1 //===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements a linear scan register allocator.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "regalloc"
15 #include "VirtRegMap.h"
16 #include "VirtRegRewriter.h"
18 #include "llvm/Function.h"
19 #include "llvm/CodeGen/CalcSpillWeights.h"
20 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
21 #include "llvm/CodeGen/MachineFunctionPass.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/Passes.h"
26 #include "llvm/CodeGen/RegAllocRegistry.h"
27 #include "llvm/CodeGen/RegisterCoalescer.h"
28 #include "llvm/Target/TargetRegisterInfo.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include "llvm/Target/TargetOptions.h"
31 #include "llvm/Target/TargetInstrInfo.h"
32 #include "llvm/ADT/EquivalenceClasses.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/raw_ostream.h"
47 STATISTIC(NumIters
, "Number of iterations performed");
48 STATISTIC(NumBacktracks
, "Number of times we had to backtrack");
49 STATISTIC(NumCoalesce
, "Number of copies coalesced");
50 STATISTIC(NumDowngrade
, "Number of registers downgraded");
53 NewHeuristic("new-spilling-heuristic",
54 cl::desc("Use new spilling heuristic"),
55 cl::init(false), cl::Hidden
);
58 PreSplitIntervals("pre-alloc-split",
59 cl::desc("Pre-register allocation live interval splitting"),
60 cl::init(false), cl::Hidden
);
63 TrivCoalesceEnds("trivial-coalesce-ends",
64 cl::desc("Attempt trivial coalescing of interval ends"),
65 cl::init(false), cl::Hidden
);
67 static RegisterRegAlloc
68 linearscanRegAlloc("linearscan", "linear scan register allocator",
69 createLinearScanRegisterAllocator
);
72 // When we allocate a register, add it to a fixed-size queue of
73 // registers to skip in subsequent allocations. This trades a small
74 // amount of register pressure and increased spills for flexibility in
75 // the post-pass scheduler.
77 // Note that in a the number of registers used for reloading spills
78 // will be one greater than the value of this option.
80 // One big limitation of this is that it doesn't differentiate between
81 // different register classes. So on x86-64, if there is xmm register
82 // pressure, it can caused fewer GPRs to be held in the queue.
83 static cl::opt
<unsigned>
84 NumRecentlyUsedRegs("linearscan-skip-count",
85 cl::desc("Number of registers for linearscan to remember"
90 struct RALinScan
: public MachineFunctionPass
{
92 RALinScan() : MachineFunctionPass(ID
) {
93 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
94 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
95 initializeRegisterCoalescerAnalysisGroup(
96 *PassRegistry::getPassRegistry());
97 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
98 initializePreAllocSplittingPass(*PassRegistry::getPassRegistry());
99 initializeLiveStacksPass(*PassRegistry::getPassRegistry());
100 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
101 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
102 initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
103 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
105 // Initialize the queue to record recently-used registers.
106 if (NumRecentlyUsedRegs
> 0)
107 RecentRegs
.resize(NumRecentlyUsedRegs
, 0);
108 RecentNext
= RecentRegs
.begin();
111 typedef std::pair
<LiveInterval
*, LiveInterval::iterator
> IntervalPtr
;
112 typedef SmallVector
<IntervalPtr
, 32> IntervalPtrs
;
114 /// RelatedRegClasses - This structure is built the first time a function is
115 /// compiled, and keeps track of which register classes have registers that
116 /// belong to multiple classes or have aliases that are in other classes.
117 EquivalenceClasses
<const TargetRegisterClass
*> RelatedRegClasses
;
118 DenseMap
<unsigned, const TargetRegisterClass
*> OneClassForEachPhysReg
;
120 // NextReloadMap - For each register in the map, it maps to the another
121 // register which is defined by a reload from the same stack slot and
122 // both reloads are in the same basic block.
123 DenseMap
<unsigned, unsigned> NextReloadMap
;
125 // DowngradedRegs - A set of registers which are being "downgraded", i.e.
126 // un-favored for allocation.
127 SmallSet
<unsigned, 8> DowngradedRegs
;
129 // DowngradeMap - A map from virtual registers to physical registers being
130 // downgraded for the virtual registers.
131 DenseMap
<unsigned, unsigned> DowngradeMap
;
133 MachineFunction
* mf_
;
134 MachineRegisterInfo
* mri_
;
135 const TargetMachine
* tm_
;
136 const TargetRegisterInfo
* tri_
;
137 const TargetInstrInfo
* tii_
;
138 BitVector allocatableRegs_
;
139 BitVector reservedRegs_
;
141 MachineLoopInfo
*loopInfo
;
143 /// handled_ - Intervals are added to the handled_ set in the order of their
144 /// start value. This is uses for backtracking.
145 std::vector
<LiveInterval
*> handled_
;
147 /// fixed_ - Intervals that correspond to machine registers.
151 /// active_ - Intervals that are currently being processed, and which have a
152 /// live range active for the current point.
153 IntervalPtrs active_
;
155 /// inactive_ - Intervals that are currently being processed, but which have
156 /// a hold at the current point.
157 IntervalPtrs inactive_
;
159 typedef std::priority_queue
<LiveInterval
*,
160 SmallVector
<LiveInterval
*, 64>,
161 greater_ptr
<LiveInterval
> > IntervalHeap
;
162 IntervalHeap unhandled_
;
164 /// regUse_ - Tracks register usage.
165 SmallVector
<unsigned, 32> regUse_
;
166 SmallVector
<unsigned, 32> regUseBackUp_
;
168 /// vrm_ - Tracks register assignments.
171 std::auto_ptr
<VirtRegRewriter
> rewriter_
;
173 std::auto_ptr
<Spiller
> spiller_
;
175 // The queue of recently-used registers.
176 SmallVector
<unsigned, 4> RecentRegs
;
177 SmallVector
<unsigned, 4>::iterator RecentNext
;
179 // Record that we just picked this register.
180 void recordRecentlyUsed(unsigned reg
) {
181 assert(reg
!= 0 && "Recently used register is NOREG!");
182 if (!RecentRegs
.empty()) {
184 if (RecentNext
== RecentRegs
.end())
185 RecentNext
= RecentRegs
.begin();
190 virtual const char* getPassName() const {
191 return "Linear Scan Register Allocator";
194 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
195 AU
.setPreservesCFG();
196 AU
.addRequired
<LiveIntervals
>();
197 AU
.addPreserved
<SlotIndexes
>();
199 AU
.addRequiredID(StrongPHIEliminationID
);
200 // Make sure PassManager knows which analyses to make available
201 // to coalescing and which analyses coalescing invalidates.
202 AU
.addRequiredTransitive
<RegisterCoalescer
>();
203 AU
.addRequired
<CalculateSpillWeights
>();
204 if (PreSplitIntervals
)
205 AU
.addRequiredID(PreAllocSplittingID
);
206 AU
.addRequiredID(LiveStacksID
);
207 AU
.addPreservedID(LiveStacksID
);
208 AU
.addRequired
<MachineLoopInfo
>();
209 AU
.addPreserved
<MachineLoopInfo
>();
210 AU
.addRequired
<VirtRegMap
>();
211 AU
.addPreserved
<VirtRegMap
>();
212 AU
.addRequiredID(MachineDominatorsID
);
213 AU
.addPreservedID(MachineDominatorsID
);
214 MachineFunctionPass::getAnalysisUsage(AU
);
217 /// runOnMachineFunction - register allocate the whole function
218 bool runOnMachineFunction(MachineFunction
&);
220 // Determine if we skip this register due to its being recently used.
221 bool isRecentlyUsed(unsigned reg
) const {
222 return std::find(RecentRegs
.begin(), RecentRegs
.end(), reg
) !=
227 /// linearScan - the linear scan algorithm
230 /// initIntervalSets - initialize the interval sets.
232 void initIntervalSets();
234 /// processActiveIntervals - expire old intervals and move non-overlapping
235 /// ones to the inactive list.
236 void processActiveIntervals(SlotIndex CurPoint
);
238 /// processInactiveIntervals - expire old intervals and move overlapping
239 /// ones to the active list.
240 void processInactiveIntervals(SlotIndex CurPoint
);
242 /// hasNextReloadInterval - Return the next liveinterval that's being
243 /// defined by a reload from the same SS as the specified one.
244 LiveInterval
*hasNextReloadInterval(LiveInterval
*cur
);
246 /// DowngradeRegister - Downgrade a register for allocation.
247 void DowngradeRegister(LiveInterval
*li
, unsigned Reg
);
249 /// UpgradeRegister - Upgrade a register for allocation.
250 void UpgradeRegister(unsigned Reg
);
252 /// assignRegOrStackSlotAtInterval - assign a register if one
253 /// is available, or spill.
254 void assignRegOrStackSlotAtInterval(LiveInterval
* cur
);
256 void updateSpillWeights(std::vector
<float> &Weights
,
257 unsigned reg
, float weight
,
258 const TargetRegisterClass
*RC
);
260 /// findIntervalsToSpill - Determine the intervals to spill for the
261 /// specified interval. It's passed the physical registers whose spill
262 /// weight is the lowest among all the registers whose live intervals
263 /// conflict with the interval.
264 void findIntervalsToSpill(LiveInterval
*cur
,
265 std::vector
<std::pair
<unsigned,float> > &Candidates
,
267 SmallVector
<LiveInterval
*, 8> &SpillIntervals
);
269 /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
270 /// try to allocate the definition to the same register as the source,
271 /// if the register is not defined during the life time of the interval.
272 /// This eliminates a copy, and is used to coalesce copies which were not
273 /// coalesced away before allocation either due to dest and src being in
274 /// different register classes or because the coalescer was overly
276 unsigned attemptTrivialCoalescing(LiveInterval
&cur
, unsigned Reg
);
279 /// Register usage / availability tracking helpers.
283 regUse_
.resize(tri_
->getNumRegs(), 0);
284 regUseBackUp_
.resize(tri_
->getNumRegs(), 0);
287 void finalizeRegUses() {
289 // Verify all the registers are "freed".
291 for (unsigned i
= 0, e
= tri_
->getNumRegs(); i
!= e
; ++i
) {
292 if (regUse_
[i
] != 0) {
293 dbgs() << tri_
->getName(i
) << " is still in use!\n";
301 regUseBackUp_
.clear();
304 void addRegUse(unsigned physReg
) {
305 assert(TargetRegisterInfo::isPhysicalRegister(physReg
) &&
306 "should be physical register!");
308 for (const unsigned* as
= tri_
->getAliasSet(physReg
); *as
; ++as
)
312 void delRegUse(unsigned physReg
) {
313 assert(TargetRegisterInfo::isPhysicalRegister(physReg
) &&
314 "should be physical register!");
315 assert(regUse_
[physReg
] != 0);
317 for (const unsigned* as
= tri_
->getAliasSet(physReg
); *as
; ++as
) {
318 assert(regUse_
[*as
] != 0);
323 bool isRegAvail(unsigned physReg
) const {
324 assert(TargetRegisterInfo::isPhysicalRegister(physReg
) &&
325 "should be physical register!");
326 return regUse_
[physReg
] == 0;
329 void backUpRegUses() {
330 regUseBackUp_
= regUse_
;
333 void restoreRegUses() {
334 regUse_
= regUseBackUp_
;
338 /// Register handling helpers.
341 /// getFreePhysReg - return a free physical register for this virtual
342 /// register interval if we have one, otherwise return 0.
343 unsigned getFreePhysReg(LiveInterval
* cur
);
344 unsigned getFreePhysReg(LiveInterval
* cur
,
345 const TargetRegisterClass
*RC
,
346 unsigned MaxInactiveCount
,
347 SmallVector
<unsigned, 256> &inactiveCounts
,
350 /// getFirstNonReservedPhysReg - return the first non-reserved physical
351 /// register in the register class.
352 unsigned getFirstNonReservedPhysReg(const TargetRegisterClass
*RC
) {
353 TargetRegisterClass::iterator aoe
= RC
->allocation_order_end(*mf_
);
354 TargetRegisterClass::iterator i
= RC
->allocation_order_begin(*mf_
);
355 while (i
!= aoe
&& reservedRegs_
.test(*i
))
357 assert(i
!= aoe
&& "All registers reserved?!");
361 void ComputeRelatedRegClasses();
363 template <typename ItTy
>
364 void printIntervals(const char* const str
, ItTy i
, ItTy e
) const {
367 dbgs() << str
<< " intervals:\n";
369 for (; i
!= e
; ++i
) {
370 dbgs() << "\t" << *i
->first
<< " -> ";
372 unsigned reg
= i
->first
->reg
;
373 if (TargetRegisterInfo::isVirtualRegister(reg
))
374 reg
= vrm_
->getPhys(reg
);
376 dbgs() << tri_
->getName(reg
) << '\n';
381 char RALinScan::ID
= 0;
384 INITIALIZE_PASS_BEGIN(RALinScan
, "linearscan-regalloc",
385 "Linear Scan Register Allocator", false, false)
386 INITIALIZE_PASS_DEPENDENCY(LiveIntervals
)
387 INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination
)
388 INITIALIZE_PASS_DEPENDENCY(CalculateSpillWeights
)
389 INITIALIZE_PASS_DEPENDENCY(PreAllocSplitting
)
390 INITIALIZE_PASS_DEPENDENCY(LiveStacks
)
391 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
392 INITIALIZE_PASS_DEPENDENCY(VirtRegMap
)
393 INITIALIZE_AG_DEPENDENCY(RegisterCoalescer
)
394 INITIALIZE_PASS_END(RALinScan
, "linearscan-regalloc",
395 "Linear Scan Register Allocator", false, false)
397 void RALinScan::ComputeRelatedRegClasses() {
398 // First pass, add all reg classes to the union, and determine at least one
399 // reg class that each register is in.
400 bool HasAliases
= false;
401 for (TargetRegisterInfo::regclass_iterator RCI
= tri_
->regclass_begin(),
402 E
= tri_
->regclass_end(); RCI
!= E
; ++RCI
) {
403 RelatedRegClasses
.insert(*RCI
);
404 for (TargetRegisterClass::iterator I
= (*RCI
)->begin(), E
= (*RCI
)->end();
406 HasAliases
= HasAliases
|| *tri_
->getAliasSet(*I
) != 0;
408 const TargetRegisterClass
*&PRC
= OneClassForEachPhysReg
[*I
];
410 // Already processed this register. Just make sure we know that
411 // multiple register classes share a register.
412 RelatedRegClasses
.unionSets(PRC
, *RCI
);
419 // Second pass, now that we know conservatively what register classes each reg
420 // belongs to, add info about aliases. We don't need to do this for targets
421 // without register aliases.
423 for (DenseMap
<unsigned, const TargetRegisterClass
*>::iterator
424 I
= OneClassForEachPhysReg
.begin(), E
= OneClassForEachPhysReg
.end();
426 for (const unsigned *AS
= tri_
->getAliasSet(I
->first
); *AS
; ++AS
)
427 RelatedRegClasses
.unionSets(I
->second
, OneClassForEachPhysReg
[*AS
]);
430 /// attemptTrivialCoalescing - If a simple interval is defined by a copy, try
431 /// allocate the definition the same register as the source register if the
432 /// register is not defined during live time of the interval. If the interval is
433 /// killed by a copy, try to use the destination register. This eliminates a
434 /// copy. This is used to coalesce copies which were not coalesced away before
435 /// allocation either due to dest and src being in different register classes or
436 /// because the coalescer was overly conservative.
437 unsigned RALinScan::attemptTrivialCoalescing(LiveInterval
&cur
, unsigned Reg
) {
438 unsigned Preference
= vrm_
->getRegAllocPref(cur
.reg
);
439 if ((Preference
&& Preference
== Reg
) || !cur
.containsOneValue())
442 // We cannot handle complicated live ranges. Simple linear stuff only.
443 if (cur
.ranges
.size() != 1)
446 const LiveRange
&range
= cur
.ranges
.front();
448 VNInfo
*vni
= range
.valno
;
454 MachineInstr
*CopyMI
;
455 if ((CopyMI
= li_
->getInstructionFromIndex(vni
->def
)) && CopyMI
->isCopy())
456 // Defined by a copy, try to extend SrcReg forward
457 CandReg
= CopyMI
->getOperand(1).getReg();
458 else if (TrivCoalesceEnds
&&
459 (CopyMI
= li_
->getInstructionFromIndex(range
.end
.getBaseIndex())) &&
460 CopyMI
->isCopy() && cur
.reg
== CopyMI
->getOperand(1).getReg())
461 // Only used by a copy, try to extend DstReg backwards
462 CandReg
= CopyMI
->getOperand(0).getReg();
467 if (TargetRegisterInfo::isVirtualRegister(CandReg
)) {
468 if (!vrm_
->isAssignedReg(CandReg
))
470 CandReg
= vrm_
->getPhys(CandReg
);
475 const TargetRegisterClass
*RC
= mri_
->getRegClass(cur
.reg
);
476 if (!RC
->contains(CandReg
))
479 if (li_
->conflictsWithPhysReg(cur
, *vrm_
, CandReg
))
483 DEBUG(dbgs() << "Coalescing: " << cur
<< " -> " << tri_
->getName(CandReg
)
485 vrm_
->clearVirt(cur
.reg
);
486 vrm_
->assignVirt2Phys(cur
.reg
, CandReg
);
492 bool RALinScan::runOnMachineFunction(MachineFunction
&fn
) {
494 mri_
= &fn
.getRegInfo();
495 tm_
= &fn
.getTarget();
496 tri_
= tm_
->getRegisterInfo();
497 tii_
= tm_
->getInstrInfo();
498 allocatableRegs_
= tri_
->getAllocatableSet(fn
);
499 reservedRegs_
= tri_
->getReservedRegs(fn
);
500 li_
= &getAnalysis
<LiveIntervals
>();
501 loopInfo
= &getAnalysis
<MachineLoopInfo
>();
503 // We don't run the coalescer here because we have no reason to
504 // interact with it. If the coalescer requires interaction, it
505 // won't do anything. If it doesn't require interaction, we assume
506 // it was run as a separate pass.
508 // If this is the first function compiled, compute the related reg classes.
509 if (RelatedRegClasses
.empty())
510 ComputeRelatedRegClasses();
512 // Also resize register usage trackers.
515 vrm_
= &getAnalysis
<VirtRegMap
>();
516 if (!rewriter_
.get()) rewriter_
.reset(createVirtRegRewriter());
518 spiller_
.reset(createSpiller(*this, *mf_
, *vrm_
));
524 // Rewrite spill code and update the PhysRegsUsed set.
525 rewriter_
->runOnMachineFunction(*mf_
, *vrm_
, li_
);
527 assert(unhandled_
.empty() && "Unhandled live intervals remain!");
535 NextReloadMap
.clear();
536 DowngradedRegs
.clear();
537 DowngradeMap
.clear();
543 /// initIntervalSets - initialize the interval sets.
545 void RALinScan::initIntervalSets()
547 assert(unhandled_
.empty() && fixed_
.empty() &&
548 active_
.empty() && inactive_
.empty() &&
549 "interval sets should be empty on initialization");
551 handled_
.reserve(li_
->getNumIntervals());
553 for (LiveIntervals::iterator i
= li_
->begin(), e
= li_
->end(); i
!= e
; ++i
) {
554 if (TargetRegisterInfo::isPhysicalRegister(i
->second
->reg
)) {
555 if (!i
->second
->empty()) {
556 mri_
->setPhysRegUsed(i
->second
->reg
);
557 fixed_
.push_back(std::make_pair(i
->second
, i
->second
->begin()));
560 if (i
->second
->empty()) {
561 assignRegOrStackSlotAtInterval(i
->second
);
564 unhandled_
.push(i
->second
);
569 void RALinScan::linearScan() {
570 // linear scan algorithm
572 dbgs() << "********** LINEAR SCAN **********\n"
573 << "********** Function: "
574 << mf_
->getFunction()->getName() << '\n';
575 printIntervals("fixed", fixed_
.begin(), fixed_
.end());
578 while (!unhandled_
.empty()) {
579 // pick the interval with the earliest start point
580 LiveInterval
* cur
= unhandled_
.top();
583 DEBUG(dbgs() << "\n*** CURRENT ***: " << *cur
<< '\n');
585 assert(!cur
->empty() && "Empty interval in unhandled set.");
587 processActiveIntervals(cur
->beginIndex());
588 processInactiveIntervals(cur
->beginIndex());
590 assert(TargetRegisterInfo::isVirtualRegister(cur
->reg
) &&
591 "Can only allocate virtual registers!");
593 // Allocating a virtual register. try to find a free
594 // physical register or spill an interval (possibly this one) in order to
596 assignRegOrStackSlotAtInterval(cur
);
599 printIntervals("active", active_
.begin(), active_
.end());
600 printIntervals("inactive", inactive_
.begin(), inactive_
.end());
604 // Expire any remaining active intervals
605 while (!active_
.empty()) {
606 IntervalPtr
&IP
= active_
.back();
607 unsigned reg
= IP
.first
->reg
;
608 DEBUG(dbgs() << "\tinterval " << *IP
.first
<< " expired\n");
609 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
610 "Can only allocate virtual registers!");
611 reg
= vrm_
->getPhys(reg
);
616 // Expire any remaining inactive intervals
618 for (IntervalPtrs::reverse_iterator
619 i
= inactive_
.rbegin(); i
!= inactive_
.rend(); ++i
)
620 dbgs() << "\tinterval " << *i
->first
<< " expired\n";
624 // Add live-ins to every BB except for entry. Also perform trivial coalescing.
625 MachineFunction::iterator EntryMBB
= mf_
->begin();
626 SmallVector
<MachineBasicBlock
*, 8> LiveInMBBs
;
627 for (LiveIntervals::iterator i
= li_
->begin(), e
= li_
->end(); i
!= e
; ++i
) {
628 LiveInterval
&cur
= *i
->second
;
630 bool isPhys
= TargetRegisterInfo::isPhysicalRegister(cur
.reg
);
633 else if (vrm_
->isAssignedReg(cur
.reg
))
634 Reg
= attemptTrivialCoalescing(cur
, vrm_
->getPhys(cur
.reg
));
637 // Ignore splited live intervals.
638 if (!isPhys
&& vrm_
->getPreSplitReg(cur
.reg
))
641 for (LiveInterval::Ranges::const_iterator I
= cur
.begin(), E
= cur
.end();
643 const LiveRange
&LR
= *I
;
644 if (li_
->findLiveInMBBs(LR
.start
, LR
.end
, LiveInMBBs
)) {
645 for (unsigned i
= 0, e
= LiveInMBBs
.size(); i
!= e
; ++i
)
646 if (LiveInMBBs
[i
] != EntryMBB
) {
647 assert(TargetRegisterInfo::isPhysicalRegister(Reg
) &&
648 "Adding a virtual register to livein set?");
649 LiveInMBBs
[i
]->addLiveIn(Reg
);
656 DEBUG(dbgs() << *vrm_
);
658 // Look for physical registers that end up not being allocated even though
659 // register allocator had to spill other registers in its register class.
660 if (!vrm_
->FindUnusedRegisters(li_
))
664 /// processActiveIntervals - expire old intervals and move non-overlapping ones
665 /// to the inactive list.
666 void RALinScan::processActiveIntervals(SlotIndex CurPoint
)
668 DEBUG(dbgs() << "\tprocessing active intervals:\n");
670 for (unsigned i
= 0, e
= active_
.size(); i
!= e
; ++i
) {
671 LiveInterval
*Interval
= active_
[i
].first
;
672 LiveInterval::iterator IntervalPos
= active_
[i
].second
;
673 unsigned reg
= Interval
->reg
;
675 IntervalPos
= Interval
->advanceTo(IntervalPos
, CurPoint
);
677 if (IntervalPos
== Interval
->end()) { // Remove expired intervals.
678 DEBUG(dbgs() << "\t\tinterval " << *Interval
<< " expired\n");
679 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
680 "Can only allocate virtual registers!");
681 reg
= vrm_
->getPhys(reg
);
684 // Pop off the end of the list.
685 active_
[i
] = active_
.back();
689 } else if (IntervalPos
->start
> CurPoint
) {
690 // Move inactive intervals to inactive list.
691 DEBUG(dbgs() << "\t\tinterval " << *Interval
<< " inactive\n");
692 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
693 "Can only allocate virtual registers!");
694 reg
= vrm_
->getPhys(reg
);
697 inactive_
.push_back(std::make_pair(Interval
, IntervalPos
));
699 // Pop off the end of the list.
700 active_
[i
] = active_
.back();
704 // Otherwise, just update the iterator position.
705 active_
[i
].second
= IntervalPos
;
710 /// processInactiveIntervals - expire old intervals and move overlapping
711 /// ones to the active list.
712 void RALinScan::processInactiveIntervals(SlotIndex CurPoint
)
714 DEBUG(dbgs() << "\tprocessing inactive intervals:\n");
716 for (unsigned i
= 0, e
= inactive_
.size(); i
!= e
; ++i
) {
717 LiveInterval
*Interval
= inactive_
[i
].first
;
718 LiveInterval::iterator IntervalPos
= inactive_
[i
].second
;
719 unsigned reg
= Interval
->reg
;
721 IntervalPos
= Interval
->advanceTo(IntervalPos
, CurPoint
);
723 if (IntervalPos
== Interval
->end()) { // remove expired intervals.
724 DEBUG(dbgs() << "\t\tinterval " << *Interval
<< " expired\n");
726 // Pop off the end of the list.
727 inactive_
[i
] = inactive_
.back();
728 inactive_
.pop_back();
730 } else if (IntervalPos
->start
<= CurPoint
) {
731 // move re-activated intervals in active list
732 DEBUG(dbgs() << "\t\tinterval " << *Interval
<< " active\n");
733 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
734 "Can only allocate virtual registers!");
735 reg
= vrm_
->getPhys(reg
);
738 active_
.push_back(std::make_pair(Interval
, IntervalPos
));
740 // Pop off the end of the list.
741 inactive_
[i
] = inactive_
.back();
742 inactive_
.pop_back();
745 // Otherwise, just update the iterator position.
746 inactive_
[i
].second
= IntervalPos
;
751 /// updateSpillWeights - updates the spill weights of the specifed physical
752 /// register and its weight.
753 void RALinScan::updateSpillWeights(std::vector
<float> &Weights
,
754 unsigned reg
, float weight
,
755 const TargetRegisterClass
*RC
) {
756 SmallSet
<unsigned, 4> Processed
;
757 SmallSet
<unsigned, 4> SuperAdded
;
758 SmallVector
<unsigned, 4> Supers
;
759 Weights
[reg
] += weight
;
760 Processed
.insert(reg
);
761 for (const unsigned* as
= tri_
->getAliasSet(reg
); *as
; ++as
) {
762 Weights
[*as
] += weight
;
763 Processed
.insert(*as
);
764 if (tri_
->isSubRegister(*as
, reg
) &&
765 SuperAdded
.insert(*as
) &&
767 Supers
.push_back(*as
);
771 // If the alias is a super-register, and the super-register is in the
772 // register class we are trying to allocate. Then add the weight to all
773 // sub-registers of the super-register even if they are not aliases.
774 // e.g. allocating for GR32, bh is not used, updating bl spill weight.
775 // bl should get the same spill weight otherwise it will be choosen
776 // as a spill candidate since spilling bh doesn't make ebx available.
777 for (unsigned i
= 0, e
= Supers
.size(); i
!= e
; ++i
) {
778 for (const unsigned *sr
= tri_
->getSubRegisters(Supers
[i
]); *sr
; ++sr
)
779 if (!Processed
.count(*sr
))
780 Weights
[*sr
] += weight
;
785 RALinScan::IntervalPtrs::iterator
786 FindIntervalInVector(RALinScan::IntervalPtrs
&IP
, LiveInterval
*LI
) {
787 for (RALinScan::IntervalPtrs::iterator I
= IP
.begin(), E
= IP
.end();
789 if (I
->first
== LI
) return I
;
793 static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs
&V
,
795 for (unsigned i
= 0, e
= V
.size(); i
!= e
; ++i
) {
796 RALinScan::IntervalPtr
&IP
= V
[i
];
797 LiveInterval::iterator I
= std::upper_bound(IP
.first
->begin(),
799 if (I
!= IP
.first
->begin()) --I
;
804 /// getConflictWeight - Return the number of conflicts between cur
805 /// live interval and defs and uses of Reg weighted by loop depthes.
807 float getConflictWeight(LiveInterval
*cur
, unsigned Reg
, LiveIntervals
*li_
,
808 MachineRegisterInfo
*mri_
,
809 MachineLoopInfo
*loopInfo
) {
811 for (MachineRegisterInfo::reg_iterator I
= mri_
->reg_begin(Reg
),
812 E
= mri_
->reg_end(); I
!= E
; ++I
) {
813 MachineInstr
*MI
= &*I
;
814 if (cur
->liveAt(li_
->getInstructionIndex(MI
))) {
815 unsigned loopDepth
= loopInfo
->getLoopDepth(MI
->getParent());
816 Conflicts
+= std::pow(10.0f
, (float)loopDepth
);
822 /// findIntervalsToSpill - Determine the intervals to spill for the
823 /// specified interval. It's passed the physical registers whose spill
824 /// weight is the lowest among all the registers whose live intervals
825 /// conflict with the interval.
826 void RALinScan::findIntervalsToSpill(LiveInterval
*cur
,
827 std::vector
<std::pair
<unsigned,float> > &Candidates
,
829 SmallVector
<LiveInterval
*, 8> &SpillIntervals
) {
830 // We have figured out the *best* register to spill. But there are other
831 // registers that are pretty good as well (spill weight within 3%). Spill
832 // the one that has fewest defs and uses that conflict with cur.
833 float Conflicts
[3] = { 0.0f
, 0.0f
, 0.0f
};
834 SmallVector
<LiveInterval
*, 8> SLIs
[3];
837 dbgs() << "\tConsidering " << NumCands
<< " candidates: ";
838 for (unsigned i
= 0; i
!= NumCands
; ++i
)
839 dbgs() << tri_
->getName(Candidates
[i
].first
) << " ";
843 // Calculate the number of conflicts of each candidate.
844 for (IntervalPtrs::iterator i
= active_
.begin(); i
!= active_
.end(); ++i
) {
845 unsigned Reg
= i
->first
->reg
;
846 unsigned PhysReg
= vrm_
->getPhys(Reg
);
847 if (!cur
->overlapsFrom(*i
->first
, i
->second
))
849 for (unsigned j
= 0; j
< NumCands
; ++j
) {
850 unsigned Candidate
= Candidates
[j
].first
;
851 if (tri_
->regsOverlap(PhysReg
, Candidate
)) {
853 Conflicts
[j
] += getConflictWeight(cur
, Reg
, li_
, mri_
, loopInfo
);
854 SLIs
[j
].push_back(i
->first
);
859 for (IntervalPtrs::iterator i
= inactive_
.begin(); i
!= inactive_
.end(); ++i
){
860 unsigned Reg
= i
->first
->reg
;
861 unsigned PhysReg
= vrm_
->getPhys(Reg
);
862 if (!cur
->overlapsFrom(*i
->first
, i
->second
-1))
864 for (unsigned j
= 0; j
< NumCands
; ++j
) {
865 unsigned Candidate
= Candidates
[j
].first
;
866 if (tri_
->regsOverlap(PhysReg
, Candidate
)) {
868 Conflicts
[j
] += getConflictWeight(cur
, Reg
, li_
, mri_
, loopInfo
);
869 SLIs
[j
].push_back(i
->first
);
874 // Which is the best candidate?
875 unsigned BestCandidate
= 0;
876 float MinConflicts
= Conflicts
[0];
877 for (unsigned i
= 1; i
!= NumCands
; ++i
) {
878 if (Conflicts
[i
] < MinConflicts
) {
880 MinConflicts
= Conflicts
[i
];
884 std::copy(SLIs
[BestCandidate
].begin(), SLIs
[BestCandidate
].end(),
885 std::back_inserter(SpillIntervals
));
889 struct WeightCompare
{
891 const RALinScan
&Allocator
;
894 WeightCompare(const RALinScan
&Alloc
) : Allocator(Alloc
) {}
896 typedef std::pair
<unsigned, float> RegWeightPair
;
897 bool operator()(const RegWeightPair
&LHS
, const RegWeightPair
&RHS
) const {
898 return LHS
.second
< RHS
.second
&& !Allocator
.isRecentlyUsed(LHS
.first
);
903 static bool weightsAreClose(float w1
, float w2
) {
907 float diff
= w1
- w2
;
908 if (diff
<= 0.02f
) // Within 0.02f
910 return (diff
/ w2
) <= 0.05f
; // Within 5%.
913 LiveInterval
*RALinScan::hasNextReloadInterval(LiveInterval
*cur
) {
914 DenseMap
<unsigned, unsigned>::iterator I
= NextReloadMap
.find(cur
->reg
);
915 if (I
== NextReloadMap
.end())
917 return &li_
->getInterval(I
->second
);
920 void RALinScan::DowngradeRegister(LiveInterval
*li
, unsigned Reg
) {
921 bool isNew
= DowngradedRegs
.insert(Reg
);
922 isNew
= isNew
; // Silence compiler warning.
923 assert(isNew
&& "Multiple reloads holding the same register?");
924 DowngradeMap
.insert(std::make_pair(li
->reg
, Reg
));
925 for (const unsigned *AS
= tri_
->getAliasSet(Reg
); *AS
; ++AS
) {
926 isNew
= DowngradedRegs
.insert(*AS
);
927 isNew
= isNew
; // Silence compiler warning.
928 assert(isNew
&& "Multiple reloads holding the same register?");
929 DowngradeMap
.insert(std::make_pair(li
->reg
, *AS
));
934 void RALinScan::UpgradeRegister(unsigned Reg
) {
936 DowngradedRegs
.erase(Reg
);
937 for (const unsigned *AS
= tri_
->getAliasSet(Reg
); *AS
; ++AS
)
938 DowngradedRegs
.erase(*AS
);
944 bool operator()(LiveInterval
* A
, LiveInterval
* B
) {
945 return A
->beginIndex() < B
->beginIndex();
950 /// assignRegOrStackSlotAtInterval - assign a register if one is available, or
952 void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval
* cur
) {
953 DEBUG(dbgs() << "\tallocating current interval: ");
955 // This is an implicitly defined live interval, just assign any register.
956 const TargetRegisterClass
*RC
= mri_
->getRegClass(cur
->reg
);
958 unsigned physReg
= vrm_
->getRegAllocPref(cur
->reg
);
960 physReg
= getFirstNonReservedPhysReg(RC
);
961 DEBUG(dbgs() << tri_
->getName(physReg
) << '\n');
962 // Note the register is not really in use.
963 vrm_
->assignVirt2Phys(cur
->reg
, physReg
);
969 std::vector
<std::pair
<unsigned, float> > SpillWeightsToAdd
;
970 SlotIndex StartPosition
= cur
->beginIndex();
971 const TargetRegisterClass
*RCLeader
= RelatedRegClasses
.getLeaderValue(RC
);
973 // If start of this live interval is defined by a move instruction and its
974 // source is assigned a physical register that is compatible with the target
975 // register class, then we should try to assign it the same register.
976 // This can happen when the move is from a larger register class to a smaller
977 // one, e.g. X86::mov32to32_. These move instructions are not coalescable.
978 if (!vrm_
->getRegAllocPref(cur
->reg
) && cur
->hasAtLeastOneValue()) {
979 VNInfo
*vni
= cur
->begin()->valno
;
980 if (!vni
->isUnused()) {
981 MachineInstr
*CopyMI
= li_
->getInstructionFromIndex(vni
->def
);
982 if (CopyMI
&& CopyMI
->isCopy()) {
983 unsigned DstSubReg
= CopyMI
->getOperand(0).getSubReg();
984 unsigned SrcReg
= CopyMI
->getOperand(1).getReg();
985 unsigned SrcSubReg
= CopyMI
->getOperand(1).getSubReg();
987 if (TargetRegisterInfo::isPhysicalRegister(SrcReg
))
989 else if (vrm_
->isAssignedReg(SrcReg
))
990 Reg
= vrm_
->getPhys(SrcReg
);
993 Reg
= tri_
->getSubReg(Reg
, SrcSubReg
);
995 Reg
= tri_
->getMatchingSuperReg(Reg
, DstSubReg
, RC
);
996 if (Reg
&& allocatableRegs_
[Reg
] && RC
->contains(Reg
))
997 mri_
->setRegAllocationHint(cur
->reg
, 0, Reg
);
1003 // For every interval in inactive we overlap with, mark the
1004 // register as not free and update spill weights.
1005 for (IntervalPtrs::const_iterator i
= inactive_
.begin(),
1006 e
= inactive_
.end(); i
!= e
; ++i
) {
1007 unsigned Reg
= i
->first
->reg
;
1008 assert(TargetRegisterInfo::isVirtualRegister(Reg
) &&
1009 "Can only allocate virtual registers!");
1010 const TargetRegisterClass
*RegRC
= mri_
->getRegClass(Reg
);
1011 // If this is not in a related reg class to the register we're allocating,
1013 if (RelatedRegClasses
.getLeaderValue(RegRC
) == RCLeader
&&
1014 cur
->overlapsFrom(*i
->first
, i
->second
-1)) {
1015 Reg
= vrm_
->getPhys(Reg
);
1017 SpillWeightsToAdd
.push_back(std::make_pair(Reg
, i
->first
->weight
));
1021 // Speculatively check to see if we can get a register right now. If not,
1022 // we know we won't be able to by adding more constraints. If so, we can
1023 // check to see if it is valid. Doing an exhaustive search of the fixed_ list
1024 // is very bad (it contains all callee clobbered registers for any functions
1025 // with a call), so we want to avoid doing that if possible.
1026 unsigned physReg
= getFreePhysReg(cur
);
1027 unsigned BestPhysReg
= physReg
;
1029 // We got a register. However, if it's in the fixed_ list, we might
1030 // conflict with it. Check to see if we conflict with it or any of its
1032 SmallSet
<unsigned, 8> RegAliases
;
1033 for (const unsigned *AS
= tri_
->getAliasSet(physReg
); *AS
; ++AS
)
1034 RegAliases
.insert(*AS
);
1036 bool ConflictsWithFixed
= false;
1037 for (unsigned i
= 0, e
= fixed_
.size(); i
!= e
; ++i
) {
1038 IntervalPtr
&IP
= fixed_
[i
];
1039 if (physReg
== IP
.first
->reg
|| RegAliases
.count(IP
.first
->reg
)) {
1040 // Okay, this reg is on the fixed list. Check to see if we actually
1042 LiveInterval
*I
= IP
.first
;
1043 if (I
->endIndex() > StartPosition
) {
1044 LiveInterval::iterator II
= I
->advanceTo(IP
.second
, StartPosition
);
1046 if (II
!= I
->begin() && II
->start
> StartPosition
)
1048 if (cur
->overlapsFrom(*I
, II
)) {
1049 ConflictsWithFixed
= true;
1056 // Okay, the register picked by our speculative getFreePhysReg call turned
1057 // out to be in use. Actually add all of the conflicting fixed registers to
1058 // regUse_ so we can do an accurate query.
1059 if (ConflictsWithFixed
) {
1060 // For every interval in fixed we overlap with, mark the register as not
1061 // free and update spill weights.
1062 for (unsigned i
= 0, e
= fixed_
.size(); i
!= e
; ++i
) {
1063 IntervalPtr
&IP
= fixed_
[i
];
1064 LiveInterval
*I
= IP
.first
;
1066 const TargetRegisterClass
*RegRC
= OneClassForEachPhysReg
[I
->reg
];
1067 if (RelatedRegClasses
.getLeaderValue(RegRC
) == RCLeader
&&
1068 I
->endIndex() > StartPosition
) {
1069 LiveInterval::iterator II
= I
->advanceTo(IP
.second
, StartPosition
);
1071 if (II
!= I
->begin() && II
->start
> StartPosition
)
1073 if (cur
->overlapsFrom(*I
, II
)) {
1074 unsigned reg
= I
->reg
;
1076 SpillWeightsToAdd
.push_back(std::make_pair(reg
, I
->weight
));
1081 // Using the newly updated regUse_ object, which includes conflicts in the
1082 // future, see if there are any registers available.
1083 physReg
= getFreePhysReg(cur
);
1087 // Restore the physical register tracker, removing information about the
1091 // If we find a free register, we are done: assign this virtual to
1092 // the free physical register and add this interval to the active
1095 DEBUG(dbgs() << tri_
->getName(physReg
) << '\n');
1096 vrm_
->assignVirt2Phys(cur
->reg
, physReg
);
1098 active_
.push_back(std::make_pair(cur
, cur
->begin()));
1099 handled_
.push_back(cur
);
1101 // "Upgrade" the physical register since it has been allocated.
1102 UpgradeRegister(physReg
);
1103 if (LiveInterval
*NextReloadLI
= hasNextReloadInterval(cur
)) {
1104 // "Downgrade" physReg to try to keep physReg from being allocated until
1105 // the next reload from the same SS is allocated.
1106 mri_
->setRegAllocationHint(NextReloadLI
->reg
, 0, physReg
);
1107 DowngradeRegister(cur
, physReg
);
1111 DEBUG(dbgs() << "no free registers\n");
1113 // Compile the spill weights into an array that is better for scanning.
1114 std::vector
<float> SpillWeights(tri_
->getNumRegs(), 0.0f
);
1115 for (std::vector
<std::pair
<unsigned, float> >::iterator
1116 I
= SpillWeightsToAdd
.begin(), E
= SpillWeightsToAdd
.end(); I
!= E
; ++I
)
1117 updateSpillWeights(SpillWeights
, I
->first
, I
->second
, RC
);
1119 // for each interval in active, update spill weights.
1120 for (IntervalPtrs::const_iterator i
= active_
.begin(), e
= active_
.end();
1122 unsigned reg
= i
->first
->reg
;
1123 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
1124 "Can only allocate virtual registers!");
1125 reg
= vrm_
->getPhys(reg
);
1126 updateSpillWeights(SpillWeights
, reg
, i
->first
->weight
, RC
);
1129 DEBUG(dbgs() << "\tassigning stack slot at interval "<< *cur
<< ":\n");
1131 // Find a register to spill.
1132 float minWeight
= HUGE_VALF
;
1133 unsigned minReg
= 0;
1136 std::vector
<std::pair
<unsigned,float> > RegsWeights
;
1137 if (!minReg
|| SpillWeights
[minReg
] == HUGE_VALF
)
1138 for (TargetRegisterClass::iterator i
= RC
->allocation_order_begin(*mf_
),
1139 e
= RC
->allocation_order_end(*mf_
); i
!= e
; ++i
) {
1141 float regWeight
= SpillWeights
[reg
];
1142 // Don't even consider reserved regs.
1143 if (reservedRegs_
.test(reg
))
1145 // Skip recently allocated registers and reserved registers.
1146 if (minWeight
> regWeight
&& !isRecentlyUsed(reg
))
1148 RegsWeights
.push_back(std::make_pair(reg
, regWeight
));
1151 // If we didn't find a register that is spillable, try aliases?
1153 for (TargetRegisterClass::iterator i
= RC
->allocation_order_begin(*mf_
),
1154 e
= RC
->allocation_order_end(*mf_
); i
!= e
; ++i
) {
1156 if (reservedRegs_
.test(reg
))
1158 // No need to worry about if the alias register size < regsize of RC.
1159 // We are going to spill all registers that alias it anyway.
1160 for (const unsigned* as
= tri_
->getAliasSet(reg
); *as
; ++as
)
1161 RegsWeights
.push_back(std::make_pair(*as
, SpillWeights
[*as
]));
1165 // Sort all potential spill candidates by weight.
1166 std::sort(RegsWeights
.begin(), RegsWeights
.end(), WeightCompare(*this));
1167 minReg
= RegsWeights
[0].first
;
1168 minWeight
= RegsWeights
[0].second
;
1169 if (minWeight
== HUGE_VALF
) {
1170 // All registers must have inf weight. Just grab one!
1171 minReg
= BestPhysReg
? BestPhysReg
: getFirstNonReservedPhysReg(RC
);
1172 if (cur
->weight
== HUGE_VALF
||
1173 li_
->getApproximateInstructionCount(*cur
) == 0) {
1174 // Spill a physical register around defs and uses.
1175 if (li_
->spillPhysRegAroundRegDefsUses(*cur
, minReg
, *vrm_
)) {
1176 // spillPhysRegAroundRegDefsUses may have invalidated iterator stored
1177 // in fixed_. Reset them.
1178 for (unsigned i
= 0, e
= fixed_
.size(); i
!= e
; ++i
) {
1179 IntervalPtr
&IP
= fixed_
[i
];
1180 LiveInterval
*I
= IP
.first
;
1181 if (I
->reg
== minReg
|| tri_
->isSubRegister(minReg
, I
->reg
))
1182 IP
.second
= I
->advanceTo(I
->begin(), StartPosition
);
1185 DowngradedRegs
.clear();
1186 assignRegOrStackSlotAtInterval(cur
);
1188 assert(false && "Ran out of registers during register allocation!");
1189 report_fatal_error("Ran out of registers during register allocation!");
1195 // Find up to 3 registers to consider as spill candidates.
1196 unsigned LastCandidate
= RegsWeights
.size() >= 3 ? 3 : 1;
1197 while (LastCandidate
> 1) {
1198 if (weightsAreClose(RegsWeights
[LastCandidate
-1].second
, minWeight
))
1204 dbgs() << "\t\tregister(s) with min weight(s): ";
1206 for (unsigned i
= 0; i
!= LastCandidate
; ++i
)
1207 dbgs() << tri_
->getName(RegsWeights
[i
].first
)
1208 << " (" << RegsWeights
[i
].second
<< ")\n";
1211 // If the current has the minimum weight, we need to spill it and
1212 // add any added intervals back to unhandled, and restart
1214 if (cur
->weight
!= HUGE_VALF
&& cur
->weight
<= minWeight
) {
1215 DEBUG(dbgs() << "\t\t\tspilling(c): " << *cur
<< '\n');
1216 SmallVector
<LiveInterval
*, 8> spillIs
, added
;
1217 spiller_
->spill(cur
, added
, spillIs
);
1219 std::sort(added
.begin(), added
.end(), LISorter());
1221 return; // Early exit if all spills were folded.
1223 // Merge added with unhandled. Note that we have already sorted
1224 // intervals returned by addIntervalsForSpills by their starting
1226 // This also update the NextReloadMap. That is, it adds mapping from a
1227 // register defined by a reload from SS to the next reload from SS in the
1228 // same basic block.
1229 MachineBasicBlock
*LastReloadMBB
= 0;
1230 LiveInterval
*LastReload
= 0;
1231 int LastReloadSS
= VirtRegMap::NO_STACK_SLOT
;
1232 for (unsigned i
= 0, e
= added
.size(); i
!= e
; ++i
) {
1233 LiveInterval
*ReloadLi
= added
[i
];
1234 if (ReloadLi
->weight
== HUGE_VALF
&&
1235 li_
->getApproximateInstructionCount(*ReloadLi
) == 0) {
1236 SlotIndex ReloadIdx
= ReloadLi
->beginIndex();
1237 MachineBasicBlock
*ReloadMBB
= li_
->getMBBFromIndex(ReloadIdx
);
1238 int ReloadSS
= vrm_
->getStackSlot(ReloadLi
->reg
);
1239 if (LastReloadMBB
== ReloadMBB
&& LastReloadSS
== ReloadSS
) {
1240 // Last reload of same SS is in the same MBB. We want to try to
1241 // allocate both reloads the same register and make sure the reg
1242 // isn't clobbered in between if at all possible.
1243 assert(LastReload
->beginIndex() < ReloadIdx
);
1244 NextReloadMap
.insert(std::make_pair(LastReload
->reg
, ReloadLi
->reg
));
1246 LastReloadMBB
= ReloadMBB
;
1247 LastReload
= ReloadLi
;
1248 LastReloadSS
= ReloadSS
;
1250 unhandled_
.push(ReloadLi
);
1257 // Push the current interval back to unhandled since we are going
1258 // to re-run at least this iteration. Since we didn't modify it it
1259 // should go back right in the front of the list
1260 unhandled_
.push(cur
);
1262 assert(TargetRegisterInfo::isPhysicalRegister(minReg
) &&
1263 "did not choose a register to spill?");
1265 // We spill all intervals aliasing the register with
1266 // minimum weight, rollback to the interval with the earliest
1267 // start point and let the linear scan algorithm run again
1268 SmallVector
<LiveInterval
*, 8> spillIs
;
1270 // Determine which intervals have to be spilled.
1271 findIntervalsToSpill(cur
, RegsWeights
, LastCandidate
, spillIs
);
1273 // Set of spilled vregs (used later to rollback properly)
1274 SmallSet
<unsigned, 8> spilled
;
1276 // The earliest start of a Spilled interval indicates up to where
1277 // in handled we need to roll back
1278 assert(!spillIs
.empty() && "No spill intervals?");
1279 SlotIndex earliestStart
= spillIs
[0]->beginIndex();
1281 // Spill live intervals of virtual regs mapped to the physical register we
1282 // want to clear (and its aliases). We only spill those that overlap with the
1283 // current interval as the rest do not affect its allocation. we also keep
1284 // track of the earliest start of all spilled live intervals since this will
1285 // mark our rollback point.
1286 SmallVector
<LiveInterval
*, 8> added
;
1287 while (!spillIs
.empty()) {
1288 LiveInterval
*sli
= spillIs
.back();
1290 DEBUG(dbgs() << "\t\t\tspilling(a): " << *sli
<< '\n');
1291 if (sli
->beginIndex() < earliestStart
)
1292 earliestStart
= sli
->beginIndex();
1293 spiller_
->spill(sli
, added
, spillIs
);
1294 spilled
.insert(sli
->reg
);
1297 // Include any added intervals in earliestStart.
1298 for (unsigned i
= 0, e
= added
.size(); i
!= e
; ++i
) {
1299 SlotIndex SI
= added
[i
]->beginIndex();
1300 if (SI
< earliestStart
)
1304 DEBUG(dbgs() << "\t\trolling back to: " << earliestStart
<< '\n');
1306 // Scan handled in reverse order up to the earliest start of a
1307 // spilled live interval and undo each one, restoring the state of
1309 while (!handled_
.empty()) {
1310 LiveInterval
* i
= handled_
.back();
1311 // If this interval starts before t we are done.
1312 if (!i
->empty() && i
->beginIndex() < earliestStart
)
1314 DEBUG(dbgs() << "\t\t\tundo changes for: " << *i
<< '\n');
1315 handled_
.pop_back();
1317 // When undoing a live interval allocation we must know if it is active or
1318 // inactive to properly update regUse_ and the VirtRegMap.
1319 IntervalPtrs::iterator it
;
1320 if ((it
= FindIntervalInVector(active_
, i
)) != active_
.end()) {
1322 assert(!TargetRegisterInfo::isPhysicalRegister(i
->reg
));
1323 if (!spilled
.count(i
->reg
))
1325 delRegUse(vrm_
->getPhys(i
->reg
));
1326 vrm_
->clearVirt(i
->reg
);
1327 } else if ((it
= FindIntervalInVector(inactive_
, i
)) != inactive_
.end()) {
1328 inactive_
.erase(it
);
1329 assert(!TargetRegisterInfo::isPhysicalRegister(i
->reg
));
1330 if (!spilled
.count(i
->reg
))
1332 vrm_
->clearVirt(i
->reg
);
1334 assert(TargetRegisterInfo::isVirtualRegister(i
->reg
) &&
1335 "Can only allocate virtual registers!");
1336 vrm_
->clearVirt(i
->reg
);
1340 DenseMap
<unsigned, unsigned>::iterator ii
= DowngradeMap
.find(i
->reg
);
1341 if (ii
== DowngradeMap
.end())
1342 // It interval has a preference, it must be defined by a copy. Clear the
1343 // preference now since the source interval allocation may have been
1345 mri_
->setRegAllocationHint(i
->reg
, 0, 0);
1347 UpgradeRegister(ii
->second
);
1351 // Rewind the iterators in the active, inactive, and fixed lists back to the
1352 // point we reverted to.
1353 RevertVectorIteratorsTo(active_
, earliestStart
);
1354 RevertVectorIteratorsTo(inactive_
, earliestStart
);
1355 RevertVectorIteratorsTo(fixed_
, earliestStart
);
1357 // Scan the rest and undo each interval that expired after t and
1358 // insert it in active (the next iteration of the algorithm will
1359 // put it in inactive if required)
1360 for (unsigned i
= 0, e
= handled_
.size(); i
!= e
; ++i
) {
1361 LiveInterval
*HI
= handled_
[i
];
1362 if (!HI
->expiredAt(earliestStart
) &&
1363 HI
->expiredAt(cur
->beginIndex())) {
1364 DEBUG(dbgs() << "\t\t\tundo changes for: " << *HI
<< '\n');
1365 active_
.push_back(std::make_pair(HI
, HI
->begin()));
1366 assert(!TargetRegisterInfo::isPhysicalRegister(HI
->reg
));
1367 addRegUse(vrm_
->getPhys(HI
->reg
));
1371 // Merge added with unhandled.
1372 // This also update the NextReloadMap. That is, it adds mapping from a
1373 // register defined by a reload from SS to the next reload from SS in the
1374 // same basic block.
1375 MachineBasicBlock
*LastReloadMBB
= 0;
1376 LiveInterval
*LastReload
= 0;
1377 int LastReloadSS
= VirtRegMap::NO_STACK_SLOT
;
1378 std::sort(added
.begin(), added
.end(), LISorter());
1379 for (unsigned i
= 0, e
= added
.size(); i
!= e
; ++i
) {
1380 LiveInterval
*ReloadLi
= added
[i
];
1381 if (ReloadLi
->weight
== HUGE_VALF
&&
1382 li_
->getApproximateInstructionCount(*ReloadLi
) == 0) {
1383 SlotIndex ReloadIdx
= ReloadLi
->beginIndex();
1384 MachineBasicBlock
*ReloadMBB
= li_
->getMBBFromIndex(ReloadIdx
);
1385 int ReloadSS
= vrm_
->getStackSlot(ReloadLi
->reg
);
1386 if (LastReloadMBB
== ReloadMBB
&& LastReloadSS
== ReloadSS
) {
1387 // Last reload of same SS is in the same MBB. We want to try to
1388 // allocate both reloads the same register and make sure the reg
1389 // isn't clobbered in between if at all possible.
1390 assert(LastReload
->beginIndex() < ReloadIdx
);
1391 NextReloadMap
.insert(std::make_pair(LastReload
->reg
, ReloadLi
->reg
));
1393 LastReloadMBB
= ReloadMBB
;
1394 LastReload
= ReloadLi
;
1395 LastReloadSS
= ReloadSS
;
1397 unhandled_
.push(ReloadLi
);
1401 unsigned RALinScan::getFreePhysReg(LiveInterval
* cur
,
1402 const TargetRegisterClass
*RC
,
1403 unsigned MaxInactiveCount
,
1404 SmallVector
<unsigned, 256> &inactiveCounts
,
1406 unsigned FreeReg
= 0;
1407 unsigned FreeRegInactiveCount
= 0;
1409 std::pair
<unsigned, unsigned> Hint
= mri_
->getRegAllocationHint(cur
->reg
);
1410 // Resolve second part of the hint (if possible) given the current allocation.
1411 unsigned physReg
= Hint
.second
;
1413 TargetRegisterInfo::isVirtualRegister(physReg
) && vrm_
->hasPhys(physReg
))
1414 physReg
= vrm_
->getPhys(physReg
);
1416 TargetRegisterClass::iterator I
, E
;
1417 tie(I
, E
) = tri_
->getAllocationOrder(RC
, Hint
.first
, physReg
, *mf_
);
1418 assert(I
!= E
&& "No allocatable register in this register class!");
1420 // Scan for the first available register.
1421 for (; I
!= E
; ++I
) {
1423 // Ignore "downgraded" registers.
1424 if (SkipDGRegs
&& DowngradedRegs
.count(Reg
))
1426 // Skip reserved registers.
1427 if (reservedRegs_
.test(Reg
))
1429 // Skip recently allocated registers.
1430 if (isRegAvail(Reg
) && !isRecentlyUsed(Reg
)) {
1432 if (FreeReg
< inactiveCounts
.size())
1433 FreeRegInactiveCount
= inactiveCounts
[FreeReg
];
1435 FreeRegInactiveCount
= 0;
1440 // If there are no free regs, or if this reg has the max inactive count,
1441 // return this register.
1442 if (FreeReg
== 0 || FreeRegInactiveCount
== MaxInactiveCount
) {
1443 // Remember what register we picked so we can skip it next time.
1444 if (FreeReg
!= 0) recordRecentlyUsed(FreeReg
);
1448 // Continue scanning the registers, looking for the one with the highest
1449 // inactive count. Alkis found that this reduced register pressure very
1450 // slightly on X86 (in rev 1.94 of this file), though this should probably be
1452 for (; I
!= E
; ++I
) {
1454 // Ignore "downgraded" registers.
1455 if (SkipDGRegs
&& DowngradedRegs
.count(Reg
))
1457 // Skip reserved registers.
1458 if (reservedRegs_
.test(Reg
))
1460 if (isRegAvail(Reg
) && Reg
< inactiveCounts
.size() &&
1461 FreeRegInactiveCount
< inactiveCounts
[Reg
] && !isRecentlyUsed(Reg
)) {
1463 FreeRegInactiveCount
= inactiveCounts
[Reg
];
1464 if (FreeRegInactiveCount
== MaxInactiveCount
)
1465 break; // We found the one with the max inactive count.
1469 // Remember what register we picked so we can skip it next time.
1470 recordRecentlyUsed(FreeReg
);
1475 /// getFreePhysReg - return a free physical register for this virtual register
1476 /// interval if we have one, otherwise return 0.
1477 unsigned RALinScan::getFreePhysReg(LiveInterval
*cur
) {
1478 SmallVector
<unsigned, 256> inactiveCounts
;
1479 unsigned MaxInactiveCount
= 0;
1481 const TargetRegisterClass
*RC
= mri_
->getRegClass(cur
->reg
);
1482 const TargetRegisterClass
*RCLeader
= RelatedRegClasses
.getLeaderValue(RC
);
1484 for (IntervalPtrs::iterator i
= inactive_
.begin(), e
= inactive_
.end();
1486 unsigned reg
= i
->first
->reg
;
1487 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
1488 "Can only allocate virtual registers!");
1490 // If this is not in a related reg class to the register we're allocating,
1492 const TargetRegisterClass
*RegRC
= mri_
->getRegClass(reg
);
1493 if (RelatedRegClasses
.getLeaderValue(RegRC
) == RCLeader
) {
1494 reg
= vrm_
->getPhys(reg
);
1495 if (inactiveCounts
.size() <= reg
)
1496 inactiveCounts
.resize(reg
+1);
1497 ++inactiveCounts
[reg
];
1498 MaxInactiveCount
= std::max(MaxInactiveCount
, inactiveCounts
[reg
]);
1502 // If copy coalescer has assigned a "preferred" register, check if it's
1504 unsigned Preference
= vrm_
->getRegAllocPref(cur
->reg
);
1506 DEBUG(dbgs() << "(preferred: " << tri_
->getName(Preference
) << ") ");
1507 if (isRegAvail(Preference
) &&
1508 RC
->contains(Preference
))
1512 if (!DowngradedRegs
.empty()) {
1513 unsigned FreeReg
= getFreePhysReg(cur
, RC
, MaxInactiveCount
, inactiveCounts
,
1518 return getFreePhysReg(cur
, RC
, MaxInactiveCount
, inactiveCounts
, false);
1521 FunctionPass
* llvm::createLinearScanRegisterAllocator() {
1522 return new RALinScan();