1 //===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass performs global common subexpression elimination on machine
11 // instructions using a scoped hash table based value numbering scheme. It
12 // must be run while the machine function is still in SSA form.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "machine-cse"
17 #include "llvm/CodeGen/Passes.h"
18 #include "llvm/CodeGen/MachineDominators.h"
19 #include "llvm/CodeGen/MachineInstr.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Target/TargetInstrInfo.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/ScopedHashTable.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
32 STATISTIC(NumCoalesces
, "Number of copies coalesced");
33 STATISTIC(NumCSEs
, "Number of common subexpression eliminated");
34 STATISTIC(NumPhysCSEs
,
35 "Number of physreg referencing common subexpr eliminated");
38 class MachineCSE
: public MachineFunctionPass
{
39 const TargetInstrInfo
*TII
;
40 const TargetRegisterInfo
*TRI
;
42 MachineDominatorTree
*DT
;
43 MachineRegisterInfo
*MRI
;
45 static char ID
; // Pass identification
46 MachineCSE() : MachineFunctionPass(ID
), LookAheadLimit(5), CurrVN(0) {
47 initializeMachineCSEPass(*PassRegistry::getPassRegistry());
50 virtual bool runOnMachineFunction(MachineFunction
&MF
);
52 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
54 MachineFunctionPass::getAnalysisUsage(AU
);
55 AU
.addRequired
<AliasAnalysis
>();
56 AU
.addPreservedID(MachineLoopInfoID
);
57 AU
.addRequired
<MachineDominatorTree
>();
58 AU
.addPreserved
<MachineDominatorTree
>();
61 virtual void releaseMemory() {
67 const unsigned LookAheadLimit
;
68 typedef ScopedHashTableScope
<MachineInstr
*, unsigned,
69 MachineInstrExpressionTrait
> ScopeType
;
70 DenseMap
<MachineBasicBlock
*, ScopeType
*> ScopeMap
;
71 ScopedHashTable
<MachineInstr
*, unsigned, MachineInstrExpressionTrait
> VNT
;
72 SmallVector
<MachineInstr
*, 64> Exps
;
75 bool PerformTrivialCoalescing(MachineInstr
*MI
, MachineBasicBlock
*MBB
);
76 bool isPhysDefTriviallyDead(unsigned Reg
,
77 MachineBasicBlock::const_iterator I
,
78 MachineBasicBlock::const_iterator E
) const ;
79 bool hasLivePhysRegDefUses(const MachineInstr
*MI
,
80 const MachineBasicBlock
*MBB
,
81 SmallSet
<unsigned,8> &PhysRefs
) const;
82 bool PhysRegDefsReach(MachineInstr
*CSMI
, MachineInstr
*MI
,
83 SmallSet
<unsigned,8> &PhysRefs
) const;
84 bool isCSECandidate(MachineInstr
*MI
);
85 bool isProfitableToCSE(unsigned CSReg
, unsigned Reg
,
86 MachineInstr
*CSMI
, MachineInstr
*MI
);
87 void EnterScope(MachineBasicBlock
*MBB
);
88 void ExitScope(MachineBasicBlock
*MBB
);
89 bool ProcessBlock(MachineBasicBlock
*MBB
);
90 void ExitScopeIfDone(MachineDomTreeNode
*Node
,
91 DenseMap
<MachineDomTreeNode
*, unsigned> &OpenChildren
,
92 DenseMap
<MachineDomTreeNode
*, MachineDomTreeNode
*> &ParentMap
);
93 bool PerformCSE(MachineDomTreeNode
*Node
);
95 } // end anonymous namespace
97 char MachineCSE::ID
= 0;
98 INITIALIZE_PASS_BEGIN(MachineCSE
, "machine-cse",
99 "Machine Common Subexpression Elimination", false, false)
100 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
101 INITIALIZE_AG_DEPENDENCY(AliasAnalysis
)
102 INITIALIZE_PASS_END(MachineCSE
, "machine-cse",
103 "Machine Common Subexpression Elimination", false, false)
105 FunctionPass
*llvm::createMachineCSEPass() { return new MachineCSE(); }
107 bool MachineCSE::PerformTrivialCoalescing(MachineInstr
*MI
,
108 MachineBasicBlock
*MBB
) {
109 bool Changed
= false;
110 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
111 MachineOperand
&MO
= MI
->getOperand(i
);
112 if (!MO
.isReg() || !MO
.isUse())
114 unsigned Reg
= MO
.getReg();
115 if (!Reg
|| TargetRegisterInfo::isPhysicalRegister(Reg
))
117 if (!MRI
->hasOneNonDBGUse(Reg
))
118 // Only coalesce single use copies. This ensure the copy will be
121 MachineInstr
*DefMI
= MRI
->getVRegDef(Reg
);
122 if (DefMI
->getParent() != MBB
)
124 if (!DefMI
->isCopy())
126 unsigned SrcReg
= DefMI
->getOperand(1).getReg();
127 if (!TargetRegisterInfo::isVirtualRegister(SrcReg
))
129 if (DefMI
->getOperand(0).getSubReg() || DefMI
->getOperand(1).getSubReg())
131 if (!MRI
->constrainRegClass(SrcReg
, MRI
->getRegClass(Reg
)))
133 DEBUG(dbgs() << "Coalescing: " << *DefMI
);
134 DEBUG(dbgs() << "*** to: " << *MI
);
136 MRI
->clearKillFlags(SrcReg
);
137 DefMI
->eraseFromParent();
146 MachineCSE::isPhysDefTriviallyDead(unsigned Reg
,
147 MachineBasicBlock::const_iterator I
,
148 MachineBasicBlock::const_iterator E
) const {
149 unsigned LookAheadLeft
= LookAheadLimit
;
150 while (LookAheadLeft
) {
151 // Skip over dbg_value's.
152 while (I
!= E
&& I
->isDebugValue())
156 // Reached end of block, register is obviously dead.
159 bool SeenDef
= false;
160 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
161 const MachineOperand
&MO
= I
->getOperand(i
);
162 if (!MO
.isReg() || !MO
.getReg())
164 if (!TRI
->regsOverlap(MO
.getReg(), Reg
))
172 // See a def of Reg (or an alias) before encountering any use, it's
182 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
183 /// physical registers (except for dead defs of physical registers). It also
184 /// returns the physical register def by reference if it's the only one and the
185 /// instruction does not uses a physical register.
186 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr
*MI
,
187 const MachineBasicBlock
*MBB
,
188 SmallSet
<unsigned,8> &PhysRefs
) const {
189 MachineBasicBlock::const_iterator I
= MI
; I
= llvm::next(I
);
190 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
191 const MachineOperand
&MO
= MI
->getOperand(i
);
194 unsigned Reg
= MO
.getReg();
197 if (TargetRegisterInfo::isVirtualRegister(Reg
))
199 // If the def is dead, it's ok. But the def may not marked "dead". That's
200 // common since this pass is run before livevariables. We can scan
201 // forward a few instructions and check if it is obviously dead.
203 (MO
.isDead() || isPhysDefTriviallyDead(Reg
, I
, MBB
->end())))
205 PhysRefs
.insert(Reg
);
206 for (const unsigned *Alias
= TRI
->getAliasSet(Reg
); *Alias
; ++Alias
)
207 PhysRefs
.insert(*Alias
);
210 return !PhysRefs
.empty();
213 bool MachineCSE::PhysRegDefsReach(MachineInstr
*CSMI
, MachineInstr
*MI
,
214 SmallSet
<unsigned,8> &PhysRefs
) const {
215 // For now conservatively returns false if the common subexpression is
216 // not in the same basic block as the given instruction.
217 MachineBasicBlock
*MBB
= MI
->getParent();
218 if (CSMI
->getParent() != MBB
)
220 MachineBasicBlock::const_iterator I
= CSMI
; I
= llvm::next(I
);
221 MachineBasicBlock::const_iterator E
= MI
;
222 unsigned LookAheadLeft
= LookAheadLimit
;
223 while (LookAheadLeft
) {
224 // Skip over dbg_value's.
225 while (I
!= E
&& I
->isDebugValue())
231 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
232 const MachineOperand
&MO
= I
->getOperand(i
);
233 if (!MO
.isReg() || !MO
.isDef())
235 unsigned MOReg
= MO
.getReg();
236 if (TargetRegisterInfo::isVirtualRegister(MOReg
))
238 if (PhysRefs
.count(MOReg
))
249 bool MachineCSE::isCSECandidate(MachineInstr
*MI
) {
250 if (MI
->isLabel() || MI
->isPHI() || MI
->isImplicitDef() ||
251 MI
->isKill() || MI
->isInlineAsm() || MI
->isDebugValue())
255 if (MI
->isCopyLike())
258 // Ignore stuff that we obviously can't move.
259 const TargetInstrDesc
&TID
= MI
->getDesc();
260 if (TID
.mayStore() || TID
.isCall() || TID
.isTerminator() ||
261 TID
.hasUnmodeledSideEffects())
265 // Okay, this instruction does a load. As a refinement, we allow the target
266 // to decide whether the loaded value is actually a constant. If so, we can
267 // actually use it as a load.
268 if (!MI
->isInvariantLoad(AA
))
269 // FIXME: we should be able to hoist loads with no other side effects if
270 // there are no other instructions which can change memory in this loop.
271 // This is a trivial form of alias analysis.
277 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
278 /// common expression that defines Reg.
279 bool MachineCSE::isProfitableToCSE(unsigned CSReg
, unsigned Reg
,
280 MachineInstr
*CSMI
, MachineInstr
*MI
) {
281 // FIXME: Heuristics that works around the lack the live range splitting.
283 // Heuristics #1: Don't cse "cheap" computating if the def is not local or in an
284 // immediate predecessor. We don't want to increase register pressure and end up
285 // causing other computation to be spilled.
286 if (MI
->getDesc().isAsCheapAsAMove()) {
287 MachineBasicBlock
*CSBB
= CSMI
->getParent();
288 MachineBasicBlock
*BB
= MI
->getParent();
290 find(CSBB
->succ_begin(), CSBB
->succ_end(), BB
) == CSBB
->succ_end())
294 // Heuristics #2: If the expression doesn't not use a vr and the only use
295 // of the redundant computation are copies, do not cse.
296 bool HasVRegUse
= false;
297 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
298 const MachineOperand
&MO
= MI
->getOperand(i
);
299 if (MO
.isReg() && MO
.isUse() && MO
.getReg() &&
300 TargetRegisterInfo::isVirtualRegister(MO
.getReg())) {
306 bool HasNonCopyUse
= false;
307 for (MachineRegisterInfo::use_nodbg_iterator I
= MRI
->use_nodbg_begin(Reg
),
308 E
= MRI
->use_nodbg_end(); I
!= E
; ++I
) {
309 MachineInstr
*Use
= &*I
;
311 if (!Use
->isCopyLike()) {
312 HasNonCopyUse
= true;
320 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
321 // it unless the defined value is already used in the BB of the new use.
323 SmallPtrSet
<MachineBasicBlock
*, 4> CSBBs
;
324 for (MachineRegisterInfo::use_nodbg_iterator I
= MRI
->use_nodbg_begin(CSReg
),
325 E
= MRI
->use_nodbg_end(); I
!= E
; ++I
) {
326 MachineInstr
*Use
= &*I
;
327 HasPHI
|= Use
->isPHI();
328 CSBBs
.insert(Use
->getParent());
333 return CSBBs
.count(MI
->getParent());
336 void MachineCSE::EnterScope(MachineBasicBlock
*MBB
) {
337 DEBUG(dbgs() << "Entering: " << MBB
->getName() << '\n');
338 ScopeType
*Scope
= new ScopeType(VNT
);
339 ScopeMap
[MBB
] = Scope
;
342 void MachineCSE::ExitScope(MachineBasicBlock
*MBB
) {
343 DEBUG(dbgs() << "Exiting: " << MBB
->getName() << '\n');
344 DenseMap
<MachineBasicBlock
*, ScopeType
*>::iterator SI
= ScopeMap
.find(MBB
);
345 assert(SI
!= ScopeMap
.end());
350 bool MachineCSE::ProcessBlock(MachineBasicBlock
*MBB
) {
351 bool Changed
= false;
353 SmallVector
<std::pair
<unsigned, unsigned>, 8> CSEPairs
;
354 for (MachineBasicBlock::iterator I
= MBB
->begin(), E
= MBB
->end(); I
!= E
; ) {
355 MachineInstr
*MI
= &*I
;
358 if (!isCSECandidate(MI
))
361 bool FoundCSE
= VNT
.count(MI
);
363 // Look for trivial copy coalescing opportunities.
364 if (PerformTrivialCoalescing(MI
, MBB
)) {
365 // After coalescing MI itself may become a copy.
366 if (MI
->isCopyLike())
368 FoundCSE
= VNT
.count(MI
);
371 // FIXME: commute commutable instructions?
373 // If the instruction defines physical registers and the values *may* be
374 // used, then it's not safe to replace it with a common subexpression.
375 // It's also not safe if the instruction uses physical registers.
376 SmallSet
<unsigned,8> PhysRefs
;
377 if (FoundCSE
&& hasLivePhysRegDefUses(MI
, MBB
, PhysRefs
)) {
380 // ... Unless the CS is local and it also defines the physical register
381 // which is not clobbered in between and the physical register uses
382 // were not clobbered.
383 unsigned CSVN
= VNT
.lookup(MI
);
384 MachineInstr
*CSMI
= Exps
[CSVN
];
385 if (PhysRegDefsReach(CSMI
, MI
, PhysRefs
))
390 VNT
.insert(MI
, CurrVN
++);
395 // Found a common subexpression, eliminate it.
396 unsigned CSVN
= VNT
.lookup(MI
);
397 MachineInstr
*CSMI
= Exps
[CSVN
];
398 DEBUG(dbgs() << "Examining: " << *MI
);
399 DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI
);
401 // Check if it's profitable to perform this CSE.
403 unsigned NumDefs
= MI
->getDesc().getNumDefs();
404 for (unsigned i
= 0, e
= MI
->getNumOperands(); NumDefs
&& i
!= e
; ++i
) {
405 MachineOperand
&MO
= MI
->getOperand(i
);
406 if (!MO
.isReg() || !MO
.isDef())
408 unsigned OldReg
= MO
.getReg();
409 unsigned NewReg
= CSMI
->getOperand(i
).getReg();
410 if (OldReg
== NewReg
)
412 assert(TargetRegisterInfo::isVirtualRegister(OldReg
) &&
413 TargetRegisterInfo::isVirtualRegister(NewReg
) &&
414 "Do not CSE physical register defs!");
415 if (!isProfitableToCSE(NewReg
, OldReg
, CSMI
, MI
)) {
419 CSEPairs
.push_back(std::make_pair(OldReg
, NewReg
));
423 // Actually perform the elimination.
425 for (unsigned i
= 0, e
= CSEPairs
.size(); i
!= e
; ++i
) {
426 MRI
->replaceRegWith(CSEPairs
[i
].first
, CSEPairs
[i
].second
);
427 MRI
->clearKillFlags(CSEPairs
[i
].second
);
429 MI
->eraseFromParent();
431 if (!PhysRefs
.empty())
434 DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
435 VNT
.insert(MI
, CurrVN
++);
444 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
445 /// dominator tree node if its a leaf or all of its children are done. Walk
446 /// up the dominator tree to destroy ancestors which are now done.
448 MachineCSE::ExitScopeIfDone(MachineDomTreeNode
*Node
,
449 DenseMap
<MachineDomTreeNode
*, unsigned> &OpenChildren
,
450 DenseMap
<MachineDomTreeNode
*, MachineDomTreeNode
*> &ParentMap
) {
451 if (OpenChildren
[Node
])
455 ExitScope(Node
->getBlock());
457 // Now traverse upwards to pop ancestors whose offsprings are all done.
458 while (MachineDomTreeNode
*Parent
= ParentMap
[Node
]) {
459 unsigned Left
= --OpenChildren
[Parent
];
462 ExitScope(Parent
->getBlock());
467 bool MachineCSE::PerformCSE(MachineDomTreeNode
*Node
) {
468 SmallVector
<MachineDomTreeNode
*, 32> Scopes
;
469 SmallVector
<MachineDomTreeNode
*, 8> WorkList
;
470 DenseMap
<MachineDomTreeNode
*, MachineDomTreeNode
*> ParentMap
;
471 DenseMap
<MachineDomTreeNode
*, unsigned> OpenChildren
;
475 // Perform a DFS walk to determine the order of visit.
476 WorkList
.push_back(Node
);
478 Node
= WorkList
.pop_back_val();
479 Scopes
.push_back(Node
);
480 const std::vector
<MachineDomTreeNode
*> &Children
= Node
->getChildren();
481 unsigned NumChildren
= Children
.size();
482 OpenChildren
[Node
] = NumChildren
;
483 for (unsigned i
= 0; i
!= NumChildren
; ++i
) {
484 MachineDomTreeNode
*Child
= Children
[i
];
485 ParentMap
[Child
] = Node
;
486 WorkList
.push_back(Child
);
488 } while (!WorkList
.empty());
491 bool Changed
= false;
492 for (unsigned i
= 0, e
= Scopes
.size(); i
!= e
; ++i
) {
493 MachineDomTreeNode
*Node
= Scopes
[i
];
494 MachineBasicBlock
*MBB
= Node
->getBlock();
496 Changed
|= ProcessBlock(MBB
);
497 // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
498 ExitScopeIfDone(Node
, OpenChildren
, ParentMap
);
504 bool MachineCSE::runOnMachineFunction(MachineFunction
&MF
) {
505 TII
= MF
.getTarget().getInstrInfo();
506 TRI
= MF
.getTarget().getRegisterInfo();
507 MRI
= &MF
.getRegInfo();
508 AA
= &getAnalysis
<AliasAnalysis
>();
509 DT
= &getAnalysis
<MachineDominatorTree
>();
510 return PerformCSE(DT
->getRootNode());