Fixed some bugs.
[llvm/zpu.git] / lib / CodeGen / SelectionDAG / FastISel.cpp
blob8171483e8f8806421fb20c2fd57de2118f2b05be
1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the FastISel class.
12 // "Fast" instruction selection is designed to emit very poor code quickly.
13 // Also, it is not designed to be able to do much lowering, so most illegal
14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is
15 // also not intended to be able to do much optimization, except in a few cases
16 // where doing optimizations reduces overall compile time. For example, folding
17 // constants into immediate fields is often done, because it's cheap and it
18 // reduces the number of instructions later phases have to examine.
20 // "Fast" instruction selection is able to fail gracefully and transfer
21 // control to the SelectionDAG selector for operations that it doesn't
22 // support. In many cases, this allows us to avoid duplicating a lot of
23 // the complicated lowering logic that SelectionDAG currently has.
25 // The intended use for "fast" instruction selection is "-O0" mode
26 // compilation, where the quality of the generated code is irrelevant when
27 // weighed against the speed at which the code can be generated. Also,
28 // at -O0, the LLVM optimizers are not running, and this makes the
29 // compile time of codegen a much higher portion of the overall compile
30 // time. Despite its limitations, "fast" instruction selection is able to
31 // handle enough code on its own to provide noticeable overall speedups
32 // in -O0 compiles.
34 // Basic operations are supported in a target-independent way, by reading
35 // the same instruction descriptions that the SelectionDAG selector reads,
36 // and identifying simple arithmetic operations that can be directly selected
37 // from simple operators. More complicated operations currently require
38 // target-specific code.
40 //===----------------------------------------------------------------------===//
42 #include "llvm/Function.h"
43 #include "llvm/GlobalVariable.h"
44 #include "llvm/Instructions.h"
45 #include "llvm/IntrinsicInst.h"
46 #include "llvm/CodeGen/FastISel.h"
47 #include "llvm/CodeGen/FunctionLoweringInfo.h"
48 #include "llvm/CodeGen/MachineInstrBuilder.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/Analysis/DebugInfo.h"
52 #include "llvm/Analysis/Loads.h"
53 #include "llvm/Target/TargetData.h"
54 #include "llvm/Target/TargetInstrInfo.h"
55 #include "llvm/Target/TargetLowering.h"
56 #include "llvm/Target/TargetMachine.h"
57 #include "llvm/Support/ErrorHandling.h"
58 using namespace llvm;
60 /// startNewBlock - Set the current block to which generated machine
61 /// instructions will be appended, and clear the local CSE map.
62 ///
63 void FastISel::startNewBlock() {
64 LocalValueMap.clear();
66 // Start out as null, meaining no local-value instructions have
67 // been emitted.
68 LastLocalValue = 0;
70 // Advance the last local value past any EH_LABEL instructions.
71 MachineBasicBlock::iterator
72 I = FuncInfo.MBB->begin(), E = FuncInfo.MBB->end();
73 while (I != E && I->getOpcode() == TargetOpcode::EH_LABEL) {
74 LastLocalValue = I;
75 ++I;
79 bool FastISel::hasTrivialKill(const Value *V) const {
80 // Don't consider constants or arguments to have trivial kills.
81 const Instruction *I = dyn_cast<Instruction>(V);
82 if (!I)
83 return false;
85 // No-op casts are trivially coalesced by fast-isel.
86 if (const CastInst *Cast = dyn_cast<CastInst>(I))
87 if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) &&
88 !hasTrivialKill(Cast->getOperand(0)))
89 return false;
91 // Only instructions with a single use in the same basic block are considered
92 // to have trivial kills.
93 return I->hasOneUse() &&
94 !(I->getOpcode() == Instruction::BitCast ||
95 I->getOpcode() == Instruction::PtrToInt ||
96 I->getOpcode() == Instruction::IntToPtr) &&
97 cast<Instruction>(*I->use_begin())->getParent() == I->getParent();
100 unsigned FastISel::getRegForValue(const Value *V) {
101 EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
102 // Don't handle non-simple values in FastISel.
103 if (!RealVT.isSimple())
104 return 0;
106 // Ignore illegal types. We must do this before looking up the value
107 // in ValueMap because Arguments are given virtual registers regardless
108 // of whether FastISel can handle them.
109 MVT VT = RealVT.getSimpleVT();
110 if (!TLI.isTypeLegal(VT)) {
111 // Promote MVT::i1 to a legal type though, because it's common and easy.
112 if (VT == MVT::i1)
113 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
114 else
115 return 0;
118 // Look up the value to see if we already have a register for it. We
119 // cache values defined by Instructions across blocks, and other values
120 // only locally. This is because Instructions already have the SSA
121 // def-dominates-use requirement enforced.
122 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
123 if (I != FuncInfo.ValueMap.end()) {
124 unsigned Reg = I->second;
125 return Reg;
127 unsigned Reg = LocalValueMap[V];
128 if (Reg != 0)
129 return Reg;
131 // In bottom-up mode, just create the virtual register which will be used
132 // to hold the value. It will be materialized later.
133 if (isa<Instruction>(V) &&
134 (!isa<AllocaInst>(V) ||
135 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
136 return FuncInfo.InitializeRegForValue(V);
138 SavePoint SaveInsertPt = enterLocalValueArea();
140 // Materialize the value in a register. Emit any instructions in the
141 // local value area.
142 Reg = materializeRegForValue(V, VT);
144 leaveLocalValueArea(SaveInsertPt);
146 return Reg;
149 /// materializeRegForValue - Helper for getRegForValue. This function is
150 /// called when the value isn't already available in a register and must
151 /// be materialized with new instructions.
152 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
153 unsigned Reg = 0;
155 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
156 if (CI->getValue().getActiveBits() <= 64)
157 Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
158 } else if (isa<AllocaInst>(V)) {
159 Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
160 } else if (isa<ConstantPointerNull>(V)) {
161 // Translate this as an integer zero so that it can be
162 // local-CSE'd with actual integer zeros.
163 Reg =
164 getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
165 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
166 // Try to emit the constant directly.
167 Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
169 if (!Reg) {
170 // Try to emit the constant by using an integer constant with a cast.
171 const APFloat &Flt = CF->getValueAPF();
172 EVT IntVT = TLI.getPointerTy();
174 uint64_t x[2];
175 uint32_t IntBitWidth = IntVT.getSizeInBits();
176 bool isExact;
177 (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
178 APFloat::rmTowardZero, &isExact);
179 if (isExact) {
180 APInt IntVal(IntBitWidth, 2, x);
182 unsigned IntegerReg =
183 getRegForValue(ConstantInt::get(V->getContext(), IntVal));
184 if (IntegerReg != 0)
185 Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
186 IntegerReg, /*Kill=*/false);
189 } else if (const Operator *Op = dyn_cast<Operator>(V)) {
190 if (!SelectOperator(Op, Op->getOpcode()))
191 if (!isa<Instruction>(Op) ||
192 !TargetSelectInstruction(cast<Instruction>(Op)))
193 return 0;
194 Reg = lookUpRegForValue(Op);
195 } else if (isa<UndefValue>(V)) {
196 Reg = createResultReg(TLI.getRegClassFor(VT));
197 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
198 TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
201 // If target-independent code couldn't handle the value, give target-specific
202 // code a try.
203 if (!Reg && isa<Constant>(V))
204 Reg = TargetMaterializeConstant(cast<Constant>(V));
206 // Don't cache constant materializations in the general ValueMap.
207 // To do so would require tracking what uses they dominate.
208 if (Reg != 0) {
209 LocalValueMap[V] = Reg;
210 LastLocalValue = MRI.getVRegDef(Reg);
212 return Reg;
215 unsigned FastISel::lookUpRegForValue(const Value *V) {
216 // Look up the value to see if we already have a register for it. We
217 // cache values defined by Instructions across blocks, and other values
218 // only locally. This is because Instructions already have the SSA
219 // def-dominates-use requirement enforced.
220 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
221 if (I != FuncInfo.ValueMap.end())
222 return I->second;
223 return LocalValueMap[V];
226 /// UpdateValueMap - Update the value map to include the new mapping for this
227 /// instruction, or insert an extra copy to get the result in a previous
228 /// determined register.
229 /// NOTE: This is only necessary because we might select a block that uses
230 /// a value before we select the block that defines the value. It might be
231 /// possible to fix this by selecting blocks in reverse postorder.
232 unsigned FastISel::UpdateValueMap(const Value *I, unsigned Reg) {
233 if (!isa<Instruction>(I)) {
234 LocalValueMap[I] = Reg;
235 return Reg;
238 unsigned &AssignedReg = FuncInfo.ValueMap[I];
239 if (AssignedReg == 0)
240 // Use the new register.
241 AssignedReg = Reg;
242 else if (Reg != AssignedReg) {
243 // Arrange for uses of AssignedReg to be replaced by uses of Reg.
244 FuncInfo.RegFixups[AssignedReg] = Reg;
246 AssignedReg = Reg;
249 return AssignedReg;
252 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
253 unsigned IdxN = getRegForValue(Idx);
254 if (IdxN == 0)
255 // Unhandled operand. Halt "fast" selection and bail.
256 return std::pair<unsigned, bool>(0, false);
258 bool IdxNIsKill = hasTrivialKill(Idx);
260 // If the index is smaller or larger than intptr_t, truncate or extend it.
261 MVT PtrVT = TLI.getPointerTy();
262 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
263 if (IdxVT.bitsLT(PtrVT)) {
264 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND,
265 IdxN, IdxNIsKill);
266 IdxNIsKill = true;
268 else if (IdxVT.bitsGT(PtrVT)) {
269 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE,
270 IdxN, IdxNIsKill);
271 IdxNIsKill = true;
273 return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
276 void FastISel::recomputeInsertPt() {
277 if (getLastLocalValue()) {
278 FuncInfo.InsertPt = getLastLocalValue();
279 FuncInfo.MBB = FuncInfo.InsertPt->getParent();
280 ++FuncInfo.InsertPt;
281 } else
282 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
284 // Now skip past any EH_LABELs, which must remain at the beginning.
285 while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
286 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
287 ++FuncInfo.InsertPt;
290 FastISel::SavePoint FastISel::enterLocalValueArea() {
291 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
292 DebugLoc OldDL = DL;
293 recomputeInsertPt();
294 DL = DebugLoc();
295 SavePoint SP = { OldInsertPt, OldDL };
296 return SP;
299 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
300 if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
301 LastLocalValue = llvm::prior(FuncInfo.InsertPt);
303 // Restore the previous insert position.
304 FuncInfo.InsertPt = OldInsertPt.InsertPt;
305 DL = OldInsertPt.DL;
308 /// SelectBinaryOp - Select and emit code for a binary operator instruction,
309 /// which has an opcode which directly corresponds to the given ISD opcode.
311 bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) {
312 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
313 if (VT == MVT::Other || !VT.isSimple())
314 // Unhandled type. Halt "fast" selection and bail.
315 return false;
317 // We only handle legal types. For example, on x86-32 the instruction
318 // selector contains all of the 64-bit instructions from x86-64,
319 // under the assumption that i64 won't be used if the target doesn't
320 // support it.
321 if (!TLI.isTypeLegal(VT)) {
322 // MVT::i1 is special. Allow AND, OR, or XOR because they
323 // don't require additional zeroing, which makes them easy.
324 if (VT == MVT::i1 &&
325 (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
326 ISDOpcode == ISD::XOR))
327 VT = TLI.getTypeToTransformTo(I->getContext(), VT);
328 else
329 return false;
332 unsigned Op0 = getRegForValue(I->getOperand(0));
333 if (Op0 == 0)
334 // Unhandled operand. Halt "fast" selection and bail.
335 return false;
337 bool Op0IsKill = hasTrivialKill(I->getOperand(0));
339 // Check if the second operand is a constant and handle it appropriately.
340 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
341 unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
342 ISDOpcode, Op0, Op0IsKill,
343 CI->getZExtValue());
344 if (ResultReg != 0) {
345 // We successfully emitted code for the given LLVM Instruction.
346 UpdateValueMap(I, ResultReg);
347 return true;
351 // Check if the second operand is a constant float.
352 if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
353 unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
354 ISDOpcode, Op0, Op0IsKill, CF);
355 if (ResultReg != 0) {
356 // We successfully emitted code for the given LLVM Instruction.
357 UpdateValueMap(I, ResultReg);
358 return true;
362 unsigned Op1 = getRegForValue(I->getOperand(1));
363 if (Op1 == 0)
364 // Unhandled operand. Halt "fast" selection and bail.
365 return false;
367 bool Op1IsKill = hasTrivialKill(I->getOperand(1));
369 // Now we have both operands in registers. Emit the instruction.
370 unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
371 ISDOpcode,
372 Op0, Op0IsKill,
373 Op1, Op1IsKill);
374 if (ResultReg == 0)
375 // Target-specific code wasn't able to find a machine opcode for
376 // the given ISD opcode and type. Halt "fast" selection and bail.
377 return false;
379 // We successfully emitted code for the given LLVM Instruction.
380 UpdateValueMap(I, ResultReg);
381 return true;
384 bool FastISel::SelectGetElementPtr(const User *I) {
385 unsigned N = getRegForValue(I->getOperand(0));
386 if (N == 0)
387 // Unhandled operand. Halt "fast" selection and bail.
388 return false;
390 bool NIsKill = hasTrivialKill(I->getOperand(0));
392 const Type *Ty = I->getOperand(0)->getType();
393 MVT VT = TLI.getPointerTy();
394 for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1,
395 E = I->op_end(); OI != E; ++OI) {
396 const Value *Idx = *OI;
397 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
398 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
399 if (Field) {
400 // N = N + Offset
401 uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
402 // FIXME: This can be optimized by combining the add with a
403 // subsequent one.
404 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, Offs, VT);
405 if (N == 0)
406 // Unhandled operand. Halt "fast" selection and bail.
407 return false;
408 NIsKill = true;
410 Ty = StTy->getElementType(Field);
411 } else {
412 Ty = cast<SequentialType>(Ty)->getElementType();
414 // If this is a constant subscript, handle it quickly.
415 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
416 if (CI->isZero()) continue;
417 uint64_t Offs =
418 TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
419 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, Offs, VT);
420 if (N == 0)
421 // Unhandled operand. Halt "fast" selection and bail.
422 return false;
423 NIsKill = true;
424 continue;
427 // N = N + Idx * ElementSize;
428 uint64_t ElementSize = TD.getTypeAllocSize(Ty);
429 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
430 unsigned IdxN = Pair.first;
431 bool IdxNIsKill = Pair.second;
432 if (IdxN == 0)
433 // Unhandled operand. Halt "fast" selection and bail.
434 return false;
436 if (ElementSize != 1) {
437 IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
438 if (IdxN == 0)
439 // Unhandled operand. Halt "fast" selection and bail.
440 return false;
441 IdxNIsKill = true;
443 N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
444 if (N == 0)
445 // Unhandled operand. Halt "fast" selection and bail.
446 return false;
450 // We successfully emitted code for the given LLVM Instruction.
451 UpdateValueMap(I, N);
452 return true;
455 bool FastISel::SelectCall(const User *I) {
456 const Function *F = cast<CallInst>(I)->getCalledFunction();
457 if (!F) return false;
459 // Handle selected intrinsic function calls.
460 unsigned IID = F->getIntrinsicID();
461 switch (IID) {
462 default: break;
463 case Intrinsic::dbg_declare: {
464 const DbgDeclareInst *DI = cast<DbgDeclareInst>(I);
465 if (!DIVariable(DI->getVariable()).Verify() ||
466 !FuncInfo.MF->getMMI().hasDebugInfo())
467 return true;
469 const Value *Address = DI->getAddress();
470 if (!Address || isa<UndefValue>(Address) || isa<AllocaInst>(Address))
471 return true;
473 unsigned Reg = 0;
474 unsigned Offset = 0;
475 if (const Argument *Arg = dyn_cast<Argument>(Address)) {
476 if (Arg->hasByValAttr()) {
477 // Byval arguments' frame index is recorded during argument lowering.
478 // Use this info directly.
479 Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
480 if (Offset)
481 Reg = TRI.getFrameRegister(*FuncInfo.MF);
484 if (!Reg)
485 Reg = getRegForValue(Address);
487 if (Reg)
488 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
489 TII.get(TargetOpcode::DBG_VALUE))
490 .addReg(Reg, RegState::Debug).addImm(Offset)
491 .addMetadata(DI->getVariable());
492 return true;
494 case Intrinsic::dbg_value: {
495 // This form of DBG_VALUE is target-independent.
496 const DbgValueInst *DI = cast<DbgValueInst>(I);
497 const TargetInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
498 const Value *V = DI->getValue();
499 if (!V) {
500 // Currently the optimizer can produce this; insert an undef to
501 // help debugging. Probably the optimizer should not do this.
502 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
503 .addReg(0U).addImm(DI->getOffset())
504 .addMetadata(DI->getVariable());
505 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
506 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
507 .addImm(CI->getZExtValue()).addImm(DI->getOffset())
508 .addMetadata(DI->getVariable());
509 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
510 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
511 .addFPImm(CF).addImm(DI->getOffset())
512 .addMetadata(DI->getVariable());
513 } else if (unsigned Reg = lookUpRegForValue(V)) {
514 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
515 .addReg(Reg, RegState::Debug).addImm(DI->getOffset())
516 .addMetadata(DI->getVariable());
517 } else {
518 // We can't yet handle anything else here because it would require
519 // generating code, thus altering codegen because of debug info.
520 // Insert an undef so we can see what we dropped.
521 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
522 .addReg(0U).addImm(DI->getOffset())
523 .addMetadata(DI->getVariable());
525 return true;
527 case Intrinsic::eh_exception: {
528 EVT VT = TLI.getValueType(I->getType());
529 switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
530 default: break;
531 case TargetLowering::Expand: {
532 assert(FuncInfo.MBB->isLandingPad() &&
533 "Call to eh.exception not in landing pad!");
534 unsigned Reg = TLI.getExceptionAddressRegister();
535 const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
536 unsigned ResultReg = createResultReg(RC);
537 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
538 ResultReg).addReg(Reg);
539 UpdateValueMap(I, ResultReg);
540 return true;
543 break;
545 case Intrinsic::eh_selector: {
546 EVT VT = TLI.getValueType(I->getType());
547 switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
548 default: break;
549 case TargetLowering::Expand: {
550 if (FuncInfo.MBB->isLandingPad())
551 AddCatchInfo(*cast<CallInst>(I), &FuncInfo.MF->getMMI(), FuncInfo.MBB);
552 else {
553 #ifndef NDEBUG
554 FuncInfo.CatchInfoLost.insert(cast<CallInst>(I));
555 #endif
556 // FIXME: Mark exception selector register as live in. Hack for PR1508.
557 unsigned Reg = TLI.getExceptionSelectorRegister();
558 if (Reg) FuncInfo.MBB->addLiveIn(Reg);
561 unsigned Reg = TLI.getExceptionSelectorRegister();
562 EVT SrcVT = TLI.getPointerTy();
563 const TargetRegisterClass *RC = TLI.getRegClassFor(SrcVT);
564 unsigned ResultReg = createResultReg(RC);
565 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
566 ResultReg).addReg(Reg);
568 bool ResultRegIsKill = hasTrivialKill(I);
570 // Cast the register to the type of the selector.
571 if (SrcVT.bitsGT(MVT::i32))
572 ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32, ISD::TRUNCATE,
573 ResultReg, ResultRegIsKill);
574 else if (SrcVT.bitsLT(MVT::i32))
575 ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32,
576 ISD::SIGN_EXTEND, ResultReg, ResultRegIsKill);
577 if (ResultReg == 0)
578 // Unhandled operand. Halt "fast" selection and bail.
579 return false;
581 UpdateValueMap(I, ResultReg);
583 return true;
586 break;
590 // An arbitrary call. Bail.
591 return false;
594 bool FastISel::SelectCast(const User *I, unsigned Opcode) {
595 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
596 EVT DstVT = TLI.getValueType(I->getType());
598 if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
599 DstVT == MVT::Other || !DstVT.isSimple())
600 // Unhandled type. Halt "fast" selection and bail.
601 return false;
603 // Check if the destination type is legal. Or as a special case,
604 // it may be i1 if we're doing a truncate because that's
605 // easy and somewhat common.
606 if (!TLI.isTypeLegal(DstVT))
607 if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE)
608 // Unhandled type. Halt "fast" selection and bail.
609 return false;
611 // Check if the source operand is legal. Or as a special case,
612 // it may be i1 if we're doing zero-extension because that's
613 // easy and somewhat common.
614 if (!TLI.isTypeLegal(SrcVT))
615 if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND)
616 // Unhandled type. Halt "fast" selection and bail.
617 return false;
619 unsigned InputReg = getRegForValue(I->getOperand(0));
620 if (!InputReg)
621 // Unhandled operand. Halt "fast" selection and bail.
622 return false;
624 bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
626 // If the operand is i1, arrange for the high bits in the register to be zero.
627 if (SrcVT == MVT::i1) {
628 SrcVT = TLI.getTypeToTransformTo(I->getContext(), SrcVT);
629 InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg, InputRegIsKill);
630 if (!InputReg)
631 return false;
632 InputRegIsKill = true;
634 // If the result is i1, truncate to the target's type for i1 first.
635 if (DstVT == MVT::i1)
636 DstVT = TLI.getTypeToTransformTo(I->getContext(), DstVT);
638 unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
639 DstVT.getSimpleVT(),
640 Opcode,
641 InputReg, InputRegIsKill);
642 if (!ResultReg)
643 return false;
645 UpdateValueMap(I, ResultReg);
646 return true;
649 bool FastISel::SelectBitCast(const User *I) {
650 // If the bitcast doesn't change the type, just use the operand value.
651 if (I->getType() == I->getOperand(0)->getType()) {
652 unsigned Reg = getRegForValue(I->getOperand(0));
653 if (Reg == 0)
654 return false;
655 UpdateValueMap(I, Reg);
656 return true;
659 // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
660 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
661 EVT DstVT = TLI.getValueType(I->getType());
663 if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
664 DstVT == MVT::Other || !DstVT.isSimple() ||
665 !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
666 // Unhandled type. Halt "fast" selection and bail.
667 return false;
669 unsigned Op0 = getRegForValue(I->getOperand(0));
670 if (Op0 == 0)
671 // Unhandled operand. Halt "fast" selection and bail.
672 return false;
674 bool Op0IsKill = hasTrivialKill(I->getOperand(0));
676 // First, try to perform the bitcast by inserting a reg-reg copy.
677 unsigned ResultReg = 0;
678 if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
679 TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
680 TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
681 // Don't attempt a cross-class copy. It will likely fail.
682 if (SrcClass == DstClass) {
683 ResultReg = createResultReg(DstClass);
684 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
685 ResultReg).addReg(Op0);
689 // If the reg-reg copy failed, select a BIT_CONVERT opcode.
690 if (!ResultReg)
691 ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
692 ISD::BIT_CONVERT, Op0, Op0IsKill);
694 if (!ResultReg)
695 return false;
697 UpdateValueMap(I, ResultReg);
698 return true;
701 bool
702 FastISel::SelectInstruction(const Instruction *I) {
703 // Just before the terminator instruction, insert instructions to
704 // feed PHI nodes in successor blocks.
705 if (isa<TerminatorInst>(I))
706 if (!HandlePHINodesInSuccessorBlocks(I->getParent()))
707 return false;
709 DL = I->getDebugLoc();
711 // First, try doing target-independent selection.
712 if (SelectOperator(I, I->getOpcode())) {
713 DL = DebugLoc();
714 return true;
717 // Next, try calling the target to attempt to handle the instruction.
718 if (TargetSelectInstruction(I)) {
719 DL = DebugLoc();
720 return true;
723 DL = DebugLoc();
724 return false;
727 /// FastEmitBranch - Emit an unconditional branch to the given block,
728 /// unless it is the immediate (fall-through) successor, and update
729 /// the CFG.
730 void
731 FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DL) {
732 if (FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
733 // The unconditional fall-through case, which needs no instructions.
734 } else {
735 // The unconditional branch case.
736 TII.InsertBranch(*FuncInfo.MBB, MSucc, NULL,
737 SmallVector<MachineOperand, 0>(), DL);
739 FuncInfo.MBB->addSuccessor(MSucc);
742 /// SelectFNeg - Emit an FNeg operation.
744 bool
745 FastISel::SelectFNeg(const User *I) {
746 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
747 if (OpReg == 0) return false;
749 bool OpRegIsKill = hasTrivialKill(I);
751 // If the target has ISD::FNEG, use it.
752 EVT VT = TLI.getValueType(I->getType());
753 unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
754 ISD::FNEG, OpReg, OpRegIsKill);
755 if (ResultReg != 0) {
756 UpdateValueMap(I, ResultReg);
757 return true;
760 // Bitcast the value to integer, twiddle the sign bit with xor,
761 // and then bitcast it back to floating-point.
762 if (VT.getSizeInBits() > 64) return false;
763 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
764 if (!TLI.isTypeLegal(IntVT))
765 return false;
767 unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
768 ISD::BIT_CONVERT, OpReg, OpRegIsKill);
769 if (IntReg == 0)
770 return false;
772 unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR,
773 IntReg, /*Kill=*/true,
774 UINT64_C(1) << (VT.getSizeInBits()-1),
775 IntVT.getSimpleVT());
776 if (IntResultReg == 0)
777 return false;
779 ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
780 ISD::BIT_CONVERT, IntResultReg, /*Kill=*/true);
781 if (ResultReg == 0)
782 return false;
784 UpdateValueMap(I, ResultReg);
785 return true;
788 bool
789 FastISel::SelectOperator(const User *I, unsigned Opcode) {
790 switch (Opcode) {
791 case Instruction::Add:
792 return SelectBinaryOp(I, ISD::ADD);
793 case Instruction::FAdd:
794 return SelectBinaryOp(I, ISD::FADD);
795 case Instruction::Sub:
796 return SelectBinaryOp(I, ISD::SUB);
797 case Instruction::FSub:
798 // FNeg is currently represented in LLVM IR as a special case of FSub.
799 if (BinaryOperator::isFNeg(I))
800 return SelectFNeg(I);
801 return SelectBinaryOp(I, ISD::FSUB);
802 case Instruction::Mul:
803 return SelectBinaryOp(I, ISD::MUL);
804 case Instruction::FMul:
805 return SelectBinaryOp(I, ISD::FMUL);
806 case Instruction::SDiv:
807 return SelectBinaryOp(I, ISD::SDIV);
808 case Instruction::UDiv:
809 return SelectBinaryOp(I, ISD::UDIV);
810 case Instruction::FDiv:
811 return SelectBinaryOp(I, ISD::FDIV);
812 case Instruction::SRem:
813 return SelectBinaryOp(I, ISD::SREM);
814 case Instruction::URem:
815 return SelectBinaryOp(I, ISD::UREM);
816 case Instruction::FRem:
817 return SelectBinaryOp(I, ISD::FREM);
818 case Instruction::Shl:
819 return SelectBinaryOp(I, ISD::SHL);
820 case Instruction::LShr:
821 return SelectBinaryOp(I, ISD::SRL);
822 case Instruction::AShr:
823 return SelectBinaryOp(I, ISD::SRA);
824 case Instruction::And:
825 return SelectBinaryOp(I, ISD::AND);
826 case Instruction::Or:
827 return SelectBinaryOp(I, ISD::OR);
828 case Instruction::Xor:
829 return SelectBinaryOp(I, ISD::XOR);
831 case Instruction::GetElementPtr:
832 return SelectGetElementPtr(I);
834 case Instruction::Br: {
835 const BranchInst *BI = cast<BranchInst>(I);
837 if (BI->isUnconditional()) {
838 const BasicBlock *LLVMSucc = BI->getSuccessor(0);
839 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
840 FastEmitBranch(MSucc, BI->getDebugLoc());
841 return true;
844 // Conditional branches are not handed yet.
845 // Halt "fast" selection and bail.
846 return false;
849 case Instruction::Unreachable:
850 // Nothing to emit.
851 return true;
853 case Instruction::Alloca:
854 // FunctionLowering has the static-sized case covered.
855 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
856 return true;
858 // Dynamic-sized alloca is not handled yet.
859 return false;
861 case Instruction::Call:
862 return SelectCall(I);
864 case Instruction::BitCast:
865 return SelectBitCast(I);
867 case Instruction::FPToSI:
868 return SelectCast(I, ISD::FP_TO_SINT);
869 case Instruction::ZExt:
870 return SelectCast(I, ISD::ZERO_EXTEND);
871 case Instruction::SExt:
872 return SelectCast(I, ISD::SIGN_EXTEND);
873 case Instruction::Trunc:
874 return SelectCast(I, ISD::TRUNCATE);
875 case Instruction::SIToFP:
876 return SelectCast(I, ISD::SINT_TO_FP);
878 case Instruction::IntToPtr: // Deliberate fall-through.
879 case Instruction::PtrToInt: {
880 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
881 EVT DstVT = TLI.getValueType(I->getType());
882 if (DstVT.bitsGT(SrcVT))
883 return SelectCast(I, ISD::ZERO_EXTEND);
884 if (DstVT.bitsLT(SrcVT))
885 return SelectCast(I, ISD::TRUNCATE);
886 unsigned Reg = getRegForValue(I->getOperand(0));
887 if (Reg == 0) return false;
888 UpdateValueMap(I, Reg);
889 return true;
892 case Instruction::PHI:
893 llvm_unreachable("FastISel shouldn't visit PHI nodes!");
895 default:
896 // Unhandled instruction. Halt "fast" selection and bail.
897 return false;
901 FastISel::FastISel(FunctionLoweringInfo &funcInfo)
902 : FuncInfo(funcInfo),
903 MRI(FuncInfo.MF->getRegInfo()),
904 MFI(*FuncInfo.MF->getFrameInfo()),
905 MCP(*FuncInfo.MF->getConstantPool()),
906 TM(FuncInfo.MF->getTarget()),
907 TD(*TM.getTargetData()),
908 TII(*TM.getInstrInfo()),
909 TLI(*TM.getTargetLowering()),
910 TRI(*TM.getRegisterInfo()) {
913 FastISel::~FastISel() {}
915 unsigned FastISel::FastEmit_(MVT, MVT,
916 unsigned) {
917 return 0;
920 unsigned FastISel::FastEmit_r(MVT, MVT,
921 unsigned,
922 unsigned /*Op0*/, bool /*Op0IsKill*/) {
923 return 0;
926 unsigned FastISel::FastEmit_rr(MVT, MVT,
927 unsigned,
928 unsigned /*Op0*/, bool /*Op0IsKill*/,
929 unsigned /*Op1*/, bool /*Op1IsKill*/) {
930 return 0;
933 unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
934 return 0;
937 unsigned FastISel::FastEmit_f(MVT, MVT,
938 unsigned, const ConstantFP * /*FPImm*/) {
939 return 0;
942 unsigned FastISel::FastEmit_ri(MVT, MVT,
943 unsigned,
944 unsigned /*Op0*/, bool /*Op0IsKill*/,
945 uint64_t /*Imm*/) {
946 return 0;
949 unsigned FastISel::FastEmit_rf(MVT, MVT,
950 unsigned,
951 unsigned /*Op0*/, bool /*Op0IsKill*/,
952 const ConstantFP * /*FPImm*/) {
953 return 0;
956 unsigned FastISel::FastEmit_rri(MVT, MVT,
957 unsigned,
958 unsigned /*Op0*/, bool /*Op0IsKill*/,
959 unsigned /*Op1*/, bool /*Op1IsKill*/,
960 uint64_t /*Imm*/) {
961 return 0;
964 /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
965 /// to emit an instruction with an immediate operand using FastEmit_ri.
966 /// If that fails, it materializes the immediate into a register and try
967 /// FastEmit_rr instead.
968 unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
969 unsigned Op0, bool Op0IsKill,
970 uint64_t Imm, MVT ImmType) {
971 // First check if immediate type is legal. If not, we can't use the ri form.
972 unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
973 if (ResultReg != 0)
974 return ResultReg;
975 unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
976 if (MaterialReg == 0)
977 return 0;
978 return FastEmit_rr(VT, VT, Opcode,
979 Op0, Op0IsKill,
980 MaterialReg, /*Kill=*/true);
983 /// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
984 /// to emit an instruction with a floating-point immediate operand using
985 /// FastEmit_rf. If that fails, it materializes the immediate into a register
986 /// and try FastEmit_rr instead.
987 unsigned FastISel::FastEmit_rf_(MVT VT, unsigned Opcode,
988 unsigned Op0, bool Op0IsKill,
989 const ConstantFP *FPImm, MVT ImmType) {
990 // First check if immediate type is legal. If not, we can't use the rf form.
991 unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, Op0IsKill, FPImm);
992 if (ResultReg != 0)
993 return ResultReg;
995 // Materialize the constant in a register.
996 unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
997 if (MaterialReg == 0) {
998 // If the target doesn't have a way to directly enter a floating-point
999 // value into a register, use an alternate approach.
1000 // TODO: The current approach only supports floating-point constants
1001 // that can be constructed by conversion from integer values. This should
1002 // be replaced by code that creates a load from a constant-pool entry,
1003 // which will require some target-specific work.
1004 const APFloat &Flt = FPImm->getValueAPF();
1005 EVT IntVT = TLI.getPointerTy();
1007 uint64_t x[2];
1008 uint32_t IntBitWidth = IntVT.getSizeInBits();
1009 bool isExact;
1010 (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
1011 APFloat::rmTowardZero, &isExact);
1012 if (!isExact)
1013 return 0;
1014 APInt IntVal(IntBitWidth, 2, x);
1016 unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
1017 ISD::Constant, IntVal.getZExtValue());
1018 if (IntegerReg == 0)
1019 return 0;
1020 MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
1021 ISD::SINT_TO_FP, IntegerReg, /*Kill=*/true);
1022 if (MaterialReg == 0)
1023 return 0;
1025 return FastEmit_rr(VT, VT, Opcode,
1026 Op0, Op0IsKill,
1027 MaterialReg, /*Kill=*/true);
1030 unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
1031 return MRI.createVirtualRegister(RC);
1034 unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
1035 const TargetRegisterClass* RC) {
1036 unsigned ResultReg = createResultReg(RC);
1037 const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1039 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg);
1040 return ResultReg;
1043 unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
1044 const TargetRegisterClass *RC,
1045 unsigned Op0, bool Op0IsKill) {
1046 unsigned ResultReg = createResultReg(RC);
1047 const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1049 if (II.getNumDefs() >= 1)
1050 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1051 .addReg(Op0, Op0IsKill * RegState::Kill);
1052 else {
1053 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1054 .addReg(Op0, Op0IsKill * RegState::Kill);
1055 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1056 ResultReg).addReg(II.ImplicitDefs[0]);
1059 return ResultReg;
1062 unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
1063 const TargetRegisterClass *RC,
1064 unsigned Op0, bool Op0IsKill,
1065 unsigned Op1, bool Op1IsKill) {
1066 unsigned ResultReg = createResultReg(RC);
1067 const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1069 if (II.getNumDefs() >= 1)
1070 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1071 .addReg(Op0, Op0IsKill * RegState::Kill)
1072 .addReg(Op1, Op1IsKill * RegState::Kill);
1073 else {
1074 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1075 .addReg(Op0, Op0IsKill * RegState::Kill)
1076 .addReg(Op1, Op1IsKill * RegState::Kill);
1077 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1078 ResultReg).addReg(II.ImplicitDefs[0]);
1080 return ResultReg;
1083 unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
1084 const TargetRegisterClass *RC,
1085 unsigned Op0, bool Op0IsKill,
1086 uint64_t Imm) {
1087 unsigned ResultReg = createResultReg(RC);
1088 const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1090 if (II.getNumDefs() >= 1)
1091 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1092 .addReg(Op0, Op0IsKill * RegState::Kill)
1093 .addImm(Imm);
1094 else {
1095 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1096 .addReg(Op0, Op0IsKill * RegState::Kill)
1097 .addImm(Imm);
1098 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1099 ResultReg).addReg(II.ImplicitDefs[0]);
1101 return ResultReg;
1104 unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
1105 const TargetRegisterClass *RC,
1106 unsigned Op0, bool Op0IsKill,
1107 const ConstantFP *FPImm) {
1108 unsigned ResultReg = createResultReg(RC);
1109 const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1111 if (II.getNumDefs() >= 1)
1112 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1113 .addReg(Op0, Op0IsKill * RegState::Kill)
1114 .addFPImm(FPImm);
1115 else {
1116 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1117 .addReg(Op0, Op0IsKill * RegState::Kill)
1118 .addFPImm(FPImm);
1119 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1120 ResultReg).addReg(II.ImplicitDefs[0]);
1122 return ResultReg;
1125 unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
1126 const TargetRegisterClass *RC,
1127 unsigned Op0, bool Op0IsKill,
1128 unsigned Op1, bool Op1IsKill,
1129 uint64_t Imm) {
1130 unsigned ResultReg = createResultReg(RC);
1131 const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1133 if (II.getNumDefs() >= 1)
1134 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1135 .addReg(Op0, Op0IsKill * RegState::Kill)
1136 .addReg(Op1, Op1IsKill * RegState::Kill)
1137 .addImm(Imm);
1138 else {
1139 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1140 .addReg(Op0, Op0IsKill * RegState::Kill)
1141 .addReg(Op1, Op1IsKill * RegState::Kill)
1142 .addImm(Imm);
1143 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1144 ResultReg).addReg(II.ImplicitDefs[0]);
1146 return ResultReg;
1149 unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
1150 const TargetRegisterClass *RC,
1151 uint64_t Imm) {
1152 unsigned ResultReg = createResultReg(RC);
1153 const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1155 if (II.getNumDefs() >= 1)
1156 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg).addImm(Imm);
1157 else {
1158 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm);
1159 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1160 ResultReg).addReg(II.ImplicitDefs[0]);
1162 return ResultReg;
1165 unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
1166 unsigned Op0, bool Op0IsKill,
1167 uint32_t Idx) {
1168 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1169 assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
1170 "Cannot yet extract from physregs");
1171 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
1172 DL, TII.get(TargetOpcode::COPY), ResultReg)
1173 .addReg(Op0, getKillRegState(Op0IsKill), Idx);
1174 return ResultReg;
1177 /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1178 /// with all but the least significant bit set to zero.
1179 unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
1180 return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
1183 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
1184 /// Emit code to ensure constants are copied into registers when needed.
1185 /// Remember the virtual registers that need to be added to the Machine PHI
1186 /// nodes as input. We cannot just directly add them, because expansion
1187 /// might result in multiple MBB's for one BB. As such, the start of the
1188 /// BB might correspond to a different MBB than the end.
1189 bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
1190 const TerminatorInst *TI = LLVMBB->getTerminator();
1192 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
1193 unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
1195 // Check successor nodes' PHI nodes that expect a constant to be available
1196 // from this block.
1197 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
1198 const BasicBlock *SuccBB = TI->getSuccessor(succ);
1199 if (!isa<PHINode>(SuccBB->begin())) continue;
1200 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
1202 // If this terminator has multiple identical successors (common for
1203 // switches), only handle each succ once.
1204 if (!SuccsHandled.insert(SuccMBB)) continue;
1206 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
1208 // At this point we know that there is a 1-1 correspondence between LLVM PHI
1209 // nodes and Machine PHI nodes, but the incoming operands have not been
1210 // emitted yet.
1211 for (BasicBlock::const_iterator I = SuccBB->begin();
1212 const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1214 // Ignore dead phi's.
1215 if (PN->use_empty()) continue;
1217 // Only handle legal types. Two interesting things to note here. First,
1218 // by bailing out early, we may leave behind some dead instructions,
1219 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
1220 // own moves. Second, this check is necessary becuase FastISel doesn't
1221 // use CreateRegs to create registers, so it always creates
1222 // exactly one register for each non-void instruction.
1223 EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
1224 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
1225 // Promote MVT::i1.
1226 if (VT == MVT::i1)
1227 VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT);
1228 else {
1229 FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1230 return false;
1234 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
1236 // Set the DebugLoc for the copy. Prefer the location of the operand
1237 // if there is one; use the location of the PHI otherwise.
1238 DL = PN->getDebugLoc();
1239 if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp))
1240 DL = Inst->getDebugLoc();
1242 unsigned Reg = getRegForValue(PHIOp);
1243 if (Reg == 0) {
1244 FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1245 return false;
1247 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
1248 DL = DebugLoc();
1252 return true;