 case ICmpInst::ICMP_EQ:
3626 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3627 if (LHS->getType() == U->getType() &&
3628 isa<ConstantInt>(RHS) &&
3629 cast<ConstantInt>(RHS)->isZero()) {
3630 const SCEV *One = getConstant(LHS->getType(), 1);
3631 const SCEV *LS = getSCEV(LHS);
3632 const SCEV *LA = getSCEV(U->getOperand(1));
3633 const SCEV *RA = getSCEV(U->getOperand(2));
3634 const SCEV *LDiff = getMinusSCEV(LA, One);
3635 const SCEV *RDiff = getMinusSCEV(RA, LS);
3636 if (LDiff == RDiff)
3637 return getAddExpr(getUMaxExpr(One, LS), LDiff);
3639 break;
3640 default:
3641 break;
3645 default: // We cannot analyze this expression.
3646 break;
3649 return getUnknown(V);
3654 //===----------------------------------------------------------------------===//
3655 // Iteration Count Computation Code
3658 /// getBackedgeTakenCount - If the specified loop has a predictable
3659 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3660 /// object. The backedge-taken count is the number of times the loop header
3661 /// will be branched to from within the loop. This is one less than the
3662 /// trip count of the loop, since it doesn't count the first iteration,
3663 /// when the header is branched to from outside the loop.
3665 /// Note that it is not valid to call this method on a loop without a
3666 /// loop-invariant backedge-taken count (see
3667 /// hasLoopInvariantBackedgeTakenCount).
3669 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3670 return getBackedgeTakenInfo(L).Exact;
3673 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3674 /// return the least SCEV value that is known never to be less than the
3675 /// actual backedge taken count.
3676 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
3677 return getBackedgeTakenInfo(L).Max;
3680 /// PushLoopPHIs - Push PHI nodes in the header of the given loop
3681 /// onto the given Worklist.
3682 static void
3683 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3684 BasicBlock *Header = L->getHeader();
3686 // Push all Loop-header PHIs onto the Worklist stack.
3687 for (BasicBlock::iterator I = Header->begin();
3688 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3689 Worklist.push_back(PN);
3692 const ScalarEvolution::BackedgeTakenInfo &
3693 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
3694 // Initially insert a CouldNotCompute for this loop. If the insertion
3695 // succeeds, proceed to actually compute a backedge-taken count and
3696 // update the value. The temporary CouldNotCompute value tells SCEV
3697 // code elsewhere that it shouldn't attempt to request a new
3698 // backedge-taken count, which could result in infinite recursion.
3699 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
3700 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3701 if (Pair.second) {
3702 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3703 if (BECount.Exact != getCouldNotCompute()) {
3704 assert(BECount.Exact->isLoopInvariant(L) &&
3705 BECount.Max->isLoopInvariant(L) &&
3706 "Computed backedge-taken count isn't loop invariant for loop!");
3707 ++NumTripCountsComputed;
3709 // Update the value in the map.
3710 Pair.first->second = BECount;
3711 } else {
3712 if (BECount.Max != getCouldNotCompute())
3713 // Update the value in the map.
3714 Pair.first->second = BECount;
3715 if (isa<PHINode>(L->getHeader()->begin()))
3716 // Only count loops that have phi nodes as not being computable.
3717 ++NumTripCountsNotComputed;
3720 // Now that we know more about the trip count for this loop, forget any
3721 // existing SCEV values for PHI nodes in this loop since they are only
3722 // conservative estimates made without the benefit of trip count
3723 // information. This is similar to the code in forgetLoop, except that
3724 // it handles SCEVUnknown PHI nodes specially.
3725 if (BECount.hasAnyInfo()) {
3726 SmallVector<Instruction *, 16> Worklist;
3727 PushLoopPHIs(L, Worklist);
3729 SmallPtrSet<Instruction *, 8> Visited;
3730 while (!Worklist.empty()) {
3731 Instruction *I = Worklist.pop_back_val();
3732 if (!Visited.insert(I)) continue;
3734 ValueExprMapType::iterator It =
3735 ValueExprMap.find(static_cast<Value *>(I));
3736 if (It != ValueExprMap.end()) {
3737 // SCEVUnknown for a PHI either means that it has an unrecognized
3738 // structure, or it's a PHI that's in the progress of being computed
3739 // by createNodeForPHI. In the former case, additional loop trip
3740 // count information isn't going to change anything. In the later
3741 // case, createNodeForPHI will perform the necessary updates on its
3742 // own when it gets to that point.
3743 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3744 ValuesAtScopes.erase(It->second);
3745 ValueExprMap.erase(It);
3747 if (PHINode *PN = dyn_cast<PHINode>(I))
3748 ConstantEvolutionLoopExitValue.erase(PN);
3751 PushDefUseChildren(I, Worklist);
3755 return Pair.first->second;
3758 /// forgetLoop - This method should be called by the client when it has
3759 /// changed a loop in a way that may effect ScalarEvolution's ability to
3760 /// compute a trip count, or if the loop is deleted.
3761 void ScalarEvolution::forgetLoop(const Loop *L) {
3762 // Drop any stored trip count value.
3763 BackedgeTakenCounts.erase(L);
3765 // Drop information about expressions based on loop-header PHIs.
3766 SmallVector<Instruction *, 16> Worklist;
3767 PushLoopPHIs(L, Worklist);
3769 SmallPtrSet<Instruction *, 8> Visited;
3770 while (!Worklist.empty()) {
3771 Instruction *I = Worklist.pop_back_val();
3772 if (!Visited.insert(I)) continue;
3774 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3775 if (It != ValueExprMap.end()) {
3776 ValuesAtScopes.erase(It->second);
3777 ValueExprMap.erase(It);
3778 if (PHINode *PN = dyn_cast<PHINode>(I))
3779 ConstantEvolutionLoopExitValue.erase(PN);
3782 PushDefUseChildren(I, Worklist);
3785 // Forget all contained loops too, to avoid dangling entries in the
3786 // ValuesAtScopes map.
3787 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3788 forgetLoop(*I);
3791 /// forgetValue - This method should be called by the client when it has
3792 /// changed a value in a way that may effect its value, or which may
3793 /// disconnect it from a def-use chain linking it to a loop.
3794 void ScalarEvolution::forgetValue(Value *V) {
3795 Instruction *I = dyn_cast<Instruction>(V);
3796 if (!I) return;
3798 // Drop information about expressions based on loop-header PHIs.
3799 SmallVector<Instruction *, 16> Worklist;
3800 Worklist.push_back(I);
3802 SmallPtrSet<Instruction *, 8> Visited;
3803 while (!Worklist.empty()) {
3804 I = Worklist.pop_back_val();
3805 if (!Visited.insert(I)) continue;
3807 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3808 if (It != ValueExprMap.end()) {
3809 ValuesAtScopes.erase(It->second);
3810 ValueExprMap.erase(It);
3811 if (PHINode *PN = dyn_cast<PHINode>(I))
3812 ConstantEvolutionLoopExitValue.erase(PN);
3815 PushDefUseChildren(I, Worklist);
3819 /// ComputeBackedgeTakenCount - Compute the number of times the backedge
3820 /// of the specified loop will execute.
3821 ScalarEvolution::BackedgeTakenInfo
3822 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
3823 SmallVector<BasicBlock *, 8> ExitingBlocks;
3824 L->getExitingBlocks(ExitingBlocks);
3826 // Examine all exits and pick the most conservative values.
3827 const SCEV *BECount = getCouldNotCompute();
3828 const SCEV *MaxBECount = getCouldNotCompute();
3829 bool CouldNotComputeBECount = false;
3830 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3831 BackedgeTakenInfo NewBTI =
3832 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
3834 if (NewBTI.Exact == getCouldNotCompute()) {
3835 // We couldn't compute an exact value for this exit, so
3836 // we won't be able to compute an exact value for the loop.
3837 CouldNotComputeBECount = true;
3838 BECount = getCouldNotCompute();
3839 } else if (!CouldNotComputeBECount) {
3840 if (BECount == getCouldNotCompute())
3841 BECount = NewBTI.Exact;
3842 else
3843 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
3845 if (MaxBECount == getCouldNotCompute())
3846 MaxBECount = NewBTI.Max;
3847 else if (NewBTI.Max != getCouldNotCompute())
3848 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
3851 return BackedgeTakenInfo(BECount, MaxBECount);
3854 /// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3855 /// of the specified loop will execute if it exits via the specified block.
3856 ScalarEvolution::BackedgeTakenInfo
3857 ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3858 BasicBlock *ExitingBlock) {
3860 // Okay, we've chosen an exiting block. See what condition causes us to
3861 // exit at this block.
3863 // FIXME: we should be able to handle switch instructions (with a single exit)
3864 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
3865 if (ExitBr == 0) return getCouldNotCompute();
3866 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
3868 // At this point, we know we have a conditional branch that determines whether
3869 // the loop is exited. However, we don't know if the branch is executed each
3870 // time through the loop. If not, then the execution count of the branch will
3871 // not be equal to the trip count of the loop.
3873 // Currently we check for this by checking to see if the Exit branch goes to
3874 // the loop header. If so, we know it will always execute the same number of
3875 // times as the loop. We also handle the case where the exit block *is* the
3876 // loop header. This is common for un-rotated loops.
3878 // If both of those tests fail, walk up the unique predecessor chain to the
3879 // header, stopping if there is an edge that doesn't exit the loop. If the
3880 // header is reached, the execution count of the branch will be equal to the
3881 // trip count of the loop.
3883 // More extensive analysis could be done to handle more cases here.
3885 if (ExitBr->getSuccessor(0) != L->getHeader() &&
3886 ExitBr->getSuccessor(1) != L->getHeader() &&
3887 ExitBr->getParent() != L->getHeader()) {
3888 // The simple checks failed, try climbing the unique predecessor chain
3889 // up to the header.
3890 bool Ok = false;
3891 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3892 BasicBlock *Pred = BB->getUniquePredecessor();
3893 if (!Pred)
3894 return getCouldNotCompute();
3895 TerminatorInst *PredTerm = Pred->getTerminator();
3896 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3897 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3898 if (PredSucc == BB)
3899 continue;
3900 // If the predecessor has a successor that isn't BB and isn't
3901 // outside the loop, assume the worst.
3902 if (L->contains(PredSucc))
3903 return getCouldNotCompute();
3905 if (Pred == L->getHeader()) {
3906 Ok = true;
3907 break;
3909 BB = Pred;
3911 if (!Ok)
3912 return getCouldNotCompute();
3915 // Proceed to the next level to examine the exit condition expression.
3916 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3917 ExitBr->getSuccessor(0),
3918 ExitBr->getSuccessor(1));
3921 /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3922 /// backedge of the specified loop will execute if its exit condition
3923 /// were a conditional branch of ExitCond, TBB, and FBB.
3924 ScalarEvolution::BackedgeTakenInfo
3925 ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3926 Value *ExitCond,
3927 BasicBlock *TBB,
3928 BasicBlock *FBB) {
3929 // Check if the controlling expression for this loop is an And or Or.
3930 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3931 if (BO->getOpcode() == Instruction::And) {
3932 // Recurse on the operands of the and.
3933 BackedgeTakenInfo BTI0 =
3934 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3935 BackedgeTakenInfo BTI1 =
3936 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3937 const SCEV *BECount = getCouldNotCompute();
3938 const SCEV *MaxBECount = getCouldNotCompute();
3939 if (L->contains(TBB)) {
3940 // Both conditions must be true for the loop to continue executing.
3941 // Choose the less conservative count.
3942 if (BTI0.Exact == getCouldNotCompute() ||
3943 BTI1.Exact == getCouldNotCompute())
3944 BECount = getCouldNotCompute();
3945 else
3946 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3947 if (BTI0.Max == getCouldNotCompute())
3948 MaxBECount = BTI1.Max;
3949 else if (BTI1.Max == getCouldNotCompute())
3950 MaxBECount = BTI0.Max;
3951 else
3952 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3953 } else {
3954 // Both conditions must be true at the same time for the loop to exit.
3955 // For now, be conservative.
3956 assert(L->contains(FBB) && "Loop block has no successor in loop!");
3957 if (BTI0.Max == BTI1.Max)
3958 MaxBECount = BTI0.Max;
3959 if (BTI0.Exact == BTI1.Exact)
3960 BECount = BTI0.Exact;
3963 return BackedgeTakenInfo(BECount, MaxBECount);
3965 if (BO->getOpcode() == Instruction::Or) {
3966 // Recurse on the operands of the or.
3967 BackedgeTakenInfo BTI0 =
3968 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3969 BackedgeTakenInfo BTI1 =
3970 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3971 const SCEV *BECount = getCouldNotCompute();
3972 const SCEV *MaxBECount = getCouldNotCompute();
3973 if (L->contains(FBB)) {
3974 // Both conditions must be false for the loop to continue executing.
3975 // Choose the less conservative count.
3976 if (BTI0.Exact == getCouldNotCompute() ||
3977 BTI1.Exact == getCouldNotCompute())
3978 BECount = getCouldNotCompute();
3979 else
3980 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3981 if (BTI0.Max == getCouldNotCompute())
3982 MaxBECount = BTI1.Max;
3983 else if (BTI1.Max == getCouldNotCompute())
3984 MaxBECount = BTI0.Max;
3985 else
3986 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3987 } else {
3988 // Both conditions must be false at the same time for the loop to exit.
3989 // For now, be conservative.
3990 assert(L->contains(TBB) && "Loop block has no successor in loop!");
3991 if (BTI0.Max == BTI1.Max)
3992 MaxBECount = BTI0.Max;
3993 if (BTI0.Exact == BTI1.Exact)
3994 BECount = BTI0.Exact;
3997 return BackedgeTakenInfo(BECount, MaxBECount);
4001 // With an icmp, it may be feasible to compute an exact backedge-taken count.
4002 // Proceed to the next level to examine the icmp.
4003 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
4004 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
4006 // Check for a constant condition. These are normally stripped out by
4007 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4008 // preserve the CFG and is temporarily leaving constant conditions
4009 // in place.
4010 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4011 if (L->contains(FBB) == !CI->getZExtValue())
4012 // The backedge is always taken.
4013 return getCouldNotCompute();
4014 else
4015 // The backedge is never taken.
4016 return getConstant(CI->getType(), 0);
4019 // If it's not an integer or pointer comparison then compute it the hard way.
4020 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4023 /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
4024 /// backedge of the specified loop will execute if its exit condition
4025 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4026 ScalarEvolution::BackedgeTakenInfo
4027 ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
4028 ICmpInst *ExitCond,
4029 BasicBlock *TBB,
4030 BasicBlock *FBB) {
4032 // If the condition was exit on true, convert the condition to exit on false
4033 ICmpInst::Predicate Cond;
4034 if (!L->contains(FBB))
4035 Cond = ExitCond->getPredicate();
4036 else
4037 Cond = ExitCond->getInversePredicate();
4039 // Handle common loops like: for (X = "string"; *X; ++X)
4040 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4041 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
4042 BackedgeTakenInfo ItCnt =
4043 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
4044 if (ItCnt.hasAnyInfo())
4045 return ItCnt;
4048 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4049 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
4051 // Try to evaluate any dependencies out of the loop.
4052 LHS = getSCEVAtScope(LHS, L);
4053 RHS = getSCEVAtScope(RHS, L);
4055 // At this point, we would like to compute how many iterations of the
4056 // loop the predicate will return true for these inputs.
4057 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
4058 // If there is a loop-invariant, force it into the RHS.
4059 std::swap(LHS, RHS);
4060 Cond = ICmpInst::getSwappedPredicate(Cond);
4063 // Simplify the operands before analyzing them.
4064 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4066 // If we have a comparison of a chrec against a constant, try to use value
4067 // ranges to answer this query.
4068 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4069 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
4070 if (AddRec->getLoop() == L) {
4071 // Form the constant range.
4072 ConstantRange CompRange(
4073 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
4075 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
4076 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
4079 switch (Cond) {
4080 case ICmpInst::ICMP_NE: { // while (X != Y)
4081 // Convert to: while (X-Y != 0)
4082 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4083 if (BTI.hasAnyInfo()) return BTI;
4084 break;
4086 case ICmpInst::ICMP_EQ: { // while (X == Y)
4087 // Convert to: while (X-Y == 0)
4088 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4089 if (BTI.hasAnyInfo()) return BTI;
4090 break;
4092 case ICmpInst::ICMP_SLT: {
4093 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4094 if (BTI.hasAnyInfo()) return BTI;
4095 break;
4097 case ICmpInst::ICMP_SGT: {
4098 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4099 getNotSCEV(RHS), L, true);
4100 if (BTI.hasAnyInfo()) return BTI;
4101 break;
4103 case ICmpInst::ICMP_ULT: {
4104 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4105 if (BTI.hasAnyInfo()) return BTI;
4106 break;
4108 case ICmpInst::ICMP_UGT: {
4109 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4110 getNotSCEV(RHS), L, false);
4111 if (BTI.hasAnyInfo()) return BTI;
4112 break;
4114 default:
4115 #if 0
4116 dbgs() << "ComputeBackedgeTakenCount ";
4117 if (ExitCond->getOperand(0)->getType()->isUnsigned())
4118 dbgs() << "[unsigned] ";
4119 dbgs() << *LHS << " "
4120 << Instruction::getOpcodeName(Instruction::ICmp)
4121 << " " << *RHS << "\n";
4122 #endif
4123 break;
4125 return
4126 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4129 static ConstantInt *
4130 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4131 ScalarEvolution &SE) {
4132 const SCEV *InVal = SE.getConstant(C);
4133 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
4134 assert(isa<SCEVConstant>(Val) &&
4135 "Evaluation of SCEV at constant didn't fold correctly?");
4136 return cast<SCEVConstant>(Val)->getValue();
4139 /// GetAddressedElementFromGlobal - Given a global variable with an initializer
4140 /// and a GEP expression (missing the pointer index) indexing into it, return
4141 /// the addressed element of the initializer or null if the index expression is
4142 /// invalid.
4143 static Constant *
4144 GetAddressedElementFromGlobal(GlobalVariable *GV,
4145 const std::vector<ConstantInt*> &Indices) {
4146 Constant *Init = GV->getInitializer();
4147 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
4148 uint64_t Idx = Indices[i]->getZExtValue();
4149 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4150 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4151 Init = cast<Constant>(CS->getOperand(Idx));
4152 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4153 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4154 Init = cast<Constant>(CA->getOperand(Idx));
4155 } else if (isa<ConstantAggregateZero>(Init)) {
4156 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4157 assert(Idx < STy->getNumElements() && "Bad struct index!");
4158 Init = Constant::getNullValue(STy->getElementType(Idx));
4159 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4160 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
4161 Init = Constant::getNullValue(ATy->getElementType());
4162 } else {
4163 llvm_unreachable("Unknown constant aggregate type!");
4165 return 0;
4166 } else {
4167 return 0; // Unknown initializer type
4170 return Init;
4173 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4174 /// 'icmp op load X, cst', try to see if we can compute the backedge
4175 /// execution count.
4176 ScalarEvolution::BackedgeTakenInfo
4177 ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4178 LoadInst *LI,
4179 Constant *RHS,
4180 const Loop *L,
4181 ICmpInst::Predicate predicate) {
4182 if (LI->isVolatile()) return getCouldNotCompute();
4184 // Check to see if the loaded pointer is a getelementptr of a global.
4185 // TODO: Use SCEV instead of manually grubbing with GEPs.
4186 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
4187 if (!GEP) return getCouldNotCompute();
4189 // Make sure that it is really a constant global we are gepping, with an
4190 // initializer, and make sure the first IDX is really 0.
4191 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
4192 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
4193 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4194 !cast<Constant>(GEP->getOperand(1))->isNullValue())
4195 return getCouldNotCompute();
4197 // Okay, we allow one non-constant index into the GEP instruction.
4198 Value *VarIdx = 0;
4199 std::vector<ConstantInt*> Indexes;
4200 unsigned VarIdxNum = 0;
4201 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4202 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4203 Indexes.push_back(CI);
4204 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
4205 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
4206 VarIdx = GEP->getOperand(i);
4207 VarIdxNum = i-2;
4208 Indexes.push_back(0);
4211 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4212 // Check to see if X is a loop variant variable value now.
4213 const SCEV *Idx = getSCEV(VarIdx);
4214 Idx = getSCEVAtScope(Idx, L);
4216 // We can only recognize very limited forms of loop index expressions, in
4217 // particular, only affine AddRec's like {C1,+,C2}.
4218 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
4219 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
4220 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4221 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
4222 return getCouldNotCompute();
4224 unsigned MaxSteps = MaxBruteForceIterations;
4225 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
4226 ConstantInt *ItCst = ConstantInt::get(
4227 cast<IntegerType>(IdxExpr->getType()), IterationNum);
4228 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
4230 // Form the GEP offset.
4231 Indexes[VarIdxNum] = Val;
4233 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
4234 if (Result == 0) break; // Cannot compute!
4236 // Evaluate the condition for this iteration.
4237 Result = ConstantExpr::getICmp(predicate, Result, RHS);
4238 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
4239 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
4240 #if 0
4241 dbgs() << "\n***\n*** Computed loop count " << *ItCst
4242 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4243 << "***\n";
4244 #endif
4245 ++NumArrayLenItCounts;
4246 return getConstant(ItCst); // Found terminating iteration!
4249 return getCouldNotCompute();
4253 /// CanConstantFold - Return true if we can constant fold an instruction of the
4254 /// specified type, assuming that all operands were constants.
4255 static bool CanConstantFold(const Instruction *I) {
4256 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
4257 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4258 return true;
4260 if (const CallInst *CI = dyn_cast<CallInst>(I))
4261 if (const Function *F = CI->getCalledFunction())
4262 return canConstantFoldCallTo(F);
4263 return false;
4266 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4267 /// in the loop that V is derived from. We allow arbitrary operations along the
4268 /// way, but the operands of an operation must either be constants or a value
4269 /// derived from a constant PHI. If this expression does not fit with these
4270 /// constraints, return null.
4271 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4272 // If this is not an instruction, or if this is an instruction outside of the
4273 // loop, it can't be derived from a loop PHI.
4274 Instruction *I = dyn_cast<Instruction>(V);
4275 if (I == 0 || !L->contains(I)) return 0;
4277 if (PHINode *PN = dyn_cast<PHINode>(I)) {
4278 if (L->getHeader() == I->getParent())
4279 return PN;
4280 else
4281 // We don't currently keep track of the control flow needed to evaluate
4282 // PHIs, so we cannot handle PHIs inside of loops.
4283 return 0;
4286 // If we won't be able to constant fold this expression even if the operands
4287 // are constants, return early.
4288 if (!CanConstantFold(I)) return 0;
4290 // Otherwise, we can evaluate this instruction if all of its operands are
4291 // constant or derived from a PHI node themselves.
4292 PHINode *PHI = 0;
4293 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
4294 if (!isa<Constant>(I->getOperand(Op))) {
4295 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4296 if (P == 0) return 0; // Not evolving from PHI
4297 if (PHI == 0)
4298 PHI = P;
4299 else if (PHI != P)
4300 return 0; // Evolving from multiple different PHIs.
4303 // This is a expression evolving from a constant PHI!
4304 return PHI;
4307 /// EvaluateExpression - Given an expression that passes the
4308 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4309 /// in the loop has the value PHIVal. If we can't fold this expression for some
4310 /// reason, return null.
4311 static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4312 const TargetData *TD) {
4313 if (isa<PHINode>(V)) return PHIVal;
4314 if (Constant *C = dyn_cast<Constant>(V)) return C;
4315 Instruction *I = cast<Instruction>(V);
4317 std::vector<Constant*> Operands(I->getNumOperands());
4319 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4320 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
4321 if (Operands[i] == 0) return 0;
4324 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4325 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
4326 Operands[1], TD);
4327 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4328 &Operands[0], Operands.size(), TD);
4331 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4332 /// in the header of its containing loop, we know the loop executes a
4333 /// constant number of times, and the PHI node is just a recurrence
4334 /// involving constants, fold it.
4335 Constant *
4336 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
4337 const APInt &BEs,
4338 const Loop *L) {
4339 std::map<PHINode*, Constant*>::const_iterator I =
4340 ConstantEvolutionLoopExitValue.find(PN);
4341 if (I != ConstantEvolutionLoopExitValue.end())
4342 return I->second;
4344 if (BEs.ugt(MaxBruteForceIterations))
4345 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4347 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4349 // Since the loop is canonicalized, the PHI node must have two entries. One
4350 // entry must be a constant (coming in from outside of the loop), and the
4351 // second must be derived from the same PHI.
4352 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4353 Constant *StartCST =
4354 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4355 if (StartCST == 0)
4356 return RetVal = 0; // Must be a constant.
4358 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4359 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4360 !isa<Constant>(BEValue))
4361 return RetVal = 0; // Not derived from same PHI.
4363 // Execute the loop symbolically to determine the exit value.
4364 if (BEs.getActiveBits() >= 32)
4365 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
4367 unsigned NumIterations = BEs.getZExtValue(); // must be in range
4368 unsigned IterationNum = 0;
4369 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4370 if (IterationNum == NumIterations)
4371 return RetVal = PHIVal; // Got exit value!
4373 // Compute the value of the PHI node for the next iteration.
4374 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4375 if (NextPHI == PHIVal)
4376 return RetVal = NextPHI; // Stopped evolving!
4377 if (NextPHI == 0)
4378 return 0; // Couldn't evaluate!
4379 PHIVal = NextPHI;
4383 /// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
4384 /// constant number of times (the condition evolves only from constants),
4385 /// try to evaluate a few iterations of the loop until we get the exit
4386 /// condition gets a value of ExitWhen (true or false). If we cannot
4387 /// evaluate the trip count of the loop, return getCouldNotCompute().
4388 const SCEV *
4389 ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4390 Value *Cond,
4391 bool ExitWhen) {
4392 PHINode *PN = getConstantEvolvingPHI(Cond, L);
4393 if (PN == 0) return getCouldNotCompute();
4395 // If the loop is canonicalized, the PHI will have exactly two entries.
4396 // That's the only form we support here.
4397 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4399 // One entry must be a constant (coming in from outside of the loop), and the
4400 // second must be derived from the same PHI.
4401 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4402 Constant *StartCST =
4403 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4404 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
4406 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4407 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4408 !isa<Constant>(BEValue))
4409 return getCouldNotCompute(); // Not derived from same PHI.
4411 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4412 // the loop symbolically to determine when the condition gets a value of
4413 // "ExitWhen".
4414 unsigned IterationNum = 0;
4415 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4416 for (Constant *PHIVal = StartCST;
4417 IterationNum != MaxIterations; ++IterationNum) {
4418 ConstantInt *CondVal =
4419 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
4421 // Couldn't symbolically evaluate.
4422 if (!CondVal) return getCouldNotCompute();
4424 if (CondVal->getValue() == uint64_t(ExitWhen)) {
4425 ++NumBruteForceTripCountsComputed;
4426 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
4429 // Compute the value of the PHI node for the next iteration.
4430 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4431 if (NextPHI == 0 || NextPHI == PHIVal)
4432 return getCouldNotCompute();// Couldn't evaluate or not making progress...
4433 PHIVal = NextPHI;
4436 // Too many iterations were needed to evaluate.
4437 return getCouldNotCompute();
4440 /// getSCEVAtScope - Return a SCEV expression for the specified value
4441 /// at the specified scope in the program. The L value specifies a loop
4442 /// nest to evaluate the expression at, where null is the top-level or a
4443 /// specified loop is immediately inside of the loop.
4445 /// This method can be used to compute the exit value for a variable defined
4446 /// in a loop by querying what the value will hold in the parent loop.
4448 /// In the case that a relevant loop exit value cannot be computed, the
4449 /// original value V is returned.
4450 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
4451 // Check to see if we've folded this expression at this loop before.
4452 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4453 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4454 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4455 if (!Pair.second)
4456 return Pair.first->second ? Pair.first->second : V;
4458 // Otherwise compute it.
4459 const SCEV *C = computeSCEVAtScope(V, L);
4460 ValuesAtScopes[V][L] = C;
4461 return C;
4464 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
4465 if (isa<SCEVConstant>(V)) return V;
4467 // If this instruction is evolved from a constant-evolving PHI, compute the
4468 // exit value from the loop without using SCEVs.
4469 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
4470 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
4471 const Loop *LI = (*this->LI)[I->getParent()];
4472 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4473 if (PHINode *PN = dyn_cast<PHINode>(I))
4474 if (PN->getParent() == LI->getHeader()) {
4475 // Okay, there is no closed form solution for the PHI node. Check
4476 // to see if the loop that contains it has a known backedge-taken
4477 // count. If so, we may be able to force computation of the exit
4478 // value.
4479 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
4480 if (const SCEVConstant *BTCC =
4481 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
4482 // Okay, we know how many times the containing loop executes. If
4483 // this is a constant evolving PHI node, get the final value at
4484 // the specified iteration number.
4485 Constant *RV = getConstantEvolutionLoopExitValue(PN,
4486 BTCC->getValue()->getValue(),
4487 LI);
4488 if (RV) return getSCEV(RV);
4492 // Okay, this is an expression that we cannot symbolically evaluate
4493 // into a SCEV. Check to see if it's possible to symbolically evaluate
4494 // the arguments into constants, and if so, try to constant propagate the
4495 // result. This is particularly useful for computing loop exit values.
4496 if (CanConstantFold(I)) {
4497 SmallVector<Constant *, 4> Operands;
4498 bool MadeImprovement = false;
4499 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4500 Value *Op = I->getOperand(i);
4501 if (Constant *C = dyn_cast<Constant>(Op)) {
4502 Operands.push_back(C);
4503 continue;
4506 // If any of the operands is non-constant and if they are
4507 // non-integer and non-pointer, don't even try to analyze them
4508 // with scev techniques.
4509 if (!isSCEVable(Op->getType()))
4510 return V;
4512 const SCEV *OrigV = getSCEV(Op);
4513 const SCEV *OpV = getSCEVAtScope(OrigV, L);
4514 MadeImprovement |= OrigV != OpV;
4516 Constant *C = 0;
4517 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4518 C = SC->getValue();
4519 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4520 C = dyn_cast<Constant>(SU->getValue());
4521 if (!C) return V;
4522 if (C->getType() != Op->getType())
4523 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4524 Op->getType(),
4525 false),
4526 C, Op->getType());
4527 Operands.push_back(C);
4530 // Check to see if getSCEVAtScope actually made an improvement.
4531 if (MadeImprovement) {
4532 Constant *C = 0;
4533 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4534 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4535 Operands[0], Operands[1], TD);
4536 else
4537 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4538 &Operands[0], Operands.size(), TD);
4539 if (!C) return V;
4540 return getSCEV(C);
4545 // This is some other type of SCEVUnknown, just return it.
4546 return V;
4549 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
4550 // Avoid performing the look-up in the common case where the specified
4551 // expression has no loop-variant portions.
4552 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
4553 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4554 if (OpAtScope != Comm->getOperand(i)) {
4555 // Okay, at least one of these operands is loop variant but might be
4556 // foldable. Build a new instance of the folded commutative expression.
4557 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4558 Comm->op_begin()+i);
4559 NewOps.push_back(OpAtScope);
4561 for (++i; i != e; ++i) {
4562 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4563 NewOps.push_back(OpAtScope);
4565 if (isa<SCEVAddExpr>(Comm))
4566 return getAddExpr(NewOps);
4567 if (isa<SCEVMulExpr>(Comm))
4568 return getMulExpr(NewOps);
4569 if (isa<SCEVSMaxExpr>(Comm))
4570 return getSMaxExpr(NewOps);
4571 if (isa<SCEVUMaxExpr>(Comm))
4572 return getUMaxExpr(NewOps);
4573 llvm_unreachable("Unknown commutative SCEV type!");
4576 // If we got here, all operands are loop invariant.
4577 return Comm;
4580 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
4581 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4582 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
4583 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4584 return Div; // must be loop invariant
4585 return getUDivExpr(LHS, RHS);
4588 // If this is a loop recurrence for a loop that does not contain L, then we
4589 // are dealing with the final value computed by the loop.
4590 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4591 // First, attempt to evaluate each operand.
4592 // Avoid performing the look-up in the common case where the specified
4593 // expression has no loop-variant portions.
4594 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4595 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4596 if (OpAtScope == AddRec->getOperand(i))
4597 continue;
4599 // Okay, at least one of these operands is loop variant but might be
4600 // foldable. Build a new instance of the folded commutative expression.
4601 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4602 AddRec->op_begin()+i);
4603 NewOps.push_back(OpAtScope);
4604 for (++i; i != e; ++i)
4605 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4607 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4608 break;
4611 // If the scope is outside the addrec's loop, evaluate it by using the
4612 // loop exit value of the addrec.
4613 if (!AddRec->getLoop()->contains(L)) {
4614 // To evaluate this recurrence, we need to know how many times the AddRec
4615 // loop iterates. Compute this now.
4616 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
4617 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
4619 // Then, evaluate the AddRec.
4620 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
4623 return AddRec;
4626 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
4627 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4628 if (Op == Cast->getOperand())
4629 return Cast; // must be loop invariant
4630 return getZeroExtendExpr(Op, Cast->getType());
4633 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
4634 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4635 if (Op == Cast->getOperand())
4636 return Cast; // must be loop invariant
4637 return getSignExtendExpr(Op, Cast->getType());
4640 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
4641 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4642 if (Op == Cast->getOperand())
4643 return Cast; // must be loop invariant
4644 return getTruncateExpr(Op, Cast->getType());
4647 llvm_unreachable("Unknown SCEV type!");
4648 return 0;
4651 /// getSCEVAtScope - This is a convenience function which does
4652 /// getSCEVAtScope(getSCEV(V), L).
4653 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
4654 return getSCEVAtScope(getSCEV(V), L);
4657 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4658 /// following equation:
4660 /// A * X = B (mod N)
4662 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4663 /// A and B isn't important.
4665 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
4666 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
4667 ScalarEvolution &SE) {
4668 uint32_t BW = A.getBitWidth();
4669 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4670 assert(A != 0 && "A must be non-zero.");
4672 // 1. D = gcd(A, N)
4674 // The gcd of A and N may have only one prime factor: 2. The number of
4675 // trailing zeros in A is its multiplicity
4676 uint32_t Mult2 = A.countTrailingZeros();
4677 // D = 2^Mult2
4679 // 2. Check if B is divisible by D.
4681 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4682 // is not less than multiplicity of this prime factor for D.
4683 if (B.countTrailingZeros() < Mult2)
4684 return SE.getCouldNotCompute();
4686 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4687 // modulo (N / D).
4689 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4690 // bit width during computations.
4691 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4692 APInt Mod(BW + 1, 0);
4693 Mod.set(BW - Mult2); // Mod = N / D
4694 APInt I = AD.multiplicativeInverse(Mod);
4696 // 4. Compute the minimum unsigned root of the equation:
4697 // I * (B / D) mod (N / D)
4698 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4700 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4701 // bits.
4702 return SE.getConstant(Result.trunc(BW));
4705 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4706 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4707 /// might be the same) or two SCEVCouldNotCompute objects.
4709 static std::pair<const SCEV *,const SCEV *>
4710 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
4711 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
4712 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4713 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4714 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
4716 // We currently can only solve this if the coefficients are constants.
4717 if (!LC || !MC || !NC) {
4718 const SCEV *CNC = SE.getCouldNotCompute();
4719 return std::make_pair(CNC, CNC);
4722 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
4723 const APInt &L = LC->getValue()->getValue();
4724 const APInt &M = MC->getValue()->getValue();
4725 const APInt &N = NC->getValue()->getValue();
4726 APInt Two(BitWidth, 2);
4727 APInt Four(BitWidth, 4);
4730 using namespace APIntOps;
4731 const APInt& C = L;
4732 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4733 // The B coefficient is M-N/2
4734 APInt B(M);
4735 B -= sdiv(N,Two);
4737 // The A coefficient is N/2
4738 APInt A(N.sdiv(Two));
4740 // Compute the B^2-4ac term.
4741 APInt SqrtTerm(B);
4742 SqrtTerm *= B;
4743 SqrtTerm -= Four * (A * C);
4745 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4746 // integer value or else APInt::sqrt() will assert.
4747 APInt SqrtVal(SqrtTerm.sqrt());
4749 // Compute the two solutions for the quadratic formula.
4750 // The divisions must be performed as signed divisions.
4751 APInt NegB(-B);
4752 APInt TwoA( A << 1 );
4753 if (TwoA.isMinValue()) {
4754 const SCEV *CNC = SE.getCouldNotCompute();
4755 return std::make_pair(CNC, CNC);
4758 LLVMContext &Context = SE.getContext();
4760 ConstantInt *Solution1 =
4761 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
4762 ConstantInt *Solution2 =
4763 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
4765 return std::make_pair(SE.getConstant(Solution1),
4766 SE.getConstant(Solution2));
4767 } // end APIntOps namespace
4770 /// HowFarToZero - Return the number of times a backedge comparing the specified
4771 /// value to zero will execute. If not computable, return CouldNotCompute.
4772 ScalarEvolution::BackedgeTakenInfo
4773 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
4774 // If the value is a constant
4775 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4776 // If the value is already zero, the branch will execute zero times.
4777 if (C->getValue()->isZero()) return C;
4778 return getCouldNotCompute(); // Otherwise it will loop infinitely.
4781 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
4782 if (!AddRec || AddRec->getLoop() != L)
4783 return getCouldNotCompute();
4785 if (AddRec->isAffine()) {
4786 // If this is an affine expression, the execution count of this branch is
4787 // the minimum unsigned root of the following equation:
4789 // Start + Step*N = 0 (mod 2^BW)
4791 // equivalent to:
4793 // Step*N = -Start (mod 2^BW)
4795 // where BW is the common bit width of Start and Step.
4797 // Get the initial value for the loop.
4798 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4799 L->getParentLoop());
4800 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4801 L->getParentLoop());
4803 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
4804 // For now we handle only constant steps.
4806 // First, handle unitary steps.
4807 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
4808 return getNegativeSCEV(Start); // N = -Start (as unsigned)
4809 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4810 return Start; // N = Start (as unsigned)
4812 // Then, try to solve the above equation provided that Start is constant.
4813 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4814 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4815 -StartC->getValue()->getValue(),
4816 *this);
4818 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
4819 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4820 // the quadratic equation to solve it.
4821 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
4822 *this);
4823 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4824 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4825 if (R1) {
4826 #if 0
4827 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
4828 << " sol#2: " << *R2 << "\n";
4829 #endif
4830 // Pick the smallest positive root value.
4831 if (ConstantInt *CB =
4832 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
4833 R1->getValue(), R2->getValue()))) {
4834 if (CB->getZExtValue() == false)
4835 std::swap(R1, R2); // R1 is the minimum root now.
4837 // We can only use this value if the chrec ends up with an exact zero
4838 // value at this index. When solving for "X*X != 5", for example, we
4839 // should not accept a root of 2.
4840 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
4841 if (Val->isZero())
4842 return R1; // We found a quadratic root!
4847 return getCouldNotCompute();
4850 /// HowFarToNonZero - Return the number of times a backedge checking the
4851 /// specified value for nonzero will execute. If not computable, return
4852 /// CouldNotCompute
4853 ScalarEvolution::BackedgeTakenInfo
4854 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
4855 // Loops that look like: while (X == 0) are very strange indeed. We don't
4856 // handle them yet except for the trivial case. This could be expanded in the
4857 // future as needed.
4859 // If the value is a constant, check to see if it is known to be non-zero
4860 // already. If so, the backedge will execute zero times.
4861 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4862 if (!C->getValue()->isNullValue())
4863 return getConstant(C->getType(), 0);
4864 return getCouldNotCompute(); // Otherwise it will loop infinitely.
4867 // We could implement others, but I really doubt anyone writes loops like
4868 // this, and if they did, they would already be constant folded.
4869 return getCouldNotCompute();
4872 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4873 /// (which may not be an immediate predecessor) which has exactly one
4874 /// successor from which BB is reachable, or null if no such block is
4875 /// found.
4877 std::pair<BasicBlock *, BasicBlock *>
4878 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
4879 // If the block has a unique predecessor, then there is no path from the
4880 // predecessor to the block that does not go through the direct edge
4881 // from the predecessor to the block.
4882 if (BasicBlock *Pred = BB->getSinglePredecessor())
4883 return std::make_pair(Pred, BB);
4885 // A loop's header is defined to be a block that dominates the loop.
4886 // If the header has a unique predecessor outside the loop, it must be
4887 // a block that has exactly one successor that can reach the loop.
4888 if (Loop *L = LI->getLoopFor(BB))
4889 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
4891 return std::pair<BasicBlock *, BasicBlock *>();
4894 /// HasSameValue - SCEV structural equivalence is usually sufficient for
4895 /// testing whether two expressions are equal, however for the purposes of
4896 /// looking for a condition guarding a loop, it can be useful to be a little
4897 /// more general, since a front-end may have replicated the controlling
4898 /// expression.
4900 static bool HasSameValue(const SCEV *A, const SCEV *B) {
4901 // Quick check to see if they are the same SCEV.
4902 if (A == B) return true;
4904 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4905 // two different instructions with the same value. Check for this case.
4906 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4907 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4908 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4909 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
4910 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
4911 return true;
4913 // Otherwise assume they may have a different value.
4914 return false;
4917 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4918 /// predicate Pred. Return true iff any changes were made.
4920 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4921 const SCEV *&LHS, const SCEV *&RHS) {
4922 bool Changed = false;
4924 // Canonicalize a constant to the right side.
4925 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4926 // Check for both operands constant.
4927 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4928 if (ConstantExpr::getICmp(Pred,
4929 LHSC->getValue(),
4930 RHSC->getValue())->isNullValue())
4931 goto trivially_false;
4932 else
4933 goto trivially_true;
4935 // Otherwise swap the operands to put the constant on the right.
4936 std::swap(LHS, RHS);
4937 Pred = ICmpInst::getSwappedPredicate(Pred);
4938 Changed = true;
4941 // If we're comparing an addrec with a value which is loop-invariant in the
4942 // addrec's loop, put the addrec on the left. Also make a dominance check,
4943 // as both operands could be addrecs loop-invariant in each other's loop.
4944 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4945 const Loop *L = AR->getLoop();
4946 if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) {
4947 std::swap(LHS, RHS);
4948 Pred = ICmpInst::getSwappedPredicate(Pred);
4949 Changed = true;
4953 // If there's a constant operand, canonicalize comparisons with boundary
4954 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4955 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4956 const APInt &RA = RC->getValue()->getValue();
4957 switch (Pred) {
4958 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4959 case ICmpInst::ICMP_EQ:
4960 case ICmpInst::ICMP_NE:
4961 break;
4962 case ICmpInst::ICMP_UGE:
4963 if ((RA - 1).isMinValue()) {
4964 Pred = ICmpInst::ICMP_NE;
4965 RHS = getConstant(RA - 1);
4966 Changed = true;
4967 break;
4969 if (RA.isMaxValue()) {
4970 Pred = ICmpInst::ICMP_EQ;
4971 Changed = true;
4972 break;
4974 if (RA.isMinValue()) goto trivially_true;
4976 Pred = ICmpInst::ICMP_UGT;
4977 RHS = getConstant(RA - 1);
4978 Changed = true;
4979 break;
4980 case ICmpInst::ICMP_ULE:
4981 if ((RA + 1).isMaxValue()) {
4982 Pred = ICmpInst::ICMP_NE;
4983 RHS = getConstant(RA + 1);
4984 Changed = true;
4985 break;
4987 if (RA.isMinValue()) {
4988 Pred = ICmpInst::ICMP_EQ;
4989 Changed = true;
4990 break;
4992 if (RA.isMaxValue()) goto trivially_true;
4994 Pred = ICmpInst::ICMP_ULT;
4995 RHS = getConstant(RA + 1);
4996 Changed = true;
4997 break;
4998 case ICmpInst::ICMP_SGE:
4999 if ((RA - 1).isMinSignedValue()) {
5000 Pred = ICmpInst::ICMP_NE;
5001 RHS = getConstant(RA - 1);
5002 Changed = true;
5003 break;
5005 if (RA.isMaxSignedValue()) {
5006 Pred = ICmpInst::ICMP_EQ;
5007 Changed = true;
5008 break;
5010 if (RA.isMinSignedValue()) goto trivially_true;
5012 Pred = ICmpInst::ICMP_SGT;
5013 RHS = getConstant(RA - 1);
5014 Changed = true;
5015 break;
5016 case ICmpInst::ICMP_SLE:
5017 if ((RA + 1).isMaxSignedValue()) {
5018 Pred = ICmpInst::ICMP_NE;
5019 RHS = getConstant(RA + 1);
5020 Changed = true;
5021 break;
5023 if (RA.isMinSignedValue()) {
5024 Pred = ICmpInst::ICMP_EQ;
5025 Changed = true;
5026 break;
5028 if (RA.isMaxSignedValue()) goto trivially_true;
5030 Pred = ICmpInst::ICMP_SLT;
5031 RHS = getConstant(RA + 1);
5032 Changed = true;
5033 break;
5034 case ICmpInst::ICMP_UGT:
5035 if (RA.isMinValue()) {
5036 Pred = ICmpInst::ICMP_NE;
5037 Changed = true;
5038 break;
5040 if ((RA + 1).isMaxValue()) {
5041 Pred = ICmpInst::ICMP_EQ;
5042 RHS = getConstant(RA + 1);
5043 Changed = true;
5044 break;
5046 if (RA.isMaxValue()) goto trivially_false;
5047 break;
5048 case ICmpInst::ICMP_ULT:
5049 if (RA.isMaxValue()) {
5050 Pred = ICmpInst::ICMP_NE;
5051 Changed = true;
5052 break;
5054 if ((RA - 1).isMinValue()) {
5055 Pred = ICmpInst::ICMP_EQ;
5056 RHS = getConstant(RA - 1);
5057 Changed = true;
5058 break;
5060 if (RA.isMinValue()) goto trivially_false;
5061 break;
5062 case ICmpInst::ICMP_SGT:
5063 if (RA.isMinSignedValue()) {
5064 Pred = ICmpInst::ICMP_NE;
5065 Changed = true;
5066 break;
5068 if ((RA + 1).isMaxSignedValue()) {
5069 Pred = ICmpInst::ICMP_EQ;
5070 RHS = getConstant(RA + 1);
5071 Changed = true;
5072 break;
5074 if (RA.isMaxSignedValue()) goto trivially_false;
5075 break;
5076 case ICmpInst::ICMP_SLT:
5077 if (RA.isMaxSignedValue()) {
5078 Pred = ICmpInst::ICMP_NE;
5079 Changed = true;
5080 break;
5082 if ((RA - 1).isMinSignedValue()) {
5083 Pred = ICmpInst::ICMP_EQ;
5084 RHS = getConstant(RA - 1);
5085 Changed = true;
5086 break;
5088 if (RA.isMinSignedValue()) goto trivially_false;
5089 break;
5093 // Check for obvious equality.
5094 if (HasSameValue(LHS, RHS)) {
5095 if (ICmpInst::isTrueWhenEqual(Pred))
5096 goto trivially_true;
5097 if (ICmpInst::isFalseWhenEqual(Pred))
5098 goto trivially_false;
5101 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5102 // adding or subtracting 1 from one of the operands.
5103 switch (Pred) {
5104 case ICmpInst::ICMP_SLE:
5105 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5106 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5107 /*HasNUW=*/false, /*HasNSW=*/true);
5108 Pred = ICmpInst::ICMP_SLT;
5109 Changed = true;
5110 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
5111 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5112 /*HasNUW=*/false, /*HasNSW=*/true);
5113 Pred = ICmpInst::ICMP_SLT;
5114 Changed = true;
5116 break;
5117 case ICmpInst::ICMP_SGE:
5118 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
5119 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5120 /*HasNUW=*/false, /*HasNSW=*/true);
5121 Pred = ICmpInst::ICMP_SGT;
5122 Changed = true;
5123 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5124 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5125 /*HasNUW=*/false, /*HasNSW=*/true);
5126 Pred = ICmpInst::ICMP_SGT;
5127 Changed = true;
5129 break;
5130 case ICmpInst::ICMP_ULE:
5131 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
5132 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5133 /*HasNUW=*/true, /*HasNSW=*/false);
5134 Pred = ICmpInst::ICMP_ULT;
5135 Changed = true;
5136 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
5137 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5138 /*HasNUW=*/true, /*HasNSW=*/false);
5139 Pred = ICmpInst::ICMP_ULT;
5140 Changed = true;
5142 break;
5143 case ICmpInst::ICMP_UGE:
5144 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
5145 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5146 /*HasNUW=*/true, /*HasNSW=*/false);
5147 Pred = ICmpInst::ICMP_UGT;
5148 Changed = true;
5149 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
5150 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5151 /*HasNUW=*/true, /*HasNSW=*/false);
5152 Pred = ICmpInst::ICMP_UGT;
5153 Changed = true;
5155 break;
5156 default:
5157 break;
5160 // TODO: More simplifications are possible here.
5162 return Changed;
5164 trivially_true:
5165 // Return 0 == 0.
5166 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5167 Pred = ICmpInst::ICMP_EQ;
5168 return true;
5170 trivially_false:
5171 // Return 0 != 0.
5172 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5173 Pred = ICmpInst::ICMP_NE;
5174 return true;
5177 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5178 return getSignedRange(S).getSignedMax().isNegative();
5181 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5182 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5185 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5186 return !getSignedRange(S).getSignedMin().isNegative();
5189 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5190 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5193 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5194 return isKnownNegative(S) || isKnownPositive(S);
5197 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5198 const SCEV *LHS, const SCEV *RHS) {
5199 // Canonicalize the inputs first.
5200 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5202 // If LHS or RHS is an addrec, check to see if the condition is true in
5203 // every iteration of the loop.
5204 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5205 if (isLoopEntryGuardedByCond(
5206 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5207 isLoopBackedgeGuardedByCond(
5208 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
5209 return true;
5210 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5211 if (isLoopEntryGuardedByCond(
5212 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5213 isLoopBackedgeGuardedByCond(
5214 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
5215 return true;
5217 // Otherwise see what can be done with known constant ranges.
5218 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5221 bool
5222 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5223 const SCEV *LHS, const SCEV *RHS) {
5224 if (HasSameValue(LHS, RHS))
5225 return ICmpInst::isTrueWhenEqual(Pred);
5227 // This code is split out from isKnownPredicate because it is called from
5228 // within isLoopEntryGuardedByCond.
5229 switch (Pred) {
5230 default:
5231 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5232 break;
5233 case ICmpInst::ICMP_SGT:
5234 Pred = ICmpInst::ICMP_SLT;
5235 std::swap(LHS, RHS);
5236 case ICmpInst::ICMP_SLT: {
5237 ConstantRange LHSRange = getSignedRange(LHS);
5238 ConstantRange RHSRange = getSignedRange(RHS);
5239 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5240 return true;
5241 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5242 return false;
5243 break;
5245 case ICmpInst::ICMP_SGE:
5246 Pred = ICmpInst::ICMP_SLE;
5247 std::swap(LHS, RHS);
5248 case ICmpInst::ICMP_SLE: {
5249 ConstantRange LHSRange = getSignedRange(LHS);
5250 ConstantRange RHSRange = getSignedRange(RHS);
5251 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5252 return true;
5253 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5254 return false;
5255 break;
5257 case ICmpInst::ICMP_UGT:
5258 Pred = ICmpInst::ICMP_ULT;
5259 std::swap(LHS, RHS);
5260 case ICmpInst::ICMP_ULT: {
5261 ConstantRange LHSRange = getUnsignedRange(LHS);
5262 ConstantRange RHSRange = getUnsignedRange(RHS);
5263 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5264 return true;
5265 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5266 return false;
5267 break;
5269 case ICmpInst::ICMP_UGE:
5270 Pred = ICmpInst::ICMP_ULE;
5271 std::swap(LHS, RHS);
5272 case ICmpInst::ICMP_ULE: {
5273 ConstantRange LHSRange = getUnsignedRange(LHS);
5274 ConstantRange RHSRange = getUnsignedRange(RHS);
5275 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5276 return true;
5277 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5278 return false;
5279 break;
5281 case ICmpInst::ICMP_NE: {
5282 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5283 return true;
5284 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5285 return true;
5287 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5288 if (isKnownNonZero(Diff))
5289 return true;
5290 break;
5292 case ICmpInst::ICMP_EQ:
5293 // The check at the top of the function catches the case where
5294 // the values are known to be equal.
5295 break;
5297 return false;
5300 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5301 /// protected by a conditional between LHS and RHS. This is used to
5302 /// to eliminate casts.
5303 bool
5304 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5305 ICmpInst::Predicate Pred,
5306 const SCEV *LHS, const SCEV *RHS) {
5307 // Interpret a null as meaning no loop, where there is obviously no guard
5308 // (interprocedural conditions notwithstanding).
5309 if (!L) return true;
5311 BasicBlock *Latch = L->getLoopLatch();
5312 if (!Latch)
5313 return false;
5315 BranchInst *LoopContinuePredicate =
5316 dyn_cast<BranchInst>(Latch->getTerminator());
5317 if (!LoopContinuePredicate ||
5318 LoopContinuePredicate->isUnconditional())
5319 return false;
5321 return isImpliedCond(Pred, LHS, RHS,
5322 LoopContinuePredicate->getCondition(),
5323 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
5326 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
5327 /// by a conditional between LHS and RHS. This is used to help avoid max
5328 /// expressions in loop trip counts, and to eliminate casts.
5329 bool
5330 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5331 ICmpInst::Predicate Pred,
5332 const SCEV *LHS, const SCEV *RHS) {
5333 // Interpret a null as meaning no loop, where there is obviously no guard
5334 // (interprocedural conditions notwithstanding).
5335 if (!L) return false;
5337 // Starting at the loop predecessor, climb up the predecessor chain, as long
5338 // as there are predecessors that can be found that have unique successors
5339 // leading to the original header.
5340 for (std::pair<BasicBlock *, BasicBlock *>
5341 Pair(L->getLoopPredecessor(), L->getHeader());
5342 Pair.first;
5343 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
5345 BranchInst *LoopEntryPredicate =
5346 dyn_cast<BranchInst>(Pair.first->getTerminator());
5347 if (!LoopEntryPredicate ||
5348 LoopEntryPredicate->isUnconditional())
5349 continue;
5351 if (isImpliedCond(Pred, LHS, RHS,
5352 LoopEntryPredicate->getCondition(),
5353 LoopEntryPredicate->getSuccessor(0) != Pair.second))
5354 return true;
5357 return false;
5360 /// isImpliedCond - Test whether the condition described by Pred, LHS,
5361 /// and RHS is true whenever the given Cond value evaluates to true.
5362 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
5363 const SCEV *LHS, const SCEV *RHS,
5364 Value *FoundCondValue,
5365 bool Inverse) {
5366 // Recursively handle And and Or conditions.
5367 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
5368 if (BO->getOpcode() == Instruction::And) {
5369 if (!Inverse)
5370 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5371 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5372 } else if (BO->getOpcode() == Instruction::Or) {
5373 if (Inverse)
5374 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5375 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5379 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
5380 if (!ICI) return false;
5382 // Bail if the ICmp's operands' types are wider than the needed type
5383 // before attempting to call getSCEV on them. This avoids infinite
5384 // recursion, since the analysis of widening casts can require loop
5385 // exit condition information for overflow checking, which would
5386 // lead back here.
5387 if (getTypeSizeInBits(LHS->getType()) <
5388 getTypeSizeInBits(ICI->getOperand(0)->getType()))
5389 return false;
5391 // Now that we found a conditional branch that dominates the loop, check to
5392 // see if it is the comparison we are looking for.
5393 ICmpInst::Predicate FoundPred;
5394 if (Inverse)
5395 FoundPred = ICI->getInversePredicate();
5396 else
5397 FoundPred = ICI->getPredicate();
5399 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5400 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
5402 // Balance the types. The case where FoundLHS' type is wider than
5403 // LHS' type is checked for above.
5404 if (getTypeSizeInBits(LHS->getType()) >
5405 getTypeSizeInBits(FoundLHS->getType())) {
5406 if (CmpInst::isSigned(Pred)) {
5407 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5408 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5409 } else {
5410 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5411 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5415 // Canonicalize the query to match the way instcombine will have
5416 // canonicalized the comparison.
5417 if (SimplifyICmpOperands(Pred, LHS, RHS))
5418 if (LHS == RHS)
5419 return CmpInst::isTrueWhenEqual(Pred);
5420 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5421 if (FoundLHS == FoundRHS)
5422 return CmpInst::isFalseWhenEqual(Pred);
5424 // Check to see if we can make the LHS or RHS match.
5425 if (LHS == FoundRHS || RHS == FoundLHS) {
5426 if (isa<SCEVConstant>(RHS)) {
5427 std::swap(FoundLHS, FoundRHS);
5428 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5429 } else {
5430 std::swap(LHS, RHS);
5431 Pred = ICmpInst::getSwappedPredicate(Pred);
5435 // Check whether the found predicate is the same as the desired predicate.
5436 if (FoundPred == Pred)
5437 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5439 // Check whether swapping the found predicate makes it the same as the
5440 // desired predicate.
5441 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5442 if (isa<SCEVConstant>(RHS))
5443 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5444 else
5445 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5446 RHS, LHS, FoundLHS, FoundRHS);
5449 // Check whether the actual condition is beyond sufficient.
5450 if (FoundPred == ICmpInst::ICMP_EQ)
5451 if (ICmpInst::isTrueWhenEqual(Pred))
5452 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5453 return true;
5454 if (Pred == ICmpInst::ICMP_NE)
5455 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5456 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5457 return true;
5459 // Otherwise assume the worst.
5460 return false;
5463 /// isImpliedCondOperands - Test whether the condition described by Pred,
5464 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
5465 /// and FoundRHS is true.
5466 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5467 const SCEV *LHS, const SCEV *RHS,
5468 const SCEV *FoundLHS,
5469 const SCEV *FoundRHS) {
5470 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5471 FoundLHS, FoundRHS) ||
5472 // ~x < ~y --> x > y
5473 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5474 getNotSCEV(FoundRHS),
5475 getNotSCEV(FoundLHS));
5478 /// isImpliedCondOperandsHelper - Test whether the condition described by
5479 /// Pred, LHS, and RHS is true whenever the condition described by Pred,
5480 /// FoundLHS, and FoundRHS is true.
5481 bool
5482 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5483 const SCEV *LHS, const SCEV *RHS,
5484 const SCEV *FoundLHS,
5485 const SCEV *FoundRHS) {
5486 switch (Pred) {
5487 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5488 case ICmpInst::ICMP_EQ:
5489 case ICmpInst::ICMP_NE:
5490 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5491 return true;
5492 break;
5493 case ICmpInst::ICMP_SLT:
5494 case ICmpInst::ICMP_SLE:
5495 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5496 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
5497 return true;
5498 break;
5499 case ICmpInst::ICMP_SGT:
5500 case ICmpInst::ICMP_SGE:
5501 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5502 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
5503 return true;
5504 break;
5505 case ICmpInst::ICMP_ULT:
5506 case ICmpInst::ICMP_ULE:
5507 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5508 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
5509 return true;
5510 break;
5511 case ICmpInst::ICMP_UGT:
5512 case ICmpInst::ICMP_UGE:
5513 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5514 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
5515 return true;
5516 break;
5519 return false;
5522 /// getBECount - Subtract the end and start values and divide by the step,
5523 /// rounding up, to get the number of times the backedge is executed. Return
5524 /// CouldNotCompute if an intermediate computation overflows.
5525 const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
5526 const SCEV *End,
5527 const SCEV *Step,
5528 bool NoWrap) {
5529 assert(!isKnownNegative(Step) &&
5530 "This code doesn't handle negative strides yet!");
5532 const Type *Ty = Start->getType();
5533 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
5534 const SCEV *Diff = getMinusSCEV(End, Start);
5535 const SCEV *RoundUp = getAddExpr(Step, NegOne);
5537 // Add an adjustment to the difference between End and Start so that
5538 // the division will effectively round up.
5539 const SCEV *Add = getAddExpr(Diff, RoundUp);
5541 if (!NoWrap) {
5542 // Check Add for unsigned overflow.
5543 // TODO: More sophisticated things could be done here.
5544 const Type *WideTy = IntegerType::get(getContext(),
5545 getTypeSizeInBits(Ty) + 1);
5546 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5547 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5548 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5549 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5550 return getCouldNotCompute();
5553 return getUDivExpr(Add, Step);
5556 /// HowManyLessThans - Return the number of times a backedge containing the
5557 /// specified less-than comparison will execute. If not computable, return
5558 /// CouldNotCompute.
5559 ScalarEvolution::BackedgeTakenInfo
5560 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5561 const Loop *L, bool isSigned) {
5562 // Only handle: "ADDREC < LoopInvariant".
5563 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
5565 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
5566 if (!AddRec || AddRec->getLoop() != L)
5567 return getCouldNotCompute();
5569 // Check to see if we have a flag which makes analysis easy.
5570 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5571 AddRec->hasNoUnsignedWrap();
5573 if (AddRec->isAffine()) {
5574 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
5575 const SCEV *Step = AddRec->getStepRecurrence(*this);
5577 if (Step->isZero())
5578 return getCouldNotCompute();
5579 if (Step->isOne()) {
5580 // With unit stride, the iteration never steps past the limit value.
5581 } else if (isKnownPositive(Step)) {
5582 // Test whether a positive iteration can step past the limit
5583 // value and past the maximum value for its type in a single step.
5584 // Note that it's not sufficient to check NoWrap here, because even
5585 // though the value after a wrap is undefined, it's not undefined
5586 // behavior, so if wrap does occur, the loop could either terminate or
5587 // loop infinitely, but in either case, the loop is guaranteed to
5588 // iterate at least until the iteration where the wrapping occurs.
5589 const SCEV *One = getConstant(Step->getType(), 1);
5590 if (isSigned) {
5591 APInt Max = APInt::getSignedMaxValue(BitWidth);
5592 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5593 .slt(getSignedRange(RHS).getSignedMax()))
5594 return getCouldNotCompute();
5595 } else {
5596 APInt Max = APInt::getMaxValue(BitWidth);
5597 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5598 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5599 return getCouldNotCompute();
5601 } else
5602 // TODO: Handle negative strides here and below.
5603 return getCouldNotCompute();
5605 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5606 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5607 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
5608 // treat m-n as signed nor unsigned due to overflow possibility.
5610 // First, we get the value of the LHS in the first iteration: n
5611 const SCEV *Start = AddRec->getOperand(0);
5613 // Determine the minimum constant start value.
5614 const SCEV *MinStart = getConstant(isSigned ?
5615 getSignedRange(Start).getSignedMin() :
5616 getUnsignedRange(Start).getUnsignedMin());
5618 // If we know that the condition is true in order to enter the loop,
5619 // then we know that it will run exactly (m-n)/s times. Otherwise, we
5620 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5621 // the division must round up.
5622 const SCEV *End = RHS;
5623 if (!isLoopEntryGuardedByCond(L,
5624 isSigned ? ICmpInst::ICMP_SLT :
5625 ICmpInst::ICMP_ULT,
5626 getMinusSCEV(Start, Step), RHS))
5627 End = isSigned ? getSMaxExpr(RHS, Start)
5628 : getUMaxExpr(RHS, Start);
5630 // Determine the maximum constant end value.
5631 const SCEV *MaxEnd = getConstant(isSigned ?
5632 getSignedRange(End).getSignedMax() :
5633 getUnsignedRange(End).getUnsignedMax());
5635 // If MaxEnd is within a step of the maximum integer value in its type,
5636 // adjust it down to the minimum value which would produce the same effect.
5637 // This allows the subsequent ceiling division of (N+(step-1))/step to
5638 // compute the correct value.
5639 const SCEV *StepMinusOne = getMinusSCEV(Step,
5640 getConstant(Step->getType(), 1));
5641 MaxEnd = isSigned ?
5642 getSMinExpr(MaxEnd,
5643 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5644 StepMinusOne)) :
5645 getUMinExpr(MaxEnd,
5646 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5647 StepMinusOne));
5649 // Finally, we subtract these two values and divide, rounding up, to get
5650 // the number of times the backedge is executed.
5651 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
5653 // The maximum backedge count is similar, except using the minimum start
5654 // value and the maximum end value.
5655 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
5657 return BackedgeTakenInfo(BECount, MaxBECount);
5660 return getCouldNotCompute();
5663 /// getNumIterationsInRange - Return the number of iterations of this loop that
5664 /// produce values in the specified constant range. Another way of looking at
5665 /// this is that it returns the first iteration number where the value is not in
5666 /// the condition, thus computing the exit count. If the iteration count can't
5667 /// be computed, an instance of SCEVCouldNotCompute is returned.
5668 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
5669 ScalarEvolution &SE) const {
5670 if (Range.isFullSet()) // Infinite loop.
5671 return SE.getCouldNotCompute();
5673 // If the start is a non-zero constant, shift the range to simplify things.
5674 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
5675 if (!SC->getValue()->isZero()) {
5676 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
5677 Operands[0] = SE.getConstant(SC->getType(), 0);
5678 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
5679 if (const SCEVAddRecExpr *ShiftedAddRec =
5680 dyn_cast<SCEVAddRecExpr>(Shifted))
5681 return ShiftedAddRec->getNumIterationsInRange(
5682 Range.subtract(SC->getValue()->getValue()), SE);
5683 // This is strange and shouldn't happen.
5684 return SE.getCouldNotCompute();
5687 // The only time we can solve this is when we have all constant indices.
5688 // Otherwise, we cannot determine the overflow conditions.
5689 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5690 if (!isa<SCEVConstant>(getOperand(i)))
5691 return SE.getCouldNotCompute();
5694 // Okay at this point we know that all elements of the chrec are constants and
5695 // that the start element is zero.
5697 // First check to see if the range contains zero. If not, the first
5698 // iteration exits.
5699 unsigned BitWidth = SE.getTypeSizeInBits(getType());
5700 if (!Range.contains(APInt(BitWidth, 0)))
5701 return SE.getConstant(getType(), 0);
5703 if (isAffine()) {
5704 // If this is an affine expression then we have this situation:
5705 // Solve {0,+,A} in Range === Ax in Range
5707 // We know that zero is in the range. If A is positive then we know that
5708 // the upper value of the range must be the first possible exit value.
5709 // If A is negative then the lower of the range is the last possible loop
5710 // value. Also note that we already checked for a full range.
5711 APInt One(BitWidth,1);
5712 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5713 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
5715 // The exit value should be (End+A)/A.
5716 APInt ExitVal = (End + A).udiv(A);
5717 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
5719 // Evaluate at the exit value. If we really did fall out of the valid
5720 // range, then we computed our trip count, otherwise wrap around or other
5721 // things must have happened.
5722 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
5723 if (Range.contains(Val->getValue()))
5724 return SE.getCouldNotCompute(); // Something strange happened
5726 // Ensure that the previous value is in the range. This is a sanity check.
5727 assert(Range.contains(
5728 EvaluateConstantChrecAtConstant(this,
5729 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
5730 "Linear scev computation is off in a bad way!");
5731 return SE.getConstant(ExitValue);
5732 } else if (isQuadratic()) {
5733 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5734 // quadratic equation to solve it. To do this, we must frame our problem in
5735 // terms of figuring out when zero is crossed, instead of when
5736 // Range.getUpper() is crossed.
5737 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
5738 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
5739 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
5741 // Next, solve the constructed addrec
5742 std::pair<const SCEV *,const SCEV *> Roots =
5743 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
5744 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5745 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5746 if (R1) {
5747 // Pick the smallest positive root value.
5748 if (ConstantInt *CB =
5749 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
5750 R1->getValue(), R2->getValue()))) {
5751 if (CB->getZExtValue() == false)
5752 std::swap(R1, R2); // R1 is the minimum root now.
5754 // Make sure the root is not off by one. The returned iteration should
5755 // not be in the range, but the previous one should be. When solving
5756 // for "X*X < 5", for example, we should not return a root of 2.
5757 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
5758 R1->getValue(),
5759 SE);
5760 if (Range.contains(R1Val->getValue())) {
5761 // The next iteration must be out of the range...
5762 ConstantInt *NextVal =
5763 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
5765 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5766 if (!Range.contains(R1Val->getValue()))
5767 return SE.getConstant(NextVal);
5768 return SE.getCouldNotCompute(); // Something strange happened
5771 // If R1 was not in the range, then it is a good return value. Make
5772 // sure that R1-1 WAS in the range though, just in case.
5773 ConstantInt *NextVal =
5774 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
5775 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5776 if (Range.contains(R1Val->getValue()))
5777 return R1;
5778 return SE.getCouldNotCompute(); // Something strange happened
5783 return SE.getCouldNotCompute();
5788 //===----------------------------------------------------------------------===//
5789 // SCEVCallbackVH Class Implementation
5790 //===----------------------------------------------------------------------===//
5792 void ScalarEvolution::SCEVCallbackVH::deleted() {
5793 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5794 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5795 SE->ConstantEvolutionLoopExitValue.erase(PN);
5796 SE->ValueExprMap.erase(getValPtr());
5797 // this now dangles!
5800 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
5801 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5803 // Forget all the expressions associated with users of the old value,
5804 // so that future queries will recompute the expressions using the new
5805 // value.
5806 Value *Old = getValPtr();
5807 SmallVector<User *, 16> Worklist;
5808 SmallPtrSet<User *, 8> Visited;
5809 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5810 UI != UE; ++UI)
5811 Worklist.push_back(*UI);
5812 while (!Worklist.empty()) {
5813 User *U = Worklist.pop_back_val();
5814 // Deleting the Old value will cause this to dangle. Postpone
5815 // that until everything else is done.
5816 if (U == Old)
5817 continue;
5818 if (!Visited.insert(U))
5819 continue;
5820 if (PHINode *PN = dyn_cast<PHINode>(U))
5821 SE->ConstantEvolutionLoopExitValue.erase(PN);
5822 SE->ValueExprMap.erase(U);
5823 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5824 UI != UE; ++UI)
5825 Worklist.push_back(*UI);
5827 // Delete the Old value.
5828 if (PHINode *PN = dyn_cast<PHINode>(Old))
5829 SE->ConstantEvolutionLoopExitValue.erase(PN);
5830 SE->ValueExprMap.erase(Old);
5831 // this now dangles!
5834 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
5835 : CallbackVH(V), SE(se) {}
5837 //===----------------------------------------------------------------------===//
5838 // ScalarEvolution Class Implementation
5839 //===----------------------------------------------------------------------===//
5841 ScalarEvolution::ScalarEvolution()
5842 : FunctionPass(ID), FirstUnknown(0) {
5843 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
5846 bool ScalarEvolution::runOnFunction(Function &F) {
5847 this->F = &F;
5848 LI = &getAnalysis<LoopInfo>();
5849 TD = getAnalysisIfAvailable<TargetData>();
5850 DT = &getAnalysis<DominatorTree>();
5851 return false;
5854 void ScalarEvolution::releaseMemory() {
5855 // Iterate through all the SCEVUnknown instances and call their
5856 // destructors, so that they release their references to their values.
5857 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5858 U->~SCEVUnknown();
5859 FirstUnknown = 0;
5861 ValueExprMap.clear();
5862 BackedgeTakenCounts.clear();
5863 ConstantEvolutionLoopExitValue.clear();
5864 ValuesAtScopes.clear();
5865 UniqueSCEVs.clear();
5866 SCEVAllocator.Reset();
5869 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5870 AU.setPreservesAll();
5871 AU.addRequiredTransitive<LoopInfo>();
5872 AU.addRequiredTransitive<DominatorTree>();
5875 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
5876 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
5879 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
5880 const Loop *L) {
5881 // Print all inner loops first
5882 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5883 PrintLoopInfo(OS, SE, *I);
5885 OS << "Loop ";
5886 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5887 OS << ": ";
5889 SmallVector<BasicBlock *, 8> ExitBlocks;
5890 L->getExitBlocks(ExitBlocks);
5891 if (ExitBlocks.size() != 1)
5892 OS << "<multiple exits> ";
5894 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5895 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
5896 } else {
5897 OS << "Unpredictable backedge-taken count. ";
5900 OS << "\n"
5901 "Loop ";
5902 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5903 OS << ": ";
5905 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5906 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5907 } else {
5908 OS << "Unpredictable max backedge-taken count. ";
5911 OS << "\n";
5914 void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
5915 // ScalarEvolution's implementation of the print method is to print
5916 // out SCEV values of all instructions that are interesting. Doing
5917 // this potentially causes it to create new SCEV objects though,
5918 // which technically conflicts with the const qualifier. This isn't
5919 // observable from outside the class though, so casting away the
5920 // const isn't dangerous.
5921 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
5923 OS << "Classifying expressions for: ";
5924 WriteAsOperand(OS, F, /*PrintType=*/false);
5925 OS << "\n";
5926 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
5927 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
5928 OS << *I << '\n';
5929 OS << " --> ";
5930 const SCEV *SV = SE.getSCEV(&*I);
5931 SV->print(OS);
5933 const Loop *L = LI->getLoopFor((*I).getParent());
5935 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
5936 if (AtUse != SV) {
5937 OS << " --> ";
5938 AtUse->print(OS);
5941 if (L) {
5942 OS << "\t\t" "Exits: ";
5943 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
5944 if (!ExitValue->isLoopInvariant(L)) {
5945 OS << "<<Unknown>>";
5946 } else {
5947 OS << *ExitValue;
5951 OS << "\n";
5954 OS << "Determining loop execution counts for: ";
5955 WriteAsOperand(OS, F, /*PrintType=*/false);
5956 OS << "\n";
5957 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5958 PrintLoopInfo(OS, &SE, *I);