1 //===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
11 // both before and after the DAG is legalized.
13 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is
14 // primarily intended to handle simplification opportunities that are implicit
15 // in the LLVM IR and exposed by the various codegen lowering phases.
17 //===----------------------------------------------------------------------===//
19 #define DEBUG_TYPE "dagcombine"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/PseudoSourceValue.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Target/TargetData.h"
28 #include "llvm/Target/TargetFrameInfo.h"
29 #include "llvm/Target/TargetLowering.h"
30 #include "llvm/Target/TargetMachine.h"
31 #include "llvm/Target/TargetOptions.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/raw_ostream.h"
42 STATISTIC(NodesCombined
, "Number of dag nodes combined");
43 STATISTIC(PreIndexedNodes
, "Number of pre-indexed nodes created");
44 STATISTIC(PostIndexedNodes
, "Number of post-indexed nodes created");
45 STATISTIC(OpsNarrowed
, "Number of load/op/store narrowed");
49 CombinerAA("combiner-alias-analysis", cl::Hidden
,
50 cl::desc("Turn on alias analysis during testing"));
53 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden
,
54 cl::desc("Include global information in alias analysis"));
56 //------------------------------ DAGCombiner ---------------------------------//
60 const TargetLowering
&TLI
;
62 CodeGenOpt::Level OptLevel
;
66 // Worklist of all of the nodes that need to be simplified.
67 std::vector
<SDNode
*> WorkList
;
69 // AA - Used for DAG load/store alias analysis.
72 /// AddUsersToWorkList - When an instruction is simplified, add all users of
73 /// the instruction to the work lists because they might get more simplified
76 void AddUsersToWorkList(SDNode
*N
) {
77 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
82 /// visit - call the node-specific routine that knows how to fold each
83 /// particular type of node.
84 SDValue
visit(SDNode
*N
);
87 /// AddToWorkList - Add to the work list making sure it's instance is at the
88 /// the back (next to be processed.)
89 void AddToWorkList(SDNode
*N
) {
90 removeFromWorkList(N
);
91 WorkList
.push_back(N
);
94 /// removeFromWorkList - remove all instances of N from the worklist.
96 void removeFromWorkList(SDNode
*N
) {
97 WorkList
.erase(std::remove(WorkList
.begin(), WorkList
.end(), N
),
101 SDValue
CombineTo(SDNode
*N
, const SDValue
*To
, unsigned NumTo
,
104 SDValue
CombineTo(SDNode
*N
, SDValue Res
, bool AddTo
= true) {
105 return CombineTo(N
, &Res
, 1, AddTo
);
108 SDValue
CombineTo(SDNode
*N
, SDValue Res0
, SDValue Res1
,
110 SDValue To
[] = { Res0
, Res1
};
111 return CombineTo(N
, To
, 2, AddTo
);
114 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
);
118 /// SimplifyDemandedBits - Check the specified integer node value to see if
119 /// it can be simplified or if things it uses can be simplified by bit
120 /// propagation. If so, return true.
121 bool SimplifyDemandedBits(SDValue Op
) {
122 unsigned BitWidth
= Op
.getValueType().getScalarType().getSizeInBits();
123 APInt Demanded
= APInt::getAllOnesValue(BitWidth
);
124 return SimplifyDemandedBits(Op
, Demanded
);
127 bool SimplifyDemandedBits(SDValue Op
, const APInt
&Demanded
);
129 bool CombineToPreIndexedLoadStore(SDNode
*N
);
130 bool CombineToPostIndexedLoadStore(SDNode
*N
);
132 void ReplaceLoadWithPromotedLoad(SDNode
*Load
, SDNode
*ExtLoad
);
133 SDValue
PromoteOperand(SDValue Op
, EVT PVT
, bool &Replace
);
134 SDValue
SExtPromoteOperand(SDValue Op
, EVT PVT
);
135 SDValue
ZExtPromoteOperand(SDValue Op
, EVT PVT
);
136 SDValue
PromoteIntBinOp(SDValue Op
);
137 SDValue
PromoteIntShiftOp(SDValue Op
);
138 SDValue
PromoteExtend(SDValue Op
);
139 bool PromoteLoad(SDValue Op
);
141 /// combine - call the node-specific routine that knows how to fold each
142 /// particular type of node. If that doesn't do anything, try the
143 /// target-specific DAG combines.
144 SDValue
combine(SDNode
*N
);
146 // Visitation implementation - Implement dag node combining for different
147 // node types. The semantics are as follows:
149 // SDValue.getNode() == 0 - No change was made
150 // SDValue.getNode() == N - N was replaced, is dead and has been handled.
151 // otherwise - N should be replaced by the returned Operand.
153 SDValue
visitTokenFactor(SDNode
*N
);
154 SDValue
visitMERGE_VALUES(SDNode
*N
);
155 SDValue
visitADD(SDNode
*N
);
156 SDValue
visitSUB(SDNode
*N
);
157 SDValue
visitADDC(SDNode
*N
);
158 SDValue
visitADDE(SDNode
*N
);
159 SDValue
visitMUL(SDNode
*N
);
160 SDValue
visitSDIV(SDNode
*N
);
161 SDValue
visitUDIV(SDNode
*N
);
162 SDValue
visitSREM(SDNode
*N
);
163 SDValue
visitUREM(SDNode
*N
);
164 SDValue
visitMULHU(SDNode
*N
);
165 SDValue
visitMULHS(SDNode
*N
);
166 SDValue
visitSMUL_LOHI(SDNode
*N
);
167 SDValue
visitUMUL_LOHI(SDNode
*N
);
168 SDValue
visitSDIVREM(SDNode
*N
);
169 SDValue
visitUDIVREM(SDNode
*N
);
170 SDValue
visitAND(SDNode
*N
);
171 SDValue
visitOR(SDNode
*N
);
172 SDValue
visitXOR(SDNode
*N
);
173 SDValue
SimplifyVBinOp(SDNode
*N
);
174 SDValue
visitSHL(SDNode
*N
);
175 SDValue
visitSRA(SDNode
*N
);
176 SDValue
visitSRL(SDNode
*N
);
177 SDValue
visitCTLZ(SDNode
*N
);
178 SDValue
visitCTTZ(SDNode
*N
);
179 SDValue
visitCTPOP(SDNode
*N
);
180 SDValue
visitSELECT(SDNode
*N
);
181 SDValue
visitSELECT_CC(SDNode
*N
);
182 SDValue
visitSETCC(SDNode
*N
);
183 SDValue
visitSIGN_EXTEND(SDNode
*N
);
184 SDValue
visitZERO_EXTEND(SDNode
*N
);
185 SDValue
visitANY_EXTEND(SDNode
*N
);
186 SDValue
visitSIGN_EXTEND_INREG(SDNode
*N
);
187 SDValue
visitTRUNCATE(SDNode
*N
);
188 SDValue
visitBIT_CONVERT(SDNode
*N
);
189 SDValue
visitBUILD_PAIR(SDNode
*N
);
190 SDValue
visitFADD(SDNode
*N
);
191 SDValue
visitFSUB(SDNode
*N
);
192 SDValue
visitFMUL(SDNode
*N
);
193 SDValue
visitFDIV(SDNode
*N
);
194 SDValue
visitFREM(SDNode
*N
);
195 SDValue
visitFCOPYSIGN(SDNode
*N
);
196 SDValue
visitSINT_TO_FP(SDNode
*N
);
197 SDValue
visitUINT_TO_FP(SDNode
*N
);
198 SDValue
visitFP_TO_SINT(SDNode
*N
);
199 SDValue
visitFP_TO_UINT(SDNode
*N
);
200 SDValue
visitFP_ROUND(SDNode
*N
);
201 SDValue
visitFP_ROUND_INREG(SDNode
*N
);
202 SDValue
visitFP_EXTEND(SDNode
*N
);
203 SDValue
visitFNEG(SDNode
*N
);
204 SDValue
visitFABS(SDNode
*N
);
205 SDValue
visitBRCOND(SDNode
*N
);
206 SDValue
visitBR_CC(SDNode
*N
);
207 SDValue
visitLOAD(SDNode
*N
);
208 SDValue
visitSTORE(SDNode
*N
);
209 SDValue
visitINSERT_VECTOR_ELT(SDNode
*N
);
210 SDValue
visitEXTRACT_VECTOR_ELT(SDNode
*N
);
211 SDValue
visitBUILD_VECTOR(SDNode
*N
);
212 SDValue
visitCONCAT_VECTORS(SDNode
*N
);
213 SDValue
visitVECTOR_SHUFFLE(SDNode
*N
);
214 SDValue
visitMEMBARRIER(SDNode
*N
);
216 SDValue
XformToShuffleWithZero(SDNode
*N
);
217 SDValue
ReassociateOps(unsigned Opc
, DebugLoc DL
, SDValue LHS
, SDValue RHS
);
219 SDValue
visitShiftByConstant(SDNode
*N
, unsigned Amt
);
221 bool SimplifySelectOps(SDNode
*SELECT
, SDValue LHS
, SDValue RHS
);
222 SDValue
SimplifyBinOpWithSameOpcodeHands(SDNode
*N
);
223 SDValue
SimplifySelect(DebugLoc DL
, SDValue N0
, SDValue N1
, SDValue N2
);
224 SDValue
SimplifySelectCC(DebugLoc DL
, SDValue N0
, SDValue N1
, SDValue N2
,
225 SDValue N3
, ISD::CondCode CC
,
226 bool NotExtCompare
= false);
227 SDValue
SimplifySetCC(EVT VT
, SDValue N0
, SDValue N1
, ISD::CondCode Cond
,
228 DebugLoc DL
, bool foldBooleans
= true);
229 SDValue
SimplifyNodeWithTwoResults(SDNode
*N
, unsigned LoOp
,
231 SDValue
CombineConsecutiveLoads(SDNode
*N
, EVT VT
);
232 SDValue
ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode
*, EVT
);
233 SDValue
BuildSDIV(SDNode
*N
);
234 SDValue
BuildUDIV(SDNode
*N
);
235 SDNode
*MatchRotate(SDValue LHS
, SDValue RHS
, DebugLoc DL
);
236 SDValue
ReduceLoadWidth(SDNode
*N
);
237 SDValue
ReduceLoadOpStoreWidth(SDNode
*N
);
239 SDValue
GetDemandedBits(SDValue V
, const APInt
&Mask
);
241 /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
242 /// looking for aliasing nodes and adding them to the Aliases vector.
243 void GatherAllAliases(SDNode
*N
, SDValue OriginalChain
,
244 SmallVector
<SDValue
, 8> &Aliases
);
246 /// isAlias - Return true if there is any possibility that the two addresses
248 bool isAlias(SDValue Ptr1
, int64_t Size1
,
249 const Value
*SrcValue1
, int SrcValueOffset1
,
250 unsigned SrcValueAlign1
,
251 const MDNode
*TBAAInfo1
,
252 SDValue Ptr2
, int64_t Size2
,
253 const Value
*SrcValue2
, int SrcValueOffset2
,
254 unsigned SrcValueAlign2
,
255 const MDNode
*TBAAInfo2
) const;
257 /// FindAliasInfo - Extracts the relevant alias information from the memory
258 /// node. Returns true if the operand was a load.
259 bool FindAliasInfo(SDNode
*N
,
260 SDValue
&Ptr
, int64_t &Size
,
261 const Value
*&SrcValue
, int &SrcValueOffset
,
262 unsigned &SrcValueAlignment
,
263 const MDNode
*&TBAAInfo
) const;
265 /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
266 /// looking for a better chain (aliasing node.)
267 SDValue
FindBetterChain(SDNode
*N
, SDValue Chain
);
270 DAGCombiner(SelectionDAG
&D
, AliasAnalysis
&A
, CodeGenOpt::Level OL
)
271 : DAG(D
), TLI(D
.getTargetLoweringInfo()), Level(Unrestricted
),
272 OptLevel(OL
), LegalOperations(false), LegalTypes(false), AA(A
) {}
274 /// Run - runs the dag combiner on all nodes in the work list
275 void Run(CombineLevel AtLevel
);
277 SelectionDAG
&getDAG() const { return DAG
; }
279 /// getShiftAmountTy - Returns a type large enough to hold any valid
280 /// shift amount - before type legalization these can be huge.
281 EVT
getShiftAmountTy() {
282 return LegalTypes
? TLI
.getShiftAmountTy() : TLI
.getPointerTy();
285 /// isTypeLegal - This method returns true if we are running before type
286 /// legalization or if the specified VT is legal.
287 bool isTypeLegal(const EVT
&VT
) {
288 if (!LegalTypes
) return true;
289 return TLI
.isTypeLegal(VT
);
296 /// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
297 /// nodes from the worklist.
298 class WorkListRemover
: public SelectionDAG::DAGUpdateListener
{
301 explicit WorkListRemover(DAGCombiner
&dc
) : DC(dc
) {}
303 virtual void NodeDeleted(SDNode
*N
, SDNode
*E
) {
304 DC
.removeFromWorkList(N
);
307 virtual void NodeUpdated(SDNode
*N
) {
313 //===----------------------------------------------------------------------===//
314 // TargetLowering::DAGCombinerInfo implementation
315 //===----------------------------------------------------------------------===//
317 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode
*N
) {
318 ((DAGCombiner
*)DC
)->AddToWorkList(N
);
321 SDValue
TargetLowering::DAGCombinerInfo::
322 CombineTo(SDNode
*N
, const std::vector
<SDValue
> &To
, bool AddTo
) {
323 return ((DAGCombiner
*)DC
)->CombineTo(N
, &To
[0], To
.size(), AddTo
);
326 SDValue
TargetLowering::DAGCombinerInfo::
327 CombineTo(SDNode
*N
, SDValue Res
, bool AddTo
) {
328 return ((DAGCombiner
*)DC
)->CombineTo(N
, Res
, AddTo
);
332 SDValue
TargetLowering::DAGCombinerInfo::
333 CombineTo(SDNode
*N
, SDValue Res0
, SDValue Res1
, bool AddTo
) {
334 return ((DAGCombiner
*)DC
)->CombineTo(N
, Res0
, Res1
, AddTo
);
337 void TargetLowering::DAGCombinerInfo::
338 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
) {
339 return ((DAGCombiner
*)DC
)->CommitTargetLoweringOpt(TLO
);
342 //===----------------------------------------------------------------------===//
344 //===----------------------------------------------------------------------===//
346 /// isNegatibleForFree - Return 1 if we can compute the negated form of the
347 /// specified expression for the same cost as the expression itself, or 2 if we
348 /// can compute the negated form more cheaply than the expression itself.
349 static char isNegatibleForFree(SDValue Op
, bool LegalOperations
,
350 unsigned Depth
= 0) {
351 // No compile time optimizations on this type.
352 if (Op
.getValueType() == MVT::ppcf128
)
355 // fneg is removable even if it has multiple uses.
356 if (Op
.getOpcode() == ISD::FNEG
) return 2;
358 // Don't allow anything with multiple uses.
359 if (!Op
.hasOneUse()) return 0;
361 // Don't recurse exponentially.
362 if (Depth
> 6) return 0;
364 switch (Op
.getOpcode()) {
365 default: return false;
366 case ISD::ConstantFP
:
367 // Don't invert constant FP values after legalize. The negated constant
368 // isn't necessarily legal.
369 return LegalOperations
? 0 : 1;
371 // FIXME: determine better conditions for this xform.
372 if (!UnsafeFPMath
) return 0;
374 // fold (fsub (fadd A, B)) -> (fsub (fneg A), B)
375 if (char V
= isNegatibleForFree(Op
.getOperand(0), LegalOperations
, Depth
+1))
377 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
378 return isNegatibleForFree(Op
.getOperand(1), LegalOperations
, Depth
+1);
380 // We can't turn -(A-B) into B-A when we honor signed zeros.
381 if (!UnsafeFPMath
) return 0;
383 // fold (fneg (fsub A, B)) -> (fsub B, A)
388 if (HonorSignDependentRoundingFPMath()) return 0;
390 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
391 if (char V
= isNegatibleForFree(Op
.getOperand(0), LegalOperations
, Depth
+1))
394 return isNegatibleForFree(Op
.getOperand(1), LegalOperations
, Depth
+1);
399 return isNegatibleForFree(Op
.getOperand(0), LegalOperations
, Depth
+1);
403 /// GetNegatedExpression - If isNegatibleForFree returns true, this function
404 /// returns the newly negated expression.
405 static SDValue
GetNegatedExpression(SDValue Op
, SelectionDAG
&DAG
,
406 bool LegalOperations
, unsigned Depth
= 0) {
407 // fneg is removable even if it has multiple uses.
408 if (Op
.getOpcode() == ISD::FNEG
) return Op
.getOperand(0);
410 // Don't allow anything with multiple uses.
411 assert(Op
.hasOneUse() && "Unknown reuse!");
413 assert(Depth
<= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
414 switch (Op
.getOpcode()) {
415 default: llvm_unreachable("Unknown code");
416 case ISD::ConstantFP
: {
417 APFloat V
= cast
<ConstantFPSDNode
>(Op
)->getValueAPF();
419 return DAG
.getConstantFP(V
, Op
.getValueType());
422 // FIXME: determine better conditions for this xform.
423 assert(UnsafeFPMath
);
425 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
426 if (isNegatibleForFree(Op
.getOperand(0), LegalOperations
, Depth
+1))
427 return DAG
.getNode(ISD::FSUB
, Op
.getDebugLoc(), Op
.getValueType(),
428 GetNegatedExpression(Op
.getOperand(0), DAG
,
429 LegalOperations
, Depth
+1),
431 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
432 return DAG
.getNode(ISD::FSUB
, Op
.getDebugLoc(), Op
.getValueType(),
433 GetNegatedExpression(Op
.getOperand(1), DAG
,
434 LegalOperations
, Depth
+1),
437 // We can't turn -(A-B) into B-A when we honor signed zeros.
438 assert(UnsafeFPMath
);
440 // fold (fneg (fsub 0, B)) -> B
441 if (ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(Op
.getOperand(0)))
442 if (N0CFP
->getValueAPF().isZero())
443 return Op
.getOperand(1);
445 // fold (fneg (fsub A, B)) -> (fsub B, A)
446 return DAG
.getNode(ISD::FSUB
, Op
.getDebugLoc(), Op
.getValueType(),
447 Op
.getOperand(1), Op
.getOperand(0));
451 assert(!HonorSignDependentRoundingFPMath());
453 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
454 if (isNegatibleForFree(Op
.getOperand(0), LegalOperations
, Depth
+1))
455 return DAG
.getNode(Op
.getOpcode(), Op
.getDebugLoc(), Op
.getValueType(),
456 GetNegatedExpression(Op
.getOperand(0), DAG
,
457 LegalOperations
, Depth
+1),
460 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
461 return DAG
.getNode(Op
.getOpcode(), Op
.getDebugLoc(), Op
.getValueType(),
463 GetNegatedExpression(Op
.getOperand(1), DAG
,
464 LegalOperations
, Depth
+1));
468 return DAG
.getNode(Op
.getOpcode(), Op
.getDebugLoc(), Op
.getValueType(),
469 GetNegatedExpression(Op
.getOperand(0), DAG
,
470 LegalOperations
, Depth
+1));
472 return DAG
.getNode(ISD::FP_ROUND
, Op
.getDebugLoc(), Op
.getValueType(),
473 GetNegatedExpression(Op
.getOperand(0), DAG
,
474 LegalOperations
, Depth
+1),
480 // isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
481 // that selects between the values 1 and 0, making it equivalent to a setcc.
482 // Also, set the incoming LHS, RHS, and CC references to the appropriate
483 // nodes based on the type of node we are checking. This simplifies life a
484 // bit for the callers.
485 static bool isSetCCEquivalent(SDValue N
, SDValue
&LHS
, SDValue
&RHS
,
487 if (N
.getOpcode() == ISD::SETCC
) {
488 LHS
= N
.getOperand(0);
489 RHS
= N
.getOperand(1);
490 CC
= N
.getOperand(2);
493 if (N
.getOpcode() == ISD::SELECT_CC
&&
494 N
.getOperand(2).getOpcode() == ISD::Constant
&&
495 N
.getOperand(3).getOpcode() == ISD::Constant
&&
496 cast
<ConstantSDNode
>(N
.getOperand(2))->getAPIntValue() == 1 &&
497 cast
<ConstantSDNode
>(N
.getOperand(3))->isNullValue()) {
498 LHS
= N
.getOperand(0);
499 RHS
= N
.getOperand(1);
500 CC
= N
.getOperand(4);
506 // isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
507 // one use. If this is true, it allows the users to invert the operation for
508 // free when it is profitable to do so.
509 static bool isOneUseSetCC(SDValue N
) {
511 if (isSetCCEquivalent(N
, N0
, N1
, N2
) && N
.getNode()->hasOneUse())
516 SDValue
DAGCombiner::ReassociateOps(unsigned Opc
, DebugLoc DL
,
517 SDValue N0
, SDValue N1
) {
518 EVT VT
= N0
.getValueType();
519 if (N0
.getOpcode() == Opc
&& isa
<ConstantSDNode
>(N0
.getOperand(1))) {
520 if (isa
<ConstantSDNode
>(N1
)) {
521 // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
523 DAG
.FoldConstantArithmetic(Opc
, VT
,
524 cast
<ConstantSDNode
>(N0
.getOperand(1)),
525 cast
<ConstantSDNode
>(N1
));
526 return DAG
.getNode(Opc
, DL
, VT
, N0
.getOperand(0), OpNode
);
527 } else if (N0
.hasOneUse()) {
528 // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
529 SDValue OpNode
= DAG
.getNode(Opc
, N0
.getDebugLoc(), VT
,
530 N0
.getOperand(0), N1
);
531 AddToWorkList(OpNode
.getNode());
532 return DAG
.getNode(Opc
, DL
, VT
, OpNode
, N0
.getOperand(1));
536 if (N1
.getOpcode() == Opc
&& isa
<ConstantSDNode
>(N1
.getOperand(1))) {
537 if (isa
<ConstantSDNode
>(N0
)) {
538 // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
540 DAG
.FoldConstantArithmetic(Opc
, VT
,
541 cast
<ConstantSDNode
>(N1
.getOperand(1)),
542 cast
<ConstantSDNode
>(N0
));
543 return DAG
.getNode(Opc
, DL
, VT
, N1
.getOperand(0), OpNode
);
544 } else if (N1
.hasOneUse()) {
545 // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
546 SDValue OpNode
= DAG
.getNode(Opc
, N0
.getDebugLoc(), VT
,
547 N1
.getOperand(0), N0
);
548 AddToWorkList(OpNode
.getNode());
549 return DAG
.getNode(Opc
, DL
, VT
, OpNode
, N1
.getOperand(1));
556 SDValue
DAGCombiner::CombineTo(SDNode
*N
, const SDValue
*To
, unsigned NumTo
,
558 assert(N
->getNumValues() == NumTo
&& "Broken CombineTo call!");
560 DEBUG(dbgs() << "\nReplacing.1 ";
562 dbgs() << "\nWith: ";
563 To
[0].getNode()->dump(&DAG
);
564 dbgs() << " and " << NumTo
-1 << " other values\n";
565 for (unsigned i
= 0, e
= NumTo
; i
!= e
; ++i
)
566 assert((!To
[i
].getNode() ||
567 N
->getValueType(i
) == To
[i
].getValueType()) &&
568 "Cannot combine value to value of different type!"));
569 WorkListRemover
DeadNodes(*this);
570 DAG
.ReplaceAllUsesWith(N
, To
, &DeadNodes
);
573 // Push the new nodes and any users onto the worklist
574 for (unsigned i
= 0, e
= NumTo
; i
!= e
; ++i
) {
575 if (To
[i
].getNode()) {
576 AddToWorkList(To
[i
].getNode());
577 AddUsersToWorkList(To
[i
].getNode());
582 // Finally, if the node is now dead, remove it from the graph. The node
583 // may not be dead if the replacement process recursively simplified to
584 // something else needing this node.
585 if (N
->use_empty()) {
586 // Nodes can be reintroduced into the worklist. Make sure we do not
587 // process a node that has been replaced.
588 removeFromWorkList(N
);
590 // Finally, since the node is now dead, remove it from the graph.
593 return SDValue(N
, 0);
597 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
) {
598 // Replace all uses. If any nodes become isomorphic to other nodes and
599 // are deleted, make sure to remove them from our worklist.
600 WorkListRemover
DeadNodes(*this);
601 DAG
.ReplaceAllUsesOfValueWith(TLO
.Old
, TLO
.New
, &DeadNodes
);
603 // Push the new node and any (possibly new) users onto the worklist.
604 AddToWorkList(TLO
.New
.getNode());
605 AddUsersToWorkList(TLO
.New
.getNode());
607 // Finally, if the node is now dead, remove it from the graph. The node
608 // may not be dead if the replacement process recursively simplified to
609 // something else needing this node.
610 if (TLO
.Old
.getNode()->use_empty()) {
611 removeFromWorkList(TLO
.Old
.getNode());
613 // If the operands of this node are only used by the node, they will now
614 // be dead. Make sure to visit them first to delete dead nodes early.
615 for (unsigned i
= 0, e
= TLO
.Old
.getNode()->getNumOperands(); i
!= e
; ++i
)
616 if (TLO
.Old
.getNode()->getOperand(i
).getNode()->hasOneUse())
617 AddToWorkList(TLO
.Old
.getNode()->getOperand(i
).getNode());
619 DAG
.DeleteNode(TLO
.Old
.getNode());
623 /// SimplifyDemandedBits - Check the specified integer node value to see if
624 /// it can be simplified or if things it uses can be simplified by bit
625 /// propagation. If so, return true.
626 bool DAGCombiner::SimplifyDemandedBits(SDValue Op
, const APInt
&Demanded
) {
627 TargetLowering::TargetLoweringOpt
TLO(DAG
, LegalTypes
, LegalOperations
);
628 APInt KnownZero
, KnownOne
;
629 if (!TLI
.SimplifyDemandedBits(Op
, Demanded
, KnownZero
, KnownOne
, TLO
))
633 AddToWorkList(Op
.getNode());
635 // Replace the old value with the new one.
637 DEBUG(dbgs() << "\nReplacing.2 ";
638 TLO
.Old
.getNode()->dump(&DAG
);
639 dbgs() << "\nWith: ";
640 TLO
.New
.getNode()->dump(&DAG
);
643 CommitTargetLoweringOpt(TLO
);
647 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode
*Load
, SDNode
*ExtLoad
) {
648 DebugLoc dl
= Load
->getDebugLoc();
649 EVT VT
= Load
->getValueType(0);
650 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, SDValue(ExtLoad
, 0));
652 DEBUG(dbgs() << "\nReplacing.9 ";
654 dbgs() << "\nWith: ";
655 Trunc
.getNode()->dump(&DAG
);
657 WorkListRemover
DeadNodes(*this);
658 DAG
.ReplaceAllUsesOfValueWith(SDValue(Load
, 0), Trunc
, &DeadNodes
);
659 DAG
.ReplaceAllUsesOfValueWith(SDValue(Load
, 1), SDValue(ExtLoad
, 1),
661 removeFromWorkList(Load
);
662 DAG
.DeleteNode(Load
);
663 AddToWorkList(Trunc
.getNode());
666 SDValue
DAGCombiner::PromoteOperand(SDValue Op
, EVT PVT
, bool &Replace
) {
668 DebugLoc dl
= Op
.getDebugLoc();
669 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(Op
)) {
670 EVT MemVT
= LD
->getMemoryVT();
671 ISD::LoadExtType ExtType
= ISD::isNON_EXTLoad(LD
)
672 ? (TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, MemVT
) ? ISD::ZEXTLOAD
: ISD::EXTLOAD
)
673 : LD
->getExtensionType();
675 return DAG
.getExtLoad(ExtType
, PVT
, dl
,
676 LD
->getChain(), LD
->getBasePtr(),
677 LD
->getPointerInfo(),
678 MemVT
, LD
->isVolatile(),
679 LD
->isNonTemporal(), LD
->getAlignment());
682 unsigned Opc
= Op
.getOpcode();
685 case ISD::AssertSext
:
686 return DAG
.getNode(ISD::AssertSext
, dl
, PVT
,
687 SExtPromoteOperand(Op
.getOperand(0), PVT
),
689 case ISD::AssertZext
:
690 return DAG
.getNode(ISD::AssertZext
, dl
, PVT
,
691 ZExtPromoteOperand(Op
.getOperand(0), PVT
),
693 case ISD::Constant
: {
695 Op
.getValueType().isByteSized() ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
696 return DAG
.getNode(ExtOpc
, dl
, PVT
, Op
);
700 if (!TLI
.isOperationLegal(ISD::ANY_EXTEND
, PVT
))
702 return DAG
.getNode(ISD::ANY_EXTEND
, dl
, PVT
, Op
);
705 SDValue
DAGCombiner::SExtPromoteOperand(SDValue Op
, EVT PVT
) {
706 if (!TLI
.isOperationLegal(ISD::SIGN_EXTEND_INREG
, PVT
))
708 EVT OldVT
= Op
.getValueType();
709 DebugLoc dl
= Op
.getDebugLoc();
710 bool Replace
= false;
711 SDValue NewOp
= PromoteOperand(Op
, PVT
, Replace
);
712 if (NewOp
.getNode() == 0)
714 AddToWorkList(NewOp
.getNode());
717 ReplaceLoadWithPromotedLoad(Op
.getNode(), NewOp
.getNode());
718 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, NewOp
.getValueType(), NewOp
,
719 DAG
.getValueType(OldVT
));
722 SDValue
DAGCombiner::ZExtPromoteOperand(SDValue Op
, EVT PVT
) {
723 EVT OldVT
= Op
.getValueType();
724 DebugLoc dl
= Op
.getDebugLoc();
725 bool Replace
= false;
726 SDValue NewOp
= PromoteOperand(Op
, PVT
, Replace
);
727 if (NewOp
.getNode() == 0)
729 AddToWorkList(NewOp
.getNode());
732 ReplaceLoadWithPromotedLoad(Op
.getNode(), NewOp
.getNode());
733 return DAG
.getZeroExtendInReg(NewOp
, dl
, OldVT
);
736 /// PromoteIntBinOp - Promote the specified integer binary operation if the
737 /// target indicates it is beneficial. e.g. On x86, it's usually better to
738 /// promote i16 operations to i32 since i16 instructions are longer.
739 SDValue
DAGCombiner::PromoteIntBinOp(SDValue Op
) {
740 if (!LegalOperations
)
743 EVT VT
= Op
.getValueType();
744 if (VT
.isVector() || !VT
.isInteger())
747 // If operation type is 'undesirable', e.g. i16 on x86, consider
749 unsigned Opc
= Op
.getOpcode();
750 if (TLI
.isTypeDesirableForOp(Opc
, VT
))
754 // Consult target whether it is a good idea to promote this operation and
755 // what's the right type to promote it to.
756 if (TLI
.IsDesirableToPromoteOp(Op
, PVT
)) {
757 assert(PVT
!= VT
&& "Don't know what type to promote to!");
759 bool Replace0
= false;
760 SDValue N0
= Op
.getOperand(0);
761 SDValue NN0
= PromoteOperand(N0
, PVT
, Replace0
);
762 if (NN0
.getNode() == 0)
765 bool Replace1
= false;
766 SDValue N1
= Op
.getOperand(1);
771 NN1
= PromoteOperand(N1
, PVT
, Replace1
);
772 if (NN1
.getNode() == 0)
776 AddToWorkList(NN0
.getNode());
778 AddToWorkList(NN1
.getNode());
781 ReplaceLoadWithPromotedLoad(N0
.getNode(), NN0
.getNode());
783 ReplaceLoadWithPromotedLoad(N1
.getNode(), NN1
.getNode());
785 DEBUG(dbgs() << "\nPromoting ";
786 Op
.getNode()->dump(&DAG
));
787 DebugLoc dl
= Op
.getDebugLoc();
788 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
,
789 DAG
.getNode(Opc
, dl
, PVT
, NN0
, NN1
));
794 /// PromoteIntShiftOp - Promote the specified integer shift operation if the
795 /// target indicates it is beneficial. e.g. On x86, it's usually better to
796 /// promote i16 operations to i32 since i16 instructions are longer.
797 SDValue
DAGCombiner::PromoteIntShiftOp(SDValue Op
) {
798 if (!LegalOperations
)
801 EVT VT
= Op
.getValueType();
802 if (VT
.isVector() || !VT
.isInteger())
805 // If operation type is 'undesirable', e.g. i16 on x86, consider
807 unsigned Opc
= Op
.getOpcode();
808 if (TLI
.isTypeDesirableForOp(Opc
, VT
))
812 // Consult target whether it is a good idea to promote this operation and
813 // what's the right type to promote it to.
814 if (TLI
.IsDesirableToPromoteOp(Op
, PVT
)) {
815 assert(PVT
!= VT
&& "Don't know what type to promote to!");
817 bool Replace
= false;
818 SDValue N0
= Op
.getOperand(0);
820 N0
= SExtPromoteOperand(Op
.getOperand(0), PVT
);
821 else if (Opc
== ISD::SRL
)
822 N0
= ZExtPromoteOperand(Op
.getOperand(0), PVT
);
824 N0
= PromoteOperand(N0
, PVT
, Replace
);
825 if (N0
.getNode() == 0)
828 AddToWorkList(N0
.getNode());
830 ReplaceLoadWithPromotedLoad(Op
.getOperand(0).getNode(), N0
.getNode());
832 DEBUG(dbgs() << "\nPromoting ";
833 Op
.getNode()->dump(&DAG
));
834 DebugLoc dl
= Op
.getDebugLoc();
835 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
,
836 DAG
.getNode(Opc
, dl
, PVT
, N0
, Op
.getOperand(1)));
841 SDValue
DAGCombiner::PromoteExtend(SDValue Op
) {
842 if (!LegalOperations
)
845 EVT VT
= Op
.getValueType();
846 if (VT
.isVector() || !VT
.isInteger())
849 // If operation type is 'undesirable', e.g. i16 on x86, consider
851 unsigned Opc
= Op
.getOpcode();
852 if (TLI
.isTypeDesirableForOp(Opc
, VT
))
856 // Consult target whether it is a good idea to promote this operation and
857 // what's the right type to promote it to.
858 if (TLI
.IsDesirableToPromoteOp(Op
, PVT
)) {
859 assert(PVT
!= VT
&& "Don't know what type to promote to!");
860 // fold (aext (aext x)) -> (aext x)
861 // fold (aext (zext x)) -> (zext x)
862 // fold (aext (sext x)) -> (sext x)
863 DEBUG(dbgs() << "\nPromoting ";
864 Op
.getNode()->dump(&DAG
));
865 return DAG
.getNode(Op
.getOpcode(), Op
.getDebugLoc(), VT
, Op
.getOperand(0));
870 bool DAGCombiner::PromoteLoad(SDValue Op
) {
871 if (!LegalOperations
)
874 EVT VT
= Op
.getValueType();
875 if (VT
.isVector() || !VT
.isInteger())
878 // If operation type is 'undesirable', e.g. i16 on x86, consider
880 unsigned Opc
= Op
.getOpcode();
881 if (TLI
.isTypeDesirableForOp(Opc
, VT
))
885 // Consult target whether it is a good idea to promote this operation and
886 // what's the right type to promote it to.
887 if (TLI
.IsDesirableToPromoteOp(Op
, PVT
)) {
888 assert(PVT
!= VT
&& "Don't know what type to promote to!");
890 DebugLoc dl
= Op
.getDebugLoc();
891 SDNode
*N
= Op
.getNode();
892 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
893 EVT MemVT
= LD
->getMemoryVT();
894 ISD::LoadExtType ExtType
= ISD::isNON_EXTLoad(LD
)
895 ? (TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, MemVT
) ? ISD::ZEXTLOAD
: ISD::EXTLOAD
)
896 : LD
->getExtensionType();
897 SDValue NewLD
= DAG
.getExtLoad(ExtType
, PVT
, dl
,
898 LD
->getChain(), LD
->getBasePtr(),
899 LD
->getPointerInfo(),
900 MemVT
, LD
->isVolatile(),
901 LD
->isNonTemporal(), LD
->getAlignment());
902 SDValue Result
= DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, NewLD
);
904 DEBUG(dbgs() << "\nPromoting ";
907 Result
.getNode()->dump(&DAG
);
909 WorkListRemover
DeadNodes(*this);
910 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
, &DeadNodes
);
911 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), NewLD
.getValue(1), &DeadNodes
);
912 removeFromWorkList(N
);
914 AddToWorkList(Result
.getNode());
921 //===----------------------------------------------------------------------===//
922 // Main DAG Combiner implementation
923 //===----------------------------------------------------------------------===//
925 void DAGCombiner::Run(CombineLevel AtLevel
) {
926 // set the instance variables, so that the various visit routines may use it.
928 LegalOperations
= Level
>= NoIllegalOperations
;
929 LegalTypes
= Level
>= NoIllegalTypes
;
931 // Add all the dag nodes to the worklist.
932 WorkList
.reserve(DAG
.allnodes_size());
933 for (SelectionDAG::allnodes_iterator I
= DAG
.allnodes_begin(),
934 E
= DAG
.allnodes_end(); I
!= E
; ++I
)
935 WorkList
.push_back(I
);
937 // Create a dummy node (which is not added to allnodes), that adds a reference
938 // to the root node, preventing it from being deleted, and tracking any
939 // changes of the root.
940 HandleSDNode
Dummy(DAG
.getRoot());
942 // The root of the dag may dangle to deleted nodes until the dag combiner is
943 // done. Set it to null to avoid confusion.
944 DAG
.setRoot(SDValue());
946 // while the worklist isn't empty, inspect the node on the end of it and
947 // try and combine it.
948 while (!WorkList
.empty()) {
949 SDNode
*N
= WorkList
.back();
952 // If N has no uses, it is dead. Make sure to revisit all N's operands once
953 // N is deleted from the DAG, since they too may now be dead or may have a
954 // reduced number of uses, allowing other xforms.
955 if (N
->use_empty() && N
!= &Dummy
) {
956 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
957 AddToWorkList(N
->getOperand(i
).getNode());
963 SDValue RV
= combine(N
);
965 if (RV
.getNode() == 0)
970 // If we get back the same node we passed in, rather than a new node or
971 // zero, we know that the node must have defined multiple values and
972 // CombineTo was used. Since CombineTo takes care of the worklist
973 // mechanics for us, we have no work to do in this case.
974 if (RV
.getNode() == N
)
977 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
978 RV
.getNode()->getOpcode() != ISD::DELETED_NODE
&&
979 "Node was deleted but visit returned new node!");
981 DEBUG(dbgs() << "\nReplacing.3 ";
983 dbgs() << "\nWith: ";
984 RV
.getNode()->dump(&DAG
);
986 WorkListRemover
DeadNodes(*this);
987 if (N
->getNumValues() == RV
.getNode()->getNumValues())
988 DAG
.ReplaceAllUsesWith(N
, RV
.getNode(), &DeadNodes
);
990 assert(N
->getValueType(0) == RV
.getValueType() &&
991 N
->getNumValues() == 1 && "Type mismatch");
993 DAG
.ReplaceAllUsesWith(N
, &OpV
, &DeadNodes
);
996 // Push the new node and any users onto the worklist
997 AddToWorkList(RV
.getNode());
998 AddUsersToWorkList(RV
.getNode());
1000 // Add any uses of the old node to the worklist in case this node is the
1001 // last one that uses them. They may become dead after this node is
1003 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
1004 AddToWorkList(N
->getOperand(i
).getNode());
1006 // Finally, if the node is now dead, remove it from the graph. The node
1007 // may not be dead if the replacement process recursively simplified to
1008 // something else needing this node.
1009 if (N
->use_empty()) {
1010 // Nodes can be reintroduced into the worklist. Make sure we do not
1011 // process a node that has been replaced.
1012 removeFromWorkList(N
);
1014 // Finally, since the node is now dead, remove it from the graph.
1019 // If the root changed (e.g. it was a dead load, update the root).
1020 DAG
.setRoot(Dummy
.getValue());
1023 SDValue
DAGCombiner::visit(SDNode
*N
) {
1024 switch (N
->getOpcode()) {
1026 case ISD::TokenFactor
: return visitTokenFactor(N
);
1027 case ISD::MERGE_VALUES
: return visitMERGE_VALUES(N
);
1028 case ISD::ADD
: return visitADD(N
);
1029 case ISD::SUB
: return visitSUB(N
);
1030 case ISD::ADDC
: return visitADDC(N
);
1031 case ISD::ADDE
: return visitADDE(N
);
1032 case ISD::MUL
: return visitMUL(N
);
1033 case ISD::SDIV
: return visitSDIV(N
);
1034 case ISD::UDIV
: return visitUDIV(N
);
1035 case ISD::SREM
: return visitSREM(N
);
1036 case ISD::UREM
: return visitUREM(N
);
1037 case ISD::MULHU
: return visitMULHU(N
);
1038 case ISD::MULHS
: return visitMULHS(N
);
1039 case ISD::SMUL_LOHI
: return visitSMUL_LOHI(N
);
1040 case ISD::UMUL_LOHI
: return visitUMUL_LOHI(N
);
1041 case ISD::SDIVREM
: return visitSDIVREM(N
);
1042 case ISD::UDIVREM
: return visitUDIVREM(N
);
1043 case ISD::AND
: return visitAND(N
);
1044 case ISD::OR
: return visitOR(N
);
1045 case ISD::XOR
: return visitXOR(N
);
1046 case ISD::SHL
: return visitSHL(N
);
1047 case ISD::SRA
: return visitSRA(N
);
1048 case ISD::SRL
: return visitSRL(N
);
1049 case ISD::CTLZ
: return visitCTLZ(N
);
1050 case ISD::CTTZ
: return visitCTTZ(N
);
1051 case ISD::CTPOP
: return visitCTPOP(N
);
1052 case ISD::SELECT
: return visitSELECT(N
);
1053 case ISD::SELECT_CC
: return visitSELECT_CC(N
);
1054 case ISD::SETCC
: return visitSETCC(N
);
1055 case ISD::SIGN_EXTEND
: return visitSIGN_EXTEND(N
);
1056 case ISD::ZERO_EXTEND
: return visitZERO_EXTEND(N
);
1057 case ISD::ANY_EXTEND
: return visitANY_EXTEND(N
);
1058 case ISD::SIGN_EXTEND_INREG
: return visitSIGN_EXTEND_INREG(N
);
1059 case ISD::TRUNCATE
: return visitTRUNCATE(N
);
1060 case ISD::BIT_CONVERT
: return visitBIT_CONVERT(N
);
1061 case ISD::BUILD_PAIR
: return visitBUILD_PAIR(N
);
1062 case ISD::FADD
: return visitFADD(N
);
1063 case ISD::FSUB
: return visitFSUB(N
);
1064 case ISD::FMUL
: return visitFMUL(N
);
1065 case ISD::FDIV
: return visitFDIV(N
);
1066 case ISD::FREM
: return visitFREM(N
);
1067 case ISD::FCOPYSIGN
: return visitFCOPYSIGN(N
);
1068 case ISD::SINT_TO_FP
: return visitSINT_TO_FP(N
);
1069 case ISD::UINT_TO_FP
: return visitUINT_TO_FP(N
);
1070 case ISD::FP_TO_SINT
: return visitFP_TO_SINT(N
);
1071 case ISD::FP_TO_UINT
: return visitFP_TO_UINT(N
);
1072 case ISD::FP_ROUND
: return visitFP_ROUND(N
);
1073 case ISD::FP_ROUND_INREG
: return visitFP_ROUND_INREG(N
);
1074 case ISD::FP_EXTEND
: return visitFP_EXTEND(N
);
1075 case ISD::FNEG
: return visitFNEG(N
);
1076 case ISD::FABS
: return visitFABS(N
);
1077 case ISD::BRCOND
: return visitBRCOND(N
);
1078 case ISD::BR_CC
: return visitBR_CC(N
);
1079 case ISD::LOAD
: return visitLOAD(N
);
1080 case ISD::STORE
: return visitSTORE(N
);
1081 case ISD::INSERT_VECTOR_ELT
: return visitINSERT_VECTOR_ELT(N
);
1082 case ISD::EXTRACT_VECTOR_ELT
: return visitEXTRACT_VECTOR_ELT(N
);
1083 case ISD::BUILD_VECTOR
: return visitBUILD_VECTOR(N
);
1084 case ISD::CONCAT_VECTORS
: return visitCONCAT_VECTORS(N
);
1085 case ISD::VECTOR_SHUFFLE
: return visitVECTOR_SHUFFLE(N
);
1086 case ISD::MEMBARRIER
: return visitMEMBARRIER(N
);
1091 SDValue
DAGCombiner::combine(SDNode
*N
) {
1092 SDValue RV
= visit(N
);
1094 // If nothing happened, try a target-specific DAG combine.
1095 if (RV
.getNode() == 0) {
1096 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
1097 "Node was deleted but visit returned NULL!");
1099 if (N
->getOpcode() >= ISD::BUILTIN_OP_END
||
1100 TLI
.hasTargetDAGCombine((ISD::NodeType
)N
->getOpcode())) {
1102 // Expose the DAG combiner to the target combiner impls.
1103 TargetLowering::DAGCombinerInfo
1104 DagCombineInfo(DAG
, !LegalTypes
, !LegalOperations
, false, this);
1106 RV
= TLI
.PerformDAGCombine(N
, DagCombineInfo
);
1110 // If nothing happened still, try promoting the operation.
1111 if (RV
.getNode() == 0) {
1112 switch (N
->getOpcode()) {
1120 RV
= PromoteIntBinOp(SDValue(N
, 0));
1125 RV
= PromoteIntShiftOp(SDValue(N
, 0));
1127 case ISD::SIGN_EXTEND
:
1128 case ISD::ZERO_EXTEND
:
1129 case ISD::ANY_EXTEND
:
1130 RV
= PromoteExtend(SDValue(N
, 0));
1133 if (PromoteLoad(SDValue(N
, 0)))
1139 // If N is a commutative binary node, try commuting it to enable more
1141 if (RV
.getNode() == 0 &&
1142 SelectionDAG::isCommutativeBinOp(N
->getOpcode()) &&
1143 N
->getNumValues() == 1) {
1144 SDValue N0
= N
->getOperand(0);
1145 SDValue N1
= N
->getOperand(1);
1147 // Constant operands are canonicalized to RHS.
1148 if (isa
<ConstantSDNode
>(N0
) || !isa
<ConstantSDNode
>(N1
)) {
1149 SDValue Ops
[] = { N1
, N0
};
1150 SDNode
*CSENode
= DAG
.getNodeIfExists(N
->getOpcode(), N
->getVTList(),
1153 return SDValue(CSENode
, 0);
1160 /// getInputChainForNode - Given a node, return its input chain if it has one,
1161 /// otherwise return a null sd operand.
1162 static SDValue
getInputChainForNode(SDNode
*N
) {
1163 if (unsigned NumOps
= N
->getNumOperands()) {
1164 if (N
->getOperand(0).getValueType() == MVT::Other
)
1165 return N
->getOperand(0);
1166 else if (N
->getOperand(NumOps
-1).getValueType() == MVT::Other
)
1167 return N
->getOperand(NumOps
-1);
1168 for (unsigned i
= 1; i
< NumOps
-1; ++i
)
1169 if (N
->getOperand(i
).getValueType() == MVT::Other
)
1170 return N
->getOperand(i
);
1175 SDValue
DAGCombiner::visitTokenFactor(SDNode
*N
) {
1176 // If N has two operands, where one has an input chain equal to the other,
1177 // the 'other' chain is redundant.
1178 if (N
->getNumOperands() == 2) {
1179 if (getInputChainForNode(N
->getOperand(0).getNode()) == N
->getOperand(1))
1180 return N
->getOperand(0);
1181 if (getInputChainForNode(N
->getOperand(1).getNode()) == N
->getOperand(0))
1182 return N
->getOperand(1);
1185 SmallVector
<SDNode
*, 8> TFs
; // List of token factors to visit.
1186 SmallVector
<SDValue
, 8> Ops
; // Ops for replacing token factor.
1187 SmallPtrSet
<SDNode
*, 16> SeenOps
;
1188 bool Changed
= false; // If we should replace this token factor.
1190 // Start out with this token factor.
1193 // Iterate through token factors. The TFs grows when new token factors are
1195 for (unsigned i
= 0; i
< TFs
.size(); ++i
) {
1196 SDNode
*TF
= TFs
[i
];
1198 // Check each of the operands.
1199 for (unsigned i
= 0, ie
= TF
->getNumOperands(); i
!= ie
; ++i
) {
1200 SDValue Op
= TF
->getOperand(i
);
1202 switch (Op
.getOpcode()) {
1203 case ISD::EntryToken
:
1204 // Entry tokens don't need to be added to the list. They are
1209 case ISD::TokenFactor
:
1210 if (Op
.hasOneUse() &&
1211 std::find(TFs
.begin(), TFs
.end(), Op
.getNode()) == TFs
.end()) {
1212 // Queue up for processing.
1213 TFs
.push_back(Op
.getNode());
1214 // Clean up in case the token factor is removed.
1215 AddToWorkList(Op
.getNode());
1222 // Only add if it isn't already in the list.
1223 if (SeenOps
.insert(Op
.getNode()))
1234 // If we've change things around then replace token factor.
1237 // The entry token is the only possible outcome.
1238 Result
= DAG
.getEntryNode();
1240 // New and improved token factor.
1241 Result
= DAG
.getNode(ISD::TokenFactor
, N
->getDebugLoc(),
1242 MVT::Other
, &Ops
[0], Ops
.size());
1245 // Don't add users to work list.
1246 return CombineTo(N
, Result
, false);
1252 /// MERGE_VALUES can always be eliminated.
1253 SDValue
DAGCombiner::visitMERGE_VALUES(SDNode
*N
) {
1254 WorkListRemover
DeadNodes(*this);
1255 // Replacing results may cause a different MERGE_VALUES to suddenly
1256 // be CSE'd with N, and carry its uses with it. Iterate until no
1257 // uses remain, to ensure that the node can be safely deleted.
1259 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
1260 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, i
), N
->getOperand(i
),
1262 } while (!N
->use_empty());
1263 removeFromWorkList(N
);
1265 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
1269 SDValue
combineShlAddConstant(DebugLoc DL
, SDValue N0
, SDValue N1
,
1270 SelectionDAG
&DAG
) {
1271 EVT VT
= N0
.getValueType();
1272 SDValue N00
= N0
.getOperand(0);
1273 SDValue N01
= N0
.getOperand(1);
1274 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N01
);
1276 if (N01C
&& N00
.getOpcode() == ISD::ADD
&& N00
.getNode()->hasOneUse() &&
1277 isa
<ConstantSDNode
>(N00
.getOperand(1))) {
1278 // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1279 N0
= DAG
.getNode(ISD::ADD
, N0
.getDebugLoc(), VT
,
1280 DAG
.getNode(ISD::SHL
, N00
.getDebugLoc(), VT
,
1281 N00
.getOperand(0), N01
),
1282 DAG
.getNode(ISD::SHL
, N01
.getDebugLoc(), VT
,
1283 N00
.getOperand(1), N01
));
1284 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
);
1290 SDValue
DAGCombiner::visitADD(SDNode
*N
) {
1291 SDValue N0
= N
->getOperand(0);
1292 SDValue N1
= N
->getOperand(1);
1293 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1294 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1295 EVT VT
= N0
.getValueType();
1298 if (VT
.isVector()) {
1299 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1300 if (FoldedVOp
.getNode()) return FoldedVOp
;
1303 // fold (add x, undef) -> undef
1304 if (N0
.getOpcode() == ISD::UNDEF
)
1306 if (N1
.getOpcode() == ISD::UNDEF
)
1308 // fold (add c1, c2) -> c1+c2
1310 return DAG
.FoldConstantArithmetic(ISD::ADD
, VT
, N0C
, N1C
);
1311 // canonicalize constant to RHS
1313 return DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
, N1
, N0
);
1314 // fold (add x, 0) -> x
1315 if (N1C
&& N1C
->isNullValue())
1317 // fold (add Sym, c) -> Sym+c
1318 if (GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(N0
))
1319 if (!LegalOperations
&& TLI
.isOffsetFoldingLegal(GA
) && N1C
&&
1320 GA
->getOpcode() == ISD::GlobalAddress
)
1321 return DAG
.getGlobalAddress(GA
->getGlobal(), N1C
->getDebugLoc(), VT
,
1323 (uint64_t)N1C
->getSExtValue());
1324 // fold ((c1-A)+c2) -> (c1+c2)-A
1325 if (N1C
&& N0
.getOpcode() == ISD::SUB
)
1326 if (ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(0)))
1327 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1328 DAG
.getConstant(N1C
->getAPIntValue()+
1329 N0C
->getAPIntValue(), VT
),
1332 SDValue RADD
= ReassociateOps(ISD::ADD
, N
->getDebugLoc(), N0
, N1
);
1333 if (RADD
.getNode() != 0)
1335 // fold ((0-A) + B) -> B-A
1336 if (N0
.getOpcode() == ISD::SUB
&& isa
<ConstantSDNode
>(N0
.getOperand(0)) &&
1337 cast
<ConstantSDNode
>(N0
.getOperand(0))->isNullValue())
1338 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N1
, N0
.getOperand(1));
1339 // fold (A + (0-B)) -> A-B
1340 if (N1
.getOpcode() == ISD::SUB
&& isa
<ConstantSDNode
>(N1
.getOperand(0)) &&
1341 cast
<ConstantSDNode
>(N1
.getOperand(0))->isNullValue())
1342 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N0
, N1
.getOperand(1));
1343 // fold (A+(B-A)) -> B
1344 if (N1
.getOpcode() == ISD::SUB
&& N0
== N1
.getOperand(1))
1345 return N1
.getOperand(0);
1346 // fold ((B-A)+A) -> B
1347 if (N0
.getOpcode() == ISD::SUB
&& N1
== N0
.getOperand(1))
1348 return N0
.getOperand(0);
1349 // fold (A+(B-(A+C))) to (B-C)
1350 if (N1
.getOpcode() == ISD::SUB
&& N1
.getOperand(1).getOpcode() == ISD::ADD
&&
1351 N0
== N1
.getOperand(1).getOperand(0))
1352 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N1
.getOperand(0),
1353 N1
.getOperand(1).getOperand(1));
1354 // fold (A+(B-(C+A))) to (B-C)
1355 if (N1
.getOpcode() == ISD::SUB
&& N1
.getOperand(1).getOpcode() == ISD::ADD
&&
1356 N0
== N1
.getOperand(1).getOperand(1))
1357 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N1
.getOperand(0),
1358 N1
.getOperand(1).getOperand(0));
1359 // fold (A+((B-A)+or-C)) to (B+or-C)
1360 if ((N1
.getOpcode() == ISD::SUB
|| N1
.getOpcode() == ISD::ADD
) &&
1361 N1
.getOperand(0).getOpcode() == ISD::SUB
&&
1362 N0
== N1
.getOperand(0).getOperand(1))
1363 return DAG
.getNode(N1
.getOpcode(), N
->getDebugLoc(), VT
,
1364 N1
.getOperand(0).getOperand(0), N1
.getOperand(1));
1366 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1367 if (N0
.getOpcode() == ISD::SUB
&& N1
.getOpcode() == ISD::SUB
) {
1368 SDValue N00
= N0
.getOperand(0);
1369 SDValue N01
= N0
.getOperand(1);
1370 SDValue N10
= N1
.getOperand(0);
1371 SDValue N11
= N1
.getOperand(1);
1373 if (isa
<ConstantSDNode
>(N00
) || isa
<ConstantSDNode
>(N10
))
1374 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1375 DAG
.getNode(ISD::ADD
, N0
.getDebugLoc(), VT
, N00
, N10
),
1376 DAG
.getNode(ISD::ADD
, N1
.getDebugLoc(), VT
, N01
, N11
));
1379 if (!VT
.isVector() && SimplifyDemandedBits(SDValue(N
, 0)))
1380 return SDValue(N
, 0);
1382 // fold (a+b) -> (a|b) iff a and b share no bits.
1383 if (VT
.isInteger() && !VT
.isVector()) {
1384 APInt LHSZero
, LHSOne
;
1385 APInt RHSZero
, RHSOne
;
1386 APInt Mask
= APInt::getAllOnesValue(VT
.getScalarType().getSizeInBits());
1387 DAG
.ComputeMaskedBits(N0
, Mask
, LHSZero
, LHSOne
);
1389 if (LHSZero
.getBoolValue()) {
1390 DAG
.ComputeMaskedBits(N1
, Mask
, RHSZero
, RHSOne
);
1392 // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1393 // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1394 if ((RHSZero
& (~LHSZero
& Mask
)) == (~LHSZero
& Mask
) ||
1395 (LHSZero
& (~RHSZero
& Mask
)) == (~RHSZero
& Mask
))
1396 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, N0
, N1
);
1400 // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1401 if (N0
.getOpcode() == ISD::SHL
&& N0
.getNode()->hasOneUse()) {
1402 SDValue Result
= combineShlAddConstant(N
->getDebugLoc(), N0
, N1
, DAG
);
1403 if (Result
.getNode()) return Result
;
1405 if (N1
.getOpcode() == ISD::SHL
&& N1
.getNode()->hasOneUse()) {
1406 SDValue Result
= combineShlAddConstant(N
->getDebugLoc(), N1
, N0
, DAG
);
1407 if (Result
.getNode()) return Result
;
1410 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
1411 if (N1
.getOpcode() == ISD::SHL
&&
1412 N1
.getOperand(0).getOpcode() == ISD::SUB
)
1413 if (ConstantSDNode
*C
=
1414 dyn_cast
<ConstantSDNode
>(N1
.getOperand(0).getOperand(0)))
1415 if (C
->getAPIntValue() == 0)
1416 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N0
,
1417 DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
,
1418 N1
.getOperand(0).getOperand(1),
1420 if (N0
.getOpcode() == ISD::SHL
&&
1421 N0
.getOperand(0).getOpcode() == ISD::SUB
)
1422 if (ConstantSDNode
*C
=
1423 dyn_cast
<ConstantSDNode
>(N0
.getOperand(0).getOperand(0)))
1424 if (C
->getAPIntValue() == 0)
1425 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N1
,
1426 DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
,
1427 N0
.getOperand(0).getOperand(1),
1430 if (N1
.getOpcode() == ISD::AND
) {
1431 SDValue AndOp0
= N1
.getOperand(0);
1432 ConstantSDNode
*AndOp1
= dyn_cast
<ConstantSDNode
>(N1
->getOperand(1));
1433 unsigned NumSignBits
= DAG
.ComputeNumSignBits(AndOp0
);
1434 unsigned DestBits
= VT
.getScalarType().getSizeInBits();
1436 // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
1437 // and similar xforms where the inner op is either ~0 or 0.
1438 if (NumSignBits
== DestBits
&& AndOp1
&& AndOp1
->isOne()) {
1439 DebugLoc DL
= N
->getDebugLoc();
1440 return DAG
.getNode(ISD::SUB
, DL
, VT
, N
->getOperand(0), AndOp0
);
1447 SDValue
DAGCombiner::visitADDC(SDNode
*N
) {
1448 SDValue N0
= N
->getOperand(0);
1449 SDValue N1
= N
->getOperand(1);
1450 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1451 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1452 EVT VT
= N0
.getValueType();
1454 // If the flag result is dead, turn this into an ADD.
1455 if (N
->hasNUsesOfValue(0, 1))
1456 return CombineTo(N
, DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
, N1
, N0
),
1457 DAG
.getNode(ISD::CARRY_FALSE
,
1458 N
->getDebugLoc(), MVT::Flag
));
1460 // canonicalize constant to RHS.
1462 return DAG
.getNode(ISD::ADDC
, N
->getDebugLoc(), N
->getVTList(), N1
, N0
);
1464 // fold (addc x, 0) -> x + no carry out
1465 if (N1C
&& N1C
->isNullValue())
1466 return CombineTo(N
, N0
, DAG
.getNode(ISD::CARRY_FALSE
,
1467 N
->getDebugLoc(), MVT::Flag
));
1469 // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1470 APInt LHSZero
, LHSOne
;
1471 APInt RHSZero
, RHSOne
;
1472 APInt Mask
= APInt::getAllOnesValue(VT
.getScalarType().getSizeInBits());
1473 DAG
.ComputeMaskedBits(N0
, Mask
, LHSZero
, LHSOne
);
1475 if (LHSZero
.getBoolValue()) {
1476 DAG
.ComputeMaskedBits(N1
, Mask
, RHSZero
, RHSOne
);
1478 // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1479 // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1480 if ((RHSZero
& (~LHSZero
& Mask
)) == (~LHSZero
& Mask
) ||
1481 (LHSZero
& (~RHSZero
& Mask
)) == (~RHSZero
& Mask
))
1482 return CombineTo(N
, DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, N0
, N1
),
1483 DAG
.getNode(ISD::CARRY_FALSE
,
1484 N
->getDebugLoc(), MVT::Flag
));
1490 SDValue
DAGCombiner::visitADDE(SDNode
*N
) {
1491 SDValue N0
= N
->getOperand(0);
1492 SDValue N1
= N
->getOperand(1);
1493 SDValue CarryIn
= N
->getOperand(2);
1494 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1495 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1497 // canonicalize constant to RHS
1499 return DAG
.getNode(ISD::ADDE
, N
->getDebugLoc(), N
->getVTList(),
1502 // fold (adde x, y, false) -> (addc x, y)
1503 if (CarryIn
.getOpcode() == ISD::CARRY_FALSE
)
1504 return DAG
.getNode(ISD::ADDC
, N
->getDebugLoc(), N
->getVTList(), N1
, N0
);
1509 SDValue
DAGCombiner::visitSUB(SDNode
*N
) {
1510 SDValue N0
= N
->getOperand(0);
1511 SDValue N1
= N
->getOperand(1);
1512 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
.getNode());
1513 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
1514 EVT VT
= N0
.getValueType();
1517 if (VT
.isVector()) {
1518 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1519 if (FoldedVOp
.getNode()) return FoldedVOp
;
1522 // fold (sub x, x) -> 0
1524 return DAG
.getConstant(0, N
->getValueType(0));
1525 // fold (sub c1, c2) -> c1-c2
1527 return DAG
.FoldConstantArithmetic(ISD::SUB
, VT
, N0C
, N1C
);
1528 // fold (sub x, c) -> (add x, -c)
1530 return DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
, N0
,
1531 DAG
.getConstant(-N1C
->getAPIntValue(), VT
));
1532 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
1533 if (N0C
&& N0C
->isAllOnesValue())
1534 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT
, N1
, N0
);
1535 // fold (A+B)-A -> B
1536 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(0) == N1
)
1537 return N0
.getOperand(1);
1538 // fold (A+B)-B -> A
1539 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(1) == N1
)
1540 return N0
.getOperand(0);
1541 // fold ((A+(B+or-C))-B) -> A+or-C
1542 if (N0
.getOpcode() == ISD::ADD
&&
1543 (N0
.getOperand(1).getOpcode() == ISD::SUB
||
1544 N0
.getOperand(1).getOpcode() == ISD::ADD
) &&
1545 N0
.getOperand(1).getOperand(0) == N1
)
1546 return DAG
.getNode(N0
.getOperand(1).getOpcode(), N
->getDebugLoc(), VT
,
1547 N0
.getOperand(0), N0
.getOperand(1).getOperand(1));
1548 // fold ((A+(C+B))-B) -> A+C
1549 if (N0
.getOpcode() == ISD::ADD
&&
1550 N0
.getOperand(1).getOpcode() == ISD::ADD
&&
1551 N0
.getOperand(1).getOperand(1) == N1
)
1552 return DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
,
1553 N0
.getOperand(0), N0
.getOperand(1).getOperand(0));
1554 // fold ((A-(B-C))-C) -> A-B
1555 if (N0
.getOpcode() == ISD::SUB
&&
1556 N0
.getOperand(1).getOpcode() == ISD::SUB
&&
1557 N0
.getOperand(1).getOperand(1) == N1
)
1558 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1559 N0
.getOperand(0), N0
.getOperand(1).getOperand(0));
1561 // If either operand of a sub is undef, the result is undef
1562 if (N0
.getOpcode() == ISD::UNDEF
)
1564 if (N1
.getOpcode() == ISD::UNDEF
)
1567 // If the relocation model supports it, consider symbol offsets.
1568 if (GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(N0
))
1569 if (!LegalOperations
&& TLI
.isOffsetFoldingLegal(GA
)) {
1570 // fold (sub Sym, c) -> Sym-c
1571 if (N1C
&& GA
->getOpcode() == ISD::GlobalAddress
)
1572 return DAG
.getGlobalAddress(GA
->getGlobal(), N1C
->getDebugLoc(), VT
,
1574 (uint64_t)N1C
->getSExtValue());
1575 // fold (sub Sym+c1, Sym+c2) -> c1-c2
1576 if (GlobalAddressSDNode
*GB
= dyn_cast
<GlobalAddressSDNode
>(N1
))
1577 if (GA
->getGlobal() == GB
->getGlobal())
1578 return DAG
.getConstant((uint64_t)GA
->getOffset() - GB
->getOffset(),
1585 SDValue
DAGCombiner::visitMUL(SDNode
*N
) {
1586 SDValue N0
= N
->getOperand(0);
1587 SDValue N1
= N
->getOperand(1);
1588 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1589 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1590 EVT VT
= N0
.getValueType();
1593 if (VT
.isVector()) {
1594 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1595 if (FoldedVOp
.getNode()) return FoldedVOp
;
1598 // fold (mul x, undef) -> 0
1599 if (N0
.getOpcode() == ISD::UNDEF
|| N1
.getOpcode() == ISD::UNDEF
)
1600 return DAG
.getConstant(0, VT
);
1601 // fold (mul c1, c2) -> c1*c2
1603 return DAG
.FoldConstantArithmetic(ISD::MUL
, VT
, N0C
, N1C
);
1604 // canonicalize constant to RHS
1606 return DAG
.getNode(ISD::MUL
, N
->getDebugLoc(), VT
, N1
, N0
);
1607 // fold (mul x, 0) -> 0
1608 if (N1C
&& N1C
->isNullValue())
1610 // fold (mul x, -1) -> 0-x
1611 if (N1C
&& N1C
->isAllOnesValue())
1612 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1613 DAG
.getConstant(0, VT
), N0
);
1614 // fold (mul x, (1 << c)) -> x << c
1615 if (N1C
&& N1C
->getAPIntValue().isPowerOf2())
1616 return DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
, N0
,
1617 DAG
.getConstant(N1C
->getAPIntValue().logBase2(),
1618 getShiftAmountTy()));
1619 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1620 if (N1C
&& (-N1C
->getAPIntValue()).isPowerOf2()) {
1621 unsigned Log2Val
= (-N1C
->getAPIntValue()).logBase2();
1622 // FIXME: If the input is something that is easily negated (e.g. a
1623 // single-use add), we should put the negate there.
1624 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1625 DAG
.getConstant(0, VT
),
1626 DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
, N0
,
1627 DAG
.getConstant(Log2Val
, getShiftAmountTy())));
1629 // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1630 if (N1C
&& N0
.getOpcode() == ISD::SHL
&&
1631 isa
<ConstantSDNode
>(N0
.getOperand(1))) {
1632 SDValue C3
= DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
,
1633 N1
, N0
.getOperand(1));
1634 AddToWorkList(C3
.getNode());
1635 return DAG
.getNode(ISD::MUL
, N
->getDebugLoc(), VT
,
1636 N0
.getOperand(0), C3
);
1639 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1642 SDValue
Sh(0,0), Y(0,0);
1643 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
1644 if (N0
.getOpcode() == ISD::SHL
&& isa
<ConstantSDNode
>(N0
.getOperand(1)) &&
1645 N0
.getNode()->hasOneUse()) {
1647 } else if (N1
.getOpcode() == ISD::SHL
&&
1648 isa
<ConstantSDNode
>(N1
.getOperand(1)) &&
1649 N1
.getNode()->hasOneUse()) {
1654 SDValue Mul
= DAG
.getNode(ISD::MUL
, N
->getDebugLoc(), VT
,
1655 Sh
.getOperand(0), Y
);
1656 return DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
,
1657 Mul
, Sh
.getOperand(1));
1661 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1662 if (N1C
&& N0
.getOpcode() == ISD::ADD
&& N0
.getNode()->hasOneUse() &&
1663 isa
<ConstantSDNode
>(N0
.getOperand(1)))
1664 return DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
,
1665 DAG
.getNode(ISD::MUL
, N0
.getDebugLoc(), VT
,
1666 N0
.getOperand(0), N1
),
1667 DAG
.getNode(ISD::MUL
, N1
.getDebugLoc(), VT
,
1668 N0
.getOperand(1), N1
));
1671 SDValue RMUL
= ReassociateOps(ISD::MUL
, N
->getDebugLoc(), N0
, N1
);
1672 if (RMUL
.getNode() != 0)
1678 SDValue
DAGCombiner::visitSDIV(SDNode
*N
) {
1679 SDValue N0
= N
->getOperand(0);
1680 SDValue N1
= N
->getOperand(1);
1681 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
.getNode());
1682 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
1683 EVT VT
= N
->getValueType(0);
1686 if (VT
.isVector()) {
1687 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1688 if (FoldedVOp
.getNode()) return FoldedVOp
;
1691 // fold (sdiv c1, c2) -> c1/c2
1692 if (N0C
&& N1C
&& !N1C
->isNullValue())
1693 return DAG
.FoldConstantArithmetic(ISD::SDIV
, VT
, N0C
, N1C
);
1694 // fold (sdiv X, 1) -> X
1695 if (N1C
&& N1C
->getSExtValue() == 1LL)
1697 // fold (sdiv X, -1) -> 0-X
1698 if (N1C
&& N1C
->isAllOnesValue())
1699 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1700 DAG
.getConstant(0, VT
), N0
);
1701 // If we know the sign bits of both operands are zero, strength reduce to a
1702 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
1703 if (!VT
.isVector()) {
1704 if (DAG
.SignBitIsZero(N1
) && DAG
.SignBitIsZero(N0
))
1705 return DAG
.getNode(ISD::UDIV
, N
->getDebugLoc(), N1
.getValueType(),
1708 // fold (sdiv X, pow2) -> simple ops after legalize
1709 if (N1C
&& !N1C
->isNullValue() && !TLI
.isIntDivCheap() &&
1710 (isPowerOf2_64(N1C
->getSExtValue()) ||
1711 isPowerOf2_64(-N1C
->getSExtValue()))) {
1712 // If dividing by powers of two is cheap, then don't perform the following
1714 if (TLI
.isPow2DivCheap())
1717 int64_t pow2
= N1C
->getSExtValue();
1718 int64_t abs2
= pow2
> 0 ? pow2
: -pow2
;
1719 unsigned lg2
= Log2_64(abs2
);
1721 // Splat the sign bit into the register
1722 SDValue SGN
= DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), VT
, N0
,
1723 DAG
.getConstant(VT
.getSizeInBits()-1,
1724 getShiftAmountTy()));
1725 AddToWorkList(SGN
.getNode());
1727 // Add (N0 < 0) ? abs2 - 1 : 0;
1728 SDValue SRL
= DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, SGN
,
1729 DAG
.getConstant(VT
.getSizeInBits() - lg2
,
1730 getShiftAmountTy()));
1731 SDValue ADD
= DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
, N0
, SRL
);
1732 AddToWorkList(SRL
.getNode());
1733 AddToWorkList(ADD
.getNode()); // Divide by pow2
1734 SDValue SRA
= DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), VT
, ADD
,
1735 DAG
.getConstant(lg2
, getShiftAmountTy()));
1737 // If we're dividing by a positive value, we're done. Otherwise, we must
1738 // negate the result.
1742 AddToWorkList(SRA
.getNode());
1743 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1744 DAG
.getConstant(0, VT
), SRA
);
1747 // if integer divide is expensive and we satisfy the requirements, emit an
1748 // alternate sequence.
1749 if (N1C
&& (N1C
->getSExtValue() < -1 || N1C
->getSExtValue() > 1) &&
1750 !TLI
.isIntDivCheap()) {
1751 SDValue Op
= BuildSDIV(N
);
1752 if (Op
.getNode()) return Op
;
1756 if (N0
.getOpcode() == ISD::UNDEF
)
1757 return DAG
.getConstant(0, VT
);
1758 // X / undef -> undef
1759 if (N1
.getOpcode() == ISD::UNDEF
)
1765 SDValue
DAGCombiner::visitUDIV(SDNode
*N
) {
1766 SDValue N0
= N
->getOperand(0);
1767 SDValue N1
= N
->getOperand(1);
1768 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
.getNode());
1769 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
1770 EVT VT
= N
->getValueType(0);
1773 if (VT
.isVector()) {
1774 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1775 if (FoldedVOp
.getNode()) return FoldedVOp
;
1778 // fold (udiv c1, c2) -> c1/c2
1779 if (N0C
&& N1C
&& !N1C
->isNullValue())
1780 return DAG
.FoldConstantArithmetic(ISD::UDIV
, VT
, N0C
, N1C
);
1781 // fold (udiv x, (1 << c)) -> x >>u c
1782 if (N1C
&& N1C
->getAPIntValue().isPowerOf2())
1783 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
,
1784 DAG
.getConstant(N1C
->getAPIntValue().logBase2(),
1785 getShiftAmountTy()));
1786 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1787 if (N1
.getOpcode() == ISD::SHL
) {
1788 if (ConstantSDNode
*SHC
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(0))) {
1789 if (SHC
->getAPIntValue().isPowerOf2()) {
1790 EVT ADDVT
= N1
.getOperand(1).getValueType();
1791 SDValue Add
= DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), ADDVT
,
1793 DAG
.getConstant(SHC
->getAPIntValue()
1796 AddToWorkList(Add
.getNode());
1797 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
, Add
);
1801 // fold (udiv x, c) -> alternate
1802 if (N1C
&& !N1C
->isNullValue() && !TLI
.isIntDivCheap()) {
1803 SDValue Op
= BuildUDIV(N
);
1804 if (Op
.getNode()) return Op
;
1808 if (N0
.getOpcode() == ISD::UNDEF
)
1809 return DAG
.getConstant(0, VT
);
1810 // X / undef -> undef
1811 if (N1
.getOpcode() == ISD::UNDEF
)
1817 SDValue
DAGCombiner::visitSREM(SDNode
*N
) {
1818 SDValue N0
= N
->getOperand(0);
1819 SDValue N1
= N
->getOperand(1);
1820 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1821 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1822 EVT VT
= N
->getValueType(0);
1824 // fold (srem c1, c2) -> c1%c2
1825 if (N0C
&& N1C
&& !N1C
->isNullValue())
1826 return DAG
.FoldConstantArithmetic(ISD::SREM
, VT
, N0C
, N1C
);
1827 // If we know the sign bits of both operands are zero, strength reduce to a
1828 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
1829 if (!VT
.isVector()) {
1830 if (DAG
.SignBitIsZero(N1
) && DAG
.SignBitIsZero(N0
))
1831 return DAG
.getNode(ISD::UREM
, N
->getDebugLoc(), VT
, N0
, N1
);
1834 // If X/C can be simplified by the division-by-constant logic, lower
1835 // X%C to the equivalent of X-X/C*C.
1836 if (N1C
&& !N1C
->isNullValue()) {
1837 SDValue Div
= DAG
.getNode(ISD::SDIV
, N
->getDebugLoc(), VT
, N0
, N1
);
1838 AddToWorkList(Div
.getNode());
1839 SDValue OptimizedDiv
= combine(Div
.getNode());
1840 if (OptimizedDiv
.getNode() && OptimizedDiv
.getNode() != Div
.getNode()) {
1841 SDValue Mul
= DAG
.getNode(ISD::MUL
, N
->getDebugLoc(), VT
,
1843 SDValue Sub
= DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N0
, Mul
);
1844 AddToWorkList(Mul
.getNode());
1850 if (N0
.getOpcode() == ISD::UNDEF
)
1851 return DAG
.getConstant(0, VT
);
1852 // X % undef -> undef
1853 if (N1
.getOpcode() == ISD::UNDEF
)
1859 SDValue
DAGCombiner::visitUREM(SDNode
*N
) {
1860 SDValue N0
= N
->getOperand(0);
1861 SDValue N1
= N
->getOperand(1);
1862 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1863 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1864 EVT VT
= N
->getValueType(0);
1866 // fold (urem c1, c2) -> c1%c2
1867 if (N0C
&& N1C
&& !N1C
->isNullValue())
1868 return DAG
.FoldConstantArithmetic(ISD::UREM
, VT
, N0C
, N1C
);
1869 // fold (urem x, pow2) -> (and x, pow2-1)
1870 if (N1C
&& !N1C
->isNullValue() && N1C
->getAPIntValue().isPowerOf2())
1871 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N0
,
1872 DAG
.getConstant(N1C
->getAPIntValue()-1,VT
));
1873 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
1874 if (N1
.getOpcode() == ISD::SHL
) {
1875 if (ConstantSDNode
*SHC
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(0))) {
1876 if (SHC
->getAPIntValue().isPowerOf2()) {
1878 DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
, N1
,
1879 DAG
.getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()),
1881 AddToWorkList(Add
.getNode());
1882 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N0
, Add
);
1887 // If X/C can be simplified by the division-by-constant logic, lower
1888 // X%C to the equivalent of X-X/C*C.
1889 if (N1C
&& !N1C
->isNullValue()) {
1890 SDValue Div
= DAG
.getNode(ISD::UDIV
, N
->getDebugLoc(), VT
, N0
, N1
);
1891 AddToWorkList(Div
.getNode());
1892 SDValue OptimizedDiv
= combine(Div
.getNode());
1893 if (OptimizedDiv
.getNode() && OptimizedDiv
.getNode() != Div
.getNode()) {
1894 SDValue Mul
= DAG
.getNode(ISD::MUL
, N
->getDebugLoc(), VT
,
1896 SDValue Sub
= DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N0
, Mul
);
1897 AddToWorkList(Mul
.getNode());
1903 if (N0
.getOpcode() == ISD::UNDEF
)
1904 return DAG
.getConstant(0, VT
);
1905 // X % undef -> undef
1906 if (N1
.getOpcode() == ISD::UNDEF
)
1912 SDValue
DAGCombiner::visitMULHS(SDNode
*N
) {
1913 SDValue N0
= N
->getOperand(0);
1914 SDValue N1
= N
->getOperand(1);
1915 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1916 EVT VT
= N
->getValueType(0);
1918 // fold (mulhs x, 0) -> 0
1919 if (N1C
&& N1C
->isNullValue())
1921 // fold (mulhs x, 1) -> (sra x, size(x)-1)
1922 if (N1C
&& N1C
->getAPIntValue() == 1)
1923 return DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), N0
.getValueType(), N0
,
1924 DAG
.getConstant(N0
.getValueType().getSizeInBits() - 1,
1925 getShiftAmountTy()));
1926 // fold (mulhs x, undef) -> 0
1927 if (N0
.getOpcode() == ISD::UNDEF
|| N1
.getOpcode() == ISD::UNDEF
)
1928 return DAG
.getConstant(0, VT
);
1933 SDValue
DAGCombiner::visitMULHU(SDNode
*N
) {
1934 SDValue N0
= N
->getOperand(0);
1935 SDValue N1
= N
->getOperand(1);
1936 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1937 EVT VT
= N
->getValueType(0);
1939 // fold (mulhu x, 0) -> 0
1940 if (N1C
&& N1C
->isNullValue())
1942 // fold (mulhu x, 1) -> 0
1943 if (N1C
&& N1C
->getAPIntValue() == 1)
1944 return DAG
.getConstant(0, N0
.getValueType());
1945 // fold (mulhu x, undef) -> 0
1946 if (N0
.getOpcode() == ISD::UNDEF
|| N1
.getOpcode() == ISD::UNDEF
)
1947 return DAG
.getConstant(0, VT
);
1952 /// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
1953 /// compute two values. LoOp and HiOp give the opcodes for the two computations
1954 /// that are being performed. Return true if a simplification was made.
1956 SDValue
DAGCombiner::SimplifyNodeWithTwoResults(SDNode
*N
, unsigned LoOp
,
1958 // If the high half is not needed, just compute the low half.
1959 bool HiExists
= N
->hasAnyUseOfValue(1);
1961 (!LegalOperations
||
1962 TLI
.isOperationLegal(LoOp
, N
->getValueType(0)))) {
1963 SDValue Res
= DAG
.getNode(LoOp
, N
->getDebugLoc(), N
->getValueType(0),
1964 N
->op_begin(), N
->getNumOperands());
1965 return CombineTo(N
, Res
, Res
);
1968 // If the low half is not needed, just compute the high half.
1969 bool LoExists
= N
->hasAnyUseOfValue(0);
1971 (!LegalOperations
||
1972 TLI
.isOperationLegal(HiOp
, N
->getValueType(1)))) {
1973 SDValue Res
= DAG
.getNode(HiOp
, N
->getDebugLoc(), N
->getValueType(1),
1974 N
->op_begin(), N
->getNumOperands());
1975 return CombineTo(N
, Res
, Res
);
1978 // If both halves are used, return as it is.
1979 if (LoExists
&& HiExists
)
1982 // If the two computed results can be simplified separately, separate them.
1984 SDValue Lo
= DAG
.getNode(LoOp
, N
->getDebugLoc(), N
->getValueType(0),
1985 N
->op_begin(), N
->getNumOperands());
1986 AddToWorkList(Lo
.getNode());
1987 SDValue LoOpt
= combine(Lo
.getNode());
1988 if (LoOpt
.getNode() && LoOpt
.getNode() != Lo
.getNode() &&
1989 (!LegalOperations
||
1990 TLI
.isOperationLegal(LoOpt
.getOpcode(), LoOpt
.getValueType())))
1991 return CombineTo(N
, LoOpt
, LoOpt
);
1995 SDValue Hi
= DAG
.getNode(HiOp
, N
->getDebugLoc(), N
->getValueType(1),
1996 N
->op_begin(), N
->getNumOperands());
1997 AddToWorkList(Hi
.getNode());
1998 SDValue HiOpt
= combine(Hi
.getNode());
1999 if (HiOpt
.getNode() && HiOpt
!= Hi
&&
2000 (!LegalOperations
||
2001 TLI
.isOperationLegal(HiOpt
.getOpcode(), HiOpt
.getValueType())))
2002 return CombineTo(N
, HiOpt
, HiOpt
);
2008 SDValue
DAGCombiner::visitSMUL_LOHI(SDNode
*N
) {
2009 SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::MUL
, ISD::MULHS
);
2010 if (Res
.getNode()) return Res
;
2015 SDValue
DAGCombiner::visitUMUL_LOHI(SDNode
*N
) {
2016 SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::MUL
, ISD::MULHU
);
2017 if (Res
.getNode()) return Res
;
2022 SDValue
DAGCombiner::visitSDIVREM(SDNode
*N
) {
2023 SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::SDIV
, ISD::SREM
);
2024 if (Res
.getNode()) return Res
;
2029 SDValue
DAGCombiner::visitUDIVREM(SDNode
*N
) {
2030 SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::UDIV
, ISD::UREM
);
2031 if (Res
.getNode()) return Res
;
2036 /// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
2037 /// two operands of the same opcode, try to simplify it.
2038 SDValue
DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode
*N
) {
2039 SDValue N0
= N
->getOperand(0), N1
= N
->getOperand(1);
2040 EVT VT
= N0
.getValueType();
2041 assert(N0
.getOpcode() == N1
.getOpcode() && "Bad input!");
2043 // Bail early if none of these transforms apply.
2044 if (N0
.getNode()->getNumOperands() == 0) return SDValue();
2046 // For each of OP in AND/OR/XOR:
2047 // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
2048 // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
2049 // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
2050 // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
2052 // do not sink logical op inside of a vector extend, since it may combine
2054 EVT Op0VT
= N0
.getOperand(0).getValueType();
2055 if ((N0
.getOpcode() == ISD::ZERO_EXTEND
||
2056 N0
.getOpcode() == ISD::SIGN_EXTEND
||
2057 // Avoid infinite looping with PromoteIntBinOp.
2058 (N0
.getOpcode() == ISD::ANY_EXTEND
&&
2059 (!LegalTypes
|| TLI
.isTypeDesirableForOp(N
->getOpcode(), Op0VT
))) ||
2060 (N0
.getOpcode() == ISD::TRUNCATE
&&
2061 (!TLI
.isZExtFree(VT
, Op0VT
) ||
2062 !TLI
.isTruncateFree(Op0VT
, VT
)) &&
2063 TLI
.isTypeLegal(Op0VT
))) &&
2065 Op0VT
== N1
.getOperand(0).getValueType() &&
2066 (!LegalOperations
|| TLI
.isOperationLegal(N
->getOpcode(), Op0VT
))) {
2067 SDValue ORNode
= DAG
.getNode(N
->getOpcode(), N0
.getDebugLoc(),
2068 N0
.getOperand(0).getValueType(),
2069 N0
.getOperand(0), N1
.getOperand(0));
2070 AddToWorkList(ORNode
.getNode());
2071 return DAG
.getNode(N0
.getOpcode(), N
->getDebugLoc(), VT
, ORNode
);
2074 // For each of OP in SHL/SRL/SRA/AND...
2075 // fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
2076 // fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z)
2077 // fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
2078 if ((N0
.getOpcode() == ISD::SHL
|| N0
.getOpcode() == ISD::SRL
||
2079 N0
.getOpcode() == ISD::SRA
|| N0
.getOpcode() == ISD::AND
) &&
2080 N0
.getOperand(1) == N1
.getOperand(1)) {
2081 SDValue ORNode
= DAG
.getNode(N
->getOpcode(), N0
.getDebugLoc(),
2082 N0
.getOperand(0).getValueType(),
2083 N0
.getOperand(0), N1
.getOperand(0));
2084 AddToWorkList(ORNode
.getNode());
2085 return DAG
.getNode(N0
.getOpcode(), N
->getDebugLoc(), VT
,
2086 ORNode
, N0
.getOperand(1));
2092 SDValue
DAGCombiner::visitAND(SDNode
*N
) {
2093 SDValue N0
= N
->getOperand(0);
2094 SDValue N1
= N
->getOperand(1);
2095 SDValue LL
, LR
, RL
, RR
, CC0
, CC1
;
2096 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2097 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2098 EVT VT
= N1
.getValueType();
2099 unsigned BitWidth
= VT
.getScalarType().getSizeInBits();
2102 if (VT
.isVector()) {
2103 SDValue FoldedVOp
= SimplifyVBinOp(N
);
2104 if (FoldedVOp
.getNode()) return FoldedVOp
;
2107 // fold (and x, undef) -> 0
2108 if (N0
.getOpcode() == ISD::UNDEF
|| N1
.getOpcode() == ISD::UNDEF
)
2109 return DAG
.getConstant(0, VT
);
2110 // fold (and c1, c2) -> c1&c2
2112 return DAG
.FoldConstantArithmetic(ISD::AND
, VT
, N0C
, N1C
);
2113 // canonicalize constant to RHS
2115 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N1
, N0
);
2116 // fold (and x, -1) -> x
2117 if (N1C
&& N1C
->isAllOnesValue())
2119 // if (and x, c) is known to be zero, return 0
2120 if (N1C
&& DAG
.MaskedValueIsZero(SDValue(N
, 0),
2121 APInt::getAllOnesValue(BitWidth
)))
2122 return DAG
.getConstant(0, VT
);
2124 SDValue RAND
= ReassociateOps(ISD::AND
, N
->getDebugLoc(), N0
, N1
);
2125 if (RAND
.getNode() != 0)
2127 // fold (and (or x, C), D) -> D if (C & D) == D
2128 if (N1C
&& N0
.getOpcode() == ISD::OR
)
2129 if (ConstantSDNode
*ORI
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1)))
2130 if ((ORI
->getAPIntValue() & N1C
->getAPIntValue()) == N1C
->getAPIntValue())
2132 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
2133 if (N1C
&& N0
.getOpcode() == ISD::ANY_EXTEND
) {
2134 SDValue N0Op0
= N0
.getOperand(0);
2135 APInt Mask
= ~N1C
->getAPIntValue();
2136 Mask
.trunc(N0Op0
.getValueSizeInBits());
2137 if (DAG
.MaskedValueIsZero(N0Op0
, Mask
)) {
2138 SDValue Zext
= DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(),
2139 N0
.getValueType(), N0Op0
);
2141 // Replace uses of the AND with uses of the Zero extend node.
2144 // We actually want to replace all uses of the any_extend with the
2145 // zero_extend, to avoid duplicating things. This will later cause this
2146 // AND to be folded.
2147 CombineTo(N0
.getNode(), Zext
);
2148 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
2151 // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
2152 if (isSetCCEquivalent(N0
, LL
, LR
, CC0
) && isSetCCEquivalent(N1
, RL
, RR
, CC1
)){
2153 ISD::CondCode Op0
= cast
<CondCodeSDNode
>(CC0
)->get();
2154 ISD::CondCode Op1
= cast
<CondCodeSDNode
>(CC1
)->get();
2156 if (LR
== RR
&& isa
<ConstantSDNode
>(LR
) && Op0
== Op1
&&
2157 LL
.getValueType().isInteger()) {
2158 // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
2159 if (cast
<ConstantSDNode
>(LR
)->isNullValue() && Op1
== ISD::SETEQ
) {
2160 SDValue ORNode
= DAG
.getNode(ISD::OR
, N0
.getDebugLoc(),
2161 LR
.getValueType(), LL
, RL
);
2162 AddToWorkList(ORNode
.getNode());
2163 return DAG
.getSetCC(N
->getDebugLoc(), VT
, ORNode
, LR
, Op1
);
2165 // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
2166 if (cast
<ConstantSDNode
>(LR
)->isAllOnesValue() && Op1
== ISD::SETEQ
) {
2167 SDValue ANDNode
= DAG
.getNode(ISD::AND
, N0
.getDebugLoc(),
2168 LR
.getValueType(), LL
, RL
);
2169 AddToWorkList(ANDNode
.getNode());
2170 return DAG
.getSetCC(N
->getDebugLoc(), VT
, ANDNode
, LR
, Op1
);
2172 // fold (and (setgt X, -1), (setgt Y, -1)) -> (setgt (or X, Y), -1)
2173 if (cast
<ConstantSDNode
>(LR
)->isAllOnesValue() && Op1
== ISD::SETGT
) {
2174 SDValue ORNode
= DAG
.getNode(ISD::OR
, N0
.getDebugLoc(),
2175 LR
.getValueType(), LL
, RL
);
2176 AddToWorkList(ORNode
.getNode());
2177 return DAG
.getSetCC(N
->getDebugLoc(), VT
, ORNode
, LR
, Op1
);
2180 // canonicalize equivalent to ll == rl
2181 if (LL
== RR
&& LR
== RL
) {
2182 Op1
= ISD::getSetCCSwappedOperands(Op1
);
2185 if (LL
== RL
&& LR
== RR
) {
2186 bool isInteger
= LL
.getValueType().isInteger();
2187 ISD::CondCode Result
= ISD::getSetCCAndOperation(Op0
, Op1
, isInteger
);
2188 if (Result
!= ISD::SETCC_INVALID
&&
2189 (!LegalOperations
|| TLI
.isCondCodeLegal(Result
, LL
.getValueType())))
2190 return DAG
.getSetCC(N
->getDebugLoc(), N0
.getValueType(),
2195 // Simplify: (and (op x...), (op y...)) -> (op (and x, y))
2196 if (N0
.getOpcode() == N1
.getOpcode()) {
2197 SDValue Tmp
= SimplifyBinOpWithSameOpcodeHands(N
);
2198 if (Tmp
.getNode()) return Tmp
;
2201 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
2202 // fold (and (sra)) -> (and (srl)) when possible.
2203 if (!VT
.isVector() &&
2204 SimplifyDemandedBits(SDValue(N
, 0)))
2205 return SDValue(N
, 0);
2207 // fold (zext_inreg (extload x)) -> (zextload x)
2208 if (ISD::isEXTLoad(N0
.getNode()) && ISD::isUNINDEXEDLoad(N0
.getNode())) {
2209 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
2210 EVT MemVT
= LN0
->getMemoryVT();
2211 // If we zero all the possible extended bits, then we can turn this into
2212 // a zextload if we are running before legalize or the operation is legal.
2213 unsigned BitWidth
= N1
.getValueType().getScalarType().getSizeInBits();
2214 if (DAG
.MaskedValueIsZero(N1
, APInt::getHighBitsSet(BitWidth
,
2215 BitWidth
- MemVT
.getScalarType().getSizeInBits())) &&
2216 ((!LegalOperations
&& !LN0
->isVolatile()) ||
2217 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, MemVT
))) {
2218 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, VT
, N0
.getDebugLoc(),
2219 LN0
->getChain(), LN0
->getBasePtr(),
2220 LN0
->getPointerInfo(), MemVT
,
2221 LN0
->isVolatile(), LN0
->isNonTemporal(),
2222 LN0
->getAlignment());
2224 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
2225 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
2228 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
2229 if (ISD::isSEXTLoad(N0
.getNode()) && ISD::isUNINDEXEDLoad(N0
.getNode()) &&
2231 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
2232 EVT MemVT
= LN0
->getMemoryVT();
2233 // If we zero all the possible extended bits, then we can turn this into
2234 // a zextload if we are running before legalize or the operation is legal.
2235 unsigned BitWidth
= N1
.getValueType().getScalarType().getSizeInBits();
2236 if (DAG
.MaskedValueIsZero(N1
, APInt::getHighBitsSet(BitWidth
,
2237 BitWidth
- MemVT
.getScalarType().getSizeInBits())) &&
2238 ((!LegalOperations
&& !LN0
->isVolatile()) ||
2239 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, MemVT
))) {
2240 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, VT
, N0
.getDebugLoc(),
2242 LN0
->getBasePtr(), LN0
->getPointerInfo(),
2244 LN0
->isVolatile(), LN0
->isNonTemporal(),
2245 LN0
->getAlignment());
2247 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
2248 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
2252 // fold (and (load x), 255) -> (zextload x, i8)
2253 // fold (and (extload x, i16), 255) -> (zextload x, i8)
2254 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
2255 if (N1C
&& (N0
.getOpcode() == ISD::LOAD
||
2256 (N0
.getOpcode() == ISD::ANY_EXTEND
&&
2257 N0
.getOperand(0).getOpcode() == ISD::LOAD
))) {
2258 bool HasAnyExt
= N0
.getOpcode() == ISD::ANY_EXTEND
;
2259 LoadSDNode
*LN0
= HasAnyExt
2260 ? cast
<LoadSDNode
>(N0
.getOperand(0))
2261 : cast
<LoadSDNode
>(N0
);
2262 if (LN0
->getExtensionType() != ISD::SEXTLOAD
&&
2263 LN0
->isUnindexed() && N0
.hasOneUse() && LN0
->hasOneUse()) {
2264 uint32_t ActiveBits
= N1C
->getAPIntValue().getActiveBits();
2265 if (ActiveBits
> 0 && APIntOps::isMask(ActiveBits
, N1C
->getAPIntValue())){
2266 EVT ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), ActiveBits
);
2267 EVT LoadedVT
= LN0
->getMemoryVT();
2269 if (ExtVT
== LoadedVT
&&
2270 (!LegalOperations
|| TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, ExtVT
))) {
2271 EVT LoadResultTy
= HasAnyExt
? LN0
->getValueType(0) : VT
;
2274 DAG
.getExtLoad(ISD::ZEXTLOAD
, LoadResultTy
, LN0
->getDebugLoc(),
2275 LN0
->getChain(), LN0
->getBasePtr(),
2276 LN0
->getPointerInfo(),
2277 ExtVT
, LN0
->isVolatile(), LN0
->isNonTemporal(),
2278 LN0
->getAlignment());
2280 CombineTo(LN0
, NewLoad
, NewLoad
.getValue(1));
2281 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
2284 // Do not change the width of a volatile load.
2285 // Do not generate loads of non-round integer types since these can
2286 // be expensive (and would be wrong if the type is not byte sized).
2287 if (!LN0
->isVolatile() && LoadedVT
.bitsGT(ExtVT
) && ExtVT
.isRound() &&
2288 (!LegalOperations
|| TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, ExtVT
))) {
2289 EVT PtrType
= LN0
->getOperand(1).getValueType();
2291 unsigned Alignment
= LN0
->getAlignment();
2292 SDValue NewPtr
= LN0
->getBasePtr();
2294 // For big endian targets, we need to add an offset to the pointer
2295 // to load the correct bytes. For little endian systems, we merely
2296 // need to read fewer bytes from the same pointer.
2297 if (TLI
.isBigEndian()) {
2298 unsigned LVTStoreBytes
= LoadedVT
.getStoreSize();
2299 unsigned EVTStoreBytes
= ExtVT
.getStoreSize();
2300 unsigned PtrOff
= LVTStoreBytes
- EVTStoreBytes
;
2301 NewPtr
= DAG
.getNode(ISD::ADD
, LN0
->getDebugLoc(), PtrType
,
2302 NewPtr
, DAG
.getConstant(PtrOff
, PtrType
));
2303 Alignment
= MinAlign(Alignment
, PtrOff
);
2306 AddToWorkList(NewPtr
.getNode());
2308 EVT LoadResultTy
= HasAnyExt
? LN0
->getValueType(0) : VT
;
2310 DAG
.getExtLoad(ISD::ZEXTLOAD
, LoadResultTy
, LN0
->getDebugLoc(),
2311 LN0
->getChain(), NewPtr
,
2312 LN0
->getPointerInfo(),
2313 ExtVT
, LN0
->isVolatile(), LN0
->isNonTemporal(),
2316 CombineTo(LN0
, Load
, Load
.getValue(1));
2317 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
2326 SDValue
DAGCombiner::visitOR(SDNode
*N
) {
2327 SDValue N0
= N
->getOperand(0);
2328 SDValue N1
= N
->getOperand(1);
2329 SDValue LL
, LR
, RL
, RR
, CC0
, CC1
;
2330 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2331 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2332 EVT VT
= N1
.getValueType();
2335 if (VT
.isVector()) {
2336 SDValue FoldedVOp
= SimplifyVBinOp(N
);
2337 if (FoldedVOp
.getNode()) return FoldedVOp
;
2340 // fold (or x, undef) -> -1
2341 if (!LegalOperations
&&
2342 (N0
.getOpcode() == ISD::UNDEF
|| N1
.getOpcode() == ISD::UNDEF
)) {
2343 EVT EltVT
= VT
.isVector() ? VT
.getVectorElementType() : VT
;
2344 return DAG
.getConstant(APInt::getAllOnesValue(EltVT
.getSizeInBits()), VT
);
2346 // fold (or c1, c2) -> c1|c2
2348 return DAG
.FoldConstantArithmetic(ISD::OR
, VT
, N0C
, N1C
);
2349 // canonicalize constant to RHS
2351 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, N1
, N0
);
2352 // fold (or x, 0) -> x
2353 if (N1C
&& N1C
->isNullValue())
2355 // fold (or x, -1) -> -1
2356 if (N1C
&& N1C
->isAllOnesValue())
2358 // fold (or x, c) -> c iff (x & ~c) == 0
2359 if (N1C
&& DAG
.MaskedValueIsZero(N0
, ~N1C
->getAPIntValue()))
2362 SDValue ROR
= ReassociateOps(ISD::OR
, N
->getDebugLoc(), N0
, N1
);
2363 if (ROR
.getNode() != 0)
2365 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
2366 // iff (c1 & c2) == 0.
2367 if (N1C
&& N0
.getOpcode() == ISD::AND
&& N0
.getNode()->hasOneUse() &&
2368 isa
<ConstantSDNode
>(N0
.getOperand(1))) {
2369 ConstantSDNode
*C1
= cast
<ConstantSDNode
>(N0
.getOperand(1));
2370 if ((C1
->getAPIntValue() & N1C
->getAPIntValue()) != 0)
2371 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
,
2372 DAG
.getNode(ISD::OR
, N0
.getDebugLoc(), VT
,
2373 N0
.getOperand(0), N1
),
2374 DAG
.FoldConstantArithmetic(ISD::OR
, VT
, N1C
, C1
));
2376 // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
2377 if (isSetCCEquivalent(N0
, LL
, LR
, CC0
) && isSetCCEquivalent(N1
, RL
, RR
, CC1
)){
2378 ISD::CondCode Op0
= cast
<CondCodeSDNode
>(CC0
)->get();
2379 ISD::CondCode Op1
= cast
<CondCodeSDNode
>(CC1
)->get();
2381 if (LR
== RR
&& isa
<ConstantSDNode
>(LR
) && Op0
== Op1
&&
2382 LL
.getValueType().isInteger()) {
2383 // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
2384 // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
2385 if (cast
<ConstantSDNode
>(LR
)->isNullValue() &&
2386 (Op1
== ISD::SETNE
|| Op1
== ISD::SETLT
)) {
2387 SDValue ORNode
= DAG
.getNode(ISD::OR
, LR
.getDebugLoc(),
2388 LR
.getValueType(), LL
, RL
);
2389 AddToWorkList(ORNode
.getNode());
2390 return DAG
.getSetCC(N
->getDebugLoc(), VT
, ORNode
, LR
, Op1
);
2392 // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
2393 // fold (or (setgt X, -1), (setgt Y -1)) -> (setgt (and X, Y), -1)
2394 if (cast
<ConstantSDNode
>(LR
)->isAllOnesValue() &&
2395 (Op1
== ISD::SETNE
|| Op1
== ISD::SETGT
)) {
2396 SDValue ANDNode
= DAG
.getNode(ISD::AND
, LR
.getDebugLoc(),
2397 LR
.getValueType(), LL
, RL
);
2398 AddToWorkList(ANDNode
.getNode());
2399 return DAG
.getSetCC(N
->getDebugLoc(), VT
, ANDNode
, LR
, Op1
);
2402 // canonicalize equivalent to ll == rl
2403 if (LL
== RR
&& LR
== RL
) {
2404 Op1
= ISD::getSetCCSwappedOperands(Op1
);
2407 if (LL
== RL
&& LR
== RR
) {
2408 bool isInteger
= LL
.getValueType().isInteger();
2409 ISD::CondCode Result
= ISD::getSetCCOrOperation(Op0
, Op1
, isInteger
);
2410 if (Result
!= ISD::SETCC_INVALID
&&
2411 (!LegalOperations
|| TLI
.isCondCodeLegal(Result
, LL
.getValueType())))
2412 return DAG
.getSetCC(N
->getDebugLoc(), N0
.getValueType(),
2417 // Simplify: (or (op x...), (op y...)) -> (op (or x, y))
2418 if (N0
.getOpcode() == N1
.getOpcode()) {
2419 SDValue Tmp
= SimplifyBinOpWithSameOpcodeHands(N
);
2420 if (Tmp
.getNode()) return Tmp
;
2423 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
2424 if (N0
.getOpcode() == ISD::AND
&&
2425 N1
.getOpcode() == ISD::AND
&&
2426 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
2427 N1
.getOperand(1).getOpcode() == ISD::Constant
&&
2428 // Don't increase # computations.
2429 (N0
.getNode()->hasOneUse() || N1
.getNode()->hasOneUse())) {
2430 // We can only do this xform if we know that bits from X that are set in C2
2431 // but not in C1 are already zero. Likewise for Y.
2432 const APInt
&LHSMask
=
2433 cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
2434 const APInt
&RHSMask
=
2435 cast
<ConstantSDNode
>(N1
.getOperand(1))->getAPIntValue();
2437 if (DAG
.MaskedValueIsZero(N0
.getOperand(0), RHSMask
&~LHSMask
) &&
2438 DAG
.MaskedValueIsZero(N1
.getOperand(0), LHSMask
&~RHSMask
)) {
2439 SDValue X
= DAG
.getNode(ISD::OR
, N0
.getDebugLoc(), VT
,
2440 N0
.getOperand(0), N1
.getOperand(0));
2441 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, X
,
2442 DAG
.getConstant(LHSMask
| RHSMask
, VT
));
2446 // See if this is some rotate idiom.
2447 if (SDNode
*Rot
= MatchRotate(N0
, N1
, N
->getDebugLoc()))
2448 return SDValue(Rot
, 0);
2450 // Simplify the operands using demanded-bits information.
2451 if (!VT
.isVector() &&
2452 SimplifyDemandedBits(SDValue(N
, 0)))
2453 return SDValue(N
, 0);
2458 /// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
2459 static bool MatchRotateHalf(SDValue Op
, SDValue
&Shift
, SDValue
&Mask
) {
2460 if (Op
.getOpcode() == ISD::AND
) {
2461 if (isa
<ConstantSDNode
>(Op
.getOperand(1))) {
2462 Mask
= Op
.getOperand(1);
2463 Op
= Op
.getOperand(0);
2469 if (Op
.getOpcode() == ISD::SRL
|| Op
.getOpcode() == ISD::SHL
) {
2477 // MatchRotate - Handle an 'or' of two operands. If this is one of the many
2478 // idioms for rotate, and if the target supports rotation instructions, generate
2480 SDNode
*DAGCombiner::MatchRotate(SDValue LHS
, SDValue RHS
, DebugLoc DL
) {
2481 // Must be a legal type. Expanded 'n promoted things won't work with rotates.
2482 EVT VT
= LHS
.getValueType();
2483 if (!TLI
.isTypeLegal(VT
)) return 0;
2485 // The target must have at least one rotate flavor.
2486 bool HasROTL
= TLI
.isOperationLegalOrCustom(ISD::ROTL
, VT
);
2487 bool HasROTR
= TLI
.isOperationLegalOrCustom(ISD::ROTR
, VT
);
2488 if (!HasROTL
&& !HasROTR
) return 0;
2490 // Match "(X shl/srl V1) & V2" where V2 may not be present.
2491 SDValue LHSShift
; // The shift.
2492 SDValue LHSMask
; // AND value if any.
2493 if (!MatchRotateHalf(LHS
, LHSShift
, LHSMask
))
2494 return 0; // Not part of a rotate.
2496 SDValue RHSShift
; // The shift.
2497 SDValue RHSMask
; // AND value if any.
2498 if (!MatchRotateHalf(RHS
, RHSShift
, RHSMask
))
2499 return 0; // Not part of a rotate.
2501 if (LHSShift
.getOperand(0) != RHSShift
.getOperand(0))
2502 return 0; // Not shifting the same value.
2504 if (LHSShift
.getOpcode() == RHSShift
.getOpcode())
2505 return 0; // Shifts must disagree.
2507 // Canonicalize shl to left side in a shl/srl pair.
2508 if (RHSShift
.getOpcode() == ISD::SHL
) {
2509 std::swap(LHS
, RHS
);
2510 std::swap(LHSShift
, RHSShift
);
2511 std::swap(LHSMask
, RHSMask
);
2514 unsigned OpSizeInBits
= VT
.getSizeInBits();
2515 SDValue LHSShiftArg
= LHSShift
.getOperand(0);
2516 SDValue LHSShiftAmt
= LHSShift
.getOperand(1);
2517 SDValue RHSShiftAmt
= RHSShift
.getOperand(1);
2519 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
2520 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
2521 if (LHSShiftAmt
.getOpcode() == ISD::Constant
&&
2522 RHSShiftAmt
.getOpcode() == ISD::Constant
) {
2523 uint64_t LShVal
= cast
<ConstantSDNode
>(LHSShiftAmt
)->getZExtValue();
2524 uint64_t RShVal
= cast
<ConstantSDNode
>(RHSShiftAmt
)->getZExtValue();
2525 if ((LShVal
+ RShVal
) != OpSizeInBits
)
2530 Rot
= DAG
.getNode(ISD::ROTL
, DL
, VT
, LHSShiftArg
, LHSShiftAmt
);
2532 Rot
= DAG
.getNode(ISD::ROTR
, DL
, VT
, LHSShiftArg
, RHSShiftAmt
);
2534 // If there is an AND of either shifted operand, apply it to the result.
2535 if (LHSMask
.getNode() || RHSMask
.getNode()) {
2536 APInt Mask
= APInt::getAllOnesValue(OpSizeInBits
);
2538 if (LHSMask
.getNode()) {
2539 APInt RHSBits
= APInt::getLowBitsSet(OpSizeInBits
, LShVal
);
2540 Mask
&= cast
<ConstantSDNode
>(LHSMask
)->getAPIntValue() | RHSBits
;
2542 if (RHSMask
.getNode()) {
2543 APInt LHSBits
= APInt::getHighBitsSet(OpSizeInBits
, RShVal
);
2544 Mask
&= cast
<ConstantSDNode
>(RHSMask
)->getAPIntValue() | LHSBits
;
2547 Rot
= DAG
.getNode(ISD::AND
, DL
, VT
, Rot
, DAG
.getConstant(Mask
, VT
));
2550 return Rot
.getNode();
2553 // If there is a mask here, and we have a variable shift, we can't be sure
2554 // that we're masking out the right stuff.
2555 if (LHSMask
.getNode() || RHSMask
.getNode())
2558 // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
2559 // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
2560 if (RHSShiftAmt
.getOpcode() == ISD::SUB
&&
2561 LHSShiftAmt
== RHSShiftAmt
.getOperand(1)) {
2562 if (ConstantSDNode
*SUBC
=
2563 dyn_cast
<ConstantSDNode
>(RHSShiftAmt
.getOperand(0))) {
2564 if (SUBC
->getAPIntValue() == OpSizeInBits
) {
2566 return DAG
.getNode(ISD::ROTL
, DL
, VT
,
2567 LHSShiftArg
, LHSShiftAmt
).getNode();
2569 return DAG
.getNode(ISD::ROTR
, DL
, VT
,
2570 LHSShiftArg
, RHSShiftAmt
).getNode();
2575 // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
2576 // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
2577 if (LHSShiftAmt
.getOpcode() == ISD::SUB
&&
2578 RHSShiftAmt
== LHSShiftAmt
.getOperand(1)) {
2579 if (ConstantSDNode
*SUBC
=
2580 dyn_cast
<ConstantSDNode
>(LHSShiftAmt
.getOperand(0))) {
2581 if (SUBC
->getAPIntValue() == OpSizeInBits
) {
2583 return DAG
.getNode(ISD::ROTR
, DL
, VT
,
2584 LHSShiftArg
, RHSShiftAmt
).getNode();
2586 return DAG
.getNode(ISD::ROTL
, DL
, VT
,
2587 LHSShiftArg
, LHSShiftAmt
).getNode();
2592 // Look for sign/zext/any-extended or truncate cases:
2593 if ((LHSShiftAmt
.getOpcode() == ISD::SIGN_EXTEND
2594 || LHSShiftAmt
.getOpcode() == ISD::ZERO_EXTEND
2595 || LHSShiftAmt
.getOpcode() == ISD::ANY_EXTEND
2596 || LHSShiftAmt
.getOpcode() == ISD::TRUNCATE
) &&
2597 (RHSShiftAmt
.getOpcode() == ISD::SIGN_EXTEND
2598 || RHSShiftAmt
.getOpcode() == ISD::ZERO_EXTEND
2599 || RHSShiftAmt
.getOpcode() == ISD::ANY_EXTEND
2600 || RHSShiftAmt
.getOpcode() == ISD::TRUNCATE
)) {
2601 SDValue LExtOp0
= LHSShiftAmt
.getOperand(0);
2602 SDValue RExtOp0
= RHSShiftAmt
.getOperand(0);
2603 if (RExtOp0
.getOpcode() == ISD::SUB
&&
2604 RExtOp0
.getOperand(1) == LExtOp0
) {
2605 // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2607 // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2608 // (rotr x, (sub 32, y))
2609 if (ConstantSDNode
*SUBC
=
2610 dyn_cast
<ConstantSDNode
>(RExtOp0
.getOperand(0))) {
2611 if (SUBC
->getAPIntValue() == OpSizeInBits
) {
2612 return DAG
.getNode(HasROTL
? ISD::ROTL
: ISD::ROTR
, DL
, VT
,
2614 HasROTL
? LHSShiftAmt
: RHSShiftAmt
).getNode();
2617 } else if (LExtOp0
.getOpcode() == ISD::SUB
&&
2618 RExtOp0
== LExtOp0
.getOperand(1)) {
2619 // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
2621 // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
2622 // (rotl x, (sub 32, y))
2623 if (ConstantSDNode
*SUBC
=
2624 dyn_cast
<ConstantSDNode
>(LExtOp0
.getOperand(0))) {
2625 if (SUBC
->getAPIntValue() == OpSizeInBits
) {
2626 return DAG
.getNode(HasROTR
? ISD::ROTR
: ISD::ROTL
, DL
, VT
,
2628 HasROTR
? RHSShiftAmt
: LHSShiftAmt
).getNode();
2637 SDValue
DAGCombiner::visitXOR(SDNode
*N
) {
2638 SDValue N0
= N
->getOperand(0);
2639 SDValue N1
= N
->getOperand(1);
2640 SDValue LHS
, RHS
, CC
;
2641 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2642 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2643 EVT VT
= N0
.getValueType();
2646 if (VT
.isVector()) {
2647 SDValue FoldedVOp
= SimplifyVBinOp(N
);
2648 if (FoldedVOp
.getNode()) return FoldedVOp
;
2651 // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
2652 if (N0
.getOpcode() == ISD::UNDEF
&& N1
.getOpcode() == ISD::UNDEF
)
2653 return DAG
.getConstant(0, VT
);
2654 // fold (xor x, undef) -> undef
2655 if (N0
.getOpcode() == ISD::UNDEF
)
2657 if (N1
.getOpcode() == ISD::UNDEF
)
2659 // fold (xor c1, c2) -> c1^c2
2661 return DAG
.FoldConstantArithmetic(ISD::XOR
, VT
, N0C
, N1C
);
2662 // canonicalize constant to RHS
2664 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT
, N1
, N0
);
2665 // fold (xor x, 0) -> x
2666 if (N1C
&& N1C
->isNullValue())
2669 SDValue RXOR
= ReassociateOps(ISD::XOR
, N
->getDebugLoc(), N0
, N1
);
2670 if (RXOR
.getNode() != 0)
2673 // fold !(x cc y) -> (x !cc y)
2674 if (N1C
&& N1C
->getAPIntValue() == 1 && isSetCCEquivalent(N0
, LHS
, RHS
, CC
)) {
2675 bool isInt
= LHS
.getValueType().isInteger();
2676 ISD::CondCode NotCC
= ISD::getSetCCInverse(cast
<CondCodeSDNode
>(CC
)->get(),
2679 if (!LegalOperations
|| TLI
.isCondCodeLegal(NotCC
, LHS
.getValueType())) {
2680 switch (N0
.getOpcode()) {
2682 llvm_unreachable("Unhandled SetCC Equivalent!");
2684 return DAG
.getSetCC(N
->getDebugLoc(), VT
, LHS
, RHS
, NotCC
);
2685 case ISD::SELECT_CC
:
2686 return DAG
.getSelectCC(N
->getDebugLoc(), LHS
, RHS
, N0
.getOperand(2),
2687 N0
.getOperand(3), NotCC
);
2692 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
2693 if (N1C
&& N1C
->getAPIntValue() == 1 && N0
.getOpcode() == ISD::ZERO_EXTEND
&&
2694 N0
.getNode()->hasOneUse() &&
2695 isSetCCEquivalent(N0
.getOperand(0), LHS
, RHS
, CC
)){
2696 SDValue V
= N0
.getOperand(0);
2697 V
= DAG
.getNode(ISD::XOR
, N0
.getDebugLoc(), V
.getValueType(), V
,
2698 DAG
.getConstant(1, V
.getValueType()));
2699 AddToWorkList(V
.getNode());
2700 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
, V
);
2703 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
2704 if (N1C
&& N1C
->getAPIntValue() == 1 && VT
== MVT::i1
&&
2705 (N0
.getOpcode() == ISD::OR
|| N0
.getOpcode() == ISD::AND
)) {
2706 SDValue LHS
= N0
.getOperand(0), RHS
= N0
.getOperand(1);
2707 if (isOneUseSetCC(RHS
) || isOneUseSetCC(LHS
)) {
2708 unsigned NewOpcode
= N0
.getOpcode() == ISD::AND
? ISD::OR
: ISD::AND
;
2709 LHS
= DAG
.getNode(ISD::XOR
, LHS
.getDebugLoc(), VT
, LHS
, N1
); // LHS = ~LHS
2710 RHS
= DAG
.getNode(ISD::XOR
, RHS
.getDebugLoc(), VT
, RHS
, N1
); // RHS = ~RHS
2711 AddToWorkList(LHS
.getNode()); AddToWorkList(RHS
.getNode());
2712 return DAG
.getNode(NewOpcode
, N
->getDebugLoc(), VT
, LHS
, RHS
);
2715 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
2716 if (N1C
&& N1C
->isAllOnesValue() &&
2717 (N0
.getOpcode() == ISD::OR
|| N0
.getOpcode() == ISD::AND
)) {
2718 SDValue LHS
= N0
.getOperand(0), RHS
= N0
.getOperand(1);
2719 if (isa
<ConstantSDNode
>(RHS
) || isa
<ConstantSDNode
>(LHS
)) {
2720 unsigned NewOpcode
= N0
.getOpcode() == ISD::AND
? ISD::OR
: ISD::AND
;
2721 LHS
= DAG
.getNode(ISD::XOR
, LHS
.getDebugLoc(), VT
, LHS
, N1
); // LHS = ~LHS
2722 RHS
= DAG
.getNode(ISD::XOR
, RHS
.getDebugLoc(), VT
, RHS
, N1
); // RHS = ~RHS
2723 AddToWorkList(LHS
.getNode()); AddToWorkList(RHS
.getNode());
2724 return DAG
.getNode(NewOpcode
, N
->getDebugLoc(), VT
, LHS
, RHS
);
2727 // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
2728 if (N1C
&& N0
.getOpcode() == ISD::XOR
) {
2729 ConstantSDNode
*N00C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(0));
2730 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
2732 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT
, N0
.getOperand(1),
2733 DAG
.getConstant(N1C
->getAPIntValue() ^
2734 N00C
->getAPIntValue(), VT
));
2736 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
2737 DAG
.getConstant(N1C
->getAPIntValue() ^
2738 N01C
->getAPIntValue(), VT
));
2740 // fold (xor x, x) -> 0
2742 if (!VT
.isVector()) {
2743 return DAG
.getConstant(0, VT
);
2744 } else if (!LegalOperations
|| TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VT
)){
2745 // Produce a vector of zeros.
2746 SDValue El
= DAG
.getConstant(0, VT
.getVectorElementType());
2747 std::vector
<SDValue
> Ops(VT
.getVectorNumElements(), El
);
2748 return DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(), VT
,
2749 &Ops
[0], Ops
.size());
2753 // Simplify: xor (op x...), (op y...) -> (op (xor x, y))
2754 if (N0
.getOpcode() == N1
.getOpcode()) {
2755 SDValue Tmp
= SimplifyBinOpWithSameOpcodeHands(N
);
2756 if (Tmp
.getNode()) return Tmp
;
2759 // Simplify the expression using non-local knowledge.
2760 if (!VT
.isVector() &&
2761 SimplifyDemandedBits(SDValue(N
, 0)))
2762 return SDValue(N
, 0);
2767 /// visitShiftByConstant - Handle transforms common to the three shifts, when
2768 /// the shift amount is a constant.
2769 SDValue
DAGCombiner::visitShiftByConstant(SDNode
*N
, unsigned Amt
) {
2770 SDNode
*LHS
= N
->getOperand(0).getNode();
2771 if (!LHS
->hasOneUse()) return SDValue();
2773 // We want to pull some binops through shifts, so that we have (and (shift))
2774 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of
2775 // thing happens with address calculations, so it's important to canonicalize
2777 bool HighBitSet
= false; // Can we transform this if the high bit is set?
2779 switch (LHS
->getOpcode()) {
2780 default: return SDValue();
2783 HighBitSet
= false; // We can only transform sra if the high bit is clear.
2786 HighBitSet
= true; // We can only transform sra if the high bit is set.
2789 if (N
->getOpcode() != ISD::SHL
)
2790 return SDValue(); // only shl(add) not sr[al](add).
2791 HighBitSet
= false; // We can only transform sra if the high bit is clear.
2795 // We require the RHS of the binop to be a constant as well.
2796 ConstantSDNode
*BinOpCst
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(1));
2797 if (!BinOpCst
) return SDValue();
2799 // FIXME: disable this unless the input to the binop is a shift by a constant.
2800 // If it is not a shift, it pessimizes some common cases like:
2802 // void foo(int *X, int i) { X[i & 1235] = 1; }
2803 // int bar(int *X, int i) { return X[i & 255]; }
2804 SDNode
*BinOpLHSVal
= LHS
->getOperand(0).getNode();
2805 if ((BinOpLHSVal
->getOpcode() != ISD::SHL
&&
2806 BinOpLHSVal
->getOpcode() != ISD::SRA
&&
2807 BinOpLHSVal
->getOpcode() != ISD::SRL
) ||
2808 !isa
<ConstantSDNode
>(BinOpLHSVal
->getOperand(1)))
2811 EVT VT
= N
->getValueType(0);
2813 // If this is a signed shift right, and the high bit is modified by the
2814 // logical operation, do not perform the transformation. The highBitSet
2815 // boolean indicates the value of the high bit of the constant which would
2816 // cause it to be modified for this operation.
2817 if (N
->getOpcode() == ISD::SRA
) {
2818 bool BinOpRHSSignSet
= BinOpCst
->getAPIntValue().isNegative();
2819 if (BinOpRHSSignSet
!= HighBitSet
)
2823 // Fold the constants, shifting the binop RHS by the shift amount.
2824 SDValue NewRHS
= DAG
.getNode(N
->getOpcode(), LHS
->getOperand(1).getDebugLoc(),
2826 LHS
->getOperand(1), N
->getOperand(1));
2828 // Create the new shift.
2829 SDValue NewShift
= DAG
.getNode(N
->getOpcode(), LHS
->getOperand(0).getDebugLoc(),
2830 VT
, LHS
->getOperand(0), N
->getOperand(1));
2832 // Create the new binop.
2833 return DAG
.getNode(LHS
->getOpcode(), N
->getDebugLoc(), VT
, NewShift
, NewRHS
);
2836 SDValue
DAGCombiner::visitSHL(SDNode
*N
) {
2837 SDValue N0
= N
->getOperand(0);
2838 SDValue N1
= N
->getOperand(1);
2839 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2840 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2841 EVT VT
= N0
.getValueType();
2842 unsigned OpSizeInBits
= VT
.getScalarType().getSizeInBits();
2844 // fold (shl c1, c2) -> c1<<c2
2846 return DAG
.FoldConstantArithmetic(ISD::SHL
, VT
, N0C
, N1C
);
2847 // fold (shl 0, x) -> 0
2848 if (N0C
&& N0C
->isNullValue())
2850 // fold (shl x, c >= size(x)) -> undef
2851 if (N1C
&& N1C
->getZExtValue() >= OpSizeInBits
)
2852 return DAG
.getUNDEF(VT
);
2853 // fold (shl x, 0) -> x
2854 if (N1C
&& N1C
->isNullValue())
2856 // if (shl x, c) is known to be zero, return 0
2857 if (DAG
.MaskedValueIsZero(SDValue(N
, 0),
2858 APInt::getAllOnesValue(OpSizeInBits
)))
2859 return DAG
.getConstant(0, VT
);
2860 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
2861 if (N1
.getOpcode() == ISD::TRUNCATE
&&
2862 N1
.getOperand(0).getOpcode() == ISD::AND
&&
2863 N1
.hasOneUse() && N1
.getOperand(0).hasOneUse()) {
2864 SDValue N101
= N1
.getOperand(0).getOperand(1);
2865 if (ConstantSDNode
*N101C
= dyn_cast
<ConstantSDNode
>(N101
)) {
2866 EVT TruncVT
= N1
.getValueType();
2867 SDValue N100
= N1
.getOperand(0).getOperand(0);
2868 APInt TruncC
= N101C
->getAPIntValue();
2869 TruncC
.trunc(TruncVT
.getSizeInBits());
2870 return DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
, N0
,
2871 DAG
.getNode(ISD::AND
, N
->getDebugLoc(), TruncVT
,
2872 DAG
.getNode(ISD::TRUNCATE
,
2875 DAG
.getConstant(TruncC
, TruncVT
)));
2879 if (N1C
&& SimplifyDemandedBits(SDValue(N
, 0)))
2880 return SDValue(N
, 0);
2882 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
2883 if (N1C
&& N0
.getOpcode() == ISD::SHL
&&
2884 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
2885 uint64_t c1
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getZExtValue();
2886 uint64_t c2
= N1C
->getZExtValue();
2887 if (c1
+ c2
> OpSizeInBits
)
2888 return DAG
.getConstant(0, VT
);
2889 return DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
2890 DAG
.getConstant(c1
+ c2
, N1
.getValueType()));
2892 // fold (shl (srl x, c1), c2) -> (shl (and x, (shl -1, c1)), (sub c2, c1)) or
2893 // (srl (and x, (shl -1, c1)), (sub c1, c2))
2894 if (N1C
&& N0
.getOpcode() == ISD::SRL
&&
2895 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
2896 uint64_t c1
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getZExtValue();
2897 if (c1
< VT
.getSizeInBits()) {
2898 uint64_t c2
= N1C
->getZExtValue();
2899 SDValue HiBitsMask
=
2900 DAG
.getConstant(APInt::getHighBitsSet(VT
.getSizeInBits(),
2901 VT
.getSizeInBits() - c1
),
2903 SDValue Mask
= DAG
.getNode(ISD::AND
, N0
.getDebugLoc(), VT
,
2907 return DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
, Mask
,
2908 DAG
.getConstant(c2
-c1
, N1
.getValueType()));
2910 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, Mask
,
2911 DAG
.getConstant(c1
-c2
, N1
.getValueType()));
2914 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
2915 if (N1C
&& N0
.getOpcode() == ISD::SRA
&& N1
== N0
.getOperand(1)) {
2916 SDValue HiBitsMask
=
2917 DAG
.getConstant(APInt::getHighBitsSet(VT
.getSizeInBits(),
2918 VT
.getSizeInBits() -
2919 N1C
->getZExtValue()),
2921 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
2926 SDValue NewSHL
= visitShiftByConstant(N
, N1C
->getZExtValue());
2927 if (NewSHL
.getNode())
2934 SDValue
DAGCombiner::visitSRA(SDNode
*N
) {
2935 SDValue N0
= N
->getOperand(0);
2936 SDValue N1
= N
->getOperand(1);
2937 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2938 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2939 EVT VT
= N0
.getValueType();
2940 unsigned OpSizeInBits
= VT
.getScalarType().getSizeInBits();
2942 // fold (sra c1, c2) -> (sra c1, c2)
2944 return DAG
.FoldConstantArithmetic(ISD::SRA
, VT
, N0C
, N1C
);
2945 // fold (sra 0, x) -> 0
2946 if (N0C
&& N0C
->isNullValue())
2948 // fold (sra -1, x) -> -1
2949 if (N0C
&& N0C
->isAllOnesValue())
2951 // fold (sra x, (setge c, size(x))) -> undef
2952 if (N1C
&& N1C
->getZExtValue() >= OpSizeInBits
)
2953 return DAG
.getUNDEF(VT
);
2954 // fold (sra x, 0) -> x
2955 if (N1C
&& N1C
->isNullValue())
2957 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
2959 if (N1C
&& N0
.getOpcode() == ISD::SHL
&& N1
== N0
.getOperand(1)) {
2960 unsigned LowBits
= OpSizeInBits
- (unsigned)N1C
->getZExtValue();
2961 EVT ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), LowBits
);
2963 ExtVT
= EVT::getVectorVT(*DAG
.getContext(),
2964 ExtVT
, VT
.getVectorNumElements());
2965 if ((!LegalOperations
||
2966 TLI
.isOperationLegal(ISD::SIGN_EXTEND_INREG
, ExtVT
)))
2967 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, N
->getDebugLoc(), VT
,
2968 N0
.getOperand(0), DAG
.getValueType(ExtVT
));
2971 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
2972 if (N1C
&& N0
.getOpcode() == ISD::SRA
) {
2973 if (ConstantSDNode
*C1
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
2974 unsigned Sum
= N1C
->getZExtValue() + C1
->getZExtValue();
2975 if (Sum
>= OpSizeInBits
) Sum
= OpSizeInBits
-1;
2976 return DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
2977 DAG
.getConstant(Sum
, N1C
->getValueType(0)));
2981 // fold (sra (shl X, m), (sub result_size, n))
2982 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
2983 // result_size - n != m.
2984 // If truncate is free for the target sext(shl) is likely to result in better
2986 if (N0
.getOpcode() == ISD::SHL
) {
2987 // Get the two constanst of the shifts, CN0 = m, CN = n.
2988 const ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
2990 // Determine what the truncate's result bitsize and type would be.
2992 EVT::getIntegerVT(*DAG
.getContext(), OpSizeInBits
- N1C
->getZExtValue());
2993 // Determine the residual right-shift amount.
2994 signed ShiftAmt
= N1C
->getZExtValue() - N01C
->getZExtValue();
2996 // If the shift is not a no-op (in which case this should be just a sign
2997 // extend already), the truncated to type is legal, sign_extend is legal
2998 // on that type, and the truncate to that type is both legal and free,
2999 // perform the transform.
3000 if ((ShiftAmt
> 0) &&
3001 TLI
.isOperationLegalOrCustom(ISD::SIGN_EXTEND
, TruncVT
) &&
3002 TLI
.isOperationLegalOrCustom(ISD::TRUNCATE
, VT
) &&
3003 TLI
.isTruncateFree(VT
, TruncVT
)) {
3005 SDValue Amt
= DAG
.getConstant(ShiftAmt
, getShiftAmountTy());
3006 SDValue Shift
= DAG
.getNode(ISD::SRL
, N0
.getDebugLoc(), VT
,
3007 N0
.getOperand(0), Amt
);
3008 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(), TruncVT
,
3010 return DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(),
3011 N
->getValueType(0), Trunc
);
3016 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
3017 if (N1
.getOpcode() == ISD::TRUNCATE
&&
3018 N1
.getOperand(0).getOpcode() == ISD::AND
&&
3019 N1
.hasOneUse() && N1
.getOperand(0).hasOneUse()) {
3020 SDValue N101
= N1
.getOperand(0).getOperand(1);
3021 if (ConstantSDNode
*N101C
= dyn_cast
<ConstantSDNode
>(N101
)) {
3022 EVT TruncVT
= N1
.getValueType();
3023 SDValue N100
= N1
.getOperand(0).getOperand(0);
3024 APInt TruncC
= N101C
->getAPIntValue();
3025 TruncC
.trunc(TruncVT
.getScalarType().getSizeInBits());
3026 return DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), VT
, N0
,
3027 DAG
.getNode(ISD::AND
, N
->getDebugLoc(),
3029 DAG
.getNode(ISD::TRUNCATE
,
3032 DAG
.getConstant(TruncC
, TruncVT
)));
3036 // Simplify, based on bits shifted out of the LHS.
3037 if (N1C
&& SimplifyDemandedBits(SDValue(N
, 0)))
3038 return SDValue(N
, 0);
3041 // If the sign bit is known to be zero, switch this to a SRL.
3042 if (DAG
.SignBitIsZero(N0
))
3043 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
, N1
);
3046 SDValue NewSRA
= visitShiftByConstant(N
, N1C
->getZExtValue());
3047 if (NewSRA
.getNode())
3054 SDValue
DAGCombiner::visitSRL(SDNode
*N
) {
3055 SDValue N0
= N
->getOperand(0);
3056 SDValue N1
= N
->getOperand(1);
3057 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
3058 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
3059 EVT VT
= N0
.getValueType();
3060 unsigned OpSizeInBits
= VT
.getScalarType().getSizeInBits();
3062 // fold (srl c1, c2) -> c1 >>u c2
3064 return DAG
.FoldConstantArithmetic(ISD::SRL
, VT
, N0C
, N1C
);
3065 // fold (srl 0, x) -> 0
3066 if (N0C
&& N0C
->isNullValue())
3068 // fold (srl x, c >= size(x)) -> undef
3069 if (N1C
&& N1C
->getZExtValue() >= OpSizeInBits
)
3070 return DAG
.getUNDEF(VT
);
3071 // fold (srl x, 0) -> x
3072 if (N1C
&& N1C
->isNullValue())
3074 // if (srl x, c) is known to be zero, return 0
3075 if (N1C
&& DAG
.MaskedValueIsZero(SDValue(N
, 0),
3076 APInt::getAllOnesValue(OpSizeInBits
)))
3077 return DAG
.getConstant(0, VT
);
3079 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
3080 if (N1C
&& N0
.getOpcode() == ISD::SRL
&&
3081 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
3082 uint64_t c1
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getZExtValue();
3083 uint64_t c2
= N1C
->getZExtValue();
3084 if (c1
+ c2
> OpSizeInBits
)
3085 return DAG
.getConstant(0, VT
);
3086 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
3087 DAG
.getConstant(c1
+ c2
, N1
.getValueType()));
3090 // fold (srl (shl x, c), c) -> (and x, cst2)
3091 if (N1C
&& N0
.getOpcode() == ISD::SHL
&& N0
.getOperand(1) == N1
&&
3092 N0
.getValueSizeInBits() <= 64) {
3093 uint64_t ShAmt
= N1C
->getZExtValue()+64-N0
.getValueSizeInBits();
3094 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
3095 DAG
.getConstant(~0ULL >> ShAmt
, VT
));
3099 // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
3100 if (N1C
&& N0
.getOpcode() == ISD::ANY_EXTEND
) {
3101 // Shifting in all undef bits?
3102 EVT SmallVT
= N0
.getOperand(0).getValueType();
3103 if (N1C
->getZExtValue() >= SmallVT
.getSizeInBits())
3104 return DAG
.getUNDEF(VT
);
3106 if (!LegalTypes
|| TLI
.isTypeDesirableForOp(ISD::SRL
, SmallVT
)) {
3107 SDValue SmallShift
= DAG
.getNode(ISD::SRL
, N0
.getDebugLoc(), SmallVT
,
3108 N0
.getOperand(0), N1
);
3109 AddToWorkList(SmallShift
.getNode());
3110 return DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, SmallShift
);
3114 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
3115 // bit, which is unmodified by sra.
3116 if (N1C
&& N1C
->getZExtValue() + 1 == VT
.getSizeInBits()) {
3117 if (N0
.getOpcode() == ISD::SRA
)
3118 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
.getOperand(0), N1
);
3121 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
3122 if (N1C
&& N0
.getOpcode() == ISD::CTLZ
&&
3123 N1C
->getAPIntValue() == Log2_32(VT
.getSizeInBits())) {
3124 APInt KnownZero
, KnownOne
;
3125 APInt Mask
= APInt::getAllOnesValue(VT
.getScalarType().getSizeInBits());
3126 DAG
.ComputeMaskedBits(N0
.getOperand(0), Mask
, KnownZero
, KnownOne
);
3128 // If any of the input bits are KnownOne, then the input couldn't be all
3129 // zeros, thus the result of the srl will always be zero.
3130 if (KnownOne
.getBoolValue()) return DAG
.getConstant(0, VT
);
3132 // If all of the bits input the to ctlz node are known to be zero, then
3133 // the result of the ctlz is "32" and the result of the shift is one.
3134 APInt UnknownBits
= ~KnownZero
& Mask
;
3135 if (UnknownBits
== 0) return DAG
.getConstant(1, VT
);
3137 // Otherwise, check to see if there is exactly one bit input to the ctlz.
3138 if ((UnknownBits
& (UnknownBits
- 1)) == 0) {
3139 // Okay, we know that only that the single bit specified by UnknownBits
3140 // could be set on input to the CTLZ node. If this bit is set, the SRL
3141 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
3142 // to an SRL/XOR pair, which is likely to simplify more.
3143 unsigned ShAmt
= UnknownBits
.countTrailingZeros();
3144 SDValue Op
= N0
.getOperand(0);
3147 Op
= DAG
.getNode(ISD::SRL
, N0
.getDebugLoc(), VT
, Op
,
3148 DAG
.getConstant(ShAmt
, getShiftAmountTy()));
3149 AddToWorkList(Op
.getNode());
3152 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT
,
3153 Op
, DAG
.getConstant(1, VT
));
3157 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
3158 if (N1
.getOpcode() == ISD::TRUNCATE
&&
3159 N1
.getOperand(0).getOpcode() == ISD::AND
&&
3160 N1
.hasOneUse() && N1
.getOperand(0).hasOneUse()) {
3161 SDValue N101
= N1
.getOperand(0).getOperand(1);
3162 if (ConstantSDNode
*N101C
= dyn_cast
<ConstantSDNode
>(N101
)) {
3163 EVT TruncVT
= N1
.getValueType();
3164 SDValue N100
= N1
.getOperand(0).getOperand(0);
3165 APInt TruncC
= N101C
->getAPIntValue();
3166 TruncC
.trunc(TruncVT
.getSizeInBits());
3167 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
,
3168 DAG
.getNode(ISD::AND
, N
->getDebugLoc(),
3170 DAG
.getNode(ISD::TRUNCATE
,
3173 DAG
.getConstant(TruncC
, TruncVT
)));
3177 // fold operands of srl based on knowledge that the low bits are not
3179 if (N1C
&& SimplifyDemandedBits(SDValue(N
, 0)))
3180 return SDValue(N
, 0);
3183 SDValue NewSRL
= visitShiftByConstant(N
, N1C
->getZExtValue());
3184 if (NewSRL
.getNode())
3188 // Attempt to convert a srl of a load into a narrower zero-extending load.
3189 SDValue NarrowLoad
= ReduceLoadWidth(N
);
3190 if (NarrowLoad
.getNode())
3193 // Here is a common situation. We want to optimize:
3196 // %b = and i32 %a, 2
3197 // %c = srl i32 %b, 1
3198 // brcond i32 %c ...
3204 // %c = setcc eq %b, 0
3207 // However when after the source operand of SRL is optimized into AND, the SRL
3208 // itself may not be optimized further. Look for it and add the BRCOND into
3210 if (N
->hasOneUse()) {
3211 SDNode
*Use
= *N
->use_begin();
3212 if (Use
->getOpcode() == ISD::BRCOND
)
3214 else if (Use
->getOpcode() == ISD::TRUNCATE
&& Use
->hasOneUse()) {
3215 // Also look pass the truncate.
3216 Use
= *Use
->use_begin();
3217 if (Use
->getOpcode() == ISD::BRCOND
)
3225 SDValue
DAGCombiner::visitCTLZ(SDNode
*N
) {
3226 SDValue N0
= N
->getOperand(0);
3227 EVT VT
= N
->getValueType(0);
3229 // fold (ctlz c1) -> c2
3230 if (isa
<ConstantSDNode
>(N0
))
3231 return DAG
.getNode(ISD::CTLZ
, N
->getDebugLoc(), VT
, N0
);
3235 SDValue
DAGCombiner::visitCTTZ(SDNode
*N
) {
3236 SDValue N0
= N
->getOperand(0);
3237 EVT VT
= N
->getValueType(0);
3239 // fold (cttz c1) -> c2
3240 if (isa
<ConstantSDNode
>(N0
))
3241 return DAG
.getNode(ISD::CTTZ
, N
->getDebugLoc(), VT
, N0
);
3245 SDValue
DAGCombiner::visitCTPOP(SDNode
*N
) {
3246 SDValue N0
= N
->getOperand(0);
3247 EVT VT
= N
->getValueType(0);
3249 // fold (ctpop c1) -> c2
3250 if (isa
<ConstantSDNode
>(N0
))
3251 return DAG
.getNode(ISD::CTPOP
, N
->getDebugLoc(), VT
, N0
);
3255 SDValue
DAGCombiner::visitSELECT(SDNode
*N
) {
3256 SDValue N0
= N
->getOperand(0);
3257 SDValue N1
= N
->getOperand(1);
3258 SDValue N2
= N
->getOperand(2);
3259 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
3260 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
3261 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
);
3262 EVT VT
= N
->getValueType(0);
3263 EVT VT0
= N0
.getValueType();
3265 // fold (select C, X, X) -> X
3268 // fold (select true, X, Y) -> X
3269 if (N0C
&& !N0C
->isNullValue())
3271 // fold (select false, X, Y) -> Y
3272 if (N0C
&& N0C
->isNullValue())
3274 // fold (select C, 1, X) -> (or C, X)
3275 if (VT
== MVT::i1
&& N1C
&& N1C
->getAPIntValue() == 1)
3276 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, N0
, N2
);
3277 // fold (select C, 0, 1) -> (xor C, 1)
3278 if (VT
.isInteger() &&
3281 TLI
.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent
)) &&
3282 N1C
&& N2C
&& N1C
->isNullValue() && N2C
->getAPIntValue() == 1) {
3285 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT0
,
3286 N0
, DAG
.getConstant(1, VT0
));
3287 XORNode
= DAG
.getNode(ISD::XOR
, N0
.getDebugLoc(), VT0
,
3288 N0
, DAG
.getConstant(1, VT0
));
3289 AddToWorkList(XORNode
.getNode());
3291 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
, XORNode
);
3292 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, XORNode
);
3294 // fold (select C, 0, X) -> (and (not C), X)
3295 if (VT
== VT0
&& VT
== MVT::i1
&& N1C
&& N1C
->isNullValue()) {
3296 SDValue NOTNode
= DAG
.getNOT(N0
.getDebugLoc(), N0
, VT
);
3297 AddToWorkList(NOTNode
.getNode());
3298 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, NOTNode
, N2
);
3300 // fold (select C, X, 1) -> (or (not C), X)
3301 if (VT
== VT0
&& VT
== MVT::i1
&& N2C
&& N2C
->getAPIntValue() == 1) {
3302 SDValue NOTNode
= DAG
.getNOT(N0
.getDebugLoc(), N0
, VT
);
3303 AddToWorkList(NOTNode
.getNode());
3304 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, NOTNode
, N1
);
3306 // fold (select C, X, 0) -> (and C, X)
3307 if (VT
== MVT::i1
&& N2C
&& N2C
->isNullValue())
3308 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N0
, N1
);
3309 // fold (select X, X, Y) -> (or X, Y)
3310 // fold (select X, 1, Y) -> (or X, Y)
3311 if (VT
== MVT::i1
&& (N0
== N1
|| (N1C
&& N1C
->getAPIntValue() == 1)))
3312 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, N0
, N2
);
3313 // fold (select X, Y, X) -> (and X, Y)
3314 // fold (select X, Y, 0) -> (and X, Y)
3315 if (VT
== MVT::i1
&& (N0
== N2
|| (N2C
&& N2C
->getAPIntValue() == 0)))
3316 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N0
, N1
);
3318 // If we can fold this based on the true/false value, do so.
3319 if (SimplifySelectOps(N
, N1
, N2
))
3320 return SDValue(N
, 0); // Don't revisit N.
3322 // fold selects based on a setcc into other things, such as min/max/abs
3323 if (N0
.getOpcode() == ISD::SETCC
) {
3325 // Check against MVT::Other for SELECT_CC, which is a workaround for targets
3326 // having to say they don't support SELECT_CC on every type the DAG knows
3327 // about, since there is no way to mark an opcode illegal at all value types
3328 if (TLI
.isOperationLegalOrCustom(ISD::SELECT_CC
, MVT::Other
) &&
3329 TLI
.isOperationLegalOrCustom(ISD::SELECT_CC
, VT
))
3330 return DAG
.getNode(ISD::SELECT_CC
, N
->getDebugLoc(), VT
,
3331 N0
.getOperand(0), N0
.getOperand(1),
3332 N1
, N2
, N0
.getOperand(2));
3333 return SimplifySelect(N
->getDebugLoc(), N0
, N1
, N2
);
3339 SDValue
DAGCombiner::visitSELECT_CC(SDNode
*N
) {
3340 SDValue N0
= N
->getOperand(0);
3341 SDValue N1
= N
->getOperand(1);
3342 SDValue N2
= N
->getOperand(2);
3343 SDValue N3
= N
->getOperand(3);
3344 SDValue N4
= N
->getOperand(4);
3345 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N4
)->get();
3347 // fold select_cc lhs, rhs, x, x, cc -> x
3351 // Determine if the condition we're dealing with is constant
3352 SDValue SCC
= SimplifySetCC(TLI
.getSetCCResultType(N0
.getValueType()),
3353 N0
, N1
, CC
, N
->getDebugLoc(), false);
3354 if (SCC
.getNode()) AddToWorkList(SCC
.getNode());
3356 if (ConstantSDNode
*SCCC
= dyn_cast_or_null
<ConstantSDNode
>(SCC
.getNode())) {
3357 if (!SCCC
->isNullValue())
3358 return N2
; // cond always true -> true val
3360 return N3
; // cond always false -> false val
3363 // Fold to a simpler select_cc
3364 if (SCC
.getNode() && SCC
.getOpcode() == ISD::SETCC
)
3365 return DAG
.getNode(ISD::SELECT_CC
, N
->getDebugLoc(), N2
.getValueType(),
3366 SCC
.getOperand(0), SCC
.getOperand(1), N2
, N3
,
3369 // If we can fold this based on the true/false value, do so.
3370 if (SimplifySelectOps(N
, N2
, N3
))
3371 return SDValue(N
, 0); // Don't revisit N.
3373 // fold select_cc into other things, such as min/max/abs
3374 return SimplifySelectCC(N
->getDebugLoc(), N0
, N1
, N2
, N3
, CC
);
3377 SDValue
DAGCombiner::visitSETCC(SDNode
*N
) {
3378 return SimplifySetCC(N
->getValueType(0), N
->getOperand(0), N
->getOperand(1),
3379 cast
<CondCodeSDNode
>(N
->getOperand(2))->get(),
3383 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
3384 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
3385 // transformation. Returns true if extension are possible and the above
3386 // mentioned transformation is profitable.
3387 static bool ExtendUsesToFormExtLoad(SDNode
*N
, SDValue N0
,
3389 SmallVector
<SDNode
*, 4> &ExtendNodes
,
3390 const TargetLowering
&TLI
) {
3391 bool HasCopyToRegUses
= false;
3392 bool isTruncFree
= TLI
.isTruncateFree(N
->getValueType(0), N0
.getValueType());
3393 for (SDNode::use_iterator UI
= N0
.getNode()->use_begin(),
3394 UE
= N0
.getNode()->use_end();
3399 if (UI
.getUse().getResNo() != N0
.getResNo())
3401 // FIXME: Only extend SETCC N, N and SETCC N, c for now.
3402 if (ExtOpc
!= ISD::ANY_EXTEND
&& User
->getOpcode() == ISD::SETCC
) {
3403 ISD::CondCode CC
= cast
<CondCodeSDNode
>(User
->getOperand(2))->get();
3404 if (ExtOpc
== ISD::ZERO_EXTEND
&& ISD::isSignedIntSetCC(CC
))
3405 // Sign bits will be lost after a zext.
3408 for (unsigned i
= 0; i
!= 2; ++i
) {
3409 SDValue UseOp
= User
->getOperand(i
);
3412 if (!isa
<ConstantSDNode
>(UseOp
))
3417 ExtendNodes
.push_back(User
);
3420 // If truncates aren't free and there are users we can't
3421 // extend, it isn't worthwhile.
3424 // Remember if this value is live-out.
3425 if (User
->getOpcode() == ISD::CopyToReg
)
3426 HasCopyToRegUses
= true;
3429 if (HasCopyToRegUses
) {
3430 bool BothLiveOut
= false;
3431 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
3433 SDUse
&Use
= UI
.getUse();
3434 if (Use
.getResNo() == 0 && Use
.getUser()->getOpcode() == ISD::CopyToReg
) {
3440 // Both unextended and extended values are live out. There had better be
3441 // good a reason for the transformation.
3442 return ExtendNodes
.size();
3447 SDValue
DAGCombiner::visitSIGN_EXTEND(SDNode
*N
) {
3448 SDValue N0
= N
->getOperand(0);
3449 EVT VT
= N
->getValueType(0);
3451 // fold (sext c1) -> c1
3452 if (isa
<ConstantSDNode
>(N0
))
3453 return DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(), VT
, N0
);
3455 // fold (sext (sext x)) -> (sext x)
3456 // fold (sext (aext x)) -> (sext x)
3457 if (N0
.getOpcode() == ISD::SIGN_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
)
3458 return DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(), VT
,
3461 if (N0
.getOpcode() == ISD::TRUNCATE
) {
3462 // fold (sext (truncate (load x))) -> (sext (smaller load x))
3463 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
3464 SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode());
3465 if (NarrowLoad
.getNode()) {
3466 SDNode
* oye
= N0
.getNode()->getOperand(0).getNode();
3467 if (NarrowLoad
.getNode() != N0
.getNode()) {
3468 CombineTo(N0
.getNode(), NarrowLoad
);
3469 // CombineTo deleted the truncate, if needed, but not what's under it.
3472 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3475 // See if the value being truncated is already sign extended. If so, just
3476 // eliminate the trunc/sext pair.
3477 SDValue Op
= N0
.getOperand(0);
3478 unsigned OpBits
= Op
.getValueType().getScalarType().getSizeInBits();
3479 unsigned MidBits
= N0
.getValueType().getScalarType().getSizeInBits();
3480 unsigned DestBits
= VT
.getScalarType().getSizeInBits();
3481 unsigned NumSignBits
= DAG
.ComputeNumSignBits(Op
);
3483 if (OpBits
== DestBits
) {
3484 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
3485 // bits, it is already ready.
3486 if (NumSignBits
> DestBits
-MidBits
)
3488 } else if (OpBits
< DestBits
) {
3489 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
3490 // bits, just sext from i32.
3491 if (NumSignBits
> OpBits
-MidBits
)
3492 return DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(), VT
, Op
);
3494 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
3495 // bits, just truncate to i32.
3496 if (NumSignBits
> OpBits
-MidBits
)
3497 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, Op
);
3500 // fold (sext (truncate x)) -> (sextinreg x).
3501 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND_INREG
,
3502 N0
.getValueType())) {
3503 if (OpBits
< DestBits
)
3504 Op
= DAG
.getNode(ISD::ANY_EXTEND
, N0
.getDebugLoc(), VT
, Op
);
3505 else if (OpBits
> DestBits
)
3506 Op
= DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(), VT
, Op
);
3507 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, N
->getDebugLoc(), VT
, Op
,
3508 DAG
.getValueType(N0
.getValueType()));
3512 // fold (sext (load x)) -> (sext (truncate (sextload x)))
3513 if (ISD::isNON_EXTLoad(N0
.getNode()) &&
3514 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
3515 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, N0
.getValueType()))) {
3516 bool DoXform
= true;
3517 SmallVector
<SDNode
*, 4> SetCCs
;
3518 if (!N0
.hasOneUse())
3519 DoXform
= ExtendUsesToFormExtLoad(N
, N0
, ISD::SIGN_EXTEND
, SetCCs
, TLI
);
3521 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3522 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, VT
, N
->getDebugLoc(),
3524 LN0
->getBasePtr(), LN0
->getPointerInfo(),
3526 LN0
->isVolatile(), LN0
->isNonTemporal(),
3527 LN0
->getAlignment());
3528 CombineTo(N
, ExtLoad
);
3529 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(),
3530 N0
.getValueType(), ExtLoad
);
3531 CombineTo(N0
.getNode(), Trunc
, ExtLoad
.getValue(1));
3533 // Extend SetCC uses if necessary.
3534 for (unsigned i
= 0, e
= SetCCs
.size(); i
!= e
; ++i
) {
3535 SDNode
*SetCC
= SetCCs
[i
];
3536 SmallVector
<SDValue
, 4> Ops
;
3538 for (unsigned j
= 0; j
!= 2; ++j
) {
3539 SDValue SOp
= SetCC
->getOperand(j
);
3541 Ops
.push_back(ExtLoad
);
3543 Ops
.push_back(DAG
.getNode(ISD::SIGN_EXTEND
,
3544 N
->getDebugLoc(), VT
, SOp
));
3547 Ops
.push_back(SetCC
->getOperand(2));
3548 CombineTo(SetCC
, DAG
.getNode(ISD::SETCC
, N
->getDebugLoc(),
3549 SetCC
->getValueType(0),
3550 &Ops
[0], Ops
.size()));
3553 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3557 // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
3558 // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
3559 if ((ISD::isSEXTLoad(N0
.getNode()) || ISD::isEXTLoad(N0
.getNode())) &&
3560 ISD::isUNINDEXEDLoad(N0
.getNode()) && N0
.hasOneUse()) {
3561 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3562 EVT MemVT
= LN0
->getMemoryVT();
3563 if ((!LegalOperations
&& !LN0
->isVolatile()) ||
3564 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, MemVT
)) {
3565 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, VT
, N
->getDebugLoc(),
3567 LN0
->getBasePtr(), LN0
->getPointerInfo(),
3569 LN0
->isVolatile(), LN0
->isNonTemporal(),
3570 LN0
->getAlignment());
3571 CombineTo(N
, ExtLoad
);
3572 CombineTo(N0
.getNode(),
3573 DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(),
3574 N0
.getValueType(), ExtLoad
),
3575 ExtLoad
.getValue(1));
3576 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3580 if (N0
.getOpcode() == ISD::SETCC
) {
3581 // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
3582 // Only do this before legalize for now.
3583 if (VT
.isVector() && !LegalOperations
) {
3584 EVT N0VT
= N0
.getOperand(0).getValueType();
3585 // We know that the # elements of the results is the same as the
3586 // # elements of the compare (and the # elements of the compare result
3587 // for that matter). Check to see that they are the same size. If so,
3588 // we know that the element size of the sext'd result matches the
3589 // element size of the compare operands.
3590 if (VT
.getSizeInBits() == N0VT
.getSizeInBits())
3591 return DAG
.getVSetCC(N
->getDebugLoc(), VT
, N0
.getOperand(0),
3593 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
3594 // If the desired elements are smaller or larger than the source
3595 // elements we can use a matching integer vector type and then
3596 // truncate/sign extend
3598 EVT MatchingElementType
=
3599 EVT::getIntegerVT(*DAG
.getContext(),
3600 N0VT
.getScalarType().getSizeInBits());
3601 EVT MatchingVectorType
=
3602 EVT::getVectorVT(*DAG
.getContext(), MatchingElementType
,
3603 N0VT
.getVectorNumElements());
3605 DAG
.getVSetCC(N
->getDebugLoc(), MatchingVectorType
, N0
.getOperand(0),
3607 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
3608 return DAG
.getSExtOrTrunc(VsetCC
, N
->getDebugLoc(), VT
);
3612 // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
3613 unsigned ElementWidth
= VT
.getScalarType().getSizeInBits();
3615 DAG
.getConstant(APInt::getAllOnesValue(ElementWidth
), VT
);
3617 SimplifySelectCC(N
->getDebugLoc(), N0
.getOperand(0), N0
.getOperand(1),
3618 NegOne
, DAG
.getConstant(0, VT
),
3619 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true);
3620 if (SCC
.getNode()) return SCC
;
3621 if (!LegalOperations
||
3622 TLI
.isOperationLegal(ISD::SETCC
, TLI
.getSetCCResultType(VT
)))
3623 return DAG
.getNode(ISD::SELECT
, N
->getDebugLoc(), VT
,
3624 DAG
.getSetCC(N
->getDebugLoc(),
3625 TLI
.getSetCCResultType(VT
),
3626 N0
.getOperand(0), N0
.getOperand(1),
3627 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get()),
3628 NegOne
, DAG
.getConstant(0, VT
));
3631 // fold (sext x) -> (zext x) if the sign bit is known zero.
3632 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::ZERO_EXTEND
, VT
)) &&
3633 DAG
.SignBitIsZero(N0
))
3634 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
, N0
);
3639 SDValue
DAGCombiner::visitZERO_EXTEND(SDNode
*N
) {
3640 SDValue N0
= N
->getOperand(0);
3641 EVT VT
= N
->getValueType(0);
3643 // fold (zext c1) -> c1
3644 if (isa
<ConstantSDNode
>(N0
))
3645 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
, N0
);
3646 // fold (zext (zext x)) -> (zext x)
3647 // fold (zext (aext x)) -> (zext x)
3648 if (N0
.getOpcode() == ISD::ZERO_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
)
3649 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
,
3652 // fold (zext (truncate (load x))) -> (zext (smaller load x))
3653 // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
3654 if (N0
.getOpcode() == ISD::TRUNCATE
) {
3655 SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode());
3656 if (NarrowLoad
.getNode()) {
3657 SDNode
* oye
= N0
.getNode()->getOperand(0).getNode();
3658 if (NarrowLoad
.getNode() != N0
.getNode()) {
3659 CombineTo(N0
.getNode(), NarrowLoad
);
3660 // CombineTo deleted the truncate, if needed, but not what's under it.
3663 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
, NarrowLoad
);
3667 // fold (zext (truncate x)) -> (and x, mask)
3668 if (N0
.getOpcode() == ISD::TRUNCATE
&&
3669 (!LegalOperations
|| TLI
.isOperationLegal(ISD::AND
, VT
))) {
3671 // fold (zext (truncate (load x))) -> (zext (smaller load x))
3672 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
3673 SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode());
3674 if (NarrowLoad
.getNode()) {
3675 SDNode
* oye
= N0
.getNode()->getOperand(0).getNode();
3676 if (NarrowLoad
.getNode() != N0
.getNode()) {
3677 CombineTo(N0
.getNode(), NarrowLoad
);
3678 // CombineTo deleted the truncate, if needed, but not what's under it.
3681 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3684 SDValue Op
= N0
.getOperand(0);
3685 if (Op
.getValueType().bitsLT(VT
)) {
3686 Op
= DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, Op
);
3687 } else if (Op
.getValueType().bitsGT(VT
)) {
3688 Op
= DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, Op
);
3690 return DAG
.getZeroExtendInReg(Op
, N
->getDebugLoc(),
3691 N0
.getValueType().getScalarType());
3694 // Fold (zext (and (trunc x), cst)) -> (and x, cst),
3695 // if either of the casts is not free.
3696 if (N0
.getOpcode() == ISD::AND
&&
3697 N0
.getOperand(0).getOpcode() == ISD::TRUNCATE
&&
3698 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
3699 (!TLI
.isTruncateFree(N0
.getOperand(0).getOperand(0).getValueType(),
3700 N0
.getValueType()) ||
3701 !TLI
.isZExtFree(N0
.getValueType(), VT
))) {
3702 SDValue X
= N0
.getOperand(0).getOperand(0);
3703 if (X
.getValueType().bitsLT(VT
)) {
3704 X
= DAG
.getNode(ISD::ANY_EXTEND
, X
.getDebugLoc(), VT
, X
);
3705 } else if (X
.getValueType().bitsGT(VT
)) {
3706 X
= DAG
.getNode(ISD::TRUNCATE
, X
.getDebugLoc(), VT
, X
);
3708 APInt Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
3709 Mask
.zext(VT
.getSizeInBits());
3710 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
,
3711 X
, DAG
.getConstant(Mask
, VT
));
3714 // fold (zext (load x)) -> (zext (truncate (zextload x)))
3715 if (ISD::isNON_EXTLoad(N0
.getNode()) &&
3716 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
3717 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, N0
.getValueType()))) {
3718 bool DoXform
= true;
3719 SmallVector
<SDNode
*, 4> SetCCs
;
3720 if (!N0
.hasOneUse())
3721 DoXform
= ExtendUsesToFormExtLoad(N
, N0
, ISD::ZERO_EXTEND
, SetCCs
, TLI
);
3723 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3724 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, VT
, N
->getDebugLoc(),
3726 LN0
->getBasePtr(), LN0
->getPointerInfo(),
3728 LN0
->isVolatile(), LN0
->isNonTemporal(),
3729 LN0
->getAlignment());
3730 CombineTo(N
, ExtLoad
);
3731 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(),
3732 N0
.getValueType(), ExtLoad
);
3733 CombineTo(N0
.getNode(), Trunc
, ExtLoad
.getValue(1));
3735 // Extend SetCC uses if necessary.
3736 for (unsigned i
= 0, e
= SetCCs
.size(); i
!= e
; ++i
) {
3737 SDNode
*SetCC
= SetCCs
[i
];
3738 SmallVector
<SDValue
, 4> Ops
;
3740 for (unsigned j
= 0; j
!= 2; ++j
) {
3741 SDValue SOp
= SetCC
->getOperand(j
);
3743 Ops
.push_back(ExtLoad
);
3745 Ops
.push_back(DAG
.getNode(ISD::ZERO_EXTEND
,
3746 N
->getDebugLoc(), VT
, SOp
));
3749 Ops
.push_back(SetCC
->getOperand(2));
3750 CombineTo(SetCC
, DAG
.getNode(ISD::SETCC
, N
->getDebugLoc(),
3751 SetCC
->getValueType(0),
3752 &Ops
[0], Ops
.size()));
3755 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3759 // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
3760 // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
3761 if ((ISD::isZEXTLoad(N0
.getNode()) || ISD::isEXTLoad(N0
.getNode())) &&
3762 ISD::isUNINDEXEDLoad(N0
.getNode()) && N0
.hasOneUse()) {
3763 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3764 EVT MemVT
= LN0
->getMemoryVT();
3765 if ((!LegalOperations
&& !LN0
->isVolatile()) ||
3766 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, MemVT
)) {
3767 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, VT
, N
->getDebugLoc(),
3769 LN0
->getBasePtr(), LN0
->getPointerInfo(),
3771 LN0
->isVolatile(), LN0
->isNonTemporal(),
3772 LN0
->getAlignment());
3773 CombineTo(N
, ExtLoad
);
3774 CombineTo(N0
.getNode(),
3775 DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(), N0
.getValueType(),
3777 ExtLoad
.getValue(1));
3778 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3782 if (N0
.getOpcode() == ISD::SETCC
) {
3783 if (!LegalOperations
&& VT
.isVector()) {
3784 // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
3785 // Only do this before legalize for now.
3786 EVT N0VT
= N0
.getOperand(0).getValueType();
3787 EVT EltVT
= VT
.getVectorElementType();
3788 SmallVector
<SDValue
,8> OneOps(VT
.getVectorNumElements(),
3789 DAG
.getConstant(1, EltVT
));
3790 if (VT
.getSizeInBits() == N0VT
.getSizeInBits()) {
3791 // We know that the # elements of the results is the same as the
3792 // # elements of the compare (and the # elements of the compare result
3793 // for that matter). Check to see that they are the same size. If so,
3794 // we know that the element size of the sext'd result matches the
3795 // element size of the compare operands.
3796 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
,
3797 DAG
.getVSetCC(N
->getDebugLoc(), VT
, N0
.getOperand(0),
3799 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get()),
3800 DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(), VT
,
3801 &OneOps
[0], OneOps
.size()));
3803 // If the desired elements are smaller or larger than the source
3804 // elements we can use a matching integer vector type and then
3805 // truncate/sign extend
3806 EVT MatchingElementType
=
3807 EVT::getIntegerVT(*DAG
.getContext(),
3808 N0VT
.getScalarType().getSizeInBits());
3809 EVT MatchingVectorType
=
3810 EVT::getVectorVT(*DAG
.getContext(), MatchingElementType
,
3811 N0VT
.getVectorNumElements());
3813 DAG
.getVSetCC(N
->getDebugLoc(), MatchingVectorType
, N0
.getOperand(0),
3815 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
3816 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
,
3817 DAG
.getSExtOrTrunc(VsetCC
, N
->getDebugLoc(), VT
),
3818 DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(), VT
,
3819 &OneOps
[0], OneOps
.size()));
3823 // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
3825 SimplifySelectCC(N
->getDebugLoc(), N0
.getOperand(0), N0
.getOperand(1),
3826 DAG
.getConstant(1, VT
), DAG
.getConstant(0, VT
),
3827 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true);
3828 if (SCC
.getNode()) return SCC
;
3831 // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
3832 if ((N0
.getOpcode() == ISD::SHL
|| N0
.getOpcode() == ISD::SRL
) &&
3833 isa
<ConstantSDNode
>(N0
.getOperand(1)) &&
3834 N0
.getOperand(0).getOpcode() == ISD::ZERO_EXTEND
&&
3836 if (N0
.getOpcode() == ISD::SHL
) {
3837 // If the original shl may be shifting out bits, do not perform this
3839 unsigned ShAmt
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getZExtValue();
3840 unsigned KnownZeroBits
= N0
.getOperand(0).getValueType().getSizeInBits() -
3841 N0
.getOperand(0).getOperand(0).getValueType().getSizeInBits();
3842 if (ShAmt
> KnownZeroBits
)
3845 DebugLoc dl
= N
->getDebugLoc();
3846 return DAG
.getNode(N0
.getOpcode(), dl
, VT
,
3847 DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, N0
.getOperand(0)),
3848 DAG
.getNode(ISD::ZERO_EXTEND
, dl
,
3849 N0
.getOperand(1).getValueType(),
3856 SDValue
DAGCombiner::visitANY_EXTEND(SDNode
*N
) {
3857 SDValue N0
= N
->getOperand(0);
3858 EVT VT
= N
->getValueType(0);
3860 // fold (aext c1) -> c1
3861 if (isa
<ConstantSDNode
>(N0
))
3862 return DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, N0
);
3863 // fold (aext (aext x)) -> (aext x)
3864 // fold (aext (zext x)) -> (zext x)
3865 // fold (aext (sext x)) -> (sext x)
3866 if (N0
.getOpcode() == ISD::ANY_EXTEND
||
3867 N0
.getOpcode() == ISD::ZERO_EXTEND
||
3868 N0
.getOpcode() == ISD::SIGN_EXTEND
)
3869 return DAG
.getNode(N0
.getOpcode(), N
->getDebugLoc(), VT
, N0
.getOperand(0));
3871 // fold (aext (truncate (load x))) -> (aext (smaller load x))
3872 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
3873 if (N0
.getOpcode() == ISD::TRUNCATE
) {
3874 SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode());
3875 if (NarrowLoad
.getNode()) {
3876 SDNode
* oye
= N0
.getNode()->getOperand(0).getNode();
3877 if (NarrowLoad
.getNode() != N0
.getNode()) {
3878 CombineTo(N0
.getNode(), NarrowLoad
);
3879 // CombineTo deleted the truncate, if needed, but not what's under it.
3882 return DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, NarrowLoad
);
3886 // fold (aext (truncate x))
3887 if (N0
.getOpcode() == ISD::TRUNCATE
) {
3888 SDValue TruncOp
= N0
.getOperand(0);
3889 if (TruncOp
.getValueType() == VT
)
3890 return TruncOp
; // x iff x size == zext size.
3891 if (TruncOp
.getValueType().bitsGT(VT
))
3892 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, TruncOp
);
3893 return DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, TruncOp
);
3896 // Fold (aext (and (trunc x), cst)) -> (and x, cst)
3897 // if the trunc is not free.
3898 if (N0
.getOpcode() == ISD::AND
&&
3899 N0
.getOperand(0).getOpcode() == ISD::TRUNCATE
&&
3900 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
3901 !TLI
.isTruncateFree(N0
.getOperand(0).getOperand(0).getValueType(),
3902 N0
.getValueType())) {
3903 SDValue X
= N0
.getOperand(0).getOperand(0);
3904 if (X
.getValueType().bitsLT(VT
)) {
3905 X
= DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, X
);
3906 } else if (X
.getValueType().bitsGT(VT
)) {
3907 X
= DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, X
);
3909 APInt Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
3910 Mask
.zext(VT
.getSizeInBits());
3911 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
,
3912 X
, DAG
.getConstant(Mask
, VT
));
3915 // fold (aext (load x)) -> (aext (truncate (extload x)))
3916 if (ISD::isNON_EXTLoad(N0
.getNode()) &&
3917 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
3918 TLI
.isLoadExtLegal(ISD::EXTLOAD
, N0
.getValueType()))) {
3919 bool DoXform
= true;
3920 SmallVector
<SDNode
*, 4> SetCCs
;
3921 if (!N0
.hasOneUse())
3922 DoXform
= ExtendUsesToFormExtLoad(N
, N0
, ISD::ANY_EXTEND
, SetCCs
, TLI
);
3924 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3925 SDValue ExtLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, VT
, N
->getDebugLoc(),
3927 LN0
->getBasePtr(), LN0
->getPointerInfo(),
3929 LN0
->isVolatile(), LN0
->isNonTemporal(),
3930 LN0
->getAlignment());
3931 CombineTo(N
, ExtLoad
);
3932 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(),
3933 N0
.getValueType(), ExtLoad
);
3934 CombineTo(N0
.getNode(), Trunc
, ExtLoad
.getValue(1));
3936 // Extend SetCC uses if necessary.
3937 for (unsigned i
= 0, e
= SetCCs
.size(); i
!= e
; ++i
) {
3938 SDNode
*SetCC
= SetCCs
[i
];
3939 SmallVector
<SDValue
, 4> Ops
;
3941 for (unsigned j
= 0; j
!= 2; ++j
) {
3942 SDValue SOp
= SetCC
->getOperand(j
);
3944 Ops
.push_back(ExtLoad
);
3946 Ops
.push_back(DAG
.getNode(ISD::ANY_EXTEND
,
3947 N
->getDebugLoc(), VT
, SOp
));
3950 Ops
.push_back(SetCC
->getOperand(2));
3951 CombineTo(SetCC
, DAG
.getNode(ISD::SETCC
, N
->getDebugLoc(),
3952 SetCC
->getValueType(0),
3953 &Ops
[0], Ops
.size()));
3956 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3960 // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
3961 // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
3962 // fold (aext ( extload x)) -> (aext (truncate (extload x)))
3963 if (N0
.getOpcode() == ISD::LOAD
&&
3964 !ISD::isNON_EXTLoad(N0
.getNode()) && ISD::isUNINDEXEDLoad(N0
.getNode()) &&
3966 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3967 EVT MemVT
= LN0
->getMemoryVT();
3968 SDValue ExtLoad
= DAG
.getExtLoad(LN0
->getExtensionType(), VT
,
3970 LN0
->getChain(), LN0
->getBasePtr(),
3971 LN0
->getPointerInfo(), MemVT
,
3972 LN0
->isVolatile(), LN0
->isNonTemporal(),
3973 LN0
->getAlignment());
3974 CombineTo(N
, ExtLoad
);
3975 CombineTo(N0
.getNode(),
3976 DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(),
3977 N0
.getValueType(), ExtLoad
),
3978 ExtLoad
.getValue(1));
3979 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3982 if (N0
.getOpcode() == ISD::SETCC
) {
3983 // aext(setcc) -> sext_in_reg(vsetcc) for vectors.
3984 // Only do this before legalize for now.
3985 if (VT
.isVector() && !LegalOperations
) {
3986 EVT N0VT
= N0
.getOperand(0).getValueType();
3987 // We know that the # elements of the results is the same as the
3988 // # elements of the compare (and the # elements of the compare result
3989 // for that matter). Check to see that they are the same size. If so,
3990 // we know that the element size of the sext'd result matches the
3991 // element size of the compare operands.
3992 if (VT
.getSizeInBits() == N0VT
.getSizeInBits())
3993 return DAG
.getVSetCC(N
->getDebugLoc(), VT
, N0
.getOperand(0),
3995 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
3996 // If the desired elements are smaller or larger than the source
3997 // elements we can use a matching integer vector type and then
3998 // truncate/sign extend
4000 EVT MatchingElementType
=
4001 EVT::getIntegerVT(*DAG
.getContext(),
4002 N0VT
.getScalarType().getSizeInBits());
4003 EVT MatchingVectorType
=
4004 EVT::getVectorVT(*DAG
.getContext(), MatchingElementType
,
4005 N0VT
.getVectorNumElements());
4007 DAG
.getVSetCC(N
->getDebugLoc(), MatchingVectorType
, N0
.getOperand(0),
4009 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
4010 return DAG
.getSExtOrTrunc(VsetCC
, N
->getDebugLoc(), VT
);
4014 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
4016 SimplifySelectCC(N
->getDebugLoc(), N0
.getOperand(0), N0
.getOperand(1),
4017 DAG
.getConstant(1, VT
), DAG
.getConstant(0, VT
),
4018 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true);
4026 /// GetDemandedBits - See if the specified operand can be simplified with the
4027 /// knowledge that only the bits specified by Mask are used. If so, return the
4028 /// simpler operand, otherwise return a null SDValue.
4029 SDValue
DAGCombiner::GetDemandedBits(SDValue V
, const APInt
&Mask
) {
4030 switch (V
.getOpcode()) {
4034 // If the LHS or RHS don't contribute bits to the or, drop them.
4035 if (DAG
.MaskedValueIsZero(V
.getOperand(0), Mask
))
4036 return V
.getOperand(1);
4037 if (DAG
.MaskedValueIsZero(V
.getOperand(1), Mask
))
4038 return V
.getOperand(0);
4041 // Only look at single-use SRLs.
4042 if (!V
.getNode()->hasOneUse())
4044 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(V
.getOperand(1))) {
4045 // See if we can recursively simplify the LHS.
4046 unsigned Amt
= RHSC
->getZExtValue();
4048 // Watch out for shift count overflow though.
4049 if (Amt
>= Mask
.getBitWidth()) break;
4050 APInt NewMask
= Mask
<< Amt
;
4051 SDValue SimplifyLHS
= GetDemandedBits(V
.getOperand(0), NewMask
);
4052 if (SimplifyLHS
.getNode())
4053 return DAG
.getNode(ISD::SRL
, V
.getDebugLoc(), V
.getValueType(),
4054 SimplifyLHS
, V
.getOperand(1));
4060 /// ReduceLoadWidth - If the result of a wider load is shifted to right of N
4061 /// bits and then truncated to a narrower type and where N is a multiple
4062 /// of number of bits of the narrower type, transform it to a narrower load
4063 /// from address + N / num of bits of new type. If the result is to be
4064 /// extended, also fold the extension to form a extending load.
4065 SDValue
DAGCombiner::ReduceLoadWidth(SDNode
*N
) {
4066 unsigned Opc
= N
->getOpcode();
4068 ISD::LoadExtType ExtType
= ISD::NON_EXTLOAD
;
4069 SDValue N0
= N
->getOperand(0);
4070 EVT VT
= N
->getValueType(0);
4073 // This transformation isn't valid for vector loads.
4077 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
4079 if (Opc
== ISD::SIGN_EXTEND_INREG
) {
4080 ExtType
= ISD::SEXTLOAD
;
4081 ExtVT
= cast
<VTSDNode
>(N
->getOperand(1))->getVT();
4082 if (LegalOperations
&& !TLI
.isLoadExtLegal(ISD::SEXTLOAD
, ExtVT
))
4084 } else if (Opc
== ISD::SRL
) {
4085 // Annother special-case: SRL is basically zero-extending a narrower
4087 ExtType
= ISD::ZEXTLOAD
;
4089 ConstantSDNode
*N01
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
4090 if (!N01
) return SDValue();
4091 ExtVT
= EVT::getIntegerVT(*DAG
.getContext(),
4092 VT
.getSizeInBits() - N01
->getZExtValue());
4095 unsigned EVTBits
= ExtVT
.getSizeInBits();
4097 if (N0
.getOpcode() == ISD::SRL
&& N0
.hasOneUse() && ExtVT
.isRound()) {
4098 if (ConstantSDNode
*N01
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
4099 ShAmt
= N01
->getZExtValue();
4100 // Is the shift amount a multiple of size of VT?
4101 if ((ShAmt
& (EVTBits
-1)) == 0) {
4102 N0
= N0
.getOperand(0);
4103 // Is the load width a multiple of size of VT?
4104 if ((N0
.getValueType().getSizeInBits() & (EVTBits
-1)) != 0)
4108 // If the shift amount is larger than the input type then we're not
4109 // accessing any of the loaded bytes. If the load was a zextload/extload
4110 // then the result of the shift+trunc is zero/undef (handled elsewhere).
4111 // If the load was a sextload then the result is a splat of the sign bit
4112 // of the extended byte. This is not worth optimizing for.
4113 if (ShAmt
>= VT
.getSizeInBits())
4119 // If the load is shifted left (and the result isn't shifted back right),
4120 // we can fold the truncate through the shift.
4121 unsigned ShLeftAmt
= 0;
4122 if (ShAmt
== 0 && N0
.getOpcode() == ISD::SHL
&& N0
.hasOneUse() &&
4123 TLI
.isNarrowingProfitable(N0
.getValueType(), VT
)) {
4124 if (ConstantSDNode
*N01
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
4125 ShLeftAmt
= N01
->getZExtValue();
4126 N0
= N0
.getOperand(0);
4130 // Do not generate loads of non-round integer types since these can
4131 // be expensive (and would be wrong if the type is not byte sized).
4132 if (isa
<LoadSDNode
>(N0
) && N0
.hasOneUse() && ExtVT
.isRound() &&
4133 cast
<LoadSDNode
>(N0
)->getMemoryVT().getSizeInBits() >= EVTBits
&&
4134 // Do not change the width of a volatile load.
4135 !cast
<LoadSDNode
>(N0
)->isVolatile()) {
4136 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
4137 EVT PtrType
= N0
.getOperand(1).getValueType();
4139 // For big endian targets, we need to adjust the offset to the pointer to
4140 // load the correct bytes.
4141 if (TLI
.isBigEndian()) {
4142 unsigned LVTStoreBits
= LN0
->getMemoryVT().getStoreSizeInBits();
4143 unsigned EVTStoreBits
= ExtVT
.getStoreSizeInBits();
4144 ShAmt
= LVTStoreBits
- EVTStoreBits
- ShAmt
;
4147 uint64_t PtrOff
= ShAmt
/ 8;
4148 unsigned NewAlign
= MinAlign(LN0
->getAlignment(), PtrOff
);
4149 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, LN0
->getDebugLoc(),
4150 PtrType
, LN0
->getBasePtr(),
4151 DAG
.getConstant(PtrOff
, PtrType
));
4152 AddToWorkList(NewPtr
.getNode());
4154 SDValue Load
= (ExtType
== ISD::NON_EXTLOAD
)
4155 ? DAG
.getLoad(VT
, N0
.getDebugLoc(), LN0
->getChain(), NewPtr
,
4156 LN0
->getPointerInfo().getWithOffset(PtrOff
),
4157 LN0
->isVolatile(), LN0
->isNonTemporal(), NewAlign
)
4158 : DAG
.getExtLoad(ExtType
, VT
, N0
.getDebugLoc(), LN0
->getChain(), NewPtr
,
4159 LN0
->getPointerInfo().getWithOffset(PtrOff
),
4160 ExtVT
, LN0
->isVolatile(), LN0
->isNonTemporal(),
4163 // Replace the old load's chain with the new load's chain.
4164 WorkListRemover
DeadNodes(*this);
4165 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), Load
.getValue(1),
4168 // Shift the result left, if we've swallowed a left shift.
4169 SDValue Result
= Load
;
4170 if (ShLeftAmt
!= 0) {
4171 EVT ShImmTy
= getShiftAmountTy();
4172 if (!isUIntN(ShImmTy
.getSizeInBits(), ShLeftAmt
))
4174 Result
= DAG
.getNode(ISD::SHL
, N0
.getDebugLoc(), VT
,
4175 Result
, DAG
.getConstant(ShLeftAmt
, ShImmTy
));
4178 // Return the new loaded value.
4185 SDValue
DAGCombiner::visitSIGN_EXTEND_INREG(SDNode
*N
) {
4186 SDValue N0
= N
->getOperand(0);
4187 SDValue N1
= N
->getOperand(1);
4188 EVT VT
= N
->getValueType(0);
4189 EVT EVT
= cast
<VTSDNode
>(N1
)->getVT();
4190 unsigned VTBits
= VT
.getScalarType().getSizeInBits();
4191 unsigned EVTBits
= EVT
.getScalarType().getSizeInBits();
4193 // fold (sext_in_reg c1) -> c1
4194 if (isa
<ConstantSDNode
>(N0
) || N0
.getOpcode() == ISD::UNDEF
)
4195 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, N
->getDebugLoc(), VT
, N0
, N1
);
4197 // If the input is already sign extended, just drop the extension.
4198 if (DAG
.ComputeNumSignBits(N0
) >= VTBits
-EVTBits
+1)
4201 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
4202 if (N0
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
4203 EVT
.bitsLT(cast
<VTSDNode
>(N0
.getOperand(1))->getVT())) {
4204 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, N
->getDebugLoc(), VT
,
4205 N0
.getOperand(0), N1
);
4208 // fold (sext_in_reg (sext x)) -> (sext x)
4209 // fold (sext_in_reg (aext x)) -> (sext x)
4210 // if x is small enough.
4211 if (N0
.getOpcode() == ISD::SIGN_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
) {
4212 SDValue N00
= N0
.getOperand(0);
4213 if (N00
.getValueType().getScalarType().getSizeInBits() <= EVTBits
&&
4214 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND
, VT
)))
4215 return DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(), VT
, N00
, N1
);
4218 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
4219 if (DAG
.MaskedValueIsZero(N0
, APInt::getBitsSet(VTBits
, EVTBits
-1, EVTBits
)))
4220 return DAG
.getZeroExtendInReg(N0
, N
->getDebugLoc(), EVT
);
4222 // fold operands of sext_in_reg based on knowledge that the top bits are not
4224 if (SimplifyDemandedBits(SDValue(N
, 0)))
4225 return SDValue(N
, 0);
4227 // fold (sext_in_reg (load x)) -> (smaller sextload x)
4228 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
4229 SDValue NarrowLoad
= ReduceLoadWidth(N
);
4230 if (NarrowLoad
.getNode())
4233 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
4234 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
4235 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
4236 if (N0
.getOpcode() == ISD::SRL
) {
4237 if (ConstantSDNode
*ShAmt
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1)))
4238 if (ShAmt
->getZExtValue()+EVTBits
<= VTBits
) {
4239 // We can turn this into an SRA iff the input to the SRL is already sign
4241 unsigned InSignBits
= DAG
.ComputeNumSignBits(N0
.getOperand(0));
4242 if (VTBits
-(ShAmt
->getZExtValue()+EVTBits
) < InSignBits
)
4243 return DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), VT
,
4244 N0
.getOperand(0), N0
.getOperand(1));
4248 // fold (sext_inreg (extload x)) -> (sextload x)
4249 if (ISD::isEXTLoad(N0
.getNode()) &&
4250 ISD::isUNINDEXEDLoad(N0
.getNode()) &&
4251 EVT
== cast
<LoadSDNode
>(N0
)->getMemoryVT() &&
4252 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
4253 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, EVT
))) {
4254 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
4255 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, VT
, N
->getDebugLoc(),
4257 LN0
->getBasePtr(), LN0
->getPointerInfo(),
4259 LN0
->isVolatile(), LN0
->isNonTemporal(),
4260 LN0
->getAlignment());
4261 CombineTo(N
, ExtLoad
);
4262 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
4263 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
4265 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
4266 if (ISD::isZEXTLoad(N0
.getNode()) && ISD::isUNINDEXEDLoad(N0
.getNode()) &&
4268 EVT
== cast
<LoadSDNode
>(N0
)->getMemoryVT() &&
4269 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
4270 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, EVT
))) {
4271 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
4272 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, VT
, N
->getDebugLoc(),
4274 LN0
->getBasePtr(), LN0
->getPointerInfo(),
4276 LN0
->isVolatile(), LN0
->isNonTemporal(),
4277 LN0
->getAlignment());
4278 CombineTo(N
, ExtLoad
);
4279 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
4280 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
4285 SDValue
DAGCombiner::visitTRUNCATE(SDNode
*N
) {
4286 SDValue N0
= N
->getOperand(0);
4287 EVT VT
= N
->getValueType(0);
4290 if (N0
.getValueType() == N
->getValueType(0))
4292 // fold (truncate c1) -> c1
4293 if (isa
<ConstantSDNode
>(N0
))
4294 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, N0
);
4295 // fold (truncate (truncate x)) -> (truncate x)
4296 if (N0
.getOpcode() == ISD::TRUNCATE
)
4297 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, N0
.getOperand(0));
4298 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
4299 if (N0
.getOpcode() == ISD::ZERO_EXTEND
||
4300 N0
.getOpcode() == ISD::SIGN_EXTEND
||
4301 N0
.getOpcode() == ISD::ANY_EXTEND
) {
4302 if (N0
.getOperand(0).getValueType().bitsLT(VT
))
4303 // if the source is smaller than the dest, we still need an extend
4304 return DAG
.getNode(N0
.getOpcode(), N
->getDebugLoc(), VT
,
4306 else if (N0
.getOperand(0).getValueType().bitsGT(VT
))
4307 // if the source is larger than the dest, than we just need the truncate
4308 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, N0
.getOperand(0));
4310 // if the source and dest are the same type, we can drop both the extend
4311 // and the truncate.
4312 return N0
.getOperand(0);
4315 // See if we can simplify the input to this truncate through knowledge that
4316 // only the low bits are being used. For example "trunc (or (shl x, 8), y)"
4319 GetDemandedBits(N0
, APInt::getLowBitsSet(N0
.getValueSizeInBits(),
4320 VT
.getSizeInBits()));
4321 if (Shorter
.getNode())
4322 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, Shorter
);
4324 // fold (truncate (load x)) -> (smaller load x)
4325 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
4326 if (!LegalTypes
|| TLI
.isTypeDesirableForOp(N0
.getOpcode(), VT
)) {
4327 SDValue Reduced
= ReduceLoadWidth(N
);
4328 if (Reduced
.getNode())
4332 // Simplify the operands using demanded-bits information.
4333 if (!VT
.isVector() &&
4334 SimplifyDemandedBits(SDValue(N
, 0)))
4335 return SDValue(N
, 0);
4340 static SDNode
*getBuildPairElt(SDNode
*N
, unsigned i
) {
4341 SDValue Elt
= N
->getOperand(i
);
4342 if (Elt
.getOpcode() != ISD::MERGE_VALUES
)
4343 return Elt
.getNode();
4344 return Elt
.getOperand(Elt
.getResNo()).getNode();
4347 /// CombineConsecutiveLoads - build_pair (load, load) -> load
4348 /// if load locations are consecutive.
4349 SDValue
DAGCombiner::CombineConsecutiveLoads(SDNode
*N
, EVT VT
) {
4350 assert(N
->getOpcode() == ISD::BUILD_PAIR
);
4352 LoadSDNode
*LD1
= dyn_cast
<LoadSDNode
>(getBuildPairElt(N
, 0));
4353 LoadSDNode
*LD2
= dyn_cast
<LoadSDNode
>(getBuildPairElt(N
, 1));
4354 if (!LD1
|| !LD2
|| !ISD::isNON_EXTLoad(LD1
) || !LD1
->hasOneUse() ||
4355 LD1
->getPointerInfo().getAddrSpace() !=
4356 LD2
->getPointerInfo().getAddrSpace())
4358 EVT LD1VT
= LD1
->getValueType(0);
4360 if (ISD::isNON_EXTLoad(LD2
) &&
4362 // If both are volatile this would reduce the number of volatile loads.
4363 // If one is volatile it might be ok, but play conservative and bail out.
4364 !LD1
->isVolatile() &&
4365 !LD2
->isVolatile() &&
4366 DAG
.isConsecutiveLoad(LD2
, LD1
, LD1VT
.getSizeInBits()/8, 1)) {
4367 unsigned Align
= LD1
->getAlignment();
4368 unsigned NewAlign
= TLI
.getTargetData()->
4369 getABITypeAlignment(VT
.getTypeForEVT(*DAG
.getContext()));
4371 if (NewAlign
<= Align
&&
4372 (!LegalOperations
|| TLI
.isOperationLegal(ISD::LOAD
, VT
)))
4373 return DAG
.getLoad(VT
, N
->getDebugLoc(), LD1
->getChain(),
4374 LD1
->getBasePtr(), LD1
->getPointerInfo(),
4375 false, false, Align
);
4381 SDValue
DAGCombiner::visitBIT_CONVERT(SDNode
*N
) {
4382 SDValue N0
= N
->getOperand(0);
4383 EVT VT
= N
->getValueType(0);
4385 // If the input is a BUILD_VECTOR with all constant elements, fold this now.
4386 // Only do this before legalize, since afterward the target may be depending
4387 // on the bitconvert.
4388 // First check to see if this is all constant.
4390 N0
.getOpcode() == ISD::BUILD_VECTOR
&& N0
.getNode()->hasOneUse() &&
4392 bool isSimple
= true;
4393 for (unsigned i
= 0, e
= N0
.getNumOperands(); i
!= e
; ++i
)
4394 if (N0
.getOperand(i
).getOpcode() != ISD::UNDEF
&&
4395 N0
.getOperand(i
).getOpcode() != ISD::Constant
&&
4396 N0
.getOperand(i
).getOpcode() != ISD::ConstantFP
) {
4401 EVT DestEltVT
= N
->getValueType(0).getVectorElementType();
4402 assert(!DestEltVT
.isVector() &&
4403 "Element type of vector ValueType must not be vector!");
4405 return ConstantFoldBIT_CONVERTofBUILD_VECTOR(N0
.getNode(), DestEltVT
);
4408 // If the input is a constant, let getNode fold it.
4409 if (isa
<ConstantSDNode
>(N0
) || isa
<ConstantFPSDNode
>(N0
)) {
4410 SDValue Res
= DAG
.getNode(ISD::BIT_CONVERT
, N
->getDebugLoc(), VT
, N0
);
4411 if (Res
.getNode() != N
) {
4412 if (!LegalOperations
||
4413 TLI
.isOperationLegal(Res
.getNode()->getOpcode(), VT
))
4416 // Folding it resulted in an illegal node, and it's too late to
4417 // do that. Clean up the old node and forego the transformation.
4418 // Ideally this won't happen very often, because instcombine
4419 // and the earlier dagcombine runs (where illegal nodes are
4420 // permitted) should have folded most of them already.
4421 DAG
.DeleteNode(Res
.getNode());
4425 // (conv (conv x, t1), t2) -> (conv x, t2)
4426 if (N0
.getOpcode() == ISD::BIT_CONVERT
)
4427 return DAG
.getNode(ISD::BIT_CONVERT
, N
->getDebugLoc(), VT
,
4430 // fold (conv (load x)) -> (load (conv*)x)
4431 // If the resultant load doesn't need a higher alignment than the original!
4432 if (ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse() &&
4433 // Do not change the width of a volatile load.
4434 !cast
<LoadSDNode
>(N0
)->isVolatile() &&
4435 (!LegalOperations
|| TLI
.isOperationLegal(ISD::LOAD
, VT
))) {
4436 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
4437 unsigned Align
= TLI
.getTargetData()->
4438 getABITypeAlignment(VT
.getTypeForEVT(*DAG
.getContext()));
4439 unsigned OrigAlign
= LN0
->getAlignment();
4441 if (Align
<= OrigAlign
) {
4442 SDValue Load
= DAG
.getLoad(VT
, N
->getDebugLoc(), LN0
->getChain(),
4443 LN0
->getBasePtr(), LN0
->getPointerInfo(),
4444 LN0
->isVolatile(), LN0
->isNonTemporal(),
4447 CombineTo(N0
.getNode(),
4448 DAG
.getNode(ISD::BIT_CONVERT
, N0
.getDebugLoc(),
4449 N0
.getValueType(), Load
),
4455 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
4456 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
4457 // This often reduces constant pool loads.
4458 if ((N0
.getOpcode() == ISD::FNEG
|| N0
.getOpcode() == ISD::FABS
) &&
4459 N0
.getNode()->hasOneUse() && VT
.isInteger() && !VT
.isVector()) {
4460 SDValue NewConv
= DAG
.getNode(ISD::BIT_CONVERT
, N0
.getDebugLoc(), VT
,
4462 AddToWorkList(NewConv
.getNode());
4464 APInt SignBit
= APInt::getSignBit(VT
.getSizeInBits());
4465 if (N0
.getOpcode() == ISD::FNEG
)
4466 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT
,
4467 NewConv
, DAG
.getConstant(SignBit
, VT
));
4468 assert(N0
.getOpcode() == ISD::FABS
);
4469 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
,
4470 NewConv
, DAG
.getConstant(~SignBit
, VT
));
4473 // fold (bitconvert (fcopysign cst, x)) ->
4474 // (or (and (bitconvert x), sign), (and cst, (not sign)))
4475 // Note that we don't handle (copysign x, cst) because this can always be
4476 // folded to an fneg or fabs.
4477 if (N0
.getOpcode() == ISD::FCOPYSIGN
&& N0
.getNode()->hasOneUse() &&
4478 isa
<ConstantFPSDNode
>(N0
.getOperand(0)) &&
4479 VT
.isInteger() && !VT
.isVector()) {
4480 unsigned OrigXWidth
= N0
.getOperand(1).getValueType().getSizeInBits();
4481 EVT IntXVT
= EVT::getIntegerVT(*DAG
.getContext(), OrigXWidth
);
4482 if (isTypeLegal(IntXVT
)) {
4483 SDValue X
= DAG
.getNode(ISD::BIT_CONVERT
, N0
.getDebugLoc(),
4484 IntXVT
, N0
.getOperand(1));
4485 AddToWorkList(X
.getNode());
4487 // If X has a different width than the result/lhs, sext it or truncate it.
4488 unsigned VTWidth
= VT
.getSizeInBits();
4489 if (OrigXWidth
< VTWidth
) {
4490 X
= DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(), VT
, X
);
4491 AddToWorkList(X
.getNode());
4492 } else if (OrigXWidth
> VTWidth
) {
4493 // To get the sign bit in the right place, we have to shift it right
4494 // before truncating.
4495 X
= DAG
.getNode(ISD::SRL
, X
.getDebugLoc(),
4496 X
.getValueType(), X
,
4497 DAG
.getConstant(OrigXWidth
-VTWidth
, X
.getValueType()));
4498 AddToWorkList(X
.getNode());
4499 X
= DAG
.getNode(ISD::TRUNCATE
, X
.getDebugLoc(), VT
, X
);
4500 AddToWorkList(X
.getNode());
4503 APInt SignBit
= APInt::getSignBit(VT
.getSizeInBits());
4504 X
= DAG
.getNode(ISD::AND
, X
.getDebugLoc(), VT
,
4505 X
, DAG
.getConstant(SignBit
, VT
));
4506 AddToWorkList(X
.getNode());
4508 SDValue Cst
= DAG
.getNode(ISD::BIT_CONVERT
, N0
.getDebugLoc(),
4509 VT
, N0
.getOperand(0));
4510 Cst
= DAG
.getNode(ISD::AND
, Cst
.getDebugLoc(), VT
,
4511 Cst
, DAG
.getConstant(~SignBit
, VT
));
4512 AddToWorkList(Cst
.getNode());
4514 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, X
, Cst
);
4518 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
4519 if (N0
.getOpcode() == ISD::BUILD_PAIR
) {
4520 SDValue CombineLD
= CombineConsecutiveLoads(N0
.getNode(), VT
);
4521 if (CombineLD
.getNode())
4528 SDValue
DAGCombiner::visitBUILD_PAIR(SDNode
*N
) {
4529 EVT VT
= N
->getValueType(0);
4530 return CombineConsecutiveLoads(N
, VT
);
4533 /// ConstantFoldBIT_CONVERTofBUILD_VECTOR - We know that BV is a build_vector
4534 /// node with Constant, ConstantFP or Undef operands. DstEltVT indicates the
4535 /// destination element value type.
4536 SDValue
DAGCombiner::
4537 ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode
*BV
, EVT DstEltVT
) {
4538 EVT SrcEltVT
= BV
->getValueType(0).getVectorElementType();
4540 // If this is already the right type, we're done.
4541 if (SrcEltVT
== DstEltVT
) return SDValue(BV
, 0);
4543 unsigned SrcBitSize
= SrcEltVT
.getSizeInBits();
4544 unsigned DstBitSize
= DstEltVT
.getSizeInBits();
4546 // If this is a conversion of N elements of one type to N elements of another
4547 // type, convert each element. This handles FP<->INT cases.
4548 if (SrcBitSize
== DstBitSize
) {
4549 EVT VT
= EVT::getVectorVT(*DAG
.getContext(), DstEltVT
,
4550 BV
->getValueType(0).getVectorNumElements());
4552 // Due to the FP element handling below calling this routine recursively,
4553 // we can end up with a scalar-to-vector node here.
4554 if (BV
->getOpcode() == ISD::SCALAR_TO_VECTOR
)
4555 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, BV
->getDebugLoc(), VT
,
4556 DAG
.getNode(ISD::BIT_CONVERT
, BV
->getDebugLoc(),
4557 DstEltVT
, BV
->getOperand(0)));
4559 SmallVector
<SDValue
, 8> Ops
;
4560 for (unsigned i
= 0, e
= BV
->getNumOperands(); i
!= e
; ++i
) {
4561 SDValue Op
= BV
->getOperand(i
);
4562 // If the vector element type is not legal, the BUILD_VECTOR operands
4563 // are promoted and implicitly truncated. Make that explicit here.
4564 if (Op
.getValueType() != SrcEltVT
)
4565 Op
= DAG
.getNode(ISD::TRUNCATE
, BV
->getDebugLoc(), SrcEltVT
, Op
);
4566 Ops
.push_back(DAG
.getNode(ISD::BIT_CONVERT
, BV
->getDebugLoc(),
4568 AddToWorkList(Ops
.back().getNode());
4570 return DAG
.getNode(ISD::BUILD_VECTOR
, BV
->getDebugLoc(), VT
,
4571 &Ops
[0], Ops
.size());
4574 // Otherwise, we're growing or shrinking the elements. To avoid having to
4575 // handle annoying details of growing/shrinking FP values, we convert them to
4577 if (SrcEltVT
.isFloatingPoint()) {
4578 // Convert the input float vector to a int vector where the elements are the
4580 assert((SrcEltVT
== MVT::f32
|| SrcEltVT
== MVT::f64
) && "Unknown FP VT!");
4581 EVT IntVT
= EVT::getIntegerVT(*DAG
.getContext(), SrcEltVT
.getSizeInBits());
4582 BV
= ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV
, IntVT
).getNode();
4586 // Now we know the input is an integer vector. If the output is a FP type,
4587 // convert to integer first, then to FP of the right size.
4588 if (DstEltVT
.isFloatingPoint()) {
4589 assert((DstEltVT
== MVT::f32
|| DstEltVT
== MVT::f64
) && "Unknown FP VT!");
4590 EVT TmpVT
= EVT::getIntegerVT(*DAG
.getContext(), DstEltVT
.getSizeInBits());
4591 SDNode
*Tmp
= ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV
, TmpVT
).getNode();
4593 // Next, convert to FP elements of the same size.
4594 return ConstantFoldBIT_CONVERTofBUILD_VECTOR(Tmp
, DstEltVT
);
4597 // Okay, we know the src/dst types are both integers of differing types.
4598 // Handling growing first.
4599 assert(SrcEltVT
.isInteger() && DstEltVT
.isInteger());
4600 if (SrcBitSize
< DstBitSize
) {
4601 unsigned NumInputsPerOutput
= DstBitSize
/SrcBitSize
;
4603 SmallVector
<SDValue
, 8> Ops
;
4604 for (unsigned i
= 0, e
= BV
->getNumOperands(); i
!= e
;
4605 i
+= NumInputsPerOutput
) {
4606 bool isLE
= TLI
.isLittleEndian();
4607 APInt NewBits
= APInt(DstBitSize
, 0);
4608 bool EltIsUndef
= true;
4609 for (unsigned j
= 0; j
!= NumInputsPerOutput
; ++j
) {
4610 // Shift the previously computed bits over.
4611 NewBits
<<= SrcBitSize
;
4612 SDValue Op
= BV
->getOperand(i
+ (isLE
? (NumInputsPerOutput
-j
-1) : j
));
4613 if (Op
.getOpcode() == ISD::UNDEF
) continue;
4616 NewBits
|= APInt(cast
<ConstantSDNode
>(Op
)->getAPIntValue()).
4617 zextOrTrunc(SrcBitSize
).zext(DstBitSize
);
4621 Ops
.push_back(DAG
.getUNDEF(DstEltVT
));
4623 Ops
.push_back(DAG
.getConstant(NewBits
, DstEltVT
));
4626 EVT VT
= EVT::getVectorVT(*DAG
.getContext(), DstEltVT
, Ops
.size());
4627 return DAG
.getNode(ISD::BUILD_VECTOR
, BV
->getDebugLoc(), VT
,
4628 &Ops
[0], Ops
.size());
4631 // Finally, this must be the case where we are shrinking elements: each input
4632 // turns into multiple outputs.
4633 bool isS2V
= ISD::isScalarToVector(BV
);
4634 unsigned NumOutputsPerInput
= SrcBitSize
/DstBitSize
;
4635 EVT VT
= EVT::getVectorVT(*DAG
.getContext(), DstEltVT
,
4636 NumOutputsPerInput
*BV
->getNumOperands());
4637 SmallVector
<SDValue
, 8> Ops
;
4639 for (unsigned i
= 0, e
= BV
->getNumOperands(); i
!= e
; ++i
) {
4640 if (BV
->getOperand(i
).getOpcode() == ISD::UNDEF
) {
4641 for (unsigned j
= 0; j
!= NumOutputsPerInput
; ++j
)
4642 Ops
.push_back(DAG
.getUNDEF(DstEltVT
));
4646 APInt OpVal
= APInt(cast
<ConstantSDNode
>(BV
->getOperand(i
))->
4647 getAPIntValue()).zextOrTrunc(SrcBitSize
);
4649 for (unsigned j
= 0; j
!= NumOutputsPerInput
; ++j
) {
4650 APInt ThisVal
= APInt(OpVal
).trunc(DstBitSize
);
4651 Ops
.push_back(DAG
.getConstant(ThisVal
, DstEltVT
));
4652 if (isS2V
&& i
== 0 && j
== 0 && APInt(ThisVal
).zext(SrcBitSize
) == OpVal
)
4653 // Simply turn this into a SCALAR_TO_VECTOR of the new type.
4654 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, BV
->getDebugLoc(), VT
,
4656 OpVal
= OpVal
.lshr(DstBitSize
);
4659 // For big endian targets, swap the order of the pieces of each element.
4660 if (TLI
.isBigEndian())
4661 std::reverse(Ops
.end()-NumOutputsPerInput
, Ops
.end());
4664 return DAG
.getNode(ISD::BUILD_VECTOR
, BV
->getDebugLoc(), VT
,
4665 &Ops
[0], Ops
.size());
4668 SDValue
DAGCombiner::visitFADD(SDNode
*N
) {
4669 SDValue N0
= N
->getOperand(0);
4670 SDValue N1
= N
->getOperand(1);
4671 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4672 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
4673 EVT VT
= N
->getValueType(0);
4676 if (VT
.isVector()) {
4677 SDValue FoldedVOp
= SimplifyVBinOp(N
);
4678 if (FoldedVOp
.getNode()) return FoldedVOp
;
4681 // fold (fadd c1, c2) -> (fadd c1, c2)
4682 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
)
4683 return DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
, N0
, N1
);
4684 // canonicalize constant to RHS
4685 if (N0CFP
&& !N1CFP
)
4686 return DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
, N1
, N0
);
4687 // fold (fadd A, 0) -> A
4688 if (UnsafeFPMath
&& N1CFP
&& N1CFP
->getValueAPF().isZero())
4690 // fold (fadd A, (fneg B)) -> (fsub A, B)
4691 if (isNegatibleForFree(N1
, LegalOperations
) == 2)
4692 return DAG
.getNode(ISD::FSUB
, N
->getDebugLoc(), VT
, N0
,
4693 GetNegatedExpression(N1
, DAG
, LegalOperations
));
4694 // fold (fadd (fneg A), B) -> (fsub B, A)
4695 if (isNegatibleForFree(N0
, LegalOperations
) == 2)
4696 return DAG
.getNode(ISD::FSUB
, N
->getDebugLoc(), VT
, N1
,
4697 GetNegatedExpression(N0
, DAG
, LegalOperations
));
4699 // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
4700 if (UnsafeFPMath
&& N1CFP
&& N0
.getOpcode() == ISD::FADD
&&
4701 N0
.getNode()->hasOneUse() && isa
<ConstantFPSDNode
>(N0
.getOperand(1)))
4702 return DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
4703 DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
,
4704 N0
.getOperand(1), N1
));
4709 SDValue
DAGCombiner::visitFSUB(SDNode
*N
) {
4710 SDValue N0
= N
->getOperand(0);
4711 SDValue N1
= N
->getOperand(1);
4712 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4713 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
4714 EVT VT
= N
->getValueType(0);
4717 if (VT
.isVector()) {
4718 SDValue FoldedVOp
= SimplifyVBinOp(N
);
4719 if (FoldedVOp
.getNode()) return FoldedVOp
;
4722 // fold (fsub c1, c2) -> c1-c2
4723 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
)
4724 return DAG
.getNode(ISD::FSUB
, N
->getDebugLoc(), VT
, N0
, N1
);
4725 // fold (fsub A, 0) -> A
4726 if (UnsafeFPMath
&& N1CFP
&& N1CFP
->getValueAPF().isZero())
4728 // fold (fsub 0, B) -> -B
4729 if (UnsafeFPMath
&& N0CFP
&& N0CFP
->getValueAPF().isZero()) {
4730 if (isNegatibleForFree(N1
, LegalOperations
))
4731 return GetNegatedExpression(N1
, DAG
, LegalOperations
);
4732 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
4733 return DAG
.getNode(ISD::FNEG
, N
->getDebugLoc(), VT
, N1
);
4735 // fold (fsub A, (fneg B)) -> (fadd A, B)
4736 if (isNegatibleForFree(N1
, LegalOperations
))
4737 return DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
, N0
,
4738 GetNegatedExpression(N1
, DAG
, LegalOperations
));
4743 SDValue
DAGCombiner::visitFMUL(SDNode
*N
) {
4744 SDValue N0
= N
->getOperand(0);
4745 SDValue N1
= N
->getOperand(1);
4746 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4747 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
4748 EVT VT
= N
->getValueType(0);
4751 if (VT
.isVector()) {
4752 SDValue FoldedVOp
= SimplifyVBinOp(N
);
4753 if (FoldedVOp
.getNode()) return FoldedVOp
;
4756 // fold (fmul c1, c2) -> c1*c2
4757 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
)
4758 return DAG
.getNode(ISD::FMUL
, N
->getDebugLoc(), VT
, N0
, N1
);
4759 // canonicalize constant to RHS
4760 if (N0CFP
&& !N1CFP
)
4761 return DAG
.getNode(ISD::FMUL
, N
->getDebugLoc(), VT
, N1
, N0
);
4762 // fold (fmul A, 0) -> 0
4763 if (UnsafeFPMath
&& N1CFP
&& N1CFP
->getValueAPF().isZero())
4765 // fold (fmul A, 0) -> 0, vector edition.
4766 if (UnsafeFPMath
&& ISD::isBuildVectorAllZeros(N1
.getNode()))
4768 // fold (fmul X, 2.0) -> (fadd X, X)
4769 if (N1CFP
&& N1CFP
->isExactlyValue(+2.0))
4770 return DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
, N0
, N0
);
4771 // fold (fmul X, -1.0) -> (fneg X)
4772 if (N1CFP
&& N1CFP
->isExactlyValue(-1.0))
4773 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
4774 return DAG
.getNode(ISD::FNEG
, N
->getDebugLoc(), VT
, N0
);
4776 // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
4777 if (char LHSNeg
= isNegatibleForFree(N0
, LegalOperations
)) {
4778 if (char RHSNeg
= isNegatibleForFree(N1
, LegalOperations
)) {
4779 // Both can be negated for free, check to see if at least one is cheaper
4781 if (LHSNeg
== 2 || RHSNeg
== 2)
4782 return DAG
.getNode(ISD::FMUL
, N
->getDebugLoc(), VT
,
4783 GetNegatedExpression(N0
, DAG
, LegalOperations
),
4784 GetNegatedExpression(N1
, DAG
, LegalOperations
));
4788 // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
4789 if (UnsafeFPMath
&& N1CFP
&& N0
.getOpcode() == ISD::FMUL
&&
4790 N0
.getNode()->hasOneUse() && isa
<ConstantFPSDNode
>(N0
.getOperand(1)))
4791 return DAG
.getNode(ISD::FMUL
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
4792 DAG
.getNode(ISD::FMUL
, N
->getDebugLoc(), VT
,
4793 N0
.getOperand(1), N1
));
4798 SDValue
DAGCombiner::visitFDIV(SDNode
*N
) {
4799 SDValue N0
= N
->getOperand(0);
4800 SDValue N1
= N
->getOperand(1);
4801 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4802 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
4803 EVT VT
= N
->getValueType(0);
4806 if (VT
.isVector()) {
4807 SDValue FoldedVOp
= SimplifyVBinOp(N
);
4808 if (FoldedVOp
.getNode()) return FoldedVOp
;
4811 // fold (fdiv c1, c2) -> c1/c2
4812 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
)
4813 return DAG
.getNode(ISD::FDIV
, N
->getDebugLoc(), VT
, N0
, N1
);
4816 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
4817 if (char LHSNeg
= isNegatibleForFree(N0
, LegalOperations
)) {
4818 if (char RHSNeg
= isNegatibleForFree(N1
, LegalOperations
)) {
4819 // Both can be negated for free, check to see if at least one is cheaper
4821 if (LHSNeg
== 2 || RHSNeg
== 2)
4822 return DAG
.getNode(ISD::FDIV
, N
->getDebugLoc(), VT
,
4823 GetNegatedExpression(N0
, DAG
, LegalOperations
),
4824 GetNegatedExpression(N1
, DAG
, LegalOperations
));
4831 SDValue
DAGCombiner::visitFREM(SDNode
*N
) {
4832 SDValue N0
= N
->getOperand(0);
4833 SDValue N1
= N
->getOperand(1);
4834 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4835 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
4836 EVT VT
= N
->getValueType(0);
4838 // fold (frem c1, c2) -> fmod(c1,c2)
4839 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
)
4840 return DAG
.getNode(ISD::FREM
, N
->getDebugLoc(), VT
, N0
, N1
);
4845 SDValue
DAGCombiner::visitFCOPYSIGN(SDNode
*N
) {
4846 SDValue N0
= N
->getOperand(0);
4847 SDValue N1
= N
->getOperand(1);
4848 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4849 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
4850 EVT VT
= N
->getValueType(0);
4852 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
) // Constant fold
4853 return DAG
.getNode(ISD::FCOPYSIGN
, N
->getDebugLoc(), VT
, N0
, N1
);
4856 const APFloat
& V
= N1CFP
->getValueAPF();
4857 // copysign(x, c1) -> fabs(x) iff ispos(c1)
4858 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
4859 if (!V
.isNegative()) {
4860 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FABS
, VT
))
4861 return DAG
.getNode(ISD::FABS
, N
->getDebugLoc(), VT
, N0
);
4863 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
4864 return DAG
.getNode(ISD::FNEG
, N
->getDebugLoc(), VT
,
4865 DAG
.getNode(ISD::FABS
, N0
.getDebugLoc(), VT
, N0
));
4869 // copysign(fabs(x), y) -> copysign(x, y)
4870 // copysign(fneg(x), y) -> copysign(x, y)
4871 // copysign(copysign(x,z), y) -> copysign(x, y)
4872 if (N0
.getOpcode() == ISD::FABS
|| N0
.getOpcode() == ISD::FNEG
||
4873 N0
.getOpcode() == ISD::FCOPYSIGN
)
4874 return DAG
.getNode(ISD::FCOPYSIGN
, N
->getDebugLoc(), VT
,
4875 N0
.getOperand(0), N1
);
4877 // copysign(x, abs(y)) -> abs(x)
4878 if (N1
.getOpcode() == ISD::FABS
)
4879 return DAG
.getNode(ISD::FABS
, N
->getDebugLoc(), VT
, N0
);
4881 // copysign(x, copysign(y,z)) -> copysign(x, z)
4882 if (N1
.getOpcode() == ISD::FCOPYSIGN
)
4883 return DAG
.getNode(ISD::FCOPYSIGN
, N
->getDebugLoc(), VT
,
4884 N0
, N1
.getOperand(1));
4886 // copysign(x, fp_extend(y)) -> copysign(x, y)
4887 // copysign(x, fp_round(y)) -> copysign(x, y)
4888 if (N1
.getOpcode() == ISD::FP_EXTEND
|| N1
.getOpcode() == ISD::FP_ROUND
)
4889 return DAG
.getNode(ISD::FCOPYSIGN
, N
->getDebugLoc(), VT
,
4890 N0
, N1
.getOperand(0));
4895 SDValue
DAGCombiner::visitSINT_TO_FP(SDNode
*N
) {
4896 SDValue N0
= N
->getOperand(0);
4897 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
4898 EVT VT
= N
->getValueType(0);
4899 EVT OpVT
= N0
.getValueType();
4901 // fold (sint_to_fp c1) -> c1fp
4902 if (N0C
&& OpVT
!= MVT::ppcf128
)
4903 return DAG
.getNode(ISD::SINT_TO_FP
, N
->getDebugLoc(), VT
, N0
);
4905 // If the input is a legal type, and SINT_TO_FP is not legal on this target,
4906 // but UINT_TO_FP is legal on this target, try to convert.
4907 if (!TLI
.isOperationLegalOrCustom(ISD::SINT_TO_FP
, OpVT
) &&
4908 TLI
.isOperationLegalOrCustom(ISD::UINT_TO_FP
, OpVT
)) {
4909 // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
4910 if (DAG
.SignBitIsZero(N0
))
4911 return DAG
.getNode(ISD::UINT_TO_FP
, N
->getDebugLoc(), VT
, N0
);
4917 SDValue
DAGCombiner::visitUINT_TO_FP(SDNode
*N
) {
4918 SDValue N0
= N
->getOperand(0);
4919 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
4920 EVT VT
= N
->getValueType(0);
4921 EVT OpVT
= N0
.getValueType();
4923 // fold (uint_to_fp c1) -> c1fp
4924 if (N0C
&& OpVT
!= MVT::ppcf128
)
4925 return DAG
.getNode(ISD::UINT_TO_FP
, N
->getDebugLoc(), VT
, N0
);
4927 // If the input is a legal type, and UINT_TO_FP is not legal on this target,
4928 // but SINT_TO_FP is legal on this target, try to convert.
4929 if (!TLI
.isOperationLegalOrCustom(ISD::UINT_TO_FP
, OpVT
) &&
4930 TLI
.isOperationLegalOrCustom(ISD::SINT_TO_FP
, OpVT
)) {
4931 // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
4932 if (DAG
.SignBitIsZero(N0
))
4933 return DAG
.getNode(ISD::SINT_TO_FP
, N
->getDebugLoc(), VT
, N0
);
4939 SDValue
DAGCombiner::visitFP_TO_SINT(SDNode
*N
) {
4940 SDValue N0
= N
->getOperand(0);
4941 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4942 EVT VT
= N
->getValueType(0);
4944 // fold (fp_to_sint c1fp) -> c1
4946 return DAG
.getNode(ISD::FP_TO_SINT
, N
->getDebugLoc(), VT
, N0
);
4951 SDValue
DAGCombiner::visitFP_TO_UINT(SDNode
*N
) {
4952 SDValue N0
= N
->getOperand(0);
4953 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4954 EVT VT
= N
->getValueType(0);
4956 // fold (fp_to_uint c1fp) -> c1
4957 if (N0CFP
&& VT
!= MVT::ppcf128
)
4958 return DAG
.getNode(ISD::FP_TO_UINT
, N
->getDebugLoc(), VT
, N0
);
4963 SDValue
DAGCombiner::visitFP_ROUND(SDNode
*N
) {
4964 SDValue N0
= N
->getOperand(0);
4965 SDValue N1
= N
->getOperand(1);
4966 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4967 EVT VT
= N
->getValueType(0);
4969 // fold (fp_round c1fp) -> c1fp
4970 if (N0CFP
&& N0
.getValueType() != MVT::ppcf128
)
4971 return DAG
.getNode(ISD::FP_ROUND
, N
->getDebugLoc(), VT
, N0
, N1
);
4973 // fold (fp_round (fp_extend x)) -> x
4974 if (N0
.getOpcode() == ISD::FP_EXTEND
&& VT
== N0
.getOperand(0).getValueType())
4975 return N0
.getOperand(0);
4977 // fold (fp_round (fp_round x)) -> (fp_round x)
4978 if (N0
.getOpcode() == ISD::FP_ROUND
) {
4979 // This is a value preserving truncation if both round's are.
4980 bool IsTrunc
= N
->getConstantOperandVal(1) == 1 &&
4981 N0
.getNode()->getConstantOperandVal(1) == 1;
4982 return DAG
.getNode(ISD::FP_ROUND
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
4983 DAG
.getIntPtrConstant(IsTrunc
));
4986 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
4987 if (N0
.getOpcode() == ISD::FCOPYSIGN
&& N0
.getNode()->hasOneUse()) {
4988 SDValue Tmp
= DAG
.getNode(ISD::FP_ROUND
, N0
.getDebugLoc(), VT
,
4989 N0
.getOperand(0), N1
);
4990 AddToWorkList(Tmp
.getNode());
4991 return DAG
.getNode(ISD::FCOPYSIGN
, N
->getDebugLoc(), VT
,
4992 Tmp
, N0
.getOperand(1));
4998 SDValue
DAGCombiner::visitFP_ROUND_INREG(SDNode
*N
) {
4999 SDValue N0
= N
->getOperand(0);
5000 EVT VT
= N
->getValueType(0);
5001 EVT EVT
= cast
<VTSDNode
>(N
->getOperand(1))->getVT();
5002 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
5004 // fold (fp_round_inreg c1fp) -> c1fp
5005 if (N0CFP
&& isTypeLegal(EVT
)) {
5006 SDValue Round
= DAG
.getConstantFP(*N0CFP
->getConstantFPValue(), EVT
);
5007 return DAG
.getNode(ISD::FP_EXTEND
, N
->getDebugLoc(), VT
, Round
);
5013 SDValue
DAGCombiner::visitFP_EXTEND(SDNode
*N
) {
5014 SDValue N0
= N
->getOperand(0);
5015 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
5016 EVT VT
= N
->getValueType(0);
5018 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
5019 if (N
->hasOneUse() &&
5020 N
->use_begin()->getOpcode() == ISD::FP_ROUND
)
5023 // fold (fp_extend c1fp) -> c1fp
5024 if (N0CFP
&& VT
!= MVT::ppcf128
)
5025 return DAG
.getNode(ISD::FP_EXTEND
, N
->getDebugLoc(), VT
, N0
);
5027 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
5029 if (N0
.getOpcode() == ISD::FP_ROUND
5030 && N0
.getNode()->getConstantOperandVal(1) == 1) {
5031 SDValue In
= N0
.getOperand(0);
5032 if (In
.getValueType() == VT
) return In
;
5033 if (VT
.bitsLT(In
.getValueType()))
5034 return DAG
.getNode(ISD::FP_ROUND
, N
->getDebugLoc(), VT
,
5035 In
, N0
.getOperand(1));
5036 return DAG
.getNode(ISD::FP_EXTEND
, N
->getDebugLoc(), VT
, In
);
5039 // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
5040 if (ISD::isNON_EXTLoad(N0
.getNode()) && N0
.hasOneUse() &&
5041 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
5042 TLI
.isLoadExtLegal(ISD::EXTLOAD
, N0
.getValueType()))) {
5043 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
5044 SDValue ExtLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, VT
, N
->getDebugLoc(),
5046 LN0
->getBasePtr(), LN0
->getPointerInfo(),
5048 LN0
->isVolatile(), LN0
->isNonTemporal(),
5049 LN0
->getAlignment());
5050 CombineTo(N
, ExtLoad
);
5051 CombineTo(N0
.getNode(),
5052 DAG
.getNode(ISD::FP_ROUND
, N0
.getDebugLoc(),
5053 N0
.getValueType(), ExtLoad
, DAG
.getIntPtrConstant(1)),
5054 ExtLoad
.getValue(1));
5055 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
5061 SDValue
DAGCombiner::visitFNEG(SDNode
*N
) {
5062 SDValue N0
= N
->getOperand(0);
5063 EVT VT
= N
->getValueType(0);
5065 if (isNegatibleForFree(N0
, LegalOperations
))
5066 return GetNegatedExpression(N0
, DAG
, LegalOperations
);
5068 // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
5069 // constant pool values.
5070 if (N0
.getOpcode() == ISD::BIT_CONVERT
&&
5072 N0
.getNode()->hasOneUse() &&
5073 N0
.getOperand(0).getValueType().isInteger()) {
5074 SDValue Int
= N0
.getOperand(0);
5075 EVT IntVT
= Int
.getValueType();
5076 if (IntVT
.isInteger() && !IntVT
.isVector()) {
5077 Int
= DAG
.getNode(ISD::XOR
, N0
.getDebugLoc(), IntVT
, Int
,
5078 DAG
.getConstant(APInt::getSignBit(IntVT
.getSizeInBits()), IntVT
));
5079 AddToWorkList(Int
.getNode());
5080 return DAG
.getNode(ISD::BIT_CONVERT
, N
->getDebugLoc(),
5088 SDValue
DAGCombiner::visitFABS(SDNode
*N
) {
5089 SDValue N0
= N
->getOperand(0);
5090 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
5091 EVT VT
= N
->getValueType(0);
5093 // fold (fabs c1) -> fabs(c1)
5094 if (N0CFP
&& VT
!= MVT::ppcf128
)
5095 return DAG
.getNode(ISD::FABS
, N
->getDebugLoc(), VT
, N0
);
5096 // fold (fabs (fabs x)) -> (fabs x)
5097 if (N0
.getOpcode() == ISD::FABS
)
5098 return N
->getOperand(0);
5099 // fold (fabs (fneg x)) -> (fabs x)
5100 // fold (fabs (fcopysign x, y)) -> (fabs x)
5101 if (N0
.getOpcode() == ISD::FNEG
|| N0
.getOpcode() == ISD::FCOPYSIGN
)
5102 return DAG
.getNode(ISD::FABS
, N
->getDebugLoc(), VT
, N0
.getOperand(0));
5104 // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
5105 // constant pool values.
5106 if (N0
.getOpcode() == ISD::BIT_CONVERT
&& N0
.getNode()->hasOneUse() &&
5107 N0
.getOperand(0).getValueType().isInteger() &&
5108 !N0
.getOperand(0).getValueType().isVector()) {
5109 SDValue Int
= N0
.getOperand(0);
5110 EVT IntVT
= Int
.getValueType();
5111 if (IntVT
.isInteger() && !IntVT
.isVector()) {
5112 Int
= DAG
.getNode(ISD::AND
, N0
.getDebugLoc(), IntVT
, Int
,
5113 DAG
.getConstant(~APInt::getSignBit(IntVT
.getSizeInBits()), IntVT
));
5114 AddToWorkList(Int
.getNode());
5115 return DAG
.getNode(ISD::BIT_CONVERT
, N
->getDebugLoc(),
5116 N
->getValueType(0), Int
);
5123 SDValue
DAGCombiner::visitBRCOND(SDNode
*N
) {
5124 SDValue Chain
= N
->getOperand(0);
5125 SDValue N1
= N
->getOperand(1);
5126 SDValue N2
= N
->getOperand(2);
5128 // If N is a constant we could fold this into a fallthrough or unconditional
5129 // branch. However that doesn't happen very often in normal code, because
5130 // Instcombine/SimplifyCFG should have handled the available opportunities.
5131 // If we did this folding here, it would be necessary to update the
5132 // MachineBasicBlock CFG, which is awkward.
5134 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
5136 if (N1
.getOpcode() == ISD::SETCC
&&
5137 TLI
.isOperationLegalOrCustom(ISD::BR_CC
, MVT::Other
)) {
5138 return DAG
.getNode(ISD::BR_CC
, N
->getDebugLoc(), MVT::Other
,
5139 Chain
, N1
.getOperand(2),
5140 N1
.getOperand(0), N1
.getOperand(1), N2
);
5143 if ((N1
.hasOneUse() && N1
.getOpcode() == ISD::SRL
) ||
5144 ((N1
.getOpcode() == ISD::TRUNCATE
&& N1
.hasOneUse()) &&
5145 (N1
.getOperand(0).hasOneUse() &&
5146 N1
.getOperand(0).getOpcode() == ISD::SRL
))) {
5148 if (N1
.getOpcode() == ISD::TRUNCATE
) {
5149 // Look pass the truncate.
5150 Trunc
= N1
.getNode();
5151 N1
= N1
.getOperand(0);
5154 // Match this pattern so that we can generate simpler code:
5157 // %b = and i32 %a, 2
5158 // %c = srl i32 %b, 1
5159 // brcond i32 %c ...
5164 // %b = and i32 %a, 2
5165 // %c = setcc eq %b, 0
5168 // This applies only when the AND constant value has one bit set and the
5169 // SRL constant is equal to the log2 of the AND constant. The back-end is
5170 // smart enough to convert the result into a TEST/JMP sequence.
5171 SDValue Op0
= N1
.getOperand(0);
5172 SDValue Op1
= N1
.getOperand(1);
5174 if (Op0
.getOpcode() == ISD::AND
&&
5175 Op1
.getOpcode() == ISD::Constant
) {
5176 SDValue AndOp1
= Op0
.getOperand(1);
5178 if (AndOp1
.getOpcode() == ISD::Constant
) {
5179 const APInt
&AndConst
= cast
<ConstantSDNode
>(AndOp1
)->getAPIntValue();
5181 if (AndConst
.isPowerOf2() &&
5182 cast
<ConstantSDNode
>(Op1
)->getAPIntValue()==AndConst
.logBase2()) {
5184 DAG
.getSetCC(N
->getDebugLoc(),
5185 TLI
.getSetCCResultType(Op0
.getValueType()),
5186 Op0
, DAG
.getConstant(0, Op0
.getValueType()),
5189 SDValue NewBRCond
= DAG
.getNode(ISD::BRCOND
, N
->getDebugLoc(),
5190 MVT::Other
, Chain
, SetCC
, N2
);
5191 // Don't add the new BRCond into the worklist or else SimplifySelectCC
5192 // will convert it back to (X & C1) >> C2.
5193 CombineTo(N
, NewBRCond
, false);
5194 // Truncate is dead.
5196 removeFromWorkList(Trunc
);
5197 DAG
.DeleteNode(Trunc
);
5199 // Replace the uses of SRL with SETCC
5200 WorkListRemover
DeadNodes(*this);
5201 DAG
.ReplaceAllUsesOfValueWith(N1
, SetCC
, &DeadNodes
);
5202 removeFromWorkList(N1
.getNode());
5203 DAG
.DeleteNode(N1
.getNode());
5204 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
5210 // Restore N1 if the above transformation doesn't match.
5211 N1
= N
->getOperand(1);
5214 // Transform br(xor(x, y)) -> br(x != y)
5215 // Transform br(xor(xor(x,y), 1)) -> br (x == y)
5216 if (N1
.hasOneUse() && N1
.getOpcode() == ISD::XOR
) {
5217 SDNode
*TheXor
= N1
.getNode();
5218 SDValue Op0
= TheXor
->getOperand(0);
5219 SDValue Op1
= TheXor
->getOperand(1);
5220 if (Op0
.getOpcode() == Op1
.getOpcode()) {
5221 // Avoid missing important xor optimizations.
5222 SDValue Tmp
= visitXOR(TheXor
);
5223 if (Tmp
.getNode() && Tmp
.getNode() != TheXor
) {
5224 DEBUG(dbgs() << "\nReplacing.8 ";
5226 dbgs() << "\nWith: ";
5227 Tmp
.getNode()->dump(&DAG
);
5229 WorkListRemover
DeadNodes(*this);
5230 DAG
.ReplaceAllUsesOfValueWith(N1
, Tmp
, &DeadNodes
);
5231 removeFromWorkList(TheXor
);
5232 DAG
.DeleteNode(TheXor
);
5233 return DAG
.getNode(ISD::BRCOND
, N
->getDebugLoc(),
5234 MVT::Other
, Chain
, Tmp
, N2
);
5238 if (Op0
.getOpcode() != ISD::SETCC
&& Op1
.getOpcode() != ISD::SETCC
) {
5240 if (ConstantSDNode
*RHSCI
= dyn_cast
<ConstantSDNode
>(Op0
))
5241 if (RHSCI
->getAPIntValue() == 1 && Op0
.hasOneUse() &&
5242 Op0
.getOpcode() == ISD::XOR
) {
5243 TheXor
= Op0
.getNode();
5247 EVT SetCCVT
= N1
.getValueType();
5249 SetCCVT
= TLI
.getSetCCResultType(SetCCVT
);
5250 SDValue SetCC
= DAG
.getSetCC(TheXor
->getDebugLoc(),
5253 Equal
? ISD::SETEQ
: ISD::SETNE
);
5254 // Replace the uses of XOR with SETCC
5255 WorkListRemover
DeadNodes(*this);
5256 DAG
.ReplaceAllUsesOfValueWith(N1
, SetCC
, &DeadNodes
);
5257 removeFromWorkList(N1
.getNode());
5258 DAG
.DeleteNode(N1
.getNode());
5259 return DAG
.getNode(ISD::BRCOND
, N
->getDebugLoc(),
5260 MVT::Other
, Chain
, SetCC
, N2
);
5267 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
5269 SDValue
DAGCombiner::visitBR_CC(SDNode
*N
) {
5270 CondCodeSDNode
*CC
= cast
<CondCodeSDNode
>(N
->getOperand(1));
5271 SDValue CondLHS
= N
->getOperand(2), CondRHS
= N
->getOperand(3);
5273 // If N is a constant we could fold this into a fallthrough or unconditional
5274 // branch. However that doesn't happen very often in normal code, because
5275 // Instcombine/SimplifyCFG should have handled the available opportunities.
5276 // If we did this folding here, it would be necessary to update the
5277 // MachineBasicBlock CFG, which is awkward.
5279 // Use SimplifySetCC to simplify SETCC's.
5280 SDValue Simp
= SimplifySetCC(TLI
.getSetCCResultType(CondLHS
.getValueType()),
5281 CondLHS
, CondRHS
, CC
->get(), N
->getDebugLoc(),
5283 if (Simp
.getNode()) AddToWorkList(Simp
.getNode());
5285 // fold to a simpler setcc
5286 if (Simp
.getNode() && Simp
.getOpcode() == ISD::SETCC
)
5287 return DAG
.getNode(ISD::BR_CC
, N
->getDebugLoc(), MVT::Other
,
5288 N
->getOperand(0), Simp
.getOperand(2),
5289 Simp
.getOperand(0), Simp
.getOperand(1),
5295 /// CombineToPreIndexedLoadStore - Try turning a load / store into a
5296 /// pre-indexed load / store when the base pointer is an add or subtract
5297 /// and it has other uses besides the load / store. After the
5298 /// transformation, the new indexed load / store has effectively folded
5299 /// the add / subtract in and all of its other uses are redirected to the
5300 /// new load / store.
5301 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode
*N
) {
5302 if (!LegalOperations
)
5308 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
5309 if (LD
->isIndexed())
5311 VT
= LD
->getMemoryVT();
5312 if (!TLI
.isIndexedLoadLegal(ISD::PRE_INC
, VT
) &&
5313 !TLI
.isIndexedLoadLegal(ISD::PRE_DEC
, VT
))
5315 Ptr
= LD
->getBasePtr();
5316 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
5317 if (ST
->isIndexed())
5319 VT
= ST
->getMemoryVT();
5320 if (!TLI
.isIndexedStoreLegal(ISD::PRE_INC
, VT
) &&
5321 !TLI
.isIndexedStoreLegal(ISD::PRE_DEC
, VT
))
5323 Ptr
= ST
->getBasePtr();
5329 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
5330 // out. There is no reason to make this a preinc/predec.
5331 if ((Ptr
.getOpcode() != ISD::ADD
&& Ptr
.getOpcode() != ISD::SUB
) ||
5332 Ptr
.getNode()->hasOneUse())
5335 // Ask the target to do addressing mode selection.
5338 ISD::MemIndexedMode AM
= ISD::UNINDEXED
;
5339 if (!TLI
.getPreIndexedAddressParts(N
, BasePtr
, Offset
, AM
, DAG
))
5341 // Don't create a indexed load / store with zero offset.
5342 if (isa
<ConstantSDNode
>(Offset
) &&
5343 cast
<ConstantSDNode
>(Offset
)->isNullValue())
5346 // Try turning it into a pre-indexed load / store except when:
5347 // 1) The new base ptr is a frame index.
5348 // 2) If N is a store and the new base ptr is either the same as or is a
5349 // predecessor of the value being stored.
5350 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
5351 // that would create a cycle.
5352 // 4) All uses are load / store ops that use it as old base ptr.
5354 // Check #1. Preinc'ing a frame index would require copying the stack pointer
5355 // (plus the implicit offset) to a register to preinc anyway.
5356 if (isa
<FrameIndexSDNode
>(BasePtr
) || isa
<RegisterSDNode
>(BasePtr
))
5361 SDValue Val
= cast
<StoreSDNode
>(N
)->getValue();
5362 if (Val
== BasePtr
|| BasePtr
.getNode()->isPredecessorOf(Val
.getNode()))
5366 // Now check for #3 and #4.
5367 bool RealUse
= false;
5368 for (SDNode::use_iterator I
= Ptr
.getNode()->use_begin(),
5369 E
= Ptr
.getNode()->use_end(); I
!= E
; ++I
) {
5373 if (Use
->isPredecessorOf(N
))
5376 if (!((Use
->getOpcode() == ISD::LOAD
&&
5377 cast
<LoadSDNode
>(Use
)->getBasePtr() == Ptr
) ||
5378 (Use
->getOpcode() == ISD::STORE
&&
5379 cast
<StoreSDNode
>(Use
)->getBasePtr() == Ptr
)))
5388 Result
= DAG
.getIndexedLoad(SDValue(N
,0), N
->getDebugLoc(),
5389 BasePtr
, Offset
, AM
);
5391 Result
= DAG
.getIndexedStore(SDValue(N
,0), N
->getDebugLoc(),
5392 BasePtr
, Offset
, AM
);
5395 DEBUG(dbgs() << "\nReplacing.4 ";
5397 dbgs() << "\nWith: ";
5398 Result
.getNode()->dump(&DAG
);
5400 WorkListRemover
DeadNodes(*this);
5402 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(0),
5404 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Result
.getValue(2),
5407 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(1),
5411 // Finally, since the node is now dead, remove it from the graph.
5414 // Replace the uses of Ptr with uses of the updated base value.
5415 DAG
.ReplaceAllUsesOfValueWith(Ptr
, Result
.getValue(isLoad
? 1 : 0),
5417 removeFromWorkList(Ptr
.getNode());
5418 DAG
.DeleteNode(Ptr
.getNode());
5423 /// CombineToPostIndexedLoadStore - Try to combine a load / store with a
5424 /// add / sub of the base pointer node into a post-indexed load / store.
5425 /// The transformation folded the add / subtract into the new indexed
5426 /// load / store effectively and all of its uses are redirected to the
5427 /// new load / store.
5428 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode
*N
) {
5429 if (!LegalOperations
)
5435 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
5436 if (LD
->isIndexed())
5438 VT
= LD
->getMemoryVT();
5439 if (!TLI
.isIndexedLoadLegal(ISD::POST_INC
, VT
) &&
5440 !TLI
.isIndexedLoadLegal(ISD::POST_DEC
, VT
))
5442 Ptr
= LD
->getBasePtr();
5443 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
5444 if (ST
->isIndexed())
5446 VT
= ST
->getMemoryVT();
5447 if (!TLI
.isIndexedStoreLegal(ISD::POST_INC
, VT
) &&
5448 !TLI
.isIndexedStoreLegal(ISD::POST_DEC
, VT
))
5450 Ptr
= ST
->getBasePtr();
5456 if (Ptr
.getNode()->hasOneUse())
5459 for (SDNode::use_iterator I
= Ptr
.getNode()->use_begin(),
5460 E
= Ptr
.getNode()->use_end(); I
!= E
; ++I
) {
5463 (Op
->getOpcode() != ISD::ADD
&& Op
->getOpcode() != ISD::SUB
))
5468 ISD::MemIndexedMode AM
= ISD::UNINDEXED
;
5469 if (TLI
.getPostIndexedAddressParts(N
, Op
, BasePtr
, Offset
, AM
, DAG
)) {
5470 // Don't create a indexed load / store with zero offset.
5471 if (isa
<ConstantSDNode
>(Offset
) &&
5472 cast
<ConstantSDNode
>(Offset
)->isNullValue())
5475 // Try turning it into a post-indexed load / store except when
5476 // 1) All uses are load / store ops that use it as base ptr.
5477 // 2) Op must be independent of N, i.e. Op is neither a predecessor
5478 // nor a successor of N. Otherwise, if Op is folded that would
5481 if (isa
<FrameIndexSDNode
>(BasePtr
) || isa
<RegisterSDNode
>(BasePtr
))
5485 bool TryNext
= false;
5486 for (SDNode::use_iterator II
= BasePtr
.getNode()->use_begin(),
5487 EE
= BasePtr
.getNode()->use_end(); II
!= EE
; ++II
) {
5489 if (Use
== Ptr
.getNode())
5492 // If all the uses are load / store addresses, then don't do the
5494 if (Use
->getOpcode() == ISD::ADD
|| Use
->getOpcode() == ISD::SUB
){
5495 bool RealUse
= false;
5496 for (SDNode::use_iterator III
= Use
->use_begin(),
5497 EEE
= Use
->use_end(); III
!= EEE
; ++III
) {
5498 SDNode
*UseUse
= *III
;
5499 if (!((UseUse
->getOpcode() == ISD::LOAD
&&
5500 cast
<LoadSDNode
>(UseUse
)->getBasePtr().getNode() == Use
) ||
5501 (UseUse
->getOpcode() == ISD::STORE
&&
5502 cast
<StoreSDNode
>(UseUse
)->getBasePtr().getNode() == Use
)))
5517 if (!Op
->isPredecessorOf(N
) && !N
->isPredecessorOf(Op
)) {
5518 SDValue Result
= isLoad
5519 ? DAG
.getIndexedLoad(SDValue(N
,0), N
->getDebugLoc(),
5520 BasePtr
, Offset
, AM
)
5521 : DAG
.getIndexedStore(SDValue(N
,0), N
->getDebugLoc(),
5522 BasePtr
, Offset
, AM
);
5525 DEBUG(dbgs() << "\nReplacing.5 ";
5527 dbgs() << "\nWith: ";
5528 Result
.getNode()->dump(&DAG
);
5530 WorkListRemover
DeadNodes(*this);
5532 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(0),
5534 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Result
.getValue(2),
5537 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(1),
5541 // Finally, since the node is now dead, remove it from the graph.
5544 // Replace the uses of Use with uses of the updated base value.
5545 DAG
.ReplaceAllUsesOfValueWith(SDValue(Op
, 0),
5546 Result
.getValue(isLoad
? 1 : 0),
5548 removeFromWorkList(Op
);
5558 SDValue
DAGCombiner::visitLOAD(SDNode
*N
) {
5559 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
5560 SDValue Chain
= LD
->getChain();
5561 SDValue Ptr
= LD
->getBasePtr();
5563 // If load is not volatile and there are no uses of the loaded value (and
5564 // the updated indexed value in case of indexed loads), change uses of the
5565 // chain value into uses of the chain input (i.e. delete the dead load).
5566 if (!LD
->isVolatile()) {
5567 if (N
->getValueType(1) == MVT::Other
) {
5569 if (N
->hasNUsesOfValue(0, 0)) {
5570 // It's not safe to use the two value CombineTo variant here. e.g.
5571 // v1, chain2 = load chain1, loc
5572 // v2, chain3 = load chain2, loc
5574 // Now we replace use of chain2 with chain1. This makes the second load
5575 // isomorphic to the one we are deleting, and thus makes this load live.
5576 DEBUG(dbgs() << "\nReplacing.6 ";
5578 dbgs() << "\nWith chain: ";
5579 Chain
.getNode()->dump(&DAG
);
5581 WorkListRemover
DeadNodes(*this);
5582 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Chain
, &DeadNodes
);
5584 if (N
->use_empty()) {
5585 removeFromWorkList(N
);
5589 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
5593 assert(N
->getValueType(2) == MVT::Other
&& "Malformed indexed loads?");
5594 if (N
->hasNUsesOfValue(0, 0) && N
->hasNUsesOfValue(0, 1)) {
5595 SDValue Undef
= DAG
.getUNDEF(N
->getValueType(0));
5596 DEBUG(dbgs() << "\nReplacing.7 ";
5598 dbgs() << "\nWith: ";
5599 Undef
.getNode()->dump(&DAG
);
5600 dbgs() << " and 2 other values\n");
5601 WorkListRemover
DeadNodes(*this);
5602 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Undef
, &DeadNodes
);
5603 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1),
5604 DAG
.getUNDEF(N
->getValueType(1)),
5606 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 2), Chain
, &DeadNodes
);
5607 removeFromWorkList(N
);
5609 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
5614 // If this load is directly stored, replace the load value with the stored
5616 // TODO: Handle store large -> read small portion.
5617 // TODO: Handle TRUNCSTORE/LOADEXT
5618 if (LD
->getExtensionType() == ISD::NON_EXTLOAD
&&
5619 !LD
->isVolatile()) {
5620 if (ISD::isNON_TRUNCStore(Chain
.getNode())) {
5621 StoreSDNode
*PrevST
= cast
<StoreSDNode
>(Chain
);
5622 if (PrevST
->getBasePtr() == Ptr
&&
5623 PrevST
->getValue().getValueType() == N
->getValueType(0))
5624 return CombineTo(N
, Chain
.getOperand(1), Chain
);
5628 // Try to infer better alignment information than the load already has.
5629 if (OptLevel
!= CodeGenOpt::None
&& LD
->isUnindexed()) {
5630 if (unsigned Align
= DAG
.InferPtrAlignment(Ptr
)) {
5631 if (Align
> LD
->getAlignment())
5632 return DAG
.getExtLoad(LD
->getExtensionType(), LD
->getValueType(0),
5634 Chain
, Ptr
, LD
->getPointerInfo(),
5636 LD
->isVolatile(), LD
->isNonTemporal(), Align
);
5641 // Walk up chain skipping non-aliasing memory nodes.
5642 SDValue BetterChain
= FindBetterChain(N
, Chain
);
5644 // If there is a better chain.
5645 if (Chain
!= BetterChain
) {
5648 // Replace the chain to void dependency.
5649 if (LD
->getExtensionType() == ISD::NON_EXTLOAD
) {
5650 ReplLoad
= DAG
.getLoad(N
->getValueType(0), LD
->getDebugLoc(),
5651 BetterChain
, Ptr
, LD
->getPointerInfo(),
5652 LD
->isVolatile(), LD
->isNonTemporal(),
5653 LD
->getAlignment());
5655 ReplLoad
= DAG
.getExtLoad(LD
->getExtensionType(), LD
->getValueType(0),
5657 BetterChain
, Ptr
, LD
->getPointerInfo(),
5660 LD
->isNonTemporal(),
5661 LD
->getAlignment());
5664 // Create token factor to keep old chain connected.
5665 SDValue Token
= DAG
.getNode(ISD::TokenFactor
, N
->getDebugLoc(),
5666 MVT::Other
, Chain
, ReplLoad
.getValue(1));
5668 // Make sure the new and old chains are cleaned up.
5669 AddToWorkList(Token
.getNode());
5671 // Replace uses with load result and token factor. Don't add users
5673 return CombineTo(N
, ReplLoad
.getValue(0), Token
, false);
5677 // Try transforming N to an indexed load.
5678 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
5679 return SDValue(N
, 0);
5684 /// CheckForMaskedLoad - Check to see if V is (and load (ptr), imm), where the
5685 /// load is having specific bytes cleared out. If so, return the byte size
5686 /// being masked out and the shift amount.
5687 static std::pair
<unsigned, unsigned>
5688 CheckForMaskedLoad(SDValue V
, SDValue Ptr
, SDValue Chain
) {
5689 std::pair
<unsigned, unsigned> Result(0, 0);
5691 // Check for the structure we're looking for.
5692 if (V
->getOpcode() != ISD::AND
||
5693 !isa
<ConstantSDNode
>(V
->getOperand(1)) ||
5694 !ISD::isNormalLoad(V
->getOperand(0).getNode()))
5697 // Check the chain and pointer.
5698 LoadSDNode
*LD
= cast
<LoadSDNode
>(V
->getOperand(0));
5699 if (LD
->getBasePtr() != Ptr
) return Result
; // Not from same pointer.
5701 // The store should be chained directly to the load or be an operand of a
5703 if (LD
== Chain
.getNode())
5705 else if (Chain
->getOpcode() != ISD::TokenFactor
)
5706 return Result
; // Fail.
5709 for (unsigned i
= 0, e
= Chain
->getNumOperands(); i
!= e
; ++i
)
5710 if (Chain
->getOperand(i
).getNode() == LD
) {
5714 if (!isOk
) return Result
;
5717 // This only handles simple types.
5718 if (V
.getValueType() != MVT::i16
&&
5719 V
.getValueType() != MVT::i32
&&
5720 V
.getValueType() != MVT::i64
)
5723 // Check the constant mask. Invert it so that the bits being masked out are
5724 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits
5725 // follow the sign bit for uniformity.
5726 uint64_t NotMask
= ~cast
<ConstantSDNode
>(V
->getOperand(1))->getSExtValue();
5727 unsigned NotMaskLZ
= CountLeadingZeros_64(NotMask
);
5728 if (NotMaskLZ
& 7) return Result
; // Must be multiple of a byte.
5729 unsigned NotMaskTZ
= CountTrailingZeros_64(NotMask
);
5730 if (NotMaskTZ
& 7) return Result
; // Must be multiple of a byte.
5731 if (NotMaskLZ
== 64) return Result
; // All zero mask.
5733 // See if we have a continuous run of bits. If so, we have 0*1+0*
5734 if (CountTrailingOnes_64(NotMask
>> NotMaskTZ
)+NotMaskTZ
+NotMaskLZ
!= 64)
5737 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
5738 if (V
.getValueType() != MVT::i64
&& NotMaskLZ
)
5739 NotMaskLZ
-= 64-V
.getValueSizeInBits();
5741 unsigned MaskedBytes
= (V
.getValueSizeInBits()-NotMaskLZ
-NotMaskTZ
)/8;
5742 switch (MaskedBytes
) {
5746 default: return Result
; // All one mask, or 5-byte mask.
5749 // Verify that the first bit starts at a multiple of mask so that the access
5750 // is aligned the same as the access width.
5751 if (NotMaskTZ
&& NotMaskTZ
/8 % MaskedBytes
) return Result
;
5753 Result
.first
= MaskedBytes
;
5754 Result
.second
= NotMaskTZ
/8;
5759 /// ShrinkLoadReplaceStoreWithStore - Check to see if IVal is something that
5760 /// provides a value as specified by MaskInfo. If so, replace the specified
5761 /// store with a narrower store of truncated IVal.
5763 ShrinkLoadReplaceStoreWithStore(const std::pair
<unsigned, unsigned> &MaskInfo
,
5764 SDValue IVal
, StoreSDNode
*St
,
5766 unsigned NumBytes
= MaskInfo
.first
;
5767 unsigned ByteShift
= MaskInfo
.second
;
5768 SelectionDAG
&DAG
= DC
->getDAG();
5770 // Check to see if IVal is all zeros in the part being masked in by the 'or'
5771 // that uses this. If not, this is not a replacement.
5772 APInt Mask
= ~APInt::getBitsSet(IVal
.getValueSizeInBits(),
5773 ByteShift
*8, (ByteShift
+NumBytes
)*8);
5774 if (!DAG
.MaskedValueIsZero(IVal
, Mask
)) return 0;
5776 // Check that it is legal on the target to do this. It is legal if the new
5777 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
5779 MVT VT
= MVT::getIntegerVT(NumBytes
*8);
5780 if (!DC
->isTypeLegal(VT
))
5783 // Okay, we can do this! Replace the 'St' store with a store of IVal that is
5784 // shifted by ByteShift and truncated down to NumBytes.
5786 IVal
= DAG
.getNode(ISD::SRL
, IVal
->getDebugLoc(), IVal
.getValueType(), IVal
,
5787 DAG
.getConstant(ByteShift
*8, DC
->getShiftAmountTy()));
5789 // Figure out the offset for the store and the alignment of the access.
5791 unsigned NewAlign
= St
->getAlignment();
5793 if (DAG
.getTargetLoweringInfo().isLittleEndian())
5794 StOffset
= ByteShift
;
5796 StOffset
= IVal
.getValueType().getStoreSize() - ByteShift
- NumBytes
;
5798 SDValue Ptr
= St
->getBasePtr();
5800 Ptr
= DAG
.getNode(ISD::ADD
, IVal
->getDebugLoc(), Ptr
.getValueType(),
5801 Ptr
, DAG
.getConstant(StOffset
, Ptr
.getValueType()));
5802 NewAlign
= MinAlign(NewAlign
, StOffset
);
5805 // Truncate down to the new size.
5806 IVal
= DAG
.getNode(ISD::TRUNCATE
, IVal
->getDebugLoc(), VT
, IVal
);
5809 return DAG
.getStore(St
->getChain(), St
->getDebugLoc(), IVal
, Ptr
,
5810 St
->getPointerInfo().getWithOffset(StOffset
),
5811 false, false, NewAlign
).getNode();
5815 /// ReduceLoadOpStoreWidth - Look for sequence of load / op / store where op is
5816 /// one of 'or', 'xor', and 'and' of immediates. If 'op' is only touching some
5817 /// of the loaded bits, try narrowing the load and store if it would end up
5818 /// being a win for performance or code size.
5819 SDValue
DAGCombiner::ReduceLoadOpStoreWidth(SDNode
*N
) {
5820 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
5821 if (ST
->isVolatile())
5824 SDValue Chain
= ST
->getChain();
5825 SDValue Value
= ST
->getValue();
5826 SDValue Ptr
= ST
->getBasePtr();
5827 EVT VT
= Value
.getValueType();
5829 if (ST
->isTruncatingStore() || VT
.isVector() || !Value
.hasOneUse())
5832 unsigned Opc
= Value
.getOpcode();
5834 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
5835 // is a byte mask indicating a consecutive number of bytes, check to see if
5836 // Y is known to provide just those bytes. If so, we try to replace the
5837 // load + replace + store sequence with a single (narrower) store, which makes
5839 if (Opc
== ISD::OR
) {
5840 std::pair
<unsigned, unsigned> MaskedLoad
;
5841 MaskedLoad
= CheckForMaskedLoad(Value
.getOperand(0), Ptr
, Chain
);
5842 if (MaskedLoad
.first
)
5843 if (SDNode
*NewST
= ShrinkLoadReplaceStoreWithStore(MaskedLoad
,
5844 Value
.getOperand(1), ST
,this))
5845 return SDValue(NewST
, 0);
5847 // Or is commutative, so try swapping X and Y.
5848 MaskedLoad
= CheckForMaskedLoad(Value
.getOperand(1), Ptr
, Chain
);
5849 if (MaskedLoad
.first
)
5850 if (SDNode
*NewST
= ShrinkLoadReplaceStoreWithStore(MaskedLoad
,
5851 Value
.getOperand(0), ST
,this))
5852 return SDValue(NewST
, 0);
5855 if ((Opc
!= ISD::OR
&& Opc
!= ISD::XOR
&& Opc
!= ISD::AND
) ||
5856 Value
.getOperand(1).getOpcode() != ISD::Constant
)
5859 SDValue N0
= Value
.getOperand(0);
5860 if (ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse() &&
5861 Chain
== SDValue(N0
.getNode(), 1)) {
5862 LoadSDNode
*LD
= cast
<LoadSDNode
>(N0
);
5863 if (LD
->getBasePtr() != Ptr
||
5864 LD
->getPointerInfo().getAddrSpace() !=
5865 ST
->getPointerInfo().getAddrSpace())
5868 // Find the type to narrow it the load / op / store to.
5869 SDValue N1
= Value
.getOperand(1);
5870 unsigned BitWidth
= N1
.getValueSizeInBits();
5871 APInt Imm
= cast
<ConstantSDNode
>(N1
)->getAPIntValue();
5872 if (Opc
== ISD::AND
)
5873 Imm
^= APInt::getAllOnesValue(BitWidth
);
5874 if (Imm
== 0 || Imm
.isAllOnesValue())
5876 unsigned ShAmt
= Imm
.countTrailingZeros();
5877 unsigned MSB
= BitWidth
- Imm
.countLeadingZeros() - 1;
5878 unsigned NewBW
= NextPowerOf2(MSB
- ShAmt
);
5879 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), NewBW
);
5880 while (NewBW
< BitWidth
&&
5881 !(TLI
.isOperationLegalOrCustom(Opc
, NewVT
) &&
5882 TLI
.isNarrowingProfitable(VT
, NewVT
))) {
5883 NewBW
= NextPowerOf2(NewBW
);
5884 NewVT
= EVT::getIntegerVT(*DAG
.getContext(), NewBW
);
5886 if (NewBW
>= BitWidth
)
5889 // If the lsb changed does not start at the type bitwidth boundary,
5890 // start at the previous one.
5892 ShAmt
= (((ShAmt
+ NewBW
- 1) / NewBW
) * NewBW
) - NewBW
;
5893 APInt Mask
= APInt::getBitsSet(BitWidth
, ShAmt
, ShAmt
+ NewBW
);
5894 if ((Imm
& Mask
) == Imm
) {
5895 APInt NewImm
= (Imm
& Mask
).lshr(ShAmt
).trunc(NewBW
);
5896 if (Opc
== ISD::AND
)
5897 NewImm
^= APInt::getAllOnesValue(NewBW
);
5898 uint64_t PtrOff
= ShAmt
/ 8;
5899 // For big endian targets, we need to adjust the offset to the pointer to
5900 // load the correct bytes.
5901 if (TLI
.isBigEndian())
5902 PtrOff
= (BitWidth
+ 7 - NewBW
) / 8 - PtrOff
;
5904 unsigned NewAlign
= MinAlign(LD
->getAlignment(), PtrOff
);
5905 const Type
*NewVTTy
= NewVT
.getTypeForEVT(*DAG
.getContext());
5906 if (NewAlign
< TLI
.getTargetData()->getABITypeAlignment(NewVTTy
))
5909 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, LD
->getDebugLoc(),
5910 Ptr
.getValueType(), Ptr
,
5911 DAG
.getConstant(PtrOff
, Ptr
.getValueType()));
5912 SDValue NewLD
= DAG
.getLoad(NewVT
, N0
.getDebugLoc(),
5913 LD
->getChain(), NewPtr
,
5914 LD
->getPointerInfo().getWithOffset(PtrOff
),
5915 LD
->isVolatile(), LD
->isNonTemporal(),
5917 SDValue NewVal
= DAG
.getNode(Opc
, Value
.getDebugLoc(), NewVT
, NewLD
,
5918 DAG
.getConstant(NewImm
, NewVT
));
5919 SDValue NewST
= DAG
.getStore(Chain
, N
->getDebugLoc(),
5921 ST
->getPointerInfo().getWithOffset(PtrOff
),
5922 false, false, NewAlign
);
5924 AddToWorkList(NewPtr
.getNode());
5925 AddToWorkList(NewLD
.getNode());
5926 AddToWorkList(NewVal
.getNode());
5927 WorkListRemover
DeadNodes(*this);
5928 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), NewLD
.getValue(1),
5938 SDValue
DAGCombiner::visitSTORE(SDNode
*N
) {
5939 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
5940 SDValue Chain
= ST
->getChain();
5941 SDValue Value
= ST
->getValue();
5942 SDValue Ptr
= ST
->getBasePtr();
5944 // If this is a store of a bit convert, store the input value if the
5945 // resultant store does not need a higher alignment than the original.
5946 if (Value
.getOpcode() == ISD::BIT_CONVERT
&& !ST
->isTruncatingStore() &&
5947 ST
->isUnindexed()) {
5948 unsigned OrigAlign
= ST
->getAlignment();
5949 EVT SVT
= Value
.getOperand(0).getValueType();
5950 unsigned Align
= TLI
.getTargetData()->
5951 getABITypeAlignment(SVT
.getTypeForEVT(*DAG
.getContext()));
5952 if (Align
<= OrigAlign
&&
5953 ((!LegalOperations
&& !ST
->isVolatile()) ||
5954 TLI
.isOperationLegalOrCustom(ISD::STORE
, SVT
)))
5955 return DAG
.getStore(Chain
, N
->getDebugLoc(), Value
.getOperand(0),
5956 Ptr
, ST
->getPointerInfo(), ST
->isVolatile(),
5957 ST
->isNonTemporal(), OrigAlign
);
5960 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
5961 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(Value
)) {
5962 // NOTE: If the original store is volatile, this transform must not increase
5963 // the number of stores. For example, on x86-32 an f64 can be stored in one
5964 // processor operation but an i64 (which is not legal) requires two. So the
5965 // transform should not be done in this case.
5966 if (Value
.getOpcode() != ISD::TargetConstantFP
) {
5968 switch (CFP
->getValueType(0).getSimpleVT().SimpleTy
) {
5969 default: llvm_unreachable("Unknown FP type");
5970 case MVT::f80
: // We don't do this for these yet.
5975 if ((isTypeLegal(MVT::i32
) && !LegalOperations
&& !ST
->isVolatile()) ||
5976 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i32
)) {
5977 Tmp
= DAG
.getConstant((uint32_t)CFP
->getValueAPF().
5978 bitcastToAPInt().getZExtValue(), MVT::i32
);
5979 return DAG
.getStore(Chain
, N
->getDebugLoc(), Tmp
,
5980 Ptr
, ST
->getPointerInfo(), ST
->isVolatile(),
5981 ST
->isNonTemporal(), ST
->getAlignment());
5985 if ((TLI
.isTypeLegal(MVT::i64
) && !LegalOperations
&&
5986 !ST
->isVolatile()) ||
5987 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i64
)) {
5988 Tmp
= DAG
.getConstant(CFP
->getValueAPF().bitcastToAPInt().
5989 getZExtValue(), MVT::i64
);
5990 return DAG
.getStore(Chain
, N
->getDebugLoc(), Tmp
,
5991 Ptr
, ST
->getPointerInfo(), ST
->isVolatile(),
5992 ST
->isNonTemporal(), ST
->getAlignment());
5993 } else if (!ST
->isVolatile() &&
5994 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i32
)) {
5995 // Many FP stores are not made apparent until after legalize, e.g. for
5996 // argument passing. Since this is so common, custom legalize the
5997 // 64-bit integer store into two 32-bit stores.
5998 uint64_t Val
= CFP
->getValueAPF().bitcastToAPInt().getZExtValue();
5999 SDValue Lo
= DAG
.getConstant(Val
& 0xFFFFFFFF, MVT::i32
);
6000 SDValue Hi
= DAG
.getConstant(Val
>> 32, MVT::i32
);
6001 if (TLI
.isBigEndian()) std::swap(Lo
, Hi
);
6003 unsigned Alignment
= ST
->getAlignment();
6004 bool isVolatile
= ST
->isVolatile();
6005 bool isNonTemporal
= ST
->isNonTemporal();
6007 SDValue St0
= DAG
.getStore(Chain
, ST
->getDebugLoc(), Lo
,
6008 Ptr
, ST
->getPointerInfo(),
6009 isVolatile
, isNonTemporal
,
6010 ST
->getAlignment());
6011 Ptr
= DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), Ptr
.getValueType(), Ptr
,
6012 DAG
.getConstant(4, Ptr
.getValueType()));
6013 Alignment
= MinAlign(Alignment
, 4U);
6014 SDValue St1
= DAG
.getStore(Chain
, ST
->getDebugLoc(), Hi
,
6015 Ptr
, ST
->getPointerInfo().getWithOffset(4),
6016 isVolatile
, isNonTemporal
,
6018 return DAG
.getNode(ISD::TokenFactor
, N
->getDebugLoc(), MVT::Other
,
6027 // Try to infer better alignment information than the store already has.
6028 if (OptLevel
!= CodeGenOpt::None
&& ST
->isUnindexed()) {
6029 if (unsigned Align
= DAG
.InferPtrAlignment(Ptr
)) {
6030 if (Align
> ST
->getAlignment())
6031 return DAG
.getTruncStore(Chain
, N
->getDebugLoc(), Value
,
6032 Ptr
, ST
->getPointerInfo(), ST
->getMemoryVT(),
6033 ST
->isVolatile(), ST
->isNonTemporal(), Align
);
6038 // Walk up chain skipping non-aliasing memory nodes.
6039 SDValue BetterChain
= FindBetterChain(N
, Chain
);
6041 // If there is a better chain.
6042 if (Chain
!= BetterChain
) {
6045 // Replace the chain to avoid dependency.
6046 if (ST
->isTruncatingStore()) {
6047 ReplStore
= DAG
.getTruncStore(BetterChain
, N
->getDebugLoc(), Value
, Ptr
,
6048 ST
->getPointerInfo(),
6049 ST
->getMemoryVT(), ST
->isVolatile(),
6050 ST
->isNonTemporal(), ST
->getAlignment());
6052 ReplStore
= DAG
.getStore(BetterChain
, N
->getDebugLoc(), Value
, Ptr
,
6053 ST
->getPointerInfo(),
6054 ST
->isVolatile(), ST
->isNonTemporal(),
6055 ST
->getAlignment());
6058 // Create token to keep both nodes around.
6059 SDValue Token
= DAG
.getNode(ISD::TokenFactor
, N
->getDebugLoc(),
6060 MVT::Other
, Chain
, ReplStore
);
6062 // Make sure the new and old chains are cleaned up.
6063 AddToWorkList(Token
.getNode());
6065 // Don't add users to work list.
6066 return CombineTo(N
, Token
, false);
6070 // Try transforming N to an indexed store.
6071 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
6072 return SDValue(N
, 0);
6074 // FIXME: is there such a thing as a truncating indexed store?
6075 if (ST
->isTruncatingStore() && ST
->isUnindexed() &&
6076 Value
.getValueType().isInteger()) {
6077 // See if we can simplify the input to this truncstore with knowledge that
6078 // only the low bits are being used. For example:
6079 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
6081 GetDemandedBits(Value
,
6082 APInt::getLowBitsSet(Value
.getValueSizeInBits(),
6083 ST
->getMemoryVT().getSizeInBits()));
6084 AddToWorkList(Value
.getNode());
6085 if (Shorter
.getNode())
6086 return DAG
.getTruncStore(Chain
, N
->getDebugLoc(), Shorter
,
6087 Ptr
, ST
->getPointerInfo(), ST
->getMemoryVT(),
6088 ST
->isVolatile(), ST
->isNonTemporal(),
6089 ST
->getAlignment());
6091 // Otherwise, see if we can simplify the operation with
6092 // SimplifyDemandedBits, which only works if the value has a single use.
6093 if (SimplifyDemandedBits(Value
,
6094 APInt::getLowBitsSet(
6095 Value
.getValueType().getScalarType().getSizeInBits(),
6096 ST
->getMemoryVT().getScalarType().getSizeInBits())))
6097 return SDValue(N
, 0);
6100 // If this is a load followed by a store to the same location, then the store
6102 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Value
)) {
6103 if (Ld
->getBasePtr() == Ptr
&& ST
->getMemoryVT() == Ld
->getMemoryVT() &&
6104 ST
->isUnindexed() && !ST
->isVolatile() &&
6105 // There can't be any side effects between the load and store, such as
6107 Chain
.reachesChainWithoutSideEffects(SDValue(Ld
, 1))) {
6108 // The store is dead, remove it.
6113 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
6114 // truncating store. We can do this even if this is already a truncstore.
6115 if ((Value
.getOpcode() == ISD::FP_ROUND
|| Value
.getOpcode() == ISD::TRUNCATE
)
6116 && Value
.getNode()->hasOneUse() && ST
->isUnindexed() &&
6117 TLI
.isTruncStoreLegal(Value
.getOperand(0).getValueType(),
6118 ST
->getMemoryVT())) {
6119 return DAG
.getTruncStore(Chain
, N
->getDebugLoc(), Value
.getOperand(0),
6120 Ptr
, ST
->getPointerInfo(), ST
->getMemoryVT(),
6121 ST
->isVolatile(), ST
->isNonTemporal(),
6122 ST
->getAlignment());
6125 return ReduceLoadOpStoreWidth(N
);
6128 SDValue
DAGCombiner::visitINSERT_VECTOR_ELT(SDNode
*N
) {
6129 SDValue InVec
= N
->getOperand(0);
6130 SDValue InVal
= N
->getOperand(1);
6131 SDValue EltNo
= N
->getOperand(2);
6133 // If the inserted element is an UNDEF, just use the input vector.
6134 if (InVal
.getOpcode() == ISD::UNDEF
)
6137 // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
6138 // vector with the inserted element.
6139 if (InVec
.getOpcode() == ISD::BUILD_VECTOR
&& isa
<ConstantSDNode
>(EltNo
)) {
6140 unsigned Elt
= cast
<ConstantSDNode
>(EltNo
)->getZExtValue();
6141 SmallVector
<SDValue
, 8> Ops(InVec
.getNode()->op_begin(),
6142 InVec
.getNode()->op_end());
6143 if (Elt
< Ops
.size())
6145 return DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(),
6146 InVec
.getValueType(), &Ops
[0], Ops
.size());
6148 // If the invec is an UNDEF and if EltNo is a constant, create a new
6149 // BUILD_VECTOR with undef elements and the inserted element.
6150 if (!LegalOperations
&& InVec
.getOpcode() == ISD::UNDEF
&&
6151 isa
<ConstantSDNode
>(EltNo
)) {
6152 EVT VT
= InVec
.getValueType();
6153 EVT EltVT
= VT
.getVectorElementType();
6154 unsigned NElts
= VT
.getVectorNumElements();
6155 SmallVector
<SDValue
, 8> Ops(NElts
, DAG
.getUNDEF(EltVT
));
6157 unsigned Elt
= cast
<ConstantSDNode
>(EltNo
)->getZExtValue();
6158 if (Elt
< Ops
.size())
6160 return DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(),
6161 InVec
.getValueType(), &Ops
[0], Ops
.size());
6166 SDValue
DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode
*N
) {
6167 // (vextract (scalar_to_vector val, 0) -> val
6168 SDValue InVec
= N
->getOperand(0);
6170 if (InVec
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
6171 // Check if the result type doesn't match the inserted element type. A
6172 // SCALAR_TO_VECTOR may truncate the inserted element and the
6173 // EXTRACT_VECTOR_ELT may widen the extracted vector.
6174 SDValue InOp
= InVec
.getOperand(0);
6175 EVT NVT
= N
->getValueType(0);
6176 if (InOp
.getValueType() != NVT
) {
6177 assert(InOp
.getValueType().isInteger() && NVT
.isInteger());
6178 return DAG
.getSExtOrTrunc(InOp
, InVec
.getDebugLoc(), NVT
);
6183 // Perform only after legalization to ensure build_vector / vector_shuffle
6184 // optimizations have already been done.
6185 if (!LegalOperations
) return SDValue();
6187 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
6188 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
6189 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
6190 SDValue EltNo
= N
->getOperand(1);
6192 if (isa
<ConstantSDNode
>(EltNo
)) {
6193 int Elt
= cast
<ConstantSDNode
>(EltNo
)->getZExtValue();
6194 bool NewLoad
= false;
6195 bool BCNumEltsChanged
= false;
6196 EVT VT
= InVec
.getValueType();
6197 EVT ExtVT
= VT
.getVectorElementType();
6200 if (InVec
.getOpcode() == ISD::BIT_CONVERT
) {
6201 EVT BCVT
= InVec
.getOperand(0).getValueType();
6202 if (!BCVT
.isVector() || ExtVT
.bitsGT(BCVT
.getVectorElementType()))
6204 if (VT
.getVectorNumElements() != BCVT
.getVectorNumElements())
6205 BCNumEltsChanged
= true;
6206 InVec
= InVec
.getOperand(0);
6207 ExtVT
= BCVT
.getVectorElementType();
6211 LoadSDNode
*LN0
= NULL
;
6212 const ShuffleVectorSDNode
*SVN
= NULL
;
6213 if (ISD::isNormalLoad(InVec
.getNode())) {
6214 LN0
= cast
<LoadSDNode
>(InVec
);
6215 } else if (InVec
.getOpcode() == ISD::SCALAR_TO_VECTOR
&&
6216 InVec
.getOperand(0).getValueType() == ExtVT
&&
6217 ISD::isNormalLoad(InVec
.getOperand(0).getNode())) {
6218 LN0
= cast
<LoadSDNode
>(InVec
.getOperand(0));
6219 } else if ((SVN
= dyn_cast
<ShuffleVectorSDNode
>(InVec
))) {
6220 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
6222 // (load $addr+1*size)
6224 // If the bit convert changed the number of elements, it is unsafe
6225 // to examine the mask.
6226 if (BCNumEltsChanged
)
6229 // Select the input vector, guarding against out of range extract vector.
6230 unsigned NumElems
= VT
.getVectorNumElements();
6231 int Idx
= (Elt
> (int)NumElems
) ? -1 : SVN
->getMaskElt(Elt
);
6232 InVec
= (Idx
< (int)NumElems
) ? InVec
.getOperand(0) : InVec
.getOperand(1);
6234 if (InVec
.getOpcode() == ISD::BIT_CONVERT
)
6235 InVec
= InVec
.getOperand(0);
6236 if (ISD::isNormalLoad(InVec
.getNode())) {
6237 LN0
= cast
<LoadSDNode
>(InVec
);
6238 Elt
= (Idx
< (int)NumElems
) ? Idx
: Idx
- (int)NumElems
;
6242 if (!LN0
|| !LN0
->hasOneUse() || LN0
->isVolatile())
6245 // If Idx was -1 above, Elt is going to be -1, so just return undef.
6247 return DAG
.getUNDEF(LN0
->getBasePtr().getValueType());
6249 unsigned Align
= LN0
->getAlignment();
6251 // Check the resultant load doesn't need a higher alignment than the
6254 TLI
.getTargetData()->getABITypeAlignment(LVT
.getTypeForEVT(*DAG
.getContext()));
6256 if (NewAlign
> Align
|| !TLI
.isOperationLegalOrCustom(ISD::LOAD
, LVT
))
6262 SDValue NewPtr
= LN0
->getBasePtr();
6263 unsigned PtrOff
= 0;
6266 PtrOff
= LVT
.getSizeInBits() * Elt
/ 8;
6267 EVT PtrType
= NewPtr
.getValueType();
6268 if (TLI
.isBigEndian())
6269 PtrOff
= VT
.getSizeInBits() / 8 - PtrOff
;
6270 NewPtr
= DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), PtrType
, NewPtr
,
6271 DAG
.getConstant(PtrOff
, PtrType
));
6274 return DAG
.getLoad(LVT
, N
->getDebugLoc(), LN0
->getChain(), NewPtr
,
6275 LN0
->getPointerInfo().getWithOffset(PtrOff
),
6276 LN0
->isVolatile(), LN0
->isNonTemporal(), Align
);
6282 SDValue
DAGCombiner::visitBUILD_VECTOR(SDNode
*N
) {
6283 unsigned NumInScalars
= N
->getNumOperands();
6284 EVT VT
= N
->getValueType(0);
6286 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
6287 // operations. If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
6288 // at most two distinct vectors, turn this into a shuffle node.
6289 SDValue VecIn1
, VecIn2
;
6290 for (unsigned i
= 0; i
!= NumInScalars
; ++i
) {
6291 // Ignore undef inputs.
6292 if (N
->getOperand(i
).getOpcode() == ISD::UNDEF
) continue;
6294 // If this input is something other than a EXTRACT_VECTOR_ELT with a
6295 // constant index, bail out.
6296 if (N
->getOperand(i
).getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
6297 !isa
<ConstantSDNode
>(N
->getOperand(i
).getOperand(1))) {
6298 VecIn1
= VecIn2
= SDValue(0, 0);
6302 // If the input vector type disagrees with the result of the build_vector,
6303 // we can't make a shuffle.
6304 SDValue ExtractedFromVec
= N
->getOperand(i
).getOperand(0);
6305 if (ExtractedFromVec
.getValueType() != VT
) {
6306 VecIn1
= VecIn2
= SDValue(0, 0);
6310 // Otherwise, remember this. We allow up to two distinct input vectors.
6311 if (ExtractedFromVec
== VecIn1
|| ExtractedFromVec
== VecIn2
)
6314 if (VecIn1
.getNode() == 0) {
6315 VecIn1
= ExtractedFromVec
;
6316 } else if (VecIn2
.getNode() == 0) {
6317 VecIn2
= ExtractedFromVec
;
6320 VecIn1
= VecIn2
= SDValue(0, 0);
6325 // If everything is good, we can make a shuffle operation.
6326 if (VecIn1
.getNode()) {
6327 SmallVector
<int, 8> Mask
;
6328 for (unsigned i
= 0; i
!= NumInScalars
; ++i
) {
6329 if (N
->getOperand(i
).getOpcode() == ISD::UNDEF
) {
6334 // If extracting from the first vector, just use the index directly.
6335 SDValue Extract
= N
->getOperand(i
);
6336 SDValue ExtVal
= Extract
.getOperand(1);
6337 if (Extract
.getOperand(0) == VecIn1
) {
6338 unsigned ExtIndex
= cast
<ConstantSDNode
>(ExtVal
)->getZExtValue();
6339 if (ExtIndex
> VT
.getVectorNumElements())
6342 Mask
.push_back(ExtIndex
);
6346 // Otherwise, use InIdx + VecSize
6347 unsigned Idx
= cast
<ConstantSDNode
>(ExtVal
)->getZExtValue();
6348 Mask
.push_back(Idx
+NumInScalars
);
6351 // Add count and size info.
6352 if (!isTypeLegal(VT
))
6355 // Return the new VECTOR_SHUFFLE node.
6358 Ops
[1] = VecIn2
.getNode() ? VecIn2
: DAG
.getUNDEF(VT
);
6359 return DAG
.getVectorShuffle(VT
, N
->getDebugLoc(), Ops
[0], Ops
[1], &Mask
[0]);
6365 SDValue
DAGCombiner::visitCONCAT_VECTORS(SDNode
*N
) {
6366 // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
6367 // EXTRACT_SUBVECTOR operations. If so, and if the EXTRACT_SUBVECTOR vector
6368 // inputs come from at most two distinct vectors, turn this into a shuffle
6371 // If we only have one input vector, we don't need to do any concatenation.
6372 if (N
->getNumOperands() == 1)
6373 return N
->getOperand(0);
6378 SDValue
DAGCombiner::visitVECTOR_SHUFFLE(SDNode
*N
) {
6379 EVT VT
= N
->getValueType(0);
6380 unsigned NumElts
= VT
.getVectorNumElements();
6382 SDValue N0
= N
->getOperand(0);
6384 assert(N0
.getValueType().getVectorNumElements() == NumElts
&&
6385 "Vector shuffle must be normalized in DAG");
6387 // FIXME: implement canonicalizations from DAG.getVectorShuffle()
6389 // If it is a splat, check if the argument vector is another splat or a
6390 // build_vector with all scalar elements the same.
6391 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
6392 if (SVN
->isSplat() && SVN
->getSplatIndex() < (int)NumElts
) {
6393 SDNode
*V
= N0
.getNode();
6395 // If this is a bit convert that changes the element type of the vector but
6396 // not the number of vector elements, look through it. Be careful not to
6397 // look though conversions that change things like v4f32 to v2f64.
6398 if (V
->getOpcode() == ISD::BIT_CONVERT
) {
6399 SDValue ConvInput
= V
->getOperand(0);
6400 if (ConvInput
.getValueType().isVector() &&
6401 ConvInput
.getValueType().getVectorNumElements() == NumElts
)
6402 V
= ConvInput
.getNode();
6405 if (V
->getOpcode() == ISD::BUILD_VECTOR
) {
6406 assert(V
->getNumOperands() == NumElts
&&
6407 "BUILD_VECTOR has wrong number of operands");
6409 bool AllSame
= true;
6410 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
6411 if (V
->getOperand(i
).getOpcode() != ISD::UNDEF
) {
6412 Base
= V
->getOperand(i
);
6416 // Splat of <u, u, u, u>, return <u, u, u, u>
6417 if (!Base
.getNode())
6419 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
6420 if (V
->getOperand(i
) != Base
) {
6425 // Splat of <x, x, x, x>, return <x, x, x, x>
6433 SDValue
DAGCombiner::visitMEMBARRIER(SDNode
* N
) {
6434 if (!TLI
.getShouldFoldAtomicFences())
6437 SDValue atomic
= N
->getOperand(0);
6438 switch (atomic
.getOpcode()) {
6439 case ISD::ATOMIC_CMP_SWAP
:
6440 case ISD::ATOMIC_SWAP
:
6441 case ISD::ATOMIC_LOAD_ADD
:
6442 case ISD::ATOMIC_LOAD_SUB
:
6443 case ISD::ATOMIC_LOAD_AND
:
6444 case ISD::ATOMIC_LOAD_OR
:
6445 case ISD::ATOMIC_LOAD_XOR
:
6446 case ISD::ATOMIC_LOAD_NAND
:
6447 case ISD::ATOMIC_LOAD_MIN
:
6448 case ISD::ATOMIC_LOAD_MAX
:
6449 case ISD::ATOMIC_LOAD_UMIN
:
6450 case ISD::ATOMIC_LOAD_UMAX
:
6456 SDValue fence
= atomic
.getOperand(0);
6457 if (fence
.getOpcode() != ISD::MEMBARRIER
)
6460 switch (atomic
.getOpcode()) {
6461 case ISD::ATOMIC_CMP_SWAP
:
6462 return SDValue(DAG
.UpdateNodeOperands(atomic
.getNode(),
6463 fence
.getOperand(0),
6464 atomic
.getOperand(1), atomic
.getOperand(2),
6465 atomic
.getOperand(3)), atomic
.getResNo());
6466 case ISD::ATOMIC_SWAP
:
6467 case ISD::ATOMIC_LOAD_ADD
:
6468 case ISD::ATOMIC_LOAD_SUB
:
6469 case ISD::ATOMIC_LOAD_AND
:
6470 case ISD::ATOMIC_LOAD_OR
:
6471 case ISD::ATOMIC_LOAD_XOR
:
6472 case ISD::ATOMIC_LOAD_NAND
:
6473 case ISD::ATOMIC_LOAD_MIN
:
6474 case ISD::ATOMIC_LOAD_MAX
:
6475 case ISD::ATOMIC_LOAD_UMIN
:
6476 case ISD::ATOMIC_LOAD_UMAX
:
6477 return SDValue(DAG
.UpdateNodeOperands(atomic
.getNode(),
6478 fence
.getOperand(0),
6479 atomic
.getOperand(1), atomic
.getOperand(2)),
6486 /// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
6487 /// an AND to a vector_shuffle with the destination vector and a zero vector.
6488 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
6489 /// vector_shuffle V, Zero, <0, 4, 2, 4>
6490 SDValue
DAGCombiner::XformToShuffleWithZero(SDNode
*N
) {
6491 EVT VT
= N
->getValueType(0);
6492 DebugLoc dl
= N
->getDebugLoc();
6493 SDValue LHS
= N
->getOperand(0);
6494 SDValue RHS
= N
->getOperand(1);
6495 if (N
->getOpcode() == ISD::AND
) {
6496 if (RHS
.getOpcode() == ISD::BIT_CONVERT
)
6497 RHS
= RHS
.getOperand(0);
6498 if (RHS
.getOpcode() == ISD::BUILD_VECTOR
) {
6499 SmallVector
<int, 8> Indices
;
6500 unsigned NumElts
= RHS
.getNumOperands();
6501 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
6502 SDValue Elt
= RHS
.getOperand(i
);
6503 if (!isa
<ConstantSDNode
>(Elt
))
6505 else if (cast
<ConstantSDNode
>(Elt
)->isAllOnesValue())
6506 Indices
.push_back(i
);
6507 else if (cast
<ConstantSDNode
>(Elt
)->isNullValue())
6508 Indices
.push_back(NumElts
);
6513 // Let's see if the target supports this vector_shuffle.
6514 EVT RVT
= RHS
.getValueType();
6515 if (!TLI
.isVectorClearMaskLegal(Indices
, RVT
))
6518 // Return the new VECTOR_SHUFFLE node.
6519 EVT EltVT
= RVT
.getVectorElementType();
6520 SmallVector
<SDValue
,8> ZeroOps(RVT
.getVectorNumElements(),
6521 DAG
.getConstant(0, EltVT
));
6522 SDValue Zero
= DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(),
6523 RVT
, &ZeroOps
[0], ZeroOps
.size());
6524 LHS
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, RVT
, LHS
);
6525 SDValue Shuf
= DAG
.getVectorShuffle(RVT
, dl
, LHS
, Zero
, &Indices
[0]);
6526 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, Shuf
);
6533 /// SimplifyVBinOp - Visit a binary vector operation, like ADD.
6534 SDValue
DAGCombiner::SimplifyVBinOp(SDNode
*N
) {
6535 // After legalize, the target may be depending on adds and other
6536 // binary ops to provide legal ways to construct constants or other
6537 // things. Simplifying them may result in a loss of legality.
6538 if (LegalOperations
) return SDValue();
6540 EVT VT
= N
->getValueType(0);
6541 assert(VT
.isVector() && "SimplifyVBinOp only works on vectors!");
6543 EVT EltType
= VT
.getVectorElementType();
6544 SDValue LHS
= N
->getOperand(0);
6545 SDValue RHS
= N
->getOperand(1);
6546 SDValue Shuffle
= XformToShuffleWithZero(N
);
6547 if (Shuffle
.getNode()) return Shuffle
;
6549 // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
6551 if (LHS
.getOpcode() == ISD::BUILD_VECTOR
&&
6552 RHS
.getOpcode() == ISD::BUILD_VECTOR
) {
6553 SmallVector
<SDValue
, 8> Ops
;
6554 for (unsigned i
= 0, e
= LHS
.getNumOperands(); i
!= e
; ++i
) {
6555 SDValue LHSOp
= LHS
.getOperand(i
);
6556 SDValue RHSOp
= RHS
.getOperand(i
);
6557 // If these two elements can't be folded, bail out.
6558 if ((LHSOp
.getOpcode() != ISD::UNDEF
&&
6559 LHSOp
.getOpcode() != ISD::Constant
&&
6560 LHSOp
.getOpcode() != ISD::ConstantFP
) ||
6561 (RHSOp
.getOpcode() != ISD::UNDEF
&&
6562 RHSOp
.getOpcode() != ISD::Constant
&&
6563 RHSOp
.getOpcode() != ISD::ConstantFP
))
6566 // Can't fold divide by zero.
6567 if (N
->getOpcode() == ISD::SDIV
|| N
->getOpcode() == ISD::UDIV
||
6568 N
->getOpcode() == ISD::FDIV
) {
6569 if ((RHSOp
.getOpcode() == ISD::Constant
&&
6570 cast
<ConstantSDNode
>(RHSOp
.getNode())->isNullValue()) ||
6571 (RHSOp
.getOpcode() == ISD::ConstantFP
&&
6572 cast
<ConstantFPSDNode
>(RHSOp
.getNode())->getValueAPF().isZero()))
6576 // If the vector element type is not legal, the BUILD_VECTOR operands
6577 // are promoted and implicitly truncated. Make that explicit here.
6578 if (LHSOp
.getValueType() != EltType
)
6579 LHSOp
= DAG
.getNode(ISD::TRUNCATE
, LHS
.getDebugLoc(), EltType
, LHSOp
);
6580 if (RHSOp
.getValueType() != EltType
)
6581 RHSOp
= DAG
.getNode(ISD::TRUNCATE
, RHS
.getDebugLoc(), EltType
, RHSOp
);
6583 SDValue FoldOp
= DAG
.getNode(N
->getOpcode(), LHS
.getDebugLoc(), EltType
,
6585 if (FoldOp
.getOpcode() != ISD::UNDEF
&&
6586 FoldOp
.getOpcode() != ISD::Constant
&&
6587 FoldOp
.getOpcode() != ISD::ConstantFP
)
6589 Ops
.push_back(FoldOp
);
6590 AddToWorkList(FoldOp
.getNode());
6593 if (Ops
.size() == LHS
.getNumOperands()) {
6594 EVT VT
= LHS
.getValueType();
6595 return DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(), VT
,
6596 &Ops
[0], Ops
.size());
6603 SDValue
DAGCombiner::SimplifySelect(DebugLoc DL
, SDValue N0
,
6604 SDValue N1
, SDValue N2
){
6605 assert(N0
.getOpcode() ==ISD::SETCC
&& "First argument must be a SetCC node!");
6607 SDValue SCC
= SimplifySelectCC(DL
, N0
.getOperand(0), N0
.getOperand(1), N1
, N2
,
6608 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
6610 // If we got a simplified select_cc node back from SimplifySelectCC, then
6611 // break it down into a new SETCC node, and a new SELECT node, and then return
6612 // the SELECT node, since we were called with a SELECT node.
6613 if (SCC
.getNode()) {
6614 // Check to see if we got a select_cc back (to turn into setcc/select).
6615 // Otherwise, just return whatever node we got back, like fabs.
6616 if (SCC
.getOpcode() == ISD::SELECT_CC
) {
6617 SDValue SETCC
= DAG
.getNode(ISD::SETCC
, N0
.getDebugLoc(),
6619 SCC
.getOperand(0), SCC
.getOperand(1),
6621 AddToWorkList(SETCC
.getNode());
6622 return DAG
.getNode(ISD::SELECT
, SCC
.getDebugLoc(), SCC
.getValueType(),
6623 SCC
.getOperand(2), SCC
.getOperand(3), SETCC
);
6631 /// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
6632 /// are the two values being selected between, see if we can simplify the
6633 /// select. Callers of this should assume that TheSelect is deleted if this
6634 /// returns true. As such, they should return the appropriate thing (e.g. the
6635 /// node) back to the top-level of the DAG combiner loop to avoid it being
6637 bool DAGCombiner::SimplifySelectOps(SDNode
*TheSelect
, SDValue LHS
,
6640 // If this is a select from two identical things, try to pull the operation
6641 // through the select.
6642 if (LHS
.getOpcode() != RHS
.getOpcode() ||
6643 !LHS
.hasOneUse() || !RHS
.hasOneUse())
6646 // If this is a load and the token chain is identical, replace the select
6647 // of two loads with a load through a select of the address to load from.
6648 // This triggers in things like "select bool X, 10.0, 123.0" after the FP
6649 // constants have been dropped into the constant pool.
6650 if (LHS
.getOpcode() == ISD::LOAD
) {
6651 LoadSDNode
*LLD
= cast
<LoadSDNode
>(LHS
);
6652 LoadSDNode
*RLD
= cast
<LoadSDNode
>(RHS
);
6654 // Token chains must be identical.
6655 if (LHS
.getOperand(0) != RHS
.getOperand(0) ||
6656 // Do not let this transformation reduce the number of volatile loads.
6657 LLD
->isVolatile() || RLD
->isVolatile() ||
6658 // If this is an EXTLOAD, the VT's must match.
6659 LLD
->getMemoryVT() != RLD
->getMemoryVT() ||
6660 // FIXME: this discards src value information. This is
6661 // over-conservative. It would be beneficial to be able to remember
6662 // both potential memory locations. Since we are discarding
6663 // src value info, don't do the transformation if the memory
6664 // locations are not in the default address space.
6665 LLD
->getPointerInfo().getAddrSpace() != 0 ||
6666 RLD
->getPointerInfo().getAddrSpace() != 0)
6669 // Check that the select condition doesn't reach either load. If so,
6670 // folding this will induce a cycle into the DAG. If not, this is safe to
6671 // xform, so create a select of the addresses.
6673 if (TheSelect
->getOpcode() == ISD::SELECT
) {
6674 SDNode
*CondNode
= TheSelect
->getOperand(0).getNode();
6675 if ((LLD
->hasAnyUseOfValue(1) && LLD
->isPredecessorOf(CondNode
)) ||
6676 (RLD
->hasAnyUseOfValue(1) && RLD
->isPredecessorOf(CondNode
)))
6678 Addr
= DAG
.getNode(ISD::SELECT
, TheSelect
->getDebugLoc(),
6679 LLD
->getBasePtr().getValueType(),
6680 TheSelect
->getOperand(0), LLD
->getBasePtr(),
6682 } else { // Otherwise SELECT_CC
6683 SDNode
*CondLHS
= TheSelect
->getOperand(0).getNode();
6684 SDNode
*CondRHS
= TheSelect
->getOperand(1).getNode();
6686 if ((LLD
->hasAnyUseOfValue(1) &&
6687 (LLD
->isPredecessorOf(CondLHS
) || LLD
->isPredecessorOf(CondRHS
))) ||
6688 (LLD
->hasAnyUseOfValue(1) &&
6689 (LLD
->isPredecessorOf(CondLHS
) || LLD
->isPredecessorOf(CondRHS
))))
6692 Addr
= DAG
.getNode(ISD::SELECT_CC
, TheSelect
->getDebugLoc(),
6693 LLD
->getBasePtr().getValueType(),
6694 TheSelect
->getOperand(0),
6695 TheSelect
->getOperand(1),
6696 LLD
->getBasePtr(), RLD
->getBasePtr(),
6697 TheSelect
->getOperand(4));
6701 if (LLD
->getExtensionType() == ISD::NON_EXTLOAD
) {
6702 Load
= DAG
.getLoad(TheSelect
->getValueType(0),
6703 TheSelect
->getDebugLoc(),
6704 // FIXME: Discards pointer info.
6705 LLD
->getChain(), Addr
, MachinePointerInfo(),
6706 LLD
->isVolatile(), LLD
->isNonTemporal(),
6707 LLD
->getAlignment());
6709 Load
= DAG
.getExtLoad(LLD
->getExtensionType(),
6710 TheSelect
->getValueType(0),
6711 TheSelect
->getDebugLoc(),
6712 // FIXME: Discards pointer info.
6713 LLD
->getChain(), Addr
, MachinePointerInfo(),
6714 LLD
->getMemoryVT(), LLD
->isVolatile(),
6715 LLD
->isNonTemporal(), LLD
->getAlignment());
6718 // Users of the select now use the result of the load.
6719 CombineTo(TheSelect
, Load
);
6721 // Users of the old loads now use the new load's chain. We know the
6722 // old-load value is dead now.
6723 CombineTo(LHS
.getNode(), Load
.getValue(0), Load
.getValue(1));
6724 CombineTo(RHS
.getNode(), Load
.getValue(0), Load
.getValue(1));
6731 /// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
6732 /// where 'cond' is the comparison specified by CC.
6733 SDValue
DAGCombiner::SimplifySelectCC(DebugLoc DL
, SDValue N0
, SDValue N1
,
6734 SDValue N2
, SDValue N3
,
6735 ISD::CondCode CC
, bool NotExtCompare
) {
6736 // (x ? y : y) -> y.
6737 if (N2
== N3
) return N2
;
6739 EVT VT
= N2
.getValueType();
6740 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
6741 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
6742 ConstantSDNode
*N3C
= dyn_cast
<ConstantSDNode
>(N3
.getNode());
6744 // Determine if the condition we're dealing with is constant
6745 SDValue SCC
= SimplifySetCC(TLI
.getSetCCResultType(N0
.getValueType()),
6746 N0
, N1
, CC
, DL
, false);
6747 if (SCC
.getNode()) AddToWorkList(SCC
.getNode());
6748 ConstantSDNode
*SCCC
= dyn_cast_or_null
<ConstantSDNode
>(SCC
.getNode());
6750 // fold select_cc true, x, y -> x
6751 if (SCCC
&& !SCCC
->isNullValue())
6753 // fold select_cc false, x, y -> y
6754 if (SCCC
&& SCCC
->isNullValue())
6757 // Check to see if we can simplify the select into an fabs node
6758 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N1
)) {
6759 // Allow either -0.0 or 0.0
6760 if (CFP
->getValueAPF().isZero()) {
6761 // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
6762 if ((CC
== ISD::SETGE
|| CC
== ISD::SETGT
) &&
6763 N0
== N2
&& N3
.getOpcode() == ISD::FNEG
&&
6764 N2
== N3
.getOperand(0))
6765 return DAG
.getNode(ISD::FABS
, DL
, VT
, N0
);
6767 // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
6768 if ((CC
== ISD::SETLT
|| CC
== ISD::SETLE
) &&
6769 N0
== N3
&& N2
.getOpcode() == ISD::FNEG
&&
6770 N2
.getOperand(0) == N3
)
6771 return DAG
.getNode(ISD::FABS
, DL
, VT
, N3
);
6775 // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
6776 // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
6777 // in it. This is a win when the constant is not otherwise available because
6778 // it replaces two constant pool loads with one. We only do this if the FP
6779 // type is known to be legal, because if it isn't, then we are before legalize
6780 // types an we want the other legalization to happen first (e.g. to avoid
6781 // messing with soft float) and if the ConstantFP is not legal, because if
6782 // it is legal, we may not need to store the FP constant in a constant pool.
6783 if (ConstantFPSDNode
*TV
= dyn_cast
<ConstantFPSDNode
>(N2
))
6784 if (ConstantFPSDNode
*FV
= dyn_cast
<ConstantFPSDNode
>(N3
)) {
6785 if (TLI
.isTypeLegal(N2
.getValueType()) &&
6786 (TLI
.getOperationAction(ISD::ConstantFP
, N2
.getValueType()) !=
6787 TargetLowering::Legal
) &&
6788 // If both constants have multiple uses, then we won't need to do an
6789 // extra load, they are likely around in registers for other users.
6790 (TV
->hasOneUse() || FV
->hasOneUse())) {
6791 Constant
*Elts
[] = {
6792 const_cast<ConstantFP
*>(FV
->getConstantFPValue()),
6793 const_cast<ConstantFP
*>(TV
->getConstantFPValue())
6795 const Type
*FPTy
= Elts
[0]->getType();
6796 const TargetData
&TD
= *TLI
.getTargetData();
6798 // Create a ConstantArray of the two constants.
6799 Constant
*CA
= ConstantArray::get(ArrayType::get(FPTy
, 2), Elts
, 2);
6800 SDValue CPIdx
= DAG
.getConstantPool(CA
, TLI
.getPointerTy(),
6801 TD
.getPrefTypeAlignment(FPTy
));
6802 unsigned Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlignment();
6804 // Get the offsets to the 0 and 1 element of the array so that we can
6805 // select between them.
6806 SDValue Zero
= DAG
.getIntPtrConstant(0);
6807 unsigned EltSize
= (unsigned)TD
.getTypeAllocSize(Elts
[0]->getType());
6808 SDValue One
= DAG
.getIntPtrConstant(EltSize
);
6810 SDValue Cond
= DAG
.getSetCC(DL
,
6811 TLI
.getSetCCResultType(N0
.getValueType()),
6813 SDValue CstOffset
= DAG
.getNode(ISD::SELECT
, DL
, Zero
.getValueType(),
6815 CPIdx
= DAG
.getNode(ISD::ADD
, DL
, TLI
.getPointerTy(), CPIdx
,
6817 return DAG
.getLoad(TV
->getValueType(0), DL
, DAG
.getEntryNode(), CPIdx
,
6818 MachinePointerInfo::getConstantPool(), false,
6824 // Check to see if we can perform the "gzip trick", transforming
6825 // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
6826 if (N1C
&& N3C
&& N3C
->isNullValue() && CC
== ISD::SETLT
&&
6827 N0
.getValueType().isInteger() &&
6828 N2
.getValueType().isInteger() &&
6829 (N1C
->isNullValue() || // (a < 0) ? b : 0
6830 (N1C
->getAPIntValue() == 1 && N0
== N2
))) { // (a < 1) ? a : 0
6831 EVT XType
= N0
.getValueType();
6832 EVT AType
= N2
.getValueType();
6833 if (XType
.bitsGE(AType
)) {
6834 // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
6835 // single-bit constant.
6836 if (N2C
&& ((N2C
->getAPIntValue() & (N2C
->getAPIntValue()-1)) == 0)) {
6837 unsigned ShCtV
= N2C
->getAPIntValue().logBase2();
6838 ShCtV
= XType
.getSizeInBits()-ShCtV
-1;
6839 SDValue ShCt
= DAG
.getConstant(ShCtV
, getShiftAmountTy());
6840 SDValue Shift
= DAG
.getNode(ISD::SRL
, N0
.getDebugLoc(),
6842 AddToWorkList(Shift
.getNode());
6844 if (XType
.bitsGT(AType
)) {
6845 Shift
= DAG
.getNode(ISD::TRUNCATE
, DL
, AType
, Shift
);
6846 AddToWorkList(Shift
.getNode());
6849 return DAG
.getNode(ISD::AND
, DL
, AType
, Shift
, N2
);
6852 SDValue Shift
= DAG
.getNode(ISD::SRA
, N0
.getDebugLoc(),
6854 DAG
.getConstant(XType
.getSizeInBits()-1,
6855 getShiftAmountTy()));
6856 AddToWorkList(Shift
.getNode());
6858 if (XType
.bitsGT(AType
)) {
6859 Shift
= DAG
.getNode(ISD::TRUNCATE
, DL
, AType
, Shift
);
6860 AddToWorkList(Shift
.getNode());
6863 return DAG
.getNode(ISD::AND
, DL
, AType
, Shift
, N2
);
6867 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
6868 // where y is has a single bit set.
6869 // A plaintext description would be, we can turn the SELECT_CC into an AND
6870 // when the condition can be materialized as an all-ones register. Any
6871 // single bit-test can be materialized as an all-ones register with
6872 // shift-left and shift-right-arith.
6873 if (CC
== ISD::SETEQ
&& N0
->getOpcode() == ISD::AND
&&
6874 N0
->getValueType(0) == VT
&&
6875 N1C
&& N1C
->isNullValue() &&
6876 N2C
&& N2C
->isNullValue()) {
6877 SDValue AndLHS
= N0
->getOperand(0);
6878 ConstantSDNode
*ConstAndRHS
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
6879 if (ConstAndRHS
&& ConstAndRHS
->getAPIntValue().countPopulation() == 1) {
6880 // Shift the tested bit over the sign bit.
6881 APInt AndMask
= ConstAndRHS
->getAPIntValue();
6883 DAG
.getConstant(AndMask
.countLeadingZeros(), getShiftAmountTy());
6884 SDValue Shl
= DAG
.getNode(ISD::SHL
, N0
.getDebugLoc(), VT
, AndLHS
, ShlAmt
);
6886 // Now arithmetic right shift it all the way over, so the result is either
6887 // all-ones, or zero.
6889 DAG
.getConstant(AndMask
.getBitWidth()-1, getShiftAmountTy());
6890 SDValue Shr
= DAG
.getNode(ISD::SRA
, N0
.getDebugLoc(), VT
, Shl
, ShrAmt
);
6892 return DAG
.getNode(ISD::AND
, DL
, VT
, Shr
, N3
);
6896 // fold select C, 16, 0 -> shl C, 4
6897 if (N2C
&& N3C
&& N3C
->isNullValue() && N2C
->getAPIntValue().isPowerOf2() &&
6898 TLI
.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent
) {
6900 // If the caller doesn't want us to simplify this into a zext of a compare,
6902 if (NotExtCompare
&& N2C
->getAPIntValue() == 1)
6905 // Get a SetCC of the condition
6906 // FIXME: Should probably make sure that setcc is legal if we ever have a
6907 // target where it isn't.
6909 // cast from setcc result type to select result type
6911 SCC
= DAG
.getSetCC(DL
, TLI
.getSetCCResultType(N0
.getValueType()),
6913 if (N2
.getValueType().bitsLT(SCC
.getValueType()))
6914 Temp
= DAG
.getZeroExtendInReg(SCC
, N2
.getDebugLoc(), N2
.getValueType());
6916 Temp
= DAG
.getNode(ISD::ZERO_EXTEND
, N2
.getDebugLoc(),
6917 N2
.getValueType(), SCC
);
6919 SCC
= DAG
.getSetCC(N0
.getDebugLoc(), MVT::i1
, N0
, N1
, CC
);
6920 Temp
= DAG
.getNode(ISD::ZERO_EXTEND
, N2
.getDebugLoc(),
6921 N2
.getValueType(), SCC
);
6924 AddToWorkList(SCC
.getNode());
6925 AddToWorkList(Temp
.getNode());
6927 if (N2C
->getAPIntValue() == 1)
6930 // shl setcc result by log2 n2c
6931 return DAG
.getNode(ISD::SHL
, DL
, N2
.getValueType(), Temp
,
6932 DAG
.getConstant(N2C
->getAPIntValue().logBase2(),
6933 getShiftAmountTy()));
6936 // Check to see if this is the equivalent of setcc
6937 // FIXME: Turn all of these into setcc if setcc if setcc is legal
6938 // otherwise, go ahead with the folds.
6939 if (0 && N3C
&& N3C
->isNullValue() && N2C
&& (N2C
->getAPIntValue() == 1ULL)) {
6940 EVT XType
= N0
.getValueType();
6941 if (!LegalOperations
||
6942 TLI
.isOperationLegal(ISD::SETCC
, TLI
.getSetCCResultType(XType
))) {
6943 SDValue Res
= DAG
.getSetCC(DL
, TLI
.getSetCCResultType(XType
), N0
, N1
, CC
);
6944 if (Res
.getValueType() != VT
)
6945 Res
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Res
);
6949 // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
6950 if (N1C
&& N1C
->isNullValue() && CC
== ISD::SETEQ
&&
6951 (!LegalOperations
||
6952 TLI
.isOperationLegal(ISD::CTLZ
, XType
))) {
6953 SDValue Ctlz
= DAG
.getNode(ISD::CTLZ
, N0
.getDebugLoc(), XType
, N0
);
6954 return DAG
.getNode(ISD::SRL
, DL
, XType
, Ctlz
,
6955 DAG
.getConstant(Log2_32(XType
.getSizeInBits()),
6956 getShiftAmountTy()));
6958 // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
6959 if (N1C
&& N1C
->isNullValue() && CC
== ISD::SETGT
) {
6960 SDValue NegN0
= DAG
.getNode(ISD::SUB
, N0
.getDebugLoc(),
6961 XType
, DAG
.getConstant(0, XType
), N0
);
6962 SDValue NotN0
= DAG
.getNOT(N0
.getDebugLoc(), N0
, XType
);
6963 return DAG
.getNode(ISD::SRL
, DL
, XType
,
6964 DAG
.getNode(ISD::AND
, DL
, XType
, NegN0
, NotN0
),
6965 DAG
.getConstant(XType
.getSizeInBits()-1,
6966 getShiftAmountTy()));
6968 // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
6969 if (N1C
&& N1C
->isAllOnesValue() && CC
== ISD::SETGT
) {
6970 SDValue Sign
= DAG
.getNode(ISD::SRL
, N0
.getDebugLoc(), XType
, N0
,
6971 DAG
.getConstant(XType
.getSizeInBits()-1,
6972 getShiftAmountTy()));
6973 return DAG
.getNode(ISD::XOR
, DL
, XType
, Sign
, DAG
.getConstant(1, XType
));
6977 // Check to see if this is an integer abs.
6978 // select_cc setg[te] X, 0, X, -X ->
6979 // select_cc setgt X, -1, X, -X ->
6980 // select_cc setl[te] X, 0, -X, X ->
6981 // select_cc setlt X, 1, -X, X ->
6982 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
6984 ConstantSDNode
*SubC
= NULL
;
6985 if (((N1C
->isNullValue() && (CC
== ISD::SETGT
|| CC
== ISD::SETGE
)) ||
6986 (N1C
->isAllOnesValue() && CC
== ISD::SETGT
)) &&
6987 N0
== N2
&& N3
.getOpcode() == ISD::SUB
&& N0
== N3
.getOperand(1))
6988 SubC
= dyn_cast
<ConstantSDNode
>(N3
.getOperand(0));
6989 else if (((N1C
->isNullValue() && (CC
== ISD::SETLT
|| CC
== ISD::SETLE
)) ||
6990 (N1C
->isOne() && CC
== ISD::SETLT
)) &&
6991 N0
== N3
&& N2
.getOpcode() == ISD::SUB
&& N0
== N2
.getOperand(1))
6992 SubC
= dyn_cast
<ConstantSDNode
>(N2
.getOperand(0));
6994 EVT XType
= N0
.getValueType();
6995 if (SubC
&& SubC
->isNullValue() && XType
.isInteger()) {
6996 SDValue Shift
= DAG
.getNode(ISD::SRA
, N0
.getDebugLoc(), XType
,
6998 DAG
.getConstant(XType
.getSizeInBits()-1,
6999 getShiftAmountTy()));
7000 SDValue Add
= DAG
.getNode(ISD::ADD
, N0
.getDebugLoc(),
7002 AddToWorkList(Shift
.getNode());
7003 AddToWorkList(Add
.getNode());
7004 return DAG
.getNode(ISD::XOR
, DL
, XType
, Add
, Shift
);
7011 /// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
7012 SDValue
DAGCombiner::SimplifySetCC(EVT VT
, SDValue N0
,
7013 SDValue N1
, ISD::CondCode Cond
,
7014 DebugLoc DL
, bool foldBooleans
) {
7015 TargetLowering::DAGCombinerInfo
7016 DagCombineInfo(DAG
, !LegalTypes
, !LegalOperations
, false, this);
7017 return TLI
.SimplifySetCC(VT
, N0
, N1
, Cond
, foldBooleans
, DagCombineInfo
, DL
);
7020 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
7021 /// return a DAG expression to select that will generate the same value by
7022 /// multiplying by a magic number. See:
7023 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
7024 SDValue
DAGCombiner::BuildSDIV(SDNode
*N
) {
7025 std::vector
<SDNode
*> Built
;
7026 SDValue S
= TLI
.BuildSDIV(N
, DAG
, &Built
);
7028 for (std::vector
<SDNode
*>::iterator ii
= Built
.begin(), ee
= Built
.end();
7034 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
7035 /// return a DAG expression to select that will generate the same value by
7036 /// multiplying by a magic number. See:
7037 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
7038 SDValue
DAGCombiner::BuildUDIV(SDNode
*N
) {
7039 std::vector
<SDNode
*> Built
;
7040 SDValue S
= TLI
.BuildUDIV(N
, DAG
, &Built
);
7042 for (std::vector
<SDNode
*>::iterator ii
= Built
.begin(), ee
= Built
.end();
7048 /// FindBaseOffset - Return true if base is a frame index, which is known not
7049 // to alias with anything but itself. Provides base object and offset as results.
7050 static bool FindBaseOffset(SDValue Ptr
, SDValue
&Base
, int64_t &Offset
,
7051 const GlobalValue
*&GV
, void *&CV
) {
7052 // Assume it is a primitive operation.
7053 Base
= Ptr
; Offset
= 0; GV
= 0; CV
= 0;
7055 // If it's an adding a simple constant then integrate the offset.
7056 if (Base
.getOpcode() == ISD::ADD
) {
7057 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Base
.getOperand(1))) {
7058 Base
= Base
.getOperand(0);
7059 Offset
+= C
->getZExtValue();
7063 // Return the underlying GlobalValue, and update the Offset. Return false
7064 // for GlobalAddressSDNode since the same GlobalAddress may be represented
7065 // by multiple nodes with different offsets.
7066 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Base
)) {
7067 GV
= G
->getGlobal();
7068 Offset
+= G
->getOffset();
7072 // Return the underlying Constant value, and update the Offset. Return false
7073 // for ConstantSDNodes since the same constant pool entry may be represented
7074 // by multiple nodes with different offsets.
7075 if (ConstantPoolSDNode
*C
= dyn_cast
<ConstantPoolSDNode
>(Base
)) {
7076 CV
= C
->isMachineConstantPoolEntry() ? (void *)C
->getMachineCPVal()
7077 : (void *)C
->getConstVal();
7078 Offset
+= C
->getOffset();
7081 // If it's any of the following then it can't alias with anything but itself.
7082 return isa
<FrameIndexSDNode
>(Base
);
7085 /// isAlias - Return true if there is any possibility that the two addresses
7087 bool DAGCombiner::isAlias(SDValue Ptr1
, int64_t Size1
,
7088 const Value
*SrcValue1
, int SrcValueOffset1
,
7089 unsigned SrcValueAlign1
,
7090 const MDNode
*TBAAInfo1
,
7091 SDValue Ptr2
, int64_t Size2
,
7092 const Value
*SrcValue2
, int SrcValueOffset2
,
7093 unsigned SrcValueAlign2
,
7094 const MDNode
*TBAAInfo2
) const {
7095 // If they are the same then they must be aliases.
7096 if (Ptr1
== Ptr2
) return true;
7098 // Gather base node and offset information.
7099 SDValue Base1
, Base2
;
7100 int64_t Offset1
, Offset2
;
7101 const GlobalValue
*GV1
, *GV2
;
7103 bool isFrameIndex1
= FindBaseOffset(Ptr1
, Base1
, Offset1
, GV1
, CV1
);
7104 bool isFrameIndex2
= FindBaseOffset(Ptr2
, Base2
, Offset2
, GV2
, CV2
);
7106 // If they have a same base address then check to see if they overlap.
7107 if (Base1
== Base2
|| (GV1
&& (GV1
== GV2
)) || (CV1
&& (CV1
== CV2
)))
7108 return !((Offset1
+ Size1
) <= Offset2
|| (Offset2
+ Size2
) <= Offset1
);
7110 // It is possible for different frame indices to alias each other, mostly
7111 // when tail call optimization reuses return address slots for arguments.
7112 // To catch this case, look up the actual index of frame indices to compute
7113 // the real alias relationship.
7114 if (isFrameIndex1
&& isFrameIndex2
) {
7115 MachineFrameInfo
*MFI
= DAG
.getMachineFunction().getFrameInfo();
7116 Offset1
+= MFI
->getObjectOffset(cast
<FrameIndexSDNode
>(Base1
)->getIndex());
7117 Offset2
+= MFI
->getObjectOffset(cast
<FrameIndexSDNode
>(Base2
)->getIndex());
7118 return !((Offset1
+ Size1
) <= Offset2
|| (Offset2
+ Size2
) <= Offset1
);
7121 // Otherwise, if we know what the bases are, and they aren't identical, then
7122 // we know they cannot alias.
7123 if ((isFrameIndex1
|| CV1
|| GV1
) && (isFrameIndex2
|| CV2
|| GV2
))
7126 // If we know required SrcValue1 and SrcValue2 have relatively large alignment
7127 // compared to the size and offset of the access, we may be able to prove they
7128 // do not alias. This check is conservative for now to catch cases created by
7129 // splitting vector types.
7130 if ((SrcValueAlign1
== SrcValueAlign2
) &&
7131 (SrcValueOffset1
!= SrcValueOffset2
) &&
7132 (Size1
== Size2
) && (SrcValueAlign1
> Size1
)) {
7133 int64_t OffAlign1
= SrcValueOffset1
% SrcValueAlign1
;
7134 int64_t OffAlign2
= SrcValueOffset2
% SrcValueAlign1
;
7136 // There is no overlap between these relatively aligned accesses of similar
7137 // size, return no alias.
7138 if ((OffAlign1
+ Size1
) <= OffAlign2
|| (OffAlign2
+ Size2
) <= OffAlign1
)
7142 if (CombinerGlobalAA
) {
7143 // Use alias analysis information.
7144 int64_t MinOffset
= std::min(SrcValueOffset1
, SrcValueOffset2
);
7145 int64_t Overlap1
= Size1
+ SrcValueOffset1
- MinOffset
;
7146 int64_t Overlap2
= Size2
+ SrcValueOffset2
- MinOffset
;
7147 AliasAnalysis::AliasResult AAResult
=
7148 AA
.alias(AliasAnalysis::Location(SrcValue1
, Overlap1
, TBAAInfo1
),
7149 AliasAnalysis::Location(SrcValue2
, Overlap2
, TBAAInfo2
));
7150 if (AAResult
== AliasAnalysis::NoAlias
)
7154 // Otherwise we have to assume they alias.
7158 /// FindAliasInfo - Extracts the relevant alias information from the memory
7159 /// node. Returns true if the operand was a load.
7160 bool DAGCombiner::FindAliasInfo(SDNode
*N
,
7161 SDValue
&Ptr
, int64_t &Size
,
7162 const Value
*&SrcValue
,
7163 int &SrcValueOffset
,
7164 unsigned &SrcValueAlign
,
7165 const MDNode
*&TBAAInfo
) const {
7166 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
7167 Ptr
= LD
->getBasePtr();
7168 Size
= LD
->getMemoryVT().getSizeInBits() >> 3;
7169 SrcValue
= LD
->getSrcValue();
7170 SrcValueOffset
= LD
->getSrcValueOffset();
7171 SrcValueAlign
= LD
->getOriginalAlignment();
7172 TBAAInfo
= LD
->getTBAAInfo();
7174 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
7175 Ptr
= ST
->getBasePtr();
7176 Size
= ST
->getMemoryVT().getSizeInBits() >> 3;
7177 SrcValue
= ST
->getSrcValue();
7178 SrcValueOffset
= ST
->getSrcValueOffset();
7179 SrcValueAlign
= ST
->getOriginalAlignment();
7180 TBAAInfo
= ST
->getTBAAInfo();
7182 llvm_unreachable("FindAliasInfo expected a memory operand");
7188 /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
7189 /// looking for aliasing nodes and adding them to the Aliases vector.
7190 void DAGCombiner::GatherAllAliases(SDNode
*N
, SDValue OriginalChain
,
7191 SmallVector
<SDValue
, 8> &Aliases
) {
7192 SmallVector
<SDValue
, 8> Chains
; // List of chains to visit.
7193 SmallPtrSet
<SDNode
*, 16> Visited
; // Visited node set.
7195 // Get alias information for node.
7198 const Value
*SrcValue
;
7200 unsigned SrcValueAlign
;
7201 const MDNode
*SrcTBAAInfo
;
7202 bool IsLoad
= FindAliasInfo(N
, Ptr
, Size
, SrcValue
, SrcValueOffset
,
7203 SrcValueAlign
, SrcTBAAInfo
);
7206 Chains
.push_back(OriginalChain
);
7209 // Look at each chain and determine if it is an alias. If so, add it to the
7210 // aliases list. If not, then continue up the chain looking for the next
7212 while (!Chains
.empty()) {
7213 SDValue Chain
= Chains
.back();
7216 // For TokenFactor nodes, look at each operand and only continue up the
7217 // chain until we find two aliases. If we've seen two aliases, assume we'll
7218 // find more and revert to original chain since the xform is unlikely to be
7221 // FIXME: The depth check could be made to return the last non-aliasing
7222 // chain we found before we hit a tokenfactor rather than the original
7224 if (Depth
> 6 || Aliases
.size() == 2) {
7226 Aliases
.push_back(OriginalChain
);
7230 // Don't bother if we've been before.
7231 if (!Visited
.insert(Chain
.getNode()))
7234 switch (Chain
.getOpcode()) {
7235 case ISD::EntryToken
:
7236 // Entry token is ideal chain operand, but handled in FindBetterChain.
7241 // Get alias information for Chain.
7244 const Value
*OpSrcValue
;
7245 int OpSrcValueOffset
;
7246 unsigned OpSrcValueAlign
;
7247 const MDNode
*OpSrcTBAAInfo
;
7248 bool IsOpLoad
= FindAliasInfo(Chain
.getNode(), OpPtr
, OpSize
,
7249 OpSrcValue
, OpSrcValueOffset
,
7253 // If chain is alias then stop here.
7254 if (!(IsLoad
&& IsOpLoad
) &&
7255 isAlias(Ptr
, Size
, SrcValue
, SrcValueOffset
, SrcValueAlign
,
7257 OpPtr
, OpSize
, OpSrcValue
, OpSrcValueOffset
,
7258 OpSrcValueAlign
, OpSrcTBAAInfo
)) {
7259 Aliases
.push_back(Chain
);
7261 // Look further up the chain.
7262 Chains
.push_back(Chain
.getOperand(0));
7268 case ISD::TokenFactor
:
7269 // We have to check each of the operands of the token factor for "small"
7270 // token factors, so we queue them up. Adding the operands to the queue
7271 // (stack) in reverse order maintains the original order and increases the
7272 // likelihood that getNode will find a matching token factor (CSE.)
7273 if (Chain
.getNumOperands() > 16) {
7274 Aliases
.push_back(Chain
);
7277 for (unsigned n
= Chain
.getNumOperands(); n
;)
7278 Chains
.push_back(Chain
.getOperand(--n
));
7283 // For all other instructions we will just have to take what we can get.
7284 Aliases
.push_back(Chain
);
7290 /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
7291 /// for a better chain (aliasing node.)
7292 SDValue
DAGCombiner::FindBetterChain(SDNode
*N
, SDValue OldChain
) {
7293 SmallVector
<SDValue
, 8> Aliases
; // Ops for replacing token factor.
7295 // Accumulate all the aliases to this node.
7296 GatherAllAliases(N
, OldChain
, Aliases
);
7298 if (Aliases
.size() == 0) {
7299 // If no operands then chain to entry token.
7300 return DAG
.getEntryNode();
7301 } else if (Aliases
.size() == 1) {
7302 // If a single operand then chain to it. We don't need to revisit it.
7306 // Construct a custom tailored token factor.
7307 return DAG
.getNode(ISD::TokenFactor
, N
->getDebugLoc(), MVT::Other
,
7308 &Aliases
[0], Aliases
.size());
7311 // SelectionDAG::Combine - This is the entry point for the file.
7313 void SelectionDAG::Combine(CombineLevel Level
, AliasAnalysis
&AA
,
7314 CodeGenOpt::Level OptLevel
) {
7315 /// run - This is the main entry point to this class.
7317 DAGCombiner(*this, AA
, OptLevel
).Run(Level
);