1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains routines that help analyze properties that chains of
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/Constants.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/GlobalVariable.h"
19 #include "llvm/GlobalAlias.h"
20 #include "llvm/IntrinsicInst.h"
21 #include "llvm/LLVMContext.h"
22 #include "llvm/Operator.h"
23 #include "llvm/Target/TargetData.h"
24 #include "llvm/Support/GetElementPtrTypeIterator.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/ADT/SmallPtrSet.h"
30 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
31 /// known to be either zero or one and return them in the KnownZero/KnownOne
32 /// bit sets. This code only analyzes bits in Mask, in order to short-circuit
34 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
35 /// we cannot optimize based on the assumption that it is zero without changing
36 /// it to be an explicit zero. If we don't change it to zero, other code could
37 /// optimized based on the contradictory assumption that it is non-zero.
38 /// Because instcombine aggressively folds operations with undef args anyway,
39 /// this won't lose us code quality.
41 /// This function is defined on values with integer type, values with pointer
42 /// type (but only if TD is non-null), and vectors of integers. In the case
43 /// where V is a vector, the mask, known zero, and known one values are the
44 /// same width as the vector element, and the bit is set only if it is true
45 /// for all of the elements in the vector.
46 void llvm::ComputeMaskedBits(Value
*V
, const APInt
&Mask
,
47 APInt
&KnownZero
, APInt
&KnownOne
,
48 const TargetData
*TD
, unsigned Depth
) {
49 const unsigned MaxDepth
= 6;
50 assert(V
&& "No Value?");
51 assert(Depth
<= MaxDepth
&& "Limit Search Depth");
52 unsigned BitWidth
= Mask
.getBitWidth();
53 assert((V
->getType()->isIntOrIntVectorTy() || V
->getType()->isPointerTy())
54 && "Not integer or pointer type!");
56 TD
->getTypeSizeInBits(V
->getType()->getScalarType()) == BitWidth
) &&
57 (!V
->getType()->isIntOrIntVectorTy() ||
58 V
->getType()->getScalarSizeInBits() == BitWidth
) &&
59 KnownZero
.getBitWidth() == BitWidth
&&
60 KnownOne
.getBitWidth() == BitWidth
&&
61 "V, Mask, KnownOne and KnownZero should have same BitWidth");
63 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
64 // We know all of the bits for a constant!
65 KnownOne
= CI
->getValue() & Mask
;
66 KnownZero
= ~KnownOne
& Mask
;
69 // Null and aggregate-zero are all-zeros.
70 if (isa
<ConstantPointerNull
>(V
) ||
71 isa
<ConstantAggregateZero
>(V
)) {
76 // Handle a constant vector by taking the intersection of the known bits of
78 if (ConstantVector
*CV
= dyn_cast
<ConstantVector
>(V
)) {
79 KnownZero
.set(); KnownOne
.set();
80 for (unsigned i
= 0, e
= CV
->getNumOperands(); i
!= e
; ++i
) {
81 APInt
KnownZero2(BitWidth
, 0), KnownOne2(BitWidth
, 0);
82 ComputeMaskedBits(CV
->getOperand(i
), Mask
, KnownZero2
, KnownOne2
,
84 KnownZero
&= KnownZero2
;
85 KnownOne
&= KnownOne2
;
89 // The address of an aligned GlobalValue has trailing zeros.
90 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
91 unsigned Align
= GV
->getAlignment();
92 if (Align
== 0 && TD
&& GV
->getType()->getElementType()->isSized()) {
93 const Type
*ObjectType
= GV
->getType()->getElementType();
94 // If the object is defined in the current Module, we'll be giving
95 // it the preferred alignment. Otherwise, we have to assume that it
96 // may only have the minimum ABI alignment.
97 if (!GV
->isDeclaration() && !GV
->mayBeOverridden())
98 Align
= TD
->getPrefTypeAlignment(ObjectType
);
100 Align
= TD
->getABITypeAlignment(ObjectType
);
103 KnownZero
= Mask
& APInt::getLowBitsSet(BitWidth
,
104 CountTrailingZeros_32(Align
));
110 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
111 // the bits of its aliasee.
112 if (GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(V
)) {
113 if (GA
->mayBeOverridden()) {
114 KnownZero
.clear(); KnownOne
.clear();
116 ComputeMaskedBits(GA
->getAliasee(), Mask
, KnownZero
, KnownOne
,
122 KnownZero
.clear(); KnownOne
.clear(); // Start out not knowing anything.
124 if (Depth
== MaxDepth
|| Mask
== 0)
125 return; // Limit search depth.
127 Operator
*I
= dyn_cast
<Operator
>(V
);
130 APInt
KnownZero2(KnownZero
), KnownOne2(KnownOne
);
131 switch (I
->getOpcode()) {
133 case Instruction::And
: {
134 // If either the LHS or the RHS are Zero, the result is zero.
135 ComputeMaskedBits(I
->getOperand(1), Mask
, KnownZero
, KnownOne
, TD
, Depth
+1);
136 APInt
Mask2(Mask
& ~KnownZero
);
137 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero2
, KnownOne2
, TD
,
139 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
140 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
142 // Output known-1 bits are only known if set in both the LHS & RHS.
143 KnownOne
&= KnownOne2
;
144 // Output known-0 are known to be clear if zero in either the LHS | RHS.
145 KnownZero
|= KnownZero2
;
148 case Instruction::Or
: {
149 ComputeMaskedBits(I
->getOperand(1), Mask
, KnownZero
, KnownOne
, TD
, Depth
+1);
150 APInt
Mask2(Mask
& ~KnownOne
);
151 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero2
, KnownOne2
, TD
,
153 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
154 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
156 // Output known-0 bits are only known if clear in both the LHS & RHS.
157 KnownZero
&= KnownZero2
;
158 // Output known-1 are known to be set if set in either the LHS | RHS.
159 KnownOne
|= KnownOne2
;
162 case Instruction::Xor
: {
163 ComputeMaskedBits(I
->getOperand(1), Mask
, KnownZero
, KnownOne
, TD
, Depth
+1);
164 ComputeMaskedBits(I
->getOperand(0), Mask
, KnownZero2
, KnownOne2
, TD
,
166 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
167 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
169 // Output known-0 bits are known if clear or set in both the LHS & RHS.
170 APInt KnownZeroOut
= (KnownZero
& KnownZero2
) | (KnownOne
& KnownOne2
);
171 // Output known-1 are known to be set if set in only one of the LHS, RHS.
172 KnownOne
= (KnownZero
& KnownOne2
) | (KnownOne
& KnownZero2
);
173 KnownZero
= KnownZeroOut
;
176 case Instruction::Mul
: {
177 APInt Mask2
= APInt::getAllOnesValue(BitWidth
);
178 ComputeMaskedBits(I
->getOperand(1), Mask2
, KnownZero
, KnownOne
, TD
,Depth
+1);
179 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero2
, KnownOne2
, TD
,
181 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
182 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
184 // If low bits are zero in either operand, output low known-0 bits.
185 // Also compute a conserative estimate for high known-0 bits.
186 // More trickiness is possible, but this is sufficient for the
187 // interesting case of alignment computation.
189 unsigned TrailZ
= KnownZero
.countTrailingOnes() +
190 KnownZero2
.countTrailingOnes();
191 unsigned LeadZ
= std::max(KnownZero
.countLeadingOnes() +
192 KnownZero2
.countLeadingOnes(),
193 BitWidth
) - BitWidth
;
195 TrailZ
= std::min(TrailZ
, BitWidth
);
196 LeadZ
= std::min(LeadZ
, BitWidth
);
197 KnownZero
= APInt::getLowBitsSet(BitWidth
, TrailZ
) |
198 APInt::getHighBitsSet(BitWidth
, LeadZ
);
202 case Instruction::UDiv
: {
203 // For the purposes of computing leading zeros we can conservatively
204 // treat a udiv as a logical right shift by the power of 2 known to
205 // be less than the denominator.
206 APInt AllOnes
= APInt::getAllOnesValue(BitWidth
);
207 ComputeMaskedBits(I
->getOperand(0),
208 AllOnes
, KnownZero2
, KnownOne2
, TD
, Depth
+1);
209 unsigned LeadZ
= KnownZero2
.countLeadingOnes();
213 ComputeMaskedBits(I
->getOperand(1),
214 AllOnes
, KnownZero2
, KnownOne2
, TD
, Depth
+1);
215 unsigned RHSUnknownLeadingOnes
= KnownOne2
.countLeadingZeros();
216 if (RHSUnknownLeadingOnes
!= BitWidth
)
217 LeadZ
= std::min(BitWidth
,
218 LeadZ
+ BitWidth
- RHSUnknownLeadingOnes
- 1);
220 KnownZero
= APInt::getHighBitsSet(BitWidth
, LeadZ
) & Mask
;
223 case Instruction::Select
:
224 ComputeMaskedBits(I
->getOperand(2), Mask
, KnownZero
, KnownOne
, TD
, Depth
+1);
225 ComputeMaskedBits(I
->getOperand(1), Mask
, KnownZero2
, KnownOne2
, TD
,
227 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
228 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
230 // Only known if known in both the LHS and RHS.
231 KnownOne
&= KnownOne2
;
232 KnownZero
&= KnownZero2
;
234 case Instruction::FPTrunc
:
235 case Instruction::FPExt
:
236 case Instruction::FPToUI
:
237 case Instruction::FPToSI
:
238 case Instruction::SIToFP
:
239 case Instruction::UIToFP
:
240 return; // Can't work with floating point.
241 case Instruction::PtrToInt
:
242 case Instruction::IntToPtr
:
243 // We can't handle these if we don't know the pointer size.
245 // FALL THROUGH and handle them the same as zext/trunc.
246 case Instruction::ZExt
:
247 case Instruction::Trunc
: {
248 const Type
*SrcTy
= I
->getOperand(0)->getType();
250 unsigned SrcBitWidth
;
251 // Note that we handle pointer operands here because of inttoptr/ptrtoint
252 // which fall through here.
253 if (SrcTy
->isPointerTy())
254 SrcBitWidth
= TD
->getTypeSizeInBits(SrcTy
);
256 SrcBitWidth
= SrcTy
->getScalarSizeInBits();
259 MaskIn
.zextOrTrunc(SrcBitWidth
);
260 KnownZero
.zextOrTrunc(SrcBitWidth
);
261 KnownOne
.zextOrTrunc(SrcBitWidth
);
262 ComputeMaskedBits(I
->getOperand(0), MaskIn
, KnownZero
, KnownOne
, TD
,
264 KnownZero
.zextOrTrunc(BitWidth
);
265 KnownOne
.zextOrTrunc(BitWidth
);
266 // Any top bits are known to be zero.
267 if (BitWidth
> SrcBitWidth
)
268 KnownZero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- SrcBitWidth
);
271 case Instruction::BitCast
: {
272 const Type
*SrcTy
= I
->getOperand(0)->getType();
273 if ((SrcTy
->isIntegerTy() || SrcTy
->isPointerTy()) &&
274 // TODO: For now, not handling conversions like:
275 // (bitcast i64 %x to <2 x i32>)
276 !I
->getType()->isVectorTy()) {
277 ComputeMaskedBits(I
->getOperand(0), Mask
, KnownZero
, KnownOne
, TD
,
283 case Instruction::SExt
: {
284 // Compute the bits in the result that are not present in the input.
285 unsigned SrcBitWidth
= I
->getOperand(0)->getType()->getScalarSizeInBits();
288 MaskIn
.trunc(SrcBitWidth
);
289 KnownZero
.trunc(SrcBitWidth
);
290 KnownOne
.trunc(SrcBitWidth
);
291 ComputeMaskedBits(I
->getOperand(0), MaskIn
, KnownZero
, KnownOne
, TD
,
293 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
294 KnownZero
.zext(BitWidth
);
295 KnownOne
.zext(BitWidth
);
297 // If the sign bit of the input is known set or clear, then we know the
298 // top bits of the result.
299 if (KnownZero
[SrcBitWidth
-1]) // Input sign bit known zero
300 KnownZero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- SrcBitWidth
);
301 else if (KnownOne
[SrcBitWidth
-1]) // Input sign bit known set
302 KnownOne
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- SrcBitWidth
);
305 case Instruction::Shl
:
306 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
307 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
308 uint64_t ShiftAmt
= SA
->getLimitedValue(BitWidth
);
309 APInt
Mask2(Mask
.lshr(ShiftAmt
));
310 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero
, KnownOne
, TD
,
312 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
313 KnownZero
<<= ShiftAmt
;
314 KnownOne
<<= ShiftAmt
;
315 KnownZero
|= APInt::getLowBitsSet(BitWidth
, ShiftAmt
); // low bits known 0
319 case Instruction::LShr
:
320 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
321 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
322 // Compute the new bits that are at the top now.
323 uint64_t ShiftAmt
= SA
->getLimitedValue(BitWidth
);
325 // Unsigned shift right.
326 APInt
Mask2(Mask
.shl(ShiftAmt
));
327 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero
,KnownOne
, TD
,
329 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
330 KnownZero
= APIntOps::lshr(KnownZero
, ShiftAmt
);
331 KnownOne
= APIntOps::lshr(KnownOne
, ShiftAmt
);
332 // high bits known zero.
333 KnownZero
|= APInt::getHighBitsSet(BitWidth
, ShiftAmt
);
337 case Instruction::AShr
:
338 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
339 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
340 // Compute the new bits that are at the top now.
341 uint64_t ShiftAmt
= SA
->getLimitedValue(BitWidth
);
343 // Signed shift right.
344 APInt
Mask2(Mask
.shl(ShiftAmt
));
345 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero
, KnownOne
, TD
,
347 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
348 KnownZero
= APIntOps::lshr(KnownZero
, ShiftAmt
);
349 KnownOne
= APIntOps::lshr(KnownOne
, ShiftAmt
);
351 APInt
HighBits(APInt::getHighBitsSet(BitWidth
, ShiftAmt
));
352 if (KnownZero
[BitWidth
-ShiftAmt
-1]) // New bits are known zero.
353 KnownZero
|= HighBits
;
354 else if (KnownOne
[BitWidth
-ShiftAmt
-1]) // New bits are known one.
355 KnownOne
|= HighBits
;
359 case Instruction::Sub
: {
360 if (ConstantInt
*CLHS
= dyn_cast
<ConstantInt
>(I
->getOperand(0))) {
361 // We know that the top bits of C-X are clear if X contains less bits
362 // than C (i.e. no wrap-around can happen). For example, 20-X is
363 // positive if we can prove that X is >= 0 and < 16.
364 if (!CLHS
->getValue().isNegative()) {
365 unsigned NLZ
= (CLHS
->getValue()+1).countLeadingZeros();
366 // NLZ can't be BitWidth with no sign bit
367 APInt MaskV
= APInt::getHighBitsSet(BitWidth
, NLZ
+1);
368 ComputeMaskedBits(I
->getOperand(1), MaskV
, KnownZero2
, KnownOne2
,
371 // If all of the MaskV bits are known to be zero, then we know the
372 // output top bits are zero, because we now know that the output is
374 if ((KnownZero2
& MaskV
) == MaskV
) {
375 unsigned NLZ2
= CLHS
->getValue().countLeadingZeros();
376 // Top bits known zero.
377 KnownZero
= APInt::getHighBitsSet(BitWidth
, NLZ2
) & Mask
;
383 case Instruction::Add
: {
384 // If one of the operands has trailing zeros, then the bits that the
385 // other operand has in those bit positions will be preserved in the
386 // result. For an add, this works with either operand. For a subtract,
387 // this only works if the known zeros are in the right operand.
388 APInt
LHSKnownZero(BitWidth
, 0), LHSKnownOne(BitWidth
, 0);
389 APInt Mask2
= APInt::getLowBitsSet(BitWidth
,
390 BitWidth
- Mask
.countLeadingZeros());
391 ComputeMaskedBits(I
->getOperand(0), Mask2
, LHSKnownZero
, LHSKnownOne
, TD
,
393 assert((LHSKnownZero
& LHSKnownOne
) == 0 &&
394 "Bits known to be one AND zero?");
395 unsigned LHSKnownZeroOut
= LHSKnownZero
.countTrailingOnes();
397 ComputeMaskedBits(I
->getOperand(1), Mask2
, KnownZero2
, KnownOne2
, TD
,
399 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
400 unsigned RHSKnownZeroOut
= KnownZero2
.countTrailingOnes();
402 // Determine which operand has more trailing zeros, and use that
403 // many bits from the other operand.
404 if (LHSKnownZeroOut
> RHSKnownZeroOut
) {
405 if (I
->getOpcode() == Instruction::Add
) {
406 APInt Mask
= APInt::getLowBitsSet(BitWidth
, LHSKnownZeroOut
);
407 KnownZero
|= KnownZero2
& Mask
;
408 KnownOne
|= KnownOne2
& Mask
;
410 // If the known zeros are in the left operand for a subtract,
411 // fall back to the minimum known zeros in both operands.
412 KnownZero
|= APInt::getLowBitsSet(BitWidth
,
413 std::min(LHSKnownZeroOut
,
416 } else if (RHSKnownZeroOut
>= LHSKnownZeroOut
) {
417 APInt Mask
= APInt::getLowBitsSet(BitWidth
, RHSKnownZeroOut
);
418 KnownZero
|= LHSKnownZero
& Mask
;
419 KnownOne
|= LHSKnownOne
& Mask
;
423 case Instruction::SRem
:
424 if (ConstantInt
*Rem
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
425 APInt RA
= Rem
->getValue().abs();
426 if (RA
.isPowerOf2()) {
427 APInt LowBits
= RA
- 1;
428 APInt Mask2
= LowBits
| APInt::getSignBit(BitWidth
);
429 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero2
, KnownOne2
, TD
,
432 // The low bits of the first operand are unchanged by the srem.
433 KnownZero
= KnownZero2
& LowBits
;
434 KnownOne
= KnownOne2
& LowBits
;
436 // If the first operand is non-negative or has all low bits zero, then
437 // the upper bits are all zero.
438 if (KnownZero2
[BitWidth
-1] || ((KnownZero2
& LowBits
) == LowBits
))
439 KnownZero
|= ~LowBits
;
441 // If the first operand is negative and not all low bits are zero, then
442 // the upper bits are all one.
443 if (KnownOne2
[BitWidth
-1] && ((KnownOne2
& LowBits
) != 0))
444 KnownOne
|= ~LowBits
;
449 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
453 case Instruction::URem
: {
454 if (ConstantInt
*Rem
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
455 APInt RA
= Rem
->getValue();
456 if (RA
.isPowerOf2()) {
457 APInt LowBits
= (RA
- 1);
458 APInt Mask2
= LowBits
& Mask
;
459 KnownZero
|= ~LowBits
& Mask
;
460 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero
, KnownOne
, TD
,
462 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
467 // Since the result is less than or equal to either operand, any leading
468 // zero bits in either operand must also exist in the result.
469 APInt AllOnes
= APInt::getAllOnesValue(BitWidth
);
470 ComputeMaskedBits(I
->getOperand(0), AllOnes
, KnownZero
, KnownOne
,
472 ComputeMaskedBits(I
->getOperand(1), AllOnes
, KnownZero2
, KnownOne2
,
475 unsigned Leaders
= std::max(KnownZero
.countLeadingOnes(),
476 KnownZero2
.countLeadingOnes());
478 KnownZero
= APInt::getHighBitsSet(BitWidth
, Leaders
) & Mask
;
482 case Instruction::Alloca
: {
483 AllocaInst
*AI
= cast
<AllocaInst
>(V
);
484 unsigned Align
= AI
->getAlignment();
485 if (Align
== 0 && TD
)
486 Align
= TD
->getABITypeAlignment(AI
->getType()->getElementType());
489 KnownZero
= Mask
& APInt::getLowBitsSet(BitWidth
,
490 CountTrailingZeros_32(Align
));
493 case Instruction::GetElementPtr
: {
494 // Analyze all of the subscripts of this getelementptr instruction
495 // to determine if we can prove known low zero bits.
496 APInt LocalMask
= APInt::getAllOnesValue(BitWidth
);
497 APInt
LocalKnownZero(BitWidth
, 0), LocalKnownOne(BitWidth
, 0);
498 ComputeMaskedBits(I
->getOperand(0), LocalMask
,
499 LocalKnownZero
, LocalKnownOne
, TD
, Depth
+1);
500 unsigned TrailZ
= LocalKnownZero
.countTrailingOnes();
502 gep_type_iterator GTI
= gep_type_begin(I
);
503 for (unsigned i
= 1, e
= I
->getNumOperands(); i
!= e
; ++i
, ++GTI
) {
504 Value
*Index
= I
->getOperand(i
);
505 if (const StructType
*STy
= dyn_cast
<StructType
>(*GTI
)) {
506 // Handle struct member offset arithmetic.
508 const StructLayout
*SL
= TD
->getStructLayout(STy
);
509 unsigned Idx
= cast
<ConstantInt
>(Index
)->getZExtValue();
510 uint64_t Offset
= SL
->getElementOffset(Idx
);
511 TrailZ
= std::min(TrailZ
,
512 CountTrailingZeros_64(Offset
));
514 // Handle array index arithmetic.
515 const Type
*IndexedTy
= GTI
.getIndexedType();
516 if (!IndexedTy
->isSized()) return;
517 unsigned GEPOpiBits
= Index
->getType()->getScalarSizeInBits();
518 uint64_t TypeSize
= TD
? TD
->getTypeAllocSize(IndexedTy
) : 1;
519 LocalMask
= APInt::getAllOnesValue(GEPOpiBits
);
520 LocalKnownZero
= LocalKnownOne
= APInt(GEPOpiBits
, 0);
521 ComputeMaskedBits(Index
, LocalMask
,
522 LocalKnownZero
, LocalKnownOne
, TD
, Depth
+1);
523 TrailZ
= std::min(TrailZ
,
524 unsigned(CountTrailingZeros_64(TypeSize
) +
525 LocalKnownZero
.countTrailingOnes()));
529 KnownZero
= APInt::getLowBitsSet(BitWidth
, TrailZ
) & Mask
;
532 case Instruction::PHI
: {
533 PHINode
*P
= cast
<PHINode
>(I
);
534 // Handle the case of a simple two-predecessor recurrence PHI.
535 // There's a lot more that could theoretically be done here, but
536 // this is sufficient to catch some interesting cases.
537 if (P
->getNumIncomingValues() == 2) {
538 for (unsigned i
= 0; i
!= 2; ++i
) {
539 Value
*L
= P
->getIncomingValue(i
);
540 Value
*R
= P
->getIncomingValue(!i
);
541 Operator
*LU
= dyn_cast
<Operator
>(L
);
544 unsigned Opcode
= LU
->getOpcode();
545 // Check for operations that have the property that if
546 // both their operands have low zero bits, the result
547 // will have low zero bits.
548 if (Opcode
== Instruction::Add
||
549 Opcode
== Instruction::Sub
||
550 Opcode
== Instruction::And
||
551 Opcode
== Instruction::Or
||
552 Opcode
== Instruction::Mul
) {
553 Value
*LL
= LU
->getOperand(0);
554 Value
*LR
= LU
->getOperand(1);
555 // Find a recurrence.
562 // Ok, we have a PHI of the form L op= R. Check for low
564 APInt Mask2
= APInt::getAllOnesValue(BitWidth
);
565 ComputeMaskedBits(R
, Mask2
, KnownZero2
, KnownOne2
, TD
, Depth
+1);
566 Mask2
= APInt::getLowBitsSet(BitWidth
,
567 KnownZero2
.countTrailingOnes());
569 // We need to take the minimum number of known bits
570 APInt
KnownZero3(KnownZero
), KnownOne3(KnownOne
);
571 ComputeMaskedBits(L
, Mask2
, KnownZero3
, KnownOne3
, TD
, Depth
+1);
574 APInt::getLowBitsSet(BitWidth
,
575 std::min(KnownZero2
.countTrailingOnes(),
576 KnownZero3
.countTrailingOnes()));
582 // Otherwise take the unions of the known bit sets of the operands,
583 // taking conservative care to avoid excessive recursion.
584 if (Depth
< MaxDepth
- 1 && !KnownZero
&& !KnownOne
) {
585 KnownZero
= APInt::getAllOnesValue(BitWidth
);
586 KnownOne
= APInt::getAllOnesValue(BitWidth
);
587 for (unsigned i
= 0, e
= P
->getNumIncomingValues(); i
!= e
; ++i
) {
588 // Skip direct self references.
589 if (P
->getIncomingValue(i
) == P
) continue;
591 KnownZero2
= APInt(BitWidth
, 0);
592 KnownOne2
= APInt(BitWidth
, 0);
593 // Recurse, but cap the recursion to one level, because we don't
594 // want to waste time spinning around in loops.
595 ComputeMaskedBits(P
->getIncomingValue(i
), KnownZero
| KnownOne
,
596 KnownZero2
, KnownOne2
, TD
, MaxDepth
-1);
597 KnownZero
&= KnownZero2
;
598 KnownOne
&= KnownOne2
;
599 // If all bits have been ruled out, there's no need to check
601 if (!KnownZero
&& !KnownOne
)
607 case Instruction::Call
:
608 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
)) {
609 switch (II
->getIntrinsicID()) {
611 case Intrinsic::ctpop
:
612 case Intrinsic::ctlz
:
613 case Intrinsic::cttz
: {
614 unsigned LowBits
= Log2_32(BitWidth
)+1;
615 KnownZero
= APInt::getHighBitsSet(BitWidth
, BitWidth
- LowBits
);
624 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
625 /// this predicate to simplify operations downstream. Mask is known to be zero
626 /// for bits that V cannot have.
628 /// This function is defined on values with integer type, values with pointer
629 /// type (but only if TD is non-null), and vectors of integers. In the case
630 /// where V is a vector, the mask, known zero, and known one values are the
631 /// same width as the vector element, and the bit is set only if it is true
632 /// for all of the elements in the vector.
633 bool llvm::MaskedValueIsZero(Value
*V
, const APInt
&Mask
,
634 const TargetData
*TD
, unsigned Depth
) {
635 APInt
KnownZero(Mask
.getBitWidth(), 0), KnownOne(Mask
.getBitWidth(), 0);
636 ComputeMaskedBits(V
, Mask
, KnownZero
, KnownOne
, TD
, Depth
);
637 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
638 return (KnownZero
& Mask
) == Mask
;
643 /// ComputeNumSignBits - Return the number of times the sign bit of the
644 /// register is replicated into the other bits. We know that at least 1 bit
645 /// is always equal to the sign bit (itself), but other cases can give us
646 /// information. For example, immediately after an "ashr X, 2", we know that
647 /// the top 3 bits are all equal to each other, so we return 3.
649 /// 'Op' must have a scalar integer type.
651 unsigned llvm::ComputeNumSignBits(Value
*V
, const TargetData
*TD
,
653 assert((TD
|| V
->getType()->isIntOrIntVectorTy()) &&
654 "ComputeNumSignBits requires a TargetData object to operate "
655 "on non-integer values!");
656 const Type
*Ty
= V
->getType();
657 unsigned TyBits
= TD
? TD
->getTypeSizeInBits(V
->getType()->getScalarType()) :
658 Ty
->getScalarSizeInBits();
660 unsigned FirstAnswer
= 1;
662 // Note that ConstantInt is handled by the general ComputeMaskedBits case
666 return 1; // Limit search depth.
668 Operator
*U
= dyn_cast
<Operator
>(V
);
669 switch (Operator::getOpcode(V
)) {
671 case Instruction::SExt
:
672 Tmp
= TyBits
- U
->getOperand(0)->getType()->getScalarSizeInBits();
673 return ComputeNumSignBits(U
->getOperand(0), TD
, Depth
+1) + Tmp
;
675 case Instruction::AShr
:
676 Tmp
= ComputeNumSignBits(U
->getOperand(0), TD
, Depth
+1);
677 // ashr X, C -> adds C sign bits.
678 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
679 Tmp
+= C
->getZExtValue();
680 if (Tmp
> TyBits
) Tmp
= TyBits
;
683 case Instruction::Shl
:
684 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
685 // shl destroys sign bits.
686 Tmp
= ComputeNumSignBits(U
->getOperand(0), TD
, Depth
+1);
687 if (C
->getZExtValue() >= TyBits
|| // Bad shift.
688 C
->getZExtValue() >= Tmp
) break; // Shifted all sign bits out.
689 return Tmp
- C
->getZExtValue();
692 case Instruction::And
:
693 case Instruction::Or
:
694 case Instruction::Xor
: // NOT is handled here.
695 // Logical binary ops preserve the number of sign bits at the worst.
696 Tmp
= ComputeNumSignBits(U
->getOperand(0), TD
, Depth
+1);
698 Tmp2
= ComputeNumSignBits(U
->getOperand(1), TD
, Depth
+1);
699 FirstAnswer
= std::min(Tmp
, Tmp2
);
700 // We computed what we know about the sign bits as our first
701 // answer. Now proceed to the generic code that uses
702 // ComputeMaskedBits, and pick whichever answer is better.
706 case Instruction::Select
:
707 Tmp
= ComputeNumSignBits(U
->getOperand(1), TD
, Depth
+1);
708 if (Tmp
== 1) return 1; // Early out.
709 Tmp2
= ComputeNumSignBits(U
->getOperand(2), TD
, Depth
+1);
710 return std::min(Tmp
, Tmp2
);
712 case Instruction::Add
:
713 // Add can have at most one carry bit. Thus we know that the output
714 // is, at worst, one more bit than the inputs.
715 Tmp
= ComputeNumSignBits(U
->getOperand(0), TD
, Depth
+1);
716 if (Tmp
== 1) return 1; // Early out.
718 // Special case decrementing a value (ADD X, -1):
719 if (ConstantInt
*CRHS
= dyn_cast
<ConstantInt
>(U
->getOperand(1)))
720 if (CRHS
->isAllOnesValue()) {
721 APInt
KnownZero(TyBits
, 0), KnownOne(TyBits
, 0);
722 APInt Mask
= APInt::getAllOnesValue(TyBits
);
723 ComputeMaskedBits(U
->getOperand(0), Mask
, KnownZero
, KnownOne
, TD
,
726 // If the input is known to be 0 or 1, the output is 0/-1, which is all
728 if ((KnownZero
| APInt(TyBits
, 1)) == Mask
)
731 // If we are subtracting one from a positive number, there is no carry
732 // out of the result.
733 if (KnownZero
.isNegative())
737 Tmp2
= ComputeNumSignBits(U
->getOperand(1), TD
, Depth
+1);
738 if (Tmp2
== 1) return 1;
739 return std::min(Tmp
, Tmp2
)-1;
741 case Instruction::Sub
:
742 Tmp2
= ComputeNumSignBits(U
->getOperand(1), TD
, Depth
+1);
743 if (Tmp2
== 1) return 1;
746 if (ConstantInt
*CLHS
= dyn_cast
<ConstantInt
>(U
->getOperand(0)))
747 if (CLHS
->isNullValue()) {
748 APInt
KnownZero(TyBits
, 0), KnownOne(TyBits
, 0);
749 APInt Mask
= APInt::getAllOnesValue(TyBits
);
750 ComputeMaskedBits(U
->getOperand(1), Mask
, KnownZero
, KnownOne
,
752 // If the input is known to be 0 or 1, the output is 0/-1, which is all
754 if ((KnownZero
| APInt(TyBits
, 1)) == Mask
)
757 // If the input is known to be positive (the sign bit is known clear),
758 // the output of the NEG has the same number of sign bits as the input.
759 if (KnownZero
.isNegative())
762 // Otherwise, we treat this like a SUB.
765 // Sub can have at most one carry bit. Thus we know that the output
766 // is, at worst, one more bit than the inputs.
767 Tmp
= ComputeNumSignBits(U
->getOperand(0), TD
, Depth
+1);
768 if (Tmp
== 1) return 1; // Early out.
769 return std::min(Tmp
, Tmp2
)-1;
771 case Instruction::PHI
: {
772 PHINode
*PN
= cast
<PHINode
>(U
);
773 // Don't analyze large in-degree PHIs.
774 if (PN
->getNumIncomingValues() > 4) break;
776 // Take the minimum of all incoming values. This can't infinitely loop
777 // because of our depth threshold.
778 Tmp
= ComputeNumSignBits(PN
->getIncomingValue(0), TD
, Depth
+1);
779 for (unsigned i
= 1, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
780 if (Tmp
== 1) return Tmp
;
782 ComputeNumSignBits(PN
->getIncomingValue(i
), TD
, Depth
+1));
787 case Instruction::Trunc
:
788 // FIXME: it's tricky to do anything useful for this, but it is an important
789 // case for targets like X86.
793 // Finally, if we can prove that the top bits of the result are 0's or 1's,
794 // use this information.
795 APInt
KnownZero(TyBits
, 0), KnownOne(TyBits
, 0);
796 APInt Mask
= APInt::getAllOnesValue(TyBits
);
797 ComputeMaskedBits(V
, Mask
, KnownZero
, KnownOne
, TD
, Depth
);
799 if (KnownZero
.isNegative()) { // sign bit is 0
801 } else if (KnownOne
.isNegative()) { // sign bit is 1;
808 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
809 // the number of identical bits in the top of the input value.
811 Mask
<<= Mask
.getBitWidth()-TyBits
;
812 // Return # leading zeros. We use 'min' here in case Val was zero before
813 // shifting. We don't want to return '64' as for an i32 "0".
814 return std::max(FirstAnswer
, std::min(TyBits
, Mask
.countLeadingZeros()));
817 /// ComputeMultiple - This function computes the integer multiple of Base that
818 /// equals V. If successful, it returns true and returns the multiple in
819 /// Multiple. If unsuccessful, it returns false. It looks
820 /// through SExt instructions only if LookThroughSExt is true.
821 bool llvm::ComputeMultiple(Value
*V
, unsigned Base
, Value
*&Multiple
,
822 bool LookThroughSExt
, unsigned Depth
) {
823 const unsigned MaxDepth
= 6;
825 assert(V
&& "No Value?");
826 assert(Depth
<= MaxDepth
&& "Limit Search Depth");
827 assert(V
->getType()->isIntegerTy() && "Not integer or pointer type!");
829 const Type
*T
= V
->getType();
831 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
);
841 ConstantExpr
*CO
= dyn_cast
<ConstantExpr
>(V
);
842 Constant
*BaseVal
= ConstantInt::get(T
, Base
);
843 if (CO
&& CO
== BaseVal
) {
845 Multiple
= ConstantInt::get(T
, 1);
849 if (CI
&& CI
->getZExtValue() % Base
== 0) {
850 Multiple
= ConstantInt::get(T
, CI
->getZExtValue() / Base
);
854 if (Depth
== MaxDepth
) return false; // Limit search depth.
856 Operator
*I
= dyn_cast
<Operator
>(V
);
857 if (!I
) return false;
859 switch (I
->getOpcode()) {
861 case Instruction::SExt
:
862 if (!LookThroughSExt
) return false;
863 // otherwise fall through to ZExt
864 case Instruction::ZExt
:
865 return ComputeMultiple(I
->getOperand(0), Base
, Multiple
,
866 LookThroughSExt
, Depth
+1);
867 case Instruction::Shl
:
868 case Instruction::Mul
: {
869 Value
*Op0
= I
->getOperand(0);
870 Value
*Op1
= I
->getOperand(1);
872 if (I
->getOpcode() == Instruction::Shl
) {
873 ConstantInt
*Op1CI
= dyn_cast
<ConstantInt
>(Op1
);
874 if (!Op1CI
) return false;
875 // Turn Op0 << Op1 into Op0 * 2^Op1
876 APInt Op1Int
= Op1CI
->getValue();
877 uint64_t BitToSet
= Op1Int
.getLimitedValue(Op1Int
.getBitWidth() - 1);
878 Op1
= ConstantInt::get(V
->getContext(),
879 APInt(Op1Int
.getBitWidth(), 0).set(BitToSet
));
883 if (ComputeMultiple(Op0
, Base
, Mul0
, LookThroughSExt
, Depth
+1)) {
884 if (Constant
*Op1C
= dyn_cast
<Constant
>(Op1
))
885 if (Constant
*MulC
= dyn_cast
<Constant
>(Mul0
)) {
886 if (Op1C
->getType()->getPrimitiveSizeInBits() <
887 MulC
->getType()->getPrimitiveSizeInBits())
888 Op1C
= ConstantExpr::getZExt(Op1C
, MulC
->getType());
889 if (Op1C
->getType()->getPrimitiveSizeInBits() >
890 MulC
->getType()->getPrimitiveSizeInBits())
891 MulC
= ConstantExpr::getZExt(MulC
, Op1C
->getType());
893 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
894 Multiple
= ConstantExpr::getMul(MulC
, Op1C
);
898 if (ConstantInt
*Mul0CI
= dyn_cast
<ConstantInt
>(Mul0
))
899 if (Mul0CI
->getValue() == 1) {
900 // V == Base * Op1, so return Op1
907 if (ComputeMultiple(Op1
, Base
, Mul1
, LookThroughSExt
, Depth
+1)) {
908 if (Constant
*Op0C
= dyn_cast
<Constant
>(Op0
))
909 if (Constant
*MulC
= dyn_cast
<Constant
>(Mul1
)) {
910 if (Op0C
->getType()->getPrimitiveSizeInBits() <
911 MulC
->getType()->getPrimitiveSizeInBits())
912 Op0C
= ConstantExpr::getZExt(Op0C
, MulC
->getType());
913 if (Op0C
->getType()->getPrimitiveSizeInBits() >
914 MulC
->getType()->getPrimitiveSizeInBits())
915 MulC
= ConstantExpr::getZExt(MulC
, Op0C
->getType());
917 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
918 Multiple
= ConstantExpr::getMul(MulC
, Op0C
);
922 if (ConstantInt
*Mul1CI
= dyn_cast
<ConstantInt
>(Mul1
))
923 if (Mul1CI
->getValue() == 1) {
924 // V == Base * Op0, so return Op0
932 // We could not determine if V is a multiple of Base.
936 /// CannotBeNegativeZero - Return true if we can prove that the specified FP
937 /// value is never equal to -0.0.
939 /// NOTE: this function will need to be revisited when we support non-default
942 bool llvm::CannotBeNegativeZero(const Value
*V
, unsigned Depth
) {
943 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(V
))
944 return !CFP
->getValueAPF().isNegZero();
947 return 1; // Limit search depth.
949 const Operator
*I
= dyn_cast
<Operator
>(V
);
950 if (I
== 0) return false;
952 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
953 if (I
->getOpcode() == Instruction::FAdd
&&
954 isa
<ConstantFP
>(I
->getOperand(1)) &&
955 cast
<ConstantFP
>(I
->getOperand(1))->isNullValue())
958 // sitofp and uitofp turn into +0.0 for zero.
959 if (isa
<SIToFPInst
>(I
) || isa
<UIToFPInst
>(I
))
962 if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
))
963 // sqrt(-0.0) = -0.0, no other negative results are possible.
964 if (II
->getIntrinsicID() == Intrinsic::sqrt
)
965 return CannotBeNegativeZero(II
->getArgOperand(0), Depth
+1);
967 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
))
968 if (const Function
*F
= CI
->getCalledFunction()) {
969 if (F
->isDeclaration()) {
971 if (F
->getName() == "abs") return true;
972 // fabs[lf](x) != -0.0
973 if (F
->getName() == "fabs") return true;
974 if (F
->getName() == "fabsf") return true;
975 if (F
->getName() == "fabsl") return true;
976 if (F
->getName() == "sqrt" || F
->getName() == "sqrtf" ||
977 F
->getName() == "sqrtl")
978 return CannotBeNegativeZero(CI
->getArgOperand(0), Depth
+1);
985 // This is the recursive version of BuildSubAggregate. It takes a few different
986 // arguments. Idxs is the index within the nested struct From that we are
987 // looking at now (which is of type IndexedType). IdxSkip is the number of
988 // indices from Idxs that should be left out when inserting into the resulting
989 // struct. To is the result struct built so far, new insertvalue instructions
991 static Value
*BuildSubAggregate(Value
*From
, Value
* To
, const Type
*IndexedType
,
992 SmallVector
<unsigned, 10> &Idxs
,
994 Instruction
*InsertBefore
) {
995 const llvm::StructType
*STy
= llvm::dyn_cast
<llvm::StructType
>(IndexedType
);
997 // Save the original To argument so we can modify it
999 // General case, the type indexed by Idxs is a struct
1000 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
1001 // Process each struct element recursively
1004 To
= BuildSubAggregate(From
, To
, STy
->getElementType(i
), Idxs
, IdxSkip
,
1008 // Couldn't find any inserted value for this index? Cleanup
1009 while (PrevTo
!= OrigTo
) {
1010 InsertValueInst
* Del
= cast
<InsertValueInst
>(PrevTo
);
1011 PrevTo
= Del
->getAggregateOperand();
1012 Del
->eraseFromParent();
1014 // Stop processing elements
1018 // If we succesfully found a value for each of our subaggregates
1022 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
1023 // the struct's elements had a value that was inserted directly. In the latter
1024 // case, perhaps we can't determine each of the subelements individually, but
1025 // we might be able to find the complete struct somewhere.
1027 // Find the value that is at that particular spot
1028 Value
*V
= FindInsertedValue(From
, Idxs
.begin(), Idxs
.end());
1033 // Insert the value in the new (sub) aggregrate
1034 return llvm::InsertValueInst::Create(To
, V
, Idxs
.begin() + IdxSkip
,
1035 Idxs
.end(), "tmp", InsertBefore
);
1038 // This helper takes a nested struct and extracts a part of it (which is again a
1039 // struct) into a new value. For example, given the struct:
1040 // { a, { b, { c, d }, e } }
1041 // and the indices "1, 1" this returns
1044 // It does this by inserting an insertvalue for each element in the resulting
1045 // struct, as opposed to just inserting a single struct. This will only work if
1046 // each of the elements of the substruct are known (ie, inserted into From by an
1047 // insertvalue instruction somewhere).
1049 // All inserted insertvalue instructions are inserted before InsertBefore
1050 static Value
*BuildSubAggregate(Value
*From
, const unsigned *idx_begin
,
1051 const unsigned *idx_end
,
1052 Instruction
*InsertBefore
) {
1053 assert(InsertBefore
&& "Must have someplace to insert!");
1054 const Type
*IndexedType
= ExtractValueInst::getIndexedType(From
->getType(),
1057 Value
*To
= UndefValue::get(IndexedType
);
1058 SmallVector
<unsigned, 10> Idxs(idx_begin
, idx_end
);
1059 unsigned IdxSkip
= Idxs
.size();
1061 return BuildSubAggregate(From
, To
, IndexedType
, Idxs
, IdxSkip
, InsertBefore
);
1064 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
1065 /// the scalar value indexed is already around as a register, for example if it
1066 /// were inserted directly into the aggregrate.
1068 /// If InsertBefore is not null, this function will duplicate (modified)
1069 /// insertvalues when a part of a nested struct is extracted.
1070 Value
*llvm::FindInsertedValue(Value
*V
, const unsigned *idx_begin
,
1071 const unsigned *idx_end
, Instruction
*InsertBefore
) {
1072 // Nothing to index? Just return V then (this is useful at the end of our
1074 if (idx_begin
== idx_end
)
1076 // We have indices, so V should have an indexable type
1077 assert((V
->getType()->isStructTy() || V
->getType()->isArrayTy())
1078 && "Not looking at a struct or array?");
1079 assert(ExtractValueInst::getIndexedType(V
->getType(), idx_begin
, idx_end
)
1080 && "Invalid indices for type?");
1081 const CompositeType
*PTy
= cast
<CompositeType
>(V
->getType());
1083 if (isa
<UndefValue
>(V
))
1084 return UndefValue::get(ExtractValueInst::getIndexedType(PTy
,
1087 else if (isa
<ConstantAggregateZero
>(V
))
1088 return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy
,
1091 else if (Constant
*C
= dyn_cast
<Constant
>(V
)) {
1092 if (isa
<ConstantArray
>(C
) || isa
<ConstantStruct
>(C
))
1093 // Recursively process this constant
1094 return FindInsertedValue(C
->getOperand(*idx_begin
), idx_begin
+ 1,
1095 idx_end
, InsertBefore
);
1096 } else if (InsertValueInst
*I
= dyn_cast
<InsertValueInst
>(V
)) {
1097 // Loop the indices for the insertvalue instruction in parallel with the
1098 // requested indices
1099 const unsigned *req_idx
= idx_begin
;
1100 for (const unsigned *i
= I
->idx_begin(), *e
= I
->idx_end();
1101 i
!= e
; ++i
, ++req_idx
) {
1102 if (req_idx
== idx_end
) {
1104 // The requested index identifies a part of a nested aggregate. Handle
1105 // this specially. For example,
1106 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
1107 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
1108 // %C = extractvalue {i32, { i32, i32 } } %B, 1
1109 // This can be changed into
1110 // %A = insertvalue {i32, i32 } undef, i32 10, 0
1111 // %C = insertvalue {i32, i32 } %A, i32 11, 1
1112 // which allows the unused 0,0 element from the nested struct to be
1114 return BuildSubAggregate(V
, idx_begin
, req_idx
, InsertBefore
);
1116 // We can't handle this without inserting insertvalues
1120 // This insert value inserts something else than what we are looking for.
1121 // See if the (aggregrate) value inserted into has the value we are
1122 // looking for, then.
1124 return FindInsertedValue(I
->getAggregateOperand(), idx_begin
, idx_end
,
1127 // If we end up here, the indices of the insertvalue match with those
1128 // requested (though possibly only partially). Now we recursively look at
1129 // the inserted value, passing any remaining indices.
1130 return FindInsertedValue(I
->getInsertedValueOperand(), req_idx
, idx_end
,
1132 } else if (ExtractValueInst
*I
= dyn_cast
<ExtractValueInst
>(V
)) {
1133 // If we're extracting a value from an aggregrate that was extracted from
1134 // something else, we can extract from that something else directly instead.
1135 // However, we will need to chain I's indices with the requested indices.
1137 // Calculate the number of indices required
1138 unsigned size
= I
->getNumIndices() + (idx_end
- idx_begin
);
1139 // Allocate some space to put the new indices in
1140 SmallVector
<unsigned, 5> Idxs
;
1142 // Add indices from the extract value instruction
1143 for (const unsigned *i
= I
->idx_begin(), *e
= I
->idx_end();
1147 // Add requested indices
1148 for (const unsigned *i
= idx_begin
, *e
= idx_end
; i
!= e
; ++i
)
1151 assert(Idxs
.size() == size
1152 && "Number of indices added not correct?");
1154 return FindInsertedValue(I
->getAggregateOperand(), Idxs
.begin(), Idxs
.end(),
1157 // Otherwise, we don't know (such as, extracting from a function return value
1158 // or load instruction)
1162 /// GetConstantStringInfo - This function computes the length of a
1163 /// null-terminated C string pointed to by V. If successful, it returns true
1164 /// and returns the string in Str. If unsuccessful, it returns false.
1165 bool llvm::GetConstantStringInfo(const Value
*V
, std::string
&Str
,
1168 // If V is NULL then return false;
1169 if (V
== NULL
) return false;
1171 // Look through bitcast instructions.
1172 if (const BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(V
))
1173 return GetConstantStringInfo(BCI
->getOperand(0), Str
, Offset
, StopAtNul
);
1175 // If the value is not a GEP instruction nor a constant expression with a
1176 // GEP instruction, then return false because ConstantArray can't occur
1178 const User
*GEP
= 0;
1179 if (const GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(V
)) {
1181 } else if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
1182 if (CE
->getOpcode() == Instruction::BitCast
)
1183 return GetConstantStringInfo(CE
->getOperand(0), Str
, Offset
, StopAtNul
);
1184 if (CE
->getOpcode() != Instruction::GetElementPtr
)
1190 // Make sure the GEP has exactly three arguments.
1191 if (GEP
->getNumOperands() != 3)
1194 // Make sure the index-ee is a pointer to array of i8.
1195 const PointerType
*PT
= cast
<PointerType
>(GEP
->getOperand(0)->getType());
1196 const ArrayType
*AT
= dyn_cast
<ArrayType
>(PT
->getElementType());
1197 if (AT
== 0 || !AT
->getElementType()->isIntegerTy(8))
1200 // Check to make sure that the first operand of the GEP is an integer and
1201 // has value 0 so that we are sure we're indexing into the initializer.
1202 const ConstantInt
*FirstIdx
= dyn_cast
<ConstantInt
>(GEP
->getOperand(1));
1203 if (FirstIdx
== 0 || !FirstIdx
->isZero())
1206 // If the second index isn't a ConstantInt, then this is a variable index
1207 // into the array. If this occurs, we can't say anything meaningful about
1209 uint64_t StartIdx
= 0;
1210 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(GEP
->getOperand(2)))
1211 StartIdx
= CI
->getZExtValue();
1214 return GetConstantStringInfo(GEP
->getOperand(0), Str
, StartIdx
+Offset
,
1218 // The GEP instruction, constant or instruction, must reference a global
1219 // variable that is a constant and is initialized. The referenced constant
1220 // initializer is the array that we'll use for optimization.
1221 const GlobalVariable
* GV
= dyn_cast
<GlobalVariable
>(V
);
1222 if (!GV
|| !GV
->isConstant() || !GV
->hasDefinitiveInitializer())
1224 const Constant
*GlobalInit
= GV
->getInitializer();
1226 // Handle the ConstantAggregateZero case
1227 if (isa
<ConstantAggregateZero
>(GlobalInit
)) {
1228 // This is a degenerate case. The initializer is constant zero so the
1229 // length of the string must be zero.
1234 // Must be a Constant Array
1235 const ConstantArray
*Array
= dyn_cast
<ConstantArray
>(GlobalInit
);
1236 if (Array
== 0 || !Array
->getType()->getElementType()->isIntegerTy(8))
1239 // Get the number of elements in the array
1240 uint64_t NumElts
= Array
->getType()->getNumElements();
1242 if (Offset
> NumElts
)
1245 // Traverse the constant array from 'Offset' which is the place the GEP refers
1247 Str
.reserve(NumElts
-Offset
);
1248 for (unsigned i
= Offset
; i
!= NumElts
; ++i
) {
1249 const Constant
*Elt
= Array
->getOperand(i
);
1250 const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Elt
);
1251 if (!CI
) // This array isn't suitable, non-int initializer.
1253 if (StopAtNul
&& CI
->isZero())
1254 return true; // we found end of string, success!
1255 Str
+= (char)CI
->getZExtValue();
1258 // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.
1262 // These next two are very similar to the above, but also look through PHI
1264 // TODO: See if we can integrate these two together.
1266 /// GetStringLengthH - If we can compute the length of the string pointed to by
1267 /// the specified pointer, return 'len+1'. If we can't, return 0.
1268 static uint64_t GetStringLengthH(Value
*V
, SmallPtrSet
<PHINode
*, 32> &PHIs
) {
1269 // Look through noop bitcast instructions.
1270 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(V
))
1271 return GetStringLengthH(BCI
->getOperand(0), PHIs
);
1273 // If this is a PHI node, there are two cases: either we have already seen it
1275 if (PHINode
*PN
= dyn_cast
<PHINode
>(V
)) {
1276 if (!PHIs
.insert(PN
))
1277 return ~0ULL; // already in the set.
1279 // If it was new, see if all the input strings are the same length.
1280 uint64_t LenSoFar
= ~0ULL;
1281 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
1282 uint64_t Len
= GetStringLengthH(PN
->getIncomingValue(i
), PHIs
);
1283 if (Len
== 0) return 0; // Unknown length -> unknown.
1285 if (Len
== ~0ULL) continue;
1287 if (Len
!= LenSoFar
&& LenSoFar
!= ~0ULL)
1288 return 0; // Disagree -> unknown.
1292 // Success, all agree.
1296 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
1297 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(V
)) {
1298 uint64_t Len1
= GetStringLengthH(SI
->getTrueValue(), PHIs
);
1299 if (Len1
== 0) return 0;
1300 uint64_t Len2
= GetStringLengthH(SI
->getFalseValue(), PHIs
);
1301 if (Len2
== 0) return 0;
1302 if (Len1
== ~0ULL) return Len2
;
1303 if (Len2
== ~0ULL) return Len1
;
1304 if (Len1
!= Len2
) return 0;
1308 // If the value is not a GEP instruction nor a constant expression with a
1309 // GEP instruction, then return unknown.
1311 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(V
)) {
1313 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
1314 if (CE
->getOpcode() != Instruction::GetElementPtr
)
1321 // Make sure the GEP has exactly three arguments.
1322 if (GEP
->getNumOperands() != 3)
1325 // Check to make sure that the first operand of the GEP is an integer and
1326 // has value 0 so that we are sure we're indexing into the initializer.
1327 if (ConstantInt
*Idx
= dyn_cast
<ConstantInt
>(GEP
->getOperand(1))) {
1333 // If the second index isn't a ConstantInt, then this is a variable index
1334 // into the array. If this occurs, we can't say anything meaningful about
1336 uint64_t StartIdx
= 0;
1337 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(GEP
->getOperand(2)))
1338 StartIdx
= CI
->getZExtValue();
1342 // The GEP instruction, constant or instruction, must reference a global
1343 // variable that is a constant and is initialized. The referenced constant
1344 // initializer is the array that we'll use for optimization.
1345 GlobalVariable
* GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0));
1346 if (!GV
|| !GV
->isConstant() || !GV
->hasInitializer() ||
1347 GV
->mayBeOverridden())
1349 Constant
*GlobalInit
= GV
->getInitializer();
1351 // Handle the ConstantAggregateZero case, which is a degenerate case. The
1352 // initializer is constant zero so the length of the string must be zero.
1353 if (isa
<ConstantAggregateZero
>(GlobalInit
))
1354 return 1; // Len = 0 offset by 1.
1356 // Must be a Constant Array
1357 ConstantArray
*Array
= dyn_cast
<ConstantArray
>(GlobalInit
);
1358 if (!Array
|| !Array
->getType()->getElementType()->isIntegerTy(8))
1361 // Get the number of elements in the array
1362 uint64_t NumElts
= Array
->getType()->getNumElements();
1364 // Traverse the constant array from StartIdx (derived above) which is
1365 // the place the GEP refers to in the array.
1366 for (unsigned i
= StartIdx
; i
!= NumElts
; ++i
) {
1367 Constant
*Elt
= Array
->getOperand(i
);
1368 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Elt
);
1369 if (!CI
) // This array isn't suitable, non-int initializer.
1372 return i
-StartIdx
+1; // We found end of string, success!
1375 return 0; // The array isn't null terminated, conservatively return 'unknown'.
1378 /// GetStringLength - If we can compute the length of the string pointed to by
1379 /// the specified pointer, return 'len+1'. If we can't, return 0.
1380 uint64_t llvm::GetStringLength(Value
*V
) {
1381 if (!V
->getType()->isPointerTy()) return 0;
1383 SmallPtrSet
<PHINode
*, 32> PHIs
;
1384 uint64_t Len
= GetStringLengthH(V
, PHIs
);
1385 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
1386 // an empty string as a length.
1387 return Len
== ~0ULL ? 1 : Len
;