1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the implementation of the scalar evolution expander,
11 // which is used to generate the code corresponding to a given scalar evolution
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/ScalarEvolutionExpander.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/IntrinsicInst.h"
19 #include "llvm/LLVMContext.h"
20 #include "llvm/Target/TargetData.h"
21 #include "llvm/ADT/STLExtras.h"
24 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
25 /// reusing an existing cast if a suitable one exists, moving an existing
26 /// cast if a suitable one exists but isn't in the right place, or
27 /// creating a new one.
28 Value
*SCEVExpander::ReuseOrCreateCast(Value
*V
, const Type
*Ty
,
29 Instruction::CastOps Op
,
30 BasicBlock::iterator IP
) {
31 // Check to see if there is already a cast!
32 for (Value::use_iterator UI
= V
->use_begin(), E
= V
->use_end();
35 if (U
->getType() == Ty
)
36 if (CastInst
*CI
= dyn_cast
<CastInst
>(U
))
37 if (CI
->getOpcode() == Op
) {
38 // If the cast isn't where we want it, fix it.
39 if (BasicBlock::iterator(CI
) != IP
) {
40 // Create a new cast, and leave the old cast in place in case
41 // it is being used as an insert point. Clear its operand
42 // so that it doesn't hold anything live.
43 Instruction
*NewCI
= CastInst::Create(Op
, V
, Ty
, "", IP
);
45 CI
->replaceAllUsesWith(NewCI
);
46 CI
->setOperand(0, UndefValue::get(V
->getType()));
47 rememberInstruction(NewCI
);
50 rememberInstruction(CI
);
56 Instruction
*I
= CastInst::Create(Op
, V
, Ty
, V
->getName(), IP
);
57 rememberInstruction(I
);
61 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
62 /// which must be possible with a noop cast, doing what we can to share
64 Value
*SCEVExpander::InsertNoopCastOfTo(Value
*V
, const Type
*Ty
) {
65 Instruction::CastOps Op
= CastInst::getCastOpcode(V
, false, Ty
, false);
66 assert((Op
== Instruction::BitCast
||
67 Op
== Instruction::PtrToInt
||
68 Op
== Instruction::IntToPtr
) &&
69 "InsertNoopCastOfTo cannot perform non-noop casts!");
70 assert(SE
.getTypeSizeInBits(V
->getType()) == SE
.getTypeSizeInBits(Ty
) &&
71 "InsertNoopCastOfTo cannot change sizes!");
73 // Short-circuit unnecessary bitcasts.
74 if (Op
== Instruction::BitCast
&& V
->getType() == Ty
)
77 // Short-circuit unnecessary inttoptr<->ptrtoint casts.
78 if ((Op
== Instruction::PtrToInt
|| Op
== Instruction::IntToPtr
) &&
79 SE
.getTypeSizeInBits(Ty
) == SE
.getTypeSizeInBits(V
->getType())) {
80 if (CastInst
*CI
= dyn_cast
<CastInst
>(V
))
81 if ((CI
->getOpcode() == Instruction::PtrToInt
||
82 CI
->getOpcode() == Instruction::IntToPtr
) &&
83 SE
.getTypeSizeInBits(CI
->getType()) ==
84 SE
.getTypeSizeInBits(CI
->getOperand(0)->getType()))
85 return CI
->getOperand(0);
86 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
87 if ((CE
->getOpcode() == Instruction::PtrToInt
||
88 CE
->getOpcode() == Instruction::IntToPtr
) &&
89 SE
.getTypeSizeInBits(CE
->getType()) ==
90 SE
.getTypeSizeInBits(CE
->getOperand(0)->getType()))
91 return CE
->getOperand(0);
94 // Fold a cast of a constant.
95 if (Constant
*C
= dyn_cast
<Constant
>(V
))
96 return ConstantExpr::getCast(Op
, C
, Ty
);
98 // Cast the argument at the beginning of the entry block, after
99 // any bitcasts of other arguments.
100 if (Argument
*A
= dyn_cast
<Argument
>(V
)) {
101 BasicBlock::iterator IP
= A
->getParent()->getEntryBlock().begin();
102 while ((isa
<BitCastInst
>(IP
) &&
103 isa
<Argument
>(cast
<BitCastInst
>(IP
)->getOperand(0)) &&
104 cast
<BitCastInst
>(IP
)->getOperand(0) != A
) ||
105 isa
<DbgInfoIntrinsic
>(IP
))
107 return ReuseOrCreateCast(A
, Ty
, Op
, IP
);
110 // Cast the instruction immediately after the instruction.
111 Instruction
*I
= cast
<Instruction
>(V
);
112 BasicBlock::iterator IP
= I
; ++IP
;
113 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(I
))
114 IP
= II
->getNormalDest()->begin();
115 while (isa
<PHINode
>(IP
) || isa
<DbgInfoIntrinsic
>(IP
)) ++IP
;
116 return ReuseOrCreateCast(I
, Ty
, Op
, IP
);
119 /// InsertBinop - Insert the specified binary operator, doing a small amount
120 /// of work to avoid inserting an obviously redundant operation.
121 Value
*SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode
,
122 Value
*LHS
, Value
*RHS
) {
123 // Fold a binop with constant operands.
124 if (Constant
*CLHS
= dyn_cast
<Constant
>(LHS
))
125 if (Constant
*CRHS
= dyn_cast
<Constant
>(RHS
))
126 return ConstantExpr::get(Opcode
, CLHS
, CRHS
);
128 // Do a quick scan to see if we have this binop nearby. If so, reuse it.
129 unsigned ScanLimit
= 6;
130 BasicBlock::iterator BlockBegin
= Builder
.GetInsertBlock()->begin();
131 // Scanning starts from the last instruction before the insertion point.
132 BasicBlock::iterator IP
= Builder
.GetInsertPoint();
133 if (IP
!= BlockBegin
) {
135 for (; ScanLimit
; --IP
, --ScanLimit
) {
136 // Don't count dbg.value against the ScanLimit, to avoid perturbing the
138 if (isa
<DbgInfoIntrinsic
>(IP
))
140 if (IP
->getOpcode() == (unsigned)Opcode
&& IP
->getOperand(0) == LHS
&&
141 IP
->getOperand(1) == RHS
)
143 if (IP
== BlockBegin
) break;
147 // Save the original insertion point so we can restore it when we're done.
148 BasicBlock
*SaveInsertBB
= Builder
.GetInsertBlock();
149 BasicBlock::iterator SaveInsertPt
= Builder
.GetInsertPoint();
151 // Move the insertion point out of as many loops as we can.
152 while (const Loop
*L
= SE
.LI
->getLoopFor(Builder
.GetInsertBlock())) {
153 if (!L
->isLoopInvariant(LHS
) || !L
->isLoopInvariant(RHS
)) break;
154 BasicBlock
*Preheader
= L
->getLoopPreheader();
155 if (!Preheader
) break;
157 // Ok, move up a level.
158 Builder
.SetInsertPoint(Preheader
, Preheader
->getTerminator());
161 // If we haven't found this binop, insert it.
162 Value
*BO
= Builder
.CreateBinOp(Opcode
, LHS
, RHS
, "tmp");
163 rememberInstruction(BO
);
165 // Restore the original insert point.
167 restoreInsertPoint(SaveInsertBB
, SaveInsertPt
);
172 /// FactorOutConstant - Test if S is divisible by Factor, using signed
173 /// division. If so, update S with Factor divided out and return true.
174 /// S need not be evenly divisible if a reasonable remainder can be
176 /// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
177 /// unnecessary; in its place, just signed-divide Ops[i] by the scale and
178 /// check to see if the divide was folded.
179 static bool FactorOutConstant(const SCEV
*&S
,
180 const SCEV
*&Remainder
,
183 const TargetData
*TD
) {
184 // Everything is divisible by one.
190 S
= SE
.getConstant(S
->getType(), 1);
194 // For a Constant, check for a multiple of the given factor.
195 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(S
)) {
199 // Check for divisibility.
200 if (const SCEVConstant
*FC
= dyn_cast
<SCEVConstant
>(Factor
)) {
202 ConstantInt::get(SE
.getContext(),
203 C
->getValue()->getValue().sdiv(
204 FC
->getValue()->getValue()));
205 // If the quotient is zero and the remainder is non-zero, reject
206 // the value at this scale. It will be considered for subsequent
209 const SCEV
*Div
= SE
.getConstant(CI
);
212 SE
.getAddExpr(Remainder
,
213 SE
.getConstant(C
->getValue()->getValue().srem(
214 FC
->getValue()->getValue())));
220 // In a Mul, check if there is a constant operand which is a multiple
221 // of the given factor.
222 if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(S
)) {
224 // With TargetData, the size is known. Check if there is a constant
225 // operand which is a multiple of the given factor. If so, we can
227 const SCEVConstant
*FC
= cast
<SCEVConstant
>(Factor
);
228 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(M
->getOperand(0)))
229 if (!C
->getValue()->getValue().srem(FC
->getValue()->getValue())) {
230 SmallVector
<const SCEV
*, 4> NewMulOps(M
->op_begin(), M
->op_end());
232 SE
.getConstant(C
->getValue()->getValue().sdiv(
233 FC
->getValue()->getValue()));
234 S
= SE
.getMulExpr(NewMulOps
);
238 // Without TargetData, check if Factor can be factored out of any of the
239 // Mul's operands. If so, we can just remove it.
240 for (unsigned i
= 0, e
= M
->getNumOperands(); i
!= e
; ++i
) {
241 const SCEV
*SOp
= M
->getOperand(i
);
242 const SCEV
*Remainder
= SE
.getConstant(SOp
->getType(), 0);
243 if (FactorOutConstant(SOp
, Remainder
, Factor
, SE
, TD
) &&
244 Remainder
->isZero()) {
245 SmallVector
<const SCEV
*, 4> NewMulOps(M
->op_begin(), M
->op_end());
247 S
= SE
.getMulExpr(NewMulOps
);
254 // In an AddRec, check if both start and step are divisible.
255 if (const SCEVAddRecExpr
*A
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
256 const SCEV
*Step
= A
->getStepRecurrence(SE
);
257 const SCEV
*StepRem
= SE
.getConstant(Step
->getType(), 0);
258 if (!FactorOutConstant(Step
, StepRem
, Factor
, SE
, TD
))
260 if (!StepRem
->isZero())
262 const SCEV
*Start
= A
->getStart();
263 if (!FactorOutConstant(Start
, Remainder
, Factor
, SE
, TD
))
265 S
= SE
.getAddRecExpr(Start
, Step
, A
->getLoop());
272 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
273 /// is the number of SCEVAddRecExprs present, which are kept at the end of
276 static void SimplifyAddOperands(SmallVectorImpl
<const SCEV
*> &Ops
,
278 ScalarEvolution
&SE
) {
279 unsigned NumAddRecs
= 0;
280 for (unsigned i
= Ops
.size(); i
> 0 && isa
<SCEVAddRecExpr
>(Ops
[i
-1]); --i
)
282 // Group Ops into non-addrecs and addrecs.
283 SmallVector
<const SCEV
*, 8> NoAddRecs(Ops
.begin(), Ops
.end() - NumAddRecs
);
284 SmallVector
<const SCEV
*, 8> AddRecs(Ops
.end() - NumAddRecs
, Ops
.end());
285 // Let ScalarEvolution sort and simplify the non-addrecs list.
286 const SCEV
*Sum
= NoAddRecs
.empty() ?
287 SE
.getConstant(Ty
, 0) :
288 SE
.getAddExpr(NoAddRecs
);
289 // If it returned an add, use the operands. Otherwise it simplified
290 // the sum into a single value, so just use that.
292 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Sum
))
293 Ops
.append(Add
->op_begin(), Add
->op_end());
294 else if (!Sum
->isZero())
296 // Then append the addrecs.
297 Ops
.append(AddRecs
.begin(), AddRecs
.end());
300 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
301 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
302 /// This helps expose more opportunities for folding parts of the expressions
303 /// into GEP indices.
305 static void SplitAddRecs(SmallVectorImpl
<const SCEV
*> &Ops
,
307 ScalarEvolution
&SE
) {
309 SmallVector
<const SCEV
*, 8> AddRecs
;
310 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
311 while (const SCEVAddRecExpr
*A
= dyn_cast
<SCEVAddRecExpr
>(Ops
[i
])) {
312 const SCEV
*Start
= A
->getStart();
313 if (Start
->isZero()) break;
314 const SCEV
*Zero
= SE
.getConstant(Ty
, 0);
315 AddRecs
.push_back(SE
.getAddRecExpr(Zero
,
316 A
->getStepRecurrence(SE
),
318 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Start
)) {
320 Ops
.append(Add
->op_begin(), Add
->op_end());
321 e
+= Add
->getNumOperands();
326 if (!AddRecs
.empty()) {
327 // Add the addrecs onto the end of the list.
328 Ops
.append(AddRecs
.begin(), AddRecs
.end());
329 // Resort the operand list, moving any constants to the front.
330 SimplifyAddOperands(Ops
, Ty
, SE
);
334 /// expandAddToGEP - Expand an addition expression with a pointer type into
335 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
336 /// BasicAliasAnalysis and other passes analyze the result. See the rules
337 /// for getelementptr vs. inttoptr in
338 /// http://llvm.org/docs/LangRef.html#pointeraliasing
341 /// Design note: The correctness of using getelementptr here depends on
342 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
343 /// they may introduce pointer arithmetic which may not be safely converted
344 /// into getelementptr.
346 /// Design note: It might seem desirable for this function to be more
347 /// loop-aware. If some of the indices are loop-invariant while others
348 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
349 /// loop-invariant portions of the overall computation outside the loop.
350 /// However, there are a few reasons this is not done here. Hoisting simple
351 /// arithmetic is a low-level optimization that often isn't very
352 /// important until late in the optimization process. In fact, passes
353 /// like InstructionCombining will combine GEPs, even if it means
354 /// pushing loop-invariant computation down into loops, so even if the
355 /// GEPs were split here, the work would quickly be undone. The
356 /// LoopStrengthReduction pass, which is usually run quite late (and
357 /// after the last InstructionCombining pass), takes care of hoisting
358 /// loop-invariant portions of expressions, after considering what
359 /// can be folded using target addressing modes.
361 Value
*SCEVExpander::expandAddToGEP(const SCEV
*const *op_begin
,
362 const SCEV
*const *op_end
,
363 const PointerType
*PTy
,
366 const Type
*ElTy
= PTy
->getElementType();
367 SmallVector
<Value
*, 4> GepIndices
;
368 SmallVector
<const SCEV
*, 8> Ops(op_begin
, op_end
);
369 bool AnyNonZeroIndices
= false;
371 // Split AddRecs up into parts as either of the parts may be usable
372 // without the other.
373 SplitAddRecs(Ops
, Ty
, SE
);
375 // Descend down the pointer's type and attempt to convert the other
376 // operands into GEP indices, at each level. The first index in a GEP
377 // indexes into the array implied by the pointer operand; the rest of
378 // the indices index into the element or field type selected by the
381 // If the scale size is not 0, attempt to factor out a scale for
383 SmallVector
<const SCEV
*, 8> ScaledOps
;
384 if (ElTy
->isSized()) {
385 const SCEV
*ElSize
= SE
.getSizeOfExpr(ElTy
);
386 if (!ElSize
->isZero()) {
387 SmallVector
<const SCEV
*, 8> NewOps
;
388 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
389 const SCEV
*Op
= Ops
[i
];
390 const SCEV
*Remainder
= SE
.getConstant(Ty
, 0);
391 if (FactorOutConstant(Op
, Remainder
, ElSize
, SE
, SE
.TD
)) {
392 // Op now has ElSize factored out.
393 ScaledOps
.push_back(Op
);
394 if (!Remainder
->isZero())
395 NewOps
.push_back(Remainder
);
396 AnyNonZeroIndices
= true;
398 // The operand was not divisible, so add it to the list of operands
399 // we'll scan next iteration.
400 NewOps
.push_back(Ops
[i
]);
403 // If we made any changes, update Ops.
404 if (!ScaledOps
.empty()) {
406 SimplifyAddOperands(Ops
, Ty
, SE
);
411 // Record the scaled array index for this level of the type. If
412 // we didn't find any operands that could be factored, tentatively
413 // assume that element zero was selected (since the zero offset
414 // would obviously be folded away).
415 Value
*Scaled
= ScaledOps
.empty() ?
416 Constant::getNullValue(Ty
) :
417 expandCodeFor(SE
.getAddExpr(ScaledOps
), Ty
);
418 GepIndices
.push_back(Scaled
);
420 // Collect struct field index operands.
421 while (const StructType
*STy
= dyn_cast
<StructType
>(ElTy
)) {
422 bool FoundFieldNo
= false;
423 // An empty struct has no fields.
424 if (STy
->getNumElements() == 0) break;
426 // With TargetData, field offsets are known. See if a constant offset
427 // falls within any of the struct fields.
428 if (Ops
.empty()) break;
429 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(Ops
[0]))
430 if (SE
.getTypeSizeInBits(C
->getType()) <= 64) {
431 const StructLayout
&SL
= *SE
.TD
->getStructLayout(STy
);
432 uint64_t FullOffset
= C
->getValue()->getZExtValue();
433 if (FullOffset
< SL
.getSizeInBytes()) {
434 unsigned ElIdx
= SL
.getElementContainingOffset(FullOffset
);
435 GepIndices
.push_back(
436 ConstantInt::get(Type::getInt32Ty(Ty
->getContext()), ElIdx
));
437 ElTy
= STy
->getTypeAtIndex(ElIdx
);
439 SE
.getConstant(Ty
, FullOffset
- SL
.getElementOffset(ElIdx
));
440 AnyNonZeroIndices
= true;
445 // Without TargetData, just check for an offsetof expression of the
446 // appropriate struct type.
447 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
448 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(Ops
[i
])) {
451 if (U
->isOffsetOf(CTy
, FieldNo
) && CTy
== STy
) {
452 GepIndices
.push_back(FieldNo
);
454 STy
->getTypeAtIndex(cast
<ConstantInt
>(FieldNo
)->getZExtValue());
455 Ops
[i
] = SE
.getConstant(Ty
, 0);
456 AnyNonZeroIndices
= true;
462 // If no struct field offsets were found, tentatively assume that
463 // field zero was selected (since the zero offset would obviously
466 ElTy
= STy
->getTypeAtIndex(0u);
467 GepIndices
.push_back(
468 Constant::getNullValue(Type::getInt32Ty(Ty
->getContext())));
472 if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(ElTy
))
473 ElTy
= ATy
->getElementType();
478 // If none of the operands were convertible to proper GEP indices, cast
479 // the base to i8* and do an ugly getelementptr with that. It's still
480 // better than ptrtoint+arithmetic+inttoptr at least.
481 if (!AnyNonZeroIndices
) {
482 // Cast the base to i8*.
483 V
= InsertNoopCastOfTo(V
,
484 Type::getInt8PtrTy(Ty
->getContext(), PTy
->getAddressSpace()));
486 // Expand the operands for a plain byte offset.
487 Value
*Idx
= expandCodeFor(SE
.getAddExpr(Ops
), Ty
);
489 // Fold a GEP with constant operands.
490 if (Constant
*CLHS
= dyn_cast
<Constant
>(V
))
491 if (Constant
*CRHS
= dyn_cast
<Constant
>(Idx
))
492 return ConstantExpr::getGetElementPtr(CLHS
, &CRHS
, 1);
494 // Do a quick scan to see if we have this GEP nearby. If so, reuse it.
495 unsigned ScanLimit
= 6;
496 BasicBlock::iterator BlockBegin
= Builder
.GetInsertBlock()->begin();
497 // Scanning starts from the last instruction before the insertion point.
498 BasicBlock::iterator IP
= Builder
.GetInsertPoint();
499 if (IP
!= BlockBegin
) {
501 for (; ScanLimit
; --IP
, --ScanLimit
) {
502 // Don't count dbg.value against the ScanLimit, to avoid perturbing the
504 if (isa
<DbgInfoIntrinsic
>(IP
))
506 if (IP
->getOpcode() == Instruction::GetElementPtr
&&
507 IP
->getOperand(0) == V
&& IP
->getOperand(1) == Idx
)
509 if (IP
== BlockBegin
) break;
513 // Save the original insertion point so we can restore it when we're done.
514 BasicBlock
*SaveInsertBB
= Builder
.GetInsertBlock();
515 BasicBlock::iterator SaveInsertPt
= Builder
.GetInsertPoint();
517 // Move the insertion point out of as many loops as we can.
518 while (const Loop
*L
= SE
.LI
->getLoopFor(Builder
.GetInsertBlock())) {
519 if (!L
->isLoopInvariant(V
) || !L
->isLoopInvariant(Idx
)) break;
520 BasicBlock
*Preheader
= L
->getLoopPreheader();
521 if (!Preheader
) break;
523 // Ok, move up a level.
524 Builder
.SetInsertPoint(Preheader
, Preheader
->getTerminator());
528 Value
*GEP
= Builder
.CreateGEP(V
, Idx
, "uglygep");
529 rememberInstruction(GEP
);
531 // Restore the original insert point.
533 restoreInsertPoint(SaveInsertBB
, SaveInsertPt
);
538 // Save the original insertion point so we can restore it when we're done.
539 BasicBlock
*SaveInsertBB
= Builder
.GetInsertBlock();
540 BasicBlock::iterator SaveInsertPt
= Builder
.GetInsertPoint();
542 // Move the insertion point out of as many loops as we can.
543 while (const Loop
*L
= SE
.LI
->getLoopFor(Builder
.GetInsertBlock())) {
544 if (!L
->isLoopInvariant(V
)) break;
546 bool AnyIndexNotLoopInvariant
= false;
547 for (SmallVectorImpl
<Value
*>::const_iterator I
= GepIndices
.begin(),
548 E
= GepIndices
.end(); I
!= E
; ++I
)
549 if (!L
->isLoopInvariant(*I
)) {
550 AnyIndexNotLoopInvariant
= true;
553 if (AnyIndexNotLoopInvariant
)
556 BasicBlock
*Preheader
= L
->getLoopPreheader();
557 if (!Preheader
) break;
559 // Ok, move up a level.
560 Builder
.SetInsertPoint(Preheader
, Preheader
->getTerminator());
563 // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
564 // because ScalarEvolution may have changed the address arithmetic to
565 // compute a value which is beyond the end of the allocated object.
567 if (V
->getType() != PTy
)
568 Casted
= InsertNoopCastOfTo(Casted
, PTy
);
569 Value
*GEP
= Builder
.CreateGEP(Casted
,
573 Ops
.push_back(SE
.getUnknown(GEP
));
574 rememberInstruction(GEP
);
576 // Restore the original insert point.
578 restoreInsertPoint(SaveInsertBB
, SaveInsertPt
);
580 return expand(SE
.getAddExpr(Ops
));
583 /// isNonConstantNegative - Return true if the specified scev is negated, but
585 static bool isNonConstantNegative(const SCEV
*F
) {
586 const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(F
);
587 if (!Mul
) return false;
589 // If there is a constant factor, it will be first.
590 const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Mul
->getOperand(0));
591 if (!SC
) return false;
593 // Return true if the value is negative, this matches things like (-42 * V).
594 return SC
->getValue()->getValue().isNegative();
597 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
598 /// SCEV expansion. If they are nested, this is the most nested. If they are
599 /// neighboring, pick the later.
600 static const Loop
*PickMostRelevantLoop(const Loop
*A
, const Loop
*B
,
604 if (A
->contains(B
)) return B
;
605 if (B
->contains(A
)) return A
;
606 if (DT
.dominates(A
->getHeader(), B
->getHeader())) return B
;
607 if (DT
.dominates(B
->getHeader(), A
->getHeader())) return A
;
608 return A
; // Arbitrarily break the tie.
611 /// GetRelevantLoop - Get the most relevant loop associated with the given
612 /// expression, according to PickMostRelevantLoop.
613 static const Loop
*GetRelevantLoop(const SCEV
*S
, LoopInfo
&LI
,
615 if (isa
<SCEVConstant
>(S
))
617 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(S
)) {
618 if (const Instruction
*I
= dyn_cast
<Instruction
>(U
->getValue()))
619 return LI
.getLoopFor(I
->getParent());
622 if (const SCEVNAryExpr
*N
= dyn_cast
<SCEVNAryExpr
>(S
)) {
624 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
))
626 for (SCEVNAryExpr::op_iterator I
= N
->op_begin(), E
= N
->op_end();
628 L
= PickMostRelevantLoop(L
, GetRelevantLoop(*I
, LI
, DT
), DT
);
631 if (const SCEVCastExpr
*C
= dyn_cast
<SCEVCastExpr
>(S
))
632 return GetRelevantLoop(C
->getOperand(), LI
, DT
);
633 if (const SCEVUDivExpr
*D
= dyn_cast
<SCEVUDivExpr
>(S
))
634 return PickMostRelevantLoop(GetRelevantLoop(D
->getLHS(), LI
, DT
),
635 GetRelevantLoop(D
->getRHS(), LI
, DT
),
637 llvm_unreachable("Unexpected SCEV type!");
642 /// LoopCompare - Compare loops by PickMostRelevantLoop.
646 explicit LoopCompare(DominatorTree
&dt
) : DT(dt
) {}
648 bool operator()(std::pair
<const Loop
*, const SCEV
*> LHS
,
649 std::pair
<const Loop
*, const SCEV
*> RHS
) const {
650 // Keep pointer operands sorted at the end.
651 if (LHS
.second
->getType()->isPointerTy() !=
652 RHS
.second
->getType()->isPointerTy())
653 return LHS
.second
->getType()->isPointerTy();
655 // Compare loops with PickMostRelevantLoop.
656 if (LHS
.first
!= RHS
.first
)
657 return PickMostRelevantLoop(LHS
.first
, RHS
.first
, DT
) != LHS
.first
;
659 // If one operand is a non-constant negative and the other is not,
660 // put the non-constant negative on the right so that a sub can
661 // be used instead of a negate and add.
662 if (isNonConstantNegative(LHS
.second
)) {
663 if (!isNonConstantNegative(RHS
.second
))
665 } else if (isNonConstantNegative(RHS
.second
))
668 // Otherwise they are equivalent according to this comparison.
675 Value
*SCEVExpander::visitAddExpr(const SCEVAddExpr
*S
) {
676 const Type
*Ty
= SE
.getEffectiveSCEVType(S
->getType());
678 // Collect all the add operands in a loop, along with their associated loops.
679 // Iterate in reverse so that constants are emitted last, all else equal, and
680 // so that pointer operands are inserted first, which the code below relies on
681 // to form more involved GEPs.
682 SmallVector
<std::pair
<const Loop
*, const SCEV
*>, 8> OpsAndLoops
;
683 for (std::reverse_iterator
<SCEVAddExpr::op_iterator
> I(S
->op_end()),
684 E(S
->op_begin()); I
!= E
; ++I
)
685 OpsAndLoops
.push_back(std::make_pair(GetRelevantLoop(*I
, *SE
.LI
, *SE
.DT
),
688 // Sort by loop. Use a stable sort so that constants follow non-constants and
689 // pointer operands precede non-pointer operands.
690 std::stable_sort(OpsAndLoops
.begin(), OpsAndLoops
.end(), LoopCompare(*SE
.DT
));
692 // Emit instructions to add all the operands. Hoist as much as possible
693 // out of loops, and form meaningful getelementptrs where possible.
695 for (SmallVectorImpl
<std::pair
<const Loop
*, const SCEV
*> >::iterator
696 I
= OpsAndLoops
.begin(), E
= OpsAndLoops
.end(); I
!= E
; ) {
697 const Loop
*CurLoop
= I
->first
;
698 const SCEV
*Op
= I
->second
;
700 // This is the first operand. Just expand it.
703 } else if (const PointerType
*PTy
= dyn_cast
<PointerType
>(Sum
->getType())) {
704 // The running sum expression is a pointer. Try to form a getelementptr
705 // at this level with that as the base.
706 SmallVector
<const SCEV
*, 4> NewOps
;
707 for (; I
!= E
&& I
->first
== CurLoop
; ++I
) {
708 // If the operand is SCEVUnknown and not instructions, peek through
709 // it, to enable more of it to be folded into the GEP.
710 const SCEV
*X
= I
->second
;
711 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(X
))
712 if (!isa
<Instruction
>(U
->getValue()))
713 X
= SE
.getSCEV(U
->getValue());
716 Sum
= expandAddToGEP(NewOps
.begin(), NewOps
.end(), PTy
, Ty
, Sum
);
717 } else if (const PointerType
*PTy
= dyn_cast
<PointerType
>(Op
->getType())) {
718 // The running sum is an integer, and there's a pointer at this level.
719 // Try to form a getelementptr. If the running sum is instructions,
720 // use a SCEVUnknown to avoid re-analyzing them.
721 SmallVector
<const SCEV
*, 4> NewOps
;
722 NewOps
.push_back(isa
<Instruction
>(Sum
) ? SE
.getUnknown(Sum
) :
724 for (++I
; I
!= E
&& I
->first
== CurLoop
; ++I
)
725 NewOps
.push_back(I
->second
);
726 Sum
= expandAddToGEP(NewOps
.begin(), NewOps
.end(), PTy
, Ty
, expand(Op
));
727 } else if (isNonConstantNegative(Op
)) {
728 // Instead of doing a negate and add, just do a subtract.
729 Value
*W
= expandCodeFor(SE
.getNegativeSCEV(Op
), Ty
);
730 Sum
= InsertNoopCastOfTo(Sum
, Ty
);
731 Sum
= InsertBinop(Instruction::Sub
, Sum
, W
);
735 Value
*W
= expandCodeFor(Op
, Ty
);
736 Sum
= InsertNoopCastOfTo(Sum
, Ty
);
737 // Canonicalize a constant to the RHS.
738 if (isa
<Constant
>(Sum
)) std::swap(Sum
, W
);
739 Sum
= InsertBinop(Instruction::Add
, Sum
, W
);
747 Value
*SCEVExpander::visitMulExpr(const SCEVMulExpr
*S
) {
748 const Type
*Ty
= SE
.getEffectiveSCEVType(S
->getType());
750 // Collect all the mul operands in a loop, along with their associated loops.
751 // Iterate in reverse so that constants are emitted last, all else equal.
752 SmallVector
<std::pair
<const Loop
*, const SCEV
*>, 8> OpsAndLoops
;
753 for (std::reverse_iterator
<SCEVMulExpr::op_iterator
> I(S
->op_end()),
754 E(S
->op_begin()); I
!= E
; ++I
)
755 OpsAndLoops
.push_back(std::make_pair(GetRelevantLoop(*I
, *SE
.LI
, *SE
.DT
),
758 // Sort by loop. Use a stable sort so that constants follow non-constants.
759 std::stable_sort(OpsAndLoops
.begin(), OpsAndLoops
.end(), LoopCompare(*SE
.DT
));
761 // Emit instructions to mul all the operands. Hoist as much as possible
764 for (SmallVectorImpl
<std::pair
<const Loop
*, const SCEV
*> >::iterator
765 I
= OpsAndLoops
.begin(), E
= OpsAndLoops
.end(); I
!= E
; ) {
766 const SCEV
*Op
= I
->second
;
768 // This is the first operand. Just expand it.
771 } else if (Op
->isAllOnesValue()) {
772 // Instead of doing a multiply by negative one, just do a negate.
773 Prod
= InsertNoopCastOfTo(Prod
, Ty
);
774 Prod
= InsertBinop(Instruction::Sub
, Constant::getNullValue(Ty
), Prod
);
778 Value
*W
= expandCodeFor(Op
, Ty
);
779 Prod
= InsertNoopCastOfTo(Prod
, Ty
);
780 // Canonicalize a constant to the RHS.
781 if (isa
<Constant
>(Prod
)) std::swap(Prod
, W
);
782 Prod
= InsertBinop(Instruction::Mul
, Prod
, W
);
790 Value
*SCEVExpander::visitUDivExpr(const SCEVUDivExpr
*S
) {
791 const Type
*Ty
= SE
.getEffectiveSCEVType(S
->getType());
793 Value
*LHS
= expandCodeFor(S
->getLHS(), Ty
);
794 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(S
->getRHS())) {
795 const APInt
&RHS
= SC
->getValue()->getValue();
796 if (RHS
.isPowerOf2())
797 return InsertBinop(Instruction::LShr
, LHS
,
798 ConstantInt::get(Ty
, RHS
.logBase2()));
801 Value
*RHS
= expandCodeFor(S
->getRHS(), Ty
);
802 return InsertBinop(Instruction::UDiv
, LHS
, RHS
);
805 /// Move parts of Base into Rest to leave Base with the minimal
806 /// expression that provides a pointer operand suitable for a
808 static void ExposePointerBase(const SCEV
*&Base
, const SCEV
*&Rest
,
809 ScalarEvolution
&SE
) {
810 while (const SCEVAddRecExpr
*A
= dyn_cast
<SCEVAddRecExpr
>(Base
)) {
811 Base
= A
->getStart();
812 Rest
= SE
.getAddExpr(Rest
,
813 SE
.getAddRecExpr(SE
.getConstant(A
->getType(), 0),
814 A
->getStepRecurrence(SE
),
817 if (const SCEVAddExpr
*A
= dyn_cast
<SCEVAddExpr
>(Base
)) {
818 Base
= A
->getOperand(A
->getNumOperands()-1);
819 SmallVector
<const SCEV
*, 8> NewAddOps(A
->op_begin(), A
->op_end());
820 NewAddOps
.back() = Rest
;
821 Rest
= SE
.getAddExpr(NewAddOps
);
822 ExposePointerBase(Base
, Rest
, SE
);
826 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
827 /// the base addrec, which is the addrec without any non-loop-dominating
828 /// values, and return the PHI.
830 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr
*Normalized
,
832 const Type
*ExpandTy
,
834 // Reuse a previously-inserted PHI, if present.
835 for (BasicBlock::iterator I
= L
->getHeader()->begin();
836 PHINode
*PN
= dyn_cast
<PHINode
>(I
); ++I
)
837 if (SE
.isSCEVable(PN
->getType()) &&
838 (SE
.getEffectiveSCEVType(PN
->getType()) ==
839 SE
.getEffectiveSCEVType(Normalized
->getType())) &&
840 SE
.getSCEV(PN
) == Normalized
)
841 if (BasicBlock
*LatchBlock
= L
->getLoopLatch()) {
843 cast
<Instruction
>(PN
->getIncomingValueForBlock(LatchBlock
));
845 // Determine if this is a well-behaved chain of instructions leading
846 // back to the PHI. It probably will be, if we're scanning an inner
847 // loop already visited by LSR for example, but it wouldn't have
850 if (IncV
->getNumOperands() == 0 || isa
<PHINode
>(IncV
)) {
854 // If any of the operands don't dominate the insert position, bail.
855 // Addrec operands are always loop-invariant, so this can only happen
856 // if there are instructions which haven't been hoisted.
857 for (User::op_iterator OI
= IncV
->op_begin()+1,
858 OE
= IncV
->op_end(); OI
!= OE
; ++OI
)
859 if (Instruction
*OInst
= dyn_cast
<Instruction
>(OI
))
860 if (!SE
.DT
->dominates(OInst
, IVIncInsertPos
)) {
866 // Advance to the next instruction.
867 IncV
= dyn_cast
<Instruction
>(IncV
->getOperand(0));
870 if (IncV
->mayHaveSideEffects()) {
874 } while (IncV
!= PN
);
877 // Ok, the add recurrence looks usable.
878 // Remember this PHI, even in post-inc mode.
879 InsertedValues
.insert(PN
);
880 // Remember the increment.
881 IncV
= cast
<Instruction
>(PN
->getIncomingValueForBlock(LatchBlock
));
882 rememberInstruction(IncV
);
883 if (L
== IVIncInsertLoop
)
885 if (SE
.DT
->dominates(IncV
, IVIncInsertPos
))
887 // Make sure the increment is where we want it. But don't move it
888 // down past a potential existing post-inc user.
889 IncV
->moveBefore(IVIncInsertPos
);
890 IVIncInsertPos
= IncV
;
891 IncV
= cast
<Instruction
>(IncV
->getOperand(0));
892 } while (IncV
!= PN
);
897 // Save the original insertion point so we can restore it when we're done.
898 BasicBlock
*SaveInsertBB
= Builder
.GetInsertBlock();
899 BasicBlock::iterator SaveInsertPt
= Builder
.GetInsertPoint();
901 // Expand code for the start value.
902 Value
*StartV
= expandCodeFor(Normalized
->getStart(), ExpandTy
,
903 L
->getHeader()->begin());
905 // Expand code for the step value. Insert instructions right before the
906 // terminator corresponding to the back-edge. Do this before creating the PHI
907 // so that PHI reuse code doesn't see an incomplete PHI. If the stride is
908 // negative, insert a sub instead of an add for the increment (unless it's a
909 // constant, because subtracts of constants are canonicalized to adds).
910 const SCEV
*Step
= Normalized
->getStepRecurrence(SE
);
911 bool isPointer
= ExpandTy
->isPointerTy();
912 bool isNegative
= !isPointer
&& isNonConstantNegative(Step
);
914 Step
= SE
.getNegativeSCEV(Step
);
915 Value
*StepV
= expandCodeFor(Step
, IntTy
, L
->getHeader()->begin());
918 Builder
.SetInsertPoint(L
->getHeader(), L
->getHeader()->begin());
919 PHINode
*PN
= Builder
.CreatePHI(ExpandTy
, "lsr.iv");
920 rememberInstruction(PN
);
922 // Create the step instructions and populate the PHI.
923 BasicBlock
*Header
= L
->getHeader();
924 for (pred_iterator HPI
= pred_begin(Header
), HPE
= pred_end(Header
);
926 BasicBlock
*Pred
= *HPI
;
928 // Add a start value.
929 if (!L
->contains(Pred
)) {
930 PN
->addIncoming(StartV
, Pred
);
934 // Create a step value and add it to the PHI. If IVIncInsertLoop is
935 // non-null and equal to the addrec's loop, insert the instructions
936 // at IVIncInsertPos.
937 Instruction
*InsertPos
= L
== IVIncInsertLoop
?
938 IVIncInsertPos
: Pred
->getTerminator();
939 Builder
.SetInsertPoint(InsertPos
->getParent(), InsertPos
);
941 // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
943 const PointerType
*GEPPtrTy
= cast
<PointerType
>(ExpandTy
);
944 // If the step isn't constant, don't use an implicitly scaled GEP, because
945 // that would require a multiply inside the loop.
946 if (!isa
<ConstantInt
>(StepV
))
947 GEPPtrTy
= PointerType::get(Type::getInt1Ty(SE
.getContext()),
948 GEPPtrTy
->getAddressSpace());
949 const SCEV
*const StepArray
[1] = { SE
.getSCEV(StepV
) };
950 IncV
= expandAddToGEP(StepArray
, StepArray
+1, GEPPtrTy
, IntTy
, PN
);
951 if (IncV
->getType() != PN
->getType()) {
952 IncV
= Builder
.CreateBitCast(IncV
, PN
->getType(), "tmp");
953 rememberInstruction(IncV
);
957 Builder
.CreateSub(PN
, StepV
, "lsr.iv.next") :
958 Builder
.CreateAdd(PN
, StepV
, "lsr.iv.next");
959 rememberInstruction(IncV
);
961 PN
->addIncoming(IncV
, Pred
);
964 // Restore the original insert point.
966 restoreInsertPoint(SaveInsertBB
, SaveInsertPt
);
968 // Remember this PHI, even in post-inc mode.
969 InsertedValues
.insert(PN
);
974 Value
*SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr
*S
) {
975 const Type
*STy
= S
->getType();
976 const Type
*IntTy
= SE
.getEffectiveSCEVType(STy
);
977 const Loop
*L
= S
->getLoop();
979 // Determine a normalized form of this expression, which is the expression
980 // before any post-inc adjustment is made.
981 const SCEVAddRecExpr
*Normalized
= S
;
982 if (PostIncLoops
.count(L
)) {
983 PostIncLoopSet Loops
;
986 cast
<SCEVAddRecExpr
>(TransformForPostIncUse(Normalize
, S
, 0, 0,
990 // Strip off any non-loop-dominating component from the addrec start.
991 const SCEV
*Start
= Normalized
->getStart();
992 const SCEV
*PostLoopOffset
= 0;
993 if (!Start
->properlyDominates(L
->getHeader(), SE
.DT
)) {
994 PostLoopOffset
= Start
;
995 Start
= SE
.getConstant(Normalized
->getType(), 0);
997 cast
<SCEVAddRecExpr
>(SE
.getAddRecExpr(Start
,
998 Normalized
->getStepRecurrence(SE
),
999 Normalized
->getLoop()));
1002 // Strip off any non-loop-dominating component from the addrec step.
1003 const SCEV
*Step
= Normalized
->getStepRecurrence(SE
);
1004 const SCEV
*PostLoopScale
= 0;
1005 if (!Step
->dominates(L
->getHeader(), SE
.DT
)) {
1006 PostLoopScale
= Step
;
1007 Step
= SE
.getConstant(Normalized
->getType(), 1);
1009 cast
<SCEVAddRecExpr
>(SE
.getAddRecExpr(Start
, Step
,
1010 Normalized
->getLoop()));
1013 // Expand the core addrec. If we need post-loop scaling, force it to
1014 // expand to an integer type to avoid the need for additional casting.
1015 const Type
*ExpandTy
= PostLoopScale
? IntTy
: STy
;
1016 PHINode
*PN
= getAddRecExprPHILiterally(Normalized
, L
, ExpandTy
, IntTy
);
1018 // Accommodate post-inc mode, if necessary.
1020 if (!PostIncLoops
.count(L
))
1023 // In PostInc mode, use the post-incremented value.
1024 BasicBlock
*LatchBlock
= L
->getLoopLatch();
1025 assert(LatchBlock
&& "PostInc mode requires a unique loop latch!");
1026 Result
= PN
->getIncomingValueForBlock(LatchBlock
);
1029 // Re-apply any non-loop-dominating scale.
1030 if (PostLoopScale
) {
1031 Result
= InsertNoopCastOfTo(Result
, IntTy
);
1032 Result
= Builder
.CreateMul(Result
,
1033 expandCodeFor(PostLoopScale
, IntTy
));
1034 rememberInstruction(Result
);
1037 // Re-apply any non-loop-dominating offset.
1038 if (PostLoopOffset
) {
1039 if (const PointerType
*PTy
= dyn_cast
<PointerType
>(ExpandTy
)) {
1040 const SCEV
*const OffsetArray
[1] = { PostLoopOffset
};
1041 Result
= expandAddToGEP(OffsetArray
, OffsetArray
+1, PTy
, IntTy
, Result
);
1043 Result
= InsertNoopCastOfTo(Result
, IntTy
);
1044 Result
= Builder
.CreateAdd(Result
,
1045 expandCodeFor(PostLoopOffset
, IntTy
));
1046 rememberInstruction(Result
);
1053 Value
*SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr
*S
) {
1054 if (!CanonicalMode
) return expandAddRecExprLiterally(S
);
1056 const Type
*Ty
= SE
.getEffectiveSCEVType(S
->getType());
1057 const Loop
*L
= S
->getLoop();
1059 // First check for an existing canonical IV in a suitable type.
1060 PHINode
*CanonicalIV
= 0;
1061 if (PHINode
*PN
= L
->getCanonicalInductionVariable())
1062 if (SE
.getTypeSizeInBits(PN
->getType()) >= SE
.getTypeSizeInBits(Ty
))
1065 // Rewrite an AddRec in terms of the canonical induction variable, if
1066 // its type is more narrow.
1068 SE
.getTypeSizeInBits(CanonicalIV
->getType()) >
1069 SE
.getTypeSizeInBits(Ty
)) {
1070 SmallVector
<const SCEV
*, 4> NewOps(S
->getNumOperands());
1071 for (unsigned i
= 0, e
= S
->getNumOperands(); i
!= e
; ++i
)
1072 NewOps
[i
] = SE
.getAnyExtendExpr(S
->op_begin()[i
], CanonicalIV
->getType());
1073 Value
*V
= expand(SE
.getAddRecExpr(NewOps
, S
->getLoop()));
1074 BasicBlock
*SaveInsertBB
= Builder
.GetInsertBlock();
1075 BasicBlock::iterator SaveInsertPt
= Builder
.GetInsertPoint();
1076 BasicBlock::iterator NewInsertPt
=
1077 llvm::next(BasicBlock::iterator(cast
<Instruction
>(V
)));
1078 while (isa
<PHINode
>(NewInsertPt
) || isa
<DbgInfoIntrinsic
>(NewInsertPt
))
1080 V
= expandCodeFor(SE
.getTruncateExpr(SE
.getUnknown(V
), Ty
), 0,
1082 restoreInsertPoint(SaveInsertBB
, SaveInsertPt
);
1086 // {X,+,F} --> X + {0,+,F}
1087 if (!S
->getStart()->isZero()) {
1088 SmallVector
<const SCEV
*, 4> NewOps(S
->op_begin(), S
->op_end());
1089 NewOps
[0] = SE
.getConstant(Ty
, 0);
1090 const SCEV
*Rest
= SE
.getAddRecExpr(NewOps
, L
);
1092 // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1093 // comments on expandAddToGEP for details.
1094 const SCEV
*Base
= S
->getStart();
1095 const SCEV
*RestArray
[1] = { Rest
};
1096 // Dig into the expression to find the pointer base for a GEP.
1097 ExposePointerBase(Base
, RestArray
[0], SE
);
1098 // If we found a pointer, expand the AddRec with a GEP.
1099 if (const PointerType
*PTy
= dyn_cast
<PointerType
>(Base
->getType())) {
1100 // Make sure the Base isn't something exotic, such as a multiplied
1101 // or divided pointer value. In those cases, the result type isn't
1102 // actually a pointer type.
1103 if (!isa
<SCEVMulExpr
>(Base
) && !isa
<SCEVUDivExpr
>(Base
)) {
1104 Value
*StartV
= expand(Base
);
1105 assert(StartV
->getType() == PTy
&& "Pointer type mismatch for GEP!");
1106 return expandAddToGEP(RestArray
, RestArray
+1, PTy
, Ty
, StartV
);
1110 // Just do a normal add. Pre-expand the operands to suppress folding.
1111 return expand(SE
.getAddExpr(SE
.getUnknown(expand(S
->getStart())),
1112 SE
.getUnknown(expand(Rest
))));
1115 // If we don't yet have a canonical IV, create one.
1117 // Create and insert the PHI node for the induction variable in the
1119 BasicBlock
*Header
= L
->getHeader();
1120 CanonicalIV
= PHINode::Create(Ty
, "indvar", Header
->begin());
1121 rememberInstruction(CanonicalIV
);
1123 Constant
*One
= ConstantInt::get(Ty
, 1);
1124 for (pred_iterator HPI
= pred_begin(Header
), HPE
= pred_end(Header
);
1125 HPI
!= HPE
; ++HPI
) {
1126 BasicBlock
*HP
= *HPI
;
1127 if (L
->contains(HP
)) {
1128 // Insert a unit add instruction right before the terminator
1129 // corresponding to the back-edge.
1130 Instruction
*Add
= BinaryOperator::CreateAdd(CanonicalIV
, One
,
1132 HP
->getTerminator());
1133 rememberInstruction(Add
);
1134 CanonicalIV
->addIncoming(Add
, HP
);
1136 CanonicalIV
->addIncoming(Constant::getNullValue(Ty
), HP
);
1141 // {0,+,1} --> Insert a canonical induction variable into the loop!
1142 if (S
->isAffine() && S
->getOperand(1)->isOne()) {
1143 assert(Ty
== SE
.getEffectiveSCEVType(CanonicalIV
->getType()) &&
1144 "IVs with types different from the canonical IV should "
1145 "already have been handled!");
1149 // {0,+,F} --> {0,+,1} * F
1151 // If this is a simple linear addrec, emit it now as a special case.
1152 if (S
->isAffine()) // {0,+,F} --> i*F
1154 expand(SE
.getTruncateOrNoop(
1155 SE
.getMulExpr(SE
.getUnknown(CanonicalIV
),
1156 SE
.getNoopOrAnyExtend(S
->getOperand(1),
1157 CanonicalIV
->getType())),
1160 // If this is a chain of recurrences, turn it into a closed form, using the
1161 // folders, then expandCodeFor the closed form. This allows the folders to
1162 // simplify the expression without having to build a bunch of special code
1163 // into this folder.
1164 const SCEV
*IH
= SE
.getUnknown(CanonicalIV
); // Get I as a "symbolic" SCEV.
1166 // Promote S up to the canonical IV type, if the cast is foldable.
1167 const SCEV
*NewS
= S
;
1168 const SCEV
*Ext
= SE
.getNoopOrAnyExtend(S
, CanonicalIV
->getType());
1169 if (isa
<SCEVAddRecExpr
>(Ext
))
1172 const SCEV
*V
= cast
<SCEVAddRecExpr
>(NewS
)->evaluateAtIteration(IH
, SE
);
1173 //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
1175 // Truncate the result down to the original type, if needed.
1176 const SCEV
*T
= SE
.getTruncateOrNoop(V
, Ty
);
1180 Value
*SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr
*S
) {
1181 const Type
*Ty
= SE
.getEffectiveSCEVType(S
->getType());
1182 Value
*V
= expandCodeFor(S
->getOperand(),
1183 SE
.getEffectiveSCEVType(S
->getOperand()->getType()));
1184 Value
*I
= Builder
.CreateTrunc(V
, Ty
, "tmp");
1185 rememberInstruction(I
);
1189 Value
*SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr
*S
) {
1190 const Type
*Ty
= SE
.getEffectiveSCEVType(S
->getType());
1191 Value
*V
= expandCodeFor(S
->getOperand(),
1192 SE
.getEffectiveSCEVType(S
->getOperand()->getType()));
1193 Value
*I
= Builder
.CreateZExt(V
, Ty
, "tmp");
1194 rememberInstruction(I
);
1198 Value
*SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr
*S
) {
1199 const Type
*Ty
= SE
.getEffectiveSCEVType(S
->getType());
1200 Value
*V
= expandCodeFor(S
->getOperand(),
1201 SE
.getEffectiveSCEVType(S
->getOperand()->getType()));
1202 Value
*I
= Builder
.CreateSExt(V
, Ty
, "tmp");
1203 rememberInstruction(I
);
1207 Value
*SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr
*S
) {
1208 Value
*LHS
= expand(S
->getOperand(S
->getNumOperands()-1));
1209 const Type
*Ty
= LHS
->getType();
1210 for (int i
= S
->getNumOperands()-2; i
>= 0; --i
) {
1211 // In the case of mixed integer and pointer types, do the
1212 // rest of the comparisons as integer.
1213 if (S
->getOperand(i
)->getType() != Ty
) {
1214 Ty
= SE
.getEffectiveSCEVType(Ty
);
1215 LHS
= InsertNoopCastOfTo(LHS
, Ty
);
1217 Value
*RHS
= expandCodeFor(S
->getOperand(i
), Ty
);
1218 Value
*ICmp
= Builder
.CreateICmpSGT(LHS
, RHS
, "tmp");
1219 rememberInstruction(ICmp
);
1220 Value
*Sel
= Builder
.CreateSelect(ICmp
, LHS
, RHS
, "smax");
1221 rememberInstruction(Sel
);
1224 // In the case of mixed integer and pointer types, cast the
1225 // final result back to the pointer type.
1226 if (LHS
->getType() != S
->getType())
1227 LHS
= InsertNoopCastOfTo(LHS
, S
->getType());
1231 Value
*SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr
*S
) {
1232 Value
*LHS
= expand(S
->getOperand(S
->getNumOperands()-1));
1233 const Type
*Ty
= LHS
->getType();
1234 for (int i
= S
->getNumOperands()-2; i
>= 0; --i
) {
1235 // In the case of mixed integer and pointer types, do the
1236 // rest of the comparisons as integer.
1237 if (S
->getOperand(i
)->getType() != Ty
) {
1238 Ty
= SE
.getEffectiveSCEVType(Ty
);
1239 LHS
= InsertNoopCastOfTo(LHS
, Ty
);
1241 Value
*RHS
= expandCodeFor(S
->getOperand(i
), Ty
);
1242 Value
*ICmp
= Builder
.CreateICmpUGT(LHS
, RHS
, "tmp");
1243 rememberInstruction(ICmp
);
1244 Value
*Sel
= Builder
.CreateSelect(ICmp
, LHS
, RHS
, "umax");
1245 rememberInstruction(Sel
);
1248 // In the case of mixed integer and pointer types, cast the
1249 // final result back to the pointer type.
1250 if (LHS
->getType() != S
->getType())
1251 LHS
= InsertNoopCastOfTo(LHS
, S
->getType());
1255 Value
*SCEVExpander::expandCodeFor(const SCEV
*SH
, const Type
*Ty
,
1257 BasicBlock::iterator IP
= I
;
1258 while (isInsertedInstruction(IP
) || isa
<DbgInfoIntrinsic
>(IP
))
1260 Builder
.SetInsertPoint(IP
->getParent(), IP
);
1261 return expandCodeFor(SH
, Ty
);
1264 Value
*SCEVExpander::expandCodeFor(const SCEV
*SH
, const Type
*Ty
) {
1265 // Expand the code for this SCEV.
1266 Value
*V
= expand(SH
);
1268 assert(SE
.getTypeSizeInBits(Ty
) == SE
.getTypeSizeInBits(SH
->getType()) &&
1269 "non-trivial casts should be done with the SCEVs directly!");
1270 V
= InsertNoopCastOfTo(V
, Ty
);
1275 Value
*SCEVExpander::expand(const SCEV
*S
) {
1276 // Compute an insertion point for this SCEV object. Hoist the instructions
1277 // as far out in the loop nest as possible.
1278 Instruction
*InsertPt
= Builder
.GetInsertPoint();
1279 for (Loop
*L
= SE
.LI
->getLoopFor(Builder
.GetInsertBlock()); ;
1280 L
= L
->getParentLoop())
1281 if (S
->isLoopInvariant(L
)) {
1283 if (BasicBlock
*Preheader
= L
->getLoopPreheader())
1284 InsertPt
= Preheader
->getTerminator();
1286 // If the SCEV is computable at this level, insert it into the header
1287 // after the PHIs (and after any other instructions that we've inserted
1288 // there) so that it is guaranteed to dominate any user inside the loop.
1289 if (L
&& S
->hasComputableLoopEvolution(L
) && !PostIncLoops
.count(L
))
1290 InsertPt
= L
->getHeader()->getFirstNonPHI();
1291 while (isInsertedInstruction(InsertPt
) || isa
<DbgInfoIntrinsic
>(InsertPt
))
1292 InsertPt
= llvm::next(BasicBlock::iterator(InsertPt
));
1296 // Check to see if we already expanded this here.
1297 std::map
<std::pair
<const SCEV
*, Instruction
*>,
1298 AssertingVH
<Value
> >::iterator I
=
1299 InsertedExpressions
.find(std::make_pair(S
, InsertPt
));
1300 if (I
!= InsertedExpressions
.end())
1303 BasicBlock
*SaveInsertBB
= Builder
.GetInsertBlock();
1304 BasicBlock::iterator SaveInsertPt
= Builder
.GetInsertPoint();
1305 Builder
.SetInsertPoint(InsertPt
->getParent(), InsertPt
);
1307 // Expand the expression into instructions.
1308 Value
*V
= visit(S
);
1310 // Remember the expanded value for this SCEV at this location.
1311 if (PostIncLoops
.empty())
1312 InsertedExpressions
[std::make_pair(S
, InsertPt
)] = V
;
1314 restoreInsertPoint(SaveInsertBB
, SaveInsertPt
);
1318 void SCEVExpander::rememberInstruction(Value
*I
) {
1319 if (!PostIncLoops
.empty())
1320 InsertedPostIncValues
.insert(I
);
1322 InsertedValues
.insert(I
);
1324 // If we just claimed an existing instruction and that instruction had
1325 // been the insert point, adjust the insert point forward so that
1326 // subsequently inserted code will be dominated.
1327 if (Builder
.GetInsertPoint() == I
) {
1328 BasicBlock::iterator It
= cast
<Instruction
>(I
);
1329 do { ++It
; } while (isInsertedInstruction(It
) ||
1330 isa
<DbgInfoIntrinsic
>(It
));
1331 Builder
.SetInsertPoint(Builder
.GetInsertBlock(), It
);
1335 void SCEVExpander::restoreInsertPoint(BasicBlock
*BB
, BasicBlock::iterator I
) {
1336 // If we acquired more instructions since the old insert point was saved,
1337 // advance past them.
1338 while (isInsertedInstruction(I
) || isa
<DbgInfoIntrinsic
>(I
)) ++I
;
1340 Builder
.SetInsertPoint(BB
, I
);
1343 /// getOrInsertCanonicalInductionVariable - This method returns the
1344 /// canonical induction variable of the specified type for the specified
1345 /// loop (inserting one if there is none). A canonical induction variable
1346 /// starts at zero and steps by one on each iteration.
1348 SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop
*L
,
1350 assert(Ty
->isIntegerTy() && "Can only insert integer induction variables!");
1352 // Build a SCEV for {0,+,1}<L>.
1353 const SCEV
*H
= SE
.getAddRecExpr(SE
.getConstant(Ty
, 0),
1354 SE
.getConstant(Ty
, 1), L
);
1356 // Emit code for it.
1357 BasicBlock
*SaveInsertBB
= Builder
.GetInsertBlock();
1358 BasicBlock::iterator SaveInsertPt
= Builder
.GetInsertPoint();
1359 PHINode
*V
= cast
<PHINode
>(expandCodeFor(H
, 0, L
->getHeader()->begin()));
1361 restoreInsertPoint(SaveInsertBB
, SaveInsertPt
);