1 //===- SparsePropagation.cpp - Sparse Conditional Property Propagation ----===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements an abstract sparse conditional propagation algorithm,
11 // modeled after SCCP, but with a customizable lattice function.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "sparseprop"
16 #include "llvm/Analysis/SparsePropagation.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Function.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/raw_ostream.h"
24 //===----------------------------------------------------------------------===//
25 // AbstractLatticeFunction Implementation
26 //===----------------------------------------------------------------------===//
28 AbstractLatticeFunction::~AbstractLatticeFunction() {}
30 /// PrintValue - Render the specified lattice value to the specified stream.
31 void AbstractLatticeFunction::PrintValue(LatticeVal V
, raw_ostream
&OS
) {
34 else if (V
== OverdefinedVal
)
36 else if (V
== UntrackedVal
)
39 OS
<< "unknown lattice value";
42 //===----------------------------------------------------------------------===//
43 // SparseSolver Implementation
44 //===----------------------------------------------------------------------===//
46 /// getOrInitValueState - Return the LatticeVal object that corresponds to the
47 /// value, initializing the value's state if it hasn't been entered into the
48 /// map yet. This function is necessary because not all values should start
49 /// out in the underdefined state... Arguments should be overdefined, and
50 /// constants should be marked as constants.
52 SparseSolver::LatticeVal
SparseSolver::getOrInitValueState(Value
*V
) {
53 DenseMap
<Value
*, LatticeVal
>::iterator I
= ValueState
.find(V
);
54 if (I
!= ValueState
.end()) return I
->second
; // Common case, in the map
57 if (LatticeFunc
->IsUntrackedValue(V
))
58 return LatticeFunc
->getUntrackedVal();
59 else if (Constant
*C
= dyn_cast
<Constant
>(V
))
60 LV
= LatticeFunc
->ComputeConstant(C
);
61 else if (Argument
*A
= dyn_cast
<Argument
>(V
))
62 LV
= LatticeFunc
->ComputeArgument(A
);
63 else if (!isa
<Instruction
>(V
))
64 // All other non-instructions are overdefined.
65 LV
= LatticeFunc
->getOverdefinedVal();
67 // All instructions are underdefined by default.
68 LV
= LatticeFunc
->getUndefVal();
70 // If this value is untracked, don't add it to the map.
71 if (LV
== LatticeFunc
->getUntrackedVal())
73 return ValueState
[V
] = LV
;
76 /// UpdateState - When the state for some instruction is potentially updated,
77 /// this function notices and adds I to the worklist if needed.
78 void SparseSolver::UpdateState(Instruction
&Inst
, LatticeVal V
) {
79 DenseMap
<Value
*, LatticeVal
>::iterator I
= ValueState
.find(&Inst
);
80 if (I
!= ValueState
.end() && I
->second
== V
)
83 // An update. Visit uses of I.
84 ValueState
[&Inst
] = V
;
85 InstWorkList
.push_back(&Inst
);
88 /// MarkBlockExecutable - This method can be used by clients to mark all of
89 /// the blocks that are known to be intrinsically live in the processed unit.
90 void SparseSolver::MarkBlockExecutable(BasicBlock
*BB
) {
91 DEBUG(dbgs() << "Marking Block Executable: " << BB
->getName() << "\n");
92 BBExecutable
.insert(BB
); // Basic block is executable!
93 BBWorkList
.push_back(BB
); // Add the block to the work list!
96 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
97 /// work list if it is not already executable...
98 void SparseSolver::markEdgeExecutable(BasicBlock
*Source
, BasicBlock
*Dest
) {
99 if (!KnownFeasibleEdges
.insert(Edge(Source
, Dest
)).second
)
100 return; // This edge is already known to be executable!
102 DEBUG(dbgs() << "Marking Edge Executable: " << Source
->getName()
103 << " -> " << Dest
->getName() << "\n");
105 if (BBExecutable
.count(Dest
)) {
106 // The destination is already executable, but we just made an edge
107 // feasible that wasn't before. Revisit the PHI nodes in the block
108 // because they have potentially new operands.
109 for (BasicBlock::iterator I
= Dest
->begin(); isa
<PHINode
>(I
); ++I
)
110 visitPHINode(*cast
<PHINode
>(I
));
113 MarkBlockExecutable(Dest
);
118 /// getFeasibleSuccessors - Return a vector of booleans to indicate which
119 /// successors are reachable from a given terminator instruction.
120 void SparseSolver::getFeasibleSuccessors(TerminatorInst
&TI
,
121 SmallVectorImpl
<bool> &Succs
,
122 bool AggressiveUndef
) {
123 Succs
.resize(TI
.getNumSuccessors());
124 if (TI
.getNumSuccessors() == 0) return;
126 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(&TI
)) {
127 if (BI
->isUnconditional()) {
134 BCValue
= getOrInitValueState(BI
->getCondition());
136 BCValue
= getLatticeState(BI
->getCondition());
138 if (BCValue
== LatticeFunc
->getOverdefinedVal() ||
139 BCValue
== LatticeFunc
->getUntrackedVal()) {
140 // Overdefined condition variables can branch either way.
141 Succs
[0] = Succs
[1] = true;
145 // If undefined, neither is feasible yet.
146 if (BCValue
== LatticeFunc
->getUndefVal())
149 Constant
*C
= LatticeFunc
->GetConstant(BCValue
, BI
->getCondition(), *this);
150 if (C
== 0 || !isa
<ConstantInt
>(C
)) {
151 // Non-constant values can go either way.
152 Succs
[0] = Succs
[1] = true;
156 // Constant condition variables mean the branch can only go a single way
157 Succs
[C
->isNullValue()] = true;
161 if (isa
<InvokeInst
>(TI
)) {
162 // Invoke instructions successors are always executable.
163 // TODO: Could ask the lattice function if the value can throw.
164 Succs
[0] = Succs
[1] = true;
168 if (isa
<IndirectBrInst
>(TI
)) {
169 Succs
.assign(Succs
.size(), true);
173 SwitchInst
&SI
= cast
<SwitchInst
>(TI
);
176 SCValue
= getOrInitValueState(SI
.getCondition());
178 SCValue
= getLatticeState(SI
.getCondition());
180 if (SCValue
== LatticeFunc
->getOverdefinedVal() ||
181 SCValue
== LatticeFunc
->getUntrackedVal()) {
182 // All destinations are executable!
183 Succs
.assign(TI
.getNumSuccessors(), true);
187 // If undefined, neither is feasible yet.
188 if (SCValue
== LatticeFunc
->getUndefVal())
191 Constant
*C
= LatticeFunc
->GetConstant(SCValue
, SI
.getCondition(), *this);
192 if (C
== 0 || !isa
<ConstantInt
>(C
)) {
193 // All destinations are executable!
194 Succs
.assign(TI
.getNumSuccessors(), true);
198 Succs
[SI
.findCaseValue(cast
<ConstantInt
>(C
))] = true;
202 /// isEdgeFeasible - Return true if the control flow edge from the 'From'
203 /// basic block to the 'To' basic block is currently feasible...
204 bool SparseSolver::isEdgeFeasible(BasicBlock
*From
, BasicBlock
*To
,
205 bool AggressiveUndef
) {
206 SmallVector
<bool, 16> SuccFeasible
;
207 TerminatorInst
*TI
= From
->getTerminator();
208 getFeasibleSuccessors(*TI
, SuccFeasible
, AggressiveUndef
);
210 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
)
211 if (TI
->getSuccessor(i
) == To
&& SuccFeasible
[i
])
217 void SparseSolver::visitTerminatorInst(TerminatorInst
&TI
) {
218 SmallVector
<bool, 16> SuccFeasible
;
219 getFeasibleSuccessors(TI
, SuccFeasible
, true);
221 BasicBlock
*BB
= TI
.getParent();
223 // Mark all feasible successors executable...
224 for (unsigned i
= 0, e
= SuccFeasible
.size(); i
!= e
; ++i
)
226 markEdgeExecutable(BB
, TI
.getSuccessor(i
));
229 void SparseSolver::visitPHINode(PHINode
&PN
) {
230 // The lattice function may store more information on a PHINode than could be
231 // computed from its incoming values. For example, SSI form stores its sigma
232 // functions as PHINodes with a single incoming value.
233 if (LatticeFunc
->IsSpecialCasedPHI(&PN
)) {
234 LatticeVal IV
= LatticeFunc
->ComputeInstructionState(PN
, *this);
235 if (IV
!= LatticeFunc
->getUntrackedVal())
240 LatticeVal PNIV
= getOrInitValueState(&PN
);
241 LatticeVal Overdefined
= LatticeFunc
->getOverdefinedVal();
243 // If this value is already overdefined (common) just return.
244 if (PNIV
== Overdefined
|| PNIV
== LatticeFunc
->getUntrackedVal())
245 return; // Quick exit
247 // Super-extra-high-degree PHI nodes are unlikely to ever be interesting,
248 // and slow us down a lot. Just mark them overdefined.
249 if (PN
.getNumIncomingValues() > 64) {
250 UpdateState(PN
, Overdefined
);
254 // Look at all of the executable operands of the PHI node. If any of them
255 // are overdefined, the PHI becomes overdefined as well. Otherwise, ask the
256 // transfer function to give us the merge of the incoming values.
257 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
258 // If the edge is not yet known to be feasible, it doesn't impact the PHI.
259 if (!isEdgeFeasible(PN
.getIncomingBlock(i
), PN
.getParent(), true))
262 // Merge in this value.
263 LatticeVal OpVal
= getOrInitValueState(PN
.getIncomingValue(i
));
265 PNIV
= LatticeFunc
->MergeValues(PNIV
, OpVal
);
267 if (PNIV
== Overdefined
)
268 break; // Rest of input values don't matter.
271 // Update the PHI with the compute value, which is the merge of the inputs.
272 UpdateState(PN
, PNIV
);
276 void SparseSolver::visitInst(Instruction
&I
) {
277 // PHIs are handled by the propagation logic, they are never passed into the
278 // transfer functions.
279 if (PHINode
*PN
= dyn_cast
<PHINode
>(&I
))
280 return visitPHINode(*PN
);
282 // Otherwise, ask the transfer function what the result is. If this is
283 // something that we care about, remember it.
284 LatticeVal IV
= LatticeFunc
->ComputeInstructionState(I
, *this);
285 if (IV
!= LatticeFunc
->getUntrackedVal())
288 if (TerminatorInst
*TI
= dyn_cast
<TerminatorInst
>(&I
))
289 visitTerminatorInst(*TI
);
292 void SparseSolver::Solve(Function
&F
) {
293 MarkBlockExecutable(&F
.getEntryBlock());
295 // Process the work lists until they are empty!
296 while (!BBWorkList
.empty() || !InstWorkList
.empty()) {
297 // Process the instruction work list.
298 while (!InstWorkList
.empty()) {
299 Instruction
*I
= InstWorkList
.back();
300 InstWorkList
.pop_back();
302 DEBUG(dbgs() << "\nPopped off I-WL: " << *I
<< "\n");
304 // "I" got into the work list because it made a transition. See if any
305 // users are both live and in need of updating.
306 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end();
308 Instruction
*U
= cast
<Instruction
>(*UI
);
309 if (BBExecutable
.count(U
->getParent())) // Inst is executable?
314 // Process the basic block work list.
315 while (!BBWorkList
.empty()) {
316 BasicBlock
*BB
= BBWorkList
.back();
317 BBWorkList
.pop_back();
319 DEBUG(dbgs() << "\nPopped off BBWL: " << *BB
);
321 // Notify all instructions in this basic block that they are newly
323 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
329 void SparseSolver::Print(Function
&F
, raw_ostream
&OS
) const {
330 OS
<< "\nFUNCTION: " << F
.getNameStr() << "\n";
331 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
) {
332 if (!BBExecutable
.count(BB
))
333 OS
<< "INFEASIBLE: ";
336 OS
<< BB
->getNameStr() << ":\n";
339 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
) {
340 LatticeFunc
->PrintValue(getLatticeState(I
), OS
);