1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements the SelectionDAG class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "SDNodeOrdering.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Analysis/DebugInfo.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/Function.h"
21 #include "llvm/GlobalAlias.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Intrinsics.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Assembly/Writer.h"
26 #include "llvm/CallingConv.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineModuleInfo.h"
31 #include "llvm/CodeGen/PseudoSourceValue.h"
32 #include "llvm/Target/TargetRegisterInfo.h"
33 #include "llvm/Target/TargetData.h"
34 #include "llvm/Target/TargetFrameInfo.h"
35 #include "llvm/Target/TargetLowering.h"
36 #include "llvm/Target/TargetSelectionDAGInfo.h"
37 #include "llvm/Target/TargetOptions.h"
38 #include "llvm/Target/TargetInstrInfo.h"
39 #include "llvm/Target/TargetIntrinsicInfo.h"
40 #include "llvm/Target/TargetMachine.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/ManagedStatic.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/System/Mutex.h"
48 #include "llvm/ADT/SetVector.h"
49 #include "llvm/ADT/SmallPtrSet.h"
50 #include "llvm/ADT/SmallSet.h"
51 #include "llvm/ADT/SmallVector.h"
52 #include "llvm/ADT/StringExtras.h"
57 /// makeVTList - Return an instance of the SDVTList struct initialized with the
58 /// specified members.
59 static SDVTList
makeVTList(const EVT
*VTs
, unsigned NumVTs
) {
60 SDVTList Res
= {VTs
, NumVTs
};
64 static const fltSemantics
*EVTToAPFloatSemantics(EVT VT
) {
65 switch (VT
.getSimpleVT().SimpleTy
) {
66 default: llvm_unreachable("Unknown FP format");
67 case MVT::f32
: return &APFloat::IEEEsingle
;
68 case MVT::f64
: return &APFloat::IEEEdouble
;
69 case MVT::f80
: return &APFloat::x87DoubleExtended
;
70 case MVT::f128
: return &APFloat::IEEEquad
;
71 case MVT::ppcf128
: return &APFloat::PPCDoubleDouble
;
75 SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
77 //===----------------------------------------------------------------------===//
78 // ConstantFPSDNode Class
79 //===----------------------------------------------------------------------===//
81 /// isExactlyValue - We don't rely on operator== working on double values, as
82 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
83 /// As such, this method can be used to do an exact bit-for-bit comparison of
84 /// two floating point values.
85 bool ConstantFPSDNode::isExactlyValue(const APFloat
& V
) const {
86 return getValueAPF().bitwiseIsEqual(V
);
89 bool ConstantFPSDNode::isValueValidForType(EVT VT
,
91 assert(VT
.isFloatingPoint() && "Can only convert between FP types");
93 // PPC long double cannot be converted to any other type.
94 if (VT
== MVT::ppcf128
||
95 &Val
.getSemantics() == &APFloat::PPCDoubleDouble
)
98 // convert modifies in place, so make a copy.
99 APFloat Val2
= APFloat(Val
);
101 (void) Val2
.convert(*EVTToAPFloatSemantics(VT
), APFloat::rmNearestTiesToEven
,
106 //===----------------------------------------------------------------------===//
108 //===----------------------------------------------------------------------===//
110 /// isBuildVectorAllOnes - Return true if the specified node is a
111 /// BUILD_VECTOR where all of the elements are ~0 or undef.
112 bool ISD::isBuildVectorAllOnes(const SDNode
*N
) {
113 // Look through a bit convert.
114 if (N
->getOpcode() == ISD::BIT_CONVERT
)
115 N
= N
->getOperand(0).getNode();
117 if (N
->getOpcode() != ISD::BUILD_VECTOR
) return false;
119 unsigned i
= 0, e
= N
->getNumOperands();
121 // Skip over all of the undef values.
122 while (i
!= e
&& N
->getOperand(i
).getOpcode() == ISD::UNDEF
)
125 // Do not accept an all-undef vector.
126 if (i
== e
) return false;
128 // Do not accept build_vectors that aren't all constants or which have non-~0
130 SDValue NotZero
= N
->getOperand(i
);
131 if (isa
<ConstantSDNode
>(NotZero
)) {
132 if (!cast
<ConstantSDNode
>(NotZero
)->isAllOnesValue())
134 } else if (isa
<ConstantFPSDNode
>(NotZero
)) {
135 if (!cast
<ConstantFPSDNode
>(NotZero
)->getValueAPF().
136 bitcastToAPInt().isAllOnesValue())
141 // Okay, we have at least one ~0 value, check to see if the rest match or are
143 for (++i
; i
!= e
; ++i
)
144 if (N
->getOperand(i
) != NotZero
&&
145 N
->getOperand(i
).getOpcode() != ISD::UNDEF
)
151 /// isBuildVectorAllZeros - Return true if the specified node is a
152 /// BUILD_VECTOR where all of the elements are 0 or undef.
153 bool ISD::isBuildVectorAllZeros(const SDNode
*N
) {
154 // Look through a bit convert.
155 if (N
->getOpcode() == ISD::BIT_CONVERT
)
156 N
= N
->getOperand(0).getNode();
158 if (N
->getOpcode() != ISD::BUILD_VECTOR
) return false;
160 unsigned i
= 0, e
= N
->getNumOperands();
162 // Skip over all of the undef values.
163 while (i
!= e
&& N
->getOperand(i
).getOpcode() == ISD::UNDEF
)
166 // Do not accept an all-undef vector.
167 if (i
== e
) return false;
169 // Do not accept build_vectors that aren't all constants or which have non-0
171 SDValue Zero
= N
->getOperand(i
);
172 if (isa
<ConstantSDNode
>(Zero
)) {
173 if (!cast
<ConstantSDNode
>(Zero
)->isNullValue())
175 } else if (isa
<ConstantFPSDNode
>(Zero
)) {
176 if (!cast
<ConstantFPSDNode
>(Zero
)->getValueAPF().isPosZero())
181 // Okay, we have at least one 0 value, check to see if the rest match or are
183 for (++i
; i
!= e
; ++i
)
184 if (N
->getOperand(i
) != Zero
&&
185 N
->getOperand(i
).getOpcode() != ISD::UNDEF
)
190 /// isScalarToVector - Return true if the specified node is a
191 /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
192 /// element is not an undef.
193 bool ISD::isScalarToVector(const SDNode
*N
) {
194 if (N
->getOpcode() == ISD::SCALAR_TO_VECTOR
)
197 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
199 if (N
->getOperand(0).getOpcode() == ISD::UNDEF
)
201 unsigned NumElems
= N
->getNumOperands();
202 for (unsigned i
= 1; i
< NumElems
; ++i
) {
203 SDValue V
= N
->getOperand(i
);
204 if (V
.getOpcode() != ISD::UNDEF
)
210 /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
211 /// when given the operation for (X op Y).
212 ISD::CondCode
ISD::getSetCCSwappedOperands(ISD::CondCode Operation
) {
213 // To perform this operation, we just need to swap the L and G bits of the
215 unsigned OldL
= (Operation
>> 2) & 1;
216 unsigned OldG
= (Operation
>> 1) & 1;
217 return ISD::CondCode((Operation
& ~6) | // Keep the N, U, E bits
218 (OldL
<< 1) | // New G bit
219 (OldG
<< 2)); // New L bit.
222 /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
223 /// 'op' is a valid SetCC operation.
224 ISD::CondCode
ISD::getSetCCInverse(ISD::CondCode Op
, bool isInteger
) {
225 unsigned Operation
= Op
;
227 Operation
^= 7; // Flip L, G, E bits, but not U.
229 Operation
^= 15; // Flip all of the condition bits.
231 if (Operation
> ISD::SETTRUE2
)
232 Operation
&= ~8; // Don't let N and U bits get set.
234 return ISD::CondCode(Operation
);
238 /// isSignedOp - For an integer comparison, return 1 if the comparison is a
239 /// signed operation and 2 if the result is an unsigned comparison. Return zero
240 /// if the operation does not depend on the sign of the input (setne and seteq).
241 static int isSignedOp(ISD::CondCode Opcode
) {
243 default: llvm_unreachable("Illegal integer setcc operation!");
245 case ISD::SETNE
: return 0;
249 case ISD::SETGE
: return 1;
253 case ISD::SETUGE
: return 2;
257 /// getSetCCOrOperation - Return the result of a logical OR between different
258 /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
259 /// returns SETCC_INVALID if it is not possible to represent the resultant
261 ISD::CondCode
ISD::getSetCCOrOperation(ISD::CondCode Op1
, ISD::CondCode Op2
,
263 if (isInteger
&& (isSignedOp(Op1
) | isSignedOp(Op2
)) == 3)
264 // Cannot fold a signed integer setcc with an unsigned integer setcc.
265 return ISD::SETCC_INVALID
;
267 unsigned Op
= Op1
| Op2
; // Combine all of the condition bits.
269 // If the N and U bits get set then the resultant comparison DOES suddenly
270 // care about orderedness, and is true when ordered.
271 if (Op
> ISD::SETTRUE2
)
272 Op
&= ~16; // Clear the U bit if the N bit is set.
274 // Canonicalize illegal integer setcc's.
275 if (isInteger
&& Op
== ISD::SETUNE
) // e.g. SETUGT | SETULT
278 return ISD::CondCode(Op
);
281 /// getSetCCAndOperation - Return the result of a logical AND between different
282 /// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
283 /// function returns zero if it is not possible to represent the resultant
285 ISD::CondCode
ISD::getSetCCAndOperation(ISD::CondCode Op1
, ISD::CondCode Op2
,
287 if (isInteger
&& (isSignedOp(Op1
) | isSignedOp(Op2
)) == 3)
288 // Cannot fold a signed setcc with an unsigned setcc.
289 return ISD::SETCC_INVALID
;
291 // Combine all of the condition bits.
292 ISD::CondCode Result
= ISD::CondCode(Op1
& Op2
);
294 // Canonicalize illegal integer setcc's.
298 case ISD::SETUO
: Result
= ISD::SETFALSE
; break; // SETUGT & SETULT
299 case ISD::SETOEQ
: // SETEQ & SETU[LG]E
300 case ISD::SETUEQ
: Result
= ISD::SETEQ
; break; // SETUGE & SETULE
301 case ISD::SETOLT
: Result
= ISD::SETULT
; break; // SETULT & SETNE
302 case ISD::SETOGT
: Result
= ISD::SETUGT
; break; // SETUGT & SETNE
309 //===----------------------------------------------------------------------===//
310 // SDNode Profile Support
311 //===----------------------------------------------------------------------===//
313 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
315 static void AddNodeIDOpcode(FoldingSetNodeID
&ID
, unsigned OpC
) {
319 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
320 /// solely with their pointer.
321 static void AddNodeIDValueTypes(FoldingSetNodeID
&ID
, SDVTList VTList
) {
322 ID
.AddPointer(VTList
.VTs
);
325 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
327 static void AddNodeIDOperands(FoldingSetNodeID
&ID
,
328 const SDValue
*Ops
, unsigned NumOps
) {
329 for (; NumOps
; --NumOps
, ++Ops
) {
330 ID
.AddPointer(Ops
->getNode());
331 ID
.AddInteger(Ops
->getResNo());
335 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
337 static void AddNodeIDOperands(FoldingSetNodeID
&ID
,
338 const SDUse
*Ops
, unsigned NumOps
) {
339 for (; NumOps
; --NumOps
, ++Ops
) {
340 ID
.AddPointer(Ops
->getNode());
341 ID
.AddInteger(Ops
->getResNo());
345 static void AddNodeIDNode(FoldingSetNodeID
&ID
,
346 unsigned short OpC
, SDVTList VTList
,
347 const SDValue
*OpList
, unsigned N
) {
348 AddNodeIDOpcode(ID
, OpC
);
349 AddNodeIDValueTypes(ID
, VTList
);
350 AddNodeIDOperands(ID
, OpList
, N
);
353 /// AddNodeIDCustom - If this is an SDNode with special info, add this info to
355 static void AddNodeIDCustom(FoldingSetNodeID
&ID
, const SDNode
*N
) {
356 switch (N
->getOpcode()) {
357 case ISD::TargetExternalSymbol
:
358 case ISD::ExternalSymbol
:
359 llvm_unreachable("Should only be used on nodes with operands");
360 default: break; // Normal nodes don't need extra info.
361 case ISD::TargetConstant
:
363 ID
.AddPointer(cast
<ConstantSDNode
>(N
)->getConstantIntValue());
365 case ISD::TargetConstantFP
:
366 case ISD::ConstantFP
: {
367 ID
.AddPointer(cast
<ConstantFPSDNode
>(N
)->getConstantFPValue());
370 case ISD::TargetGlobalAddress
:
371 case ISD::GlobalAddress
:
372 case ISD::TargetGlobalTLSAddress
:
373 case ISD::GlobalTLSAddress
: {
374 const GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(N
);
375 ID
.AddPointer(GA
->getGlobal());
376 ID
.AddInteger(GA
->getOffset());
377 ID
.AddInteger(GA
->getTargetFlags());
380 case ISD::BasicBlock
:
381 ID
.AddPointer(cast
<BasicBlockSDNode
>(N
)->getBasicBlock());
384 ID
.AddInteger(cast
<RegisterSDNode
>(N
)->getReg());
388 ID
.AddPointer(cast
<SrcValueSDNode
>(N
)->getValue());
390 case ISD::FrameIndex
:
391 case ISD::TargetFrameIndex
:
392 ID
.AddInteger(cast
<FrameIndexSDNode
>(N
)->getIndex());
395 case ISD::TargetJumpTable
:
396 ID
.AddInteger(cast
<JumpTableSDNode
>(N
)->getIndex());
397 ID
.AddInteger(cast
<JumpTableSDNode
>(N
)->getTargetFlags());
399 case ISD::ConstantPool
:
400 case ISD::TargetConstantPool
: {
401 const ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(N
);
402 ID
.AddInteger(CP
->getAlignment());
403 ID
.AddInteger(CP
->getOffset());
404 if (CP
->isMachineConstantPoolEntry())
405 CP
->getMachineCPVal()->AddSelectionDAGCSEId(ID
);
407 ID
.AddPointer(CP
->getConstVal());
408 ID
.AddInteger(CP
->getTargetFlags());
412 const LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
413 ID
.AddInteger(LD
->getMemoryVT().getRawBits());
414 ID
.AddInteger(LD
->getRawSubclassData());
418 const StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
419 ID
.AddInteger(ST
->getMemoryVT().getRawBits());
420 ID
.AddInteger(ST
->getRawSubclassData());
423 case ISD::ATOMIC_CMP_SWAP
:
424 case ISD::ATOMIC_SWAP
:
425 case ISD::ATOMIC_LOAD_ADD
:
426 case ISD::ATOMIC_LOAD_SUB
:
427 case ISD::ATOMIC_LOAD_AND
:
428 case ISD::ATOMIC_LOAD_OR
:
429 case ISD::ATOMIC_LOAD_XOR
:
430 case ISD::ATOMIC_LOAD_NAND
:
431 case ISD::ATOMIC_LOAD_MIN
:
432 case ISD::ATOMIC_LOAD_MAX
:
433 case ISD::ATOMIC_LOAD_UMIN
:
434 case ISD::ATOMIC_LOAD_UMAX
: {
435 const AtomicSDNode
*AT
= cast
<AtomicSDNode
>(N
);
436 ID
.AddInteger(AT
->getMemoryVT().getRawBits());
437 ID
.AddInteger(AT
->getRawSubclassData());
440 case ISD::VECTOR_SHUFFLE
: {
441 const ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
442 for (unsigned i
= 0, e
= N
->getValueType(0).getVectorNumElements();
444 ID
.AddInteger(SVN
->getMaskElt(i
));
447 case ISD::TargetBlockAddress
:
448 case ISD::BlockAddress
: {
449 ID
.AddPointer(cast
<BlockAddressSDNode
>(N
)->getBlockAddress());
450 ID
.AddInteger(cast
<BlockAddressSDNode
>(N
)->getTargetFlags());
453 } // end switch (N->getOpcode())
456 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
458 static void AddNodeIDNode(FoldingSetNodeID
&ID
, const SDNode
*N
) {
459 AddNodeIDOpcode(ID
, N
->getOpcode());
460 // Add the return value info.
461 AddNodeIDValueTypes(ID
, N
->getVTList());
462 // Add the operand info.
463 AddNodeIDOperands(ID
, N
->op_begin(), N
->getNumOperands());
465 // Handle SDNode leafs with special info.
466 AddNodeIDCustom(ID
, N
);
469 /// encodeMemSDNodeFlags - Generic routine for computing a value for use in
470 /// the CSE map that carries volatility, temporalness, indexing mode, and
471 /// extension/truncation information.
473 static inline unsigned
474 encodeMemSDNodeFlags(int ConvType
, ISD::MemIndexedMode AM
, bool isVolatile
,
475 bool isNonTemporal
) {
476 assert((ConvType
& 3) == ConvType
&&
477 "ConvType may not require more than 2 bits!");
478 assert((AM
& 7) == AM
&&
479 "AM may not require more than 3 bits!");
483 (isNonTemporal
<< 6);
486 //===----------------------------------------------------------------------===//
487 // SelectionDAG Class
488 //===----------------------------------------------------------------------===//
490 /// doNotCSE - Return true if CSE should not be performed for this node.
491 static bool doNotCSE(SDNode
*N
) {
492 if (N
->getValueType(0) == MVT::Flag
)
493 return true; // Never CSE anything that produces a flag.
495 switch (N
->getOpcode()) {
497 case ISD::HANDLENODE
:
499 return true; // Never CSE these nodes.
502 // Check that remaining values produced are not flags.
503 for (unsigned i
= 1, e
= N
->getNumValues(); i
!= e
; ++i
)
504 if (N
->getValueType(i
) == MVT::Flag
)
505 return true; // Never CSE anything that produces a flag.
510 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
512 void SelectionDAG::RemoveDeadNodes() {
513 // Create a dummy node (which is not added to allnodes), that adds a reference
514 // to the root node, preventing it from being deleted.
515 HandleSDNode
Dummy(getRoot());
517 SmallVector
<SDNode
*, 128> DeadNodes
;
519 // Add all obviously-dead nodes to the DeadNodes worklist.
520 for (allnodes_iterator I
= allnodes_begin(), E
= allnodes_end(); I
!= E
; ++I
)
522 DeadNodes
.push_back(I
);
524 RemoveDeadNodes(DeadNodes
);
526 // If the root changed (e.g. it was a dead load, update the root).
527 setRoot(Dummy
.getValue());
530 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
531 /// given list, and any nodes that become unreachable as a result.
532 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl
<SDNode
*> &DeadNodes
,
533 DAGUpdateListener
*UpdateListener
) {
535 // Process the worklist, deleting the nodes and adding their uses to the
537 while (!DeadNodes
.empty()) {
538 SDNode
*N
= DeadNodes
.pop_back_val();
541 UpdateListener
->NodeDeleted(N
, 0);
543 // Take the node out of the appropriate CSE map.
544 RemoveNodeFromCSEMaps(N
);
546 // Next, brutally remove the operand list. This is safe to do, as there are
547 // no cycles in the graph.
548 for (SDNode::op_iterator I
= N
->op_begin(), E
= N
->op_end(); I
!= E
; ) {
550 SDNode
*Operand
= Use
.getNode();
553 // Now that we removed this operand, see if there are no uses of it left.
554 if (Operand
->use_empty())
555 DeadNodes
.push_back(Operand
);
562 void SelectionDAG::RemoveDeadNode(SDNode
*N
, DAGUpdateListener
*UpdateListener
){
563 SmallVector
<SDNode
*, 16> DeadNodes(1, N
);
564 RemoveDeadNodes(DeadNodes
, UpdateListener
);
567 void SelectionDAG::DeleteNode(SDNode
*N
) {
568 // First take this out of the appropriate CSE map.
569 RemoveNodeFromCSEMaps(N
);
571 // Finally, remove uses due to operands of this node, remove from the
572 // AllNodes list, and delete the node.
573 DeleteNodeNotInCSEMaps(N
);
576 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode
*N
) {
577 assert(N
!= AllNodes
.begin() && "Cannot delete the entry node!");
578 assert(N
->use_empty() && "Cannot delete a node that is not dead!");
580 // Drop all of the operands and decrement used node's use counts.
586 void SelectionDAG::DeallocateNode(SDNode
*N
) {
587 if (N
->OperandsNeedDelete
)
588 delete[] N
->OperandList
;
590 // Set the opcode to DELETED_NODE to help catch bugs when node
591 // memory is reallocated.
592 N
->NodeType
= ISD::DELETED_NODE
;
594 NodeAllocator
.Deallocate(AllNodes
.remove(N
));
596 // Remove the ordering of this node.
599 // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
600 SmallVector
<SDDbgValue
*, 2> &DbgVals
= DbgInfo
->getSDDbgValues(N
);
601 for (unsigned i
= 0, e
= DbgVals
.size(); i
!= e
; ++i
)
602 DbgVals
[i
]->setIsInvalidated();
605 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
606 /// correspond to it. This is useful when we're about to delete or repurpose
607 /// the node. We don't want future request for structurally identical nodes
608 /// to return N anymore.
609 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode
*N
) {
611 switch (N
->getOpcode()) {
612 case ISD::EntryToken
:
613 llvm_unreachable("EntryToken should not be in CSEMaps!");
615 case ISD::HANDLENODE
: return false; // noop.
617 assert(CondCodeNodes
[cast
<CondCodeSDNode
>(N
)->get()] &&
618 "Cond code doesn't exist!");
619 Erased
= CondCodeNodes
[cast
<CondCodeSDNode
>(N
)->get()] != 0;
620 CondCodeNodes
[cast
<CondCodeSDNode
>(N
)->get()] = 0;
622 case ISD::ExternalSymbol
:
623 Erased
= ExternalSymbols
.erase(cast
<ExternalSymbolSDNode
>(N
)->getSymbol());
625 case ISD::TargetExternalSymbol
: {
626 ExternalSymbolSDNode
*ESN
= cast
<ExternalSymbolSDNode
>(N
);
627 Erased
= TargetExternalSymbols
.erase(
628 std::pair
<std::string
,unsigned char>(ESN
->getSymbol(),
629 ESN
->getTargetFlags()));
632 case ISD::VALUETYPE
: {
633 EVT VT
= cast
<VTSDNode
>(N
)->getVT();
634 if (VT
.isExtended()) {
635 Erased
= ExtendedValueTypeNodes
.erase(VT
);
637 Erased
= ValueTypeNodes
[VT
.getSimpleVT().SimpleTy
] != 0;
638 ValueTypeNodes
[VT
.getSimpleVT().SimpleTy
] = 0;
643 // Remove it from the CSE Map.
644 Erased
= CSEMap
.RemoveNode(N
);
648 // Verify that the node was actually in one of the CSE maps, unless it has a
649 // flag result (which cannot be CSE'd) or is one of the special cases that are
650 // not subject to CSE.
651 if (!Erased
&& N
->getValueType(N
->getNumValues()-1) != MVT::Flag
&&
652 !N
->isMachineOpcode() && !doNotCSE(N
)) {
655 llvm_unreachable("Node is not in map!");
661 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
662 /// maps and modified in place. Add it back to the CSE maps, unless an identical
663 /// node already exists, in which case transfer all its users to the existing
664 /// node. This transfer can potentially trigger recursive merging.
667 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode
*N
,
668 DAGUpdateListener
*UpdateListener
) {
669 // For node types that aren't CSE'd, just act as if no identical node
672 SDNode
*Existing
= CSEMap
.GetOrInsertNode(N
);
674 // If there was already an existing matching node, use ReplaceAllUsesWith
675 // to replace the dead one with the existing one. This can cause
676 // recursive merging of other unrelated nodes down the line.
677 ReplaceAllUsesWith(N
, Existing
, UpdateListener
);
679 // N is now dead. Inform the listener if it exists and delete it.
681 UpdateListener
->NodeDeleted(N
, Existing
);
682 DeleteNodeNotInCSEMaps(N
);
687 // If the node doesn't already exist, we updated it. Inform a listener if
690 UpdateListener
->NodeUpdated(N
);
693 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
694 /// were replaced with those specified. If this node is never memoized,
695 /// return null, otherwise return a pointer to the slot it would take. If a
696 /// node already exists with these operands, the slot will be non-null.
697 SDNode
*SelectionDAG::FindModifiedNodeSlot(SDNode
*N
, SDValue Op
,
702 SDValue Ops
[] = { Op
};
704 AddNodeIDNode(ID
, N
->getOpcode(), N
->getVTList(), Ops
, 1);
705 AddNodeIDCustom(ID
, N
);
706 SDNode
*Node
= CSEMap
.FindNodeOrInsertPos(ID
, InsertPos
);
710 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
711 /// were replaced with those specified. If this node is never memoized,
712 /// return null, otherwise return a pointer to the slot it would take. If a
713 /// node already exists with these operands, the slot will be non-null.
714 SDNode
*SelectionDAG::FindModifiedNodeSlot(SDNode
*N
,
715 SDValue Op1
, SDValue Op2
,
720 SDValue Ops
[] = { Op1
, Op2
};
722 AddNodeIDNode(ID
, N
->getOpcode(), N
->getVTList(), Ops
, 2);
723 AddNodeIDCustom(ID
, N
);
724 SDNode
*Node
= CSEMap
.FindNodeOrInsertPos(ID
, InsertPos
);
729 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
730 /// were replaced with those specified. If this node is never memoized,
731 /// return null, otherwise return a pointer to the slot it would take. If a
732 /// node already exists with these operands, the slot will be non-null.
733 SDNode
*SelectionDAG::FindModifiedNodeSlot(SDNode
*N
,
734 const SDValue
*Ops
,unsigned NumOps
,
740 AddNodeIDNode(ID
, N
->getOpcode(), N
->getVTList(), Ops
, NumOps
);
741 AddNodeIDCustom(ID
, N
);
742 SDNode
*Node
= CSEMap
.FindNodeOrInsertPos(ID
, InsertPos
);
746 /// VerifyNode - Sanity check the given node. Aborts if it is invalid.
747 void SelectionDAG::VerifyNode(SDNode
*N
) {
748 switch (N
->getOpcode()) {
751 case ISD::BUILD_PAIR
: {
752 EVT VT
= N
->getValueType(0);
753 assert(N
->getNumValues() == 1 && "Too many results!");
754 assert(!VT
.isVector() && (VT
.isInteger() || VT
.isFloatingPoint()) &&
755 "Wrong return type!");
756 assert(N
->getNumOperands() == 2 && "Wrong number of operands!");
757 assert(N
->getOperand(0).getValueType() == N
->getOperand(1).getValueType() &&
758 "Mismatched operand types!");
759 assert(N
->getOperand(0).getValueType().isInteger() == VT
.isInteger() &&
760 "Wrong operand type!");
761 assert(VT
.getSizeInBits() == 2 * N
->getOperand(0).getValueSizeInBits() &&
762 "Wrong return type size");
765 case ISD::BUILD_VECTOR
: {
766 assert(N
->getNumValues() == 1 && "Too many results!");
767 assert(N
->getValueType(0).isVector() && "Wrong return type!");
768 assert(N
->getNumOperands() == N
->getValueType(0).getVectorNumElements() &&
769 "Wrong number of operands!");
770 EVT EltVT
= N
->getValueType(0).getVectorElementType();
771 for (SDNode::op_iterator I
= N
->op_begin(), E
= N
->op_end(); I
!= E
; ++I
)
772 assert((I
->getValueType() == EltVT
||
773 (EltVT
.isInteger() && I
->getValueType().isInteger() &&
774 EltVT
.bitsLE(I
->getValueType()))) &&
775 "Wrong operand type!");
781 /// getEVTAlignment - Compute the default alignment value for the
784 unsigned SelectionDAG::getEVTAlignment(EVT VT
) const {
785 const Type
*Ty
= VT
== MVT::iPTR
?
786 PointerType::get(Type::getInt8Ty(*getContext()), 0) :
787 VT
.getTypeForEVT(*getContext());
789 return TLI
.getTargetData()->getABITypeAlignment(Ty
);
792 // EntryNode could meaningfully have debug info if we can find it...
793 SelectionDAG::SelectionDAG(const TargetMachine
&tm
)
794 : TM(tm
), TLI(*tm
.getTargetLowering()), TSI(*tm
.getSelectionDAGInfo()),
795 EntryNode(ISD::EntryToken
, DebugLoc(), getVTList(MVT::Other
)),
796 Root(getEntryNode()), Ordering(0) {
797 AllNodes
.push_back(&EntryNode
);
798 Ordering
= new SDNodeOrdering();
799 DbgInfo
= new SDDbgInfo();
802 void SelectionDAG::init(MachineFunction
&mf
) {
804 Context
= &mf
.getFunction()->getContext();
807 SelectionDAG::~SelectionDAG() {
813 void SelectionDAG::allnodes_clear() {
814 assert(&*AllNodes
.begin() == &EntryNode
);
815 AllNodes
.remove(AllNodes
.begin());
816 while (!AllNodes
.empty())
817 DeallocateNode(AllNodes
.begin());
820 void SelectionDAG::clear() {
822 OperandAllocator
.Reset();
825 ExtendedValueTypeNodes
.clear();
826 ExternalSymbols
.clear();
827 TargetExternalSymbols
.clear();
828 std::fill(CondCodeNodes
.begin(), CondCodeNodes
.end(),
829 static_cast<CondCodeSDNode
*>(0));
830 std::fill(ValueTypeNodes
.begin(), ValueTypeNodes
.end(),
831 static_cast<SDNode
*>(0));
833 EntryNode
.UseList
= 0;
834 AllNodes
.push_back(&EntryNode
);
835 Root
= getEntryNode();
840 SDValue
SelectionDAG::getSExtOrTrunc(SDValue Op
, DebugLoc DL
, EVT VT
) {
841 return VT
.bitsGT(Op
.getValueType()) ?
842 getNode(ISD::SIGN_EXTEND
, DL
, VT
, Op
) :
843 getNode(ISD::TRUNCATE
, DL
, VT
, Op
);
846 SDValue
SelectionDAG::getZExtOrTrunc(SDValue Op
, DebugLoc DL
, EVT VT
) {
847 return VT
.bitsGT(Op
.getValueType()) ?
848 getNode(ISD::ZERO_EXTEND
, DL
, VT
, Op
) :
849 getNode(ISD::TRUNCATE
, DL
, VT
, Op
);
852 SDValue
SelectionDAG::getZeroExtendInReg(SDValue Op
, DebugLoc DL
, EVT VT
) {
853 assert(!VT
.isVector() &&
854 "getZeroExtendInReg should use the vector element type instead of "
856 if (Op
.getValueType() == VT
) return Op
;
857 unsigned BitWidth
= Op
.getValueType().getScalarType().getSizeInBits();
858 APInt Imm
= APInt::getLowBitsSet(BitWidth
,
860 return getNode(ISD::AND
, DL
, Op
.getValueType(), Op
,
861 getConstant(Imm
, Op
.getValueType()));
864 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
866 SDValue
SelectionDAG::getNOT(DebugLoc DL
, SDValue Val
, EVT VT
) {
867 EVT EltVT
= VT
.getScalarType();
869 getConstant(APInt::getAllOnesValue(EltVT
.getSizeInBits()), VT
);
870 return getNode(ISD::XOR
, DL
, VT
, Val
, NegOne
);
873 SDValue
SelectionDAG::getConstant(uint64_t Val
, EVT VT
, bool isT
) {
874 EVT EltVT
= VT
.getScalarType();
875 assert((EltVT
.getSizeInBits() >= 64 ||
876 (uint64_t)((int64_t)Val
>> EltVT
.getSizeInBits()) + 1 < 2) &&
877 "getConstant with a uint64_t value that doesn't fit in the type!");
878 return getConstant(APInt(EltVT
.getSizeInBits(), Val
), VT
, isT
);
881 SDValue
SelectionDAG::getConstant(const APInt
&Val
, EVT VT
, bool isT
) {
882 return getConstant(*ConstantInt::get(*Context
, Val
), VT
, isT
);
885 SDValue
SelectionDAG::getConstant(const ConstantInt
&Val
, EVT VT
, bool isT
) {
886 assert(VT
.isInteger() && "Cannot create FP integer constant!");
888 EVT EltVT
= VT
.getScalarType();
889 assert(Val
.getBitWidth() == EltVT
.getSizeInBits() &&
890 "APInt size does not match type size!");
892 unsigned Opc
= isT
? ISD::TargetConstant
: ISD::Constant
;
894 AddNodeIDNode(ID
, Opc
, getVTList(EltVT
), 0, 0);
898 if ((N
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)))
900 return SDValue(N
, 0);
903 N
= new (NodeAllocator
) ConstantSDNode(isT
, &Val
, EltVT
);
904 CSEMap
.InsertNode(N
, IP
);
905 AllNodes
.push_back(N
);
908 SDValue
Result(N
, 0);
910 SmallVector
<SDValue
, 8> Ops
;
911 Ops
.assign(VT
.getVectorNumElements(), Result
);
912 Result
= getNode(ISD::BUILD_VECTOR
, DebugLoc(), VT
, &Ops
[0], Ops
.size());
917 SDValue
SelectionDAG::getIntPtrConstant(uint64_t Val
, bool isTarget
) {
918 return getConstant(Val
, TLI
.getPointerTy(), isTarget
);
922 SDValue
SelectionDAG::getConstantFP(const APFloat
& V
, EVT VT
, bool isTarget
) {
923 return getConstantFP(*ConstantFP::get(*getContext(), V
), VT
, isTarget
);
926 SDValue
SelectionDAG::getConstantFP(const ConstantFP
& V
, EVT VT
, bool isTarget
){
927 assert(VT
.isFloatingPoint() && "Cannot create integer FP constant!");
929 EVT EltVT
= VT
.getScalarType();
931 // Do the map lookup using the actual bit pattern for the floating point
932 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
933 // we don't have issues with SNANs.
934 unsigned Opc
= isTarget
? ISD::TargetConstantFP
: ISD::ConstantFP
;
936 AddNodeIDNode(ID
, Opc
, getVTList(EltVT
), 0, 0);
940 if ((N
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)))
942 return SDValue(N
, 0);
945 N
= new (NodeAllocator
) ConstantFPSDNode(isTarget
, &V
, EltVT
);
946 CSEMap
.InsertNode(N
, IP
);
947 AllNodes
.push_back(N
);
950 SDValue
Result(N
, 0);
952 SmallVector
<SDValue
, 8> Ops
;
953 Ops
.assign(VT
.getVectorNumElements(), Result
);
954 // FIXME DebugLoc info might be appropriate here
955 Result
= getNode(ISD::BUILD_VECTOR
, DebugLoc(), VT
, &Ops
[0], Ops
.size());
960 SDValue
SelectionDAG::getConstantFP(double Val
, EVT VT
, bool isTarget
) {
961 EVT EltVT
= VT
.getScalarType();
963 return getConstantFP(APFloat((float)Val
), VT
, isTarget
);
964 else if (EltVT
==MVT::f64
)
965 return getConstantFP(APFloat(Val
), VT
, isTarget
);
966 else if (EltVT
==MVT::f80
|| EltVT
==MVT::f128
) {
968 APFloat apf
= APFloat(Val
);
969 apf
.convert(*EVTToAPFloatSemantics(EltVT
), APFloat::rmNearestTiesToEven
,
971 return getConstantFP(apf
, VT
, isTarget
);
973 assert(0 && "Unsupported type in getConstantFP");
978 SDValue
SelectionDAG::getGlobalAddress(const GlobalValue
*GV
, DebugLoc DL
,
979 EVT VT
, int64_t Offset
,
981 unsigned char TargetFlags
) {
982 assert((TargetFlags
== 0 || isTargetGA
) &&
983 "Cannot set target flags on target-independent globals");
985 // Truncate (with sign-extension) the offset value to the pointer size.
986 EVT PTy
= TLI
.getPointerTy();
987 unsigned BitWidth
= PTy
.getSizeInBits();
989 Offset
= (Offset
<< (64 - BitWidth
) >> (64 - BitWidth
));
991 const GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(GV
);
993 // If GV is an alias then use the aliasee for determining thread-localness.
994 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(GV
))
995 GVar
= dyn_cast_or_null
<GlobalVariable
>(GA
->resolveAliasedGlobal(false));
999 if (GVar
&& GVar
->isThreadLocal())
1000 Opc
= isTargetGA
? ISD::TargetGlobalTLSAddress
: ISD::GlobalTLSAddress
;
1002 Opc
= isTargetGA
? ISD::TargetGlobalAddress
: ISD::GlobalAddress
;
1004 FoldingSetNodeID ID
;
1005 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1007 ID
.AddInteger(Offset
);
1008 ID
.AddInteger(TargetFlags
);
1010 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1011 return SDValue(E
, 0);
1013 SDNode
*N
= new (NodeAllocator
) GlobalAddressSDNode(Opc
, DL
, GV
, VT
,
1014 Offset
, TargetFlags
);
1015 CSEMap
.InsertNode(N
, IP
);
1016 AllNodes
.push_back(N
);
1017 return SDValue(N
, 0);
1020 SDValue
SelectionDAG::getFrameIndex(int FI
, EVT VT
, bool isTarget
) {
1021 unsigned Opc
= isTarget
? ISD::TargetFrameIndex
: ISD::FrameIndex
;
1022 FoldingSetNodeID ID
;
1023 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1026 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1027 return SDValue(E
, 0);
1029 SDNode
*N
= new (NodeAllocator
) FrameIndexSDNode(FI
, VT
, isTarget
);
1030 CSEMap
.InsertNode(N
, IP
);
1031 AllNodes
.push_back(N
);
1032 return SDValue(N
, 0);
1035 SDValue
SelectionDAG::getJumpTable(int JTI
, EVT VT
, bool isTarget
,
1036 unsigned char TargetFlags
) {
1037 assert((TargetFlags
== 0 || isTarget
) &&
1038 "Cannot set target flags on target-independent jump tables");
1039 unsigned Opc
= isTarget
? ISD::TargetJumpTable
: ISD::JumpTable
;
1040 FoldingSetNodeID ID
;
1041 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1043 ID
.AddInteger(TargetFlags
);
1045 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1046 return SDValue(E
, 0);
1048 SDNode
*N
= new (NodeAllocator
) JumpTableSDNode(JTI
, VT
, isTarget
,
1050 CSEMap
.InsertNode(N
, IP
);
1051 AllNodes
.push_back(N
);
1052 return SDValue(N
, 0);
1055 SDValue
SelectionDAG::getConstantPool(const Constant
*C
, EVT VT
,
1056 unsigned Alignment
, int Offset
,
1058 unsigned char TargetFlags
) {
1059 assert((TargetFlags
== 0 || isTarget
) &&
1060 "Cannot set target flags on target-independent globals");
1062 Alignment
= TLI
.getTargetData()->getPrefTypeAlignment(C
->getType());
1063 unsigned Opc
= isTarget
? ISD::TargetConstantPool
: ISD::ConstantPool
;
1064 FoldingSetNodeID ID
;
1065 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1066 ID
.AddInteger(Alignment
);
1067 ID
.AddInteger(Offset
);
1069 ID
.AddInteger(TargetFlags
);
1071 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1072 return SDValue(E
, 0);
1074 SDNode
*N
= new (NodeAllocator
) ConstantPoolSDNode(isTarget
, C
, VT
, Offset
,
1075 Alignment
, TargetFlags
);
1076 CSEMap
.InsertNode(N
, IP
);
1077 AllNodes
.push_back(N
);
1078 return SDValue(N
, 0);
1082 SDValue
SelectionDAG::getConstantPool(MachineConstantPoolValue
*C
, EVT VT
,
1083 unsigned Alignment
, int Offset
,
1085 unsigned char TargetFlags
) {
1086 assert((TargetFlags
== 0 || isTarget
) &&
1087 "Cannot set target flags on target-independent globals");
1089 Alignment
= TLI
.getTargetData()->getPrefTypeAlignment(C
->getType());
1090 unsigned Opc
= isTarget
? ISD::TargetConstantPool
: ISD::ConstantPool
;
1091 FoldingSetNodeID ID
;
1092 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1093 ID
.AddInteger(Alignment
);
1094 ID
.AddInteger(Offset
);
1095 C
->AddSelectionDAGCSEId(ID
);
1096 ID
.AddInteger(TargetFlags
);
1098 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1099 return SDValue(E
, 0);
1101 SDNode
*N
= new (NodeAllocator
) ConstantPoolSDNode(isTarget
, C
, VT
, Offset
,
1102 Alignment
, TargetFlags
);
1103 CSEMap
.InsertNode(N
, IP
);
1104 AllNodes
.push_back(N
);
1105 return SDValue(N
, 0);
1108 SDValue
SelectionDAG::getBasicBlock(MachineBasicBlock
*MBB
) {
1109 FoldingSetNodeID ID
;
1110 AddNodeIDNode(ID
, ISD::BasicBlock
, getVTList(MVT::Other
), 0, 0);
1113 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1114 return SDValue(E
, 0);
1116 SDNode
*N
= new (NodeAllocator
) BasicBlockSDNode(MBB
);
1117 CSEMap
.InsertNode(N
, IP
);
1118 AllNodes
.push_back(N
);
1119 return SDValue(N
, 0);
1122 SDValue
SelectionDAG::getValueType(EVT VT
) {
1123 if (VT
.isSimple() && (unsigned)VT
.getSimpleVT().SimpleTy
>=
1124 ValueTypeNodes
.size())
1125 ValueTypeNodes
.resize(VT
.getSimpleVT().SimpleTy
+1);
1127 SDNode
*&N
= VT
.isExtended() ?
1128 ExtendedValueTypeNodes
[VT
] : ValueTypeNodes
[VT
.getSimpleVT().SimpleTy
];
1130 if (N
) return SDValue(N
, 0);
1131 N
= new (NodeAllocator
) VTSDNode(VT
);
1132 AllNodes
.push_back(N
);
1133 return SDValue(N
, 0);
1136 SDValue
SelectionDAG::getExternalSymbol(const char *Sym
, EVT VT
) {
1137 SDNode
*&N
= ExternalSymbols
[Sym
];
1138 if (N
) return SDValue(N
, 0);
1139 N
= new (NodeAllocator
) ExternalSymbolSDNode(false, Sym
, 0, VT
);
1140 AllNodes
.push_back(N
);
1141 return SDValue(N
, 0);
1144 SDValue
SelectionDAG::getTargetExternalSymbol(const char *Sym
, EVT VT
,
1145 unsigned char TargetFlags
) {
1147 TargetExternalSymbols
[std::pair
<std::string
,unsigned char>(Sym
,
1149 if (N
) return SDValue(N
, 0);
1150 N
= new (NodeAllocator
) ExternalSymbolSDNode(true, Sym
, TargetFlags
, VT
);
1151 AllNodes
.push_back(N
);
1152 return SDValue(N
, 0);
1155 SDValue
SelectionDAG::getCondCode(ISD::CondCode Cond
) {
1156 if ((unsigned)Cond
>= CondCodeNodes
.size())
1157 CondCodeNodes
.resize(Cond
+1);
1159 if (CondCodeNodes
[Cond
] == 0) {
1160 CondCodeSDNode
*N
= new (NodeAllocator
) CondCodeSDNode(Cond
);
1161 CondCodeNodes
[Cond
] = N
;
1162 AllNodes
.push_back(N
);
1165 return SDValue(CondCodeNodes
[Cond
], 0);
1168 // commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1169 // the shuffle mask M that point at N1 to point at N2, and indices that point
1170 // N2 to point at N1.
1171 static void commuteShuffle(SDValue
&N1
, SDValue
&N2
, SmallVectorImpl
<int> &M
) {
1173 int NElts
= M
.size();
1174 for (int i
= 0; i
!= NElts
; ++i
) {
1182 SDValue
SelectionDAG::getVectorShuffle(EVT VT
, DebugLoc dl
, SDValue N1
,
1183 SDValue N2
, const int *Mask
) {
1184 assert(N1
.getValueType() == N2
.getValueType() && "Invalid VECTOR_SHUFFLE");
1185 assert(VT
.isVector() && N1
.getValueType().isVector() &&
1186 "Vector Shuffle VTs must be a vectors");
1187 assert(VT
.getVectorElementType() == N1
.getValueType().getVectorElementType()
1188 && "Vector Shuffle VTs must have same element type");
1190 // Canonicalize shuffle undef, undef -> undef
1191 if (N1
.getOpcode() == ISD::UNDEF
&& N2
.getOpcode() == ISD::UNDEF
)
1192 return getUNDEF(VT
);
1194 // Validate that all indices in Mask are within the range of the elements
1195 // input to the shuffle.
1196 unsigned NElts
= VT
.getVectorNumElements();
1197 SmallVector
<int, 8> MaskVec
;
1198 for (unsigned i
= 0; i
!= NElts
; ++i
) {
1199 assert(Mask
[i
] < (int)(NElts
* 2) && "Index out of range");
1200 MaskVec
.push_back(Mask
[i
]);
1203 // Canonicalize shuffle v, v -> v, undef
1206 for (unsigned i
= 0; i
!= NElts
; ++i
)
1207 if (MaskVec
[i
] >= (int)NElts
) MaskVec
[i
] -= NElts
;
1210 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
1211 if (N1
.getOpcode() == ISD::UNDEF
)
1212 commuteShuffle(N1
, N2
, MaskVec
);
1214 // Canonicalize all index into lhs, -> shuffle lhs, undef
1215 // Canonicalize all index into rhs, -> shuffle rhs, undef
1216 bool AllLHS
= true, AllRHS
= true;
1217 bool N2Undef
= N2
.getOpcode() == ISD::UNDEF
;
1218 for (unsigned i
= 0; i
!= NElts
; ++i
) {
1219 if (MaskVec
[i
] >= (int)NElts
) {
1224 } else if (MaskVec
[i
] >= 0) {
1228 if (AllLHS
&& AllRHS
)
1229 return getUNDEF(VT
);
1230 if (AllLHS
&& !N2Undef
)
1234 commuteShuffle(N1
, N2
, MaskVec
);
1237 // If Identity shuffle, or all shuffle in to undef, return that node.
1238 bool AllUndef
= true;
1239 bool Identity
= true;
1240 for (unsigned i
= 0; i
!= NElts
; ++i
) {
1241 if (MaskVec
[i
] >= 0 && MaskVec
[i
] != (int)i
) Identity
= false;
1242 if (MaskVec
[i
] >= 0) AllUndef
= false;
1244 if (Identity
&& NElts
== N1
.getValueType().getVectorNumElements())
1247 return getUNDEF(VT
);
1249 FoldingSetNodeID ID
;
1250 SDValue Ops
[2] = { N1
, N2
};
1251 AddNodeIDNode(ID
, ISD::VECTOR_SHUFFLE
, getVTList(VT
), Ops
, 2);
1252 for (unsigned i
= 0; i
!= NElts
; ++i
)
1253 ID
.AddInteger(MaskVec
[i
]);
1256 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1257 return SDValue(E
, 0);
1259 // Allocate the mask array for the node out of the BumpPtrAllocator, since
1260 // SDNode doesn't have access to it. This memory will be "leaked" when
1261 // the node is deallocated, but recovered when the NodeAllocator is released.
1262 int *MaskAlloc
= OperandAllocator
.Allocate
<int>(NElts
);
1263 memcpy(MaskAlloc
, &MaskVec
[0], NElts
* sizeof(int));
1265 ShuffleVectorSDNode
*N
=
1266 new (NodeAllocator
) ShuffleVectorSDNode(VT
, dl
, N1
, N2
, MaskAlloc
);
1267 CSEMap
.InsertNode(N
, IP
);
1268 AllNodes
.push_back(N
);
1269 return SDValue(N
, 0);
1272 SDValue
SelectionDAG::getConvertRndSat(EVT VT
, DebugLoc dl
,
1273 SDValue Val
, SDValue DTy
,
1274 SDValue STy
, SDValue Rnd
, SDValue Sat
,
1275 ISD::CvtCode Code
) {
1276 // If the src and dest types are the same and the conversion is between
1277 // integer types of the same sign or two floats, no conversion is necessary.
1279 (Code
== ISD::CVT_UU
|| Code
== ISD::CVT_SS
|| Code
== ISD::CVT_FF
))
1282 FoldingSetNodeID ID
;
1283 SDValue Ops
[] = { Val
, DTy
, STy
, Rnd
, Sat
};
1284 AddNodeIDNode(ID
, ISD::CONVERT_RNDSAT
, getVTList(VT
), &Ops
[0], 5);
1286 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1287 return SDValue(E
, 0);
1289 CvtRndSatSDNode
*N
= new (NodeAllocator
) CvtRndSatSDNode(VT
, dl
, Ops
, 5,
1291 CSEMap
.InsertNode(N
, IP
);
1292 AllNodes
.push_back(N
);
1293 return SDValue(N
, 0);
1296 SDValue
SelectionDAG::getRegister(unsigned RegNo
, EVT VT
) {
1297 FoldingSetNodeID ID
;
1298 AddNodeIDNode(ID
, ISD::Register
, getVTList(VT
), 0, 0);
1299 ID
.AddInteger(RegNo
);
1301 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1302 return SDValue(E
, 0);
1304 SDNode
*N
= new (NodeAllocator
) RegisterSDNode(RegNo
, VT
);
1305 CSEMap
.InsertNode(N
, IP
);
1306 AllNodes
.push_back(N
);
1307 return SDValue(N
, 0);
1310 SDValue
SelectionDAG::getEHLabel(DebugLoc dl
, SDValue Root
, MCSymbol
*Label
) {
1311 FoldingSetNodeID ID
;
1312 SDValue Ops
[] = { Root
};
1313 AddNodeIDNode(ID
, ISD::EH_LABEL
, getVTList(MVT::Other
), &Ops
[0], 1);
1314 ID
.AddPointer(Label
);
1316 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1317 return SDValue(E
, 0);
1319 SDNode
*N
= new (NodeAllocator
) EHLabelSDNode(dl
, Root
, Label
);
1320 CSEMap
.InsertNode(N
, IP
);
1321 AllNodes
.push_back(N
);
1322 return SDValue(N
, 0);
1326 SDValue
SelectionDAG::getBlockAddress(const BlockAddress
*BA
, EVT VT
,
1328 unsigned char TargetFlags
) {
1329 unsigned Opc
= isTarget
? ISD::TargetBlockAddress
: ISD::BlockAddress
;
1331 FoldingSetNodeID ID
;
1332 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1334 ID
.AddInteger(TargetFlags
);
1336 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1337 return SDValue(E
, 0);
1339 SDNode
*N
= new (NodeAllocator
) BlockAddressSDNode(Opc
, VT
, BA
, TargetFlags
);
1340 CSEMap
.InsertNode(N
, IP
);
1341 AllNodes
.push_back(N
);
1342 return SDValue(N
, 0);
1345 SDValue
SelectionDAG::getSrcValue(const Value
*V
) {
1346 assert((!V
|| V
->getType()->isPointerTy()) &&
1347 "SrcValue is not a pointer?");
1349 FoldingSetNodeID ID
;
1350 AddNodeIDNode(ID
, ISD::SRCVALUE
, getVTList(MVT::Other
), 0, 0);
1354 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1355 return SDValue(E
, 0);
1357 SDNode
*N
= new (NodeAllocator
) SrcValueSDNode(V
);
1358 CSEMap
.InsertNode(N
, IP
);
1359 AllNodes
.push_back(N
);
1360 return SDValue(N
, 0);
1363 /// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1364 SDValue
SelectionDAG::getMDNode(const MDNode
*MD
) {
1365 FoldingSetNodeID ID
;
1366 AddNodeIDNode(ID
, ISD::MDNODE_SDNODE
, getVTList(MVT::Other
), 0, 0);
1370 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1371 return SDValue(E
, 0);
1373 SDNode
*N
= new (NodeAllocator
) MDNodeSDNode(MD
);
1374 CSEMap
.InsertNode(N
, IP
);
1375 AllNodes
.push_back(N
);
1376 return SDValue(N
, 0);
1380 /// getShiftAmountOperand - Return the specified value casted to
1381 /// the target's desired shift amount type.
1382 SDValue
SelectionDAG::getShiftAmountOperand(SDValue Op
) {
1383 EVT OpTy
= Op
.getValueType();
1384 MVT ShTy
= TLI
.getShiftAmountTy();
1385 if (OpTy
== ShTy
|| OpTy
.isVector()) return Op
;
1387 ISD::NodeType Opcode
= OpTy
.bitsGT(ShTy
) ? ISD::TRUNCATE
: ISD::ZERO_EXTEND
;
1388 return getNode(Opcode
, Op
.getDebugLoc(), ShTy
, Op
);
1391 /// CreateStackTemporary - Create a stack temporary, suitable for holding the
1392 /// specified value type.
1393 SDValue
SelectionDAG::CreateStackTemporary(EVT VT
, unsigned minAlign
) {
1394 MachineFrameInfo
*FrameInfo
= getMachineFunction().getFrameInfo();
1395 unsigned ByteSize
= VT
.getStoreSize();
1396 const Type
*Ty
= VT
.getTypeForEVT(*getContext());
1397 unsigned StackAlign
=
1398 std::max((unsigned)TLI
.getTargetData()->getPrefTypeAlignment(Ty
), minAlign
);
1400 int FrameIdx
= FrameInfo
->CreateStackObject(ByteSize
, StackAlign
, false);
1401 return getFrameIndex(FrameIdx
, TLI
.getPointerTy());
1404 /// CreateStackTemporary - Create a stack temporary suitable for holding
1405 /// either of the specified value types.
1406 SDValue
SelectionDAG::CreateStackTemporary(EVT VT1
, EVT VT2
) {
1407 unsigned Bytes
= std::max(VT1
.getStoreSizeInBits(),
1408 VT2
.getStoreSizeInBits())/8;
1409 const Type
*Ty1
= VT1
.getTypeForEVT(*getContext());
1410 const Type
*Ty2
= VT2
.getTypeForEVT(*getContext());
1411 const TargetData
*TD
= TLI
.getTargetData();
1412 unsigned Align
= std::max(TD
->getPrefTypeAlignment(Ty1
),
1413 TD
->getPrefTypeAlignment(Ty2
));
1415 MachineFrameInfo
*FrameInfo
= getMachineFunction().getFrameInfo();
1416 int FrameIdx
= FrameInfo
->CreateStackObject(Bytes
, Align
, false);
1417 return getFrameIndex(FrameIdx
, TLI
.getPointerTy());
1420 SDValue
SelectionDAG::FoldSetCC(EVT VT
, SDValue N1
,
1421 SDValue N2
, ISD::CondCode Cond
, DebugLoc dl
) {
1422 // These setcc operations always fold.
1426 case ISD::SETFALSE2
: return getConstant(0, VT
);
1428 case ISD::SETTRUE2
: return getConstant(1, VT
);
1440 assert(!N1
.getValueType().isInteger() && "Illegal setcc for integer!");
1444 if (ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode())) {
1445 const APInt
&C2
= N2C
->getAPIntValue();
1446 if (ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode())) {
1447 const APInt
&C1
= N1C
->getAPIntValue();
1450 default: llvm_unreachable("Unknown integer setcc!");
1451 case ISD::SETEQ
: return getConstant(C1
== C2
, VT
);
1452 case ISD::SETNE
: return getConstant(C1
!= C2
, VT
);
1453 case ISD::SETULT
: return getConstant(C1
.ult(C2
), VT
);
1454 case ISD::SETUGT
: return getConstant(C1
.ugt(C2
), VT
);
1455 case ISD::SETULE
: return getConstant(C1
.ule(C2
), VT
);
1456 case ISD::SETUGE
: return getConstant(C1
.uge(C2
), VT
);
1457 case ISD::SETLT
: return getConstant(C1
.slt(C2
), VT
);
1458 case ISD::SETGT
: return getConstant(C1
.sgt(C2
), VT
);
1459 case ISD::SETLE
: return getConstant(C1
.sle(C2
), VT
);
1460 case ISD::SETGE
: return getConstant(C1
.sge(C2
), VT
);
1464 if (ConstantFPSDNode
*N1C
= dyn_cast
<ConstantFPSDNode
>(N1
.getNode())) {
1465 if (ConstantFPSDNode
*N2C
= dyn_cast
<ConstantFPSDNode
>(N2
.getNode())) {
1466 // No compile time operations on this type yet.
1467 if (N1C
->getValueType(0) == MVT::ppcf128
)
1470 APFloat::cmpResult R
= N1C
->getValueAPF().compare(N2C
->getValueAPF());
1473 case ISD::SETEQ
: if (R
==APFloat::cmpUnordered
)
1474 return getUNDEF(VT
);
1476 case ISD::SETOEQ
: return getConstant(R
==APFloat::cmpEqual
, VT
);
1477 case ISD::SETNE
: if (R
==APFloat::cmpUnordered
)
1478 return getUNDEF(VT
);
1480 case ISD::SETONE
: return getConstant(R
==APFloat::cmpGreaterThan
||
1481 R
==APFloat::cmpLessThan
, VT
);
1482 case ISD::SETLT
: if (R
==APFloat::cmpUnordered
)
1483 return getUNDEF(VT
);
1485 case ISD::SETOLT
: return getConstant(R
==APFloat::cmpLessThan
, VT
);
1486 case ISD::SETGT
: if (R
==APFloat::cmpUnordered
)
1487 return getUNDEF(VT
);
1489 case ISD::SETOGT
: return getConstant(R
==APFloat::cmpGreaterThan
, VT
);
1490 case ISD::SETLE
: if (R
==APFloat::cmpUnordered
)
1491 return getUNDEF(VT
);
1493 case ISD::SETOLE
: return getConstant(R
==APFloat::cmpLessThan
||
1494 R
==APFloat::cmpEqual
, VT
);
1495 case ISD::SETGE
: if (R
==APFloat::cmpUnordered
)
1496 return getUNDEF(VT
);
1498 case ISD::SETOGE
: return getConstant(R
==APFloat::cmpGreaterThan
||
1499 R
==APFloat::cmpEqual
, VT
);
1500 case ISD::SETO
: return getConstant(R
!=APFloat::cmpUnordered
, VT
);
1501 case ISD::SETUO
: return getConstant(R
==APFloat::cmpUnordered
, VT
);
1502 case ISD::SETUEQ
: return getConstant(R
==APFloat::cmpUnordered
||
1503 R
==APFloat::cmpEqual
, VT
);
1504 case ISD::SETUNE
: return getConstant(R
!=APFloat::cmpEqual
, VT
);
1505 case ISD::SETULT
: return getConstant(R
==APFloat::cmpUnordered
||
1506 R
==APFloat::cmpLessThan
, VT
);
1507 case ISD::SETUGT
: return getConstant(R
==APFloat::cmpGreaterThan
||
1508 R
==APFloat::cmpUnordered
, VT
);
1509 case ISD::SETULE
: return getConstant(R
!=APFloat::cmpGreaterThan
, VT
);
1510 case ISD::SETUGE
: return getConstant(R
!=APFloat::cmpLessThan
, VT
);
1513 // Ensure that the constant occurs on the RHS.
1514 return getSetCC(dl
, VT
, N2
, N1
, ISD::getSetCCSwappedOperands(Cond
));
1518 // Could not fold it.
1522 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
1523 /// use this predicate to simplify operations downstream.
1524 bool SelectionDAG::SignBitIsZero(SDValue Op
, unsigned Depth
) const {
1525 // This predicate is not safe for vector operations.
1526 if (Op
.getValueType().isVector())
1529 unsigned BitWidth
= Op
.getValueType().getScalarType().getSizeInBits();
1530 return MaskedValueIsZero(Op
, APInt::getSignBit(BitWidth
), Depth
);
1533 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1534 /// this predicate to simplify operations downstream. Mask is known to be zero
1535 /// for bits that V cannot have.
1536 bool SelectionDAG::MaskedValueIsZero(SDValue Op
, const APInt
&Mask
,
1537 unsigned Depth
) const {
1538 APInt KnownZero
, KnownOne
;
1539 ComputeMaskedBits(Op
, Mask
, KnownZero
, KnownOne
, Depth
);
1540 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1541 return (KnownZero
& Mask
) == Mask
;
1544 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
1545 /// known to be either zero or one and return them in the KnownZero/KnownOne
1546 /// bitsets. This code only analyzes bits in Mask, in order to short-circuit
1548 void SelectionDAG::ComputeMaskedBits(SDValue Op
, const APInt
&Mask
,
1549 APInt
&KnownZero
, APInt
&KnownOne
,
1550 unsigned Depth
) const {
1551 unsigned BitWidth
= Mask
.getBitWidth();
1552 assert(BitWidth
== Op
.getValueType().getScalarType().getSizeInBits() &&
1553 "Mask size mismatches value type size!");
1555 KnownZero
= KnownOne
= APInt(BitWidth
, 0); // Don't know anything.
1556 if (Depth
== 6 || Mask
== 0)
1557 return; // Limit search depth.
1559 APInt KnownZero2
, KnownOne2
;
1561 switch (Op
.getOpcode()) {
1563 // We know all of the bits for a constant!
1564 KnownOne
= cast
<ConstantSDNode
>(Op
)->getAPIntValue() & Mask
;
1565 KnownZero
= ~KnownOne
& Mask
;
1568 // If either the LHS or the RHS are Zero, the result is zero.
1569 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
1570 ComputeMaskedBits(Op
.getOperand(0), Mask
& ~KnownZero
,
1571 KnownZero2
, KnownOne2
, Depth
+1);
1572 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1573 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1575 // Output known-1 bits are only known if set in both the LHS & RHS.
1576 KnownOne
&= KnownOne2
;
1577 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1578 KnownZero
|= KnownZero2
;
1581 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
1582 ComputeMaskedBits(Op
.getOperand(0), Mask
& ~KnownOne
,
1583 KnownZero2
, KnownOne2
, Depth
+1);
1584 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1585 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1587 // Output known-0 bits are only known if clear in both the LHS & RHS.
1588 KnownZero
&= KnownZero2
;
1589 // Output known-1 are known to be set if set in either the LHS | RHS.
1590 KnownOne
|= KnownOne2
;
1593 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
1594 ComputeMaskedBits(Op
.getOperand(0), Mask
, KnownZero2
, KnownOne2
, Depth
+1);
1595 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1596 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1598 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1599 APInt KnownZeroOut
= (KnownZero
& KnownZero2
) | (KnownOne
& KnownOne2
);
1600 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1601 KnownOne
= (KnownZero
& KnownOne2
) | (KnownOne
& KnownZero2
);
1602 KnownZero
= KnownZeroOut
;
1606 APInt Mask2
= APInt::getAllOnesValue(BitWidth
);
1607 ComputeMaskedBits(Op
.getOperand(1), Mask2
, KnownZero
, KnownOne
, Depth
+1);
1608 ComputeMaskedBits(Op
.getOperand(0), Mask2
, KnownZero2
, KnownOne2
, Depth
+1);
1609 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1610 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1612 // If low bits are zero in either operand, output low known-0 bits.
1613 // Also compute a conserative estimate for high known-0 bits.
1614 // More trickiness is possible, but this is sufficient for the
1615 // interesting case of alignment computation.
1617 unsigned TrailZ
= KnownZero
.countTrailingOnes() +
1618 KnownZero2
.countTrailingOnes();
1619 unsigned LeadZ
= std::max(KnownZero
.countLeadingOnes() +
1620 KnownZero2
.countLeadingOnes(),
1621 BitWidth
) - BitWidth
;
1623 TrailZ
= std::min(TrailZ
, BitWidth
);
1624 LeadZ
= std::min(LeadZ
, BitWidth
);
1625 KnownZero
= APInt::getLowBitsSet(BitWidth
, TrailZ
) |
1626 APInt::getHighBitsSet(BitWidth
, LeadZ
);
1631 // For the purposes of computing leading zeros we can conservatively
1632 // treat a udiv as a logical right shift by the power of 2 known to
1633 // be less than the denominator.
1634 APInt AllOnes
= APInt::getAllOnesValue(BitWidth
);
1635 ComputeMaskedBits(Op
.getOperand(0),
1636 AllOnes
, KnownZero2
, KnownOne2
, Depth
+1);
1637 unsigned LeadZ
= KnownZero2
.countLeadingOnes();
1641 ComputeMaskedBits(Op
.getOperand(1),
1642 AllOnes
, KnownZero2
, KnownOne2
, Depth
+1);
1643 unsigned RHSUnknownLeadingOnes
= KnownOne2
.countLeadingZeros();
1644 if (RHSUnknownLeadingOnes
!= BitWidth
)
1645 LeadZ
= std::min(BitWidth
,
1646 LeadZ
+ BitWidth
- RHSUnknownLeadingOnes
- 1);
1648 KnownZero
= APInt::getHighBitsSet(BitWidth
, LeadZ
) & Mask
;
1652 ComputeMaskedBits(Op
.getOperand(2), Mask
, KnownZero
, KnownOne
, Depth
+1);
1653 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero2
, KnownOne2
, Depth
+1);
1654 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1655 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1657 // Only known if known in both the LHS and RHS.
1658 KnownOne
&= KnownOne2
;
1659 KnownZero
&= KnownZero2
;
1661 case ISD::SELECT_CC
:
1662 ComputeMaskedBits(Op
.getOperand(3), Mask
, KnownZero
, KnownOne
, Depth
+1);
1663 ComputeMaskedBits(Op
.getOperand(2), Mask
, KnownZero2
, KnownOne2
, Depth
+1);
1664 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1665 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1667 // Only known if known in both the LHS and RHS.
1668 KnownOne
&= KnownOne2
;
1669 KnownZero
&= KnownZero2
;
1677 if (Op
.getResNo() != 1)
1679 // The boolean result conforms to getBooleanContents. Fall through.
1681 // If we know the result of a setcc has the top bits zero, use this info.
1682 if (TLI
.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent
&&
1684 KnownZero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- 1);
1687 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
1688 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1689 unsigned ShAmt
= SA
->getZExtValue();
1691 // If the shift count is an invalid immediate, don't do anything.
1692 if (ShAmt
>= BitWidth
)
1695 ComputeMaskedBits(Op
.getOperand(0), Mask
.lshr(ShAmt
),
1696 KnownZero
, KnownOne
, Depth
+1);
1697 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1698 KnownZero
<<= ShAmt
;
1700 // low bits known zero.
1701 KnownZero
|= APInt::getLowBitsSet(BitWidth
, ShAmt
);
1705 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1706 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1707 unsigned ShAmt
= SA
->getZExtValue();
1709 // If the shift count is an invalid immediate, don't do anything.
1710 if (ShAmt
>= BitWidth
)
1713 ComputeMaskedBits(Op
.getOperand(0), (Mask
<< ShAmt
),
1714 KnownZero
, KnownOne
, Depth
+1);
1715 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1716 KnownZero
= KnownZero
.lshr(ShAmt
);
1717 KnownOne
= KnownOne
.lshr(ShAmt
);
1719 APInt HighBits
= APInt::getHighBitsSet(BitWidth
, ShAmt
) & Mask
;
1720 KnownZero
|= HighBits
; // High bits known zero.
1724 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1725 unsigned ShAmt
= SA
->getZExtValue();
1727 // If the shift count is an invalid immediate, don't do anything.
1728 if (ShAmt
>= BitWidth
)
1731 APInt InDemandedMask
= (Mask
<< ShAmt
);
1732 // If any of the demanded bits are produced by the sign extension, we also
1733 // demand the input sign bit.
1734 APInt HighBits
= APInt::getHighBitsSet(BitWidth
, ShAmt
) & Mask
;
1735 if (HighBits
.getBoolValue())
1736 InDemandedMask
|= APInt::getSignBit(BitWidth
);
1738 ComputeMaskedBits(Op
.getOperand(0), InDemandedMask
, KnownZero
, KnownOne
,
1740 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1741 KnownZero
= KnownZero
.lshr(ShAmt
);
1742 KnownOne
= KnownOne
.lshr(ShAmt
);
1744 // Handle the sign bits.
1745 APInt SignBit
= APInt::getSignBit(BitWidth
);
1746 SignBit
= SignBit
.lshr(ShAmt
); // Adjust to where it is now in the mask.
1748 if (KnownZero
.intersects(SignBit
)) {
1749 KnownZero
|= HighBits
; // New bits are known zero.
1750 } else if (KnownOne
.intersects(SignBit
)) {
1751 KnownOne
|= HighBits
; // New bits are known one.
1755 case ISD::SIGN_EXTEND_INREG
: {
1756 EVT EVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1757 unsigned EBits
= EVT
.getScalarType().getSizeInBits();
1759 // Sign extension. Compute the demanded bits in the result that are not
1760 // present in the input.
1761 APInt NewBits
= APInt::getHighBitsSet(BitWidth
, BitWidth
- EBits
) & Mask
;
1763 APInt InSignBit
= APInt::getSignBit(EBits
);
1764 APInt InputDemandedBits
= Mask
& APInt::getLowBitsSet(BitWidth
, EBits
);
1766 // If the sign extended bits are demanded, we know that the sign
1768 InSignBit
.zext(BitWidth
);
1769 if (NewBits
.getBoolValue())
1770 InputDemandedBits
|= InSignBit
;
1772 ComputeMaskedBits(Op
.getOperand(0), InputDemandedBits
,
1773 KnownZero
, KnownOne
, Depth
+1);
1774 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1776 // If the sign bit of the input is known set or clear, then we know the
1777 // top bits of the result.
1778 if (KnownZero
.intersects(InSignBit
)) { // Input sign bit known clear
1779 KnownZero
|= NewBits
;
1780 KnownOne
&= ~NewBits
;
1781 } else if (KnownOne
.intersects(InSignBit
)) { // Input sign bit known set
1782 KnownOne
|= NewBits
;
1783 KnownZero
&= ~NewBits
;
1784 } else { // Input sign bit unknown
1785 KnownZero
&= ~NewBits
;
1786 KnownOne
&= ~NewBits
;
1793 unsigned LowBits
= Log2_32(BitWidth
)+1;
1794 KnownZero
= APInt::getHighBitsSet(BitWidth
, BitWidth
- LowBits
);
1799 if (ISD::isZEXTLoad(Op
.getNode())) {
1800 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
1801 EVT VT
= LD
->getMemoryVT();
1802 unsigned MemBits
= VT
.getScalarType().getSizeInBits();
1803 KnownZero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- MemBits
) & Mask
;
1807 case ISD::ZERO_EXTEND
: {
1808 EVT InVT
= Op
.getOperand(0).getValueType();
1809 unsigned InBits
= InVT
.getScalarType().getSizeInBits();
1810 APInt NewBits
= APInt::getHighBitsSet(BitWidth
, BitWidth
- InBits
) & Mask
;
1811 APInt InMask
= Mask
;
1812 InMask
.trunc(InBits
);
1813 KnownZero
.trunc(InBits
);
1814 KnownOne
.trunc(InBits
);
1815 ComputeMaskedBits(Op
.getOperand(0), InMask
, KnownZero
, KnownOne
, Depth
+1);
1816 KnownZero
.zext(BitWidth
);
1817 KnownOne
.zext(BitWidth
);
1818 KnownZero
|= NewBits
;
1821 case ISD::SIGN_EXTEND
: {
1822 EVT InVT
= Op
.getOperand(0).getValueType();
1823 unsigned InBits
= InVT
.getScalarType().getSizeInBits();
1824 APInt InSignBit
= APInt::getSignBit(InBits
);
1825 APInt NewBits
= APInt::getHighBitsSet(BitWidth
, BitWidth
- InBits
) & Mask
;
1826 APInt InMask
= Mask
;
1827 InMask
.trunc(InBits
);
1829 // If any of the sign extended bits are demanded, we know that the sign
1830 // bit is demanded. Temporarily set this bit in the mask for our callee.
1831 if (NewBits
.getBoolValue())
1832 InMask
|= InSignBit
;
1834 KnownZero
.trunc(InBits
);
1835 KnownOne
.trunc(InBits
);
1836 ComputeMaskedBits(Op
.getOperand(0), InMask
, KnownZero
, KnownOne
, Depth
+1);
1838 // Note if the sign bit is known to be zero or one.
1839 bool SignBitKnownZero
= KnownZero
.isNegative();
1840 bool SignBitKnownOne
= KnownOne
.isNegative();
1841 assert(!(SignBitKnownZero
&& SignBitKnownOne
) &&
1842 "Sign bit can't be known to be both zero and one!");
1844 // If the sign bit wasn't actually demanded by our caller, we don't
1845 // want it set in the KnownZero and KnownOne result values. Reset the
1846 // mask and reapply it to the result values.
1848 InMask
.trunc(InBits
);
1849 KnownZero
&= InMask
;
1852 KnownZero
.zext(BitWidth
);
1853 KnownOne
.zext(BitWidth
);
1855 // If the sign bit is known zero or one, the top bits match.
1856 if (SignBitKnownZero
)
1857 KnownZero
|= NewBits
;
1858 else if (SignBitKnownOne
)
1859 KnownOne
|= NewBits
;
1862 case ISD::ANY_EXTEND
: {
1863 EVT InVT
= Op
.getOperand(0).getValueType();
1864 unsigned InBits
= InVT
.getScalarType().getSizeInBits();
1865 APInt InMask
= Mask
;
1866 InMask
.trunc(InBits
);
1867 KnownZero
.trunc(InBits
);
1868 KnownOne
.trunc(InBits
);
1869 ComputeMaskedBits(Op
.getOperand(0), InMask
, KnownZero
, KnownOne
, Depth
+1);
1870 KnownZero
.zext(BitWidth
);
1871 KnownOne
.zext(BitWidth
);
1874 case ISD::TRUNCATE
: {
1875 EVT InVT
= Op
.getOperand(0).getValueType();
1876 unsigned InBits
= InVT
.getScalarType().getSizeInBits();
1877 APInt InMask
= Mask
;
1878 InMask
.zext(InBits
);
1879 KnownZero
.zext(InBits
);
1880 KnownOne
.zext(InBits
);
1881 ComputeMaskedBits(Op
.getOperand(0), InMask
, KnownZero
, KnownOne
, Depth
+1);
1882 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1883 KnownZero
.trunc(BitWidth
);
1884 KnownOne
.trunc(BitWidth
);
1887 case ISD::AssertZext
: {
1888 EVT VT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1889 APInt InMask
= APInt::getLowBitsSet(BitWidth
, VT
.getSizeInBits());
1890 ComputeMaskedBits(Op
.getOperand(0), Mask
& InMask
, KnownZero
,
1892 KnownZero
|= (~InMask
) & Mask
;
1896 // All bits are zero except the low bit.
1897 KnownZero
= APInt::getHighBitsSet(BitWidth
, BitWidth
- 1);
1901 if (ConstantSDNode
*CLHS
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0))) {
1902 // We know that the top bits of C-X are clear if X contains less bits
1903 // than C (i.e. no wrap-around can happen). For example, 20-X is
1904 // positive if we can prove that X is >= 0 and < 16.
1905 if (CLHS
->getAPIntValue().isNonNegative()) {
1906 unsigned NLZ
= (CLHS
->getAPIntValue()+1).countLeadingZeros();
1907 // NLZ can't be BitWidth with no sign bit
1908 APInt MaskV
= APInt::getHighBitsSet(BitWidth
, NLZ
+1);
1909 ComputeMaskedBits(Op
.getOperand(1), MaskV
, KnownZero2
, KnownOne2
,
1912 // If all of the MaskV bits are known to be zero, then we know the
1913 // output top bits are zero, because we now know that the output is
1915 if ((KnownZero2
& MaskV
) == MaskV
) {
1916 unsigned NLZ2
= CLHS
->getAPIntValue().countLeadingZeros();
1917 // Top bits known zero.
1918 KnownZero
= APInt::getHighBitsSet(BitWidth
, NLZ2
) & Mask
;
1925 // Output known-0 bits are known if clear or set in both the low clear bits
1926 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
1927 // low 3 bits clear.
1928 APInt Mask2
= APInt::getLowBitsSet(BitWidth
,
1929 BitWidth
- Mask
.countLeadingZeros());
1930 ComputeMaskedBits(Op
.getOperand(0), Mask2
, KnownZero2
, KnownOne2
, Depth
+1);
1931 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1932 unsigned KnownZeroOut
= KnownZero2
.countTrailingOnes();
1934 ComputeMaskedBits(Op
.getOperand(1), Mask2
, KnownZero2
, KnownOne2
, Depth
+1);
1935 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1936 KnownZeroOut
= std::min(KnownZeroOut
,
1937 KnownZero2
.countTrailingOnes());
1939 KnownZero
|= APInt::getLowBitsSet(BitWidth
, KnownZeroOut
);
1943 if (ConstantSDNode
*Rem
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1944 const APInt
&RA
= Rem
->getAPIntValue().abs();
1945 if (RA
.isPowerOf2()) {
1946 APInt LowBits
= RA
- 1;
1947 APInt Mask2
= LowBits
| APInt::getSignBit(BitWidth
);
1948 ComputeMaskedBits(Op
.getOperand(0), Mask2
,KnownZero2
,KnownOne2
,Depth
+1);
1950 // The low bits of the first operand are unchanged by the srem.
1951 KnownZero
= KnownZero2
& LowBits
;
1952 KnownOne
= KnownOne2
& LowBits
;
1954 // If the first operand is non-negative or has all low bits zero, then
1955 // the upper bits are all zero.
1956 if (KnownZero2
[BitWidth
-1] || ((KnownZero2
& LowBits
) == LowBits
))
1957 KnownZero
|= ~LowBits
;
1959 // If the first operand is negative and not all low bits are zero, then
1960 // the upper bits are all one.
1961 if (KnownOne2
[BitWidth
-1] && ((KnownOne2
& LowBits
) != 0))
1962 KnownOne
|= ~LowBits
;
1967 assert((KnownZero
& KnownOne
) == 0&&"Bits known to be one AND zero?");
1972 if (ConstantSDNode
*Rem
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1973 const APInt
&RA
= Rem
->getAPIntValue();
1974 if (RA
.isPowerOf2()) {
1975 APInt LowBits
= (RA
- 1);
1976 APInt Mask2
= LowBits
& Mask
;
1977 KnownZero
|= ~LowBits
& Mask
;
1978 ComputeMaskedBits(Op
.getOperand(0), Mask2
, KnownZero
, KnownOne
,Depth
+1);
1979 assert((KnownZero
& KnownOne
) == 0&&"Bits known to be one AND zero?");
1984 // Since the result is less than or equal to either operand, any leading
1985 // zero bits in either operand must also exist in the result.
1986 APInt AllOnes
= APInt::getAllOnesValue(BitWidth
);
1987 ComputeMaskedBits(Op
.getOperand(0), AllOnes
, KnownZero
, KnownOne
,
1989 ComputeMaskedBits(Op
.getOperand(1), AllOnes
, KnownZero2
, KnownOne2
,
1992 uint32_t Leaders
= std::max(KnownZero
.countLeadingOnes(),
1993 KnownZero2
.countLeadingOnes());
1995 KnownZero
= APInt::getHighBitsSet(BitWidth
, Leaders
) & Mask
;
1999 // Allow the target to implement this method for its nodes.
2000 if (Op
.getOpcode() >= ISD::BUILTIN_OP_END
) {
2001 case ISD::INTRINSIC_WO_CHAIN
:
2002 case ISD::INTRINSIC_W_CHAIN
:
2003 case ISD::INTRINSIC_VOID
:
2004 TLI
.computeMaskedBitsForTargetNode(Op
, Mask
, KnownZero
, KnownOne
, *this,
2011 /// ComputeNumSignBits - Return the number of times the sign bit of the
2012 /// register is replicated into the other bits. We know that at least 1 bit
2013 /// is always equal to the sign bit (itself), but other cases can give us
2014 /// information. For example, immediately after an "SRA X, 2", we know that
2015 /// the top 3 bits are all equal to each other, so we return 3.
2016 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op
, unsigned Depth
) const{
2017 EVT VT
= Op
.getValueType();
2018 assert(VT
.isInteger() && "Invalid VT!");
2019 unsigned VTBits
= VT
.getScalarType().getSizeInBits();
2021 unsigned FirstAnswer
= 1;
2024 return 1; // Limit search depth.
2026 switch (Op
.getOpcode()) {
2028 case ISD::AssertSext
:
2029 Tmp
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getSizeInBits();
2030 return VTBits
-Tmp
+1;
2031 case ISD::AssertZext
:
2032 Tmp
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getSizeInBits();
2035 case ISD::Constant
: {
2036 const APInt
&Val
= cast
<ConstantSDNode
>(Op
)->getAPIntValue();
2037 // If negative, return # leading ones.
2038 if (Val
.isNegative())
2039 return Val
.countLeadingOnes();
2041 // Return # leading zeros.
2042 return Val
.countLeadingZeros();
2045 case ISD::SIGN_EXTEND
:
2046 Tmp
= VTBits
-Op
.getOperand(0).getValueType().getScalarType().getSizeInBits();
2047 return ComputeNumSignBits(Op
.getOperand(0), Depth
+1) + Tmp
;
2049 case ISD::SIGN_EXTEND_INREG
:
2050 // Max of the input and what this extends.
2052 cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getScalarType().getSizeInBits();
2055 Tmp2
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2056 return std::max(Tmp
, Tmp2
);
2059 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2060 // SRA X, C -> adds C sign bits.
2061 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
2062 Tmp
+= C
->getZExtValue();
2063 if (Tmp
> VTBits
) Tmp
= VTBits
;
2067 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
2068 // shl destroys sign bits.
2069 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2070 if (C
->getZExtValue() >= VTBits
|| // Bad shift.
2071 C
->getZExtValue() >= Tmp
) break; // Shifted all sign bits out.
2072 return Tmp
- C
->getZExtValue();
2077 case ISD::XOR
: // NOT is handled here.
2078 // Logical binary ops preserve the number of sign bits at the worst.
2079 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2081 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
2082 FirstAnswer
= std::min(Tmp
, Tmp2
);
2083 // We computed what we know about the sign bits as our first
2084 // answer. Now proceed to the generic code that uses
2085 // ComputeMaskedBits, and pick whichever answer is better.
2090 Tmp
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
2091 if (Tmp
== 1) return 1; // Early out.
2092 Tmp2
= ComputeNumSignBits(Op
.getOperand(2), Depth
+1);
2093 return std::min(Tmp
, Tmp2
);
2101 if (Op
.getResNo() != 1)
2103 // The boolean result conforms to getBooleanContents. Fall through.
2105 // If setcc returns 0/-1, all bits are sign bits.
2106 if (TLI
.getBooleanContents() ==
2107 TargetLowering::ZeroOrNegativeOneBooleanContent
)
2112 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
2113 unsigned RotAmt
= C
->getZExtValue() & (VTBits
-1);
2115 // Handle rotate right by N like a rotate left by 32-N.
2116 if (Op
.getOpcode() == ISD::ROTR
)
2117 RotAmt
= (VTBits
-RotAmt
) & (VTBits
-1);
2119 // If we aren't rotating out all of the known-in sign bits, return the
2120 // number that are left. This handles rotl(sext(x), 1) for example.
2121 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2122 if (Tmp
> RotAmt
+1) return Tmp
-RotAmt
;
2126 // Add can have at most one carry bit. Thus we know that the output
2127 // is, at worst, one more bit than the inputs.
2128 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2129 if (Tmp
== 1) return 1; // Early out.
2131 // Special case decrementing a value (ADD X, -1):
2132 if (ConstantSDNode
*CRHS
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
2133 if (CRHS
->isAllOnesValue()) {
2134 APInt KnownZero
, KnownOne
;
2135 APInt Mask
= APInt::getAllOnesValue(VTBits
);
2136 ComputeMaskedBits(Op
.getOperand(0), Mask
, KnownZero
, KnownOne
, Depth
+1);
2138 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2140 if ((KnownZero
| APInt(VTBits
, 1)) == Mask
)
2143 // If we are subtracting one from a positive number, there is no carry
2144 // out of the result.
2145 if (KnownZero
.isNegative())
2149 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
2150 if (Tmp2
== 1) return 1;
2151 return std::min(Tmp
, Tmp2
)-1;
2155 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
2156 if (Tmp2
== 1) return 1;
2159 if (ConstantSDNode
*CLHS
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0)))
2160 if (CLHS
->isNullValue()) {
2161 APInt KnownZero
, KnownOne
;
2162 APInt Mask
= APInt::getAllOnesValue(VTBits
);
2163 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
2164 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2166 if ((KnownZero
| APInt(VTBits
, 1)) == Mask
)
2169 // If the input is known to be positive (the sign bit is known clear),
2170 // the output of the NEG has the same number of sign bits as the input.
2171 if (KnownZero
.isNegative())
2174 // Otherwise, we treat this like a SUB.
2177 // Sub can have at most one carry bit. Thus we know that the output
2178 // is, at worst, one more bit than the inputs.
2179 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2180 if (Tmp
== 1) return 1; // Early out.
2181 return std::min(Tmp
, Tmp2
)-1;
2184 // FIXME: it's tricky to do anything useful for this, but it is an important
2185 // case for targets like X86.
2189 // Handle LOADX separately here. EXTLOAD case will fallthrough.
2190 if (Op
.getOpcode() == ISD::LOAD
) {
2191 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
2192 unsigned ExtType
= LD
->getExtensionType();
2195 case ISD::SEXTLOAD
: // '17' bits known
2196 Tmp
= LD
->getMemoryVT().getScalarType().getSizeInBits();
2197 return VTBits
-Tmp
+1;
2198 case ISD::ZEXTLOAD
: // '16' bits known
2199 Tmp
= LD
->getMemoryVT().getScalarType().getSizeInBits();
2204 // Allow the target to implement this method for its nodes.
2205 if (Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
2206 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
2207 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
2208 Op
.getOpcode() == ISD::INTRINSIC_VOID
) {
2209 unsigned NumBits
= TLI
.ComputeNumSignBitsForTargetNode(Op
, Depth
);
2210 if (NumBits
> 1) FirstAnswer
= std::max(FirstAnswer
, NumBits
);
2213 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2214 // use this information.
2215 APInt KnownZero
, KnownOne
;
2216 APInt Mask
= APInt::getAllOnesValue(VTBits
);
2217 ComputeMaskedBits(Op
, Mask
, KnownZero
, KnownOne
, Depth
);
2219 if (KnownZero
.isNegative()) { // sign bit is 0
2221 } else if (KnownOne
.isNegative()) { // sign bit is 1;
2228 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2229 // the number of identical bits in the top of the input value.
2231 Mask
<<= Mask
.getBitWidth()-VTBits
;
2232 // Return # leading zeros. We use 'min' here in case Val was zero before
2233 // shifting. We don't want to return '64' as for an i32 "0".
2234 return std::max(FirstAnswer
, std::min(VTBits
, Mask
.countLeadingZeros()));
2237 bool SelectionDAG::isKnownNeverNaN(SDValue Op
) const {
2238 // If we're told that NaNs won't happen, assume they won't.
2242 // If the value is a constant, we can obviously see if it is a NaN or not.
2243 if (const ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Op
))
2244 return !C
->getValueAPF().isNaN();
2246 // TODO: Recognize more cases here.
2251 bool SelectionDAG::isKnownNeverZero(SDValue Op
) const {
2252 // If the value is a constant, we can obviously see if it is a zero or not.
2253 if (const ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Op
))
2254 return !C
->isZero();
2256 // TODO: Recognize more cases here.
2261 bool SelectionDAG::isEqualTo(SDValue A
, SDValue B
) const {
2262 // Check the obvious case.
2263 if (A
== B
) return true;
2265 // For for negative and positive zero.
2266 if (const ConstantFPSDNode
*CA
= dyn_cast
<ConstantFPSDNode
>(A
))
2267 if (const ConstantFPSDNode
*CB
= dyn_cast
<ConstantFPSDNode
>(B
))
2268 if (CA
->isZero() && CB
->isZero()) return true;
2270 // Otherwise they may not be equal.
2274 bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op
) const {
2275 GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(Op
);
2276 if (!GA
) return false;
2277 if (GA
->getOffset() != 0) return false;
2278 const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(GA
->getGlobal());
2279 if (!GV
) return false;
2280 return MF
->getMMI().hasDebugInfo();
2284 /// getNode - Gets or creates the specified node.
2286 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
) {
2287 FoldingSetNodeID ID
;
2288 AddNodeIDNode(ID
, Opcode
, getVTList(VT
), 0, 0);
2290 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
2291 return SDValue(E
, 0);
2293 SDNode
*N
= new (NodeAllocator
) SDNode(Opcode
, DL
, getVTList(VT
));
2294 CSEMap
.InsertNode(N
, IP
);
2296 AllNodes
.push_back(N
);
2300 return SDValue(N
, 0);
2303 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
,
2304 EVT VT
, SDValue Operand
) {
2305 // Constant fold unary operations with an integer constant operand.
2306 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Operand
.getNode())) {
2307 const APInt
&Val
= C
->getAPIntValue();
2310 case ISD::SIGN_EXTEND
:
2311 return getConstant(APInt(Val
).sextOrTrunc(VT
.getSizeInBits()), VT
);
2312 case ISD::ANY_EXTEND
:
2313 case ISD::ZERO_EXTEND
:
2315 return getConstant(APInt(Val
).zextOrTrunc(VT
.getSizeInBits()), VT
);
2316 case ISD::UINT_TO_FP
:
2317 case ISD::SINT_TO_FP
: {
2318 const uint64_t zero
[] = {0, 0};
2319 // No compile time operations on ppcf128.
2320 if (VT
== MVT::ppcf128
) break;
2321 APFloat apf
= APFloat(APInt(VT
.getSizeInBits(), 2, zero
));
2322 (void)apf
.convertFromAPInt(Val
,
2323 Opcode
==ISD::SINT_TO_FP
,
2324 APFloat::rmNearestTiesToEven
);
2325 return getConstantFP(apf
, VT
);
2327 case ISD::BIT_CONVERT
:
2328 if (VT
== MVT::f32
&& C
->getValueType(0) == MVT::i32
)
2329 return getConstantFP(Val
.bitsToFloat(), VT
);
2330 else if (VT
== MVT::f64
&& C
->getValueType(0) == MVT::i64
)
2331 return getConstantFP(Val
.bitsToDouble(), VT
);
2334 return getConstant(Val
.byteSwap(), VT
);
2336 return getConstant(Val
.countPopulation(), VT
);
2338 return getConstant(Val
.countLeadingZeros(), VT
);
2340 return getConstant(Val
.countTrailingZeros(), VT
);
2344 // Constant fold unary operations with a floating point constant operand.
2345 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Operand
.getNode())) {
2346 APFloat V
= C
->getValueAPF(); // make copy
2347 if (VT
!= MVT::ppcf128
&& Operand
.getValueType() != MVT::ppcf128
) {
2351 return getConstantFP(V
, VT
);
2354 return getConstantFP(V
, VT
);
2356 case ISD::FP_EXTEND
: {
2358 // This can return overflow, underflow, or inexact; we don't care.
2359 // FIXME need to be more flexible about rounding mode.
2360 (void)V
.convert(*EVTToAPFloatSemantics(VT
),
2361 APFloat::rmNearestTiesToEven
, &ignored
);
2362 return getConstantFP(V
, VT
);
2364 case ISD::FP_TO_SINT
:
2365 case ISD::FP_TO_UINT
: {
2368 assert(integerPartWidth
>= 64);
2369 // FIXME need to be more flexible about rounding mode.
2370 APFloat::opStatus s
= V
.convertToInteger(x
, VT
.getSizeInBits(),
2371 Opcode
==ISD::FP_TO_SINT
,
2372 APFloat::rmTowardZero
, &ignored
);
2373 if (s
==APFloat::opInvalidOp
) // inexact is OK, in fact usual
2375 APInt
api(VT
.getSizeInBits(), 2, x
);
2376 return getConstant(api
, VT
);
2378 case ISD::BIT_CONVERT
:
2379 if (VT
== MVT::i32
&& C
->getValueType(0) == MVT::f32
)
2380 return getConstant((uint32_t)V
.bitcastToAPInt().getZExtValue(), VT
);
2381 else if (VT
== MVT::i64
&& C
->getValueType(0) == MVT::f64
)
2382 return getConstant(V
.bitcastToAPInt().getZExtValue(), VT
);
2388 unsigned OpOpcode
= Operand
.getNode()->getOpcode();
2390 case ISD::TokenFactor
:
2391 case ISD::MERGE_VALUES
:
2392 case ISD::CONCAT_VECTORS
:
2393 return Operand
; // Factor, merge or concat of one node? No need.
2394 case ISD::FP_ROUND
: llvm_unreachable("Invalid method to make FP_ROUND node");
2395 case ISD::FP_EXTEND
:
2396 assert(VT
.isFloatingPoint() &&
2397 Operand
.getValueType().isFloatingPoint() && "Invalid FP cast!");
2398 if (Operand
.getValueType() == VT
) return Operand
; // noop conversion.
2399 assert((!VT
.isVector() ||
2400 VT
.getVectorNumElements() ==
2401 Operand
.getValueType().getVectorNumElements()) &&
2402 "Vector element count mismatch!");
2403 if (Operand
.getOpcode() == ISD::UNDEF
)
2404 return getUNDEF(VT
);
2406 case ISD::SIGN_EXTEND
:
2407 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
2408 "Invalid SIGN_EXTEND!");
2409 if (Operand
.getValueType() == VT
) return Operand
; // noop extension
2410 assert(Operand
.getValueType().getScalarType().bitsLT(VT
.getScalarType()) &&
2411 "Invalid sext node, dst < src!");
2412 assert((!VT
.isVector() ||
2413 VT
.getVectorNumElements() ==
2414 Operand
.getValueType().getVectorNumElements()) &&
2415 "Vector element count mismatch!");
2416 if (OpOpcode
== ISD::SIGN_EXTEND
|| OpOpcode
== ISD::ZERO_EXTEND
)
2417 return getNode(OpOpcode
, DL
, VT
, Operand
.getNode()->getOperand(0));
2419 case ISD::ZERO_EXTEND
:
2420 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
2421 "Invalid ZERO_EXTEND!");
2422 if (Operand
.getValueType() == VT
) return Operand
; // noop extension
2423 assert(Operand
.getValueType().getScalarType().bitsLT(VT
.getScalarType()) &&
2424 "Invalid zext node, dst < src!");
2425 assert((!VT
.isVector() ||
2426 VT
.getVectorNumElements() ==
2427 Operand
.getValueType().getVectorNumElements()) &&
2428 "Vector element count mismatch!");
2429 if (OpOpcode
== ISD::ZERO_EXTEND
) // (zext (zext x)) -> (zext x)
2430 return getNode(ISD::ZERO_EXTEND
, DL
, VT
,
2431 Operand
.getNode()->getOperand(0));
2433 case ISD::ANY_EXTEND
:
2434 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
2435 "Invalid ANY_EXTEND!");
2436 if (Operand
.getValueType() == VT
) return Operand
; // noop extension
2437 assert(Operand
.getValueType().getScalarType().bitsLT(VT
.getScalarType()) &&
2438 "Invalid anyext node, dst < src!");
2439 assert((!VT
.isVector() ||
2440 VT
.getVectorNumElements() ==
2441 Operand
.getValueType().getVectorNumElements()) &&
2442 "Vector element count mismatch!");
2444 if (OpOpcode
== ISD::ZERO_EXTEND
|| OpOpcode
== ISD::SIGN_EXTEND
||
2445 OpOpcode
== ISD::ANY_EXTEND
)
2446 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
2447 return getNode(OpOpcode
, DL
, VT
, Operand
.getNode()->getOperand(0));
2449 // (ext (trunx x)) -> x
2450 if (OpOpcode
== ISD::TRUNCATE
) {
2451 SDValue OpOp
= Operand
.getNode()->getOperand(0);
2452 if (OpOp
.getValueType() == VT
)
2457 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
2458 "Invalid TRUNCATE!");
2459 if (Operand
.getValueType() == VT
) return Operand
; // noop truncate
2460 assert(Operand
.getValueType().getScalarType().bitsGT(VT
.getScalarType()) &&
2461 "Invalid truncate node, src < dst!");
2462 assert((!VT
.isVector() ||
2463 VT
.getVectorNumElements() ==
2464 Operand
.getValueType().getVectorNumElements()) &&
2465 "Vector element count mismatch!");
2466 if (OpOpcode
== ISD::TRUNCATE
)
2467 return getNode(ISD::TRUNCATE
, DL
, VT
, Operand
.getNode()->getOperand(0));
2468 else if (OpOpcode
== ISD::ZERO_EXTEND
|| OpOpcode
== ISD::SIGN_EXTEND
||
2469 OpOpcode
== ISD::ANY_EXTEND
) {
2470 // If the source is smaller than the dest, we still need an extend.
2471 if (Operand
.getNode()->getOperand(0).getValueType().getScalarType()
2472 .bitsLT(VT
.getScalarType()))
2473 return getNode(OpOpcode
, DL
, VT
, Operand
.getNode()->getOperand(0));
2474 else if (Operand
.getNode()->getOperand(0).getValueType().bitsGT(VT
))
2475 return getNode(ISD::TRUNCATE
, DL
, VT
, Operand
.getNode()->getOperand(0));
2477 return Operand
.getNode()->getOperand(0);
2480 case ISD::BIT_CONVERT
:
2481 // Basic sanity checking.
2482 assert(VT
.getSizeInBits() == Operand
.getValueType().getSizeInBits()
2483 && "Cannot BIT_CONVERT between types of different sizes!");
2484 if (VT
== Operand
.getValueType()) return Operand
; // noop conversion.
2485 if (OpOpcode
== ISD::BIT_CONVERT
) // bitconv(bitconv(x)) -> bitconv(x)
2486 return getNode(ISD::BIT_CONVERT
, DL
, VT
, Operand
.getOperand(0));
2487 if (OpOpcode
== ISD::UNDEF
)
2488 return getUNDEF(VT
);
2490 case ISD::SCALAR_TO_VECTOR
:
2491 assert(VT
.isVector() && !Operand
.getValueType().isVector() &&
2492 (VT
.getVectorElementType() == Operand
.getValueType() ||
2493 (VT
.getVectorElementType().isInteger() &&
2494 Operand
.getValueType().isInteger() &&
2495 VT
.getVectorElementType().bitsLE(Operand
.getValueType()))) &&
2496 "Illegal SCALAR_TO_VECTOR node!");
2497 if (OpOpcode
== ISD::UNDEF
)
2498 return getUNDEF(VT
);
2499 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2500 if (OpOpcode
== ISD::EXTRACT_VECTOR_ELT
&&
2501 isa
<ConstantSDNode
>(Operand
.getOperand(1)) &&
2502 Operand
.getConstantOperandVal(1) == 0 &&
2503 Operand
.getOperand(0).getValueType() == VT
)
2504 return Operand
.getOperand(0);
2507 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2508 if (UnsafeFPMath
&& OpOpcode
== ISD::FSUB
)
2509 return getNode(ISD::FSUB
, DL
, VT
, Operand
.getNode()->getOperand(1),
2510 Operand
.getNode()->getOperand(0));
2511 if (OpOpcode
== ISD::FNEG
) // --X -> X
2512 return Operand
.getNode()->getOperand(0);
2515 if (OpOpcode
== ISD::FNEG
) // abs(-X) -> abs(X)
2516 return getNode(ISD::FABS
, DL
, VT
, Operand
.getNode()->getOperand(0));
2521 SDVTList VTs
= getVTList(VT
);
2522 if (VT
!= MVT::Flag
) { // Don't CSE flag producing nodes
2523 FoldingSetNodeID ID
;
2524 SDValue Ops
[1] = { Operand
};
2525 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 1);
2527 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
2528 return SDValue(E
, 0);
2530 N
= new (NodeAllocator
) UnarySDNode(Opcode
, DL
, VTs
, Operand
);
2531 CSEMap
.InsertNode(N
, IP
);
2533 N
= new (NodeAllocator
) UnarySDNode(Opcode
, DL
, VTs
, Operand
);
2536 AllNodes
.push_back(N
);
2540 return SDValue(N
, 0);
2543 SDValue
SelectionDAG::FoldConstantArithmetic(unsigned Opcode
,
2545 ConstantSDNode
*Cst1
,
2546 ConstantSDNode
*Cst2
) {
2547 const APInt
&C1
= Cst1
->getAPIntValue(), &C2
= Cst2
->getAPIntValue();
2550 case ISD::ADD
: return getConstant(C1
+ C2
, VT
);
2551 case ISD::SUB
: return getConstant(C1
- C2
, VT
);
2552 case ISD::MUL
: return getConstant(C1
* C2
, VT
);
2554 if (C2
.getBoolValue()) return getConstant(C1
.udiv(C2
), VT
);
2557 if (C2
.getBoolValue()) return getConstant(C1
.urem(C2
), VT
);
2560 if (C2
.getBoolValue()) return getConstant(C1
.sdiv(C2
), VT
);
2563 if (C2
.getBoolValue()) return getConstant(C1
.srem(C2
), VT
);
2565 case ISD::AND
: return getConstant(C1
& C2
, VT
);
2566 case ISD::OR
: return getConstant(C1
| C2
, VT
);
2567 case ISD::XOR
: return getConstant(C1
^ C2
, VT
);
2568 case ISD::SHL
: return getConstant(C1
<< C2
, VT
);
2569 case ISD::SRL
: return getConstant(C1
.lshr(C2
), VT
);
2570 case ISD::SRA
: return getConstant(C1
.ashr(C2
), VT
);
2571 case ISD::ROTL
: return getConstant(C1
.rotl(C2
), VT
);
2572 case ISD::ROTR
: return getConstant(C1
.rotr(C2
), VT
);
2579 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
,
2580 SDValue N1
, SDValue N2
) {
2581 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
2582 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
2585 case ISD::TokenFactor
:
2586 assert(VT
== MVT::Other
&& N1
.getValueType() == MVT::Other
&&
2587 N2
.getValueType() == MVT::Other
&& "Invalid token factor!");
2588 // Fold trivial token factors.
2589 if (N1
.getOpcode() == ISD::EntryToken
) return N2
;
2590 if (N2
.getOpcode() == ISD::EntryToken
) return N1
;
2591 if (N1
== N2
) return N1
;
2593 case ISD::CONCAT_VECTORS
:
2594 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2595 // one big BUILD_VECTOR.
2596 if (N1
.getOpcode() == ISD::BUILD_VECTOR
&&
2597 N2
.getOpcode() == ISD::BUILD_VECTOR
) {
2598 SmallVector
<SDValue
, 16> Elts(N1
.getNode()->op_begin(),
2599 N1
.getNode()->op_end());
2600 Elts
.append(N2
.getNode()->op_begin(), N2
.getNode()->op_end());
2601 return getNode(ISD::BUILD_VECTOR
, DL
, VT
, &Elts
[0], Elts
.size());
2605 assert(VT
.isInteger() && "This operator does not apply to FP types!");
2606 assert(N1
.getValueType() == N2
.getValueType() &&
2607 N1
.getValueType() == VT
&& "Binary operator types must match!");
2608 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
2609 // worth handling here.
2610 if (N2C
&& N2C
->isNullValue())
2612 if (N2C
&& N2C
->isAllOnesValue()) // X & -1 -> X
2619 assert(VT
.isInteger() && "This operator does not apply to FP types!");
2620 assert(N1
.getValueType() == N2
.getValueType() &&
2621 N1
.getValueType() == VT
&& "Binary operator types must match!");
2622 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
2623 // it's worth handling here.
2624 if (N2C
&& N2C
->isNullValue())
2634 assert(VT
.isInteger() && "This operator does not apply to FP types!");
2635 assert(N1
.getValueType() == N2
.getValueType() &&
2636 N1
.getValueType() == VT
&& "Binary operator types must match!");
2644 if (Opcode
== ISD::FADD
) {
2646 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N1
))
2647 if (CFP
->getValueAPF().isZero())
2650 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N2
))
2651 if (CFP
->getValueAPF().isZero())
2653 } else if (Opcode
== ISD::FSUB
) {
2655 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N2
))
2656 if (CFP
->getValueAPF().isZero())
2660 assert(VT
.isFloatingPoint() && "This operator only applies to FP types!");
2661 assert(N1
.getValueType() == N2
.getValueType() &&
2662 N1
.getValueType() == VT
&& "Binary operator types must match!");
2664 case ISD::FCOPYSIGN
: // N1 and result must match. N1/N2 need not match.
2665 assert(N1
.getValueType() == VT
&&
2666 N1
.getValueType().isFloatingPoint() &&
2667 N2
.getValueType().isFloatingPoint() &&
2668 "Invalid FCOPYSIGN!");
2675 assert(VT
== N1
.getValueType() &&
2676 "Shift operators return type must be the same as their first arg");
2677 assert(VT
.isInteger() && N2
.getValueType().isInteger() &&
2678 "Shifts only work on integers");
2680 // Always fold shifts of i1 values so the code generator doesn't need to
2681 // handle them. Since we know the size of the shift has to be less than the
2682 // size of the value, the shift/rotate count is guaranteed to be zero.
2685 if (N2C
&& N2C
->isNullValue())
2688 case ISD::FP_ROUND_INREG
: {
2689 EVT EVT
= cast
<VTSDNode
>(N2
)->getVT();
2690 assert(VT
== N1
.getValueType() && "Not an inreg round!");
2691 assert(VT
.isFloatingPoint() && EVT
.isFloatingPoint() &&
2692 "Cannot FP_ROUND_INREG integer types");
2693 assert(EVT
.isVector() == VT
.isVector() &&
2694 "FP_ROUND_INREG type should be vector iff the operand "
2696 assert((!EVT
.isVector() ||
2697 EVT
.getVectorNumElements() == VT
.getVectorNumElements()) &&
2698 "Vector element counts must match in FP_ROUND_INREG");
2699 assert(EVT
.bitsLE(VT
) && "Not rounding down!");
2700 if (cast
<VTSDNode
>(N2
)->getVT() == VT
) return N1
; // Not actually rounding.
2704 assert(VT
.isFloatingPoint() &&
2705 N1
.getValueType().isFloatingPoint() &&
2706 VT
.bitsLE(N1
.getValueType()) &&
2707 isa
<ConstantSDNode
>(N2
) && "Invalid FP_ROUND!");
2708 if (N1
.getValueType() == VT
) return N1
; // noop conversion.
2710 case ISD::AssertSext
:
2711 case ISD::AssertZext
: {
2712 EVT EVT
= cast
<VTSDNode
>(N2
)->getVT();
2713 assert(VT
== N1
.getValueType() && "Not an inreg extend!");
2714 assert(VT
.isInteger() && EVT
.isInteger() &&
2715 "Cannot *_EXTEND_INREG FP types");
2716 assert(!EVT
.isVector() &&
2717 "AssertSExt/AssertZExt type should be the vector element type "
2718 "rather than the vector type!");
2719 assert(EVT
.bitsLE(VT
) && "Not extending!");
2720 if (VT
== EVT
) return N1
; // noop assertion.
2723 case ISD::SIGN_EXTEND_INREG
: {
2724 EVT EVT
= cast
<VTSDNode
>(N2
)->getVT();
2725 assert(VT
== N1
.getValueType() && "Not an inreg extend!");
2726 assert(VT
.isInteger() && EVT
.isInteger() &&
2727 "Cannot *_EXTEND_INREG FP types");
2728 assert(EVT
.isVector() == VT
.isVector() &&
2729 "SIGN_EXTEND_INREG type should be vector iff the operand "
2731 assert((!EVT
.isVector() ||
2732 EVT
.getVectorNumElements() == VT
.getVectorNumElements()) &&
2733 "Vector element counts must match in SIGN_EXTEND_INREG");
2734 assert(EVT
.bitsLE(VT
) && "Not extending!");
2735 if (EVT
== VT
) return N1
; // Not actually extending
2738 APInt Val
= N1C
->getAPIntValue();
2739 unsigned FromBits
= EVT
.getScalarType().getSizeInBits();
2740 Val
<<= Val
.getBitWidth()-FromBits
;
2741 Val
= Val
.ashr(Val
.getBitWidth()-FromBits
);
2742 return getConstant(Val
, VT
);
2746 case ISD::EXTRACT_VECTOR_ELT
:
2747 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2748 if (N1
.getOpcode() == ISD::UNDEF
)
2749 return getUNDEF(VT
);
2751 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2752 // expanding copies of large vectors from registers.
2754 N1
.getOpcode() == ISD::CONCAT_VECTORS
&&
2755 N1
.getNumOperands() > 0) {
2757 N1
.getOperand(0).getValueType().getVectorNumElements();
2758 return getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
,
2759 N1
.getOperand(N2C
->getZExtValue() / Factor
),
2760 getConstant(N2C
->getZExtValue() % Factor
,
2761 N2
.getValueType()));
2764 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2765 // expanding large vector constants.
2766 if (N2C
&& N1
.getOpcode() == ISD::BUILD_VECTOR
) {
2767 SDValue Elt
= N1
.getOperand(N2C
->getZExtValue());
2768 EVT VEltTy
= N1
.getValueType().getVectorElementType();
2769 if (Elt
.getValueType() != VEltTy
) {
2770 // If the vector element type is not legal, the BUILD_VECTOR operands
2771 // are promoted and implicitly truncated. Make that explicit here.
2772 Elt
= getNode(ISD::TRUNCATE
, DL
, VEltTy
, Elt
);
2775 // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2776 // result is implicitly extended.
2777 Elt
= getNode(ISD::ANY_EXTEND
, DL
, VT
, Elt
);
2782 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2783 // operations are lowered to scalars.
2784 if (N1
.getOpcode() == ISD::INSERT_VECTOR_ELT
) {
2785 // If the indices are the same, return the inserted element else
2786 // if the indices are known different, extract the element from
2787 // the original vector.
2788 SDValue N1Op2
= N1
.getOperand(2);
2789 ConstantSDNode
*N1Op2C
= dyn_cast
<ConstantSDNode
>(N1Op2
.getNode());
2791 if (N1Op2C
&& N2C
) {
2792 if (N1Op2C
->getZExtValue() == N2C
->getZExtValue()) {
2793 if (VT
== N1
.getOperand(1).getValueType())
2794 return N1
.getOperand(1);
2796 return getSExtOrTrunc(N1
.getOperand(1), DL
, VT
);
2799 return getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
, N1
.getOperand(0), N2
);
2803 case ISD::EXTRACT_ELEMENT
:
2804 assert(N2C
&& (unsigned)N2C
->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2805 assert(!N1
.getValueType().isVector() && !VT
.isVector() &&
2806 (N1
.getValueType().isInteger() == VT
.isInteger()) &&
2807 "Wrong types for EXTRACT_ELEMENT!");
2809 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2810 // 64-bit integers into 32-bit parts. Instead of building the extract of
2811 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2812 if (N1
.getOpcode() == ISD::BUILD_PAIR
)
2813 return N1
.getOperand(N2C
->getZExtValue());
2815 // EXTRACT_ELEMENT of a constant int is also very common.
2816 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N1
)) {
2817 unsigned ElementSize
= VT
.getSizeInBits();
2818 unsigned Shift
= ElementSize
* N2C
->getZExtValue();
2819 APInt ShiftedVal
= C
->getAPIntValue().lshr(Shift
);
2820 return getConstant(ShiftedVal
.trunc(ElementSize
), VT
);
2823 case ISD::EXTRACT_SUBVECTOR
:
2824 if (N1
.getValueType() == VT
) // Trivial extraction.
2831 SDValue SV
= FoldConstantArithmetic(Opcode
, VT
, N1C
, N2C
);
2832 if (SV
.getNode()) return SV
;
2833 } else { // Cannonicalize constant to RHS if commutative
2834 if (isCommutativeBinOp(Opcode
)) {
2835 std::swap(N1C
, N2C
);
2841 // Constant fold FP operations.
2842 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
.getNode());
2843 ConstantFPSDNode
*N2CFP
= dyn_cast
<ConstantFPSDNode
>(N2
.getNode());
2845 if (!N2CFP
&& isCommutativeBinOp(Opcode
)) {
2846 // Cannonicalize constant to RHS if commutative
2847 std::swap(N1CFP
, N2CFP
);
2849 } else if (N2CFP
&& VT
!= MVT::ppcf128
) {
2850 APFloat V1
= N1CFP
->getValueAPF(), V2
= N2CFP
->getValueAPF();
2851 APFloat::opStatus s
;
2854 s
= V1
.add(V2
, APFloat::rmNearestTiesToEven
);
2855 if (s
!= APFloat::opInvalidOp
)
2856 return getConstantFP(V1
, VT
);
2859 s
= V1
.subtract(V2
, APFloat::rmNearestTiesToEven
);
2860 if (s
!=APFloat::opInvalidOp
)
2861 return getConstantFP(V1
, VT
);
2864 s
= V1
.multiply(V2
, APFloat::rmNearestTiesToEven
);
2865 if (s
!=APFloat::opInvalidOp
)
2866 return getConstantFP(V1
, VT
);
2869 s
= V1
.divide(V2
, APFloat::rmNearestTiesToEven
);
2870 if (s
!=APFloat::opInvalidOp
&& s
!=APFloat::opDivByZero
)
2871 return getConstantFP(V1
, VT
);
2874 s
= V1
.mod(V2
, APFloat::rmNearestTiesToEven
);
2875 if (s
!=APFloat::opInvalidOp
&& s
!=APFloat::opDivByZero
)
2876 return getConstantFP(V1
, VT
);
2878 case ISD::FCOPYSIGN
:
2880 return getConstantFP(V1
, VT
);
2886 // Canonicalize an UNDEF to the RHS, even over a constant.
2887 if (N1
.getOpcode() == ISD::UNDEF
) {
2888 if (isCommutativeBinOp(Opcode
)) {
2892 case ISD::FP_ROUND_INREG
:
2893 case ISD::SIGN_EXTEND_INREG
:
2899 return N1
; // fold op(undef, arg2) -> undef
2907 return getConstant(0, VT
); // fold op(undef, arg2) -> 0
2908 // For vectors, we can't easily build an all zero vector, just return
2915 // Fold a bunch of operators when the RHS is undef.
2916 if (N2
.getOpcode() == ISD::UNDEF
) {
2919 if (N1
.getOpcode() == ISD::UNDEF
)
2920 // Handle undef ^ undef -> 0 special case. This is a common
2922 return getConstant(0, VT
);
2932 return N2
; // fold op(arg1, undef) -> undef
2946 return getConstant(0, VT
); // fold op(arg1, undef) -> 0
2947 // For vectors, we can't easily build an all zero vector, just return
2952 return getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()), VT
);
2953 // For vectors, we can't easily build an all one vector, just return
2961 // Memoize this node if possible.
2963 SDVTList VTs
= getVTList(VT
);
2964 if (VT
!= MVT::Flag
) {
2965 SDValue Ops
[] = { N1
, N2
};
2966 FoldingSetNodeID ID
;
2967 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 2);
2969 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
2970 return SDValue(E
, 0);
2972 N
= new (NodeAllocator
) BinarySDNode(Opcode
, DL
, VTs
, N1
, N2
);
2973 CSEMap
.InsertNode(N
, IP
);
2975 N
= new (NodeAllocator
) BinarySDNode(Opcode
, DL
, VTs
, N1
, N2
);
2978 AllNodes
.push_back(N
);
2982 return SDValue(N
, 0);
2985 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
,
2986 SDValue N1
, SDValue N2
, SDValue N3
) {
2987 // Perform various simplifications.
2988 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
2990 case ISD::CONCAT_VECTORS
:
2991 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2992 // one big BUILD_VECTOR.
2993 if (N1
.getOpcode() == ISD::BUILD_VECTOR
&&
2994 N2
.getOpcode() == ISD::BUILD_VECTOR
&&
2995 N3
.getOpcode() == ISD::BUILD_VECTOR
) {
2996 SmallVector
<SDValue
, 16> Elts(N1
.getNode()->op_begin(),
2997 N1
.getNode()->op_end());
2998 Elts
.append(N2
.getNode()->op_begin(), N2
.getNode()->op_end());
2999 Elts
.append(N3
.getNode()->op_begin(), N3
.getNode()->op_end());
3000 return getNode(ISD::BUILD_VECTOR
, DL
, VT
, &Elts
[0], Elts
.size());
3004 // Use FoldSetCC to simplify SETCC's.
3005 SDValue Simp
= FoldSetCC(VT
, N1
, N2
, cast
<CondCodeSDNode
>(N3
)->get(), DL
);
3006 if (Simp
.getNode()) return Simp
;
3011 if (N1C
->getZExtValue())
3012 return N2
; // select true, X, Y -> X
3014 return N3
; // select false, X, Y -> Y
3017 if (N2
== N3
) return N2
; // select C, X, X -> X
3019 case ISD::VECTOR_SHUFFLE
:
3020 llvm_unreachable("should use getVectorShuffle constructor!");
3022 case ISD::BIT_CONVERT
:
3023 // Fold bit_convert nodes from a type to themselves.
3024 if (N1
.getValueType() == VT
)
3029 // Memoize node if it doesn't produce a flag.
3031 SDVTList VTs
= getVTList(VT
);
3032 if (VT
!= MVT::Flag
) {
3033 SDValue Ops
[] = { N1
, N2
, N3
};
3034 FoldingSetNodeID ID
;
3035 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 3);
3037 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3038 return SDValue(E
, 0);
3040 N
= new (NodeAllocator
) TernarySDNode(Opcode
, DL
, VTs
, N1
, N2
, N3
);
3041 CSEMap
.InsertNode(N
, IP
);
3043 N
= new (NodeAllocator
) TernarySDNode(Opcode
, DL
, VTs
, N1
, N2
, N3
);
3046 AllNodes
.push_back(N
);
3050 return SDValue(N
, 0);
3053 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
,
3054 SDValue N1
, SDValue N2
, SDValue N3
,
3056 SDValue Ops
[] = { N1
, N2
, N3
, N4
};
3057 return getNode(Opcode
, DL
, VT
, Ops
, 4);
3060 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
,
3061 SDValue N1
, SDValue N2
, SDValue N3
,
3062 SDValue N4
, SDValue N5
) {
3063 SDValue Ops
[] = { N1
, N2
, N3
, N4
, N5
};
3064 return getNode(Opcode
, DL
, VT
, Ops
, 5);
3067 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3068 /// the incoming stack arguments to be loaded from the stack.
3069 SDValue
SelectionDAG::getStackArgumentTokenFactor(SDValue Chain
) {
3070 SmallVector
<SDValue
, 8> ArgChains
;
3072 // Include the original chain at the beginning of the list. When this is
3073 // used by target LowerCall hooks, this helps legalize find the
3074 // CALLSEQ_BEGIN node.
3075 ArgChains
.push_back(Chain
);
3077 // Add a chain value for each stack argument.
3078 for (SDNode::use_iterator U
= getEntryNode().getNode()->use_begin(),
3079 UE
= getEntryNode().getNode()->use_end(); U
!= UE
; ++U
)
3080 if (LoadSDNode
*L
= dyn_cast
<LoadSDNode
>(*U
))
3081 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(L
->getBasePtr()))
3082 if (FI
->getIndex() < 0)
3083 ArgChains
.push_back(SDValue(L
, 1));
3085 // Build a tokenfactor for all the chains.
3086 return getNode(ISD::TokenFactor
, Chain
.getDebugLoc(), MVT::Other
,
3087 &ArgChains
[0], ArgChains
.size());
3090 /// getMemsetValue - Vectorized representation of the memset value
3092 static SDValue
getMemsetValue(SDValue Value
, EVT VT
, SelectionDAG
&DAG
,
3094 assert(Value
.getOpcode() != ISD::UNDEF
);
3096 unsigned NumBits
= VT
.getScalarType().getSizeInBits();
3097 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Value
)) {
3098 APInt Val
= APInt(NumBits
, C
->getZExtValue() & 255);
3100 for (unsigned i
= NumBits
; i
> 8; i
>>= 1) {
3101 Val
= (Val
<< Shift
) | Val
;
3105 return DAG
.getConstant(Val
, VT
);
3106 return DAG
.getConstantFP(APFloat(Val
), VT
);
3109 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3110 Value
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Value
);
3112 for (unsigned i
= NumBits
; i
> 8; i
>>= 1) {
3113 Value
= DAG
.getNode(ISD::OR
, dl
, VT
,
3114 DAG
.getNode(ISD::SHL
, dl
, VT
, Value
,
3115 DAG
.getConstant(Shift
,
3116 TLI
.getShiftAmountTy())),
3124 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3125 /// used when a memcpy is turned into a memset when the source is a constant
3127 static SDValue
getMemsetStringVal(EVT VT
, DebugLoc dl
, SelectionDAG
&DAG
,
3128 const TargetLowering
&TLI
,
3129 std::string
&Str
, unsigned Offset
) {
3130 // Handle vector with all elements zero.
3133 return DAG
.getConstant(0, VT
);
3134 else if (VT
== MVT::f32
|| VT
== MVT::f64
)
3135 return DAG
.getConstantFP(0.0, VT
);
3136 else if (VT
.isVector()) {
3137 unsigned NumElts
= VT
.getVectorNumElements();
3138 MVT EltVT
= (VT
.getVectorElementType() == MVT::f32
) ? MVT::i32
: MVT::i64
;
3139 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
3140 DAG
.getConstant(0, EVT::getVectorVT(*DAG
.getContext(),
3143 llvm_unreachable("Expected type!");
3146 assert(!VT
.isVector() && "Can't handle vector type here!");
3147 unsigned NumBits
= VT
.getSizeInBits();
3148 unsigned MSB
= NumBits
/ 8;
3150 if (TLI
.isLittleEndian())
3151 Offset
= Offset
+ MSB
- 1;
3152 for (unsigned i
= 0; i
!= MSB
; ++i
) {
3153 Val
= (Val
<< 8) | (unsigned char)Str
[Offset
];
3154 Offset
+= TLI
.isLittleEndian() ? -1 : 1;
3156 return DAG
.getConstant(Val
, VT
);
3159 /// getMemBasePlusOffset - Returns base and offset node for the
3161 static SDValue
getMemBasePlusOffset(SDValue Base
, unsigned Offset
,
3162 SelectionDAG
&DAG
) {
3163 EVT VT
= Base
.getValueType();
3164 return DAG
.getNode(ISD::ADD
, Base
.getDebugLoc(),
3165 VT
, Base
, DAG
.getConstant(Offset
, VT
));
3168 /// isMemSrcFromString - Returns true if memcpy source is a string constant.
3170 static bool isMemSrcFromString(SDValue Src
, std::string
&Str
) {
3171 unsigned SrcDelta
= 0;
3172 GlobalAddressSDNode
*G
= NULL
;
3173 if (Src
.getOpcode() == ISD::GlobalAddress
)
3174 G
= cast
<GlobalAddressSDNode
>(Src
);
3175 else if (Src
.getOpcode() == ISD::ADD
&&
3176 Src
.getOperand(0).getOpcode() == ISD::GlobalAddress
&&
3177 Src
.getOperand(1).getOpcode() == ISD::Constant
) {
3178 G
= cast
<GlobalAddressSDNode
>(Src
.getOperand(0));
3179 SrcDelta
= cast
<ConstantSDNode
>(Src
.getOperand(1))->getZExtValue();
3184 const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(G
->getGlobal());
3185 if (GV
&& GetConstantStringInfo(GV
, Str
, SrcDelta
, false))
3191 /// FindOptimalMemOpLowering - Determines the optimial series memory ops
3192 /// to replace the memset / memcpy. Return true if the number of memory ops
3193 /// is below the threshold. It returns the types of the sequence of
3194 /// memory ops to perform memset / memcpy by reference.
3195 static bool FindOptimalMemOpLowering(std::vector
<EVT
> &MemOps
,
3196 unsigned Limit
, uint64_t Size
,
3197 unsigned DstAlign
, unsigned SrcAlign
,
3198 bool NonScalarIntSafe
,
3201 const TargetLowering
&TLI
) {
3202 assert((SrcAlign
== 0 || SrcAlign
>= DstAlign
) &&
3203 "Expecting memcpy / memset source to meet alignment requirement!");
3204 // If 'SrcAlign' is zero, that means the memory operation does not need load
3205 // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3206 // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3207 // specified alignment of the memory operation. If it is zero, that means
3208 // it's possible to change the alignment of the destination. 'MemcpyStrSrc'
3209 // indicates whether the memcpy source is constant so it does not need to be
3211 EVT VT
= TLI
.getOptimalMemOpType(Size
, DstAlign
, SrcAlign
,
3212 NonScalarIntSafe
, MemcpyStrSrc
,
3213 DAG
.getMachineFunction());
3215 if (VT
== MVT::Other
) {
3216 if (DstAlign
>= TLI
.getTargetData()->getPointerPrefAlignment() ||
3217 TLI
.allowsUnalignedMemoryAccesses(VT
)) {
3218 VT
= TLI
.getPointerTy();
3220 switch (DstAlign
& 7) {
3221 case 0: VT
= MVT::i64
; break;
3222 case 4: VT
= MVT::i32
; break;
3223 case 2: VT
= MVT::i16
; break;
3224 default: VT
= MVT::i8
; break;
3229 while (!TLI
.isTypeLegal(LVT
))
3230 LVT
= (MVT::SimpleValueType
)(LVT
.SimpleTy
- 1);
3231 assert(LVT
.isInteger());
3237 // If we're optimizing for size, and there is a limit, bump the maximum number
3238 // of operations inserted down to 4. This is a wild guess that approximates
3239 // the size of a call to memcpy or memset (3 arguments + call).
3241 const Function
*F
= DAG
.getMachineFunction().getFunction();
3242 if (F
->hasFnAttr(Attribute::OptimizeForSize
))
3246 unsigned NumMemOps
= 0;
3248 unsigned VTSize
= VT
.getSizeInBits() / 8;
3249 while (VTSize
> Size
) {
3250 // For now, only use non-vector load / store's for the left-over pieces.
3251 if (VT
.isVector() || VT
.isFloatingPoint()) {
3253 while (!TLI
.isTypeLegal(VT
))
3254 VT
= (MVT::SimpleValueType
)(VT
.getSimpleVT().SimpleTy
- 1);
3255 VTSize
= VT
.getSizeInBits() / 8;
3257 // This can result in a type that is not legal on the target, e.g.
3258 // 1 or 2 bytes on PPC.
3259 VT
= (MVT::SimpleValueType
)(VT
.getSimpleVT().SimpleTy
- 1);
3264 if (++NumMemOps
> Limit
)
3266 MemOps
.push_back(VT
);
3273 static SDValue
getMemcpyLoadsAndStores(SelectionDAG
&DAG
, DebugLoc dl
,
3274 SDValue Chain
, SDValue Dst
,
3275 SDValue Src
, uint64_t Size
,
3276 unsigned Align
, bool isVol
,
3278 MachinePointerInfo DstPtrInfo
,
3279 MachinePointerInfo SrcPtrInfo
) {
3280 // Turn a memcpy of undef to nop.
3281 if (Src
.getOpcode() == ISD::UNDEF
)
3284 // Expand memcpy to a series of load and store ops if the size operand falls
3285 // below a certain threshold.
3286 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3287 std::vector
<EVT
> MemOps
;
3288 bool DstAlignCanChange
= false;
3289 MachineFrameInfo
*MFI
= DAG
.getMachineFunction().getFrameInfo();
3290 FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Dst
);
3291 if (FI
&& !MFI
->isFixedObjectIndex(FI
->getIndex()))
3292 DstAlignCanChange
= true;
3293 unsigned SrcAlign
= DAG
.InferPtrAlignment(Src
);
3294 if (Align
> SrcAlign
)
3297 bool CopyFromStr
= isMemSrcFromString(Src
, Str
);
3298 bool isZeroStr
= CopyFromStr
&& Str
.empty();
3299 unsigned Limit
= AlwaysInline
? ~0U : TLI
.getMaxStoresPerMemcpy();
3301 if (!FindOptimalMemOpLowering(MemOps
, Limit
, Size
,
3302 (DstAlignCanChange
? 0 : Align
),
3303 (isZeroStr
? 0 : SrcAlign
),
3304 true, CopyFromStr
, DAG
, TLI
))
3307 if (DstAlignCanChange
) {
3308 const Type
*Ty
= MemOps
[0].getTypeForEVT(*DAG
.getContext());
3309 unsigned NewAlign
= (unsigned) TLI
.getTargetData()->getABITypeAlignment(Ty
);
3310 if (NewAlign
> Align
) {
3311 // Give the stack frame object a larger alignment if needed.
3312 if (MFI
->getObjectAlignment(FI
->getIndex()) < NewAlign
)
3313 MFI
->setObjectAlignment(FI
->getIndex(), NewAlign
);
3318 SmallVector
<SDValue
, 8> OutChains
;
3319 unsigned NumMemOps
= MemOps
.size();
3320 uint64_t SrcOff
= 0, DstOff
= 0;
3321 for (unsigned i
= 0; i
!= NumMemOps
; ++i
) {
3323 unsigned VTSize
= VT
.getSizeInBits() / 8;
3324 SDValue Value
, Store
;
3327 (isZeroStr
|| (VT
.isInteger() && !VT
.isVector()))) {
3328 // It's unlikely a store of a vector immediate can be done in a single
3329 // instruction. It would require a load from a constantpool first.
3330 // We only handle zero vectors here.
3331 // FIXME: Handle other cases where store of vector immediate is done in
3332 // a single instruction.
3333 Value
= getMemsetStringVal(VT
, dl
, DAG
, TLI
, Str
, SrcOff
);
3334 Store
= DAG
.getStore(Chain
, dl
, Value
,
3335 getMemBasePlusOffset(Dst
, DstOff
, DAG
),
3336 DstPtrInfo
.getWithOffset(DstOff
), isVol
,
3339 // The type might not be legal for the target. This should only happen
3340 // if the type is smaller than a legal type, as on PPC, so the right
3341 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
3342 // to Load/Store if NVT==VT.
3343 // FIXME does the case above also need this?
3344 EVT NVT
= TLI
.getTypeToTransformTo(*DAG
.getContext(), VT
);
3345 assert(NVT
.bitsGE(VT
));
3346 Value
= DAG
.getExtLoad(ISD::EXTLOAD
, NVT
, dl
, Chain
,
3347 getMemBasePlusOffset(Src
, SrcOff
, DAG
),
3348 SrcPtrInfo
.getWithOffset(SrcOff
), VT
, isVol
, false,
3349 MinAlign(SrcAlign
, SrcOff
));
3350 Store
= DAG
.getTruncStore(Chain
, dl
, Value
,
3351 getMemBasePlusOffset(Dst
, DstOff
, DAG
),
3352 DstPtrInfo
.getWithOffset(DstOff
), VT
, isVol
,
3355 OutChains
.push_back(Store
);
3360 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3361 &OutChains
[0], OutChains
.size());
3364 static SDValue
getMemmoveLoadsAndStores(SelectionDAG
&DAG
, DebugLoc dl
,
3365 SDValue Chain
, SDValue Dst
,
3366 SDValue Src
, uint64_t Size
,
3367 unsigned Align
, bool isVol
,
3369 MachinePointerInfo DstPtrInfo
,
3370 MachinePointerInfo SrcPtrInfo
) {
3371 // Turn a memmove of undef to nop.
3372 if (Src
.getOpcode() == ISD::UNDEF
)
3375 // Expand memmove to a series of load and store ops if the size operand falls
3376 // below a certain threshold.
3377 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3378 std::vector
<EVT
> MemOps
;
3379 bool DstAlignCanChange
= false;
3380 MachineFrameInfo
*MFI
= DAG
.getMachineFunction().getFrameInfo();
3381 FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Dst
);
3382 if (FI
&& !MFI
->isFixedObjectIndex(FI
->getIndex()))
3383 DstAlignCanChange
= true;
3384 unsigned SrcAlign
= DAG
.InferPtrAlignment(Src
);
3385 if (Align
> SrcAlign
)
3387 unsigned Limit
= AlwaysInline
? ~0U : TLI
.getMaxStoresPerMemmove();
3389 if (!FindOptimalMemOpLowering(MemOps
, Limit
, Size
,
3390 (DstAlignCanChange
? 0 : Align
),
3391 SrcAlign
, true, false, DAG
, TLI
))
3394 if (DstAlignCanChange
) {
3395 const Type
*Ty
= MemOps
[0].getTypeForEVT(*DAG
.getContext());
3396 unsigned NewAlign
= (unsigned) TLI
.getTargetData()->getABITypeAlignment(Ty
);
3397 if (NewAlign
> Align
) {
3398 // Give the stack frame object a larger alignment if needed.
3399 if (MFI
->getObjectAlignment(FI
->getIndex()) < NewAlign
)
3400 MFI
->setObjectAlignment(FI
->getIndex(), NewAlign
);
3405 uint64_t SrcOff
= 0, DstOff
= 0;
3406 SmallVector
<SDValue
, 8> LoadValues
;
3407 SmallVector
<SDValue
, 8> LoadChains
;
3408 SmallVector
<SDValue
, 8> OutChains
;
3409 unsigned NumMemOps
= MemOps
.size();
3410 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
3412 unsigned VTSize
= VT
.getSizeInBits() / 8;
3413 SDValue Value
, Store
;
3415 Value
= DAG
.getLoad(VT
, dl
, Chain
,
3416 getMemBasePlusOffset(Src
, SrcOff
, DAG
),
3417 SrcPtrInfo
.getWithOffset(SrcOff
), isVol
,
3419 LoadValues
.push_back(Value
);
3420 LoadChains
.push_back(Value
.getValue(1));
3423 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3424 &LoadChains
[0], LoadChains
.size());
3426 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
3428 unsigned VTSize
= VT
.getSizeInBits() / 8;
3429 SDValue Value
, Store
;
3431 Store
= DAG
.getStore(Chain
, dl
, LoadValues
[i
],
3432 getMemBasePlusOffset(Dst
, DstOff
, DAG
),
3433 DstPtrInfo
.getWithOffset(DstOff
), isVol
, false, Align
);
3434 OutChains
.push_back(Store
);
3438 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3439 &OutChains
[0], OutChains
.size());
3442 static SDValue
getMemsetStores(SelectionDAG
&DAG
, DebugLoc dl
,
3443 SDValue Chain
, SDValue Dst
,
3444 SDValue Src
, uint64_t Size
,
3445 unsigned Align
, bool isVol
,
3446 MachinePointerInfo DstPtrInfo
) {
3447 // Turn a memset of undef to nop.
3448 if (Src
.getOpcode() == ISD::UNDEF
)
3451 // Expand memset to a series of load/store ops if the size operand
3452 // falls below a certain threshold.
3453 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3454 std::vector
<EVT
> MemOps
;
3455 bool DstAlignCanChange
= false;
3456 MachineFrameInfo
*MFI
= DAG
.getMachineFunction().getFrameInfo();
3457 FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Dst
);
3458 if (FI
&& !MFI
->isFixedObjectIndex(FI
->getIndex()))
3459 DstAlignCanChange
= true;
3460 bool NonScalarIntSafe
=
3461 isa
<ConstantSDNode
>(Src
) && cast
<ConstantSDNode
>(Src
)->isNullValue();
3462 if (!FindOptimalMemOpLowering(MemOps
, TLI
.getMaxStoresPerMemset(),
3463 Size
, (DstAlignCanChange
? 0 : Align
), 0,
3464 NonScalarIntSafe
, false, DAG
, TLI
))
3467 if (DstAlignCanChange
) {
3468 const Type
*Ty
= MemOps
[0].getTypeForEVT(*DAG
.getContext());
3469 unsigned NewAlign
= (unsigned) TLI
.getTargetData()->getABITypeAlignment(Ty
);
3470 if (NewAlign
> Align
) {
3471 // Give the stack frame object a larger alignment if needed.
3472 if (MFI
->getObjectAlignment(FI
->getIndex()) < NewAlign
)
3473 MFI
->setObjectAlignment(FI
->getIndex(), NewAlign
);
3478 SmallVector
<SDValue
, 8> OutChains
;
3479 uint64_t DstOff
= 0;
3480 unsigned NumMemOps
= MemOps
.size();
3481 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
3483 unsigned VTSize
= VT
.getSizeInBits() / 8;
3484 SDValue Value
= getMemsetValue(Src
, VT
, DAG
, dl
);
3485 SDValue Store
= DAG
.getStore(Chain
, dl
, Value
,
3486 getMemBasePlusOffset(Dst
, DstOff
, DAG
),
3487 DstPtrInfo
.getWithOffset(DstOff
),
3489 OutChains
.push_back(Store
);
3493 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3494 &OutChains
[0], OutChains
.size());
3497 SDValue
SelectionDAG::getMemcpy(SDValue Chain
, DebugLoc dl
, SDValue Dst
,
3498 SDValue Src
, SDValue Size
,
3499 unsigned Align
, bool isVol
, bool AlwaysInline
,
3500 MachinePointerInfo DstPtrInfo
,
3501 MachinePointerInfo SrcPtrInfo
) {
3503 // Check to see if we should lower the memcpy to loads and stores first.
3504 // For cases within the target-specified limits, this is the best choice.
3505 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
3507 // Memcpy with size zero? Just return the original chain.
3508 if (ConstantSize
->isNullValue())
3511 SDValue Result
= getMemcpyLoadsAndStores(*this, dl
, Chain
, Dst
, Src
,
3512 ConstantSize
->getZExtValue(),Align
,
3513 isVol
, false, DstPtrInfo
, SrcPtrInfo
);
3514 if (Result
.getNode())
3518 // Then check to see if we should lower the memcpy with target-specific
3519 // code. If the target chooses to do this, this is the next best.
3521 TSI
.EmitTargetCodeForMemcpy(*this, dl
, Chain
, Dst
, Src
, Size
, Align
,
3522 isVol
, AlwaysInline
,
3523 DstPtrInfo
, SrcPtrInfo
);
3524 if (Result
.getNode())
3527 // If we really need inline code and the target declined to provide it,
3528 // use a (potentially long) sequence of loads and stores.
3530 assert(ConstantSize
&& "AlwaysInline requires a constant size!");
3531 return getMemcpyLoadsAndStores(*this, dl
, Chain
, Dst
, Src
,
3532 ConstantSize
->getZExtValue(), Align
, isVol
,
3533 true, DstPtrInfo
, SrcPtrInfo
);
3536 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3537 // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3538 // respect volatile, so they may do things like read or write memory
3539 // beyond the given memory regions. But fixing this isn't easy, and most
3540 // people don't care.
3542 // Emit a library call.
3543 TargetLowering::ArgListTy Args
;
3544 TargetLowering::ArgListEntry Entry
;
3545 Entry
.Ty
= TLI
.getTargetData()->getIntPtrType(*getContext());
3546 Entry
.Node
= Dst
; Args
.push_back(Entry
);
3547 Entry
.Node
= Src
; Args
.push_back(Entry
);
3548 Entry
.Node
= Size
; Args
.push_back(Entry
);
3549 // FIXME: pass in DebugLoc
3550 std::pair
<SDValue
,SDValue
> CallResult
=
3551 TLI
.LowerCallTo(Chain
, Type::getVoidTy(*getContext()),
3552 false, false, false, false, 0,
3553 TLI
.getLibcallCallingConv(RTLIB::MEMCPY
), false,
3554 /*isReturnValueUsed=*/false,
3555 getExternalSymbol(TLI
.getLibcallName(RTLIB::MEMCPY
),
3556 TLI
.getPointerTy()),
3558 return CallResult
.second
;
3561 SDValue
SelectionDAG::getMemmove(SDValue Chain
, DebugLoc dl
, SDValue Dst
,
3562 SDValue Src
, SDValue Size
,
3563 unsigned Align
, bool isVol
,
3564 MachinePointerInfo DstPtrInfo
,
3565 MachinePointerInfo SrcPtrInfo
) {
3567 // Check to see if we should lower the memmove to loads and stores first.
3568 // For cases within the target-specified limits, this is the best choice.
3569 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
3571 // Memmove with size zero? Just return the original chain.
3572 if (ConstantSize
->isNullValue())
3576 getMemmoveLoadsAndStores(*this, dl
, Chain
, Dst
, Src
,
3577 ConstantSize
->getZExtValue(), Align
, isVol
,
3578 false, DstPtrInfo
, SrcPtrInfo
);
3579 if (Result
.getNode())
3583 // Then check to see if we should lower the memmove with target-specific
3584 // code. If the target chooses to do this, this is the next best.
3586 TSI
.EmitTargetCodeForMemmove(*this, dl
, Chain
, Dst
, Src
, Size
, Align
, isVol
,
3587 DstPtrInfo
, SrcPtrInfo
);
3588 if (Result
.getNode())
3591 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3592 // not be safe. See memcpy above for more details.
3594 // Emit a library call.
3595 TargetLowering::ArgListTy Args
;
3596 TargetLowering::ArgListEntry Entry
;
3597 Entry
.Ty
= TLI
.getTargetData()->getIntPtrType(*getContext());
3598 Entry
.Node
= Dst
; Args
.push_back(Entry
);
3599 Entry
.Node
= Src
; Args
.push_back(Entry
);
3600 Entry
.Node
= Size
; Args
.push_back(Entry
);
3601 // FIXME: pass in DebugLoc
3602 std::pair
<SDValue
,SDValue
> CallResult
=
3603 TLI
.LowerCallTo(Chain
, Type::getVoidTy(*getContext()),
3604 false, false, false, false, 0,
3605 TLI
.getLibcallCallingConv(RTLIB::MEMMOVE
), false,
3606 /*isReturnValueUsed=*/false,
3607 getExternalSymbol(TLI
.getLibcallName(RTLIB::MEMMOVE
),
3608 TLI
.getPointerTy()),
3610 return CallResult
.second
;
3613 SDValue
SelectionDAG::getMemset(SDValue Chain
, DebugLoc dl
, SDValue Dst
,
3614 SDValue Src
, SDValue Size
,
3615 unsigned Align
, bool isVol
,
3616 MachinePointerInfo DstPtrInfo
) {
3618 // Check to see if we should lower the memset to stores first.
3619 // For cases within the target-specified limits, this is the best choice.
3620 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
3622 // Memset with size zero? Just return the original chain.
3623 if (ConstantSize
->isNullValue())
3627 getMemsetStores(*this, dl
, Chain
, Dst
, Src
, ConstantSize
->getZExtValue(),
3628 Align
, isVol
, DstPtrInfo
);
3630 if (Result
.getNode())
3634 // Then check to see if we should lower the memset with target-specific
3635 // code. If the target chooses to do this, this is the next best.
3637 TSI
.EmitTargetCodeForMemset(*this, dl
, Chain
, Dst
, Src
, Size
, Align
, isVol
,
3639 if (Result
.getNode())
3642 // Emit a library call.
3643 const Type
*IntPtrTy
= TLI
.getTargetData()->getIntPtrType(*getContext());
3644 TargetLowering::ArgListTy Args
;
3645 TargetLowering::ArgListEntry Entry
;
3646 Entry
.Node
= Dst
; Entry
.Ty
= IntPtrTy
;
3647 Args
.push_back(Entry
);
3648 // Extend or truncate the argument to be an i32 value for the call.
3649 if (Src
.getValueType().bitsGT(MVT::i32
))
3650 Src
= getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Src
);
3652 Src
= getNode(ISD::ZERO_EXTEND
, dl
, MVT::i32
, Src
);
3654 Entry
.Ty
= Type::getInt32Ty(*getContext());
3655 Entry
.isSExt
= true;
3656 Args
.push_back(Entry
);
3658 Entry
.Ty
= IntPtrTy
;
3659 Entry
.isSExt
= false;
3660 Args
.push_back(Entry
);
3661 // FIXME: pass in DebugLoc
3662 std::pair
<SDValue
,SDValue
> CallResult
=
3663 TLI
.LowerCallTo(Chain
, Type::getVoidTy(*getContext()),
3664 false, false, false, false, 0,
3665 TLI
.getLibcallCallingConv(RTLIB::MEMSET
), false,
3666 /*isReturnValueUsed=*/false,
3667 getExternalSymbol(TLI
.getLibcallName(RTLIB::MEMSET
),
3668 TLI
.getPointerTy()),
3670 return CallResult
.second
;
3673 SDValue
SelectionDAG::getAtomic(unsigned Opcode
, DebugLoc dl
, EVT MemVT
,
3674 SDValue Chain
, SDValue Ptr
, SDValue Cmp
,
3675 SDValue Swp
, MachinePointerInfo PtrInfo
,
3676 unsigned Alignment
) {
3677 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3678 Alignment
= getEVTAlignment(MemVT
);
3680 MachineFunction
&MF
= getMachineFunction();
3681 unsigned Flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOStore
;
3683 // For now, atomics are considered to be volatile always.
3684 Flags
|= MachineMemOperand::MOVolatile
;
3686 MachineMemOperand
*MMO
=
3687 MF
.getMachineMemOperand(PtrInfo
, Flags
, MemVT
.getStoreSize(), Alignment
);
3689 return getAtomic(Opcode
, dl
, MemVT
, Chain
, Ptr
, Cmp
, Swp
, MMO
);
3692 SDValue
SelectionDAG::getAtomic(unsigned Opcode
, DebugLoc dl
, EVT MemVT
,
3694 SDValue Ptr
, SDValue Cmp
,
3695 SDValue Swp
, MachineMemOperand
*MMO
) {
3696 assert(Opcode
== ISD::ATOMIC_CMP_SWAP
&& "Invalid Atomic Op");
3697 assert(Cmp
.getValueType() == Swp
.getValueType() && "Invalid Atomic Op Types");
3699 EVT VT
= Cmp
.getValueType();
3701 SDVTList VTs
= getVTList(VT
, MVT::Other
);
3702 FoldingSetNodeID ID
;
3703 ID
.AddInteger(MemVT
.getRawBits());
3704 SDValue Ops
[] = {Chain
, Ptr
, Cmp
, Swp
};
3705 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 4);
3707 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)) {
3708 cast
<AtomicSDNode
>(E
)->refineAlignment(MMO
);
3709 return SDValue(E
, 0);
3711 SDNode
*N
= new (NodeAllocator
) AtomicSDNode(Opcode
, dl
, VTs
, MemVT
, Chain
,
3712 Ptr
, Cmp
, Swp
, MMO
);
3713 CSEMap
.InsertNode(N
, IP
);
3714 AllNodes
.push_back(N
);
3715 return SDValue(N
, 0);
3718 SDValue
SelectionDAG::getAtomic(unsigned Opcode
, DebugLoc dl
, EVT MemVT
,
3720 SDValue Ptr
, SDValue Val
,
3721 const Value
* PtrVal
,
3722 unsigned Alignment
) {
3723 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3724 Alignment
= getEVTAlignment(MemVT
);
3726 MachineFunction
&MF
= getMachineFunction();
3727 unsigned Flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOStore
;
3729 // For now, atomics are considered to be volatile always.
3730 Flags
|= MachineMemOperand::MOVolatile
;
3732 MachineMemOperand
*MMO
=
3733 MF
.getMachineMemOperand(MachinePointerInfo(PtrVal
), Flags
,
3734 MemVT
.getStoreSize(), Alignment
);
3736 return getAtomic(Opcode
, dl
, MemVT
, Chain
, Ptr
, Val
, MMO
);
3739 SDValue
SelectionDAG::getAtomic(unsigned Opcode
, DebugLoc dl
, EVT MemVT
,
3741 SDValue Ptr
, SDValue Val
,
3742 MachineMemOperand
*MMO
) {
3743 assert((Opcode
== ISD::ATOMIC_LOAD_ADD
||
3744 Opcode
== ISD::ATOMIC_LOAD_SUB
||
3745 Opcode
== ISD::ATOMIC_LOAD_AND
||
3746 Opcode
== ISD::ATOMIC_LOAD_OR
||
3747 Opcode
== ISD::ATOMIC_LOAD_XOR
||
3748 Opcode
== ISD::ATOMIC_LOAD_NAND
||
3749 Opcode
== ISD::ATOMIC_LOAD_MIN
||
3750 Opcode
== ISD::ATOMIC_LOAD_MAX
||
3751 Opcode
== ISD::ATOMIC_LOAD_UMIN
||
3752 Opcode
== ISD::ATOMIC_LOAD_UMAX
||
3753 Opcode
== ISD::ATOMIC_SWAP
) &&
3754 "Invalid Atomic Op");
3756 EVT VT
= Val
.getValueType();
3758 SDVTList VTs
= getVTList(VT
, MVT::Other
);
3759 FoldingSetNodeID ID
;
3760 ID
.AddInteger(MemVT
.getRawBits());
3761 SDValue Ops
[] = {Chain
, Ptr
, Val
};
3762 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 3);
3764 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)) {
3765 cast
<AtomicSDNode
>(E
)->refineAlignment(MMO
);
3766 return SDValue(E
, 0);
3768 SDNode
*N
= new (NodeAllocator
) AtomicSDNode(Opcode
, dl
, VTs
, MemVT
, Chain
,
3770 CSEMap
.InsertNode(N
, IP
);
3771 AllNodes
.push_back(N
);
3772 return SDValue(N
, 0);
3775 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
3776 /// Allowed to return something different (and simpler) if Simplify is true.
3777 SDValue
SelectionDAG::getMergeValues(const SDValue
*Ops
, unsigned NumOps
,
3782 SmallVector
<EVT
, 4> VTs
;
3783 VTs
.reserve(NumOps
);
3784 for (unsigned i
= 0; i
< NumOps
; ++i
)
3785 VTs
.push_back(Ops
[i
].getValueType());
3786 return getNode(ISD::MERGE_VALUES
, dl
, getVTList(&VTs
[0], NumOps
),
3791 SelectionDAG::getMemIntrinsicNode(unsigned Opcode
, DebugLoc dl
,
3792 const EVT
*VTs
, unsigned NumVTs
,
3793 const SDValue
*Ops
, unsigned NumOps
,
3794 EVT MemVT
, MachinePointerInfo PtrInfo
,
3795 unsigned Align
, bool Vol
,
3796 bool ReadMem
, bool WriteMem
) {
3797 return getMemIntrinsicNode(Opcode
, dl
, makeVTList(VTs
, NumVTs
), Ops
, NumOps
,
3798 MemVT
, PtrInfo
, Align
, Vol
,
3803 SelectionDAG::getMemIntrinsicNode(unsigned Opcode
, DebugLoc dl
, SDVTList VTList
,
3804 const SDValue
*Ops
, unsigned NumOps
,
3805 EVT MemVT
, MachinePointerInfo PtrInfo
,
3806 unsigned Align
, bool Vol
,
3807 bool ReadMem
, bool WriteMem
) {
3808 if (Align
== 0) // Ensure that codegen never sees alignment 0
3809 Align
= getEVTAlignment(MemVT
);
3811 MachineFunction
&MF
= getMachineFunction();
3814 Flags
|= MachineMemOperand::MOStore
;
3816 Flags
|= MachineMemOperand::MOLoad
;
3818 Flags
|= MachineMemOperand::MOVolatile
;
3819 MachineMemOperand
*MMO
=
3820 MF
.getMachineMemOperand(PtrInfo
, Flags
, MemVT
.getStoreSize(), Align
);
3822 return getMemIntrinsicNode(Opcode
, dl
, VTList
, Ops
, NumOps
, MemVT
, MMO
);
3826 SelectionDAG::getMemIntrinsicNode(unsigned Opcode
, DebugLoc dl
, SDVTList VTList
,
3827 const SDValue
*Ops
, unsigned NumOps
,
3828 EVT MemVT
, MachineMemOperand
*MMO
) {
3829 assert((Opcode
== ISD::INTRINSIC_VOID
||
3830 Opcode
== ISD::INTRINSIC_W_CHAIN
||
3831 Opcode
== ISD::PREFETCH
||
3832 (Opcode
<= INT_MAX
&&
3833 (int)Opcode
>= ISD::FIRST_TARGET_MEMORY_OPCODE
)) &&
3834 "Opcode is not a memory-accessing opcode!");
3836 // Memoize the node unless it returns a flag.
3837 MemIntrinsicSDNode
*N
;
3838 if (VTList
.VTs
[VTList
.NumVTs
-1] != MVT::Flag
) {
3839 FoldingSetNodeID ID
;
3840 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
, NumOps
);
3842 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)) {
3843 cast
<MemIntrinsicSDNode
>(E
)->refineAlignment(MMO
);
3844 return SDValue(E
, 0);
3847 N
= new (NodeAllocator
) MemIntrinsicSDNode(Opcode
, dl
, VTList
, Ops
, NumOps
,
3849 CSEMap
.InsertNode(N
, IP
);
3851 N
= new (NodeAllocator
) MemIntrinsicSDNode(Opcode
, dl
, VTList
, Ops
, NumOps
,
3854 AllNodes
.push_back(N
);
3855 return SDValue(N
, 0);
3858 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
3859 /// MachinePointerInfo record from it. This is particularly useful because the
3860 /// code generator has many cases where it doesn't bother passing in a
3861 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
3862 static MachinePointerInfo
InferPointerInfo(SDValue Ptr
, int64_t Offset
= 0) {
3863 // If this is FI+Offset, we can model it.
3864 if (const FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Ptr
))
3865 return MachinePointerInfo::getFixedStack(FI
->getIndex(), Offset
);
3867 // If this is (FI+Offset1)+Offset2, we can model it.
3868 if (Ptr
.getOpcode() != ISD::ADD
||
3869 !isa
<ConstantSDNode
>(Ptr
.getOperand(1)) ||
3870 !isa
<FrameIndexSDNode
>(Ptr
.getOperand(0)))
3871 return MachinePointerInfo();
3873 int FI
= cast
<FrameIndexSDNode
>(Ptr
.getOperand(0))->getIndex();
3874 return MachinePointerInfo::getFixedStack(FI
, Offset
+
3875 cast
<ConstantSDNode
>(Ptr
.getOperand(1))->getSExtValue());
3878 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
3879 /// MachinePointerInfo record from it. This is particularly useful because the
3880 /// code generator has many cases where it doesn't bother passing in a
3881 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
3882 static MachinePointerInfo
InferPointerInfo(SDValue Ptr
, SDValue OffsetOp
) {
3883 // If the 'Offset' value isn't a constant, we can't handle this.
3884 if (ConstantSDNode
*OffsetNode
= dyn_cast
<ConstantSDNode
>(OffsetOp
))
3885 return InferPointerInfo(Ptr
, OffsetNode
->getSExtValue());
3886 if (OffsetOp
.getOpcode() == ISD::UNDEF
)
3887 return InferPointerInfo(Ptr
);
3888 return MachinePointerInfo();
3893 SelectionDAG::getLoad(ISD::MemIndexedMode AM
, ISD::LoadExtType ExtType
,
3894 EVT VT
, DebugLoc dl
, SDValue Chain
,
3895 SDValue Ptr
, SDValue Offset
,
3896 MachinePointerInfo PtrInfo
, EVT MemVT
,
3897 bool isVolatile
, bool isNonTemporal
,
3898 unsigned Alignment
, const MDNode
*TBAAInfo
) {
3899 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3900 Alignment
= getEVTAlignment(VT
);
3902 unsigned Flags
= MachineMemOperand::MOLoad
;
3904 Flags
|= MachineMemOperand::MOVolatile
;
3906 Flags
|= MachineMemOperand::MONonTemporal
;
3908 // If we don't have a PtrInfo, infer the trivial frame index case to simplify
3911 PtrInfo
= InferPointerInfo(Ptr
, Offset
);
3913 MachineFunction
&MF
= getMachineFunction();
3914 MachineMemOperand
*MMO
=
3915 MF
.getMachineMemOperand(PtrInfo
, Flags
, MemVT
.getStoreSize(), Alignment
,
3917 return getLoad(AM
, ExtType
, VT
, dl
, Chain
, Ptr
, Offset
, MemVT
, MMO
);
3921 SelectionDAG::getLoad(ISD::MemIndexedMode AM
, ISD::LoadExtType ExtType
,
3922 EVT VT
, DebugLoc dl
, SDValue Chain
,
3923 SDValue Ptr
, SDValue Offset
, EVT MemVT
,
3924 MachineMemOperand
*MMO
) {
3926 ExtType
= ISD::NON_EXTLOAD
;
3927 } else if (ExtType
== ISD::NON_EXTLOAD
) {
3928 assert(VT
== MemVT
&& "Non-extending load from different memory type!");
3931 assert(MemVT
.getScalarType().bitsLT(VT
.getScalarType()) &&
3932 "Should only be an extending load, not truncating!");
3933 assert(VT
.isInteger() == MemVT
.isInteger() &&
3934 "Cannot convert from FP to Int or Int -> FP!");
3935 assert(VT
.isVector() == MemVT
.isVector() &&
3936 "Cannot use trunc store to convert to or from a vector!");
3937 assert((!VT
.isVector() ||
3938 VT
.getVectorNumElements() == MemVT
.getVectorNumElements()) &&
3939 "Cannot use trunc store to change the number of vector elements!");
3942 bool Indexed
= AM
!= ISD::UNINDEXED
;
3943 assert((Indexed
|| Offset
.getOpcode() == ISD::UNDEF
) &&
3944 "Unindexed load with an offset!");
3946 SDVTList VTs
= Indexed
?
3947 getVTList(VT
, Ptr
.getValueType(), MVT::Other
) : getVTList(VT
, MVT::Other
);
3948 SDValue Ops
[] = { Chain
, Ptr
, Offset
};
3949 FoldingSetNodeID ID
;
3950 AddNodeIDNode(ID
, ISD::LOAD
, VTs
, Ops
, 3);
3951 ID
.AddInteger(MemVT
.getRawBits());
3952 ID
.AddInteger(encodeMemSDNodeFlags(ExtType
, AM
, MMO
->isVolatile(),
3953 MMO
->isNonTemporal()));
3955 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)) {
3956 cast
<LoadSDNode
>(E
)->refineAlignment(MMO
);
3957 return SDValue(E
, 0);
3959 SDNode
*N
= new (NodeAllocator
) LoadSDNode(Ops
, dl
, VTs
, AM
, ExtType
,
3961 CSEMap
.InsertNode(N
, IP
);
3962 AllNodes
.push_back(N
);
3963 return SDValue(N
, 0);
3966 SDValue
SelectionDAG::getLoad(EVT VT
, DebugLoc dl
,
3967 SDValue Chain
, SDValue Ptr
,
3968 MachinePointerInfo PtrInfo
,
3969 bool isVolatile
, bool isNonTemporal
,
3970 unsigned Alignment
, const MDNode
*TBAAInfo
) {
3971 SDValue Undef
= getUNDEF(Ptr
.getValueType());
3972 return getLoad(ISD::UNINDEXED
, ISD::NON_EXTLOAD
, VT
, dl
, Chain
, Ptr
, Undef
,
3973 PtrInfo
, VT
, isVolatile
, isNonTemporal
, Alignment
, TBAAInfo
);
3976 SDValue
SelectionDAG::getExtLoad(ISD::LoadExtType ExtType
, EVT VT
, DebugLoc dl
,
3977 SDValue Chain
, SDValue Ptr
,
3978 MachinePointerInfo PtrInfo
, EVT MemVT
,
3979 bool isVolatile
, bool isNonTemporal
,
3980 unsigned Alignment
, const MDNode
*TBAAInfo
) {
3981 SDValue Undef
= getUNDEF(Ptr
.getValueType());
3982 return getLoad(ISD::UNINDEXED
, ExtType
, VT
, dl
, Chain
, Ptr
, Undef
,
3983 PtrInfo
, MemVT
, isVolatile
, isNonTemporal
, Alignment
,
3989 SelectionDAG::getIndexedLoad(SDValue OrigLoad
, DebugLoc dl
, SDValue Base
,
3990 SDValue Offset
, ISD::MemIndexedMode AM
) {
3991 LoadSDNode
*LD
= cast
<LoadSDNode
>(OrigLoad
);
3992 assert(LD
->getOffset().getOpcode() == ISD::UNDEF
&&
3993 "Load is already a indexed load!");
3994 return getLoad(AM
, LD
->getExtensionType(), OrigLoad
.getValueType(), dl
,
3995 LD
->getChain(), Base
, Offset
, LD
->getPointerInfo(),
3997 LD
->isVolatile(), LD
->isNonTemporal(), LD
->getAlignment());
4000 SDValue
SelectionDAG::getStore(SDValue Chain
, DebugLoc dl
, SDValue Val
,
4001 SDValue Ptr
, MachinePointerInfo PtrInfo
,
4002 bool isVolatile
, bool isNonTemporal
,
4003 unsigned Alignment
, const MDNode
*TBAAInfo
) {
4004 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
4005 Alignment
= getEVTAlignment(Val
.getValueType());
4007 unsigned Flags
= MachineMemOperand::MOStore
;
4009 Flags
|= MachineMemOperand::MOVolatile
;
4011 Flags
|= MachineMemOperand::MONonTemporal
;
4014 PtrInfo
= InferPointerInfo(Ptr
);
4016 MachineFunction
&MF
= getMachineFunction();
4017 MachineMemOperand
*MMO
=
4018 MF
.getMachineMemOperand(PtrInfo
, Flags
,
4019 Val
.getValueType().getStoreSize(), Alignment
,
4022 return getStore(Chain
, dl
, Val
, Ptr
, MMO
);
4025 SDValue
SelectionDAG::getStore(SDValue Chain
, DebugLoc dl
, SDValue Val
,
4026 SDValue Ptr
, MachineMemOperand
*MMO
) {
4027 EVT VT
= Val
.getValueType();
4028 SDVTList VTs
= getVTList(MVT::Other
);
4029 SDValue Undef
= getUNDEF(Ptr
.getValueType());
4030 SDValue Ops
[] = { Chain
, Val
, Ptr
, Undef
};
4031 FoldingSetNodeID ID
;
4032 AddNodeIDNode(ID
, ISD::STORE
, VTs
, Ops
, 4);
4033 ID
.AddInteger(VT
.getRawBits());
4034 ID
.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED
, MMO
->isVolatile(),
4035 MMO
->isNonTemporal()));
4037 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)) {
4038 cast
<StoreSDNode
>(E
)->refineAlignment(MMO
);
4039 return SDValue(E
, 0);
4041 SDNode
*N
= new (NodeAllocator
) StoreSDNode(Ops
, dl
, VTs
, ISD::UNINDEXED
,
4043 CSEMap
.InsertNode(N
, IP
);
4044 AllNodes
.push_back(N
);
4045 return SDValue(N
, 0);
4048 SDValue
SelectionDAG::getTruncStore(SDValue Chain
, DebugLoc dl
, SDValue Val
,
4049 SDValue Ptr
, MachinePointerInfo PtrInfo
,
4050 EVT SVT
,bool isVolatile
, bool isNonTemporal
,
4052 const MDNode
*TBAAInfo
) {
4053 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
4054 Alignment
= getEVTAlignment(SVT
);
4056 unsigned Flags
= MachineMemOperand::MOStore
;
4058 Flags
|= MachineMemOperand::MOVolatile
;
4060 Flags
|= MachineMemOperand::MONonTemporal
;
4063 PtrInfo
= InferPointerInfo(Ptr
);
4065 MachineFunction
&MF
= getMachineFunction();
4066 MachineMemOperand
*MMO
=
4067 MF
.getMachineMemOperand(PtrInfo
, Flags
, SVT
.getStoreSize(), Alignment
,
4070 return getTruncStore(Chain
, dl
, Val
, Ptr
, SVT
, MMO
);
4073 SDValue
SelectionDAG::getTruncStore(SDValue Chain
, DebugLoc dl
, SDValue Val
,
4074 SDValue Ptr
, EVT SVT
,
4075 MachineMemOperand
*MMO
) {
4076 EVT VT
= Val
.getValueType();
4079 return getStore(Chain
, dl
, Val
, Ptr
, MMO
);
4081 assert(SVT
.getScalarType().bitsLT(VT
.getScalarType()) &&
4082 "Should only be a truncating store, not extending!");
4083 assert(VT
.isInteger() == SVT
.isInteger() &&
4084 "Can't do FP-INT conversion!");
4085 assert(VT
.isVector() == SVT
.isVector() &&
4086 "Cannot use trunc store to convert to or from a vector!");
4087 assert((!VT
.isVector() ||
4088 VT
.getVectorNumElements() == SVT
.getVectorNumElements()) &&
4089 "Cannot use trunc store to change the number of vector elements!");
4091 SDVTList VTs
= getVTList(MVT::Other
);
4092 SDValue Undef
= getUNDEF(Ptr
.getValueType());
4093 SDValue Ops
[] = { Chain
, Val
, Ptr
, Undef
};
4094 FoldingSetNodeID ID
;
4095 AddNodeIDNode(ID
, ISD::STORE
, VTs
, Ops
, 4);
4096 ID
.AddInteger(SVT
.getRawBits());
4097 ID
.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED
, MMO
->isVolatile(),
4098 MMO
->isNonTemporal()));
4100 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)) {
4101 cast
<StoreSDNode
>(E
)->refineAlignment(MMO
);
4102 return SDValue(E
, 0);
4104 SDNode
*N
= new (NodeAllocator
) StoreSDNode(Ops
, dl
, VTs
, ISD::UNINDEXED
,
4106 CSEMap
.InsertNode(N
, IP
);
4107 AllNodes
.push_back(N
);
4108 return SDValue(N
, 0);
4112 SelectionDAG::getIndexedStore(SDValue OrigStore
, DebugLoc dl
, SDValue Base
,
4113 SDValue Offset
, ISD::MemIndexedMode AM
) {
4114 StoreSDNode
*ST
= cast
<StoreSDNode
>(OrigStore
);
4115 assert(ST
->getOffset().getOpcode() == ISD::UNDEF
&&
4116 "Store is already a indexed store!");
4117 SDVTList VTs
= getVTList(Base
.getValueType(), MVT::Other
);
4118 SDValue Ops
[] = { ST
->getChain(), ST
->getValue(), Base
, Offset
};
4119 FoldingSetNodeID ID
;
4120 AddNodeIDNode(ID
, ISD::STORE
, VTs
, Ops
, 4);
4121 ID
.AddInteger(ST
->getMemoryVT().getRawBits());
4122 ID
.AddInteger(ST
->getRawSubclassData());
4124 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
4125 return SDValue(E
, 0);
4127 SDNode
*N
= new (NodeAllocator
) StoreSDNode(Ops
, dl
, VTs
, AM
,
4128 ST
->isTruncatingStore(),
4130 ST
->getMemOperand());
4131 CSEMap
.InsertNode(N
, IP
);
4132 AllNodes
.push_back(N
);
4133 return SDValue(N
, 0);
4136 SDValue
SelectionDAG::getVAArg(EVT VT
, DebugLoc dl
,
4137 SDValue Chain
, SDValue Ptr
,
4140 SDValue Ops
[] = { Chain
, Ptr
, SV
, getTargetConstant(Align
, MVT::i32
) };
4141 return getNode(ISD::VAARG
, dl
, getVTList(VT
, MVT::Other
), Ops
, 4);
4144 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
,
4145 const SDUse
*Ops
, unsigned NumOps
) {
4147 case 0: return getNode(Opcode
, DL
, VT
);
4148 case 1: return getNode(Opcode
, DL
, VT
, Ops
[0]);
4149 case 2: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1]);
4150 case 3: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1], Ops
[2]);
4154 // Copy from an SDUse array into an SDValue array for use with
4155 // the regular getNode logic.
4156 SmallVector
<SDValue
, 8> NewOps(Ops
, Ops
+ NumOps
);
4157 return getNode(Opcode
, DL
, VT
, &NewOps
[0], NumOps
);
4160 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
,
4161 const SDValue
*Ops
, unsigned NumOps
) {
4163 case 0: return getNode(Opcode
, DL
, VT
);
4164 case 1: return getNode(Opcode
, DL
, VT
, Ops
[0]);
4165 case 2: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1]);
4166 case 3: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1], Ops
[2]);
4172 case ISD::SELECT_CC
: {
4173 assert(NumOps
== 5 && "SELECT_CC takes 5 operands!");
4174 assert(Ops
[0].getValueType() == Ops
[1].getValueType() &&
4175 "LHS and RHS of condition must have same type!");
4176 assert(Ops
[2].getValueType() == Ops
[3].getValueType() &&
4177 "True and False arms of SelectCC must have same type!");
4178 assert(Ops
[2].getValueType() == VT
&&
4179 "select_cc node must be of same type as true and false value!");
4183 assert(NumOps
== 5 && "BR_CC takes 5 operands!");
4184 assert(Ops
[2].getValueType() == Ops
[3].getValueType() &&
4185 "LHS/RHS of comparison should match types!");
4192 SDVTList VTs
= getVTList(VT
);
4194 if (VT
!= MVT::Flag
) {
4195 FoldingSetNodeID ID
;
4196 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, NumOps
);
4199 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
4200 return SDValue(E
, 0);
4202 N
= new (NodeAllocator
) SDNode(Opcode
, DL
, VTs
, Ops
, NumOps
);
4203 CSEMap
.InsertNode(N
, IP
);
4205 N
= new (NodeAllocator
) SDNode(Opcode
, DL
, VTs
, Ops
, NumOps
);
4208 AllNodes
.push_back(N
);
4212 return SDValue(N
, 0);
4215 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
,
4216 const std::vector
<EVT
> &ResultTys
,
4217 const SDValue
*Ops
, unsigned NumOps
) {
4218 return getNode(Opcode
, DL
, getVTList(&ResultTys
[0], ResultTys
.size()),
4222 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
,
4223 const EVT
*VTs
, unsigned NumVTs
,
4224 const SDValue
*Ops
, unsigned NumOps
) {
4226 return getNode(Opcode
, DL
, VTs
[0], Ops
, NumOps
);
4227 return getNode(Opcode
, DL
, makeVTList(VTs
, NumVTs
), Ops
, NumOps
);
4230 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
4231 const SDValue
*Ops
, unsigned NumOps
) {
4232 if (VTList
.NumVTs
== 1)
4233 return getNode(Opcode
, DL
, VTList
.VTs
[0], Ops
, NumOps
);
4237 // FIXME: figure out how to safely handle things like
4238 // int foo(int x) { return 1 << (x & 255); }
4239 // int bar() { return foo(256); }
4240 case ISD::SRA_PARTS
:
4241 case ISD::SRL_PARTS
:
4242 case ISD::SHL_PARTS
:
4243 if (N3
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
4244 cast
<VTSDNode
>(N3
.getOperand(1))->getVT() != MVT::i1
)
4245 return getNode(Opcode
, DL
, VT
, N1
, N2
, N3
.getOperand(0));
4246 else if (N3
.getOpcode() == ISD::AND
)
4247 if (ConstantSDNode
*AndRHS
= dyn_cast
<ConstantSDNode
>(N3
.getOperand(1))) {
4248 // If the and is only masking out bits that cannot effect the shift,
4249 // eliminate the and.
4250 unsigned NumBits
= VT
.getScalarType().getSizeInBits()*2;
4251 if ((AndRHS
->getValue() & (NumBits
-1)) == NumBits
-1)
4252 return getNode(Opcode
, DL
, VT
, N1
, N2
, N3
.getOperand(0));
4258 // Memoize the node unless it returns a flag.
4260 if (VTList
.VTs
[VTList
.NumVTs
-1] != MVT::Flag
) {
4261 FoldingSetNodeID ID
;
4262 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
, NumOps
);
4264 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
4265 return SDValue(E
, 0);
4268 N
= new (NodeAllocator
) UnarySDNode(Opcode
, DL
, VTList
, Ops
[0]);
4269 } else if (NumOps
== 2) {
4270 N
= new (NodeAllocator
) BinarySDNode(Opcode
, DL
, VTList
, Ops
[0], Ops
[1]);
4271 } else if (NumOps
== 3) {
4272 N
= new (NodeAllocator
) TernarySDNode(Opcode
, DL
, VTList
, Ops
[0], Ops
[1],
4275 N
= new (NodeAllocator
) SDNode(Opcode
, DL
, VTList
, Ops
, NumOps
);
4277 CSEMap
.InsertNode(N
, IP
);
4280 N
= new (NodeAllocator
) UnarySDNode(Opcode
, DL
, VTList
, Ops
[0]);
4281 } else if (NumOps
== 2) {
4282 N
= new (NodeAllocator
) BinarySDNode(Opcode
, DL
, VTList
, Ops
[0], Ops
[1]);
4283 } else if (NumOps
== 3) {
4284 N
= new (NodeAllocator
) TernarySDNode(Opcode
, DL
, VTList
, Ops
[0], Ops
[1],
4287 N
= new (NodeAllocator
) SDNode(Opcode
, DL
, VTList
, Ops
, NumOps
);
4290 AllNodes
.push_back(N
);
4294 return SDValue(N
, 0);
4297 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
) {
4298 return getNode(Opcode
, DL
, VTList
, 0, 0);
4301 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
4303 SDValue Ops
[] = { N1
};
4304 return getNode(Opcode
, DL
, VTList
, Ops
, 1);
4307 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
4308 SDValue N1
, SDValue N2
) {
4309 SDValue Ops
[] = { N1
, N2
};
4310 return getNode(Opcode
, DL
, VTList
, Ops
, 2);
4313 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
4314 SDValue N1
, SDValue N2
, SDValue N3
) {
4315 SDValue Ops
[] = { N1
, N2
, N3
};
4316 return getNode(Opcode
, DL
, VTList
, Ops
, 3);
4319 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
4320 SDValue N1
, SDValue N2
, SDValue N3
,
4322 SDValue Ops
[] = { N1
, N2
, N3
, N4
};
4323 return getNode(Opcode
, DL
, VTList
, Ops
, 4);
4326 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
4327 SDValue N1
, SDValue N2
, SDValue N3
,
4328 SDValue N4
, SDValue N5
) {
4329 SDValue Ops
[] = { N1
, N2
, N3
, N4
, N5
};
4330 return getNode(Opcode
, DL
, VTList
, Ops
, 5);
4333 SDVTList
SelectionDAG::getVTList(EVT VT
) {
4334 return makeVTList(SDNode::getValueTypeList(VT
), 1);
4337 SDVTList
SelectionDAG::getVTList(EVT VT1
, EVT VT2
) {
4338 for (std::vector
<SDVTList
>::reverse_iterator I
= VTList
.rbegin(),
4339 E
= VTList
.rend(); I
!= E
; ++I
)
4340 if (I
->NumVTs
== 2 && I
->VTs
[0] == VT1
&& I
->VTs
[1] == VT2
)
4343 EVT
*Array
= Allocator
.Allocate
<EVT
>(2);
4346 SDVTList Result
= makeVTList(Array
, 2);
4347 VTList
.push_back(Result
);
4351 SDVTList
SelectionDAG::getVTList(EVT VT1
, EVT VT2
, EVT VT3
) {
4352 for (std::vector
<SDVTList
>::reverse_iterator I
= VTList
.rbegin(),
4353 E
= VTList
.rend(); I
!= E
; ++I
)
4354 if (I
->NumVTs
== 3 && I
->VTs
[0] == VT1
&& I
->VTs
[1] == VT2
&&
4358 EVT
*Array
= Allocator
.Allocate
<EVT
>(3);
4362 SDVTList Result
= makeVTList(Array
, 3);
4363 VTList
.push_back(Result
);
4367 SDVTList
SelectionDAG::getVTList(EVT VT1
, EVT VT2
, EVT VT3
, EVT VT4
) {
4368 for (std::vector
<SDVTList
>::reverse_iterator I
= VTList
.rbegin(),
4369 E
= VTList
.rend(); I
!= E
; ++I
)
4370 if (I
->NumVTs
== 4 && I
->VTs
[0] == VT1
&& I
->VTs
[1] == VT2
&&
4371 I
->VTs
[2] == VT3
&& I
->VTs
[3] == VT4
)
4374 EVT
*Array
= Allocator
.Allocate
<EVT
>(4);
4379 SDVTList Result
= makeVTList(Array
, 4);
4380 VTList
.push_back(Result
);
4384 SDVTList
SelectionDAG::getVTList(const EVT
*VTs
, unsigned NumVTs
) {
4386 case 0: llvm_unreachable("Cannot have nodes without results!");
4387 case 1: return getVTList(VTs
[0]);
4388 case 2: return getVTList(VTs
[0], VTs
[1]);
4389 case 3: return getVTList(VTs
[0], VTs
[1], VTs
[2]);
4390 case 4: return getVTList(VTs
[0], VTs
[1], VTs
[2], VTs
[3]);
4394 for (std::vector
<SDVTList
>::reverse_iterator I
= VTList
.rbegin(),
4395 E
= VTList
.rend(); I
!= E
; ++I
) {
4396 if (I
->NumVTs
!= NumVTs
|| VTs
[0] != I
->VTs
[0] || VTs
[1] != I
->VTs
[1])
4399 bool NoMatch
= false;
4400 for (unsigned i
= 2; i
!= NumVTs
; ++i
)
4401 if (VTs
[i
] != I
->VTs
[i
]) {
4409 EVT
*Array
= Allocator
.Allocate
<EVT
>(NumVTs
);
4410 std::copy(VTs
, VTs
+NumVTs
, Array
);
4411 SDVTList Result
= makeVTList(Array
, NumVTs
);
4412 VTList
.push_back(Result
);
4417 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4418 /// specified operands. If the resultant node already exists in the DAG,
4419 /// this does not modify the specified node, instead it returns the node that
4420 /// already exists. If the resultant node does not exist in the DAG, the
4421 /// input node is returned. As a degenerate case, if you specify the same
4422 /// input operands as the node already has, the input node is returned.
4423 SDNode
*SelectionDAG::UpdateNodeOperands(SDNode
*N
, SDValue Op
) {
4424 assert(N
->getNumOperands() == 1 && "Update with wrong number of operands");
4426 // Check to see if there is no change.
4427 if (Op
== N
->getOperand(0)) return N
;
4429 // See if the modified node already exists.
4430 void *InsertPos
= 0;
4431 if (SDNode
*Existing
= FindModifiedNodeSlot(N
, Op
, InsertPos
))
4434 // Nope it doesn't. Remove the node from its current place in the maps.
4436 if (!RemoveNodeFromCSEMaps(N
))
4439 // Now we update the operands.
4440 N
->OperandList
[0].set(Op
);
4442 // If this gets put into a CSE map, add it.
4443 if (InsertPos
) CSEMap
.InsertNode(N
, InsertPos
);
4447 SDNode
*SelectionDAG::UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
) {
4448 assert(N
->getNumOperands() == 2 && "Update with wrong number of operands");
4450 // Check to see if there is no change.
4451 if (Op1
== N
->getOperand(0) && Op2
== N
->getOperand(1))
4452 return N
; // No operands changed, just return the input node.
4454 // See if the modified node already exists.
4455 void *InsertPos
= 0;
4456 if (SDNode
*Existing
= FindModifiedNodeSlot(N
, Op1
, Op2
, InsertPos
))
4459 // Nope it doesn't. Remove the node from its current place in the maps.
4461 if (!RemoveNodeFromCSEMaps(N
))
4464 // Now we update the operands.
4465 if (N
->OperandList
[0] != Op1
)
4466 N
->OperandList
[0].set(Op1
);
4467 if (N
->OperandList
[1] != Op2
)
4468 N
->OperandList
[1].set(Op2
);
4470 // If this gets put into a CSE map, add it.
4471 if (InsertPos
) CSEMap
.InsertNode(N
, InsertPos
);
4475 SDNode
*SelectionDAG::
4476 UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
, SDValue Op3
) {
4477 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4478 return UpdateNodeOperands(N
, Ops
, 3);
4481 SDNode
*SelectionDAG::
4482 UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
,
4483 SDValue Op3
, SDValue Op4
) {
4484 SDValue Ops
[] = { Op1
, Op2
, Op3
, Op4
};
4485 return UpdateNodeOperands(N
, Ops
, 4);
4488 SDNode
*SelectionDAG::
4489 UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
,
4490 SDValue Op3
, SDValue Op4
, SDValue Op5
) {
4491 SDValue Ops
[] = { Op1
, Op2
, Op3
, Op4
, Op5
};
4492 return UpdateNodeOperands(N
, Ops
, 5);
4495 SDNode
*SelectionDAG::
4496 UpdateNodeOperands(SDNode
*N
, const SDValue
*Ops
, unsigned NumOps
) {
4497 assert(N
->getNumOperands() == NumOps
&&
4498 "Update with wrong number of operands");
4500 // Check to see if there is no change.
4501 bool AnyChange
= false;
4502 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
4503 if (Ops
[i
] != N
->getOperand(i
)) {
4509 // No operands changed, just return the input node.
4510 if (!AnyChange
) return N
;
4512 // See if the modified node already exists.
4513 void *InsertPos
= 0;
4514 if (SDNode
*Existing
= FindModifiedNodeSlot(N
, Ops
, NumOps
, InsertPos
))
4517 // Nope it doesn't. Remove the node from its current place in the maps.
4519 if (!RemoveNodeFromCSEMaps(N
))
4522 // Now we update the operands.
4523 for (unsigned i
= 0; i
!= NumOps
; ++i
)
4524 if (N
->OperandList
[i
] != Ops
[i
])
4525 N
->OperandList
[i
].set(Ops
[i
]);
4527 // If this gets put into a CSE map, add it.
4528 if (InsertPos
) CSEMap
.InsertNode(N
, InsertPos
);
4532 /// DropOperands - Release the operands and set this node to have
4534 void SDNode::DropOperands() {
4535 // Unlike the code in MorphNodeTo that does this, we don't need to
4536 // watch for dead nodes here.
4537 for (op_iterator I
= op_begin(), E
= op_end(); I
!= E
; ) {
4543 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4546 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4548 SDVTList VTs
= getVTList(VT
);
4549 return SelectNodeTo(N
, MachineOpc
, VTs
, 0, 0);
4552 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4553 EVT VT
, SDValue Op1
) {
4554 SDVTList VTs
= getVTList(VT
);
4555 SDValue Ops
[] = { Op1
};
4556 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 1);
4559 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4560 EVT VT
, SDValue Op1
,
4562 SDVTList VTs
= getVTList(VT
);
4563 SDValue Ops
[] = { Op1
, Op2
};
4564 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 2);
4567 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4568 EVT VT
, SDValue Op1
,
4569 SDValue Op2
, SDValue Op3
) {
4570 SDVTList VTs
= getVTList(VT
);
4571 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4572 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 3);
4575 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4576 EVT VT
, const SDValue
*Ops
,
4578 SDVTList VTs
= getVTList(VT
);
4579 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, NumOps
);
4582 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4583 EVT VT1
, EVT VT2
, const SDValue
*Ops
,
4585 SDVTList VTs
= getVTList(VT1
, VT2
);
4586 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, NumOps
);
4589 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4591 SDVTList VTs
= getVTList(VT1
, VT2
);
4592 return SelectNodeTo(N
, MachineOpc
, VTs
, (SDValue
*)0, 0);
4595 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4596 EVT VT1
, EVT VT2
, EVT VT3
,
4597 const SDValue
*Ops
, unsigned NumOps
) {
4598 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4599 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, NumOps
);
4602 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4603 EVT VT1
, EVT VT2
, EVT VT3
, EVT VT4
,
4604 const SDValue
*Ops
, unsigned NumOps
) {
4605 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
, VT4
);
4606 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, NumOps
);
4609 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4612 SDVTList VTs
= getVTList(VT1
, VT2
);
4613 SDValue Ops
[] = { Op1
};
4614 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 1);
4617 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4619 SDValue Op1
, SDValue Op2
) {
4620 SDVTList VTs
= getVTList(VT1
, VT2
);
4621 SDValue Ops
[] = { Op1
, Op2
};
4622 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 2);
4625 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4627 SDValue Op1
, SDValue Op2
,
4629 SDVTList VTs
= getVTList(VT1
, VT2
);
4630 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4631 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 3);
4634 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4635 EVT VT1
, EVT VT2
, EVT VT3
,
4636 SDValue Op1
, SDValue Op2
,
4638 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4639 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4640 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 3);
4643 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4644 SDVTList VTs
, const SDValue
*Ops
,
4646 N
= MorphNodeTo(N
, ~MachineOpc
, VTs
, Ops
, NumOps
);
4647 // Reset the NodeID to -1.
4652 /// MorphNodeTo - This *mutates* the specified node to have the specified
4653 /// return type, opcode, and operands.
4655 /// Note that MorphNodeTo returns the resultant node. If there is already a
4656 /// node of the specified opcode and operands, it returns that node instead of
4657 /// the current one. Note that the DebugLoc need not be the same.
4659 /// Using MorphNodeTo is faster than creating a new node and swapping it in
4660 /// with ReplaceAllUsesWith both because it often avoids allocating a new
4661 /// node, and because it doesn't require CSE recalculation for any of
4662 /// the node's users.
4664 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4665 SDVTList VTs
, const SDValue
*Ops
,
4667 // If an identical node already exists, use it.
4669 if (VTs
.VTs
[VTs
.NumVTs
-1] != MVT::Flag
) {
4670 FoldingSetNodeID ID
;
4671 AddNodeIDNode(ID
, Opc
, VTs
, Ops
, NumOps
);
4672 if (SDNode
*ON
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
4676 if (!RemoveNodeFromCSEMaps(N
))
4679 // Start the morphing.
4681 N
->ValueList
= VTs
.VTs
;
4682 N
->NumValues
= VTs
.NumVTs
;
4684 // Clear the operands list, updating used nodes to remove this from their
4685 // use list. Keep track of any operands that become dead as a result.
4686 SmallPtrSet
<SDNode
*, 16> DeadNodeSet
;
4687 for (SDNode::op_iterator I
= N
->op_begin(), E
= N
->op_end(); I
!= E
; ) {
4689 SDNode
*Used
= Use
.getNode();
4691 if (Used
->use_empty())
4692 DeadNodeSet
.insert(Used
);
4695 if (MachineSDNode
*MN
= dyn_cast
<MachineSDNode
>(N
)) {
4696 // Initialize the memory references information.
4697 MN
->setMemRefs(0, 0);
4698 // If NumOps is larger than the # of operands we can have in a
4699 // MachineSDNode, reallocate the operand list.
4700 if (NumOps
> MN
->NumOperands
|| !MN
->OperandsNeedDelete
) {
4701 if (MN
->OperandsNeedDelete
)
4702 delete[] MN
->OperandList
;
4703 if (NumOps
> array_lengthof(MN
->LocalOperands
))
4704 // We're creating a final node that will live unmorphed for the
4705 // remainder of the current SelectionDAG iteration, so we can allocate
4706 // the operands directly out of a pool with no recycling metadata.
4707 MN
->InitOperands(OperandAllocator
.Allocate
<SDUse
>(NumOps
),
4710 MN
->InitOperands(MN
->LocalOperands
, Ops
, NumOps
);
4711 MN
->OperandsNeedDelete
= false;
4713 MN
->InitOperands(MN
->OperandList
, Ops
, NumOps
);
4715 // If NumOps is larger than the # of operands we currently have, reallocate
4716 // the operand list.
4717 if (NumOps
> N
->NumOperands
) {
4718 if (N
->OperandsNeedDelete
)
4719 delete[] N
->OperandList
;
4720 N
->InitOperands(new SDUse
[NumOps
], Ops
, NumOps
);
4721 N
->OperandsNeedDelete
= true;
4723 N
->InitOperands(N
->OperandList
, Ops
, NumOps
);
4726 // Delete any nodes that are still dead after adding the uses for the
4728 if (!DeadNodeSet
.empty()) {
4729 SmallVector
<SDNode
*, 16> DeadNodes
;
4730 for (SmallPtrSet
<SDNode
*, 16>::iterator I
= DeadNodeSet
.begin(),
4731 E
= DeadNodeSet
.end(); I
!= E
; ++I
)
4732 if ((*I
)->use_empty())
4733 DeadNodes
.push_back(*I
);
4734 RemoveDeadNodes(DeadNodes
);
4738 CSEMap
.InsertNode(N
, IP
); // Memoize the new node.
4743 /// getMachineNode - These are used for target selectors to create a new node
4744 /// with specified return type(s), MachineInstr opcode, and operands.
4746 /// Note that getMachineNode returns the resultant node. If there is already a
4747 /// node of the specified opcode and operands, it returns that node instead of
4748 /// the current one.
4750 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
, EVT VT
) {
4751 SDVTList VTs
= getVTList(VT
);
4752 return getMachineNode(Opcode
, dl
, VTs
, 0, 0);
4756 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
, EVT VT
, SDValue Op1
) {
4757 SDVTList VTs
= getVTList(VT
);
4758 SDValue Ops
[] = { Op1
};
4759 return getMachineNode(Opcode
, dl
, VTs
, Ops
, array_lengthof(Ops
));
4763 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
, EVT VT
,
4764 SDValue Op1
, SDValue Op2
) {
4765 SDVTList VTs
= getVTList(VT
);
4766 SDValue Ops
[] = { Op1
, Op2
};
4767 return getMachineNode(Opcode
, dl
, VTs
, Ops
, array_lengthof(Ops
));
4771 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
, EVT VT
,
4772 SDValue Op1
, SDValue Op2
, SDValue Op3
) {
4773 SDVTList VTs
= getVTList(VT
);
4774 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4775 return getMachineNode(Opcode
, dl
, VTs
, Ops
, array_lengthof(Ops
));
4779 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
, EVT VT
,
4780 const SDValue
*Ops
, unsigned NumOps
) {
4781 SDVTList VTs
= getVTList(VT
);
4782 return getMachineNode(Opcode
, dl
, VTs
, Ops
, NumOps
);
4786 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
, EVT VT1
, EVT VT2
) {
4787 SDVTList VTs
= getVTList(VT1
, VT2
);
4788 return getMachineNode(Opcode
, dl
, VTs
, 0, 0);
4792 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
,
4793 EVT VT1
, EVT VT2
, SDValue Op1
) {
4794 SDVTList VTs
= getVTList(VT1
, VT2
);
4795 SDValue Ops
[] = { Op1
};
4796 return getMachineNode(Opcode
, dl
, VTs
, Ops
, array_lengthof(Ops
));
4800 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
,
4801 EVT VT1
, EVT VT2
, SDValue Op1
, SDValue Op2
) {
4802 SDVTList VTs
= getVTList(VT1
, VT2
);
4803 SDValue Ops
[] = { Op1
, Op2
};
4804 return getMachineNode(Opcode
, dl
, VTs
, Ops
, array_lengthof(Ops
));
4808 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
,
4809 EVT VT1
, EVT VT2
, SDValue Op1
,
4810 SDValue Op2
, SDValue Op3
) {
4811 SDVTList VTs
= getVTList(VT1
, VT2
);
4812 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4813 return getMachineNode(Opcode
, dl
, VTs
, Ops
, array_lengthof(Ops
));
4817 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
,
4819 const SDValue
*Ops
, unsigned NumOps
) {
4820 SDVTList VTs
= getVTList(VT1
, VT2
);
4821 return getMachineNode(Opcode
, dl
, VTs
, Ops
, NumOps
);
4825 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
,
4826 EVT VT1
, EVT VT2
, EVT VT3
,
4827 SDValue Op1
, SDValue Op2
) {
4828 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4829 SDValue Ops
[] = { Op1
, Op2
};
4830 return getMachineNode(Opcode
, dl
, VTs
, Ops
, array_lengthof(Ops
));
4834 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
,
4835 EVT VT1
, EVT VT2
, EVT VT3
,
4836 SDValue Op1
, SDValue Op2
, SDValue Op3
) {
4837 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4838 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4839 return getMachineNode(Opcode
, dl
, VTs
, Ops
, array_lengthof(Ops
));
4843 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
,
4844 EVT VT1
, EVT VT2
, EVT VT3
,
4845 const SDValue
*Ops
, unsigned NumOps
) {
4846 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4847 return getMachineNode(Opcode
, dl
, VTs
, Ops
, NumOps
);
4851 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
, EVT VT1
,
4852 EVT VT2
, EVT VT3
, EVT VT4
,
4853 const SDValue
*Ops
, unsigned NumOps
) {
4854 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
, VT4
);
4855 return getMachineNode(Opcode
, dl
, VTs
, Ops
, NumOps
);
4859 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
,
4860 const std::vector
<EVT
> &ResultTys
,
4861 const SDValue
*Ops
, unsigned NumOps
) {
4862 SDVTList VTs
= getVTList(&ResultTys
[0], ResultTys
.size());
4863 return getMachineNode(Opcode
, dl
, VTs
, Ops
, NumOps
);
4867 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTs
,
4868 const SDValue
*Ops
, unsigned NumOps
) {
4869 bool DoCSE
= VTs
.VTs
[VTs
.NumVTs
-1] != MVT::Flag
;
4874 FoldingSetNodeID ID
;
4875 AddNodeIDNode(ID
, ~Opcode
, VTs
, Ops
, NumOps
);
4877 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
4878 return cast
<MachineSDNode
>(E
);
4881 // Allocate a new MachineSDNode.
4882 N
= new (NodeAllocator
) MachineSDNode(~Opcode
, DL
, VTs
);
4884 // Initialize the operands list.
4885 if (NumOps
> array_lengthof(N
->LocalOperands
))
4886 // We're creating a final node that will live unmorphed for the
4887 // remainder of the current SelectionDAG iteration, so we can allocate
4888 // the operands directly out of a pool with no recycling metadata.
4889 N
->InitOperands(OperandAllocator
.Allocate
<SDUse
>(NumOps
),
4892 N
->InitOperands(N
->LocalOperands
, Ops
, NumOps
);
4893 N
->OperandsNeedDelete
= false;
4896 CSEMap
.InsertNode(N
, IP
);
4898 AllNodes
.push_back(N
);
4905 /// getTargetExtractSubreg - A convenience function for creating
4906 /// TargetOpcode::EXTRACT_SUBREG nodes.
4908 SelectionDAG::getTargetExtractSubreg(int SRIdx
, DebugLoc DL
, EVT VT
,
4910 SDValue SRIdxVal
= getTargetConstant(SRIdx
, MVT::i32
);
4911 SDNode
*Subreg
= getMachineNode(TargetOpcode::EXTRACT_SUBREG
, DL
,
4912 VT
, Operand
, SRIdxVal
);
4913 return SDValue(Subreg
, 0);
4916 /// getTargetInsertSubreg - A convenience function for creating
4917 /// TargetOpcode::INSERT_SUBREG nodes.
4919 SelectionDAG::getTargetInsertSubreg(int SRIdx
, DebugLoc DL
, EVT VT
,
4920 SDValue Operand
, SDValue Subreg
) {
4921 SDValue SRIdxVal
= getTargetConstant(SRIdx
, MVT::i32
);
4922 SDNode
*Result
= getMachineNode(TargetOpcode::INSERT_SUBREG
, DL
,
4923 VT
, Operand
, Subreg
, SRIdxVal
);
4924 return SDValue(Result
, 0);
4927 /// getNodeIfExists - Get the specified node if it's already available, or
4928 /// else return NULL.
4929 SDNode
*SelectionDAG::getNodeIfExists(unsigned Opcode
, SDVTList VTList
,
4930 const SDValue
*Ops
, unsigned NumOps
) {
4931 if (VTList
.VTs
[VTList
.NumVTs
-1] != MVT::Flag
) {
4932 FoldingSetNodeID ID
;
4933 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
, NumOps
);
4935 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
4941 /// getDbgValue - Creates a SDDbgValue node.
4944 SelectionDAG::getDbgValue(MDNode
*MDPtr
, SDNode
*N
, unsigned R
, uint64_t Off
,
4945 DebugLoc DL
, unsigned O
) {
4946 return new (Allocator
) SDDbgValue(MDPtr
, N
, R
, Off
, DL
, O
);
4950 SelectionDAG::getDbgValue(MDNode
*MDPtr
, const Value
*C
, uint64_t Off
,
4951 DebugLoc DL
, unsigned O
) {
4952 return new (Allocator
) SDDbgValue(MDPtr
, C
, Off
, DL
, O
);
4956 SelectionDAG::getDbgValue(MDNode
*MDPtr
, unsigned FI
, uint64_t Off
,
4957 DebugLoc DL
, unsigned O
) {
4958 return new (Allocator
) SDDbgValue(MDPtr
, FI
, Off
, DL
, O
);
4963 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
4964 /// pointed to by a use iterator is deleted, increment the use iterator
4965 /// so that it doesn't dangle.
4967 /// This class also manages a "downlink" DAGUpdateListener, to forward
4968 /// messages to ReplaceAllUsesWith's callers.
4970 class RAUWUpdateListener
: public SelectionDAG::DAGUpdateListener
{
4971 SelectionDAG::DAGUpdateListener
*DownLink
;
4972 SDNode::use_iterator
&UI
;
4973 SDNode::use_iterator
&UE
;
4975 virtual void NodeDeleted(SDNode
*N
, SDNode
*E
) {
4976 // Increment the iterator as needed.
4977 while (UI
!= UE
&& N
== *UI
)
4980 // Then forward the message.
4981 if (DownLink
) DownLink
->NodeDeleted(N
, E
);
4984 virtual void NodeUpdated(SDNode
*N
) {
4985 // Just forward the message.
4986 if (DownLink
) DownLink
->NodeUpdated(N
);
4990 RAUWUpdateListener(SelectionDAG::DAGUpdateListener
*dl
,
4991 SDNode::use_iterator
&ui
,
4992 SDNode::use_iterator
&ue
)
4993 : DownLink(dl
), UI(ui
), UE(ue
) {}
4998 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4999 /// This can cause recursive merging of nodes in the DAG.
5001 /// This version assumes From has a single result value.
5003 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN
, SDValue To
,
5004 DAGUpdateListener
*UpdateListener
) {
5005 SDNode
*From
= FromN
.getNode();
5006 assert(From
->getNumValues() == 1 && FromN
.getResNo() == 0 &&
5007 "Cannot replace with this method!");
5008 assert(From
!= To
.getNode() && "Cannot replace uses of with self");
5010 // Iterate over all the existing uses of From. New uses will be added
5011 // to the beginning of the use list, which we avoid visiting.
5012 // This specifically avoids visiting uses of From that arise while the
5013 // replacement is happening, because any such uses would be the result
5014 // of CSE: If an existing node looks like From after one of its operands
5015 // is replaced by To, we don't want to replace of all its users with To
5016 // too. See PR3018 for more info.
5017 SDNode::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
5018 RAUWUpdateListener
Listener(UpdateListener
, UI
, UE
);
5022 // This node is about to morph, remove its old self from the CSE maps.
5023 RemoveNodeFromCSEMaps(User
);
5025 // A user can appear in a use list multiple times, and when this
5026 // happens the uses are usually next to each other in the list.
5027 // To help reduce the number of CSE recomputations, process all
5028 // the uses of this user that we can find this way.
5030 SDUse
&Use
= UI
.getUse();
5033 } while (UI
!= UE
&& *UI
== User
);
5035 // Now that we have modified User, add it back to the CSE maps. If it
5036 // already exists there, recursively merge the results together.
5037 AddModifiedNodeToCSEMaps(User
, &Listener
);
5041 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5042 /// This can cause recursive merging of nodes in the DAG.
5044 /// This version assumes that for each value of From, there is a
5045 /// corresponding value in To in the same position with the same type.
5047 void SelectionDAG::ReplaceAllUsesWith(SDNode
*From
, SDNode
*To
,
5048 DAGUpdateListener
*UpdateListener
) {
5050 for (unsigned i
= 0, e
= From
->getNumValues(); i
!= e
; ++i
)
5051 assert((!From
->hasAnyUseOfValue(i
) ||
5052 From
->getValueType(i
) == To
->getValueType(i
)) &&
5053 "Cannot use this version of ReplaceAllUsesWith!");
5056 // Handle the trivial case.
5060 // Iterate over just the existing users of From. See the comments in
5061 // the ReplaceAllUsesWith above.
5062 SDNode::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
5063 RAUWUpdateListener
Listener(UpdateListener
, UI
, UE
);
5067 // This node is about to morph, remove its old self from the CSE maps.
5068 RemoveNodeFromCSEMaps(User
);
5070 // A user can appear in a use list multiple times, and when this
5071 // happens the uses are usually next to each other in the list.
5072 // To help reduce the number of CSE recomputations, process all
5073 // the uses of this user that we can find this way.
5075 SDUse
&Use
= UI
.getUse();
5078 } while (UI
!= UE
&& *UI
== User
);
5080 // Now that we have modified User, add it back to the CSE maps. If it
5081 // already exists there, recursively merge the results together.
5082 AddModifiedNodeToCSEMaps(User
, &Listener
);
5086 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5087 /// This can cause recursive merging of nodes in the DAG.
5089 /// This version can replace From with any result values. To must match the
5090 /// number and types of values returned by From.
5091 void SelectionDAG::ReplaceAllUsesWith(SDNode
*From
,
5093 DAGUpdateListener
*UpdateListener
) {
5094 if (From
->getNumValues() == 1) // Handle the simple case efficiently.
5095 return ReplaceAllUsesWith(SDValue(From
, 0), To
[0], UpdateListener
);
5097 // Iterate over just the existing users of From. See the comments in
5098 // the ReplaceAllUsesWith above.
5099 SDNode::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
5100 RAUWUpdateListener
Listener(UpdateListener
, UI
, UE
);
5104 // This node is about to morph, remove its old self from the CSE maps.
5105 RemoveNodeFromCSEMaps(User
);
5107 // A user can appear in a use list multiple times, and when this
5108 // happens the uses are usually next to each other in the list.
5109 // To help reduce the number of CSE recomputations, process all
5110 // the uses of this user that we can find this way.
5112 SDUse
&Use
= UI
.getUse();
5113 const SDValue
&ToOp
= To
[Use
.getResNo()];
5116 } while (UI
!= UE
&& *UI
== User
);
5118 // Now that we have modified User, add it back to the CSE maps. If it
5119 // already exists there, recursively merge the results together.
5120 AddModifiedNodeToCSEMaps(User
, &Listener
);
5124 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5125 /// uses of other values produced by From.getNode() alone. The Deleted
5126 /// vector is handled the same way as for ReplaceAllUsesWith.
5127 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From
, SDValue To
,
5128 DAGUpdateListener
*UpdateListener
){
5129 // Handle the really simple, really trivial case efficiently.
5130 if (From
== To
) return;
5132 // Handle the simple, trivial, case efficiently.
5133 if (From
.getNode()->getNumValues() == 1) {
5134 ReplaceAllUsesWith(From
, To
, UpdateListener
);
5138 // Iterate over just the existing users of From. See the comments in
5139 // the ReplaceAllUsesWith above.
5140 SDNode::use_iterator UI
= From
.getNode()->use_begin(),
5141 UE
= From
.getNode()->use_end();
5142 RAUWUpdateListener
Listener(UpdateListener
, UI
, UE
);
5145 bool UserRemovedFromCSEMaps
= false;
5147 // A user can appear in a use list multiple times, and when this
5148 // happens the uses are usually next to each other in the list.
5149 // To help reduce the number of CSE recomputations, process all
5150 // the uses of this user that we can find this way.
5152 SDUse
&Use
= UI
.getUse();
5154 // Skip uses of different values from the same node.
5155 if (Use
.getResNo() != From
.getResNo()) {
5160 // If this node hasn't been modified yet, it's still in the CSE maps,
5161 // so remove its old self from the CSE maps.
5162 if (!UserRemovedFromCSEMaps
) {
5163 RemoveNodeFromCSEMaps(User
);
5164 UserRemovedFromCSEMaps
= true;
5169 } while (UI
!= UE
&& *UI
== User
);
5171 // We are iterating over all uses of the From node, so if a use
5172 // doesn't use the specific value, no changes are made.
5173 if (!UserRemovedFromCSEMaps
)
5176 // Now that we have modified User, add it back to the CSE maps. If it
5177 // already exists there, recursively merge the results together.
5178 AddModifiedNodeToCSEMaps(User
, &Listener
);
5183 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5184 /// to record information about a use.
5191 /// operator< - Sort Memos by User.
5192 bool operator<(const UseMemo
&L
, const UseMemo
&R
) {
5193 return (intptr_t)L
.User
< (intptr_t)R
.User
;
5197 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5198 /// uses of other values produced by From.getNode() alone. The same value
5199 /// may appear in both the From and To list. The Deleted vector is
5200 /// handled the same way as for ReplaceAllUsesWith.
5201 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue
*From
,
5204 DAGUpdateListener
*UpdateListener
){
5205 // Handle the simple, trivial case efficiently.
5207 return ReplaceAllUsesOfValueWith(*From
, *To
, UpdateListener
);
5209 // Read up all the uses and make records of them. This helps
5210 // processing new uses that are introduced during the
5211 // replacement process.
5212 SmallVector
<UseMemo
, 4> Uses
;
5213 for (unsigned i
= 0; i
!= Num
; ++i
) {
5214 unsigned FromResNo
= From
[i
].getResNo();
5215 SDNode
*FromNode
= From
[i
].getNode();
5216 for (SDNode::use_iterator UI
= FromNode
->use_begin(),
5217 E
= FromNode
->use_end(); UI
!= E
; ++UI
) {
5218 SDUse
&Use
= UI
.getUse();
5219 if (Use
.getResNo() == FromResNo
) {
5220 UseMemo Memo
= { *UI
, i
, &Use
};
5221 Uses
.push_back(Memo
);
5226 // Sort the uses, so that all the uses from a given User are together.
5227 std::sort(Uses
.begin(), Uses
.end());
5229 for (unsigned UseIndex
= 0, UseIndexEnd
= Uses
.size();
5230 UseIndex
!= UseIndexEnd
; ) {
5231 // We know that this user uses some value of From. If it is the right
5232 // value, update it.
5233 SDNode
*User
= Uses
[UseIndex
].User
;
5235 // This node is about to morph, remove its old self from the CSE maps.
5236 RemoveNodeFromCSEMaps(User
);
5238 // The Uses array is sorted, so all the uses for a given User
5239 // are next to each other in the list.
5240 // To help reduce the number of CSE recomputations, process all
5241 // the uses of this user that we can find this way.
5243 unsigned i
= Uses
[UseIndex
].Index
;
5244 SDUse
&Use
= *Uses
[UseIndex
].Use
;
5248 } while (UseIndex
!= UseIndexEnd
&& Uses
[UseIndex
].User
== User
);
5250 // Now that we have modified User, add it back to the CSE maps. If it
5251 // already exists there, recursively merge the results together.
5252 AddModifiedNodeToCSEMaps(User
, UpdateListener
);
5256 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5257 /// based on their topological order. It returns the maximum id and a vector
5258 /// of the SDNodes* in assigned order by reference.
5259 unsigned SelectionDAG::AssignTopologicalOrder() {
5261 unsigned DAGSize
= 0;
5263 // SortedPos tracks the progress of the algorithm. Nodes before it are
5264 // sorted, nodes after it are unsorted. When the algorithm completes
5265 // it is at the end of the list.
5266 allnodes_iterator SortedPos
= allnodes_begin();
5268 // Visit all the nodes. Move nodes with no operands to the front of
5269 // the list immediately. Annotate nodes that do have operands with their
5270 // operand count. Before we do this, the Node Id fields of the nodes
5271 // may contain arbitrary values. After, the Node Id fields for nodes
5272 // before SortedPos will contain the topological sort index, and the
5273 // Node Id fields for nodes At SortedPos and after will contain the
5274 // count of outstanding operands.
5275 for (allnodes_iterator I
= allnodes_begin(),E
= allnodes_end(); I
!= E
; ) {
5278 unsigned Degree
= N
->getNumOperands();
5280 // A node with no uses, add it to the result array immediately.
5281 N
->setNodeId(DAGSize
++);
5282 allnodes_iterator Q
= N
;
5284 SortedPos
= AllNodes
.insert(SortedPos
, AllNodes
.remove(Q
));
5285 assert(SortedPos
!= AllNodes
.end() && "Overran node list");
5288 // Temporarily use the Node Id as scratch space for the degree count.
5289 N
->setNodeId(Degree
);
5293 // Visit all the nodes. As we iterate, moves nodes into sorted order,
5294 // such that by the time the end is reached all nodes will be sorted.
5295 for (allnodes_iterator I
= allnodes_begin(),E
= allnodes_end(); I
!= E
; ++I
) {
5298 // N is in sorted position, so all its uses have one less operand
5299 // that needs to be sorted.
5300 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
5303 unsigned Degree
= P
->getNodeId();
5304 assert(Degree
!= 0 && "Invalid node degree");
5307 // All of P's operands are sorted, so P may sorted now.
5308 P
->setNodeId(DAGSize
++);
5310 SortedPos
= AllNodes
.insert(SortedPos
, AllNodes
.remove(P
));
5311 assert(SortedPos
!= AllNodes
.end() && "Overran node list");
5314 // Update P's outstanding operand count.
5315 P
->setNodeId(Degree
);
5318 if (I
== SortedPos
) {
5321 dbgs() << "Overran sorted position:\n";
5324 llvm_unreachable(0);
5328 assert(SortedPos
== AllNodes
.end() &&
5329 "Topological sort incomplete!");
5330 assert(AllNodes
.front().getOpcode() == ISD::EntryToken
&&
5331 "First node in topological sort is not the entry token!");
5332 assert(AllNodes
.front().getNodeId() == 0 &&
5333 "First node in topological sort has non-zero id!");
5334 assert(AllNodes
.front().getNumOperands() == 0 &&
5335 "First node in topological sort has operands!");
5336 assert(AllNodes
.back().getNodeId() == (int)DAGSize
-1 &&
5337 "Last node in topologic sort has unexpected id!");
5338 assert(AllNodes
.back().use_empty() &&
5339 "Last node in topologic sort has users!");
5340 assert(DAGSize
== allnodes_size() && "Node count mismatch!");
5344 /// AssignOrdering - Assign an order to the SDNode.
5345 void SelectionDAG::AssignOrdering(const SDNode
*SD
, unsigned Order
) {
5346 assert(SD
&& "Trying to assign an order to a null node!");
5347 Ordering
->add(SD
, Order
);
5350 /// GetOrdering - Get the order for the SDNode.
5351 unsigned SelectionDAG::GetOrdering(const SDNode
*SD
) const {
5352 assert(SD
&& "Trying to get the order of a null node!");
5353 return Ordering
->getOrder(SD
);
5356 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5357 /// value is produced by SD.
5358 void SelectionDAG::AddDbgValue(SDDbgValue
*DB
, SDNode
*SD
, bool isParameter
) {
5359 DbgInfo
->add(DB
, SD
, isParameter
);
5361 SD
->setHasDebugValue(true);
5364 //===----------------------------------------------------------------------===//
5366 //===----------------------------------------------------------------------===//
5368 HandleSDNode::~HandleSDNode() {
5372 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc
, DebugLoc DL
,
5373 const GlobalValue
*GA
,
5374 EVT VT
, int64_t o
, unsigned char TF
)
5375 : SDNode(Opc
, DL
, getSDVTList(VT
)), Offset(o
), TargetFlags(TF
) {
5379 MemSDNode::MemSDNode(unsigned Opc
, DebugLoc dl
, SDVTList VTs
, EVT memvt
,
5380 MachineMemOperand
*mmo
)
5381 : SDNode(Opc
, dl
, VTs
), MemoryVT(memvt
), MMO(mmo
) {
5382 SubclassData
= encodeMemSDNodeFlags(0, ISD::UNINDEXED
, MMO
->isVolatile(),
5383 MMO
->isNonTemporal());
5384 assert(isVolatile() == MMO
->isVolatile() && "Volatile encoding error!");
5385 assert(isNonTemporal() == MMO
->isNonTemporal() &&
5386 "Non-temporal encoding error!");
5387 assert(memvt
.getStoreSize() == MMO
->getSize() && "Size mismatch!");
5390 MemSDNode::MemSDNode(unsigned Opc
, DebugLoc dl
, SDVTList VTs
,
5391 const SDValue
*Ops
, unsigned NumOps
, EVT memvt
,
5392 MachineMemOperand
*mmo
)
5393 : SDNode(Opc
, dl
, VTs
, Ops
, NumOps
),
5394 MemoryVT(memvt
), MMO(mmo
) {
5395 SubclassData
= encodeMemSDNodeFlags(0, ISD::UNINDEXED
, MMO
->isVolatile(),
5396 MMO
->isNonTemporal());
5397 assert(isVolatile() == MMO
->isVolatile() && "Volatile encoding error!");
5398 assert(memvt
.getStoreSize() == MMO
->getSize() && "Size mismatch!");
5401 /// Profile - Gather unique data for the node.
5403 void SDNode::Profile(FoldingSetNodeID
&ID
) const {
5404 AddNodeIDNode(ID
, this);
5409 std::vector
<EVT
> VTs
;
5412 VTs
.reserve(MVT::LAST_VALUETYPE
);
5413 for (unsigned i
= 0; i
< MVT::LAST_VALUETYPE
; ++i
)
5414 VTs
.push_back(MVT((MVT::SimpleValueType
)i
));
5419 static ManagedStatic
<std::set
<EVT
, EVT::compareRawBits
> > EVTs
;
5420 static ManagedStatic
<EVTArray
> SimpleVTArray
;
5421 static ManagedStatic
<sys::SmartMutex
<true> > VTMutex
;
5423 /// getValueTypeList - Return a pointer to the specified value type.
5425 const EVT
*SDNode::getValueTypeList(EVT VT
) {
5426 if (VT
.isExtended()) {
5427 sys::SmartScopedLock
<true> Lock(*VTMutex
);
5428 return &(*EVTs
->insert(VT
).first
);
5430 assert(VT
.getSimpleVT() < MVT::LAST_VALUETYPE
&&
5431 "Value type out of range!");
5432 return &SimpleVTArray
->VTs
[VT
.getSimpleVT().SimpleTy
];
5436 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5437 /// indicated value. This method ignores uses of other values defined by this
5439 bool SDNode::hasNUsesOfValue(unsigned NUses
, unsigned Value
) const {
5440 assert(Value
< getNumValues() && "Bad value!");
5442 // TODO: Only iterate over uses of a given value of the node
5443 for (SDNode::use_iterator UI
= use_begin(), E
= use_end(); UI
!= E
; ++UI
) {
5444 if (UI
.getUse().getResNo() == Value
) {
5451 // Found exactly the right number of uses?
5456 /// hasAnyUseOfValue - Return true if there are any use of the indicated
5457 /// value. This method ignores uses of other values defined by this operation.
5458 bool SDNode::hasAnyUseOfValue(unsigned Value
) const {
5459 assert(Value
< getNumValues() && "Bad value!");
5461 for (SDNode::use_iterator UI
= use_begin(), E
= use_end(); UI
!= E
; ++UI
)
5462 if (UI
.getUse().getResNo() == Value
)
5469 /// isOnlyUserOf - Return true if this node is the only use of N.
5471 bool SDNode::isOnlyUserOf(SDNode
*N
) const {
5473 for (SDNode::use_iterator I
= N
->use_begin(), E
= N
->use_end(); I
!= E
; ++I
) {
5484 /// isOperand - Return true if this node is an operand of N.
5486 bool SDValue::isOperandOf(SDNode
*N
) const {
5487 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
5488 if (*this == N
->getOperand(i
))
5493 bool SDNode::isOperandOf(SDNode
*N
) const {
5494 for (unsigned i
= 0, e
= N
->NumOperands
; i
!= e
; ++i
)
5495 if (this == N
->OperandList
[i
].getNode())
5500 /// reachesChainWithoutSideEffects - Return true if this operand (which must
5501 /// be a chain) reaches the specified operand without crossing any
5502 /// side-effecting instructions on any chain path. In practice, this looks
5503 /// through token factors and non-volatile loads. In order to remain efficient,
5504 /// this only looks a couple of nodes in, it does not do an exhaustive search.
5505 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest
,
5506 unsigned Depth
) const {
5507 if (*this == Dest
) return true;
5509 // Don't search too deeply, we just want to be able to see through
5510 // TokenFactor's etc.
5511 if (Depth
== 0) return false;
5513 // If this is a token factor, all inputs to the TF happen in parallel. If any
5514 // of the operands of the TF does not reach dest, then we cannot do the xform.
5515 if (getOpcode() == ISD::TokenFactor
) {
5516 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
5517 if (!getOperand(i
).reachesChainWithoutSideEffects(Dest
, Depth
-1))
5522 // Loads don't have side effects, look through them.
5523 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(*this)) {
5524 if (!Ld
->isVolatile())
5525 return Ld
->getChain().reachesChainWithoutSideEffects(Dest
, Depth
-1);
5530 /// isPredecessorOf - Return true if this node is a predecessor of N. This node
5531 /// is either an operand of N or it can be reached by traversing up the operands.
5532 /// NOTE: this is an expensive method. Use it carefully.
5533 bool SDNode::isPredecessorOf(SDNode
*N
) const {
5534 SmallPtrSet
<SDNode
*, 32> Visited
;
5535 SmallVector
<SDNode
*, 16> Worklist
;
5536 Worklist
.push_back(N
);
5539 N
= Worklist
.pop_back_val();
5540 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
5541 SDNode
*Op
= N
->getOperand(i
).getNode();
5544 if (Visited
.insert(Op
))
5545 Worklist
.push_back(Op
);
5547 } while (!Worklist
.empty());
5552 uint64_t SDNode::getConstantOperandVal(unsigned Num
) const {
5553 assert(Num
< NumOperands
&& "Invalid child # of SDNode!");
5554 return cast
<ConstantSDNode
>(OperandList
[Num
])->getZExtValue();
5557 std::string
SDNode::getOperationName(const SelectionDAG
*G
) const {
5558 switch (getOpcode()) {
5560 if (getOpcode() < ISD::BUILTIN_OP_END
)
5561 return "<<Unknown DAG Node>>";
5562 if (isMachineOpcode()) {
5564 if (const TargetInstrInfo
*TII
= G
->getTarget().getInstrInfo())
5565 if (getMachineOpcode() < TII
->getNumOpcodes())
5566 return TII
->get(getMachineOpcode()).getName();
5567 return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5570 const TargetLowering
&TLI
= G
->getTargetLoweringInfo();
5571 const char *Name
= TLI
.getTargetNodeName(getOpcode());
5572 if (Name
) return Name
;
5573 return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5575 return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5578 case ISD::DELETED_NODE
:
5579 return "<<Deleted Node!>>";
5581 case ISD::PREFETCH
: return "Prefetch";
5582 case ISD::MEMBARRIER
: return "MemBarrier";
5583 case ISD::ATOMIC_CMP_SWAP
: return "AtomicCmpSwap";
5584 case ISD::ATOMIC_SWAP
: return "AtomicSwap";
5585 case ISD::ATOMIC_LOAD_ADD
: return "AtomicLoadAdd";
5586 case ISD::ATOMIC_LOAD_SUB
: return "AtomicLoadSub";
5587 case ISD::ATOMIC_LOAD_AND
: return "AtomicLoadAnd";
5588 case ISD::ATOMIC_LOAD_OR
: return "AtomicLoadOr";
5589 case ISD::ATOMIC_LOAD_XOR
: return "AtomicLoadXor";
5590 case ISD::ATOMIC_LOAD_NAND
: return "AtomicLoadNand";
5591 case ISD::ATOMIC_LOAD_MIN
: return "AtomicLoadMin";
5592 case ISD::ATOMIC_LOAD_MAX
: return "AtomicLoadMax";
5593 case ISD::ATOMIC_LOAD_UMIN
: return "AtomicLoadUMin";
5594 case ISD::ATOMIC_LOAD_UMAX
: return "AtomicLoadUMax";
5595 case ISD::PCMARKER
: return "PCMarker";
5596 case ISD::READCYCLECOUNTER
: return "ReadCycleCounter";
5597 case ISD::SRCVALUE
: return "SrcValue";
5598 case ISD::MDNODE_SDNODE
: return "MDNode";
5599 case ISD::EntryToken
: return "EntryToken";
5600 case ISD::TokenFactor
: return "TokenFactor";
5601 case ISD::AssertSext
: return "AssertSext";
5602 case ISD::AssertZext
: return "AssertZext";
5604 case ISD::BasicBlock
: return "BasicBlock";
5605 case ISD::VALUETYPE
: return "ValueType";
5606 case ISD::Register
: return "Register";
5608 case ISD::Constant
: return "Constant";
5609 case ISD::ConstantFP
: return "ConstantFP";
5610 case ISD::GlobalAddress
: return "GlobalAddress";
5611 case ISD::GlobalTLSAddress
: return "GlobalTLSAddress";
5612 case ISD::FrameIndex
: return "FrameIndex";
5613 case ISD::JumpTable
: return "JumpTable";
5614 case ISD::GLOBAL_OFFSET_TABLE
: return "GLOBAL_OFFSET_TABLE";
5615 case ISD::RETURNADDR
: return "RETURNADDR";
5616 case ISD::FRAMEADDR
: return "FRAMEADDR";
5617 case ISD::FRAME_TO_ARGS_OFFSET
: return "FRAME_TO_ARGS_OFFSET";
5618 case ISD::EXCEPTIONADDR
: return "EXCEPTIONADDR";
5619 case ISD::LSDAADDR
: return "LSDAADDR";
5620 case ISD::EHSELECTION
: return "EHSELECTION";
5621 case ISD::EH_RETURN
: return "EH_RETURN";
5622 case ISD::EH_SJLJ_SETJMP
: return "EH_SJLJ_SETJMP";
5623 case ISD::EH_SJLJ_LONGJMP
: return "EH_SJLJ_LONGJMP";
5624 case ISD::EH_SJLJ_DISPATCHSETUP
: return "EH_SJLJ_DISPATCHSETUP";
5625 case ISD::ConstantPool
: return "ConstantPool";
5626 case ISD::ExternalSymbol
: return "ExternalSymbol";
5627 case ISD::BlockAddress
: return "BlockAddress";
5628 case ISD::INTRINSIC_WO_CHAIN
:
5629 case ISD::INTRINSIC_VOID
:
5630 case ISD::INTRINSIC_W_CHAIN
: {
5631 unsigned OpNo
= getOpcode() == ISD::INTRINSIC_WO_CHAIN
? 0 : 1;
5632 unsigned IID
= cast
<ConstantSDNode
>(getOperand(OpNo
))->getZExtValue();
5633 if (IID
< Intrinsic::num_intrinsics
)
5634 return Intrinsic::getName((Intrinsic::ID
)IID
);
5635 else if (const TargetIntrinsicInfo
*TII
= G
->getTarget().getIntrinsicInfo())
5636 return TII
->getName(IID
);
5637 llvm_unreachable("Invalid intrinsic ID");
5640 case ISD::BUILD_VECTOR
: return "BUILD_VECTOR";
5641 case ISD::TargetConstant
: return "TargetConstant";
5642 case ISD::TargetConstantFP
:return "TargetConstantFP";
5643 case ISD::TargetGlobalAddress
: return "TargetGlobalAddress";
5644 case ISD::TargetGlobalTLSAddress
: return "TargetGlobalTLSAddress";
5645 case ISD::TargetFrameIndex
: return "TargetFrameIndex";
5646 case ISD::TargetJumpTable
: return "TargetJumpTable";
5647 case ISD::TargetConstantPool
: return "TargetConstantPool";
5648 case ISD::TargetExternalSymbol
: return "TargetExternalSymbol";
5649 case ISD::TargetBlockAddress
: return "TargetBlockAddress";
5651 case ISD::CopyToReg
: return "CopyToReg";
5652 case ISD::CopyFromReg
: return "CopyFromReg";
5653 case ISD::UNDEF
: return "undef";
5654 case ISD::MERGE_VALUES
: return "merge_values";
5655 case ISD::INLINEASM
: return "inlineasm";
5656 case ISD::EH_LABEL
: return "eh_label";
5657 case ISD::HANDLENODE
: return "handlenode";
5660 case ISD::FABS
: return "fabs";
5661 case ISD::FNEG
: return "fneg";
5662 case ISD::FSQRT
: return "fsqrt";
5663 case ISD::FSIN
: return "fsin";
5664 case ISD::FCOS
: return "fcos";
5665 case ISD::FTRUNC
: return "ftrunc";
5666 case ISD::FFLOOR
: return "ffloor";
5667 case ISD::FCEIL
: return "fceil";
5668 case ISD::FRINT
: return "frint";
5669 case ISD::FNEARBYINT
: return "fnearbyint";
5670 case ISD::FEXP
: return "fexp";
5671 case ISD::FEXP2
: return "fexp2";
5672 case ISD::FLOG
: return "flog";
5673 case ISD::FLOG2
: return "flog2";
5674 case ISD::FLOG10
: return "flog10";
5677 case ISD::ADD
: return "add";
5678 case ISD::SUB
: return "sub";
5679 case ISD::MUL
: return "mul";
5680 case ISD::MULHU
: return "mulhu";
5681 case ISD::MULHS
: return "mulhs";
5682 case ISD::SDIV
: return "sdiv";
5683 case ISD::UDIV
: return "udiv";
5684 case ISD::SREM
: return "srem";
5685 case ISD::UREM
: return "urem";
5686 case ISD::SMUL_LOHI
: return "smul_lohi";
5687 case ISD::UMUL_LOHI
: return "umul_lohi";
5688 case ISD::SDIVREM
: return "sdivrem";
5689 case ISD::UDIVREM
: return "udivrem";
5690 case ISD::AND
: return "and";
5691 case ISD::OR
: return "or";
5692 case ISD::XOR
: return "xor";
5693 case ISD::SHL
: return "shl";
5694 case ISD::SRA
: return "sra";
5695 case ISD::SRL
: return "srl";
5696 case ISD::ROTL
: return "rotl";
5697 case ISD::ROTR
: return "rotr";
5698 case ISD::FADD
: return "fadd";
5699 case ISD::FSUB
: return "fsub";
5700 case ISD::FMUL
: return "fmul";
5701 case ISD::FDIV
: return "fdiv";
5702 case ISD::FREM
: return "frem";
5703 case ISD::FCOPYSIGN
: return "fcopysign";
5704 case ISD::FGETSIGN
: return "fgetsign";
5705 case ISD::FPOW
: return "fpow";
5707 case ISD::FPOWI
: return "fpowi";
5708 case ISD::SETCC
: return "setcc";
5709 case ISD::VSETCC
: return "vsetcc";
5710 case ISD::SELECT
: return "select";
5711 case ISD::SELECT_CC
: return "select_cc";
5712 case ISD::INSERT_VECTOR_ELT
: return "insert_vector_elt";
5713 case ISD::EXTRACT_VECTOR_ELT
: return "extract_vector_elt";
5714 case ISD::CONCAT_VECTORS
: return "concat_vectors";
5715 case ISD::EXTRACT_SUBVECTOR
: return "extract_subvector";
5716 case ISD::SCALAR_TO_VECTOR
: return "scalar_to_vector";
5717 case ISD::VECTOR_SHUFFLE
: return "vector_shuffle";
5718 case ISD::CARRY_FALSE
: return "carry_false";
5719 case ISD::ADDC
: return "addc";
5720 case ISD::ADDE
: return "adde";
5721 case ISD::SADDO
: return "saddo";
5722 case ISD::UADDO
: return "uaddo";
5723 case ISD::SSUBO
: return "ssubo";
5724 case ISD::USUBO
: return "usubo";
5725 case ISD::SMULO
: return "smulo";
5726 case ISD::UMULO
: return "umulo";
5727 case ISD::SUBC
: return "subc";
5728 case ISD::SUBE
: return "sube";
5729 case ISD::SHL_PARTS
: return "shl_parts";
5730 case ISD::SRA_PARTS
: return "sra_parts";
5731 case ISD::SRL_PARTS
: return "srl_parts";
5733 // Conversion operators.
5734 case ISD::SIGN_EXTEND
: return "sign_extend";
5735 case ISD::ZERO_EXTEND
: return "zero_extend";
5736 case ISD::ANY_EXTEND
: return "any_extend";
5737 case ISD::SIGN_EXTEND_INREG
: return "sign_extend_inreg";
5738 case ISD::TRUNCATE
: return "truncate";
5739 case ISD::FP_ROUND
: return "fp_round";
5740 case ISD::FLT_ROUNDS_
: return "flt_rounds";
5741 case ISD::FP_ROUND_INREG
: return "fp_round_inreg";
5742 case ISD::FP_EXTEND
: return "fp_extend";
5744 case ISD::SINT_TO_FP
: return "sint_to_fp";
5745 case ISD::UINT_TO_FP
: return "uint_to_fp";
5746 case ISD::FP_TO_SINT
: return "fp_to_sint";
5747 case ISD::FP_TO_UINT
: return "fp_to_uint";
5748 case ISD::BIT_CONVERT
: return "bit_convert";
5749 case ISD::FP16_TO_FP32
: return "fp16_to_fp32";
5750 case ISD::FP32_TO_FP16
: return "fp32_to_fp16";
5752 case ISD::CONVERT_RNDSAT
: {
5753 switch (cast
<CvtRndSatSDNode
>(this)->getCvtCode()) {
5754 default: llvm_unreachable("Unknown cvt code!");
5755 case ISD::CVT_FF
: return "cvt_ff";
5756 case ISD::CVT_FS
: return "cvt_fs";
5757 case ISD::CVT_FU
: return "cvt_fu";
5758 case ISD::CVT_SF
: return "cvt_sf";
5759 case ISD::CVT_UF
: return "cvt_uf";
5760 case ISD::CVT_SS
: return "cvt_ss";
5761 case ISD::CVT_SU
: return "cvt_su";
5762 case ISD::CVT_US
: return "cvt_us";
5763 case ISD::CVT_UU
: return "cvt_uu";
5767 // Control flow instructions
5768 case ISD::BR
: return "br";
5769 case ISD::BRIND
: return "brind";
5770 case ISD::BR_JT
: return "br_jt";
5771 case ISD::BRCOND
: return "brcond";
5772 case ISD::BR_CC
: return "br_cc";
5773 case ISD::CALLSEQ_START
: return "callseq_start";
5774 case ISD::CALLSEQ_END
: return "callseq_end";
5777 case ISD::LOAD
: return "load";
5778 case ISD::STORE
: return "store";
5779 case ISD::VAARG
: return "vaarg";
5780 case ISD::VACOPY
: return "vacopy";
5781 case ISD::VAEND
: return "vaend";
5782 case ISD::VASTART
: return "vastart";
5783 case ISD::DYNAMIC_STACKALLOC
: return "dynamic_stackalloc";
5784 case ISD::EXTRACT_ELEMENT
: return "extract_element";
5785 case ISD::BUILD_PAIR
: return "build_pair";
5786 case ISD::STACKSAVE
: return "stacksave";
5787 case ISD::STACKRESTORE
: return "stackrestore";
5788 case ISD::TRAP
: return "trap";
5791 case ISD::BSWAP
: return "bswap";
5792 case ISD::CTPOP
: return "ctpop";
5793 case ISD::CTTZ
: return "cttz";
5794 case ISD::CTLZ
: return "ctlz";
5797 case ISD::TRAMPOLINE
: return "trampoline";
5800 switch (cast
<CondCodeSDNode
>(this)->get()) {
5801 default: llvm_unreachable("Unknown setcc condition!");
5802 case ISD::SETOEQ
: return "setoeq";
5803 case ISD::SETOGT
: return "setogt";
5804 case ISD::SETOGE
: return "setoge";
5805 case ISD::SETOLT
: return "setolt";
5806 case ISD::SETOLE
: return "setole";
5807 case ISD::SETONE
: return "setone";
5809 case ISD::SETO
: return "seto";
5810 case ISD::SETUO
: return "setuo";
5811 case ISD::SETUEQ
: return "setue";
5812 case ISD::SETUGT
: return "setugt";
5813 case ISD::SETUGE
: return "setuge";
5814 case ISD::SETULT
: return "setult";
5815 case ISD::SETULE
: return "setule";
5816 case ISD::SETUNE
: return "setune";
5818 case ISD::SETEQ
: return "seteq";
5819 case ISD::SETGT
: return "setgt";
5820 case ISD::SETGE
: return "setge";
5821 case ISD::SETLT
: return "setlt";
5822 case ISD::SETLE
: return "setle";
5823 case ISD::SETNE
: return "setne";
5828 const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM
) {
5837 return "<post-inc>";
5839 return "<post-dec>";
5843 std::string
ISD::ArgFlagsTy::getArgFlagsString() {
5844 std::string S
= "< ";
5858 if (getByValAlign())
5859 S
+= "byval-align:" + utostr(getByValAlign()) + " ";
5861 S
+= "orig-align:" + utostr(getOrigAlign()) + " ";
5863 S
+= "byval-size:" + utostr(getByValSize()) + " ";
5867 void SDNode::dump() const { dump(0); }
5868 void SDNode::dump(const SelectionDAG
*G
) const {
5873 void SDNode::print_types(raw_ostream
&OS
, const SelectionDAG
*G
) const {
5874 OS
<< (void*)this << ": ";
5876 for (unsigned i
= 0, e
= getNumValues(); i
!= e
; ++i
) {
5878 if (getValueType(i
) == MVT::Other
)
5881 OS
<< getValueType(i
).getEVTString();
5883 OS
<< " = " << getOperationName(G
);
5886 void SDNode::print_details(raw_ostream
&OS
, const SelectionDAG
*G
) const {
5887 if (const MachineSDNode
*MN
= dyn_cast
<MachineSDNode
>(this)) {
5888 if (!MN
->memoperands_empty()) {
5891 for (MachineSDNode::mmo_iterator i
= MN
->memoperands_begin(),
5892 e
= MN
->memoperands_end(); i
!= e
; ++i
) {
5894 if (llvm::next(i
) != e
)
5899 } else if (const ShuffleVectorSDNode
*SVN
=
5900 dyn_cast
<ShuffleVectorSDNode
>(this)) {
5902 for (unsigned i
= 0, e
= ValueList
[0].getVectorNumElements(); i
!= e
; ++i
) {
5903 int Idx
= SVN
->getMaskElt(i
);
5911 } else if (const ConstantSDNode
*CSDN
= dyn_cast
<ConstantSDNode
>(this)) {
5912 OS
<< '<' << CSDN
->getAPIntValue() << '>';
5913 } else if (const ConstantFPSDNode
*CSDN
= dyn_cast
<ConstantFPSDNode
>(this)) {
5914 if (&CSDN
->getValueAPF().getSemantics()==&APFloat::IEEEsingle
)
5915 OS
<< '<' << CSDN
->getValueAPF().convertToFloat() << '>';
5916 else if (&CSDN
->getValueAPF().getSemantics()==&APFloat::IEEEdouble
)
5917 OS
<< '<' << CSDN
->getValueAPF().convertToDouble() << '>';
5920 CSDN
->getValueAPF().bitcastToAPInt().dump();
5923 } else if (const GlobalAddressSDNode
*GADN
=
5924 dyn_cast
<GlobalAddressSDNode
>(this)) {
5925 int64_t offset
= GADN
->getOffset();
5927 WriteAsOperand(OS
, GADN
->getGlobal());
5930 OS
<< " + " << offset
;
5932 OS
<< " " << offset
;
5933 if (unsigned int TF
= GADN
->getTargetFlags())
5934 OS
<< " [TF=" << TF
<< ']';
5935 } else if (const FrameIndexSDNode
*FIDN
= dyn_cast
<FrameIndexSDNode
>(this)) {
5936 OS
<< "<" << FIDN
->getIndex() << ">";
5937 } else if (const JumpTableSDNode
*JTDN
= dyn_cast
<JumpTableSDNode
>(this)) {
5938 OS
<< "<" << JTDN
->getIndex() << ">";
5939 if (unsigned int TF
= JTDN
->getTargetFlags())
5940 OS
<< " [TF=" << TF
<< ']';
5941 } else if (const ConstantPoolSDNode
*CP
= dyn_cast
<ConstantPoolSDNode
>(this)){
5942 int offset
= CP
->getOffset();
5943 if (CP
->isMachineConstantPoolEntry())
5944 OS
<< "<" << *CP
->getMachineCPVal() << ">";
5946 OS
<< "<" << *CP
->getConstVal() << ">";
5948 OS
<< " + " << offset
;
5950 OS
<< " " << offset
;
5951 if (unsigned int TF
= CP
->getTargetFlags())
5952 OS
<< " [TF=" << TF
<< ']';
5953 } else if (const BasicBlockSDNode
*BBDN
= dyn_cast
<BasicBlockSDNode
>(this)) {
5955 const Value
*LBB
= (const Value
*)BBDN
->getBasicBlock()->getBasicBlock();
5957 OS
<< LBB
->getName() << " ";
5958 OS
<< (const void*)BBDN
->getBasicBlock() << ">";
5959 } else if (const RegisterSDNode
*R
= dyn_cast
<RegisterSDNode
>(this)) {
5960 if (G
&& R
->getReg() &&
5961 TargetRegisterInfo::isPhysicalRegister(R
->getReg())) {
5962 OS
<< " %" << G
->getTarget().getRegisterInfo()->getName(R
->getReg());
5964 OS
<< " %reg" << R
->getReg();
5966 } else if (const ExternalSymbolSDNode
*ES
=
5967 dyn_cast
<ExternalSymbolSDNode
>(this)) {
5968 OS
<< "'" << ES
->getSymbol() << "'";
5969 if (unsigned int TF
= ES
->getTargetFlags())
5970 OS
<< " [TF=" << TF
<< ']';
5971 } else if (const SrcValueSDNode
*M
= dyn_cast
<SrcValueSDNode
>(this)) {
5973 OS
<< "<" << M
->getValue() << ">";
5976 } else if (const MDNodeSDNode
*MD
= dyn_cast
<MDNodeSDNode
>(this)) {
5978 OS
<< "<" << MD
->getMD() << ">";
5981 } else if (const VTSDNode
*N
= dyn_cast
<VTSDNode
>(this)) {
5982 OS
<< ":" << N
->getVT().getEVTString();
5984 else if (const LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(this)) {
5985 OS
<< "<" << *LD
->getMemOperand();
5988 switch (LD
->getExtensionType()) {
5989 default: doExt
= false; break;
5990 case ISD::EXTLOAD
: OS
<< ", anyext"; break;
5991 case ISD::SEXTLOAD
: OS
<< ", sext"; break;
5992 case ISD::ZEXTLOAD
: OS
<< ", zext"; break;
5995 OS
<< " from " << LD
->getMemoryVT().getEVTString();
5997 const char *AM
= getIndexedModeName(LD
->getAddressingMode());
6002 } else if (const StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(this)) {
6003 OS
<< "<" << *ST
->getMemOperand();
6005 if (ST
->isTruncatingStore())
6006 OS
<< ", trunc to " << ST
->getMemoryVT().getEVTString();
6008 const char *AM
= getIndexedModeName(ST
->getAddressingMode());
6013 } else if (const MemSDNode
* M
= dyn_cast
<MemSDNode
>(this)) {
6014 OS
<< "<" << *M
->getMemOperand() << ">";
6015 } else if (const BlockAddressSDNode
*BA
=
6016 dyn_cast
<BlockAddressSDNode
>(this)) {
6018 WriteAsOperand(OS
, BA
->getBlockAddress()->getFunction(), false);
6020 WriteAsOperand(OS
, BA
->getBlockAddress()->getBasicBlock(), false);
6022 if (unsigned int TF
= BA
->getTargetFlags())
6023 OS
<< " [TF=" << TF
<< ']';
6027 if (unsigned Order
= G
->GetOrdering(this))
6028 OS
<< " [ORD=" << Order
<< ']';
6030 if (getNodeId() != -1)
6031 OS
<< " [ID=" << getNodeId() << ']';
6033 DebugLoc dl
= getDebugLoc();
6034 if (G
&& !dl
.isUnknown()) {
6036 Scope(dl
.getScope(G
->getMachineFunction().getFunction()->getContext()));
6038 // Omit the directory, since it's usually long and uninteresting.
6040 OS
<< Scope
.getFilename();
6043 OS
<< ':' << dl
.getLine();
6044 if (dl
.getCol() != 0)
6045 OS
<< ':' << dl
.getCol();
6049 void SDNode::print(raw_ostream
&OS
, const SelectionDAG
*G
) const {
6051 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
6052 if (i
) OS
<< ", "; else OS
<< " ";
6053 OS
<< (void*)getOperand(i
).getNode();
6054 if (unsigned RN
= getOperand(i
).getResNo())
6057 print_details(OS
, G
);
6060 static void printrWithDepthHelper(raw_ostream
&OS
, const SDNode
*N
,
6061 const SelectionDAG
*G
, unsigned depth
,
6074 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
6076 printrWithDepthHelper(OS
, N
->getOperand(i
).getNode(), G
, depth
-1, indent
+2);
6080 void SDNode::printrWithDepth(raw_ostream
&OS
, const SelectionDAG
*G
,
6081 unsigned depth
) const {
6082 printrWithDepthHelper(OS
, this, G
, depth
, 0);
6085 void SDNode::printrFull(raw_ostream
&OS
, const SelectionDAG
*G
) const {
6086 // Don't print impossibly deep things.
6087 printrWithDepth(OS
, G
, 100);
6090 void SDNode::dumprWithDepth(const SelectionDAG
*G
, unsigned depth
) const {
6091 printrWithDepth(dbgs(), G
, depth
);
6094 void SDNode::dumprFull(const SelectionDAG
*G
) const {
6095 // Don't print impossibly deep things.
6096 dumprWithDepth(G
, 100);
6099 static void DumpNodes(const SDNode
*N
, unsigned indent
, const SelectionDAG
*G
) {
6100 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
6101 if (N
->getOperand(i
).getNode()->hasOneUse())
6102 DumpNodes(N
->getOperand(i
).getNode(), indent
+2, G
);
6104 dbgs() << "\n" << std::string(indent
+2, ' ')
6105 << (void*)N
->getOperand(i
).getNode() << ": <multiple use>";
6109 dbgs().indent(indent
);
6113 SDValue
SelectionDAG::UnrollVectorOp(SDNode
*N
, unsigned ResNE
) {
6114 assert(N
->getNumValues() == 1 &&
6115 "Can't unroll a vector with multiple results!");
6117 EVT VT
= N
->getValueType(0);
6118 unsigned NE
= VT
.getVectorNumElements();
6119 EVT EltVT
= VT
.getVectorElementType();
6120 DebugLoc dl
= N
->getDebugLoc();
6122 SmallVector
<SDValue
, 8> Scalars
;
6123 SmallVector
<SDValue
, 4> Operands(N
->getNumOperands());
6125 // If ResNE is 0, fully unroll the vector op.
6128 else if (NE
> ResNE
)
6132 for (i
= 0; i
!= NE
; ++i
) {
6133 for (unsigned j
= 0, e
= N
->getNumOperands(); j
!= e
; ++j
) {
6134 SDValue Operand
= N
->getOperand(j
);
6135 EVT OperandVT
= Operand
.getValueType();
6136 if (OperandVT
.isVector()) {
6137 // A vector operand; extract a single element.
6138 EVT OperandEltVT
= OperandVT
.getVectorElementType();
6139 Operands
[j
] = getNode(ISD::EXTRACT_VECTOR_ELT
, dl
,
6142 getConstant(i
, MVT::i32
));
6144 // A scalar operand; just use it as is.
6145 Operands
[j
] = Operand
;
6149 switch (N
->getOpcode()) {
6151 Scalars
.push_back(getNode(N
->getOpcode(), dl
, EltVT
,
6152 &Operands
[0], Operands
.size()));
6159 Scalars
.push_back(getNode(N
->getOpcode(), dl
, EltVT
, Operands
[0],
6160 getShiftAmountOperand(Operands
[1])));
6162 case ISD::SIGN_EXTEND_INREG
:
6163 case ISD::FP_ROUND_INREG
: {
6164 EVT ExtVT
= cast
<VTSDNode
>(Operands
[1])->getVT().getVectorElementType();
6165 Scalars
.push_back(getNode(N
->getOpcode(), dl
, EltVT
,
6167 getValueType(ExtVT
)));
6172 for (; i
< ResNE
; ++i
)
6173 Scalars
.push_back(getUNDEF(EltVT
));
6175 return getNode(ISD::BUILD_VECTOR
, dl
,
6176 EVT::getVectorVT(*getContext(), EltVT
, ResNE
),
6177 &Scalars
[0], Scalars
.size());
6181 /// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6182 /// location that is 'Dist' units away from the location that the 'Base' load
6183 /// is loading from.
6184 bool SelectionDAG::isConsecutiveLoad(LoadSDNode
*LD
, LoadSDNode
*Base
,
6185 unsigned Bytes
, int Dist
) const {
6186 if (LD
->getChain() != Base
->getChain())
6188 EVT VT
= LD
->getValueType(0);
6189 if (VT
.getSizeInBits() / 8 != Bytes
)
6192 SDValue Loc
= LD
->getOperand(1);
6193 SDValue BaseLoc
= Base
->getOperand(1);
6194 if (Loc
.getOpcode() == ISD::FrameIndex
) {
6195 if (BaseLoc
.getOpcode() != ISD::FrameIndex
)
6197 const MachineFrameInfo
*MFI
= getMachineFunction().getFrameInfo();
6198 int FI
= cast
<FrameIndexSDNode
>(Loc
)->getIndex();
6199 int BFI
= cast
<FrameIndexSDNode
>(BaseLoc
)->getIndex();
6200 int FS
= MFI
->getObjectSize(FI
);
6201 int BFS
= MFI
->getObjectSize(BFI
);
6202 if (FS
!= BFS
|| FS
!= (int)Bytes
) return false;
6203 return MFI
->getObjectOffset(FI
) == (MFI
->getObjectOffset(BFI
) + Dist
*Bytes
);
6205 if (Loc
.getOpcode() == ISD::ADD
&& Loc
.getOperand(0) == BaseLoc
) {
6206 ConstantSDNode
*V
= dyn_cast
<ConstantSDNode
>(Loc
.getOperand(1));
6207 if (V
&& (V
->getSExtValue() == Dist
*Bytes
))
6211 const GlobalValue
*GV1
= NULL
;
6212 const GlobalValue
*GV2
= NULL
;
6213 int64_t Offset1
= 0;
6214 int64_t Offset2
= 0;
6215 bool isGA1
= TLI
.isGAPlusOffset(Loc
.getNode(), GV1
, Offset1
);
6216 bool isGA2
= TLI
.isGAPlusOffset(BaseLoc
.getNode(), GV2
, Offset2
);
6217 if (isGA1
&& isGA2
&& GV1
== GV2
)
6218 return Offset1
== (Offset2
+ Dist
*Bytes
);
6223 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6224 /// it cannot be inferred.
6225 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr
) const {
6226 // If this is a GlobalAddress + cst, return the alignment.
6227 const GlobalValue
*GV
;
6228 int64_t GVOffset
= 0;
6229 if (TLI
.isGAPlusOffset(Ptr
.getNode(), GV
, GVOffset
)) {
6230 // If GV has specified alignment, then use it. Otherwise, use the preferred
6232 unsigned Align
= GV
->getAlignment();
6234 if (const GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(GV
)) {
6235 if (GVar
->hasInitializer()) {
6236 const TargetData
*TD
= TLI
.getTargetData();
6237 Align
= TD
->getPreferredAlignment(GVar
);
6241 return MinAlign(Align
, GVOffset
);
6244 // If this is a direct reference to a stack slot, use information about the
6245 // stack slot's alignment.
6246 int FrameIdx
= 1 << 31;
6247 int64_t FrameOffset
= 0;
6248 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Ptr
)) {
6249 FrameIdx
= FI
->getIndex();
6250 } else if (Ptr
.getOpcode() == ISD::ADD
&&
6251 isa
<ConstantSDNode
>(Ptr
.getOperand(1)) &&
6252 isa
<FrameIndexSDNode
>(Ptr
.getOperand(0))) {
6253 FrameIdx
= cast
<FrameIndexSDNode
>(Ptr
.getOperand(0))->getIndex();
6254 FrameOffset
= Ptr
.getConstantOperandVal(1);
6257 if (FrameIdx
!= (1 << 31)) {
6258 // FIXME: Handle FI+CST.
6259 const MachineFrameInfo
&MFI
= *getMachineFunction().getFrameInfo();
6260 unsigned FIInfoAlign
= MinAlign(MFI
.getObjectAlignment(FrameIdx
),
6268 void SelectionDAG::dump() const {
6269 dbgs() << "SelectionDAG has " << AllNodes
.size() << " nodes:";
6271 for (allnodes_const_iterator I
= allnodes_begin(), E
= allnodes_end();
6273 const SDNode
*N
= I
;
6274 if (!N
->hasOneUse() && N
!= getRoot().getNode())
6275 DumpNodes(N
, 2, this);
6278 if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6283 void SDNode::printr(raw_ostream
&OS
, const SelectionDAG
*G
) const {
6285 print_details(OS
, G
);
6288 typedef SmallPtrSet
<const SDNode
*, 128> VisitedSDNodeSet
;
6289 static void DumpNodesr(raw_ostream
&OS
, const SDNode
*N
, unsigned indent
,
6290 const SelectionDAG
*G
, VisitedSDNodeSet
&once
) {
6291 if (!once
.insert(N
)) // If we've been here before, return now.
6294 // Dump the current SDNode, but don't end the line yet.
6295 OS
<< std::string(indent
, ' ');
6298 // Having printed this SDNode, walk the children:
6299 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
6300 const SDNode
*child
= N
->getOperand(i
).getNode();
6305 if (child
->getNumOperands() == 0) {
6306 // This child has no grandchildren; print it inline right here.
6307 child
->printr(OS
, G
);
6309 } else { // Just the address. FIXME: also print the child's opcode.
6311 if (unsigned RN
= N
->getOperand(i
).getResNo())
6318 // Dump children that have grandchildren on their own line(s).
6319 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
6320 const SDNode
*child
= N
->getOperand(i
).getNode();
6321 DumpNodesr(OS
, child
, indent
+2, G
, once
);
6325 void SDNode::dumpr() const {
6326 VisitedSDNodeSet once
;
6327 DumpNodesr(dbgs(), this, 0, 0, once
);
6330 void SDNode::dumpr(const SelectionDAG
*G
) const {
6331 VisitedSDNodeSet once
;
6332 DumpNodesr(dbgs(), this, 0, G
, once
);
6336 // getAddressSpace - Return the address space this GlobalAddress belongs to.
6337 unsigned GlobalAddressSDNode::getAddressSpace() const {
6338 return getGlobal()->getType()->getAddressSpace();
6342 const Type
*ConstantPoolSDNode::getType() const {
6343 if (isMachineConstantPoolEntry())
6344 return Val
.MachineCPVal
->getType();
6345 return Val
.ConstVal
->getType();
6348 bool BuildVectorSDNode::isConstantSplat(APInt
&SplatValue
,
6350 unsigned &SplatBitSize
,
6352 unsigned MinSplatBits
,
6354 EVT VT
= getValueType(0);
6355 assert(VT
.isVector() && "Expected a vector type");
6356 unsigned sz
= VT
.getSizeInBits();
6357 if (MinSplatBits
> sz
)
6360 SplatValue
= APInt(sz
, 0);
6361 SplatUndef
= APInt(sz
, 0);
6363 // Get the bits. Bits with undefined values (when the corresponding element
6364 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6365 // in SplatValue. If any of the values are not constant, give up and return
6367 unsigned int nOps
= getNumOperands();
6368 assert(nOps
> 0 && "isConstantSplat has 0-size build vector");
6369 unsigned EltBitSize
= VT
.getVectorElementType().getSizeInBits();
6371 for (unsigned j
= 0; j
< nOps
; ++j
) {
6372 unsigned i
= isBigEndian
? nOps
-1-j
: j
;
6373 SDValue OpVal
= getOperand(i
);
6374 unsigned BitPos
= j
* EltBitSize
;
6376 if (OpVal
.getOpcode() == ISD::UNDEF
)
6377 SplatUndef
|= APInt::getBitsSet(sz
, BitPos
, BitPos
+ EltBitSize
);
6378 else if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(OpVal
))
6379 SplatValue
|= APInt(CN
->getAPIntValue()).zextOrTrunc(EltBitSize
).
6380 zextOrTrunc(sz
) << BitPos
;
6381 else if (ConstantFPSDNode
*CN
= dyn_cast
<ConstantFPSDNode
>(OpVal
))
6382 SplatValue
|= CN
->getValueAPF().bitcastToAPInt().zextOrTrunc(sz
) <<BitPos
;
6387 // The build_vector is all constants or undefs. Find the smallest element
6388 // size that splats the vector.
6390 HasAnyUndefs
= (SplatUndef
!= 0);
6393 unsigned HalfSize
= sz
/ 2;
6394 APInt HighValue
= APInt(SplatValue
).lshr(HalfSize
).trunc(HalfSize
);
6395 APInt LowValue
= APInt(SplatValue
).trunc(HalfSize
);
6396 APInt HighUndef
= APInt(SplatUndef
).lshr(HalfSize
).trunc(HalfSize
);
6397 APInt LowUndef
= APInt(SplatUndef
).trunc(HalfSize
);
6399 // If the two halves do not match (ignoring undef bits), stop here.
6400 if ((HighValue
& ~LowUndef
) != (LowValue
& ~HighUndef
) ||
6401 MinSplatBits
> HalfSize
)
6404 SplatValue
= HighValue
| LowValue
;
6405 SplatUndef
= HighUndef
& LowUndef
;
6414 bool ShuffleVectorSDNode::isSplatMask(const int *Mask
, EVT VT
) {
6415 // Find the first non-undef value in the shuffle mask.
6417 for (i
= 0, e
= VT
.getVectorNumElements(); i
!= e
&& Mask
[i
] < 0; ++i
)
6420 assert(i
!= e
&& "VECTOR_SHUFFLE node with all undef indices!");
6422 // Make sure all remaining elements are either undef or the same as the first
6424 for (int Idx
= Mask
[i
]; i
!= e
; ++i
)
6425 if (Mask
[i
] >= 0 && Mask
[i
] != Idx
)
6431 static void checkForCyclesHelper(const SDNode
*N
,
6432 SmallPtrSet
<const SDNode
*, 32> &Visited
,
6433 SmallPtrSet
<const SDNode
*, 32> &Checked
) {
6434 // If this node has already been checked, don't check it again.
6435 if (Checked
.count(N
))
6438 // If a node has already been visited on this depth-first walk, reject it as
6440 if (!Visited
.insert(N
)) {
6441 dbgs() << "Offending node:\n";
6443 errs() << "Detected cycle in SelectionDAG\n";
6447 for(unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
6448 checkForCyclesHelper(N
->getOperand(i
).getNode(), Visited
, Checked
);
6455 void llvm::checkForCycles(const llvm::SDNode
*N
) {
6457 assert(N
&& "Checking nonexistant SDNode");
6458 SmallPtrSet
<const SDNode
*, 32> visited
;
6459 SmallPtrSet
<const SDNode
*, 32> checked
;
6460 checkForCyclesHelper(N
, visited
, checked
);
6464 void llvm::checkForCycles(const llvm::SelectionDAG
*DAG
) {
6465 checkForCycles(DAG
->getRoot().getNode());