1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities --*- C++ ------*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines several CodeGen-specific LLVM IR analysis utilties.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/Analysis.h"
15 #include "llvm/DerivedTypes.h"
16 #include "llvm/Function.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/IntrinsicInst.h"
19 #include "llvm/LLVMContext.h"
20 #include "llvm/Module.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/Target/TargetData.h"
23 #include "llvm/Target/TargetLowering.h"
24 #include "llvm/Target/TargetOptions.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MathExtras.h"
29 /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
30 /// of insertvalue or extractvalue indices that identify a member, return
31 /// the linearized index of the start of the member.
33 unsigned llvm::ComputeLinearIndex(const Type
*Ty
,
34 const unsigned *Indices
,
35 const unsigned *IndicesEnd
,
37 // Base case: We're done.
38 if (Indices
&& Indices
== IndicesEnd
)
41 // Given a struct type, recursively traverse the elements.
42 if (const StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
43 for (StructType::element_iterator EB
= STy
->element_begin(),
45 EE
= STy
->element_end();
47 if (Indices
&& *Indices
== unsigned(EI
- EB
))
48 return ComputeLinearIndex(*EI
, Indices
+1, IndicesEnd
, CurIndex
);
49 CurIndex
= ComputeLinearIndex(*EI
, 0, 0, CurIndex
);
53 // Given an array type, recursively traverse the elements.
54 else if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
55 const Type
*EltTy
= ATy
->getElementType();
56 for (unsigned i
= 0, e
= ATy
->getNumElements(); i
!= e
; ++i
) {
57 if (Indices
&& *Indices
== i
)
58 return ComputeLinearIndex(EltTy
, Indices
+1, IndicesEnd
, CurIndex
);
59 CurIndex
= ComputeLinearIndex(EltTy
, 0, 0, CurIndex
);
63 // We haven't found the type we're looking for, so keep searching.
67 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
68 /// EVTs that represent all the individual underlying
69 /// non-aggregate types that comprise it.
71 /// If Offsets is non-null, it points to a vector to be filled in
72 /// with the in-memory offsets of each of the individual values.
74 void llvm::ComputeValueVTs(const TargetLowering
&TLI
, const Type
*Ty
,
75 SmallVectorImpl
<EVT
> &ValueVTs
,
76 SmallVectorImpl
<uint64_t> *Offsets
,
77 uint64_t StartingOffset
) {
78 // Given a struct type, recursively traverse the elements.
79 if (const StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
80 const StructLayout
*SL
= TLI
.getTargetData()->getStructLayout(STy
);
81 for (StructType::element_iterator EB
= STy
->element_begin(),
83 EE
= STy
->element_end();
85 ComputeValueVTs(TLI
, *EI
, ValueVTs
, Offsets
,
86 StartingOffset
+ SL
->getElementOffset(EI
- EB
));
89 // Given an array type, recursively traverse the elements.
90 if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
91 const Type
*EltTy
= ATy
->getElementType();
92 uint64_t EltSize
= TLI
.getTargetData()->getTypeAllocSize(EltTy
);
93 for (unsigned i
= 0, e
= ATy
->getNumElements(); i
!= e
; ++i
)
94 ComputeValueVTs(TLI
, EltTy
, ValueVTs
, Offsets
,
95 StartingOffset
+ i
* EltSize
);
98 // Interpret void as zero return values.
101 // Base case: we can get an EVT for this LLVM IR type.
102 ValueVTs
.push_back(TLI
.getValueType(Ty
));
104 Offsets
->push_back(StartingOffset
);
107 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
108 GlobalVariable
*llvm::ExtractTypeInfo(Value
*V
) {
109 V
= V
->stripPointerCasts();
110 GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(V
);
112 if (GV
&& GV
->getName() == "llvm.eh.catch.all.value") {
113 assert(GV
->hasInitializer() &&
114 "The EH catch-all value must have an initializer");
115 Value
*Init
= GV
->getInitializer();
116 GV
= dyn_cast
<GlobalVariable
>(Init
);
117 if (!GV
) V
= cast
<ConstantPointerNull
>(Init
);
120 assert((GV
|| isa
<ConstantPointerNull
>(V
)) &&
121 "TypeInfo must be a global variable or NULL");
125 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
126 /// processed uses a memory 'm' constraint.
128 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector
&CInfos
,
129 const TargetLowering
&TLI
) {
130 for (unsigned i
= 0, e
= CInfos
.size(); i
!= e
; ++i
) {
131 InlineAsm::ConstraintInfo
&CI
= CInfos
[i
];
132 for (unsigned j
= 0, ee
= CI
.Codes
.size(); j
!= ee
; ++j
) {
133 TargetLowering::ConstraintType CType
= TLI
.getConstraintType(CI
.Codes
[j
]);
134 if (CType
== TargetLowering::C_Memory
)
138 // Indirect operand accesses access memory.
146 /// getFCmpCondCode - Return the ISD condition code corresponding to
147 /// the given LLVM IR floating-point condition code. This includes
148 /// consideration of global floating-point math flags.
150 ISD::CondCode
llvm::getFCmpCondCode(FCmpInst::Predicate Pred
) {
151 ISD::CondCode FPC
, FOC
;
153 case FCmpInst::FCMP_FALSE
: FOC
= FPC
= ISD::SETFALSE
; break;
154 case FCmpInst::FCMP_OEQ
: FOC
= ISD::SETEQ
; FPC
= ISD::SETOEQ
; break;
155 case FCmpInst::FCMP_OGT
: FOC
= ISD::SETGT
; FPC
= ISD::SETOGT
; break;
156 case FCmpInst::FCMP_OGE
: FOC
= ISD::SETGE
; FPC
= ISD::SETOGE
; break;
157 case FCmpInst::FCMP_OLT
: FOC
= ISD::SETLT
; FPC
= ISD::SETOLT
; break;
158 case FCmpInst::FCMP_OLE
: FOC
= ISD::SETLE
; FPC
= ISD::SETOLE
; break;
159 case FCmpInst::FCMP_ONE
: FOC
= ISD::SETNE
; FPC
= ISD::SETONE
; break;
160 case FCmpInst::FCMP_ORD
: FOC
= FPC
= ISD::SETO
; break;
161 case FCmpInst::FCMP_UNO
: FOC
= FPC
= ISD::SETUO
; break;
162 case FCmpInst::FCMP_UEQ
: FOC
= ISD::SETEQ
; FPC
= ISD::SETUEQ
; break;
163 case FCmpInst::FCMP_UGT
: FOC
= ISD::SETGT
; FPC
= ISD::SETUGT
; break;
164 case FCmpInst::FCMP_UGE
: FOC
= ISD::SETGE
; FPC
= ISD::SETUGE
; break;
165 case FCmpInst::FCMP_ULT
: FOC
= ISD::SETLT
; FPC
= ISD::SETULT
; break;
166 case FCmpInst::FCMP_ULE
: FOC
= ISD::SETLE
; FPC
= ISD::SETULE
; break;
167 case FCmpInst::FCMP_UNE
: FOC
= ISD::SETNE
; FPC
= ISD::SETUNE
; break;
168 case FCmpInst::FCMP_TRUE
: FOC
= FPC
= ISD::SETTRUE
; break;
170 llvm_unreachable("Invalid FCmp predicate opcode!");
171 FOC
= FPC
= ISD::SETFALSE
;
180 /// getICmpCondCode - Return the ISD condition code corresponding to
181 /// the given LLVM IR integer condition code.
183 ISD::CondCode
llvm::getICmpCondCode(ICmpInst::Predicate Pred
) {
185 case ICmpInst::ICMP_EQ
: return ISD::SETEQ
;
186 case ICmpInst::ICMP_NE
: return ISD::SETNE
;
187 case ICmpInst::ICMP_SLE
: return ISD::SETLE
;
188 case ICmpInst::ICMP_ULE
: return ISD::SETULE
;
189 case ICmpInst::ICMP_SGE
: return ISD::SETGE
;
190 case ICmpInst::ICMP_UGE
: return ISD::SETUGE
;
191 case ICmpInst::ICMP_SLT
: return ISD::SETLT
;
192 case ICmpInst::ICMP_ULT
: return ISD::SETULT
;
193 case ICmpInst::ICMP_SGT
: return ISD::SETGT
;
194 case ICmpInst::ICMP_UGT
: return ISD::SETUGT
;
196 llvm_unreachable("Invalid ICmp predicate opcode!");
201 /// Test if the given instruction is in a position to be optimized
202 /// with a tail-call. This roughly means that it's in a block with
203 /// a return and there's nothing that needs to be scheduled
204 /// between it and the return.
206 /// This function only tests target-independent requirements.
207 bool llvm::isInTailCallPosition(ImmutableCallSite CS
, Attributes CalleeRetAttr
,
208 const TargetLowering
&TLI
) {
209 const Instruction
*I
= CS
.getInstruction();
210 const BasicBlock
*ExitBB
= I
->getParent();
211 const TerminatorInst
*Term
= ExitBB
->getTerminator();
212 const ReturnInst
*Ret
= dyn_cast
<ReturnInst
>(Term
);
213 const Function
*F
= ExitBB
->getParent();
215 // The block must end in a return statement or unreachable.
217 // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
218 // an unreachable, for now. The way tailcall optimization is currently
219 // implemented means it will add an epilogue followed by a jump. That is
220 // not profitable. Also, if the callee is a special function (e.g.
221 // longjmp on x86), it can end up causing miscompilation that has not
222 // been fully understood.
224 (!GuaranteedTailCallOpt
|| !isa
<UnreachableInst
>(Term
))) return false;
226 // If I will have a chain, make sure no other instruction that will have a
227 // chain interposes between I and the return.
228 if (I
->mayHaveSideEffects() || I
->mayReadFromMemory() ||
229 !I
->isSafeToSpeculativelyExecute())
230 for (BasicBlock::const_iterator BBI
= prior(prior(ExitBB
->end())); ;
234 // Debug info intrinsics do not get in the way of tail call optimization.
235 if (isa
<DbgInfoIntrinsic
>(BBI
))
237 if (BBI
->mayHaveSideEffects() || BBI
->mayReadFromMemory() ||
238 !BBI
->isSafeToSpeculativelyExecute())
242 // If the block ends with a void return or unreachable, it doesn't matter
243 // what the call's return type is.
244 if (!Ret
|| Ret
->getNumOperands() == 0) return true;
246 // If the return value is undef, it doesn't matter what the call's
248 if (isa
<UndefValue
>(Ret
->getOperand(0))) return true;
250 // Conservatively require the attributes of the call to match those of
251 // the return. Ignore noalias because it doesn't affect the call sequence.
252 unsigned CallerRetAttr
= F
->getAttributes().getRetAttributes();
253 if ((CalleeRetAttr
^ CallerRetAttr
) & ~Attribute::NoAlias
)
256 // It's not safe to eliminate the sign / zero extension of the return value.
257 if ((CallerRetAttr
& Attribute::ZExt
) || (CallerRetAttr
& Attribute::SExt
))
260 // Otherwise, make sure the unmodified return value of I is the return value.
261 for (const Instruction
*U
= dyn_cast
<Instruction
>(Ret
->getOperand(0)); ;
262 U
= dyn_cast
<Instruction
>(U
->getOperand(0))) {
269 // Check for a truly no-op truncate.
270 if (isa
<TruncInst
>(U
) &&
271 TLI
.isTruncateFree(U
->getOperand(0)->getType(), U
->getType()))
273 // Check for a truly no-op bitcast.
274 if (isa
<BitCastInst
>(U
) &&
275 (U
->getOperand(0)->getType() == U
->getType() ||
276 (U
->getOperand(0)->getType()->isPointerTy() &&
277 U
->getType()->isPointerTy())))
279 // Otherwise it's not a true no-op.