1 //===---- ScheduleDAGList.cpp - Implement a list scheduler for isel DAG ---===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements a top-down list scheduler, using standard algorithms.
11 // The basic approach uses a priority queue of available nodes to schedule.
12 // One at a time, nodes are taken from the priority queue (thus in priority
13 // order), checked for legality to schedule, and emitted if legal.
15 // Nodes may not be legal to schedule either due to structural hazards (e.g.
16 // pipeline or resource constraints) or because an input to the instruction has
17 // not completed execution.
19 //===----------------------------------------------------------------------===//
21 #define DEBUG_TYPE "pre-RA-sched"
22 #include "ScheduleDAGSDNodes.h"
23 #include "llvm/CodeGen/LatencyPriorityQueue.h"
24 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
25 #include "llvm/CodeGen/SchedulerRegistry.h"
26 #include "llvm/CodeGen/SelectionDAGISel.h"
27 #include "llvm/Target/TargetRegisterInfo.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/Target/TargetInstrInfo.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/ADT/Statistic.h"
37 STATISTIC(NumNoops
, "Number of noops inserted");
38 STATISTIC(NumStalls
, "Number of pipeline stalls");
40 static RegisterScheduler
41 tdListDAGScheduler("list-td", "Top-down list scheduler",
42 createTDListDAGScheduler
);
45 //===----------------------------------------------------------------------===//
46 /// ScheduleDAGList - The actual list scheduler implementation. This supports
47 /// top-down scheduling.
49 class ScheduleDAGList
: public ScheduleDAGSDNodes
{
51 /// AvailableQueue - The priority queue to use for the available SUnits.
53 SchedulingPriorityQueue
*AvailableQueue
;
55 /// PendingQueue - This contains all of the instructions whose operands have
56 /// been issued, but their results are not ready yet (due to the latency of
57 /// the operation). Once the operands become available, the instruction is
58 /// added to the AvailableQueue.
59 std::vector
<SUnit
*> PendingQueue
;
61 /// HazardRec - The hazard recognizer to use.
62 ScheduleHazardRecognizer
*HazardRec
;
65 ScheduleDAGList(MachineFunction
&mf
,
66 SchedulingPriorityQueue
*availqueue
,
67 ScheduleHazardRecognizer
*HR
)
68 : ScheduleDAGSDNodes(mf
),
69 AvailableQueue(availqueue
), HazardRec(HR
) {
74 delete AvailableQueue
;
80 void ReleaseSucc(SUnit
*SU
, const SDep
&D
);
81 void ReleaseSuccessors(SUnit
*SU
);
82 void ScheduleNodeTopDown(SUnit
*SU
, unsigned CurCycle
);
83 void ListScheduleTopDown();
85 } // end anonymous namespace
87 /// Schedule - Schedule the DAG using list scheduling.
88 void ScheduleDAGList::Schedule() {
89 DEBUG(dbgs() << "********** List Scheduling **********\n");
91 // Build the scheduling graph.
92 BuildSchedGraph(NULL
);
94 AvailableQueue
->initNodes(SUnits
);
96 ListScheduleTopDown();
98 AvailableQueue
->releaseState();
101 //===----------------------------------------------------------------------===//
102 // Top-Down Scheduling
103 //===----------------------------------------------------------------------===//
105 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
106 /// the PendingQueue if the count reaches zero. Also update its cycle bound.
107 void ScheduleDAGList::ReleaseSucc(SUnit
*SU
, const SDep
&D
) {
108 SUnit
*SuccSU
= D
.getSUnit();
111 if (SuccSU
->NumPredsLeft
== 0) {
112 dbgs() << "*** Scheduling failed! ***\n";
114 dbgs() << " has been released too many times!\n";
118 --SuccSU
->NumPredsLeft
;
120 SuccSU
->setDepthToAtLeast(SU
->getDepth() + D
.getLatency());
122 // If all the node's predecessors are scheduled, this node is ready
123 // to be scheduled. Ignore the special ExitSU node.
124 if (SuccSU
->NumPredsLeft
== 0 && SuccSU
!= &ExitSU
)
125 PendingQueue
.push_back(SuccSU
);
128 void ScheduleDAGList::ReleaseSuccessors(SUnit
*SU
) {
129 // Top down: release successors.
130 for (SUnit::succ_iterator I
= SU
->Succs
.begin(), E
= SU
->Succs
.end();
132 assert(!I
->isAssignedRegDep() &&
133 "The list-td scheduler doesn't yet support physreg dependencies!");
139 /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
140 /// count of its successors. If a successor pending count is zero, add it to
141 /// the Available queue.
142 void ScheduleDAGList::ScheduleNodeTopDown(SUnit
*SU
, unsigned CurCycle
) {
143 DEBUG(dbgs() << "*** Scheduling [" << CurCycle
<< "]: ");
144 DEBUG(SU
->dump(this));
146 Sequence
.push_back(SU
);
147 assert(CurCycle
>= SU
->getDepth() && "Node scheduled above its depth!");
148 SU
->setDepthToAtLeast(CurCycle
);
150 ReleaseSuccessors(SU
);
151 SU
->isScheduled
= true;
152 AvailableQueue
->ScheduledNode(SU
);
155 /// ListScheduleTopDown - The main loop of list scheduling for top-down
157 void ScheduleDAGList::ListScheduleTopDown() {
158 unsigned CurCycle
= 0;
160 // Release any successors of the special Entry node.
161 ReleaseSuccessors(&EntrySU
);
163 // All leaves to Available queue.
164 for (unsigned i
= 0, e
= SUnits
.size(); i
!= e
; ++i
) {
165 // It is available if it has no predecessors.
166 if (SUnits
[i
].Preds
.empty()) {
167 AvailableQueue
->push(&SUnits
[i
]);
168 SUnits
[i
].isAvailable
= true;
172 // While Available queue is not empty, grab the node with the highest
173 // priority. If it is not ready put it back. Schedule the node.
174 std::vector
<SUnit
*> NotReady
;
175 Sequence
.reserve(SUnits
.size());
176 while (!AvailableQueue
->empty() || !PendingQueue
.empty()) {
177 // Check to see if any of the pending instructions are ready to issue. If
178 // so, add them to the available queue.
179 for (unsigned i
= 0, e
= PendingQueue
.size(); i
!= e
; ++i
) {
180 if (PendingQueue
[i
]->getDepth() == CurCycle
) {
181 AvailableQueue
->push(PendingQueue
[i
]);
182 PendingQueue
[i
]->isAvailable
= true;
183 PendingQueue
[i
] = PendingQueue
.back();
184 PendingQueue
.pop_back();
187 assert(PendingQueue
[i
]->getDepth() > CurCycle
&& "Negative latency?");
191 // If there are no instructions available, don't try to issue anything, and
192 // don't advance the hazard recognizer.
193 if (AvailableQueue
->empty()) {
198 SUnit
*FoundSUnit
= 0;
200 bool HasNoopHazards
= false;
201 while (!AvailableQueue
->empty()) {
202 SUnit
*CurSUnit
= AvailableQueue
->pop();
204 ScheduleHazardRecognizer::HazardType HT
=
205 HazardRec
->getHazardType(CurSUnit
);
206 if (HT
== ScheduleHazardRecognizer::NoHazard
) {
207 FoundSUnit
= CurSUnit
;
211 // Remember if this is a noop hazard.
212 HasNoopHazards
|= HT
== ScheduleHazardRecognizer::NoopHazard
;
214 NotReady
.push_back(CurSUnit
);
217 // Add the nodes that aren't ready back onto the available list.
218 if (!NotReady
.empty()) {
219 AvailableQueue
->push_all(NotReady
);
223 // If we found a node to schedule, do it now.
225 ScheduleNodeTopDown(FoundSUnit
, CurCycle
);
226 HazardRec
->EmitInstruction(FoundSUnit
);
228 // If this is a pseudo-op node, we don't want to increment the current
230 if (FoundSUnit
->Latency
) // Don't increment CurCycle for pseudo-ops!
232 } else if (!HasNoopHazards
) {
233 // Otherwise, we have a pipeline stall, but no other problem, just advance
234 // the current cycle and try again.
235 DEBUG(dbgs() << "*** Advancing cycle, no work to do\n");
236 HazardRec
->AdvanceCycle();
240 // Otherwise, we have no instructions to issue and we have instructions
241 // that will fault if we don't do this right. This is the case for
242 // processors without pipeline interlocks and other cases.
243 DEBUG(dbgs() << "*** Emitting noop\n");
244 HazardRec
->EmitNoop();
245 Sequence
.push_back(0); // NULL here means noop
252 VerifySchedule(/*isBottomUp=*/false);
256 //===----------------------------------------------------------------------===//
257 // Public Constructor Functions
258 //===----------------------------------------------------------------------===//
260 /// createTDListDAGScheduler - This creates a top-down list scheduler with a
261 /// new hazard recognizer. This scheduler takes ownership of the hazard
262 /// recognizer and deletes it when done.
264 llvm::createTDListDAGScheduler(SelectionDAGISel
*IS
, CodeGenOpt::Level
) {
265 return new ScheduleDAGList(*IS
->MF
,
266 new LatencyPriorityQueue(),
267 IS
->CreateTargetHazardRecognizer());