1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "isel"
15 #include "SDNodeDbgValue.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Constants.h"
23 #include "llvm/CallingConv.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/InlineAsm.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/IntrinsicInst.h"
31 #include "llvm/LLVMContext.h"
32 #include "llvm/Module.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/FastISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCStrategy.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineJumpTableInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/CodeGen/PseudoSourceValue.h"
45 #include "llvm/CodeGen/SelectionDAG.h"
46 #include "llvm/Analysis/DebugInfo.h"
47 #include "llvm/Target/TargetRegisterInfo.h"
48 #include "llvm/Target/TargetData.h"
49 #include "llvm/Target/TargetFrameInfo.h"
50 #include "llvm/Target/TargetInstrInfo.h"
51 #include "llvm/Target/TargetIntrinsicInfo.h"
52 #include "llvm/Target/TargetLowering.h"
53 #include "llvm/Target/TargetOptions.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/MathExtras.h"
59 #include "llvm/Support/raw_ostream.h"
63 /// LimitFloatPrecision - Generate low-precision inline sequences for
64 /// some float libcalls (6, 8 or 12 bits).
65 static unsigned LimitFloatPrecision
;
67 static cl::opt
<unsigned, true>
68 LimitFPPrecision("limit-float-precision",
69 cl::desc("Generate low-precision inline sequences "
70 "for some float libcalls"),
71 cl::location(LimitFloatPrecision
),
74 static SDValue
getCopyFromPartsVector(SelectionDAG
&DAG
, DebugLoc DL
,
75 const SDValue
*Parts
, unsigned NumParts
,
76 EVT PartVT
, EVT ValueVT
);
78 /// getCopyFromParts - Create a value that contains the specified legal parts
79 /// combined into the value they represent. If the parts combine to a type
80 /// larger then ValueVT then AssertOp can be used to specify whether the extra
81 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
82 /// (ISD::AssertSext).
83 static SDValue
getCopyFromParts(SelectionDAG
&DAG
, DebugLoc DL
,
85 unsigned NumParts
, EVT PartVT
, EVT ValueVT
,
86 ISD::NodeType AssertOp
= ISD::DELETED_NODE
) {
87 if (ValueVT
.isVector())
88 return getCopyFromPartsVector(DAG
, DL
, Parts
, NumParts
, PartVT
, ValueVT
);
90 assert(NumParts
> 0 && "No parts to assemble!");
91 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
92 SDValue Val
= Parts
[0];
95 // Assemble the value from multiple parts.
96 if (ValueVT
.isInteger()) {
97 unsigned PartBits
= PartVT
.getSizeInBits();
98 unsigned ValueBits
= ValueVT
.getSizeInBits();
100 // Assemble the power of 2 part.
101 unsigned RoundParts
= NumParts
& (NumParts
- 1) ?
102 1 << Log2_32(NumParts
) : NumParts
;
103 unsigned RoundBits
= PartBits
* RoundParts
;
104 EVT RoundVT
= RoundBits
== ValueBits
?
105 ValueVT
: EVT::getIntegerVT(*DAG
.getContext(), RoundBits
);
108 EVT HalfVT
= EVT::getIntegerVT(*DAG
.getContext(), RoundBits
/2);
110 if (RoundParts
> 2) {
111 Lo
= getCopyFromParts(DAG
, DL
, Parts
, RoundParts
/ 2,
113 Hi
= getCopyFromParts(DAG
, DL
, Parts
+ RoundParts
/ 2,
114 RoundParts
/ 2, PartVT
, HalfVT
);
116 Lo
= DAG
.getNode(ISD::BIT_CONVERT
, DL
, HalfVT
, Parts
[0]);
117 Hi
= DAG
.getNode(ISD::BIT_CONVERT
, DL
, HalfVT
, Parts
[1]);
120 if (TLI
.isBigEndian())
123 Val
= DAG
.getNode(ISD::BUILD_PAIR
, DL
, RoundVT
, Lo
, Hi
);
125 if (RoundParts
< NumParts
) {
126 // Assemble the trailing non-power-of-2 part.
127 unsigned OddParts
= NumParts
- RoundParts
;
128 EVT OddVT
= EVT::getIntegerVT(*DAG
.getContext(), OddParts
* PartBits
);
129 Hi
= getCopyFromParts(DAG
, DL
,
130 Parts
+ RoundParts
, OddParts
, PartVT
, OddVT
);
132 // Combine the round and odd parts.
134 if (TLI
.isBigEndian())
136 EVT TotalVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
137 Hi
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, TotalVT
, Hi
);
138 Hi
= DAG
.getNode(ISD::SHL
, DL
, TotalVT
, Hi
,
139 DAG
.getConstant(Lo
.getValueType().getSizeInBits(),
140 TLI
.getPointerTy()));
141 Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, TotalVT
, Lo
);
142 Val
= DAG
.getNode(ISD::OR
, DL
, TotalVT
, Lo
, Hi
);
144 } else if (PartVT
.isFloatingPoint()) {
145 // FP split into multiple FP parts (for ppcf128)
146 assert(ValueVT
== EVT(MVT::ppcf128
) && PartVT
== EVT(MVT::f64
) &&
149 Lo
= DAG
.getNode(ISD::BIT_CONVERT
, DL
, EVT(MVT::f64
), Parts
[0]);
150 Hi
= DAG
.getNode(ISD::BIT_CONVERT
, DL
, EVT(MVT::f64
), Parts
[1]);
151 if (TLI
.isBigEndian())
153 Val
= DAG
.getNode(ISD::BUILD_PAIR
, DL
, ValueVT
, Lo
, Hi
);
155 // FP split into integer parts (soft fp)
156 assert(ValueVT
.isFloatingPoint() && PartVT
.isInteger() &&
157 !PartVT
.isVector() && "Unexpected split");
158 EVT IntVT
= EVT::getIntegerVT(*DAG
.getContext(), ValueVT
.getSizeInBits());
159 Val
= getCopyFromParts(DAG
, DL
, Parts
, NumParts
, PartVT
, IntVT
);
163 // There is now one part, held in Val. Correct it to match ValueVT.
164 PartVT
= Val
.getValueType();
166 if (PartVT
== ValueVT
)
169 if (PartVT
.isInteger() && ValueVT
.isInteger()) {
170 if (ValueVT
.bitsLT(PartVT
)) {
171 // For a truncate, see if we have any information to
172 // indicate whether the truncated bits will always be
173 // zero or sign-extension.
174 if (AssertOp
!= ISD::DELETED_NODE
)
175 Val
= DAG
.getNode(AssertOp
, DL
, PartVT
, Val
,
176 DAG
.getValueType(ValueVT
));
177 return DAG
.getNode(ISD::TRUNCATE
, DL
, ValueVT
, Val
);
179 return DAG
.getNode(ISD::ANY_EXTEND
, DL
, ValueVT
, Val
);
182 if (PartVT
.isFloatingPoint() && ValueVT
.isFloatingPoint()) {
183 // FP_ROUND's are always exact here.
184 if (ValueVT
.bitsLT(Val
.getValueType()))
185 return DAG
.getNode(ISD::FP_ROUND
, DL
, ValueVT
, Val
,
186 DAG
.getIntPtrConstant(1));
188 return DAG
.getNode(ISD::FP_EXTEND
, DL
, ValueVT
, Val
);
191 if (PartVT
.getSizeInBits() == ValueVT
.getSizeInBits())
192 return DAG
.getNode(ISD::BIT_CONVERT
, DL
, ValueVT
, Val
);
194 llvm_unreachable("Unknown mismatch!");
198 /// getCopyFromParts - Create a value that contains the specified legal parts
199 /// combined into the value they represent. If the parts combine to a type
200 /// larger then ValueVT then AssertOp can be used to specify whether the extra
201 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
202 /// (ISD::AssertSext).
203 static SDValue
getCopyFromPartsVector(SelectionDAG
&DAG
, DebugLoc DL
,
204 const SDValue
*Parts
, unsigned NumParts
,
205 EVT PartVT
, EVT ValueVT
) {
206 assert(ValueVT
.isVector() && "Not a vector value");
207 assert(NumParts
> 0 && "No parts to assemble!");
208 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
209 SDValue Val
= Parts
[0];
211 // Handle a multi-element vector.
213 EVT IntermediateVT
, RegisterVT
;
214 unsigned NumIntermediates
;
216 TLI
.getVectorTypeBreakdown(*DAG
.getContext(), ValueVT
, IntermediateVT
,
217 NumIntermediates
, RegisterVT
);
218 assert(NumRegs
== NumParts
&& "Part count doesn't match vector breakdown!");
219 NumParts
= NumRegs
; // Silence a compiler warning.
220 assert(RegisterVT
== PartVT
&& "Part type doesn't match vector breakdown!");
221 assert(RegisterVT
== Parts
[0].getValueType() &&
222 "Part type doesn't match part!");
224 // Assemble the parts into intermediate operands.
225 SmallVector
<SDValue
, 8> Ops(NumIntermediates
);
226 if (NumIntermediates
== NumParts
) {
227 // If the register was not expanded, truncate or copy the value,
229 for (unsigned i
= 0; i
!= NumParts
; ++i
)
230 Ops
[i
] = getCopyFromParts(DAG
, DL
, &Parts
[i
], 1,
231 PartVT
, IntermediateVT
);
232 } else if (NumParts
> 0) {
233 // If the intermediate type was expanded, build the intermediate
234 // operands from the parts.
235 assert(NumParts
% NumIntermediates
== 0 &&
236 "Must expand into a divisible number of parts!");
237 unsigned Factor
= NumParts
/ NumIntermediates
;
238 for (unsigned i
= 0; i
!= NumIntermediates
; ++i
)
239 Ops
[i
] = getCopyFromParts(DAG
, DL
, &Parts
[i
* Factor
], Factor
,
240 PartVT
, IntermediateVT
);
243 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
244 // intermediate operands.
245 Val
= DAG
.getNode(IntermediateVT
.isVector() ?
246 ISD::CONCAT_VECTORS
: ISD::BUILD_VECTOR
, DL
,
247 ValueVT
, &Ops
[0], NumIntermediates
);
250 // There is now one part, held in Val. Correct it to match ValueVT.
251 PartVT
= Val
.getValueType();
253 if (PartVT
== ValueVT
)
256 if (PartVT
.isVector()) {
257 // If the element type of the source/dest vectors are the same, but the
258 // parts vector has more elements than the value vector, then we have a
259 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the
261 if (PartVT
.getVectorElementType() == ValueVT
.getVectorElementType()) {
262 assert(PartVT
.getVectorNumElements() > ValueVT
.getVectorNumElements() &&
263 "Cannot narrow, it would be a lossy transformation");
264 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, ValueVT
, Val
,
265 DAG
.getIntPtrConstant(0));
268 // Vector/Vector bitcast.
269 return DAG
.getNode(ISD::BIT_CONVERT
, DL
, ValueVT
, Val
);
272 assert(ValueVT
.getVectorElementType() == PartVT
&&
273 ValueVT
.getVectorNumElements() == 1 &&
274 "Only trivial scalar-to-vector conversions should get here!");
275 return DAG
.getNode(ISD::BUILD_VECTOR
, DL
, ValueVT
, Val
);
281 static void getCopyToPartsVector(SelectionDAG
&DAG
, DebugLoc dl
,
282 SDValue Val
, SDValue
*Parts
, unsigned NumParts
,
285 /// getCopyToParts - Create a series of nodes that contain the specified value
286 /// split into legal parts. If the parts contain more bits than Val, then, for
287 /// integers, ExtendKind can be used to specify how to generate the extra bits.
288 static void getCopyToParts(SelectionDAG
&DAG
, DebugLoc DL
,
289 SDValue Val
, SDValue
*Parts
, unsigned NumParts
,
291 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
) {
292 EVT ValueVT
= Val
.getValueType();
294 // Handle the vector case separately.
295 if (ValueVT
.isVector())
296 return getCopyToPartsVector(DAG
, DL
, Val
, Parts
, NumParts
, PartVT
);
298 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
299 unsigned PartBits
= PartVT
.getSizeInBits();
300 unsigned OrigNumParts
= NumParts
;
301 assert(TLI
.isTypeLegal(PartVT
) && "Copying to an illegal type!");
306 assert(!ValueVT
.isVector() && "Vector case handled elsewhere");
307 if (PartVT
== ValueVT
) {
308 assert(NumParts
== 1 && "No-op copy with multiple parts!");
313 if (NumParts
* PartBits
> ValueVT
.getSizeInBits()) {
314 // If the parts cover more bits than the value has, promote the value.
315 if (PartVT
.isFloatingPoint() && ValueVT
.isFloatingPoint()) {
316 assert(NumParts
== 1 && "Do not know what to promote to!");
317 Val
= DAG
.getNode(ISD::FP_EXTEND
, DL
, PartVT
, Val
);
319 assert(PartVT
.isInteger() && ValueVT
.isInteger() &&
320 "Unknown mismatch!");
321 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
322 Val
= DAG
.getNode(ExtendKind
, DL
, ValueVT
, Val
);
324 } else if (PartBits
== ValueVT
.getSizeInBits()) {
325 // Different types of the same size.
326 assert(NumParts
== 1 && PartVT
!= ValueVT
);
327 Val
= DAG
.getNode(ISD::BIT_CONVERT
, DL
, PartVT
, Val
);
328 } else if (NumParts
* PartBits
< ValueVT
.getSizeInBits()) {
329 // If the parts cover less bits than value has, truncate the value.
330 assert(PartVT
.isInteger() && ValueVT
.isInteger() &&
331 "Unknown mismatch!");
332 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
333 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValueVT
, Val
);
336 // The value may have changed - recompute ValueVT.
337 ValueVT
= Val
.getValueType();
338 assert(NumParts
* PartBits
== ValueVT
.getSizeInBits() &&
339 "Failed to tile the value with PartVT!");
342 assert(PartVT
== ValueVT
&& "Type conversion failed!");
347 // Expand the value into multiple parts.
348 if (NumParts
& (NumParts
- 1)) {
349 // The number of parts is not a power of 2. Split off and copy the tail.
350 assert(PartVT
.isInteger() && ValueVT
.isInteger() &&
351 "Do not know what to expand to!");
352 unsigned RoundParts
= 1 << Log2_32(NumParts
);
353 unsigned RoundBits
= RoundParts
* PartBits
;
354 unsigned OddParts
= NumParts
- RoundParts
;
355 SDValue OddVal
= DAG
.getNode(ISD::SRL
, DL
, ValueVT
, Val
,
356 DAG
.getIntPtrConstant(RoundBits
));
357 getCopyToParts(DAG
, DL
, OddVal
, Parts
+ RoundParts
, OddParts
, PartVT
);
359 if (TLI
.isBigEndian())
360 // The odd parts were reversed by getCopyToParts - unreverse them.
361 std::reverse(Parts
+ RoundParts
, Parts
+ NumParts
);
363 NumParts
= RoundParts
;
364 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
365 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValueVT
, Val
);
368 // The number of parts is a power of 2. Repeatedly bisect the value using
370 Parts
[0] = DAG
.getNode(ISD::BIT_CONVERT
, DL
,
371 EVT::getIntegerVT(*DAG
.getContext(),
372 ValueVT
.getSizeInBits()),
375 for (unsigned StepSize
= NumParts
; StepSize
> 1; StepSize
/= 2) {
376 for (unsigned i
= 0; i
< NumParts
; i
+= StepSize
) {
377 unsigned ThisBits
= StepSize
* PartBits
/ 2;
378 EVT ThisVT
= EVT::getIntegerVT(*DAG
.getContext(), ThisBits
);
379 SDValue
&Part0
= Parts
[i
];
380 SDValue
&Part1
= Parts
[i
+StepSize
/2];
382 Part1
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
,
383 ThisVT
, Part0
, DAG
.getIntPtrConstant(1));
384 Part0
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
,
385 ThisVT
, Part0
, DAG
.getIntPtrConstant(0));
387 if (ThisBits
== PartBits
&& ThisVT
!= PartVT
) {
388 Part0
= DAG
.getNode(ISD::BIT_CONVERT
, DL
, PartVT
, Part0
);
389 Part1
= DAG
.getNode(ISD::BIT_CONVERT
, DL
, PartVT
, Part1
);
394 if (TLI
.isBigEndian())
395 std::reverse(Parts
, Parts
+ OrigNumParts
);
399 /// getCopyToPartsVector - Create a series of nodes that contain the specified
400 /// value split into legal parts.
401 static void getCopyToPartsVector(SelectionDAG
&DAG
, DebugLoc DL
,
402 SDValue Val
, SDValue
*Parts
, unsigned NumParts
,
404 EVT ValueVT
= Val
.getValueType();
405 assert(ValueVT
.isVector() && "Not a vector");
406 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
409 if (PartVT
== ValueVT
) {
411 } else if (PartVT
.getSizeInBits() == ValueVT
.getSizeInBits()) {
412 // Bitconvert vector->vector case.
413 Val
= DAG
.getNode(ISD::BIT_CONVERT
, DL
, PartVT
, Val
);
414 } else if (PartVT
.isVector() &&
415 PartVT
.getVectorElementType() == ValueVT
.getVectorElementType()&&
416 PartVT
.getVectorNumElements() > ValueVT
.getVectorNumElements()) {
417 EVT ElementVT
= PartVT
.getVectorElementType();
418 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
420 SmallVector
<SDValue
, 16> Ops
;
421 for (unsigned i
= 0, e
= ValueVT
.getVectorNumElements(); i
!= e
; ++i
)
422 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
,
423 ElementVT
, Val
, DAG
.getIntPtrConstant(i
)));
425 for (unsigned i
= ValueVT
.getVectorNumElements(),
426 e
= PartVT
.getVectorNumElements(); i
!= e
; ++i
)
427 Ops
.push_back(DAG
.getUNDEF(ElementVT
));
429 Val
= DAG
.getNode(ISD::BUILD_VECTOR
, DL
, PartVT
, &Ops
[0], Ops
.size());
431 // FIXME: Use CONCAT for 2x -> 4x.
433 //SDValue UndefElts = DAG.getUNDEF(VectorTy);
434 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
436 // Vector -> scalar conversion.
437 assert(ValueVT
.getVectorElementType() == PartVT
&&
438 ValueVT
.getVectorNumElements() == 1 &&
439 "Only trivial vector-to-scalar conversions should get here!");
440 Val
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
,
441 PartVT
, Val
, DAG
.getIntPtrConstant(0));
448 // Handle a multi-element vector.
449 EVT IntermediateVT
, RegisterVT
;
450 unsigned NumIntermediates
;
451 unsigned NumRegs
= TLI
.getVectorTypeBreakdown(*DAG
.getContext(), ValueVT
,
453 NumIntermediates
, RegisterVT
);
454 unsigned NumElements
= ValueVT
.getVectorNumElements();
456 assert(NumRegs
== NumParts
&& "Part count doesn't match vector breakdown!");
457 NumParts
= NumRegs
; // Silence a compiler warning.
458 assert(RegisterVT
== PartVT
&& "Part type doesn't match vector breakdown!");
460 // Split the vector into intermediate operands.
461 SmallVector
<SDValue
, 8> Ops(NumIntermediates
);
462 for (unsigned i
= 0; i
!= NumIntermediates
; ++i
) {
463 if (IntermediateVT
.isVector())
464 Ops
[i
] = DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
,
466 DAG
.getIntPtrConstant(i
* (NumElements
/ NumIntermediates
)));
468 Ops
[i
] = DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
,
469 IntermediateVT
, Val
, DAG
.getIntPtrConstant(i
));
472 // Split the intermediate operands into legal parts.
473 if (NumParts
== NumIntermediates
) {
474 // If the register was not expanded, promote or copy the value,
476 for (unsigned i
= 0; i
!= NumParts
; ++i
)
477 getCopyToParts(DAG
, DL
, Ops
[i
], &Parts
[i
], 1, PartVT
);
478 } else if (NumParts
> 0) {
479 // If the intermediate type was expanded, split each the value into
481 assert(NumParts
% NumIntermediates
== 0 &&
482 "Must expand into a divisible number of parts!");
483 unsigned Factor
= NumParts
/ NumIntermediates
;
484 for (unsigned i
= 0; i
!= NumIntermediates
; ++i
)
485 getCopyToParts(DAG
, DL
, Ops
[i
], &Parts
[i
*Factor
], Factor
, PartVT
);
493 /// RegsForValue - This struct represents the registers (physical or virtual)
494 /// that a particular set of values is assigned, and the type information
495 /// about the value. The most common situation is to represent one value at a
496 /// time, but struct or array values are handled element-wise as multiple
497 /// values. The splitting of aggregates is performed recursively, so that we
498 /// never have aggregate-typed registers. The values at this point do not
499 /// necessarily have legal types, so each value may require one or more
500 /// registers of some legal type.
502 struct RegsForValue
{
503 /// ValueVTs - The value types of the values, which may not be legal, and
504 /// may need be promoted or synthesized from one or more registers.
506 SmallVector
<EVT
, 4> ValueVTs
;
508 /// RegVTs - The value types of the registers. This is the same size as
509 /// ValueVTs and it records, for each value, what the type of the assigned
510 /// register or registers are. (Individual values are never synthesized
511 /// from more than one type of register.)
513 /// With virtual registers, the contents of RegVTs is redundant with TLI's
514 /// getRegisterType member function, however when with physical registers
515 /// it is necessary to have a separate record of the types.
517 SmallVector
<EVT
, 4> RegVTs
;
519 /// Regs - This list holds the registers assigned to the values.
520 /// Each legal or promoted value requires one register, and each
521 /// expanded value requires multiple registers.
523 SmallVector
<unsigned, 4> Regs
;
527 RegsForValue(const SmallVector
<unsigned, 4> ®s
,
528 EVT regvt
, EVT valuevt
)
529 : ValueVTs(1, valuevt
), RegVTs(1, regvt
), Regs(regs
) {}
531 RegsForValue(LLVMContext
&Context
, const TargetLowering
&tli
,
532 unsigned Reg
, const Type
*Ty
) {
533 ComputeValueVTs(tli
, Ty
, ValueVTs
);
535 for (unsigned Value
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
536 EVT ValueVT
= ValueVTs
[Value
];
537 unsigned NumRegs
= tli
.getNumRegisters(Context
, ValueVT
);
538 EVT RegisterVT
= tli
.getRegisterType(Context
, ValueVT
);
539 for (unsigned i
= 0; i
!= NumRegs
; ++i
)
540 Regs
.push_back(Reg
+ i
);
541 RegVTs
.push_back(RegisterVT
);
546 /// areValueTypesLegal - Return true if types of all the values are legal.
547 bool areValueTypesLegal(const TargetLowering
&TLI
) {
548 for (unsigned Value
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
549 EVT RegisterVT
= RegVTs
[Value
];
550 if (!TLI
.isTypeLegal(RegisterVT
))
556 /// append - Add the specified values to this one.
557 void append(const RegsForValue
&RHS
) {
558 ValueVTs
.append(RHS
.ValueVTs
.begin(), RHS
.ValueVTs
.end());
559 RegVTs
.append(RHS
.RegVTs
.begin(), RHS
.RegVTs
.end());
560 Regs
.append(RHS
.Regs
.begin(), RHS
.Regs
.end());
563 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
564 /// this value and returns the result as a ValueVTs value. This uses
565 /// Chain/Flag as the input and updates them for the output Chain/Flag.
566 /// If the Flag pointer is NULL, no flag is used.
567 SDValue
getCopyFromRegs(SelectionDAG
&DAG
, FunctionLoweringInfo
&FuncInfo
,
569 SDValue
&Chain
, SDValue
*Flag
) const;
571 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
572 /// specified value into the registers specified by this object. This uses
573 /// Chain/Flag as the input and updates them for the output Chain/Flag.
574 /// If the Flag pointer is NULL, no flag is used.
575 void getCopyToRegs(SDValue Val
, SelectionDAG
&DAG
, DebugLoc dl
,
576 SDValue
&Chain
, SDValue
*Flag
) const;
578 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
579 /// operand list. This adds the code marker, matching input operand index
580 /// (if applicable), and includes the number of values added into it.
581 void AddInlineAsmOperands(unsigned Kind
,
582 bool HasMatching
, unsigned MatchingIdx
,
584 std::vector
<SDValue
> &Ops
) const;
588 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
589 /// this value and returns the result as a ValueVT value. This uses
590 /// Chain/Flag as the input and updates them for the output Chain/Flag.
591 /// If the Flag pointer is NULL, no flag is used.
592 SDValue
RegsForValue::getCopyFromRegs(SelectionDAG
&DAG
,
593 FunctionLoweringInfo
&FuncInfo
,
595 SDValue
&Chain
, SDValue
*Flag
) const {
596 // A Value with type {} or [0 x %t] needs no registers.
597 if (ValueVTs
.empty())
600 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
602 // Assemble the legal parts into the final values.
603 SmallVector
<SDValue
, 4> Values(ValueVTs
.size());
604 SmallVector
<SDValue
, 8> Parts
;
605 for (unsigned Value
= 0, Part
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
606 // Copy the legal parts from the registers.
607 EVT ValueVT
= ValueVTs
[Value
];
608 unsigned NumRegs
= TLI
.getNumRegisters(*DAG
.getContext(), ValueVT
);
609 EVT RegisterVT
= RegVTs
[Value
];
611 Parts
.resize(NumRegs
);
612 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
615 P
= DAG
.getCopyFromReg(Chain
, dl
, Regs
[Part
+i
], RegisterVT
);
617 P
= DAG
.getCopyFromReg(Chain
, dl
, Regs
[Part
+i
], RegisterVT
, *Flag
);
618 *Flag
= P
.getValue(2);
621 Chain
= P
.getValue(1);
623 // If the source register was virtual and if we know something about it,
624 // add an assert node.
625 if (TargetRegisterInfo::isVirtualRegister(Regs
[Part
+i
]) &&
626 RegisterVT
.isInteger() && !RegisterVT
.isVector()) {
627 unsigned SlotNo
= Regs
[Part
+i
]-TargetRegisterInfo::FirstVirtualRegister
;
628 if (FuncInfo
.LiveOutRegInfo
.size() > SlotNo
) {
629 const FunctionLoweringInfo::LiveOutInfo
&LOI
=
630 FuncInfo
.LiveOutRegInfo
[SlotNo
];
632 unsigned RegSize
= RegisterVT
.getSizeInBits();
633 unsigned NumSignBits
= LOI
.NumSignBits
;
634 unsigned NumZeroBits
= LOI
.KnownZero
.countLeadingOnes();
636 // FIXME: We capture more information than the dag can represent. For
637 // now, just use the tightest assertzext/assertsext possible.
639 EVT
FromVT(MVT::Other
);
640 if (NumSignBits
== RegSize
)
641 isSExt
= true, FromVT
= MVT::i1
; // ASSERT SEXT 1
642 else if (NumZeroBits
>= RegSize
-1)
643 isSExt
= false, FromVT
= MVT::i1
; // ASSERT ZEXT 1
644 else if (NumSignBits
> RegSize
-8)
645 isSExt
= true, FromVT
= MVT::i8
; // ASSERT SEXT 8
646 else if (NumZeroBits
>= RegSize
-8)
647 isSExt
= false, FromVT
= MVT::i8
; // ASSERT ZEXT 8
648 else if (NumSignBits
> RegSize
-16)
649 isSExt
= true, FromVT
= MVT::i16
; // ASSERT SEXT 16
650 else if (NumZeroBits
>= RegSize
-16)
651 isSExt
= false, FromVT
= MVT::i16
; // ASSERT ZEXT 16
652 else if (NumSignBits
> RegSize
-32)
653 isSExt
= true, FromVT
= MVT::i32
; // ASSERT SEXT 32
654 else if (NumZeroBits
>= RegSize
-32)
655 isSExt
= false, FromVT
= MVT::i32
; // ASSERT ZEXT 32
657 if (FromVT
!= MVT::Other
)
658 P
= DAG
.getNode(isSExt
? ISD::AssertSext
: ISD::AssertZext
, dl
,
659 RegisterVT
, P
, DAG
.getValueType(FromVT
));
666 Values
[Value
] = getCopyFromParts(DAG
, dl
, Parts
.begin(),
667 NumRegs
, RegisterVT
, ValueVT
);
672 return DAG
.getNode(ISD::MERGE_VALUES
, dl
,
673 DAG
.getVTList(&ValueVTs
[0], ValueVTs
.size()),
674 &Values
[0], ValueVTs
.size());
677 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
678 /// specified value into the registers specified by this object. This uses
679 /// Chain/Flag as the input and updates them for the output Chain/Flag.
680 /// If the Flag pointer is NULL, no flag is used.
681 void RegsForValue::getCopyToRegs(SDValue Val
, SelectionDAG
&DAG
, DebugLoc dl
,
682 SDValue
&Chain
, SDValue
*Flag
) const {
683 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
685 // Get the list of the values's legal parts.
686 unsigned NumRegs
= Regs
.size();
687 SmallVector
<SDValue
, 8> Parts(NumRegs
);
688 for (unsigned Value
= 0, Part
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
689 EVT ValueVT
= ValueVTs
[Value
];
690 unsigned NumParts
= TLI
.getNumRegisters(*DAG
.getContext(), ValueVT
);
691 EVT RegisterVT
= RegVTs
[Value
];
693 getCopyToParts(DAG
, dl
, Val
.getValue(Val
.getResNo() + Value
),
694 &Parts
[Part
], NumParts
, RegisterVT
);
698 // Copy the parts into the registers.
699 SmallVector
<SDValue
, 8> Chains(NumRegs
);
700 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
703 Part
= DAG
.getCopyToReg(Chain
, dl
, Regs
[i
], Parts
[i
]);
705 Part
= DAG
.getCopyToReg(Chain
, dl
, Regs
[i
], Parts
[i
], *Flag
);
706 *Flag
= Part
.getValue(1);
709 Chains
[i
] = Part
.getValue(0);
712 if (NumRegs
== 1 || Flag
)
713 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
714 // flagged to it. That is the CopyToReg nodes and the user are considered
715 // a single scheduling unit. If we create a TokenFactor and return it as
716 // chain, then the TokenFactor is both a predecessor (operand) of the
717 // user as well as a successor (the TF operands are flagged to the user).
718 // c1, f1 = CopyToReg
719 // c2, f2 = CopyToReg
720 // c3 = TokenFactor c1, c2
723 Chain
= Chains
[NumRegs
-1];
725 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, &Chains
[0], NumRegs
);
728 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
729 /// operand list. This adds the code marker and includes the number of
730 /// values added into it.
731 void RegsForValue::AddInlineAsmOperands(unsigned Code
, bool HasMatching
,
732 unsigned MatchingIdx
,
734 std::vector
<SDValue
> &Ops
) const {
735 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
737 unsigned Flag
= InlineAsm::getFlagWord(Code
, Regs
.size());
739 Flag
= InlineAsm::getFlagWordForMatchingOp(Flag
, MatchingIdx
);
740 SDValue Res
= DAG
.getTargetConstant(Flag
, MVT::i32
);
743 for (unsigned Value
= 0, Reg
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
744 unsigned NumRegs
= TLI
.getNumRegisters(*DAG
.getContext(), ValueVTs
[Value
]);
745 EVT RegisterVT
= RegVTs
[Value
];
746 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
747 assert(Reg
< Regs
.size() && "Mismatch in # registers expected");
748 Ops
.push_back(DAG
.getRegister(Regs
[Reg
++], RegisterVT
));
753 void SelectionDAGBuilder::init(GCFunctionInfo
*gfi
, AliasAnalysis
&aa
) {
756 TD
= DAG
.getTarget().getTargetData();
759 /// clear - Clear out the current SelectionDAG and the associated
760 /// state and prepare this SelectionDAGBuilder object to be used
761 /// for a new block. This doesn't clear out information about
762 /// additional blocks that are needed to complete switch lowering
763 /// or PHI node updating; that information is cleared out as it is
765 void SelectionDAGBuilder::clear() {
767 UnusedArgNodeMap
.clear();
768 PendingLoads
.clear();
769 PendingExports
.clear();
770 DanglingDebugInfoMap
.clear();
771 CurDebugLoc
= DebugLoc();
775 /// getRoot - Return the current virtual root of the Selection DAG,
776 /// flushing any PendingLoad items. This must be done before emitting
777 /// a store or any other node that may need to be ordered after any
778 /// prior load instructions.
780 SDValue
SelectionDAGBuilder::getRoot() {
781 if (PendingLoads
.empty())
782 return DAG
.getRoot();
784 if (PendingLoads
.size() == 1) {
785 SDValue Root
= PendingLoads
[0];
787 PendingLoads
.clear();
791 // Otherwise, we have to make a token factor node.
792 SDValue Root
= DAG
.getNode(ISD::TokenFactor
, getCurDebugLoc(), MVT::Other
,
793 &PendingLoads
[0], PendingLoads
.size());
794 PendingLoads
.clear();
799 /// getControlRoot - Similar to getRoot, but instead of flushing all the
800 /// PendingLoad items, flush all the PendingExports items. It is necessary
801 /// to do this before emitting a terminator instruction.
803 SDValue
SelectionDAGBuilder::getControlRoot() {
804 SDValue Root
= DAG
.getRoot();
806 if (PendingExports
.empty())
809 // Turn all of the CopyToReg chains into one factored node.
810 if (Root
.getOpcode() != ISD::EntryToken
) {
811 unsigned i
= 0, e
= PendingExports
.size();
812 for (; i
!= e
; ++i
) {
813 assert(PendingExports
[i
].getNode()->getNumOperands() > 1);
814 if (PendingExports
[i
].getNode()->getOperand(0) == Root
)
815 break; // Don't add the root if we already indirectly depend on it.
819 PendingExports
.push_back(Root
);
822 Root
= DAG
.getNode(ISD::TokenFactor
, getCurDebugLoc(), MVT::Other
,
824 PendingExports
.size());
825 PendingExports
.clear();
830 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode
*Node
) {
831 if (DAG
.GetOrdering(Node
) != 0) return; // Already has ordering.
832 DAG
.AssignOrdering(Node
, SDNodeOrder
);
834 for (unsigned I
= 0, E
= Node
->getNumOperands(); I
!= E
; ++I
)
835 AssignOrderingToNode(Node
->getOperand(I
).getNode());
838 void SelectionDAGBuilder::visit(const Instruction
&I
) {
839 // Set up outgoing PHI node register values before emitting the terminator.
840 if (isa
<TerminatorInst
>(&I
))
841 HandlePHINodesInSuccessorBlocks(I
.getParent());
843 CurDebugLoc
= I
.getDebugLoc();
845 visit(I
.getOpcode(), I
);
847 if (!isa
<TerminatorInst
>(&I
) && !HasTailCall
)
848 CopyToExportRegsIfNeeded(&I
);
850 CurDebugLoc
= DebugLoc();
853 void SelectionDAGBuilder::visitPHI(const PHINode
&) {
854 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
857 void SelectionDAGBuilder::visit(unsigned Opcode
, const User
&I
) {
858 // Note: this doesn't use InstVisitor, because it has to work with
859 // ConstantExpr's in addition to instructions.
861 default: llvm_unreachable("Unknown instruction type encountered!");
862 // Build the switch statement using the Instruction.def file.
863 #define HANDLE_INST(NUM, OPCODE, CLASS) \
864 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
865 #include "llvm/Instruction.def"
868 // Assign the ordering to the freshly created DAG nodes.
869 if (NodeMap
.count(&I
)) {
871 AssignOrderingToNode(getValue(&I
).getNode());
875 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
876 // generate the debug data structures now that we've seen its definition.
877 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value
*V
,
879 DanglingDebugInfo
&DDI
= DanglingDebugInfoMap
[V
];
881 const DbgValueInst
*DI
= DDI
.getDI();
882 DebugLoc dl
= DDI
.getdl();
883 unsigned DbgSDNodeOrder
= DDI
.getSDNodeOrder();
884 MDNode
*Variable
= DI
->getVariable();
885 uint64_t Offset
= DI
->getOffset();
888 if (!EmitFuncArgumentDbgValue(V
, Variable
, Offset
, Val
)) {
889 SDV
= DAG
.getDbgValue(Variable
, Val
.getNode(),
890 Val
.getResNo(), Offset
, dl
, DbgSDNodeOrder
);
891 DAG
.AddDbgValue(SDV
, Val
.getNode(), false);
894 SDV
= DAG
.getDbgValue(Variable
, UndefValue::get(V
->getType()),
895 Offset
, dl
, SDNodeOrder
);
896 DAG
.AddDbgValue(SDV
, 0, false);
898 DanglingDebugInfoMap
[V
] = DanglingDebugInfo();
902 // getValue - Return an SDValue for the given Value.
903 SDValue
SelectionDAGBuilder::getValue(const Value
*V
) {
904 // If we already have an SDValue for this value, use it. It's important
905 // to do this first, so that we don't create a CopyFromReg if we already
906 // have a regular SDValue.
907 SDValue
&N
= NodeMap
[V
];
908 if (N
.getNode()) return N
;
910 // If there's a virtual register allocated and initialized for this
912 DenseMap
<const Value
*, unsigned>::iterator It
= FuncInfo
.ValueMap
.find(V
);
913 if (It
!= FuncInfo
.ValueMap
.end()) {
914 unsigned InReg
= It
->second
;
915 RegsForValue
RFV(*DAG
.getContext(), TLI
, InReg
, V
->getType());
916 SDValue Chain
= DAG
.getEntryNode();
917 return N
= RFV
.getCopyFromRegs(DAG
, FuncInfo
, getCurDebugLoc(), Chain
,NULL
);
920 // Otherwise create a new SDValue and remember it.
921 SDValue Val
= getValueImpl(V
);
923 resolveDanglingDebugInfo(V
, Val
);
927 /// getNonRegisterValue - Return an SDValue for the given Value, but
928 /// don't look in FuncInfo.ValueMap for a virtual register.
929 SDValue
SelectionDAGBuilder::getNonRegisterValue(const Value
*V
) {
930 // If we already have an SDValue for this value, use it.
931 SDValue
&N
= NodeMap
[V
];
932 if (N
.getNode()) return N
;
934 // Otherwise create a new SDValue and remember it.
935 SDValue Val
= getValueImpl(V
);
937 resolveDanglingDebugInfo(V
, Val
);
941 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
942 /// Create an SDValue for the given value.
943 SDValue
SelectionDAGBuilder::getValueImpl(const Value
*V
) {
944 if (const Constant
*C
= dyn_cast
<Constant
>(V
)) {
945 EVT VT
= TLI
.getValueType(V
->getType(), true);
947 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C
))
948 return DAG
.getConstant(*CI
, VT
);
950 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C
))
951 return DAG
.getGlobalAddress(GV
, getCurDebugLoc(), VT
);
953 if (isa
<ConstantPointerNull
>(C
))
954 return DAG
.getConstant(0, TLI
.getPointerTy());
956 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
))
957 return DAG
.getConstantFP(*CFP
, VT
);
959 if (isa
<UndefValue
>(C
) && !V
->getType()->isAggregateType())
960 return DAG
.getUNDEF(VT
);
962 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
963 visit(CE
->getOpcode(), *CE
);
964 SDValue N1
= NodeMap
[V
];
965 assert(N1
.getNode() && "visit didn't populate the NodeMap!");
969 if (isa
<ConstantStruct
>(C
) || isa
<ConstantArray
>(C
)) {
970 SmallVector
<SDValue
, 4> Constants
;
971 for (User::const_op_iterator OI
= C
->op_begin(), OE
= C
->op_end();
973 SDNode
*Val
= getValue(*OI
).getNode();
974 // If the operand is an empty aggregate, there are no values.
976 // Add each leaf value from the operand to the Constants list
977 // to form a flattened list of all the values.
978 for (unsigned i
= 0, e
= Val
->getNumValues(); i
!= e
; ++i
)
979 Constants
.push_back(SDValue(Val
, i
));
982 return DAG
.getMergeValues(&Constants
[0], Constants
.size(),
986 if (C
->getType()->isStructTy() || C
->getType()->isArrayTy()) {
987 assert((isa
<ConstantAggregateZero
>(C
) || isa
<UndefValue
>(C
)) &&
988 "Unknown struct or array constant!");
990 SmallVector
<EVT
, 4> ValueVTs
;
991 ComputeValueVTs(TLI
, C
->getType(), ValueVTs
);
992 unsigned NumElts
= ValueVTs
.size();
994 return SDValue(); // empty struct
995 SmallVector
<SDValue
, 4> Constants(NumElts
);
996 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
997 EVT EltVT
= ValueVTs
[i
];
998 if (isa
<UndefValue
>(C
))
999 Constants
[i
] = DAG
.getUNDEF(EltVT
);
1000 else if (EltVT
.isFloatingPoint())
1001 Constants
[i
] = DAG
.getConstantFP(0, EltVT
);
1003 Constants
[i
] = DAG
.getConstant(0, EltVT
);
1006 return DAG
.getMergeValues(&Constants
[0], NumElts
,
1010 if (const BlockAddress
*BA
= dyn_cast
<BlockAddress
>(C
))
1011 return DAG
.getBlockAddress(BA
, VT
);
1013 const VectorType
*VecTy
= cast
<VectorType
>(V
->getType());
1014 unsigned NumElements
= VecTy
->getNumElements();
1016 // Now that we know the number and type of the elements, get that number of
1017 // elements into the Ops array based on what kind of constant it is.
1018 SmallVector
<SDValue
, 16> Ops
;
1019 if (const ConstantVector
*CP
= dyn_cast
<ConstantVector
>(C
)) {
1020 for (unsigned i
= 0; i
!= NumElements
; ++i
)
1021 Ops
.push_back(getValue(CP
->getOperand(i
)));
1023 assert(isa
<ConstantAggregateZero
>(C
) && "Unknown vector constant!");
1024 EVT EltVT
= TLI
.getValueType(VecTy
->getElementType());
1027 if (EltVT
.isFloatingPoint())
1028 Op
= DAG
.getConstantFP(0, EltVT
);
1030 Op
= DAG
.getConstant(0, EltVT
);
1031 Ops
.assign(NumElements
, Op
);
1034 // Create a BUILD_VECTOR node.
1035 return NodeMap
[V
] = DAG
.getNode(ISD::BUILD_VECTOR
, getCurDebugLoc(),
1036 VT
, &Ops
[0], Ops
.size());
1039 // If this is a static alloca, generate it as the frameindex instead of
1041 if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
)) {
1042 DenseMap
<const AllocaInst
*, int>::iterator SI
=
1043 FuncInfo
.StaticAllocaMap
.find(AI
);
1044 if (SI
!= FuncInfo
.StaticAllocaMap
.end())
1045 return DAG
.getFrameIndex(SI
->second
, TLI
.getPointerTy());
1048 // If this is an instruction which fast-isel has deferred, select it now.
1049 if (const Instruction
*Inst
= dyn_cast
<Instruction
>(V
)) {
1050 unsigned InReg
= FuncInfo
.InitializeRegForValue(Inst
);
1051 RegsForValue
RFV(*DAG
.getContext(), TLI
, InReg
, Inst
->getType());
1052 SDValue Chain
= DAG
.getEntryNode();
1053 return RFV
.getCopyFromRegs(DAG
, FuncInfo
, getCurDebugLoc(), Chain
, NULL
);
1056 llvm_unreachable("Can't get register for value!");
1060 void SelectionDAGBuilder::visitRet(const ReturnInst
&I
) {
1061 SDValue Chain
= getControlRoot();
1062 SmallVector
<ISD::OutputArg
, 8> Outs
;
1063 SmallVector
<SDValue
, 8> OutVals
;
1065 if (!FuncInfo
.CanLowerReturn
) {
1066 unsigned DemoteReg
= FuncInfo
.DemoteRegister
;
1067 const Function
*F
= I
.getParent()->getParent();
1069 // Emit a store of the return value through the virtual register.
1070 // Leave Outs empty so that LowerReturn won't try to load return
1071 // registers the usual way.
1072 SmallVector
<EVT
, 1> PtrValueVTs
;
1073 ComputeValueVTs(TLI
, PointerType::getUnqual(F
->getReturnType()),
1076 SDValue RetPtr
= DAG
.getRegister(DemoteReg
, PtrValueVTs
[0]);
1077 SDValue RetOp
= getValue(I
.getOperand(0));
1079 SmallVector
<EVT
, 4> ValueVTs
;
1080 SmallVector
<uint64_t, 4> Offsets
;
1081 ComputeValueVTs(TLI
, I
.getOperand(0)->getType(), ValueVTs
, &Offsets
);
1082 unsigned NumValues
= ValueVTs
.size();
1084 SmallVector
<SDValue
, 4> Chains(NumValues
);
1085 for (unsigned i
= 0; i
!= NumValues
; ++i
) {
1086 SDValue Add
= DAG
.getNode(ISD::ADD
, getCurDebugLoc(),
1087 RetPtr
.getValueType(), RetPtr
,
1088 DAG
.getIntPtrConstant(Offsets
[i
]));
1090 DAG
.getStore(Chain
, getCurDebugLoc(),
1091 SDValue(RetOp
.getNode(), RetOp
.getResNo() + i
),
1092 // FIXME: better loc info would be nice.
1093 Add
, MachinePointerInfo(), false, false, 0);
1096 Chain
= DAG
.getNode(ISD::TokenFactor
, getCurDebugLoc(),
1097 MVT::Other
, &Chains
[0], NumValues
);
1098 } else if (I
.getNumOperands() != 0) {
1099 SmallVector
<EVT
, 4> ValueVTs
;
1100 ComputeValueVTs(TLI
, I
.getOperand(0)->getType(), ValueVTs
);
1101 unsigned NumValues
= ValueVTs
.size();
1103 SDValue RetOp
= getValue(I
.getOperand(0));
1104 for (unsigned j
= 0, f
= NumValues
; j
!= f
; ++j
) {
1105 EVT VT
= ValueVTs
[j
];
1107 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
;
1109 const Function
*F
= I
.getParent()->getParent();
1110 if (F
->paramHasAttr(0, Attribute::SExt
))
1111 ExtendKind
= ISD::SIGN_EXTEND
;
1112 else if (F
->paramHasAttr(0, Attribute::ZExt
))
1113 ExtendKind
= ISD::ZERO_EXTEND
;
1115 // FIXME: C calling convention requires the return type to be promoted
1116 // to at least 32-bit. But this is not necessary for non-C calling
1117 // conventions. The frontend should mark functions whose return values
1118 // require promoting with signext or zeroext attributes.
1119 if (ExtendKind
!= ISD::ANY_EXTEND
&& VT
.isInteger()) {
1120 EVT MinVT
= TLI
.getRegisterType(*DAG
.getContext(), MVT::i32
);
1121 if (VT
.bitsLT(MinVT
))
1125 unsigned NumParts
= TLI
.getNumRegisters(*DAG
.getContext(), VT
);
1126 EVT PartVT
= TLI
.getRegisterType(*DAG
.getContext(), VT
);
1127 SmallVector
<SDValue
, 4> Parts(NumParts
);
1128 getCopyToParts(DAG
, getCurDebugLoc(),
1129 SDValue(RetOp
.getNode(), RetOp
.getResNo() + j
),
1130 &Parts
[0], NumParts
, PartVT
, ExtendKind
);
1132 // 'inreg' on function refers to return value
1133 ISD::ArgFlagsTy Flags
= ISD::ArgFlagsTy();
1134 if (F
->paramHasAttr(0, Attribute::InReg
))
1137 // Propagate extension type if any
1138 if (F
->paramHasAttr(0, Attribute::SExt
))
1140 else if (F
->paramHasAttr(0, Attribute::ZExt
))
1143 for (unsigned i
= 0; i
< NumParts
; ++i
) {
1144 Outs
.push_back(ISD::OutputArg(Flags
, Parts
[i
].getValueType(),
1146 OutVals
.push_back(Parts
[i
]);
1152 bool isVarArg
= DAG
.getMachineFunction().getFunction()->isVarArg();
1153 CallingConv::ID CallConv
=
1154 DAG
.getMachineFunction().getFunction()->getCallingConv();
1155 Chain
= TLI
.LowerReturn(Chain
, CallConv
, isVarArg
,
1156 Outs
, OutVals
, getCurDebugLoc(), DAG
);
1158 // Verify that the target's LowerReturn behaved as expected.
1159 assert(Chain
.getNode() && Chain
.getValueType() == MVT::Other
&&
1160 "LowerReturn didn't return a valid chain!");
1162 // Update the DAG with the new chain value resulting from return lowering.
1166 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1167 /// created for it, emit nodes to copy the value into the virtual
1169 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value
*V
) {
1170 DenseMap
<const Value
*, unsigned>::iterator VMI
= FuncInfo
.ValueMap
.find(V
);
1171 if (VMI
!= FuncInfo
.ValueMap
.end()) {
1172 assert(!V
->use_empty() && "Unused value assigned virtual registers!");
1173 CopyValueToVirtualRegister(V
, VMI
->second
);
1177 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1178 /// the current basic block, add it to ValueMap now so that we'll get a
1180 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value
*V
) {
1181 // No need to export constants.
1182 if (!isa
<Instruction
>(V
) && !isa
<Argument
>(V
)) return;
1184 // Already exported?
1185 if (FuncInfo
.isExportedInst(V
)) return;
1187 unsigned Reg
= FuncInfo
.InitializeRegForValue(V
);
1188 CopyValueToVirtualRegister(V
, Reg
);
1191 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value
*V
,
1192 const BasicBlock
*FromBB
) {
1193 // The operands of the setcc have to be in this block. We don't know
1194 // how to export them from some other block.
1195 if (const Instruction
*VI
= dyn_cast
<Instruction
>(V
)) {
1196 // Can export from current BB.
1197 if (VI
->getParent() == FromBB
)
1200 // Is already exported, noop.
1201 return FuncInfo
.isExportedInst(V
);
1204 // If this is an argument, we can export it if the BB is the entry block or
1205 // if it is already exported.
1206 if (isa
<Argument
>(V
)) {
1207 if (FromBB
== &FromBB
->getParent()->getEntryBlock())
1210 // Otherwise, can only export this if it is already exported.
1211 return FuncInfo
.isExportedInst(V
);
1214 // Otherwise, constants can always be exported.
1218 static bool InBlock(const Value
*V
, const BasicBlock
*BB
) {
1219 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
))
1220 return I
->getParent() == BB
;
1224 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1225 /// This function emits a branch and is used at the leaves of an OR or an
1226 /// AND operator tree.
1229 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value
*Cond
,
1230 MachineBasicBlock
*TBB
,
1231 MachineBasicBlock
*FBB
,
1232 MachineBasicBlock
*CurBB
,
1233 MachineBasicBlock
*SwitchBB
) {
1234 const BasicBlock
*BB
= CurBB
->getBasicBlock();
1236 // If the leaf of the tree is a comparison, merge the condition into
1238 if (const CmpInst
*BOp
= dyn_cast
<CmpInst
>(Cond
)) {
1239 // The operands of the cmp have to be in this block. We don't know
1240 // how to export them from some other block. If this is the first block
1241 // of the sequence, no exporting is needed.
1242 if (CurBB
== SwitchBB
||
1243 (isExportableFromCurrentBlock(BOp
->getOperand(0), BB
) &&
1244 isExportableFromCurrentBlock(BOp
->getOperand(1), BB
))) {
1245 ISD::CondCode Condition
;
1246 if (const ICmpInst
*IC
= dyn_cast
<ICmpInst
>(Cond
)) {
1247 Condition
= getICmpCondCode(IC
->getPredicate());
1248 } else if (const FCmpInst
*FC
= dyn_cast
<FCmpInst
>(Cond
)) {
1249 Condition
= getFCmpCondCode(FC
->getPredicate());
1251 Condition
= ISD::SETEQ
; // silence warning.
1252 llvm_unreachable("Unknown compare instruction");
1255 CaseBlock
CB(Condition
, BOp
->getOperand(0),
1256 BOp
->getOperand(1), NULL
, TBB
, FBB
, CurBB
);
1257 SwitchCases
.push_back(CB
);
1262 // Create a CaseBlock record representing this branch.
1263 CaseBlock
CB(ISD::SETEQ
, Cond
, ConstantInt::getTrue(*DAG
.getContext()),
1264 NULL
, TBB
, FBB
, CurBB
);
1265 SwitchCases
.push_back(CB
);
1268 /// FindMergedConditions - If Cond is an expression like
1269 void SelectionDAGBuilder::FindMergedConditions(const Value
*Cond
,
1270 MachineBasicBlock
*TBB
,
1271 MachineBasicBlock
*FBB
,
1272 MachineBasicBlock
*CurBB
,
1273 MachineBasicBlock
*SwitchBB
,
1275 // If this node is not part of the or/and tree, emit it as a branch.
1276 const Instruction
*BOp
= dyn_cast
<Instruction
>(Cond
);
1277 if (!BOp
|| !(isa
<BinaryOperator
>(BOp
) || isa
<CmpInst
>(BOp
)) ||
1278 (unsigned)BOp
->getOpcode() != Opc
|| !BOp
->hasOneUse() ||
1279 BOp
->getParent() != CurBB
->getBasicBlock() ||
1280 !InBlock(BOp
->getOperand(0), CurBB
->getBasicBlock()) ||
1281 !InBlock(BOp
->getOperand(1), CurBB
->getBasicBlock())) {
1282 EmitBranchForMergedCondition(Cond
, TBB
, FBB
, CurBB
, SwitchBB
);
1286 // Create TmpBB after CurBB.
1287 MachineFunction::iterator BBI
= CurBB
;
1288 MachineFunction
&MF
= DAG
.getMachineFunction();
1289 MachineBasicBlock
*TmpBB
= MF
.CreateMachineBasicBlock(CurBB
->getBasicBlock());
1290 CurBB
->getParent()->insert(++BBI
, TmpBB
);
1292 if (Opc
== Instruction::Or
) {
1293 // Codegen X | Y as:
1301 // Emit the LHS condition.
1302 FindMergedConditions(BOp
->getOperand(0), TBB
, TmpBB
, CurBB
, SwitchBB
, Opc
);
1304 // Emit the RHS condition into TmpBB.
1305 FindMergedConditions(BOp
->getOperand(1), TBB
, FBB
, TmpBB
, SwitchBB
, Opc
);
1307 assert(Opc
== Instruction::And
&& "Unknown merge op!");
1308 // Codegen X & Y as:
1315 // This requires creation of TmpBB after CurBB.
1317 // Emit the LHS condition.
1318 FindMergedConditions(BOp
->getOperand(0), TmpBB
, FBB
, CurBB
, SwitchBB
, Opc
);
1320 // Emit the RHS condition into TmpBB.
1321 FindMergedConditions(BOp
->getOperand(1), TBB
, FBB
, TmpBB
, SwitchBB
, Opc
);
1325 /// If the set of cases should be emitted as a series of branches, return true.
1326 /// If we should emit this as a bunch of and/or'd together conditions, return
1329 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector
<CaseBlock
> &Cases
){
1330 if (Cases
.size() != 2) return true;
1332 // If this is two comparisons of the same values or'd or and'd together, they
1333 // will get folded into a single comparison, so don't emit two blocks.
1334 if ((Cases
[0].CmpLHS
== Cases
[1].CmpLHS
&&
1335 Cases
[0].CmpRHS
== Cases
[1].CmpRHS
) ||
1336 (Cases
[0].CmpRHS
== Cases
[1].CmpLHS
&&
1337 Cases
[0].CmpLHS
== Cases
[1].CmpRHS
)) {
1341 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1342 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1343 if (Cases
[0].CmpRHS
== Cases
[1].CmpRHS
&&
1344 Cases
[0].CC
== Cases
[1].CC
&&
1345 isa
<Constant
>(Cases
[0].CmpRHS
) &&
1346 cast
<Constant
>(Cases
[0].CmpRHS
)->isNullValue()) {
1347 if (Cases
[0].CC
== ISD::SETEQ
&& Cases
[0].TrueBB
== Cases
[1].ThisBB
)
1349 if (Cases
[0].CC
== ISD::SETNE
&& Cases
[0].FalseBB
== Cases
[1].ThisBB
)
1356 void SelectionDAGBuilder::visitBr(const BranchInst
&I
) {
1357 MachineBasicBlock
*BrMBB
= FuncInfo
.MBB
;
1359 // Update machine-CFG edges.
1360 MachineBasicBlock
*Succ0MBB
= FuncInfo
.MBBMap
[I
.getSuccessor(0)];
1362 // Figure out which block is immediately after the current one.
1363 MachineBasicBlock
*NextBlock
= 0;
1364 MachineFunction::iterator BBI
= BrMBB
;
1365 if (++BBI
!= FuncInfo
.MF
->end())
1368 if (I
.isUnconditional()) {
1369 // Update machine-CFG edges.
1370 BrMBB
->addSuccessor(Succ0MBB
);
1372 // If this is not a fall-through branch, emit the branch.
1373 if (Succ0MBB
!= NextBlock
)
1374 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurDebugLoc(),
1375 MVT::Other
, getControlRoot(),
1376 DAG
.getBasicBlock(Succ0MBB
)));
1381 // If this condition is one of the special cases we handle, do special stuff
1383 const Value
*CondVal
= I
.getCondition();
1384 MachineBasicBlock
*Succ1MBB
= FuncInfo
.MBBMap
[I
.getSuccessor(1)];
1386 // If this is a series of conditions that are or'd or and'd together, emit
1387 // this as a sequence of branches instead of setcc's with and/or operations.
1388 // For example, instead of something like:
1401 if (const BinaryOperator
*BOp
= dyn_cast
<BinaryOperator
>(CondVal
)) {
1402 if (BOp
->hasOneUse() &&
1403 (BOp
->getOpcode() == Instruction::And
||
1404 BOp
->getOpcode() == Instruction::Or
)) {
1405 FindMergedConditions(BOp
, Succ0MBB
, Succ1MBB
, BrMBB
, BrMBB
,
1407 // If the compares in later blocks need to use values not currently
1408 // exported from this block, export them now. This block should always
1409 // be the first entry.
1410 assert(SwitchCases
[0].ThisBB
== BrMBB
&& "Unexpected lowering!");
1412 // Allow some cases to be rejected.
1413 if (ShouldEmitAsBranches(SwitchCases
)) {
1414 for (unsigned i
= 1, e
= SwitchCases
.size(); i
!= e
; ++i
) {
1415 ExportFromCurrentBlock(SwitchCases
[i
].CmpLHS
);
1416 ExportFromCurrentBlock(SwitchCases
[i
].CmpRHS
);
1419 // Emit the branch for this block.
1420 visitSwitchCase(SwitchCases
[0], BrMBB
);
1421 SwitchCases
.erase(SwitchCases
.begin());
1425 // Okay, we decided not to do this, remove any inserted MBB's and clear
1427 for (unsigned i
= 1, e
= SwitchCases
.size(); i
!= e
; ++i
)
1428 FuncInfo
.MF
->erase(SwitchCases
[i
].ThisBB
);
1430 SwitchCases
.clear();
1434 // Create a CaseBlock record representing this branch.
1435 CaseBlock
CB(ISD::SETEQ
, CondVal
, ConstantInt::getTrue(*DAG
.getContext()),
1436 NULL
, Succ0MBB
, Succ1MBB
, BrMBB
);
1438 // Use visitSwitchCase to actually insert the fast branch sequence for this
1440 visitSwitchCase(CB
, BrMBB
);
1443 /// visitSwitchCase - Emits the necessary code to represent a single node in
1444 /// the binary search tree resulting from lowering a switch instruction.
1445 void SelectionDAGBuilder::visitSwitchCase(CaseBlock
&CB
,
1446 MachineBasicBlock
*SwitchBB
) {
1448 SDValue CondLHS
= getValue(CB
.CmpLHS
);
1449 DebugLoc dl
= getCurDebugLoc();
1451 // Build the setcc now.
1452 if (CB
.CmpMHS
== NULL
) {
1453 // Fold "(X == true)" to X and "(X == false)" to !X to
1454 // handle common cases produced by branch lowering.
1455 if (CB
.CmpRHS
== ConstantInt::getTrue(*DAG
.getContext()) &&
1456 CB
.CC
== ISD::SETEQ
)
1458 else if (CB
.CmpRHS
== ConstantInt::getFalse(*DAG
.getContext()) &&
1459 CB
.CC
== ISD::SETEQ
) {
1460 SDValue True
= DAG
.getConstant(1, CondLHS
.getValueType());
1461 Cond
= DAG
.getNode(ISD::XOR
, dl
, CondLHS
.getValueType(), CondLHS
, True
);
1463 Cond
= DAG
.getSetCC(dl
, MVT::i1
, CondLHS
, getValue(CB
.CmpRHS
), CB
.CC
);
1465 assert(CB
.CC
== ISD::SETLE
&& "Can handle only LE ranges now");
1467 const APInt
& Low
= cast
<ConstantInt
>(CB
.CmpLHS
)->getValue();
1468 const APInt
& High
= cast
<ConstantInt
>(CB
.CmpRHS
)->getValue();
1470 SDValue CmpOp
= getValue(CB
.CmpMHS
);
1471 EVT VT
= CmpOp
.getValueType();
1473 if (cast
<ConstantInt
>(CB
.CmpLHS
)->isMinValue(true)) {
1474 Cond
= DAG
.getSetCC(dl
, MVT::i1
, CmpOp
, DAG
.getConstant(High
, VT
),
1477 SDValue SUB
= DAG
.getNode(ISD::SUB
, dl
,
1478 VT
, CmpOp
, DAG
.getConstant(Low
, VT
));
1479 Cond
= DAG
.getSetCC(dl
, MVT::i1
, SUB
,
1480 DAG
.getConstant(High
-Low
, VT
), ISD::SETULE
);
1484 // Update successor info
1485 SwitchBB
->addSuccessor(CB
.TrueBB
);
1486 SwitchBB
->addSuccessor(CB
.FalseBB
);
1488 // Set NextBlock to be the MBB immediately after the current one, if any.
1489 // This is used to avoid emitting unnecessary branches to the next block.
1490 MachineBasicBlock
*NextBlock
= 0;
1491 MachineFunction::iterator BBI
= SwitchBB
;
1492 if (++BBI
!= FuncInfo
.MF
->end())
1495 // If the lhs block is the next block, invert the condition so that we can
1496 // fall through to the lhs instead of the rhs block.
1497 if (CB
.TrueBB
== NextBlock
) {
1498 std::swap(CB
.TrueBB
, CB
.FalseBB
);
1499 SDValue True
= DAG
.getConstant(1, Cond
.getValueType());
1500 Cond
= DAG
.getNode(ISD::XOR
, dl
, Cond
.getValueType(), Cond
, True
);
1503 SDValue BrCond
= DAG
.getNode(ISD::BRCOND
, dl
,
1504 MVT::Other
, getControlRoot(), Cond
,
1505 DAG
.getBasicBlock(CB
.TrueBB
));
1507 // Insert the false branch. Do this even if it's a fall through branch,
1508 // this makes it easier to do DAG optimizations which require inverting
1509 // the branch condition.
1510 BrCond
= DAG
.getNode(ISD::BR
, dl
, MVT::Other
, BrCond
,
1511 DAG
.getBasicBlock(CB
.FalseBB
));
1513 DAG
.setRoot(BrCond
);
1516 /// visitJumpTable - Emit JumpTable node in the current MBB
1517 void SelectionDAGBuilder::visitJumpTable(JumpTable
&JT
) {
1518 // Emit the code for the jump table
1519 assert(JT
.Reg
!= -1U && "Should lower JT Header first!");
1520 EVT PTy
= TLI
.getPointerTy();
1521 SDValue Index
= DAG
.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1523 SDValue Table
= DAG
.getJumpTable(JT
.JTI
, PTy
);
1524 SDValue BrJumpTable
= DAG
.getNode(ISD::BR_JT
, getCurDebugLoc(),
1525 MVT::Other
, Index
.getValue(1),
1527 DAG
.setRoot(BrJumpTable
);
1530 /// visitJumpTableHeader - This function emits necessary code to produce index
1531 /// in the JumpTable from switch case.
1532 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable
&JT
,
1533 JumpTableHeader
&JTH
,
1534 MachineBasicBlock
*SwitchBB
) {
1535 // Subtract the lowest switch case value from the value being switched on and
1536 // conditional branch to default mbb if the result is greater than the
1537 // difference between smallest and largest cases.
1538 SDValue SwitchOp
= getValue(JTH
.SValue
);
1539 EVT VT
= SwitchOp
.getValueType();
1540 SDValue Sub
= DAG
.getNode(ISD::SUB
, getCurDebugLoc(), VT
, SwitchOp
,
1541 DAG
.getConstant(JTH
.First
, VT
));
1543 // The SDNode we just created, which holds the value being switched on minus
1544 // the smallest case value, needs to be copied to a virtual register so it
1545 // can be used as an index into the jump table in a subsequent basic block.
1546 // This value may be smaller or larger than the target's pointer type, and
1547 // therefore require extension or truncating.
1548 SwitchOp
= DAG
.getZExtOrTrunc(Sub
, getCurDebugLoc(), TLI
.getPointerTy());
1550 unsigned JumpTableReg
= FuncInfo
.CreateReg(TLI
.getPointerTy());
1551 SDValue CopyTo
= DAG
.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1552 JumpTableReg
, SwitchOp
);
1553 JT
.Reg
= JumpTableReg
;
1555 // Emit the range check for the jump table, and branch to the default block
1556 // for the switch statement if the value being switched on exceeds the largest
1557 // case in the switch.
1558 SDValue CMP
= DAG
.getSetCC(getCurDebugLoc(),
1559 TLI
.getSetCCResultType(Sub
.getValueType()), Sub
,
1560 DAG
.getConstant(JTH
.Last
-JTH
.First
,VT
),
1563 // Set NextBlock to be the MBB immediately after the current one, if any.
1564 // This is used to avoid emitting unnecessary branches to the next block.
1565 MachineBasicBlock
*NextBlock
= 0;
1566 MachineFunction::iterator BBI
= SwitchBB
;
1568 if (++BBI
!= FuncInfo
.MF
->end())
1571 SDValue BrCond
= DAG
.getNode(ISD::BRCOND
, getCurDebugLoc(),
1572 MVT::Other
, CopyTo
, CMP
,
1573 DAG
.getBasicBlock(JT
.Default
));
1575 if (JT
.MBB
!= NextBlock
)
1576 BrCond
= DAG
.getNode(ISD::BR
, getCurDebugLoc(), MVT::Other
, BrCond
,
1577 DAG
.getBasicBlock(JT
.MBB
));
1579 DAG
.setRoot(BrCond
);
1582 /// visitBitTestHeader - This function emits necessary code to produce value
1583 /// suitable for "bit tests"
1584 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock
&B
,
1585 MachineBasicBlock
*SwitchBB
) {
1586 // Subtract the minimum value
1587 SDValue SwitchOp
= getValue(B
.SValue
);
1588 EVT VT
= SwitchOp
.getValueType();
1589 SDValue Sub
= DAG
.getNode(ISD::SUB
, getCurDebugLoc(), VT
, SwitchOp
,
1590 DAG
.getConstant(B
.First
, VT
));
1593 SDValue RangeCmp
= DAG
.getSetCC(getCurDebugLoc(),
1594 TLI
.getSetCCResultType(Sub
.getValueType()),
1595 Sub
, DAG
.getConstant(B
.Range
, VT
),
1598 SDValue ShiftOp
= DAG
.getZExtOrTrunc(Sub
, getCurDebugLoc(),
1599 TLI
.getPointerTy());
1601 B
.Reg
= FuncInfo
.CreateReg(TLI
.getPointerTy());
1602 SDValue CopyTo
= DAG
.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1605 // Set NextBlock to be the MBB immediately after the current one, if any.
1606 // This is used to avoid emitting unnecessary branches to the next block.
1607 MachineBasicBlock
*NextBlock
= 0;
1608 MachineFunction::iterator BBI
= SwitchBB
;
1609 if (++BBI
!= FuncInfo
.MF
->end())
1612 MachineBasicBlock
* MBB
= B
.Cases
[0].ThisBB
;
1614 SwitchBB
->addSuccessor(B
.Default
);
1615 SwitchBB
->addSuccessor(MBB
);
1617 SDValue BrRange
= DAG
.getNode(ISD::BRCOND
, getCurDebugLoc(),
1618 MVT::Other
, CopyTo
, RangeCmp
,
1619 DAG
.getBasicBlock(B
.Default
));
1621 if (MBB
!= NextBlock
)
1622 BrRange
= DAG
.getNode(ISD::BR
, getCurDebugLoc(), MVT::Other
, CopyTo
,
1623 DAG
.getBasicBlock(MBB
));
1625 DAG
.setRoot(BrRange
);
1628 /// visitBitTestCase - this function produces one "bit test"
1629 void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock
* NextMBB
,
1632 MachineBasicBlock
*SwitchBB
) {
1633 SDValue ShiftOp
= DAG
.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg
,
1634 TLI
.getPointerTy());
1636 if (CountPopulation_64(B
.Mask
) == 1) {
1637 // Testing for a single bit; just compare the shift count with what it
1638 // would need to be to shift a 1 bit in that position.
1639 Cmp
= DAG
.getSetCC(getCurDebugLoc(),
1640 TLI
.getSetCCResultType(ShiftOp
.getValueType()),
1642 DAG
.getConstant(CountTrailingZeros_64(B
.Mask
),
1643 TLI
.getPointerTy()),
1646 // Make desired shift
1647 SDValue SwitchVal
= DAG
.getNode(ISD::SHL
, getCurDebugLoc(),
1649 DAG
.getConstant(1, TLI
.getPointerTy()),
1652 // Emit bit tests and jumps
1653 SDValue AndOp
= DAG
.getNode(ISD::AND
, getCurDebugLoc(),
1654 TLI
.getPointerTy(), SwitchVal
,
1655 DAG
.getConstant(B
.Mask
, TLI
.getPointerTy()));
1656 Cmp
= DAG
.getSetCC(getCurDebugLoc(),
1657 TLI
.getSetCCResultType(AndOp
.getValueType()),
1658 AndOp
, DAG
.getConstant(0, TLI
.getPointerTy()),
1662 SwitchBB
->addSuccessor(B
.TargetBB
);
1663 SwitchBB
->addSuccessor(NextMBB
);
1665 SDValue BrAnd
= DAG
.getNode(ISD::BRCOND
, getCurDebugLoc(),
1666 MVT::Other
, getControlRoot(),
1667 Cmp
, DAG
.getBasicBlock(B
.TargetBB
));
1669 // Set NextBlock to be the MBB immediately after the current one, if any.
1670 // This is used to avoid emitting unnecessary branches to the next block.
1671 MachineBasicBlock
*NextBlock
= 0;
1672 MachineFunction::iterator BBI
= SwitchBB
;
1673 if (++BBI
!= FuncInfo
.MF
->end())
1676 if (NextMBB
!= NextBlock
)
1677 BrAnd
= DAG
.getNode(ISD::BR
, getCurDebugLoc(), MVT::Other
, BrAnd
,
1678 DAG
.getBasicBlock(NextMBB
));
1683 void SelectionDAGBuilder::visitInvoke(const InvokeInst
&I
) {
1684 MachineBasicBlock
*InvokeMBB
= FuncInfo
.MBB
;
1686 // Retrieve successors.
1687 MachineBasicBlock
*Return
= FuncInfo
.MBBMap
[I
.getSuccessor(0)];
1688 MachineBasicBlock
*LandingPad
= FuncInfo
.MBBMap
[I
.getSuccessor(1)];
1690 const Value
*Callee(I
.getCalledValue());
1691 if (isa
<InlineAsm
>(Callee
))
1694 LowerCallTo(&I
, getValue(Callee
), false, LandingPad
);
1696 // If the value of the invoke is used outside of its defining block, make it
1697 // available as a virtual register.
1698 CopyToExportRegsIfNeeded(&I
);
1700 // Update successor info
1701 InvokeMBB
->addSuccessor(Return
);
1702 InvokeMBB
->addSuccessor(LandingPad
);
1704 // Drop into normal successor.
1705 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurDebugLoc(),
1706 MVT::Other
, getControlRoot(),
1707 DAG
.getBasicBlock(Return
)));
1710 void SelectionDAGBuilder::visitUnwind(const UnwindInst
&I
) {
1713 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1714 /// small case ranges).
1715 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec
& CR
,
1716 CaseRecVector
& WorkList
,
1718 MachineBasicBlock
*Default
,
1719 MachineBasicBlock
*SwitchBB
) {
1720 Case
& BackCase
= *(CR
.Range
.second
-1);
1722 // Size is the number of Cases represented by this range.
1723 size_t Size
= CR
.Range
.second
- CR
.Range
.first
;
1727 // Get the MachineFunction which holds the current MBB. This is used when
1728 // inserting any additional MBBs necessary to represent the switch.
1729 MachineFunction
*CurMF
= FuncInfo
.MF
;
1731 // Figure out which block is immediately after the current one.
1732 MachineBasicBlock
*NextBlock
= 0;
1733 MachineFunction::iterator BBI
= CR
.CaseBB
;
1735 if (++BBI
!= FuncInfo
.MF
->end())
1738 // TODO: If any two of the cases has the same destination, and if one value
1739 // is the same as the other, but has one bit unset that the other has set,
1740 // use bit manipulation to do two compares at once. For example:
1741 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1743 // Rearrange the case blocks so that the last one falls through if possible.
1744 if (NextBlock
&& Default
!= NextBlock
&& BackCase
.BB
!= NextBlock
) {
1745 // The last case block won't fall through into 'NextBlock' if we emit the
1746 // branches in this order. See if rearranging a case value would help.
1747 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
-1; I
!= E
; ++I
) {
1748 if (I
->BB
== NextBlock
) {
1749 std::swap(*I
, BackCase
);
1755 // Create a CaseBlock record representing a conditional branch to
1756 // the Case's target mbb if the value being switched on SV is equal
1758 MachineBasicBlock
*CurBlock
= CR
.CaseBB
;
1759 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
; I
!= E
; ++I
) {
1760 MachineBasicBlock
*FallThrough
;
1762 FallThrough
= CurMF
->CreateMachineBasicBlock(CurBlock
->getBasicBlock());
1763 CurMF
->insert(BBI
, FallThrough
);
1765 // Put SV in a virtual register to make it available from the new blocks.
1766 ExportFromCurrentBlock(SV
);
1768 // If the last case doesn't match, go to the default block.
1769 FallThrough
= Default
;
1772 const Value
*RHS
, *LHS
, *MHS
;
1774 if (I
->High
== I
->Low
) {
1775 // This is just small small case range :) containing exactly 1 case
1777 LHS
= SV
; RHS
= I
->High
; MHS
= NULL
;
1780 LHS
= I
->Low
; MHS
= SV
; RHS
= I
->High
;
1782 CaseBlock
CB(CC
, LHS
, RHS
, MHS
, I
->BB
, FallThrough
, CurBlock
);
1784 // If emitting the first comparison, just call visitSwitchCase to emit the
1785 // code into the current block. Otherwise, push the CaseBlock onto the
1786 // vector to be later processed by SDISel, and insert the node's MBB
1787 // before the next MBB.
1788 if (CurBlock
== SwitchBB
)
1789 visitSwitchCase(CB
, SwitchBB
);
1791 SwitchCases
.push_back(CB
);
1793 CurBlock
= FallThrough
;
1799 static inline bool areJTsAllowed(const TargetLowering
&TLI
) {
1800 return !DisableJumpTables
&&
1801 (TLI
.isOperationLegalOrCustom(ISD::BR_JT
, MVT::Other
) ||
1802 TLI
.isOperationLegalOrCustom(ISD::BRIND
, MVT::Other
));
1805 static APInt
ComputeRange(const APInt
&First
, const APInt
&Last
) {
1806 APInt
LastExt(Last
), FirstExt(First
);
1807 uint32_t BitWidth
= std::max(Last
.getBitWidth(), First
.getBitWidth()) + 1;
1808 LastExt
.sext(BitWidth
); FirstExt
.sext(BitWidth
);
1809 return (LastExt
- FirstExt
+ 1ULL);
1812 /// handleJTSwitchCase - Emit jumptable for current switch case range
1813 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec
& CR
,
1814 CaseRecVector
& WorkList
,
1816 MachineBasicBlock
* Default
,
1817 MachineBasicBlock
*SwitchBB
) {
1818 Case
& FrontCase
= *CR
.Range
.first
;
1819 Case
& BackCase
= *(CR
.Range
.second
-1);
1821 const APInt
&First
= cast
<ConstantInt
>(FrontCase
.Low
)->getValue();
1822 const APInt
&Last
= cast
<ConstantInt
>(BackCase
.High
)->getValue();
1824 APInt
TSize(First
.getBitWidth(), 0);
1825 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
;
1829 if (!areJTsAllowed(TLI
) || TSize
.ult(4))
1832 APInt Range
= ComputeRange(First
, Last
);
1833 double Density
= TSize
.roundToDouble() / Range
.roundToDouble();
1837 DEBUG(dbgs() << "Lowering jump table\n"
1838 << "First entry: " << First
<< ". Last entry: " << Last
<< '\n'
1839 << "Range: " << Range
1840 << "Size: " << TSize
<< ". Density: " << Density
<< "\n\n");
1842 // Get the MachineFunction which holds the current MBB. This is used when
1843 // inserting any additional MBBs necessary to represent the switch.
1844 MachineFunction
*CurMF
= FuncInfo
.MF
;
1846 // Figure out which block is immediately after the current one.
1847 MachineFunction::iterator BBI
= CR
.CaseBB
;
1850 const BasicBlock
*LLVMBB
= CR
.CaseBB
->getBasicBlock();
1852 // Create a new basic block to hold the code for loading the address
1853 // of the jump table, and jumping to it. Update successor information;
1854 // we will either branch to the default case for the switch, or the jump
1856 MachineBasicBlock
*JumpTableBB
= CurMF
->CreateMachineBasicBlock(LLVMBB
);
1857 CurMF
->insert(BBI
, JumpTableBB
);
1858 CR
.CaseBB
->addSuccessor(Default
);
1859 CR
.CaseBB
->addSuccessor(JumpTableBB
);
1861 // Build a vector of destination BBs, corresponding to each target
1862 // of the jump table. If the value of the jump table slot corresponds to
1863 // a case statement, push the case's BB onto the vector, otherwise, push
1865 std::vector
<MachineBasicBlock
*> DestBBs
;
1867 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
; I
!= E
; ++TEI
) {
1868 const APInt
&Low
= cast
<ConstantInt
>(I
->Low
)->getValue();
1869 const APInt
&High
= cast
<ConstantInt
>(I
->High
)->getValue();
1871 if (Low
.sle(TEI
) && TEI
.sle(High
)) {
1872 DestBBs
.push_back(I
->BB
);
1876 DestBBs
.push_back(Default
);
1880 // Update successor info. Add one edge to each unique successor.
1881 BitVector
SuccsHandled(CR
.CaseBB
->getParent()->getNumBlockIDs());
1882 for (std::vector
<MachineBasicBlock
*>::iterator I
= DestBBs
.begin(),
1883 E
= DestBBs
.end(); I
!= E
; ++I
) {
1884 if (!SuccsHandled
[(*I
)->getNumber()]) {
1885 SuccsHandled
[(*I
)->getNumber()] = true;
1886 JumpTableBB
->addSuccessor(*I
);
1890 // Create a jump table index for this jump table.
1891 unsigned JTEncoding
= TLI
.getJumpTableEncoding();
1892 unsigned JTI
= CurMF
->getOrCreateJumpTableInfo(JTEncoding
)
1893 ->createJumpTableIndex(DestBBs
);
1895 // Set the jump table information so that we can codegen it as a second
1896 // MachineBasicBlock
1897 JumpTable
JT(-1U, JTI
, JumpTableBB
, Default
);
1898 JumpTableHeader
JTH(First
, Last
, SV
, CR
.CaseBB
, (CR
.CaseBB
== SwitchBB
));
1899 if (CR
.CaseBB
== SwitchBB
)
1900 visitJumpTableHeader(JT
, JTH
, SwitchBB
);
1902 JTCases
.push_back(JumpTableBlock(JTH
, JT
));
1907 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1909 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec
& CR
,
1910 CaseRecVector
& WorkList
,
1912 MachineBasicBlock
*Default
,
1913 MachineBasicBlock
*SwitchBB
) {
1914 // Get the MachineFunction which holds the current MBB. This is used when
1915 // inserting any additional MBBs necessary to represent the switch.
1916 MachineFunction
*CurMF
= FuncInfo
.MF
;
1918 // Figure out which block is immediately after the current one.
1919 MachineFunction::iterator BBI
= CR
.CaseBB
;
1922 Case
& FrontCase
= *CR
.Range
.first
;
1923 Case
& BackCase
= *(CR
.Range
.second
-1);
1924 const BasicBlock
*LLVMBB
= CR
.CaseBB
->getBasicBlock();
1926 // Size is the number of Cases represented by this range.
1927 unsigned Size
= CR
.Range
.second
- CR
.Range
.first
;
1929 const APInt
&First
= cast
<ConstantInt
>(FrontCase
.Low
)->getValue();
1930 const APInt
&Last
= cast
<ConstantInt
>(BackCase
.High
)->getValue();
1932 CaseItr Pivot
= CR
.Range
.first
+ Size
/2;
1934 // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1935 // (heuristically) allow us to emit JumpTable's later.
1936 APInt
TSize(First
.getBitWidth(), 0);
1937 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
;
1941 APInt LSize
= FrontCase
.size();
1942 APInt RSize
= TSize
-LSize
;
1943 DEBUG(dbgs() << "Selecting best pivot: \n"
1944 << "First: " << First
<< ", Last: " << Last
<<'\n'
1945 << "LSize: " << LSize
<< ", RSize: " << RSize
<< '\n');
1946 for (CaseItr I
= CR
.Range
.first
, J
=I
+1, E
= CR
.Range
.second
;
1948 const APInt
&LEnd
= cast
<ConstantInt
>(I
->High
)->getValue();
1949 const APInt
&RBegin
= cast
<ConstantInt
>(J
->Low
)->getValue();
1950 APInt Range
= ComputeRange(LEnd
, RBegin
);
1951 assert((Range
- 2ULL).isNonNegative() &&
1952 "Invalid case distance");
1953 double LDensity
= (double)LSize
.roundToDouble() /
1954 (LEnd
- First
+ 1ULL).roundToDouble();
1955 double RDensity
= (double)RSize
.roundToDouble() /
1956 (Last
- RBegin
+ 1ULL).roundToDouble();
1957 double Metric
= Range
.logBase2()*(LDensity
+RDensity
);
1958 // Should always split in some non-trivial place
1959 DEBUG(dbgs() <<"=>Step\n"
1960 << "LEnd: " << LEnd
<< ", RBegin: " << RBegin
<< '\n'
1961 << "LDensity: " << LDensity
1962 << ", RDensity: " << RDensity
<< '\n'
1963 << "Metric: " << Metric
<< '\n');
1964 if (FMetric
< Metric
) {
1967 DEBUG(dbgs() << "Current metric set to: " << FMetric
<< '\n');
1973 if (areJTsAllowed(TLI
)) {
1974 // If our case is dense we *really* should handle it earlier!
1975 assert((FMetric
> 0) && "Should handle dense range earlier!");
1977 Pivot
= CR
.Range
.first
+ Size
/2;
1980 CaseRange
LHSR(CR
.Range
.first
, Pivot
);
1981 CaseRange
RHSR(Pivot
, CR
.Range
.second
);
1982 Constant
*C
= Pivot
->Low
;
1983 MachineBasicBlock
*FalseBB
= 0, *TrueBB
= 0;
1985 // We know that we branch to the LHS if the Value being switched on is
1986 // less than the Pivot value, C. We use this to optimize our binary
1987 // tree a bit, by recognizing that if SV is greater than or equal to the
1988 // LHS's Case Value, and that Case Value is exactly one less than the
1989 // Pivot's Value, then we can branch directly to the LHS's Target,
1990 // rather than creating a leaf node for it.
1991 if ((LHSR
.second
- LHSR
.first
) == 1 &&
1992 LHSR
.first
->High
== CR
.GE
&&
1993 cast
<ConstantInt
>(C
)->getValue() ==
1994 (cast
<ConstantInt
>(CR
.GE
)->getValue() + 1LL)) {
1995 TrueBB
= LHSR
.first
->BB
;
1997 TrueBB
= CurMF
->CreateMachineBasicBlock(LLVMBB
);
1998 CurMF
->insert(BBI
, TrueBB
);
1999 WorkList
.push_back(CaseRec(TrueBB
, C
, CR
.GE
, LHSR
));
2001 // Put SV in a virtual register to make it available from the new blocks.
2002 ExportFromCurrentBlock(SV
);
2005 // Similar to the optimization above, if the Value being switched on is
2006 // known to be less than the Constant CR.LT, and the current Case Value
2007 // is CR.LT - 1, then we can branch directly to the target block for
2008 // the current Case Value, rather than emitting a RHS leaf node for it.
2009 if ((RHSR
.second
- RHSR
.first
) == 1 && CR
.LT
&&
2010 cast
<ConstantInt
>(RHSR
.first
->Low
)->getValue() ==
2011 (cast
<ConstantInt
>(CR
.LT
)->getValue() - 1LL)) {
2012 FalseBB
= RHSR
.first
->BB
;
2014 FalseBB
= CurMF
->CreateMachineBasicBlock(LLVMBB
);
2015 CurMF
->insert(BBI
, FalseBB
);
2016 WorkList
.push_back(CaseRec(FalseBB
,CR
.LT
,C
,RHSR
));
2018 // Put SV in a virtual register to make it available from the new blocks.
2019 ExportFromCurrentBlock(SV
);
2022 // Create a CaseBlock record representing a conditional branch to
2023 // the LHS node if the value being switched on SV is less than C.
2024 // Otherwise, branch to LHS.
2025 CaseBlock
CB(ISD::SETLT
, SV
, C
, NULL
, TrueBB
, FalseBB
, CR
.CaseBB
);
2027 if (CR
.CaseBB
== SwitchBB
)
2028 visitSwitchCase(CB
, SwitchBB
);
2030 SwitchCases
.push_back(CB
);
2035 /// handleBitTestsSwitchCase - if current case range has few destination and
2036 /// range span less, than machine word bitwidth, encode case range into series
2037 /// of masks and emit bit tests with these masks.
2038 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec
& CR
,
2039 CaseRecVector
& WorkList
,
2041 MachineBasicBlock
* Default
,
2042 MachineBasicBlock
*SwitchBB
){
2043 EVT PTy
= TLI
.getPointerTy();
2044 unsigned IntPtrBits
= PTy
.getSizeInBits();
2046 Case
& FrontCase
= *CR
.Range
.first
;
2047 Case
& BackCase
= *(CR
.Range
.second
-1);
2049 // Get the MachineFunction which holds the current MBB. This is used when
2050 // inserting any additional MBBs necessary to represent the switch.
2051 MachineFunction
*CurMF
= FuncInfo
.MF
;
2053 // If target does not have legal shift left, do not emit bit tests at all.
2054 if (!TLI
.isOperationLegal(ISD::SHL
, TLI
.getPointerTy()))
2058 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
;
2060 // Single case counts one, case range - two.
2061 numCmps
+= (I
->Low
== I
->High
? 1 : 2);
2064 // Count unique destinations
2065 SmallSet
<MachineBasicBlock
*, 4> Dests
;
2066 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
; I
!=E
; ++I
) {
2067 Dests
.insert(I
->BB
);
2068 if (Dests
.size() > 3)
2069 // Don't bother the code below, if there are too much unique destinations
2072 DEBUG(dbgs() << "Total number of unique destinations: "
2073 << Dests
.size() << '\n'
2074 << "Total number of comparisons: " << numCmps
<< '\n');
2076 // Compute span of values.
2077 const APInt
& minValue
= cast
<ConstantInt
>(FrontCase
.Low
)->getValue();
2078 const APInt
& maxValue
= cast
<ConstantInt
>(BackCase
.High
)->getValue();
2079 APInt cmpRange
= maxValue
- minValue
;
2081 DEBUG(dbgs() << "Compare range: " << cmpRange
<< '\n'
2082 << "Low bound: " << minValue
<< '\n'
2083 << "High bound: " << maxValue
<< '\n');
2085 if (cmpRange
.uge(IntPtrBits
) ||
2086 (!(Dests
.size() == 1 && numCmps
>= 3) &&
2087 !(Dests
.size() == 2 && numCmps
>= 5) &&
2088 !(Dests
.size() >= 3 && numCmps
>= 6)))
2091 DEBUG(dbgs() << "Emitting bit tests\n");
2092 APInt lowBound
= APInt::getNullValue(cmpRange
.getBitWidth());
2094 // Optimize the case where all the case values fit in a
2095 // word without having to subtract minValue. In this case,
2096 // we can optimize away the subtraction.
2097 if (minValue
.isNonNegative() && maxValue
.slt(IntPtrBits
)) {
2098 cmpRange
= maxValue
;
2100 lowBound
= minValue
;
2103 CaseBitsVector CasesBits
;
2104 unsigned i
, count
= 0;
2106 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
; I
!=E
; ++I
) {
2107 MachineBasicBlock
* Dest
= I
->BB
;
2108 for (i
= 0; i
< count
; ++i
)
2109 if (Dest
== CasesBits
[i
].BB
)
2113 assert((count
< 3) && "Too much destinations to test!");
2114 CasesBits
.push_back(CaseBits(0, Dest
, 0));
2118 const APInt
& lowValue
= cast
<ConstantInt
>(I
->Low
)->getValue();
2119 const APInt
& highValue
= cast
<ConstantInt
>(I
->High
)->getValue();
2121 uint64_t lo
= (lowValue
- lowBound
).getZExtValue();
2122 uint64_t hi
= (highValue
- lowBound
).getZExtValue();
2124 for (uint64_t j
= lo
; j
<= hi
; j
++) {
2125 CasesBits
[i
].Mask
|= 1ULL << j
;
2126 CasesBits
[i
].Bits
++;
2130 std::sort(CasesBits
.begin(), CasesBits
.end(), CaseBitsCmp());
2134 // Figure out which block is immediately after the current one.
2135 MachineFunction::iterator BBI
= CR
.CaseBB
;
2138 const BasicBlock
*LLVMBB
= CR
.CaseBB
->getBasicBlock();
2140 DEBUG(dbgs() << "Cases:\n");
2141 for (unsigned i
= 0, e
= CasesBits
.size(); i
!=e
; ++i
) {
2142 DEBUG(dbgs() << "Mask: " << CasesBits
[i
].Mask
2143 << ", Bits: " << CasesBits
[i
].Bits
2144 << ", BB: " << CasesBits
[i
].BB
<< '\n');
2146 MachineBasicBlock
*CaseBB
= CurMF
->CreateMachineBasicBlock(LLVMBB
);
2147 CurMF
->insert(BBI
, CaseBB
);
2148 BTC
.push_back(BitTestCase(CasesBits
[i
].Mask
,
2152 // Put SV in a virtual register to make it available from the new blocks.
2153 ExportFromCurrentBlock(SV
);
2156 BitTestBlock
BTB(lowBound
, cmpRange
, SV
,
2157 -1U, (CR
.CaseBB
== SwitchBB
),
2158 CR
.CaseBB
, Default
, BTC
);
2160 if (CR
.CaseBB
== SwitchBB
)
2161 visitBitTestHeader(BTB
, SwitchBB
);
2163 BitTestCases
.push_back(BTB
);
2168 /// Clusterify - Transform simple list of Cases into list of CaseRange's
2169 size_t SelectionDAGBuilder::Clusterify(CaseVector
& Cases
,
2170 const SwitchInst
& SI
) {
2173 // Start with "simple" cases
2174 for (size_t i
= 1; i
< SI
.getNumSuccessors(); ++i
) {
2175 MachineBasicBlock
*SMBB
= FuncInfo
.MBBMap
[SI
.getSuccessor(i
)];
2176 Cases
.push_back(Case(SI
.getSuccessorValue(i
),
2177 SI
.getSuccessorValue(i
),
2180 std::sort(Cases
.begin(), Cases
.end(), CaseCmp());
2182 // Merge case into clusters
2183 if (Cases
.size() >= 2)
2184 // Must recompute end() each iteration because it may be
2185 // invalidated by erase if we hold on to it
2186 for (CaseItr I
= Cases
.begin(), J
= ++(Cases
.begin()); J
!= Cases
.end(); ) {
2187 const APInt
& nextValue
= cast
<ConstantInt
>(J
->Low
)->getValue();
2188 const APInt
& currentValue
= cast
<ConstantInt
>(I
->High
)->getValue();
2189 MachineBasicBlock
* nextBB
= J
->BB
;
2190 MachineBasicBlock
* currentBB
= I
->BB
;
2192 // If the two neighboring cases go to the same destination, merge them
2193 // into a single case.
2194 if ((nextValue
- currentValue
== 1) && (currentBB
== nextBB
)) {
2202 for (CaseItr I
=Cases
.begin(), E
=Cases
.end(); I
!=E
; ++I
, ++numCmps
) {
2203 if (I
->Low
!= I
->High
)
2204 // A range counts double, since it requires two compares.
2211 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock
*First
,
2212 MachineBasicBlock
*Last
) {
2214 for (unsigned i
= 0, e
= JTCases
.size(); i
!= e
; ++i
)
2215 if (JTCases
[i
].first
.HeaderBB
== First
)
2216 JTCases
[i
].first
.HeaderBB
= Last
;
2218 // Update BitTestCases.
2219 for (unsigned i
= 0, e
= BitTestCases
.size(); i
!= e
; ++i
)
2220 if (BitTestCases
[i
].Parent
== First
)
2221 BitTestCases
[i
].Parent
= Last
;
2224 void SelectionDAGBuilder::visitSwitch(const SwitchInst
&SI
) {
2225 MachineBasicBlock
*SwitchMBB
= FuncInfo
.MBB
;
2227 // Figure out which block is immediately after the current one.
2228 MachineBasicBlock
*NextBlock
= 0;
2229 MachineBasicBlock
*Default
= FuncInfo
.MBBMap
[SI
.getDefaultDest()];
2231 // If there is only the default destination, branch to it if it is not the
2232 // next basic block. Otherwise, just fall through.
2233 if (SI
.getNumOperands() == 2) {
2234 // Update machine-CFG edges.
2236 // If this is not a fall-through branch, emit the branch.
2237 SwitchMBB
->addSuccessor(Default
);
2238 if (Default
!= NextBlock
)
2239 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurDebugLoc(),
2240 MVT::Other
, getControlRoot(),
2241 DAG
.getBasicBlock(Default
)));
2246 // If there are any non-default case statements, create a vector of Cases
2247 // representing each one, and sort the vector so that we can efficiently
2248 // create a binary search tree from them.
2250 size_t numCmps
= Clusterify(Cases
, SI
);
2251 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases
.size()
2252 << ". Total compares: " << numCmps
<< '\n');
2255 // Get the Value to be switched on and default basic blocks, which will be
2256 // inserted into CaseBlock records, representing basic blocks in the binary
2258 const Value
*SV
= SI
.getOperand(0);
2260 // Push the initial CaseRec onto the worklist
2261 CaseRecVector WorkList
;
2262 WorkList
.push_back(CaseRec(SwitchMBB
,0,0,
2263 CaseRange(Cases
.begin(),Cases
.end())));
2265 while (!WorkList
.empty()) {
2266 // Grab a record representing a case range to process off the worklist
2267 CaseRec CR
= WorkList
.back();
2268 WorkList
.pop_back();
2270 if (handleBitTestsSwitchCase(CR
, WorkList
, SV
, Default
, SwitchMBB
))
2273 // If the range has few cases (two or less) emit a series of specific
2275 if (handleSmallSwitchRange(CR
, WorkList
, SV
, Default
, SwitchMBB
))
2278 // If the switch has more than 5 blocks, and at least 40% dense, and the
2279 // target supports indirect branches, then emit a jump table rather than
2280 // lowering the switch to a binary tree of conditional branches.
2281 if (handleJTSwitchCase(CR
, WorkList
, SV
, Default
, SwitchMBB
))
2284 // Emit binary tree. We need to pick a pivot, and push left and right ranges
2285 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2286 handleBTSplitSwitchCase(CR
, WorkList
, SV
, Default
, SwitchMBB
);
2290 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst
&I
) {
2291 MachineBasicBlock
*IndirectBrMBB
= FuncInfo
.MBB
;
2293 // Update machine-CFG edges with unique successors.
2294 SmallVector
<BasicBlock
*, 32> succs
;
2295 succs
.reserve(I
.getNumSuccessors());
2296 for (unsigned i
= 0, e
= I
.getNumSuccessors(); i
!= e
; ++i
)
2297 succs
.push_back(I
.getSuccessor(i
));
2298 array_pod_sort(succs
.begin(), succs
.end());
2299 succs
.erase(std::unique(succs
.begin(), succs
.end()), succs
.end());
2300 for (unsigned i
= 0, e
= succs
.size(); i
!= e
; ++i
)
2301 IndirectBrMBB
->addSuccessor(FuncInfo
.MBBMap
[succs
[i
]]);
2303 DAG
.setRoot(DAG
.getNode(ISD::BRIND
, getCurDebugLoc(),
2304 MVT::Other
, getControlRoot(),
2305 getValue(I
.getAddress())));
2308 void SelectionDAGBuilder::visitFSub(const User
&I
) {
2309 // -0.0 - X --> fneg
2310 const Type
*Ty
= I
.getType();
2311 if (Ty
->isVectorTy()) {
2312 if (ConstantVector
*CV
= dyn_cast
<ConstantVector
>(I
.getOperand(0))) {
2313 const VectorType
*DestTy
= cast
<VectorType
>(I
.getType());
2314 const Type
*ElTy
= DestTy
->getElementType();
2315 unsigned VL
= DestTy
->getNumElements();
2316 std::vector
<Constant
*> NZ(VL
, ConstantFP::getNegativeZero(ElTy
));
2317 Constant
*CNZ
= ConstantVector::get(&NZ
[0], NZ
.size());
2319 SDValue Op2
= getValue(I
.getOperand(1));
2320 setValue(&I
, DAG
.getNode(ISD::FNEG
, getCurDebugLoc(),
2321 Op2
.getValueType(), Op2
));
2327 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(I
.getOperand(0)))
2328 if (CFP
->isExactlyValue(ConstantFP::getNegativeZero(Ty
)->getValueAPF())) {
2329 SDValue Op2
= getValue(I
.getOperand(1));
2330 setValue(&I
, DAG
.getNode(ISD::FNEG
, getCurDebugLoc(),
2331 Op2
.getValueType(), Op2
));
2335 visitBinary(I
, ISD::FSUB
);
2338 void SelectionDAGBuilder::visitBinary(const User
&I
, unsigned OpCode
) {
2339 SDValue Op1
= getValue(I
.getOperand(0));
2340 SDValue Op2
= getValue(I
.getOperand(1));
2341 setValue(&I
, DAG
.getNode(OpCode
, getCurDebugLoc(),
2342 Op1
.getValueType(), Op1
, Op2
));
2345 void SelectionDAGBuilder::visitShift(const User
&I
, unsigned Opcode
) {
2346 SDValue Op1
= getValue(I
.getOperand(0));
2347 SDValue Op2
= getValue(I
.getOperand(1));
2348 if (!I
.getType()->isVectorTy() &&
2349 Op2
.getValueType() != TLI
.getShiftAmountTy()) {
2350 // If the operand is smaller than the shift count type, promote it.
2351 EVT PTy
= TLI
.getPointerTy();
2352 EVT STy
= TLI
.getShiftAmountTy();
2353 if (STy
.bitsGT(Op2
.getValueType()))
2354 Op2
= DAG
.getNode(ISD::ANY_EXTEND
, getCurDebugLoc(),
2355 TLI
.getShiftAmountTy(), Op2
);
2356 // If the operand is larger than the shift count type but the shift
2357 // count type has enough bits to represent any shift value, truncate
2358 // it now. This is a common case and it exposes the truncate to
2359 // optimization early.
2360 else if (STy
.getSizeInBits() >=
2361 Log2_32_Ceil(Op2
.getValueType().getSizeInBits()))
2362 Op2
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(),
2363 TLI
.getShiftAmountTy(), Op2
);
2364 // Otherwise we'll need to temporarily settle for some other
2365 // convenient type; type legalization will make adjustments as
2367 else if (PTy
.bitsLT(Op2
.getValueType()))
2368 Op2
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(),
2369 TLI
.getPointerTy(), Op2
);
2370 else if (PTy
.bitsGT(Op2
.getValueType()))
2371 Op2
= DAG
.getNode(ISD::ANY_EXTEND
, getCurDebugLoc(),
2372 TLI
.getPointerTy(), Op2
);
2375 setValue(&I
, DAG
.getNode(Opcode
, getCurDebugLoc(),
2376 Op1
.getValueType(), Op1
, Op2
));
2379 void SelectionDAGBuilder::visitICmp(const User
&I
) {
2380 ICmpInst::Predicate predicate
= ICmpInst::BAD_ICMP_PREDICATE
;
2381 if (const ICmpInst
*IC
= dyn_cast
<ICmpInst
>(&I
))
2382 predicate
= IC
->getPredicate();
2383 else if (const ConstantExpr
*IC
= dyn_cast
<ConstantExpr
>(&I
))
2384 predicate
= ICmpInst::Predicate(IC
->getPredicate());
2385 SDValue Op1
= getValue(I
.getOperand(0));
2386 SDValue Op2
= getValue(I
.getOperand(1));
2387 ISD::CondCode Opcode
= getICmpCondCode(predicate
);
2389 EVT DestVT
= TLI
.getValueType(I
.getType());
2390 setValue(&I
, DAG
.getSetCC(getCurDebugLoc(), DestVT
, Op1
, Op2
, Opcode
));
2393 void SelectionDAGBuilder::visitFCmp(const User
&I
) {
2394 FCmpInst::Predicate predicate
= FCmpInst::BAD_FCMP_PREDICATE
;
2395 if (const FCmpInst
*FC
= dyn_cast
<FCmpInst
>(&I
))
2396 predicate
= FC
->getPredicate();
2397 else if (const ConstantExpr
*FC
= dyn_cast
<ConstantExpr
>(&I
))
2398 predicate
= FCmpInst::Predicate(FC
->getPredicate());
2399 SDValue Op1
= getValue(I
.getOperand(0));
2400 SDValue Op2
= getValue(I
.getOperand(1));
2401 ISD::CondCode Condition
= getFCmpCondCode(predicate
);
2402 EVT DestVT
= TLI
.getValueType(I
.getType());
2403 setValue(&I
, DAG
.getSetCC(getCurDebugLoc(), DestVT
, Op1
, Op2
, Condition
));
2406 void SelectionDAGBuilder::visitSelect(const User
&I
) {
2407 SmallVector
<EVT
, 4> ValueVTs
;
2408 ComputeValueVTs(TLI
, I
.getType(), ValueVTs
);
2409 unsigned NumValues
= ValueVTs
.size();
2410 if (NumValues
== 0) return;
2412 SmallVector
<SDValue
, 4> Values(NumValues
);
2413 SDValue Cond
= getValue(I
.getOperand(0));
2414 SDValue TrueVal
= getValue(I
.getOperand(1));
2415 SDValue FalseVal
= getValue(I
.getOperand(2));
2417 for (unsigned i
= 0; i
!= NumValues
; ++i
)
2418 Values
[i
] = DAG
.getNode(ISD::SELECT
, getCurDebugLoc(),
2419 TrueVal
.getNode()->getValueType(TrueVal
.getResNo()+i
),
2421 SDValue(TrueVal
.getNode(),
2422 TrueVal
.getResNo() + i
),
2423 SDValue(FalseVal
.getNode(),
2424 FalseVal
.getResNo() + i
));
2426 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurDebugLoc(),
2427 DAG
.getVTList(&ValueVTs
[0], NumValues
),
2428 &Values
[0], NumValues
));
2431 void SelectionDAGBuilder::visitTrunc(const User
&I
) {
2432 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2433 SDValue N
= getValue(I
.getOperand(0));
2434 EVT DestVT
= TLI
.getValueType(I
.getType());
2435 setValue(&I
, DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(), DestVT
, N
));
2438 void SelectionDAGBuilder::visitZExt(const User
&I
) {
2439 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2440 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2441 SDValue N
= getValue(I
.getOperand(0));
2442 EVT DestVT
= TLI
.getValueType(I
.getType());
2443 setValue(&I
, DAG
.getNode(ISD::ZERO_EXTEND
, getCurDebugLoc(), DestVT
, N
));
2446 void SelectionDAGBuilder::visitSExt(const User
&I
) {
2447 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2448 // SExt also can't be a cast to bool for same reason. So, nothing much to do
2449 SDValue N
= getValue(I
.getOperand(0));
2450 EVT DestVT
= TLI
.getValueType(I
.getType());
2451 setValue(&I
, DAG
.getNode(ISD::SIGN_EXTEND
, getCurDebugLoc(), DestVT
, N
));
2454 void SelectionDAGBuilder::visitFPTrunc(const User
&I
) {
2455 // FPTrunc is never a no-op cast, no need to check
2456 SDValue N
= getValue(I
.getOperand(0));
2457 EVT DestVT
= TLI
.getValueType(I
.getType());
2458 setValue(&I
, DAG
.getNode(ISD::FP_ROUND
, getCurDebugLoc(),
2459 DestVT
, N
, DAG
.getIntPtrConstant(0)));
2462 void SelectionDAGBuilder::visitFPExt(const User
&I
){
2463 // FPTrunc is never a no-op cast, no need to check
2464 SDValue N
= getValue(I
.getOperand(0));
2465 EVT DestVT
= TLI
.getValueType(I
.getType());
2466 setValue(&I
, DAG
.getNode(ISD::FP_EXTEND
, getCurDebugLoc(), DestVT
, N
));
2469 void SelectionDAGBuilder::visitFPToUI(const User
&I
) {
2470 // FPToUI is never a no-op cast, no need to check
2471 SDValue N
= getValue(I
.getOperand(0));
2472 EVT DestVT
= TLI
.getValueType(I
.getType());
2473 setValue(&I
, DAG
.getNode(ISD::FP_TO_UINT
, getCurDebugLoc(), DestVT
, N
));
2476 void SelectionDAGBuilder::visitFPToSI(const User
&I
) {
2477 // FPToSI is never a no-op cast, no need to check
2478 SDValue N
= getValue(I
.getOperand(0));
2479 EVT DestVT
= TLI
.getValueType(I
.getType());
2480 setValue(&I
, DAG
.getNode(ISD::FP_TO_SINT
, getCurDebugLoc(), DestVT
, N
));
2483 void SelectionDAGBuilder::visitUIToFP(const User
&I
) {
2484 // UIToFP is never a no-op cast, no need to check
2485 SDValue N
= getValue(I
.getOperand(0));
2486 EVT DestVT
= TLI
.getValueType(I
.getType());
2487 setValue(&I
, DAG
.getNode(ISD::UINT_TO_FP
, getCurDebugLoc(), DestVT
, N
));
2490 void SelectionDAGBuilder::visitSIToFP(const User
&I
){
2491 // SIToFP is never a no-op cast, no need to check
2492 SDValue N
= getValue(I
.getOperand(0));
2493 EVT DestVT
= TLI
.getValueType(I
.getType());
2494 setValue(&I
, DAG
.getNode(ISD::SINT_TO_FP
, getCurDebugLoc(), DestVT
, N
));
2497 void SelectionDAGBuilder::visitPtrToInt(const User
&I
) {
2498 // What to do depends on the size of the integer and the size of the pointer.
2499 // We can either truncate, zero extend, or no-op, accordingly.
2500 SDValue N
= getValue(I
.getOperand(0));
2501 EVT DestVT
= TLI
.getValueType(I
.getType());
2502 setValue(&I
, DAG
.getZExtOrTrunc(N
, getCurDebugLoc(), DestVT
));
2505 void SelectionDAGBuilder::visitIntToPtr(const User
&I
) {
2506 // What to do depends on the size of the integer and the size of the pointer.
2507 // We can either truncate, zero extend, or no-op, accordingly.
2508 SDValue N
= getValue(I
.getOperand(0));
2509 EVT DestVT
= TLI
.getValueType(I
.getType());
2510 setValue(&I
, DAG
.getZExtOrTrunc(N
, getCurDebugLoc(), DestVT
));
2513 void SelectionDAGBuilder::visitBitCast(const User
&I
) {
2514 SDValue N
= getValue(I
.getOperand(0));
2515 EVT DestVT
= TLI
.getValueType(I
.getType());
2517 // BitCast assures us that source and destination are the same size so this is
2518 // either a BIT_CONVERT or a no-op.
2519 if (DestVT
!= N
.getValueType())
2520 setValue(&I
, DAG
.getNode(ISD::BIT_CONVERT
, getCurDebugLoc(),
2521 DestVT
, N
)); // convert types.
2523 setValue(&I
, N
); // noop cast.
2526 void SelectionDAGBuilder::visitInsertElement(const User
&I
) {
2527 SDValue InVec
= getValue(I
.getOperand(0));
2528 SDValue InVal
= getValue(I
.getOperand(1));
2529 SDValue InIdx
= DAG
.getNode(ISD::ZERO_EXTEND
, getCurDebugLoc(),
2531 getValue(I
.getOperand(2)));
2532 setValue(&I
, DAG
.getNode(ISD::INSERT_VECTOR_ELT
, getCurDebugLoc(),
2533 TLI
.getValueType(I
.getType()),
2534 InVec
, InVal
, InIdx
));
2537 void SelectionDAGBuilder::visitExtractElement(const User
&I
) {
2538 SDValue InVec
= getValue(I
.getOperand(0));
2539 SDValue InIdx
= DAG
.getNode(ISD::ZERO_EXTEND
, getCurDebugLoc(),
2541 getValue(I
.getOperand(1)));
2542 setValue(&I
, DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, getCurDebugLoc(),
2543 TLI
.getValueType(I
.getType()), InVec
, InIdx
));
2546 // Utility for visitShuffleVector - Returns true if the mask is mask starting
2547 // from SIndx and increasing to the element length (undefs are allowed).
2548 static bool SequentialMask(SmallVectorImpl
<int> &Mask
, unsigned SIndx
) {
2549 unsigned MaskNumElts
= Mask
.size();
2550 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
)
2551 if ((Mask
[i
] >= 0) && (Mask
[i
] != (int)(i
+ SIndx
)))
2556 void SelectionDAGBuilder::visitShuffleVector(const User
&I
) {
2557 SmallVector
<int, 8> Mask
;
2558 SDValue Src1
= getValue(I
.getOperand(0));
2559 SDValue Src2
= getValue(I
.getOperand(1));
2561 // Convert the ConstantVector mask operand into an array of ints, with -1
2562 // representing undef values.
2563 SmallVector
<Constant
*, 8> MaskElts
;
2564 cast
<Constant
>(I
.getOperand(2))->getVectorElements(MaskElts
);
2565 unsigned MaskNumElts
= MaskElts
.size();
2566 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
2567 if (isa
<UndefValue
>(MaskElts
[i
]))
2570 Mask
.push_back(cast
<ConstantInt
>(MaskElts
[i
])->getSExtValue());
2573 EVT VT
= TLI
.getValueType(I
.getType());
2574 EVT SrcVT
= Src1
.getValueType();
2575 unsigned SrcNumElts
= SrcVT
.getVectorNumElements();
2577 if (SrcNumElts
== MaskNumElts
) {
2578 setValue(&I
, DAG
.getVectorShuffle(VT
, getCurDebugLoc(), Src1
, Src2
,
2583 // Normalize the shuffle vector since mask and vector length don't match.
2584 if (SrcNumElts
< MaskNumElts
&& MaskNumElts
% SrcNumElts
== 0) {
2585 // Mask is longer than the source vectors and is a multiple of the source
2586 // vectors. We can use concatenate vector to make the mask and vectors
2588 if (SrcNumElts
*2 == MaskNumElts
&& SequentialMask(Mask
, 0)) {
2589 // The shuffle is concatenating two vectors together.
2590 setValue(&I
, DAG
.getNode(ISD::CONCAT_VECTORS
, getCurDebugLoc(),
2595 // Pad both vectors with undefs to make them the same length as the mask.
2596 unsigned NumConcat
= MaskNumElts
/ SrcNumElts
;
2597 bool Src1U
= Src1
.getOpcode() == ISD::UNDEF
;
2598 bool Src2U
= Src2
.getOpcode() == ISD::UNDEF
;
2599 SDValue UndefVal
= DAG
.getUNDEF(SrcVT
);
2601 SmallVector
<SDValue
, 8> MOps1(NumConcat
, UndefVal
);
2602 SmallVector
<SDValue
, 8> MOps2(NumConcat
, UndefVal
);
2606 Src1
= Src1U
? DAG
.getUNDEF(VT
) : DAG
.getNode(ISD::CONCAT_VECTORS
,
2607 getCurDebugLoc(), VT
,
2608 &MOps1
[0], NumConcat
);
2609 Src2
= Src2U
? DAG
.getUNDEF(VT
) : DAG
.getNode(ISD::CONCAT_VECTORS
,
2610 getCurDebugLoc(), VT
,
2611 &MOps2
[0], NumConcat
);
2613 // Readjust mask for new input vector length.
2614 SmallVector
<int, 8> MappedOps
;
2615 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
2617 if (Idx
< (int)SrcNumElts
)
2618 MappedOps
.push_back(Idx
);
2620 MappedOps
.push_back(Idx
+ MaskNumElts
- SrcNumElts
);
2623 setValue(&I
, DAG
.getVectorShuffle(VT
, getCurDebugLoc(), Src1
, Src2
,
2628 if (SrcNumElts
> MaskNumElts
) {
2629 // Analyze the access pattern of the vector to see if we can extract
2630 // two subvectors and do the shuffle. The analysis is done by calculating
2631 // the range of elements the mask access on both vectors.
2632 int MinRange
[2] = { SrcNumElts
+1, SrcNumElts
+1};
2633 int MaxRange
[2] = {-1, -1};
2635 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
2641 if (Idx
>= (int)SrcNumElts
) {
2645 if (Idx
> MaxRange
[Input
])
2646 MaxRange
[Input
] = Idx
;
2647 if (Idx
< MinRange
[Input
])
2648 MinRange
[Input
] = Idx
;
2651 // Check if the access is smaller than the vector size and can we find
2652 // a reasonable extract index.
2653 int RangeUse
[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not
2655 int StartIdx
[2]; // StartIdx to extract from
2656 for (int Input
=0; Input
< 2; ++Input
) {
2657 if (MinRange
[Input
] == (int)(SrcNumElts
+1) && MaxRange
[Input
] == -1) {
2658 RangeUse
[Input
] = 0; // Unused
2659 StartIdx
[Input
] = 0;
2660 } else if (MaxRange
[Input
] - MinRange
[Input
] < (int)MaskNumElts
) {
2661 // Fits within range but we should see if we can find a good
2662 // start index that is a multiple of the mask length.
2663 if (MaxRange
[Input
] < (int)MaskNumElts
) {
2664 RangeUse
[Input
] = 1; // Extract from beginning of the vector
2665 StartIdx
[Input
] = 0;
2667 StartIdx
[Input
] = (MinRange
[Input
]/MaskNumElts
)*MaskNumElts
;
2668 if (MaxRange
[Input
] - StartIdx
[Input
] < (int)MaskNumElts
&&
2669 StartIdx
[Input
] + MaskNumElts
< SrcNumElts
)
2670 RangeUse
[Input
] = 1; // Extract from a multiple of the mask length.
2675 if (RangeUse
[0] == 0 && RangeUse
[1] == 0) {
2676 setValue(&I
, DAG
.getUNDEF(VT
)); // Vectors are not used.
2679 else if (RangeUse
[0] < 2 && RangeUse
[1] < 2) {
2680 // Extract appropriate subvector and generate a vector shuffle
2681 for (int Input
=0; Input
< 2; ++Input
) {
2682 SDValue
&Src
= Input
== 0 ? Src1
: Src2
;
2683 if (RangeUse
[Input
] == 0)
2684 Src
= DAG
.getUNDEF(VT
);
2686 Src
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, getCurDebugLoc(), VT
,
2687 Src
, DAG
.getIntPtrConstant(StartIdx
[Input
]));
2690 // Calculate new mask.
2691 SmallVector
<int, 8> MappedOps
;
2692 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
2695 MappedOps
.push_back(Idx
);
2696 else if (Idx
< (int)SrcNumElts
)
2697 MappedOps
.push_back(Idx
- StartIdx
[0]);
2699 MappedOps
.push_back(Idx
- SrcNumElts
- StartIdx
[1] + MaskNumElts
);
2702 setValue(&I
, DAG
.getVectorShuffle(VT
, getCurDebugLoc(), Src1
, Src2
,
2708 // We can't use either concat vectors or extract subvectors so fall back to
2709 // replacing the shuffle with extract and build vector.
2710 // to insert and build vector.
2711 EVT EltVT
= VT
.getVectorElementType();
2712 EVT PtrVT
= TLI
.getPointerTy();
2713 SmallVector
<SDValue
,8> Ops
;
2714 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
2716 Ops
.push_back(DAG
.getUNDEF(EltVT
));
2721 if (Idx
< (int)SrcNumElts
)
2722 Res
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, getCurDebugLoc(),
2723 EltVT
, Src1
, DAG
.getConstant(Idx
, PtrVT
));
2725 Res
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, getCurDebugLoc(),
2727 DAG
.getConstant(Idx
- SrcNumElts
, PtrVT
));
2733 setValue(&I
, DAG
.getNode(ISD::BUILD_VECTOR
, getCurDebugLoc(),
2734 VT
, &Ops
[0], Ops
.size()));
2737 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst
&I
) {
2738 const Value
*Op0
= I
.getOperand(0);
2739 const Value
*Op1
= I
.getOperand(1);
2740 const Type
*AggTy
= I
.getType();
2741 const Type
*ValTy
= Op1
->getType();
2742 bool IntoUndef
= isa
<UndefValue
>(Op0
);
2743 bool FromUndef
= isa
<UndefValue
>(Op1
);
2745 unsigned LinearIndex
= ComputeLinearIndex(AggTy
, I
.idx_begin(), I
.idx_end());
2747 SmallVector
<EVT
, 4> AggValueVTs
;
2748 ComputeValueVTs(TLI
, AggTy
, AggValueVTs
);
2749 SmallVector
<EVT
, 4> ValValueVTs
;
2750 ComputeValueVTs(TLI
, ValTy
, ValValueVTs
);
2752 unsigned NumAggValues
= AggValueVTs
.size();
2753 unsigned NumValValues
= ValValueVTs
.size();
2754 SmallVector
<SDValue
, 4> Values(NumAggValues
);
2756 SDValue Agg
= getValue(Op0
);
2757 SDValue Val
= getValue(Op1
);
2759 // Copy the beginning value(s) from the original aggregate.
2760 for (; i
!= LinearIndex
; ++i
)
2761 Values
[i
] = IntoUndef
? DAG
.getUNDEF(AggValueVTs
[i
]) :
2762 SDValue(Agg
.getNode(), Agg
.getResNo() + i
);
2763 // Copy values from the inserted value(s).
2764 for (; i
!= LinearIndex
+ NumValValues
; ++i
)
2765 Values
[i
] = FromUndef
? DAG
.getUNDEF(AggValueVTs
[i
]) :
2766 SDValue(Val
.getNode(), Val
.getResNo() + i
- LinearIndex
);
2767 // Copy remaining value(s) from the original aggregate.
2768 for (; i
!= NumAggValues
; ++i
)
2769 Values
[i
] = IntoUndef
? DAG
.getUNDEF(AggValueVTs
[i
]) :
2770 SDValue(Agg
.getNode(), Agg
.getResNo() + i
);
2772 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurDebugLoc(),
2773 DAG
.getVTList(&AggValueVTs
[0], NumAggValues
),
2774 &Values
[0], NumAggValues
));
2777 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst
&I
) {
2778 const Value
*Op0
= I
.getOperand(0);
2779 const Type
*AggTy
= Op0
->getType();
2780 const Type
*ValTy
= I
.getType();
2781 bool OutOfUndef
= isa
<UndefValue
>(Op0
);
2783 unsigned LinearIndex
= ComputeLinearIndex(AggTy
, I
.idx_begin(), I
.idx_end());
2785 SmallVector
<EVT
, 4> ValValueVTs
;
2786 ComputeValueVTs(TLI
, ValTy
, ValValueVTs
);
2788 unsigned NumValValues
= ValValueVTs
.size();
2789 SmallVector
<SDValue
, 4> Values(NumValValues
);
2791 SDValue Agg
= getValue(Op0
);
2792 // Copy out the selected value(s).
2793 for (unsigned i
= LinearIndex
; i
!= LinearIndex
+ NumValValues
; ++i
)
2794 Values
[i
- LinearIndex
] =
2796 DAG
.getUNDEF(Agg
.getNode()->getValueType(Agg
.getResNo() + i
)) :
2797 SDValue(Agg
.getNode(), Agg
.getResNo() + i
);
2799 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurDebugLoc(),
2800 DAG
.getVTList(&ValValueVTs
[0], NumValValues
),
2801 &Values
[0], NumValValues
));
2804 void SelectionDAGBuilder::visitGetElementPtr(const User
&I
) {
2805 SDValue N
= getValue(I
.getOperand(0));
2806 const Type
*Ty
= I
.getOperand(0)->getType();
2808 for (GetElementPtrInst::const_op_iterator OI
= I
.op_begin()+1, E
= I
.op_end();
2810 const Value
*Idx
= *OI
;
2811 if (const StructType
*StTy
= dyn_cast
<StructType
>(Ty
)) {
2812 unsigned Field
= cast
<ConstantInt
>(Idx
)->getZExtValue();
2815 uint64_t Offset
= TD
->getStructLayout(StTy
)->getElementOffset(Field
);
2816 N
= DAG
.getNode(ISD::ADD
, getCurDebugLoc(), N
.getValueType(), N
,
2817 DAG
.getIntPtrConstant(Offset
));
2820 Ty
= StTy
->getElementType(Field
);
2822 Ty
= cast
<SequentialType
>(Ty
)->getElementType();
2824 // If this is a constant subscript, handle it quickly.
2825 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Idx
)) {
2826 if (CI
->isZero()) continue;
2828 TD
->getTypeAllocSize(Ty
)*cast
<ConstantInt
>(CI
)->getSExtValue();
2830 EVT PTy
= TLI
.getPointerTy();
2831 unsigned PtrBits
= PTy
.getSizeInBits();
2833 OffsVal
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(),
2835 DAG
.getConstant(Offs
, MVT::i64
));
2837 OffsVal
= DAG
.getIntPtrConstant(Offs
);
2839 N
= DAG
.getNode(ISD::ADD
, getCurDebugLoc(), N
.getValueType(), N
,
2844 // N = N + Idx * ElementSize;
2845 APInt ElementSize
= APInt(TLI
.getPointerTy().getSizeInBits(),
2846 TD
->getTypeAllocSize(Ty
));
2847 SDValue IdxN
= getValue(Idx
);
2849 // If the index is smaller or larger than intptr_t, truncate or extend
2851 IdxN
= DAG
.getSExtOrTrunc(IdxN
, getCurDebugLoc(), N
.getValueType());
2853 // If this is a multiply by a power of two, turn it into a shl
2854 // immediately. This is a very common case.
2855 if (ElementSize
!= 1) {
2856 if (ElementSize
.isPowerOf2()) {
2857 unsigned Amt
= ElementSize
.logBase2();
2858 IdxN
= DAG
.getNode(ISD::SHL
, getCurDebugLoc(),
2859 N
.getValueType(), IdxN
,
2860 DAG
.getConstant(Amt
, TLI
.getPointerTy()));
2862 SDValue Scale
= DAG
.getConstant(ElementSize
, TLI
.getPointerTy());
2863 IdxN
= DAG
.getNode(ISD::MUL
, getCurDebugLoc(),
2864 N
.getValueType(), IdxN
, Scale
);
2868 N
= DAG
.getNode(ISD::ADD
, getCurDebugLoc(),
2869 N
.getValueType(), N
, IdxN
);
2876 void SelectionDAGBuilder::visitAlloca(const AllocaInst
&I
) {
2877 // If this is a fixed sized alloca in the entry block of the function,
2878 // allocate it statically on the stack.
2879 if (FuncInfo
.StaticAllocaMap
.count(&I
))
2880 return; // getValue will auto-populate this.
2882 const Type
*Ty
= I
.getAllocatedType();
2883 uint64_t TySize
= TLI
.getTargetData()->getTypeAllocSize(Ty
);
2885 std::max((unsigned)TLI
.getTargetData()->getPrefTypeAlignment(Ty
),
2888 SDValue AllocSize
= getValue(I
.getArraySize());
2890 EVT IntPtr
= TLI
.getPointerTy();
2891 if (AllocSize
.getValueType() != IntPtr
)
2892 AllocSize
= DAG
.getZExtOrTrunc(AllocSize
, getCurDebugLoc(), IntPtr
);
2894 AllocSize
= DAG
.getNode(ISD::MUL
, getCurDebugLoc(), IntPtr
,
2896 DAG
.getConstant(TySize
, IntPtr
));
2898 // Handle alignment. If the requested alignment is less than or equal to
2899 // the stack alignment, ignore it. If the size is greater than or equal to
2900 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2901 unsigned StackAlign
= TM
.getFrameInfo()->getStackAlignment();
2902 if (Align
<= StackAlign
)
2905 // Round the size of the allocation up to the stack alignment size
2906 // by add SA-1 to the size.
2907 AllocSize
= DAG
.getNode(ISD::ADD
, getCurDebugLoc(),
2908 AllocSize
.getValueType(), AllocSize
,
2909 DAG
.getIntPtrConstant(StackAlign
-1));
2911 // Mask out the low bits for alignment purposes.
2912 AllocSize
= DAG
.getNode(ISD::AND
, getCurDebugLoc(),
2913 AllocSize
.getValueType(), AllocSize
,
2914 DAG
.getIntPtrConstant(~(uint64_t)(StackAlign
-1)));
2916 SDValue Ops
[] = { getRoot(), AllocSize
, DAG
.getIntPtrConstant(Align
) };
2917 SDVTList VTs
= DAG
.getVTList(AllocSize
.getValueType(), MVT::Other
);
2918 SDValue DSA
= DAG
.getNode(ISD::DYNAMIC_STACKALLOC
, getCurDebugLoc(),
2921 DAG
.setRoot(DSA
.getValue(1));
2923 // Inform the Frame Information that we have just allocated a variable-sized
2925 FuncInfo
.MF
->getFrameInfo()->CreateVariableSizedObject(Align
? Align
: 1);
2928 void SelectionDAGBuilder::visitLoad(const LoadInst
&I
) {
2929 const Value
*SV
= I
.getOperand(0);
2930 SDValue Ptr
= getValue(SV
);
2932 const Type
*Ty
= I
.getType();
2934 bool isVolatile
= I
.isVolatile();
2935 bool isNonTemporal
= I
.getMetadata("nontemporal") != 0;
2936 unsigned Alignment
= I
.getAlignment();
2937 const MDNode
*TBAAInfo
= I
.getMetadata(LLVMContext::MD_tbaa
);
2939 SmallVector
<EVT
, 4> ValueVTs
;
2940 SmallVector
<uint64_t, 4> Offsets
;
2941 ComputeValueVTs(TLI
, Ty
, ValueVTs
, &Offsets
);
2942 unsigned NumValues
= ValueVTs
.size();
2947 bool ConstantMemory
= false;
2949 // Serialize volatile loads with other side effects.
2951 else if (AA
->pointsToConstantMemory(
2952 AliasAnalysis::Location(SV
, AA
->getTypeStoreSize(Ty
), TBAAInfo
))) {
2953 // Do not serialize (non-volatile) loads of constant memory with anything.
2954 Root
= DAG
.getEntryNode();
2955 ConstantMemory
= true;
2957 // Do not serialize non-volatile loads against each other.
2958 Root
= DAG
.getRoot();
2961 SmallVector
<SDValue
, 4> Values(NumValues
);
2962 SmallVector
<SDValue
, 4> Chains(NumValues
);
2963 EVT PtrVT
= Ptr
.getValueType();
2964 for (unsigned i
= 0; i
!= NumValues
; ++i
) {
2965 SDValue A
= DAG
.getNode(ISD::ADD
, getCurDebugLoc(),
2967 DAG
.getConstant(Offsets
[i
], PtrVT
));
2968 SDValue L
= DAG
.getLoad(ValueVTs
[i
], getCurDebugLoc(), Root
,
2969 A
, MachinePointerInfo(SV
, Offsets
[i
]), isVolatile
,
2970 isNonTemporal
, Alignment
, TBAAInfo
);
2973 Chains
[i
] = L
.getValue(1);
2976 if (!ConstantMemory
) {
2977 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, getCurDebugLoc(),
2978 MVT::Other
, &Chains
[0], NumValues
);
2982 PendingLoads
.push_back(Chain
);
2985 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurDebugLoc(),
2986 DAG
.getVTList(&ValueVTs
[0], NumValues
),
2987 &Values
[0], NumValues
));
2990 void SelectionDAGBuilder::visitStore(const StoreInst
&I
) {
2991 const Value
*SrcV
= I
.getOperand(0);
2992 const Value
*PtrV
= I
.getOperand(1);
2994 SmallVector
<EVT
, 4> ValueVTs
;
2995 SmallVector
<uint64_t, 4> Offsets
;
2996 ComputeValueVTs(TLI
, SrcV
->getType(), ValueVTs
, &Offsets
);
2997 unsigned NumValues
= ValueVTs
.size();
3001 // Get the lowered operands. Note that we do this after
3002 // checking if NumResults is zero, because with zero results
3003 // the operands won't have values in the map.
3004 SDValue Src
= getValue(SrcV
);
3005 SDValue Ptr
= getValue(PtrV
);
3007 SDValue Root
= getRoot();
3008 SmallVector
<SDValue
, 4> Chains(NumValues
);
3009 EVT PtrVT
= Ptr
.getValueType();
3010 bool isVolatile
= I
.isVolatile();
3011 bool isNonTemporal
= I
.getMetadata("nontemporal") != 0;
3012 unsigned Alignment
= I
.getAlignment();
3013 const MDNode
*TBAAInfo
= I
.getMetadata(LLVMContext::MD_tbaa
);
3015 for (unsigned i
= 0; i
!= NumValues
; ++i
) {
3016 SDValue Add
= DAG
.getNode(ISD::ADD
, getCurDebugLoc(), PtrVT
, Ptr
,
3017 DAG
.getConstant(Offsets
[i
], PtrVT
));
3018 Chains
[i
] = DAG
.getStore(Root
, getCurDebugLoc(),
3019 SDValue(Src
.getNode(), Src
.getResNo() + i
),
3020 Add
, MachinePointerInfo(PtrV
, Offsets
[i
]),
3021 isVolatile
, isNonTemporal
, Alignment
, TBAAInfo
);
3024 SDValue StoreNode
= DAG
.getNode(ISD::TokenFactor
, getCurDebugLoc(),
3025 MVT::Other
, &Chains
[0], NumValues
);
3027 AssignOrderingToNode(StoreNode
.getNode());
3028 DAG
.setRoot(StoreNode
);
3031 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3033 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst
&I
,
3034 unsigned Intrinsic
) {
3035 bool HasChain
= !I
.doesNotAccessMemory();
3036 bool OnlyLoad
= HasChain
&& I
.onlyReadsMemory();
3038 // Build the operand list.
3039 SmallVector
<SDValue
, 8> Ops
;
3040 if (HasChain
) { // If this intrinsic has side-effects, chainify it.
3042 // We don't need to serialize loads against other loads.
3043 Ops
.push_back(DAG
.getRoot());
3045 Ops
.push_back(getRoot());
3049 // Info is set by getTgtMemInstrinsic
3050 TargetLowering::IntrinsicInfo Info
;
3051 bool IsTgtIntrinsic
= TLI
.getTgtMemIntrinsic(Info
, I
, Intrinsic
);
3053 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3054 if (!IsTgtIntrinsic
|| Info
.opc
== ISD::INTRINSIC_VOID
||
3055 Info
.opc
== ISD::INTRINSIC_W_CHAIN
)
3056 Ops
.push_back(DAG
.getConstant(Intrinsic
, TLI
.getPointerTy()));
3058 // Add all operands of the call to the operand list.
3059 for (unsigned i
= 0, e
= I
.getNumArgOperands(); i
!= e
; ++i
) {
3060 SDValue Op
= getValue(I
.getArgOperand(i
));
3061 assert(TLI
.isTypeLegal(Op
.getValueType()) &&
3062 "Intrinsic uses a non-legal type?");
3066 SmallVector
<EVT
, 4> ValueVTs
;
3067 ComputeValueVTs(TLI
, I
.getType(), ValueVTs
);
3069 for (unsigned Val
= 0, E
= ValueVTs
.size(); Val
!= E
; ++Val
) {
3070 assert(TLI
.isTypeLegal(ValueVTs
[Val
]) &&
3071 "Intrinsic uses a non-legal type?");
3076 ValueVTs
.push_back(MVT::Other
);
3078 SDVTList VTs
= DAG
.getVTList(ValueVTs
.data(), ValueVTs
.size());
3082 if (IsTgtIntrinsic
) {
3083 // This is target intrinsic that touches memory
3084 Result
= DAG
.getMemIntrinsicNode(Info
.opc
, getCurDebugLoc(),
3085 VTs
, &Ops
[0], Ops
.size(),
3087 MachinePointerInfo(Info
.ptrVal
, Info
.offset
),
3088 Info
.align
, Info
.vol
,
3089 Info
.readMem
, Info
.writeMem
);
3090 } else if (!HasChain
) {
3091 Result
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, getCurDebugLoc(),
3092 VTs
, &Ops
[0], Ops
.size());
3093 } else if (!I
.getType()->isVoidTy()) {
3094 Result
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, getCurDebugLoc(),
3095 VTs
, &Ops
[0], Ops
.size());
3097 Result
= DAG
.getNode(ISD::INTRINSIC_VOID
, getCurDebugLoc(),
3098 VTs
, &Ops
[0], Ops
.size());
3102 SDValue Chain
= Result
.getValue(Result
.getNode()->getNumValues()-1);
3104 PendingLoads
.push_back(Chain
);
3109 if (!I
.getType()->isVoidTy()) {
3110 if (const VectorType
*PTy
= dyn_cast
<VectorType
>(I
.getType())) {
3111 EVT VT
= TLI
.getValueType(PTy
);
3112 Result
= DAG
.getNode(ISD::BIT_CONVERT
, getCurDebugLoc(), VT
, Result
);
3115 setValue(&I
, Result
);
3119 /// GetSignificand - Get the significand and build it into a floating-point
3120 /// number with exponent of 1:
3122 /// Op = (Op & 0x007fffff) | 0x3f800000;
3124 /// where Op is the hexidecimal representation of floating point value.
3126 GetSignificand(SelectionDAG
&DAG
, SDValue Op
, DebugLoc dl
) {
3127 SDValue t1
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Op
,
3128 DAG
.getConstant(0x007fffff, MVT::i32
));
3129 SDValue t2
= DAG
.getNode(ISD::OR
, dl
, MVT::i32
, t1
,
3130 DAG
.getConstant(0x3f800000, MVT::i32
));
3131 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::f32
, t2
);
3134 /// GetExponent - Get the exponent:
3136 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3138 /// where Op is the hexidecimal representation of floating point value.
3140 GetExponent(SelectionDAG
&DAG
, SDValue Op
, const TargetLowering
&TLI
,
3142 SDValue t0
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Op
,
3143 DAG
.getConstant(0x7f800000, MVT::i32
));
3144 SDValue t1
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, t0
,
3145 DAG
.getConstant(23, TLI
.getPointerTy()));
3146 SDValue t2
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, t1
,
3147 DAG
.getConstant(127, MVT::i32
));
3148 return DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f32
, t2
);
3151 /// getF32Constant - Get 32-bit floating point constant.
3153 getF32Constant(SelectionDAG
&DAG
, unsigned Flt
) {
3154 return DAG
.getConstantFP(APFloat(APInt(32, Flt
)), MVT::f32
);
3157 /// Inlined utility function to implement binary input atomic intrinsics for
3158 /// visitIntrinsicCall: I is a call instruction
3159 /// Op is the associated NodeType for I
3161 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst
& I
,
3163 SDValue Root
= getRoot();
3165 DAG
.getAtomic(Op
, getCurDebugLoc(),
3166 getValue(I
.getArgOperand(1)).getValueType().getSimpleVT(),
3168 getValue(I
.getArgOperand(0)),
3169 getValue(I
.getArgOperand(1)),
3170 I
.getArgOperand(0));
3172 DAG
.setRoot(L
.getValue(1));
3176 // implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3178 SelectionDAGBuilder::implVisitAluOverflow(const CallInst
&I
, ISD::NodeType Op
) {
3179 SDValue Op1
= getValue(I
.getArgOperand(0));
3180 SDValue Op2
= getValue(I
.getArgOperand(1));
3182 SDVTList VTs
= DAG
.getVTList(Op1
.getValueType(), MVT::i1
);
3183 setValue(&I
, DAG
.getNode(Op
, getCurDebugLoc(), VTs
, Op1
, Op2
));
3187 /// visitExp - Lower an exp intrinsic. Handles the special sequences for
3188 /// limited-precision mode.
3190 SelectionDAGBuilder::visitExp(const CallInst
&I
) {
3192 DebugLoc dl
= getCurDebugLoc();
3194 if (getValue(I
.getArgOperand(0)).getValueType() == MVT::f32
&&
3195 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3196 SDValue Op
= getValue(I
.getArgOperand(0));
3198 // Put the exponent in the right bit position for later addition to the
3201 // #define LOG2OFe 1.4426950f
3202 // IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3203 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Op
,
3204 getF32Constant(DAG
, 0x3fb8aa3b));
3205 SDValue IntegerPartOfX
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::i32
, t0
);
3207 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3208 SDValue t1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f32
, IntegerPartOfX
);
3209 SDValue X
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
, t1
);
3211 // IntegerPartOfX <<= 23;
3212 IntegerPartOfX
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, IntegerPartOfX
,
3213 DAG
.getConstant(23, TLI
.getPointerTy()));
3215 if (LimitFloatPrecision
<= 6) {
3216 // For floating-point precision of 6:
3218 // TwoToFractionalPartOfX =
3220 // (0.735607626f + 0.252464424f * x) * x;
3222 // error 0.0144103317, which is 6 bits
3223 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3224 getF32Constant(DAG
, 0x3e814304));
3225 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3226 getF32Constant(DAG
, 0x3f3c50c8));
3227 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3228 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3229 getF32Constant(DAG
, 0x3f7f5e7e));
3230 SDValue TwoToFracPartOfX
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,MVT::i32
, t5
);
3232 // Add the exponent into the result in integer domain.
3233 SDValue t6
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
,
3234 TwoToFracPartOfX
, IntegerPartOfX
);
3236 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::f32
, t6
);
3237 } else if (LimitFloatPrecision
> 6 && LimitFloatPrecision
<= 12) {
3238 // For floating-point precision of 12:
3240 // TwoToFractionalPartOfX =
3243 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3245 // 0.000107046256 error, which is 13 to 14 bits
3246 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3247 getF32Constant(DAG
, 0x3da235e3));
3248 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3249 getF32Constant(DAG
, 0x3e65b8f3));
3250 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3251 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3252 getF32Constant(DAG
, 0x3f324b07));
3253 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3254 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
3255 getF32Constant(DAG
, 0x3f7ff8fd));
3256 SDValue TwoToFracPartOfX
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,MVT::i32
, t7
);
3258 // Add the exponent into the result in integer domain.
3259 SDValue t8
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
,
3260 TwoToFracPartOfX
, IntegerPartOfX
);
3262 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::f32
, t8
);
3263 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3264 // For floating-point precision of 18:
3266 // TwoToFractionalPartOfX =
3270 // (0.554906021e-1f +
3271 // (0.961591928e-2f +
3272 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3274 // error 2.47208000*10^(-7), which is better than 18 bits
3275 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3276 getF32Constant(DAG
, 0x3924b03e));
3277 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3278 getF32Constant(DAG
, 0x3ab24b87));
3279 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3280 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3281 getF32Constant(DAG
, 0x3c1d8c17));
3282 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3283 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
3284 getF32Constant(DAG
, 0x3d634a1d));
3285 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
3286 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
3287 getF32Constant(DAG
, 0x3e75fe14));
3288 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
3289 SDValue t11
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t10
,
3290 getF32Constant(DAG
, 0x3f317234));
3291 SDValue t12
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t11
, X
);
3292 SDValue t13
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t12
,
3293 getF32Constant(DAG
, 0x3f800000));
3294 SDValue TwoToFracPartOfX
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3297 // Add the exponent into the result in integer domain.
3298 SDValue t14
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
,
3299 TwoToFracPartOfX
, IntegerPartOfX
);
3301 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::f32
, t14
);
3304 // No special expansion.
3305 result
= DAG
.getNode(ISD::FEXP
, dl
,
3306 getValue(I
.getArgOperand(0)).getValueType(),
3307 getValue(I
.getArgOperand(0)));
3310 setValue(&I
, result
);
3313 /// visitLog - Lower a log intrinsic. Handles the special sequences for
3314 /// limited-precision mode.
3316 SelectionDAGBuilder::visitLog(const CallInst
&I
) {
3318 DebugLoc dl
= getCurDebugLoc();
3320 if (getValue(I
.getArgOperand(0)).getValueType() == MVT::f32
&&
3321 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3322 SDValue Op
= getValue(I
.getArgOperand(0));
3323 SDValue Op1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, Op
);
3325 // Scale the exponent by log(2) [0.69314718f].
3326 SDValue Exp
= GetExponent(DAG
, Op1
, TLI
, dl
);
3327 SDValue LogOfExponent
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Exp
,
3328 getF32Constant(DAG
, 0x3f317218));
3330 // Get the significand and build it into a floating-point number with
3332 SDValue X
= GetSignificand(DAG
, Op1
, dl
);
3334 if (LimitFloatPrecision
<= 6) {
3335 // For floating-point precision of 6:
3339 // (1.4034025f - 0.23903021f * x) * x;
3341 // error 0.0034276066, which is better than 8 bits
3342 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3343 getF32Constant(DAG
, 0xbe74c456));
3344 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3345 getF32Constant(DAG
, 0x3fb3a2b1));
3346 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3347 SDValue LogOfMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3348 getF32Constant(DAG
, 0x3f949a29));
3350 result
= DAG
.getNode(ISD::FADD
, dl
,
3351 MVT::f32
, LogOfExponent
, LogOfMantissa
);
3352 } else if (LimitFloatPrecision
> 6 && LimitFloatPrecision
<= 12) {
3353 // For floating-point precision of 12:
3359 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3361 // error 0.000061011436, which is 14 bits
3362 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3363 getF32Constant(DAG
, 0xbd67b6d6));
3364 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3365 getF32Constant(DAG
, 0x3ee4f4b8));
3366 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3367 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3368 getF32Constant(DAG
, 0x3fbc278b));
3369 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3370 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3371 getF32Constant(DAG
, 0x40348e95));
3372 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3373 SDValue LogOfMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
3374 getF32Constant(DAG
, 0x3fdef31a));
3376 result
= DAG
.getNode(ISD::FADD
, dl
,
3377 MVT::f32
, LogOfExponent
, LogOfMantissa
);
3378 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3379 // For floating-point precision of 18:
3387 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3389 // error 0.0000023660568, which is better than 18 bits
3390 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3391 getF32Constant(DAG
, 0xbc91e5ac));
3392 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3393 getF32Constant(DAG
, 0x3e4350aa));
3394 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3395 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3396 getF32Constant(DAG
, 0x3f60d3e3));
3397 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3398 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3399 getF32Constant(DAG
, 0x4011cdf0));
3400 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3401 SDValue t7
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
3402 getF32Constant(DAG
, 0x406cfd1c));
3403 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
3404 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
3405 getF32Constant(DAG
, 0x408797cb));
3406 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
3407 SDValue LogOfMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t10
,
3408 getF32Constant(DAG
, 0x4006dcab));
3410 result
= DAG
.getNode(ISD::FADD
, dl
,
3411 MVT::f32
, LogOfExponent
, LogOfMantissa
);
3414 // No special expansion.
3415 result
= DAG
.getNode(ISD::FLOG
, dl
,
3416 getValue(I
.getArgOperand(0)).getValueType(),
3417 getValue(I
.getArgOperand(0)));
3420 setValue(&I
, result
);
3423 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3424 /// limited-precision mode.
3426 SelectionDAGBuilder::visitLog2(const CallInst
&I
) {
3428 DebugLoc dl
= getCurDebugLoc();
3430 if (getValue(I
.getArgOperand(0)).getValueType() == MVT::f32
&&
3431 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3432 SDValue Op
= getValue(I
.getArgOperand(0));
3433 SDValue Op1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, Op
);
3435 // Get the exponent.
3436 SDValue LogOfExponent
= GetExponent(DAG
, Op1
, TLI
, dl
);
3438 // Get the significand and build it into a floating-point number with
3440 SDValue X
= GetSignificand(DAG
, Op1
, dl
);
3442 // Different possible minimax approximations of significand in
3443 // floating-point for various degrees of accuracy over [1,2].
3444 if (LimitFloatPrecision
<= 6) {
3445 // For floating-point precision of 6:
3447 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3449 // error 0.0049451742, which is more than 7 bits
3450 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3451 getF32Constant(DAG
, 0xbeb08fe0));
3452 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3453 getF32Constant(DAG
, 0x40019463));
3454 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3455 SDValue Log2ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3456 getF32Constant(DAG
, 0x3fd6633d));
3458 result
= DAG
.getNode(ISD::FADD
, dl
,
3459 MVT::f32
, LogOfExponent
, Log2ofMantissa
);
3460 } else if (LimitFloatPrecision
> 6 && LimitFloatPrecision
<= 12) {
3461 // For floating-point precision of 12:
3467 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3469 // error 0.0000876136000, which is better than 13 bits
3470 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3471 getF32Constant(DAG
, 0xbda7262e));
3472 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3473 getF32Constant(DAG
, 0x3f25280b));
3474 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3475 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3476 getF32Constant(DAG
, 0x4007b923));
3477 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3478 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3479 getF32Constant(DAG
, 0x40823e2f));
3480 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3481 SDValue Log2ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
3482 getF32Constant(DAG
, 0x4020d29c));
3484 result
= DAG
.getNode(ISD::FADD
, dl
,
3485 MVT::f32
, LogOfExponent
, Log2ofMantissa
);
3486 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3487 // For floating-point precision of 18:
3496 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3498 // error 0.0000018516, which is better than 18 bits
3499 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3500 getF32Constant(DAG
, 0xbcd2769e));
3501 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3502 getF32Constant(DAG
, 0x3e8ce0b9));
3503 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3504 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3505 getF32Constant(DAG
, 0x3fa22ae7));
3506 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3507 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3508 getF32Constant(DAG
, 0x40525723));
3509 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3510 SDValue t7
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
3511 getF32Constant(DAG
, 0x40aaf200));
3512 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
3513 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
3514 getF32Constant(DAG
, 0x40c39dad));
3515 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
3516 SDValue Log2ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t10
,
3517 getF32Constant(DAG
, 0x4042902c));
3519 result
= DAG
.getNode(ISD::FADD
, dl
,
3520 MVT::f32
, LogOfExponent
, Log2ofMantissa
);
3523 // No special expansion.
3524 result
= DAG
.getNode(ISD::FLOG2
, dl
,
3525 getValue(I
.getArgOperand(0)).getValueType(),
3526 getValue(I
.getArgOperand(0)));
3529 setValue(&I
, result
);
3532 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3533 /// limited-precision mode.
3535 SelectionDAGBuilder::visitLog10(const CallInst
&I
) {
3537 DebugLoc dl
= getCurDebugLoc();
3539 if (getValue(I
.getArgOperand(0)).getValueType() == MVT::f32
&&
3540 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3541 SDValue Op
= getValue(I
.getArgOperand(0));
3542 SDValue Op1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, Op
);
3544 // Scale the exponent by log10(2) [0.30102999f].
3545 SDValue Exp
= GetExponent(DAG
, Op1
, TLI
, dl
);
3546 SDValue LogOfExponent
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Exp
,
3547 getF32Constant(DAG
, 0x3e9a209a));
3549 // Get the significand and build it into a floating-point number with
3551 SDValue X
= GetSignificand(DAG
, Op1
, dl
);
3553 if (LimitFloatPrecision
<= 6) {
3554 // For floating-point precision of 6:
3556 // Log10ofMantissa =
3558 // (0.60948995f - 0.10380950f * x) * x;
3560 // error 0.0014886165, which is 6 bits
3561 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3562 getF32Constant(DAG
, 0xbdd49a13));
3563 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3564 getF32Constant(DAG
, 0x3f1c0789));
3565 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3566 SDValue Log10ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3567 getF32Constant(DAG
, 0x3f011300));
3569 result
= DAG
.getNode(ISD::FADD
, dl
,
3570 MVT::f32
, LogOfExponent
, Log10ofMantissa
);
3571 } else if (LimitFloatPrecision
> 6 && LimitFloatPrecision
<= 12) {
3572 // For floating-point precision of 12:
3574 // Log10ofMantissa =
3577 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3579 // error 0.00019228036, which is better than 12 bits
3580 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3581 getF32Constant(DAG
, 0x3d431f31));
3582 SDValue t1
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
,
3583 getF32Constant(DAG
, 0x3ea21fb2));
3584 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3585 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3586 getF32Constant(DAG
, 0x3f6ae232));
3587 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3588 SDValue Log10ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t4
,
3589 getF32Constant(DAG
, 0x3f25f7c3));
3591 result
= DAG
.getNode(ISD::FADD
, dl
,
3592 MVT::f32
, LogOfExponent
, Log10ofMantissa
);
3593 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3594 // For floating-point precision of 18:
3596 // Log10ofMantissa =
3601 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3603 // error 0.0000037995730, which is better than 18 bits
3604 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3605 getF32Constant(DAG
, 0x3c5d51ce));
3606 SDValue t1
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
,
3607 getF32Constant(DAG
, 0x3e00685a));
3608 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3609 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3610 getF32Constant(DAG
, 0x3efb6798));
3611 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3612 SDValue t5
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t4
,
3613 getF32Constant(DAG
, 0x3f88d192));
3614 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3615 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
3616 getF32Constant(DAG
, 0x3fc4316c));
3617 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
3618 SDValue Log10ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t8
,
3619 getF32Constant(DAG
, 0x3f57ce70));
3621 result
= DAG
.getNode(ISD::FADD
, dl
,
3622 MVT::f32
, LogOfExponent
, Log10ofMantissa
);
3625 // No special expansion.
3626 result
= DAG
.getNode(ISD::FLOG10
, dl
,
3627 getValue(I
.getArgOperand(0)).getValueType(),
3628 getValue(I
.getArgOperand(0)));
3631 setValue(&I
, result
);
3634 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3635 /// limited-precision mode.
3637 SelectionDAGBuilder::visitExp2(const CallInst
&I
) {
3639 DebugLoc dl
= getCurDebugLoc();
3641 if (getValue(I
.getArgOperand(0)).getValueType() == MVT::f32
&&
3642 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3643 SDValue Op
= getValue(I
.getArgOperand(0));
3645 SDValue IntegerPartOfX
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::i32
, Op
);
3647 // FractionalPartOfX = x - (float)IntegerPartOfX;
3648 SDValue t1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f32
, IntegerPartOfX
);
3649 SDValue X
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, Op
, t1
);
3651 // IntegerPartOfX <<= 23;
3652 IntegerPartOfX
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, IntegerPartOfX
,
3653 DAG
.getConstant(23, TLI
.getPointerTy()));
3655 if (LimitFloatPrecision
<= 6) {
3656 // For floating-point precision of 6:
3658 // TwoToFractionalPartOfX =
3660 // (0.735607626f + 0.252464424f * x) * x;
3662 // error 0.0144103317, which is 6 bits
3663 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3664 getF32Constant(DAG
, 0x3e814304));
3665 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3666 getF32Constant(DAG
, 0x3f3c50c8));
3667 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3668 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3669 getF32Constant(DAG
, 0x3f7f5e7e));
3670 SDValue t6
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, t5
);
3671 SDValue TwoToFractionalPartOfX
=
3672 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t6
, IntegerPartOfX
);
3674 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3675 MVT::f32
, TwoToFractionalPartOfX
);
3676 } else if (LimitFloatPrecision
> 6 && LimitFloatPrecision
<= 12) {
3677 // For floating-point precision of 12:
3679 // TwoToFractionalPartOfX =
3682 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3684 // error 0.000107046256, which is 13 to 14 bits
3685 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3686 getF32Constant(DAG
, 0x3da235e3));
3687 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3688 getF32Constant(DAG
, 0x3e65b8f3));
3689 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3690 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3691 getF32Constant(DAG
, 0x3f324b07));
3692 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3693 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
3694 getF32Constant(DAG
, 0x3f7ff8fd));
3695 SDValue t8
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, t7
);
3696 SDValue TwoToFractionalPartOfX
=
3697 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t8
, IntegerPartOfX
);
3699 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3700 MVT::f32
, TwoToFractionalPartOfX
);
3701 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3702 // For floating-point precision of 18:
3704 // TwoToFractionalPartOfX =
3708 // (0.554906021e-1f +
3709 // (0.961591928e-2f +
3710 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3711 // error 2.47208000*10^(-7), which is better than 18 bits
3712 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3713 getF32Constant(DAG
, 0x3924b03e));
3714 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3715 getF32Constant(DAG
, 0x3ab24b87));
3716 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3717 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3718 getF32Constant(DAG
, 0x3c1d8c17));
3719 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3720 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
3721 getF32Constant(DAG
, 0x3d634a1d));
3722 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
3723 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
3724 getF32Constant(DAG
, 0x3e75fe14));
3725 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
3726 SDValue t11
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t10
,
3727 getF32Constant(DAG
, 0x3f317234));
3728 SDValue t12
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t11
, X
);
3729 SDValue t13
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t12
,
3730 getF32Constant(DAG
, 0x3f800000));
3731 SDValue t14
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, t13
);
3732 SDValue TwoToFractionalPartOfX
=
3733 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t14
, IntegerPartOfX
);
3735 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3736 MVT::f32
, TwoToFractionalPartOfX
);
3739 // No special expansion.
3740 result
= DAG
.getNode(ISD::FEXP2
, dl
,
3741 getValue(I
.getArgOperand(0)).getValueType(),
3742 getValue(I
.getArgOperand(0)));
3745 setValue(&I
, result
);
3748 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
3749 /// limited-precision mode with x == 10.0f.
3751 SelectionDAGBuilder::visitPow(const CallInst
&I
) {
3753 const Value
*Val
= I
.getArgOperand(0);
3754 DebugLoc dl
= getCurDebugLoc();
3755 bool IsExp10
= false;
3757 if (getValue(Val
).getValueType() == MVT::f32
&&
3758 getValue(I
.getArgOperand(1)).getValueType() == MVT::f32
&&
3759 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3760 if (Constant
*C
= const_cast<Constant
*>(dyn_cast
<Constant
>(Val
))) {
3761 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
)) {
3763 IsExp10
= CFP
->getValueAPF().bitwiseIsEqual(Ten
);
3768 if (IsExp10
&& LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3769 SDValue Op
= getValue(I
.getArgOperand(1));
3771 // Put the exponent in the right bit position for later addition to the
3774 // #define LOG2OF10 3.3219281f
3775 // IntegerPartOfX = (int32_t)(x * LOG2OF10);
3776 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Op
,
3777 getF32Constant(DAG
, 0x40549a78));
3778 SDValue IntegerPartOfX
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::i32
, t0
);
3780 // FractionalPartOfX = x - (float)IntegerPartOfX;
3781 SDValue t1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f32
, IntegerPartOfX
);
3782 SDValue X
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
, t1
);
3784 // IntegerPartOfX <<= 23;
3785 IntegerPartOfX
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, IntegerPartOfX
,
3786 DAG
.getConstant(23, TLI
.getPointerTy()));
3788 if (LimitFloatPrecision
<= 6) {
3789 // For floating-point precision of 6:
3791 // twoToFractionalPartOfX =
3793 // (0.735607626f + 0.252464424f * x) * x;
3795 // error 0.0144103317, which is 6 bits
3796 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3797 getF32Constant(DAG
, 0x3e814304));
3798 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3799 getF32Constant(DAG
, 0x3f3c50c8));
3800 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3801 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3802 getF32Constant(DAG
, 0x3f7f5e7e));
3803 SDValue t6
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, t5
);
3804 SDValue TwoToFractionalPartOfX
=
3805 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t6
, IntegerPartOfX
);
3807 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3808 MVT::f32
, TwoToFractionalPartOfX
);
3809 } else if (LimitFloatPrecision
> 6 && LimitFloatPrecision
<= 12) {
3810 // For floating-point precision of 12:
3812 // TwoToFractionalPartOfX =
3815 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3817 // error 0.000107046256, which is 13 to 14 bits
3818 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3819 getF32Constant(DAG
, 0x3da235e3));
3820 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3821 getF32Constant(DAG
, 0x3e65b8f3));
3822 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3823 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3824 getF32Constant(DAG
, 0x3f324b07));
3825 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3826 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
3827 getF32Constant(DAG
, 0x3f7ff8fd));
3828 SDValue t8
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, t7
);
3829 SDValue TwoToFractionalPartOfX
=
3830 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t8
, IntegerPartOfX
);
3832 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3833 MVT::f32
, TwoToFractionalPartOfX
);
3834 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3835 // For floating-point precision of 18:
3837 // TwoToFractionalPartOfX =
3841 // (0.554906021e-1f +
3842 // (0.961591928e-2f +
3843 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3844 // error 2.47208000*10^(-7), which is better than 18 bits
3845 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3846 getF32Constant(DAG
, 0x3924b03e));
3847 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3848 getF32Constant(DAG
, 0x3ab24b87));
3849 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3850 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3851 getF32Constant(DAG
, 0x3c1d8c17));
3852 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3853 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
3854 getF32Constant(DAG
, 0x3d634a1d));
3855 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
3856 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
3857 getF32Constant(DAG
, 0x3e75fe14));
3858 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
3859 SDValue t11
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t10
,
3860 getF32Constant(DAG
, 0x3f317234));
3861 SDValue t12
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t11
, X
);
3862 SDValue t13
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t12
,
3863 getF32Constant(DAG
, 0x3f800000));
3864 SDValue t14
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, t13
);
3865 SDValue TwoToFractionalPartOfX
=
3866 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t14
, IntegerPartOfX
);
3868 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3869 MVT::f32
, TwoToFractionalPartOfX
);
3872 // No special expansion.
3873 result
= DAG
.getNode(ISD::FPOW
, dl
,
3874 getValue(I
.getArgOperand(0)).getValueType(),
3875 getValue(I
.getArgOperand(0)),
3876 getValue(I
.getArgOperand(1)));
3879 setValue(&I
, result
);
3883 /// ExpandPowI - Expand a llvm.powi intrinsic.
3884 static SDValue
ExpandPowI(DebugLoc DL
, SDValue LHS
, SDValue RHS
,
3885 SelectionDAG
&DAG
) {
3886 // If RHS is a constant, we can expand this out to a multiplication tree,
3887 // otherwise we end up lowering to a call to __powidf2 (for example). When
3888 // optimizing for size, we only want to do this if the expansion would produce
3889 // a small number of multiplies, otherwise we do the full expansion.
3890 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
)) {
3891 // Get the exponent as a positive value.
3892 unsigned Val
= RHSC
->getSExtValue();
3893 if ((int)Val
< 0) Val
= -Val
;
3895 // powi(x, 0) -> 1.0
3897 return DAG
.getConstantFP(1.0, LHS
.getValueType());
3899 const Function
*F
= DAG
.getMachineFunction().getFunction();
3900 if (!F
->hasFnAttr(Attribute::OptimizeForSize
) ||
3901 // If optimizing for size, don't insert too many multiplies. This
3902 // inserts up to 5 multiplies.
3903 CountPopulation_32(Val
)+Log2_32(Val
) < 7) {
3904 // We use the simple binary decomposition method to generate the multiply
3905 // sequence. There are more optimal ways to do this (for example,
3906 // powi(x,15) generates one more multiply than it should), but this has
3907 // the benefit of being both really simple and much better than a libcall.
3908 SDValue Res
; // Logically starts equal to 1.0
3909 SDValue CurSquare
= LHS
;
3913 Res
= DAG
.getNode(ISD::FMUL
, DL
,Res
.getValueType(), Res
, CurSquare
);
3915 Res
= CurSquare
; // 1.0*CurSquare.
3918 CurSquare
= DAG
.getNode(ISD::FMUL
, DL
, CurSquare
.getValueType(),
3919 CurSquare
, CurSquare
);
3923 // If the original was negative, invert the result, producing 1/(x*x*x).
3924 if (RHSC
->getSExtValue() < 0)
3925 Res
= DAG
.getNode(ISD::FDIV
, DL
, LHS
.getValueType(),
3926 DAG
.getConstantFP(1.0, LHS
.getValueType()), Res
);
3931 // Otherwise, expand to a libcall.
3932 return DAG
.getNode(ISD::FPOWI
, DL
, LHS
.getValueType(), LHS
, RHS
);
3935 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
3936 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
3937 /// At the end of instruction selection, they will be inserted to the entry BB.
3939 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value
*V
, MDNode
*Variable
,
3942 const Argument
*Arg
= dyn_cast
<Argument
>(V
);
3946 MachineFunction
&MF
= DAG
.getMachineFunction();
3947 const TargetInstrInfo
*TII
= DAG
.getTarget().getInstrInfo();
3948 const TargetRegisterInfo
*TRI
= DAG
.getTarget().getRegisterInfo();
3950 // Ignore inlined function arguments here.
3951 DIVariable
DV(Variable
);
3952 if (DV
.isInlinedFnArgument(MF
.getFunction()))
3955 MachineBasicBlock
*MBB
= FuncInfo
.MBB
;
3956 if (MBB
!= &MF
.front())
3960 if (Arg
->hasByValAttr()) {
3961 // Byval arguments' frame index is recorded during argument lowering.
3962 // Use this info directly.
3963 Reg
= TRI
->getFrameRegister(MF
);
3964 Offset
= FuncInfo
.getByValArgumentFrameIndex(Arg
);
3965 // If byval argument ofset is not recorded then ignore this.
3970 if (N
.getNode() && N
.getOpcode() == ISD::CopyFromReg
) {
3971 Reg
= cast
<RegisterSDNode
>(N
.getOperand(1))->getReg();
3972 if (Reg
&& TargetRegisterInfo::isVirtualRegister(Reg
)) {
3973 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
3974 unsigned PR
= RegInfo
.getLiveInPhysReg(Reg
);
3981 // Check if ValueMap has reg number.
3982 DenseMap
<const Value
*, unsigned>::iterator VMI
= FuncInfo
.ValueMap
.find(V
);
3983 if (VMI
!= FuncInfo
.ValueMap
.end())
3987 if (!Reg
&& N
.getNode()) {
3988 // Check if frame index is available.
3989 if (LoadSDNode
*LNode
= dyn_cast
<LoadSDNode
>(N
.getNode()))
3990 if (FrameIndexSDNode
*FINode
=
3991 dyn_cast
<FrameIndexSDNode
>(LNode
->getBasePtr().getNode())) {
3992 Reg
= TRI
->getFrameRegister(MF
);
3993 Offset
= FINode
->getIndex();
4000 MachineInstrBuilder MIB
= BuildMI(MF
, getCurDebugLoc(),
4001 TII
->get(TargetOpcode::DBG_VALUE
))
4002 .addReg(Reg
, RegState::Debug
).addImm(Offset
).addMetadata(Variable
);
4003 FuncInfo
.ArgDbgValues
.push_back(&*MIB
);
4007 // VisualStudio defines setjmp as _setjmp
4008 #if defined(_MSC_VER) && defined(setjmp) && \
4009 !defined(setjmp_undefined_for_msvc)
4010 # pragma push_macro("setjmp")
4012 # define setjmp_undefined_for_msvc
4015 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
4016 /// we want to emit this as a call to a named external function, return the name
4017 /// otherwise lower it and return null.
4019 SelectionDAGBuilder::visitIntrinsicCall(const CallInst
&I
, unsigned Intrinsic
) {
4020 DebugLoc dl
= getCurDebugLoc();
4023 switch (Intrinsic
) {
4025 // By default, turn this into a target intrinsic node.
4026 visitTargetIntrinsic(I
, Intrinsic
);
4028 case Intrinsic::vastart
: visitVAStart(I
); return 0;
4029 case Intrinsic::vaend
: visitVAEnd(I
); return 0;
4030 case Intrinsic::vacopy
: visitVACopy(I
); return 0;
4031 case Intrinsic::returnaddress
:
4032 setValue(&I
, DAG
.getNode(ISD::RETURNADDR
, dl
, TLI
.getPointerTy(),
4033 getValue(I
.getArgOperand(0))));
4035 case Intrinsic::frameaddress
:
4036 setValue(&I
, DAG
.getNode(ISD::FRAMEADDR
, dl
, TLI
.getPointerTy(),
4037 getValue(I
.getArgOperand(0))));
4039 case Intrinsic::setjmp
:
4040 return "_setjmp"+!TLI
.usesUnderscoreSetJmp();
4041 case Intrinsic::longjmp
:
4042 return "_longjmp"+!TLI
.usesUnderscoreLongJmp();
4043 case Intrinsic::memcpy
: {
4044 // Assert for address < 256 since we support only user defined address
4046 assert(cast
<PointerType
>(I
.getArgOperand(0)->getType())->getAddressSpace()
4048 cast
<PointerType
>(I
.getArgOperand(1)->getType())->getAddressSpace()
4050 "Unknown address space");
4051 SDValue Op1
= getValue(I
.getArgOperand(0));
4052 SDValue Op2
= getValue(I
.getArgOperand(1));
4053 SDValue Op3
= getValue(I
.getArgOperand(2));
4054 unsigned Align
= cast
<ConstantInt
>(I
.getArgOperand(3))->getZExtValue();
4055 bool isVol
= cast
<ConstantInt
>(I
.getArgOperand(4))->getZExtValue();
4056 DAG
.setRoot(DAG
.getMemcpy(getRoot(), dl
, Op1
, Op2
, Op3
, Align
, isVol
, false,
4057 MachinePointerInfo(I
.getArgOperand(0)),
4058 MachinePointerInfo(I
.getArgOperand(1))));
4061 case Intrinsic::memset
: {
4062 // Assert for address < 256 since we support only user defined address
4064 assert(cast
<PointerType
>(I
.getArgOperand(0)->getType())->getAddressSpace()
4066 "Unknown address space");
4067 SDValue Op1
= getValue(I
.getArgOperand(0));
4068 SDValue Op2
= getValue(I
.getArgOperand(1));
4069 SDValue Op3
= getValue(I
.getArgOperand(2));
4070 unsigned Align
= cast
<ConstantInt
>(I
.getArgOperand(3))->getZExtValue();
4071 bool isVol
= cast
<ConstantInt
>(I
.getArgOperand(4))->getZExtValue();
4072 DAG
.setRoot(DAG
.getMemset(getRoot(), dl
, Op1
, Op2
, Op3
, Align
, isVol
,
4073 MachinePointerInfo(I
.getArgOperand(0))));
4076 case Intrinsic::memmove
: {
4077 // Assert for address < 256 since we support only user defined address
4079 assert(cast
<PointerType
>(I
.getArgOperand(0)->getType())->getAddressSpace()
4081 cast
<PointerType
>(I
.getArgOperand(1)->getType())->getAddressSpace()
4083 "Unknown address space");
4084 SDValue Op1
= getValue(I
.getArgOperand(0));
4085 SDValue Op2
= getValue(I
.getArgOperand(1));
4086 SDValue Op3
= getValue(I
.getArgOperand(2));
4087 unsigned Align
= cast
<ConstantInt
>(I
.getArgOperand(3))->getZExtValue();
4088 bool isVol
= cast
<ConstantInt
>(I
.getArgOperand(4))->getZExtValue();
4090 // If the source and destination are known to not be aliases, we can
4091 // lower memmove as memcpy.
4092 uint64_t Size
= -1ULL;
4093 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op3
))
4094 Size
= C
->getZExtValue();
4095 if (AA
->alias(I
.getArgOperand(0), Size
, I
.getArgOperand(1), Size
) ==
4096 AliasAnalysis::NoAlias
) {
4097 DAG
.setRoot(DAG
.getMemcpy(getRoot(), dl
, Op1
, Op2
, Op3
, Align
, isVol
,
4098 false, MachinePointerInfo(I
.getArgOperand(0)),
4099 MachinePointerInfo(I
.getArgOperand(1))));
4103 DAG
.setRoot(DAG
.getMemmove(getRoot(), dl
, Op1
, Op2
, Op3
, Align
, isVol
,
4104 MachinePointerInfo(I
.getArgOperand(0)),
4105 MachinePointerInfo(I
.getArgOperand(1))));
4108 case Intrinsic::dbg_declare
: {
4109 const DbgDeclareInst
&DI
= cast
<DbgDeclareInst
>(I
);
4110 MDNode
*Variable
= DI
.getVariable();
4111 const Value
*Address
= DI
.getAddress();
4112 if (!Address
|| !DIVariable(DI
.getVariable()).Verify())
4115 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder
4116 // but do not always have a corresponding SDNode built. The SDNodeOrder
4117 // absolute, but not relative, values are different depending on whether
4118 // debug info exists.
4121 // Check if address has undef value.
4122 if (isa
<UndefValue
>(Address
) ||
4123 (Address
->use_empty() && !isa
<Argument
>(Address
))) {
4125 DAG
.getDbgValue(Variable
, UndefValue::get(Address
->getType()),
4126 0, dl
, SDNodeOrder
);
4127 DAG
.AddDbgValue(SDV
, 0, false);
4131 SDValue
&N
= NodeMap
[Address
];
4132 if (!N
.getNode() && isa
<Argument
>(Address
))
4133 // Check unused arguments map.
4134 N
= UnusedArgNodeMap
[Address
];
4137 // Parameters are handled specially.
4139 DIVariable(Variable
).getTag() == dwarf::DW_TAG_arg_variable
;
4140 if (const BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(Address
))
4141 Address
= BCI
->getOperand(0);
4142 const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(Address
);
4144 if (isParameter
&& !AI
) {
4145 FrameIndexSDNode
*FINode
= dyn_cast
<FrameIndexSDNode
>(N
.getNode());
4147 // Byval parameter. We have a frame index at this point.
4148 SDV
= DAG
.getDbgValue(Variable
, FINode
->getIndex(),
4149 0, dl
, SDNodeOrder
);
4151 // Can't do anything with other non-AI cases yet. This might be a
4152 // parameter of a callee function that got inlined, for example.
4155 SDV
= DAG
.getDbgValue(Variable
, N
.getNode(), N
.getResNo(),
4156 0, dl
, SDNodeOrder
);
4158 // Can't do anything with other non-AI cases yet.
4160 DAG
.AddDbgValue(SDV
, N
.getNode(), isParameter
);
4162 // If Address is an argument then try to emit its dbg value using
4163 // virtual register info from the FuncInfo.ValueMap.
4164 if (!EmitFuncArgumentDbgValue(Address
, Variable
, 0, N
)) {
4165 // If variable is pinned by a alloca in dominating bb then
4166 // use StaticAllocaMap.
4167 if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(Address
)) {
4168 if (AI
->getParent() != DI
.getParent()) {
4169 DenseMap
<const AllocaInst
*, int>::iterator SI
=
4170 FuncInfo
.StaticAllocaMap
.find(AI
);
4171 if (SI
!= FuncInfo
.StaticAllocaMap
.end()) {
4172 SDV
= DAG
.getDbgValue(Variable
, SI
->second
,
4173 0, dl
, SDNodeOrder
);
4174 DAG
.AddDbgValue(SDV
, 0, false);
4179 // Otherwise add undef to help track missing debug info.
4180 SDV
= DAG
.getDbgValue(Variable
, UndefValue::get(Address
->getType()),
4181 0, dl
, SDNodeOrder
);
4182 DAG
.AddDbgValue(SDV
, 0, false);
4187 case Intrinsic::dbg_value
: {
4188 const DbgValueInst
&DI
= cast
<DbgValueInst
>(I
);
4189 if (!DIVariable(DI
.getVariable()).Verify())
4192 MDNode
*Variable
= DI
.getVariable();
4193 uint64_t Offset
= DI
.getOffset();
4194 const Value
*V
= DI
.getValue();
4198 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder
4199 // but do not always have a corresponding SDNode built. The SDNodeOrder
4200 // absolute, but not relative, values are different depending on whether
4201 // debug info exists.
4204 if (isa
<ConstantInt
>(V
) || isa
<ConstantFP
>(V
)) {
4205 SDV
= DAG
.getDbgValue(Variable
, V
, Offset
, dl
, SDNodeOrder
);
4206 DAG
.AddDbgValue(SDV
, 0, false);
4208 // Do not use getValue() in here; we don't want to generate code at
4209 // this point if it hasn't been done yet.
4210 SDValue N
= NodeMap
[V
];
4211 if (!N
.getNode() && isa
<Argument
>(V
))
4212 // Check unused arguments map.
4213 N
= UnusedArgNodeMap
[V
];
4215 if (!EmitFuncArgumentDbgValue(V
, Variable
, Offset
, N
)) {
4216 SDV
= DAG
.getDbgValue(Variable
, N
.getNode(),
4217 N
.getResNo(), Offset
, dl
, SDNodeOrder
);
4218 DAG
.AddDbgValue(SDV
, N
.getNode(), false);
4220 } else if (isa
<PHINode
>(V
) && !V
->use_empty() ) {
4221 // Do not call getValue(V) yet, as we don't want to generate code.
4222 // Remember it for later.
4223 DanglingDebugInfo
DDI(&DI
, dl
, SDNodeOrder
);
4224 DanglingDebugInfoMap
[V
] = DDI
;
4226 // We may expand this to cover more cases. One case where we have no
4227 // data available is an unreferenced parameter; we need this fallback.
4228 SDV
= DAG
.getDbgValue(Variable
, UndefValue::get(V
->getType()),
4229 Offset
, dl
, SDNodeOrder
);
4230 DAG
.AddDbgValue(SDV
, 0, false);
4234 // Build a debug info table entry.
4235 if (const BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(V
))
4236 V
= BCI
->getOperand(0);
4237 const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
);
4238 // Don't handle byval struct arguments or VLAs, for example.
4241 DenseMap
<const AllocaInst
*, int>::iterator SI
=
4242 FuncInfo
.StaticAllocaMap
.find(AI
);
4243 if (SI
== FuncInfo
.StaticAllocaMap
.end())
4245 int FI
= SI
->second
;
4247 MachineModuleInfo
&MMI
= DAG
.getMachineFunction().getMMI();
4248 if (!DI
.getDebugLoc().isUnknown() && MMI
.hasDebugInfo())
4249 MMI
.setVariableDbgInfo(Variable
, FI
, DI
.getDebugLoc());
4252 case Intrinsic::eh_exception
: {
4253 // Insert the EXCEPTIONADDR instruction.
4254 assert(FuncInfo
.MBB
->isLandingPad() &&
4255 "Call to eh.exception not in landing pad!");
4256 SDVTList VTs
= DAG
.getVTList(TLI
.getPointerTy(), MVT::Other
);
4258 Ops
[0] = DAG
.getRoot();
4259 SDValue Op
= DAG
.getNode(ISD::EXCEPTIONADDR
, dl
, VTs
, Ops
, 1);
4261 DAG
.setRoot(Op
.getValue(1));
4265 case Intrinsic::eh_selector
: {
4266 MachineBasicBlock
*CallMBB
= FuncInfo
.MBB
;
4267 MachineModuleInfo
&MMI
= DAG
.getMachineFunction().getMMI();
4268 if (CallMBB
->isLandingPad())
4269 AddCatchInfo(I
, &MMI
, CallMBB
);
4272 FuncInfo
.CatchInfoLost
.insert(&I
);
4274 // FIXME: Mark exception selector register as live in. Hack for PR1508.
4275 unsigned Reg
= TLI
.getExceptionSelectorRegister();
4276 if (Reg
) FuncInfo
.MBB
->addLiveIn(Reg
);
4279 // Insert the EHSELECTION instruction.
4280 SDVTList VTs
= DAG
.getVTList(TLI
.getPointerTy(), MVT::Other
);
4282 Ops
[0] = getValue(I
.getArgOperand(0));
4284 SDValue Op
= DAG
.getNode(ISD::EHSELECTION
, dl
, VTs
, Ops
, 2);
4285 DAG
.setRoot(Op
.getValue(1));
4286 setValue(&I
, DAG
.getSExtOrTrunc(Op
, dl
, MVT::i32
));
4290 case Intrinsic::eh_typeid_for
: {
4291 // Find the type id for the given typeinfo.
4292 GlobalVariable
*GV
= ExtractTypeInfo(I
.getArgOperand(0));
4293 unsigned TypeID
= DAG
.getMachineFunction().getMMI().getTypeIDFor(GV
);
4294 Res
= DAG
.getConstant(TypeID
, MVT::i32
);
4299 case Intrinsic::eh_return_i32
:
4300 case Intrinsic::eh_return_i64
:
4301 DAG
.getMachineFunction().getMMI().setCallsEHReturn(true);
4302 DAG
.setRoot(DAG
.getNode(ISD::EH_RETURN
, dl
,
4305 getValue(I
.getArgOperand(0)),
4306 getValue(I
.getArgOperand(1))));
4308 case Intrinsic::eh_unwind_init
:
4309 DAG
.getMachineFunction().getMMI().setCallsUnwindInit(true);
4311 case Intrinsic::eh_dwarf_cfa
: {
4312 SDValue CfaArg
= DAG
.getSExtOrTrunc(getValue(I
.getArgOperand(0)), dl
,
4313 TLI
.getPointerTy());
4314 SDValue Offset
= DAG
.getNode(ISD::ADD
, dl
,
4316 DAG
.getNode(ISD::FRAME_TO_ARGS_OFFSET
, dl
,
4317 TLI
.getPointerTy()),
4319 SDValue FA
= DAG
.getNode(ISD::FRAMEADDR
, dl
,
4321 DAG
.getConstant(0, TLI
.getPointerTy()));
4322 setValue(&I
, DAG
.getNode(ISD::ADD
, dl
, TLI
.getPointerTy(),
4326 case Intrinsic::eh_sjlj_callsite
: {
4327 MachineModuleInfo
&MMI
= DAG
.getMachineFunction().getMMI();
4328 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
.getArgOperand(0));
4329 assert(CI
&& "Non-constant call site value in eh.sjlj.callsite!");
4330 assert(MMI
.getCurrentCallSite() == 0 && "Overlapping call sites!");
4332 MMI
.setCurrentCallSite(CI
->getZExtValue());
4335 case Intrinsic::eh_sjlj_setjmp
: {
4336 setValue(&I
, DAG
.getNode(ISD::EH_SJLJ_SETJMP
, dl
, MVT::i32
, getRoot(),
4337 getValue(I
.getArgOperand(0))));
4340 case Intrinsic::eh_sjlj_longjmp
: {
4341 DAG
.setRoot(DAG
.getNode(ISD::EH_SJLJ_LONGJMP
, dl
, MVT::Other
,
4342 getRoot(), getValue(I
.getArgOperand(0))));
4345 case Intrinsic::eh_sjlj_dispatch_setup
: {
4346 DAG
.setRoot(DAG
.getNode(ISD::EH_SJLJ_DISPATCHSETUP
, dl
, MVT::Other
,
4347 getRoot(), getValue(I
.getArgOperand(0))));
4351 case Intrinsic::x86_mmx_pslli_w
:
4352 case Intrinsic::x86_mmx_pslli_d
:
4353 case Intrinsic::x86_mmx_pslli_q
:
4354 case Intrinsic::x86_mmx_psrli_w
:
4355 case Intrinsic::x86_mmx_psrli_d
:
4356 case Intrinsic::x86_mmx_psrli_q
:
4357 case Intrinsic::x86_mmx_psrai_w
:
4358 case Intrinsic::x86_mmx_psrai_d
: {
4359 SDValue ShAmt
= getValue(I
.getArgOperand(1));
4360 if (isa
<ConstantSDNode
>(ShAmt
)) {
4361 visitTargetIntrinsic(I
, Intrinsic
);
4364 unsigned NewIntrinsic
= 0;
4365 EVT ShAmtVT
= MVT::v2i32
;
4366 switch (Intrinsic
) {
4367 case Intrinsic::x86_mmx_pslli_w
:
4368 NewIntrinsic
= Intrinsic::x86_mmx_psll_w
;
4370 case Intrinsic::x86_mmx_pslli_d
:
4371 NewIntrinsic
= Intrinsic::x86_mmx_psll_d
;
4373 case Intrinsic::x86_mmx_pslli_q
:
4374 NewIntrinsic
= Intrinsic::x86_mmx_psll_q
;
4376 case Intrinsic::x86_mmx_psrli_w
:
4377 NewIntrinsic
= Intrinsic::x86_mmx_psrl_w
;
4379 case Intrinsic::x86_mmx_psrli_d
:
4380 NewIntrinsic
= Intrinsic::x86_mmx_psrl_d
;
4382 case Intrinsic::x86_mmx_psrli_q
:
4383 NewIntrinsic
= Intrinsic::x86_mmx_psrl_q
;
4385 case Intrinsic::x86_mmx_psrai_w
:
4386 NewIntrinsic
= Intrinsic::x86_mmx_psra_w
;
4388 case Intrinsic::x86_mmx_psrai_d
:
4389 NewIntrinsic
= Intrinsic::x86_mmx_psra_d
;
4391 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
4394 // The vector shift intrinsics with scalars uses 32b shift amounts but
4395 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4397 // We must do this early because v2i32 is not a legal type.
4398 DebugLoc dl
= getCurDebugLoc();
4401 ShOps
[1] = DAG
.getConstant(0, MVT::i32
);
4402 ShAmt
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, ShAmtVT
, &ShOps
[0], 2);
4403 EVT DestVT
= TLI
.getValueType(I
.getType());
4404 ShAmt
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, DestVT
, ShAmt
);
4405 Res
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, DestVT
,
4406 DAG
.getConstant(NewIntrinsic
, MVT::i32
),
4407 getValue(I
.getArgOperand(0)), ShAmt
);
4411 case Intrinsic::convertff
:
4412 case Intrinsic::convertfsi
:
4413 case Intrinsic::convertfui
:
4414 case Intrinsic::convertsif
:
4415 case Intrinsic::convertuif
:
4416 case Intrinsic::convertss
:
4417 case Intrinsic::convertsu
:
4418 case Intrinsic::convertus
:
4419 case Intrinsic::convertuu
: {
4420 ISD::CvtCode Code
= ISD::CVT_INVALID
;
4421 switch (Intrinsic
) {
4422 case Intrinsic::convertff
: Code
= ISD::CVT_FF
; break;
4423 case Intrinsic::convertfsi
: Code
= ISD::CVT_FS
; break;
4424 case Intrinsic::convertfui
: Code
= ISD::CVT_FU
; break;
4425 case Intrinsic::convertsif
: Code
= ISD::CVT_SF
; break;
4426 case Intrinsic::convertuif
: Code
= ISD::CVT_UF
; break;
4427 case Intrinsic::convertss
: Code
= ISD::CVT_SS
; break;
4428 case Intrinsic::convertsu
: Code
= ISD::CVT_SU
; break;
4429 case Intrinsic::convertus
: Code
= ISD::CVT_US
; break;
4430 case Intrinsic::convertuu
: Code
= ISD::CVT_UU
; break;
4432 EVT DestVT
= TLI
.getValueType(I
.getType());
4433 const Value
*Op1
= I
.getArgOperand(0);
4434 Res
= DAG
.getConvertRndSat(DestVT
, getCurDebugLoc(), getValue(Op1
),
4435 DAG
.getValueType(DestVT
),
4436 DAG
.getValueType(getValue(Op1
).getValueType()),
4437 getValue(I
.getArgOperand(1)),
4438 getValue(I
.getArgOperand(2)),
4443 case Intrinsic::sqrt
:
4444 setValue(&I
, DAG
.getNode(ISD::FSQRT
, dl
,
4445 getValue(I
.getArgOperand(0)).getValueType(),
4446 getValue(I
.getArgOperand(0))));
4448 case Intrinsic::powi
:
4449 setValue(&I
, ExpandPowI(dl
, getValue(I
.getArgOperand(0)),
4450 getValue(I
.getArgOperand(1)), DAG
));
4452 case Intrinsic::sin
:
4453 setValue(&I
, DAG
.getNode(ISD::FSIN
, dl
,
4454 getValue(I
.getArgOperand(0)).getValueType(),
4455 getValue(I
.getArgOperand(0))));
4457 case Intrinsic::cos
:
4458 setValue(&I
, DAG
.getNode(ISD::FCOS
, dl
,
4459 getValue(I
.getArgOperand(0)).getValueType(),
4460 getValue(I
.getArgOperand(0))));
4462 case Intrinsic::log
:
4465 case Intrinsic::log2
:
4468 case Intrinsic::log10
:
4471 case Intrinsic::exp
:
4474 case Intrinsic::exp2
:
4477 case Intrinsic::pow
:
4480 case Intrinsic::convert_to_fp16
:
4481 setValue(&I
, DAG
.getNode(ISD::FP32_TO_FP16
, dl
,
4482 MVT::i16
, getValue(I
.getArgOperand(0))));
4484 case Intrinsic::convert_from_fp16
:
4485 setValue(&I
, DAG
.getNode(ISD::FP16_TO_FP32
, dl
,
4486 MVT::f32
, getValue(I
.getArgOperand(0))));
4488 case Intrinsic::pcmarker
: {
4489 SDValue Tmp
= getValue(I
.getArgOperand(0));
4490 DAG
.setRoot(DAG
.getNode(ISD::PCMARKER
, dl
, MVT::Other
, getRoot(), Tmp
));
4493 case Intrinsic::readcyclecounter
: {
4494 SDValue Op
= getRoot();
4495 Res
= DAG
.getNode(ISD::READCYCLECOUNTER
, dl
,
4496 DAG
.getVTList(MVT::i64
, MVT::Other
),
4499 DAG
.setRoot(Res
.getValue(1));
4502 case Intrinsic::bswap
:
4503 setValue(&I
, DAG
.getNode(ISD::BSWAP
, dl
,
4504 getValue(I
.getArgOperand(0)).getValueType(),
4505 getValue(I
.getArgOperand(0))));
4507 case Intrinsic::cttz
: {
4508 SDValue Arg
= getValue(I
.getArgOperand(0));
4509 EVT Ty
= Arg
.getValueType();
4510 setValue(&I
, DAG
.getNode(ISD::CTTZ
, dl
, Ty
, Arg
));
4513 case Intrinsic::ctlz
: {
4514 SDValue Arg
= getValue(I
.getArgOperand(0));
4515 EVT Ty
= Arg
.getValueType();
4516 setValue(&I
, DAG
.getNode(ISD::CTLZ
, dl
, Ty
, Arg
));
4519 case Intrinsic::ctpop
: {
4520 SDValue Arg
= getValue(I
.getArgOperand(0));
4521 EVT Ty
= Arg
.getValueType();
4522 setValue(&I
, DAG
.getNode(ISD::CTPOP
, dl
, Ty
, Arg
));
4525 case Intrinsic::stacksave
: {
4526 SDValue Op
= getRoot();
4527 Res
= DAG
.getNode(ISD::STACKSAVE
, dl
,
4528 DAG
.getVTList(TLI
.getPointerTy(), MVT::Other
), &Op
, 1);
4530 DAG
.setRoot(Res
.getValue(1));
4533 case Intrinsic::stackrestore
: {
4534 Res
= getValue(I
.getArgOperand(0));
4535 DAG
.setRoot(DAG
.getNode(ISD::STACKRESTORE
, dl
, MVT::Other
, getRoot(), Res
));
4538 case Intrinsic::stackprotector
: {
4539 // Emit code into the DAG to store the stack guard onto the stack.
4540 MachineFunction
&MF
= DAG
.getMachineFunction();
4541 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
4542 EVT PtrTy
= TLI
.getPointerTy();
4544 SDValue Src
= getValue(I
.getArgOperand(0)); // The guard's value.
4545 AllocaInst
*Slot
= cast
<AllocaInst
>(I
.getArgOperand(1));
4547 int FI
= FuncInfo
.StaticAllocaMap
[Slot
];
4548 MFI
->setStackProtectorIndex(FI
);
4550 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrTy
);
4552 // Store the stack protector onto the stack.
4553 Res
= DAG
.getStore(getRoot(), getCurDebugLoc(), Src
, FIN
,
4554 MachinePointerInfo::getFixedStack(FI
),
4560 case Intrinsic::objectsize
: {
4561 // If we don't know by now, we're never going to know.
4562 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
.getArgOperand(1));
4564 assert(CI
&& "Non-constant type in __builtin_object_size?");
4566 SDValue Arg
= getValue(I
.getCalledValue());
4567 EVT Ty
= Arg
.getValueType();
4570 Res
= DAG
.getConstant(-1ULL, Ty
);
4572 Res
= DAG
.getConstant(0, Ty
);
4577 case Intrinsic::var_annotation
:
4578 // Discard annotate attributes
4581 case Intrinsic::init_trampoline
: {
4582 const Function
*F
= cast
<Function
>(I
.getArgOperand(1)->stripPointerCasts());
4586 Ops
[1] = getValue(I
.getArgOperand(0));
4587 Ops
[2] = getValue(I
.getArgOperand(1));
4588 Ops
[3] = getValue(I
.getArgOperand(2));
4589 Ops
[4] = DAG
.getSrcValue(I
.getArgOperand(0));
4590 Ops
[5] = DAG
.getSrcValue(F
);
4592 Res
= DAG
.getNode(ISD::TRAMPOLINE
, dl
,
4593 DAG
.getVTList(TLI
.getPointerTy(), MVT::Other
),
4597 DAG
.setRoot(Res
.getValue(1));
4600 case Intrinsic::gcroot
:
4602 const Value
*Alloca
= I
.getArgOperand(0);
4603 const Constant
*TypeMap
= cast
<Constant
>(I
.getArgOperand(1));
4605 FrameIndexSDNode
*FI
= cast
<FrameIndexSDNode
>(getValue(Alloca
).getNode());
4606 GFI
->addStackRoot(FI
->getIndex(), TypeMap
);
4609 case Intrinsic::gcread
:
4610 case Intrinsic::gcwrite
:
4611 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4613 case Intrinsic::flt_rounds
:
4614 setValue(&I
, DAG
.getNode(ISD::FLT_ROUNDS_
, dl
, MVT::i32
));
4616 case Intrinsic::trap
:
4617 DAG
.setRoot(DAG
.getNode(ISD::TRAP
, dl
,MVT::Other
, getRoot()));
4619 case Intrinsic::uadd_with_overflow
:
4620 return implVisitAluOverflow(I
, ISD::UADDO
);
4621 case Intrinsic::sadd_with_overflow
:
4622 return implVisitAluOverflow(I
, ISD::SADDO
);
4623 case Intrinsic::usub_with_overflow
:
4624 return implVisitAluOverflow(I
, ISD::USUBO
);
4625 case Intrinsic::ssub_with_overflow
:
4626 return implVisitAluOverflow(I
, ISD::SSUBO
);
4627 case Intrinsic::umul_with_overflow
:
4628 return implVisitAluOverflow(I
, ISD::UMULO
);
4629 case Intrinsic::smul_with_overflow
:
4630 return implVisitAluOverflow(I
, ISD::SMULO
);
4632 case Intrinsic::prefetch
: {
4634 unsigned rw
= cast
<ConstantInt
>(I
.getArgOperand(1))->getZExtValue();
4636 Ops
[1] = getValue(I
.getArgOperand(0));
4637 Ops
[2] = getValue(I
.getArgOperand(1));
4638 Ops
[3] = getValue(I
.getArgOperand(2));
4639 DAG
.setRoot(DAG
.getMemIntrinsicNode(ISD::PREFETCH
, dl
,
4640 DAG
.getVTList(MVT::Other
),
4642 EVT::getIntegerVT(*Context
, 8),
4643 MachinePointerInfo(I
.getArgOperand(0)),
4645 false, /* volatile */
4647 rw
==1)); /* write */
4650 case Intrinsic::memory_barrier
: {
4653 for (int x
= 1; x
< 6; ++x
)
4654 Ops
[x
] = getValue(I
.getArgOperand(x
- 1));
4656 DAG
.setRoot(DAG
.getNode(ISD::MEMBARRIER
, dl
, MVT::Other
, &Ops
[0], 6));
4659 case Intrinsic::atomic_cmp_swap
: {
4660 SDValue Root
= getRoot();
4662 DAG
.getAtomic(ISD::ATOMIC_CMP_SWAP
, getCurDebugLoc(),
4663 getValue(I
.getArgOperand(1)).getValueType().getSimpleVT(),
4665 getValue(I
.getArgOperand(0)),
4666 getValue(I
.getArgOperand(1)),
4667 getValue(I
.getArgOperand(2)),
4668 MachinePointerInfo(I
.getArgOperand(0)));
4670 DAG
.setRoot(L
.getValue(1));
4673 case Intrinsic::atomic_load_add
:
4674 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_ADD
);
4675 case Intrinsic::atomic_load_sub
:
4676 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_SUB
);
4677 case Intrinsic::atomic_load_or
:
4678 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_OR
);
4679 case Intrinsic::atomic_load_xor
:
4680 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_XOR
);
4681 case Intrinsic::atomic_load_and
:
4682 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_AND
);
4683 case Intrinsic::atomic_load_nand
:
4684 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_NAND
);
4685 case Intrinsic::atomic_load_max
:
4686 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_MAX
);
4687 case Intrinsic::atomic_load_min
:
4688 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_MIN
);
4689 case Intrinsic::atomic_load_umin
:
4690 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_UMIN
);
4691 case Intrinsic::atomic_load_umax
:
4692 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_UMAX
);
4693 case Intrinsic::atomic_swap
:
4694 return implVisitBinaryAtomic(I
, ISD::ATOMIC_SWAP
);
4696 case Intrinsic::invariant_start
:
4697 case Intrinsic::lifetime_start
:
4698 // Discard region information.
4699 setValue(&I
, DAG
.getUNDEF(TLI
.getPointerTy()));
4701 case Intrinsic::invariant_end
:
4702 case Intrinsic::lifetime_end
:
4703 // Discard region information.
4708 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS
, SDValue Callee
,
4710 MachineBasicBlock
*LandingPad
) {
4711 const PointerType
*PT
= cast
<PointerType
>(CS
.getCalledValue()->getType());
4712 const FunctionType
*FTy
= cast
<FunctionType
>(PT
->getElementType());
4713 const Type
*RetTy
= FTy
->getReturnType();
4714 MachineModuleInfo
&MMI
= DAG
.getMachineFunction().getMMI();
4715 MCSymbol
*BeginLabel
= 0;
4717 TargetLowering::ArgListTy Args
;
4718 TargetLowering::ArgListEntry Entry
;
4719 Args
.reserve(CS
.arg_size());
4721 // Check whether the function can return without sret-demotion.
4722 SmallVector
<ISD::OutputArg
, 4> Outs
;
4723 SmallVector
<uint64_t, 4> Offsets
;
4724 GetReturnInfo(RetTy
, CS
.getAttributes().getRetAttributes(),
4725 Outs
, TLI
, &Offsets
);
4727 bool CanLowerReturn
= TLI
.CanLowerReturn(CS
.getCallingConv(),
4728 FTy
->isVarArg(), Outs
, FTy
->getContext());
4730 SDValue DemoteStackSlot
;
4731 int DemoteStackIdx
= -100;
4733 if (!CanLowerReturn
) {
4734 uint64_t TySize
= TLI
.getTargetData()->getTypeAllocSize(
4735 FTy
->getReturnType());
4736 unsigned Align
= TLI
.getTargetData()->getPrefTypeAlignment(
4737 FTy
->getReturnType());
4738 MachineFunction
&MF
= DAG
.getMachineFunction();
4739 DemoteStackIdx
= MF
.getFrameInfo()->CreateStackObject(TySize
, Align
, false);
4740 const Type
*StackSlotPtrType
= PointerType::getUnqual(FTy
->getReturnType());
4742 DemoteStackSlot
= DAG
.getFrameIndex(DemoteStackIdx
, TLI
.getPointerTy());
4743 Entry
.Node
= DemoteStackSlot
;
4744 Entry
.Ty
= StackSlotPtrType
;
4745 Entry
.isSExt
= false;
4746 Entry
.isZExt
= false;
4747 Entry
.isInReg
= false;
4748 Entry
.isSRet
= true;
4749 Entry
.isNest
= false;
4750 Entry
.isByVal
= false;
4751 Entry
.Alignment
= Align
;
4752 Args
.push_back(Entry
);
4753 RetTy
= Type::getVoidTy(FTy
->getContext());
4756 for (ImmutableCallSite::arg_iterator i
= CS
.arg_begin(), e
= CS
.arg_end();
4758 SDValue ArgNode
= getValue(*i
);
4759 Entry
.Node
= ArgNode
; Entry
.Ty
= (*i
)->getType();
4761 unsigned attrInd
= i
- CS
.arg_begin() + 1;
4762 Entry
.isSExt
= CS
.paramHasAttr(attrInd
, Attribute::SExt
);
4763 Entry
.isZExt
= CS
.paramHasAttr(attrInd
, Attribute::ZExt
);
4764 Entry
.isInReg
= CS
.paramHasAttr(attrInd
, Attribute::InReg
);
4765 Entry
.isSRet
= CS
.paramHasAttr(attrInd
, Attribute::StructRet
);
4766 Entry
.isNest
= CS
.paramHasAttr(attrInd
, Attribute::Nest
);
4767 Entry
.isByVal
= CS
.paramHasAttr(attrInd
, Attribute::ByVal
);
4768 Entry
.Alignment
= CS
.getParamAlignment(attrInd
);
4769 Args
.push_back(Entry
);
4773 // Insert a label before the invoke call to mark the try range. This can be
4774 // used to detect deletion of the invoke via the MachineModuleInfo.
4775 BeginLabel
= MMI
.getContext().CreateTempSymbol();
4777 // For SjLj, keep track of which landing pads go with which invokes
4778 // so as to maintain the ordering of pads in the LSDA.
4779 unsigned CallSiteIndex
= MMI
.getCurrentCallSite();
4780 if (CallSiteIndex
) {
4781 MMI
.setCallSiteBeginLabel(BeginLabel
, CallSiteIndex
);
4782 // Now that the call site is handled, stop tracking it.
4783 MMI
.setCurrentCallSite(0);
4786 // Both PendingLoads and PendingExports must be flushed here;
4787 // this call might not return.
4789 DAG
.setRoot(DAG
.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel
));
4792 // Check if target-independent constraints permit a tail call here.
4793 // Target-dependent constraints are checked within TLI.LowerCallTo.
4795 !isInTailCallPosition(CS
, CS
.getAttributes().getRetAttributes(), TLI
))
4798 // If there's a possibility that fast-isel has already selected some amount
4799 // of the current basic block, don't emit a tail call.
4800 if (isTailCall
&& EnableFastISel
)
4803 std::pair
<SDValue
,SDValue
> Result
=
4804 TLI
.LowerCallTo(getRoot(), RetTy
,
4805 CS
.paramHasAttr(0, Attribute::SExt
),
4806 CS
.paramHasAttr(0, Attribute::ZExt
), FTy
->isVarArg(),
4807 CS
.paramHasAttr(0, Attribute::InReg
), FTy
->getNumParams(),
4808 CS
.getCallingConv(),
4810 !CS
.getInstruction()->use_empty(),
4811 Callee
, Args
, DAG
, getCurDebugLoc());
4812 assert((isTailCall
|| Result
.second
.getNode()) &&
4813 "Non-null chain expected with non-tail call!");
4814 assert((Result
.second
.getNode() || !Result
.first
.getNode()) &&
4815 "Null value expected with tail call!");
4816 if (Result
.first
.getNode()) {
4817 setValue(CS
.getInstruction(), Result
.first
);
4818 } else if (!CanLowerReturn
&& Result
.second
.getNode()) {
4819 // The instruction result is the result of loading from the
4820 // hidden sret parameter.
4821 SmallVector
<EVT
, 1> PVTs
;
4822 const Type
*PtrRetTy
= PointerType::getUnqual(FTy
->getReturnType());
4824 ComputeValueVTs(TLI
, PtrRetTy
, PVTs
);
4825 assert(PVTs
.size() == 1 && "Pointers should fit in one register");
4826 EVT PtrVT
= PVTs
[0];
4827 unsigned NumValues
= Outs
.size();
4828 SmallVector
<SDValue
, 4> Values(NumValues
);
4829 SmallVector
<SDValue
, 4> Chains(NumValues
);
4831 for (unsigned i
= 0; i
< NumValues
; ++i
) {
4832 SDValue Add
= DAG
.getNode(ISD::ADD
, getCurDebugLoc(), PtrVT
,
4834 DAG
.getConstant(Offsets
[i
], PtrVT
));
4835 SDValue L
= DAG
.getLoad(Outs
[i
].VT
, getCurDebugLoc(), Result
.second
,
4837 MachinePointerInfo::getFixedStack(DemoteStackIdx
, Offsets
[i
]),
4840 Chains
[i
] = L
.getValue(1);
4843 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, getCurDebugLoc(),
4844 MVT::Other
, &Chains
[0], NumValues
);
4845 PendingLoads
.push_back(Chain
);
4847 // Collect the legal value parts into potentially illegal values
4848 // that correspond to the original function's return values.
4849 SmallVector
<EVT
, 4> RetTys
;
4850 RetTy
= FTy
->getReturnType();
4851 ComputeValueVTs(TLI
, RetTy
, RetTys
);
4852 ISD::NodeType AssertOp
= ISD::DELETED_NODE
;
4853 SmallVector
<SDValue
, 4> ReturnValues
;
4854 unsigned CurReg
= 0;
4855 for (unsigned I
= 0, E
= RetTys
.size(); I
!= E
; ++I
) {
4857 EVT RegisterVT
= TLI
.getRegisterType(RetTy
->getContext(), VT
);
4858 unsigned NumRegs
= TLI
.getNumRegisters(RetTy
->getContext(), VT
);
4860 SDValue ReturnValue
=
4861 getCopyFromParts(DAG
, getCurDebugLoc(), &Values
[CurReg
], NumRegs
,
4862 RegisterVT
, VT
, AssertOp
);
4863 ReturnValues
.push_back(ReturnValue
);
4867 setValue(CS
.getInstruction(),
4868 DAG
.getNode(ISD::MERGE_VALUES
, getCurDebugLoc(),
4869 DAG
.getVTList(&RetTys
[0], RetTys
.size()),
4870 &ReturnValues
[0], ReturnValues
.size()));
4874 // As a special case, a null chain means that a tail call has been emitted and
4875 // the DAG root is already updated.
4876 if (Result
.second
.getNode())
4877 DAG
.setRoot(Result
.second
);
4882 // Insert a label at the end of the invoke call to mark the try range. This
4883 // can be used to detect deletion of the invoke via the MachineModuleInfo.
4884 MCSymbol
*EndLabel
= MMI
.getContext().CreateTempSymbol();
4885 DAG
.setRoot(DAG
.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel
));
4887 // Inform MachineModuleInfo of range.
4888 MMI
.addInvoke(LandingPad
, BeginLabel
, EndLabel
);
4892 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4893 /// value is equal or not-equal to zero.
4894 static bool IsOnlyUsedInZeroEqualityComparison(const Value
*V
) {
4895 for (Value::const_use_iterator UI
= V
->use_begin(), E
= V
->use_end();
4897 if (const ICmpInst
*IC
= dyn_cast
<ICmpInst
>(*UI
))
4898 if (IC
->isEquality())
4899 if (const Constant
*C
= dyn_cast
<Constant
>(IC
->getOperand(1)))
4900 if (C
->isNullValue())
4902 // Unknown instruction.
4908 static SDValue
getMemCmpLoad(const Value
*PtrVal
, MVT LoadVT
,
4910 SelectionDAGBuilder
&Builder
) {
4912 // Check to see if this load can be trivially constant folded, e.g. if the
4913 // input is from a string literal.
4914 if (const Constant
*LoadInput
= dyn_cast
<Constant
>(PtrVal
)) {
4915 // Cast pointer to the type we really want to load.
4916 LoadInput
= ConstantExpr::getBitCast(const_cast<Constant
*>(LoadInput
),
4917 PointerType::getUnqual(LoadTy
));
4919 if (const Constant
*LoadCst
=
4920 ConstantFoldLoadFromConstPtr(const_cast<Constant
*>(LoadInput
),
4922 return Builder
.getValue(LoadCst
);
4925 // Otherwise, we have to emit the load. If the pointer is to unfoldable but
4926 // still constant memory, the input chain can be the entry node.
4928 bool ConstantMemory
= false;
4930 // Do not serialize (non-volatile) loads of constant memory with anything.
4931 if (Builder
.AA
->pointsToConstantMemory(PtrVal
)) {
4932 Root
= Builder
.DAG
.getEntryNode();
4933 ConstantMemory
= true;
4935 // Do not serialize non-volatile loads against each other.
4936 Root
= Builder
.DAG
.getRoot();
4939 SDValue Ptr
= Builder
.getValue(PtrVal
);
4940 SDValue LoadVal
= Builder
.DAG
.getLoad(LoadVT
, Builder
.getCurDebugLoc(), Root
,
4941 Ptr
, MachinePointerInfo(PtrVal
),
4943 false /*nontemporal*/, 1 /* align=1 */);
4945 if (!ConstantMemory
)
4946 Builder
.PendingLoads
.push_back(LoadVal
.getValue(1));
4951 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
4952 /// If so, return true and lower it, otherwise return false and it will be
4953 /// lowered like a normal call.
4954 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst
&I
) {
4955 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t)
4956 if (I
.getNumArgOperands() != 3)
4959 const Value
*LHS
= I
.getArgOperand(0), *RHS
= I
.getArgOperand(1);
4960 if (!LHS
->getType()->isPointerTy() || !RHS
->getType()->isPointerTy() ||
4961 !I
.getArgOperand(2)->getType()->isIntegerTy() ||
4962 !I
.getType()->isIntegerTy())
4965 const ConstantInt
*Size
= dyn_cast
<ConstantInt
>(I
.getArgOperand(2));
4967 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
4968 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
4969 if (Size
&& IsOnlyUsedInZeroEqualityComparison(&I
)) {
4970 bool ActuallyDoIt
= true;
4973 switch (Size
->getZExtValue()) {
4975 LoadVT
= MVT::Other
;
4977 ActuallyDoIt
= false;
4981 LoadTy
= Type::getInt16Ty(Size
->getContext());
4985 LoadTy
= Type::getInt32Ty(Size
->getContext());
4989 LoadTy
= Type::getInt64Ty(Size
->getContext());
4993 LoadVT = MVT::v4i32;
4994 LoadTy = Type::getInt32Ty(Size->getContext());
4995 LoadTy = VectorType::get(LoadTy, 4);
5000 // This turns into unaligned loads. We only do this if the target natively
5001 // supports the MVT we'll be loading or if it is small enough (<= 4) that
5002 // we'll only produce a small number of byte loads.
5004 // Require that we can find a legal MVT, and only do this if the target
5005 // supports unaligned loads of that type. Expanding into byte loads would
5007 if (ActuallyDoIt
&& Size
->getZExtValue() > 4) {
5008 // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5009 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5010 if (!TLI
.isTypeLegal(LoadVT
) ||!TLI
.allowsUnalignedMemoryAccesses(LoadVT
))
5011 ActuallyDoIt
= false;
5015 SDValue LHSVal
= getMemCmpLoad(LHS
, LoadVT
, LoadTy
, *this);
5016 SDValue RHSVal
= getMemCmpLoad(RHS
, LoadVT
, LoadTy
, *this);
5018 SDValue Res
= DAG
.getSetCC(getCurDebugLoc(), MVT::i1
, LHSVal
, RHSVal
,
5020 EVT CallVT
= TLI
.getValueType(I
.getType(), true);
5021 setValue(&I
, DAG
.getZExtOrTrunc(Res
, getCurDebugLoc(), CallVT
));
5031 void SelectionDAGBuilder::visitCall(const CallInst
&I
) {
5032 // Handle inline assembly differently.
5033 if (isa
<InlineAsm
>(I
.getCalledValue())) {
5038 // See if any floating point values are being passed to this function. This is
5039 // used to emit an undefined reference to fltused on Windows.
5040 const FunctionType
*FT
=
5041 cast
<FunctionType
>(I
.getCalledValue()->getType()->getContainedType(0));
5042 MachineModuleInfo
&MMI
= DAG
.getMachineFunction().getMMI();
5043 if (FT
->isVarArg() &&
5044 !MMI
.callsExternalVAFunctionWithFloatingPointArguments()) {
5045 for (unsigned i
= 0, e
= I
.getNumArgOperands(); i
!= e
; ++i
) {
5046 const Type
* T
= I
.getArgOperand(i
)->getType();
5047 for (po_iterator
<const Type
*> i
= po_begin(T
),
5050 if (i
->isFloatingPointTy()) {
5051 MMI
.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5058 const char *RenameFn
= 0;
5059 if (Function
*F
= I
.getCalledFunction()) {
5060 if (F
->isDeclaration()) {
5061 if (const TargetIntrinsicInfo
*II
= TM
.getIntrinsicInfo()) {
5062 if (unsigned IID
= II
->getIntrinsicID(F
)) {
5063 RenameFn
= visitIntrinsicCall(I
, IID
);
5068 if (unsigned IID
= F
->getIntrinsicID()) {
5069 RenameFn
= visitIntrinsicCall(I
, IID
);
5075 // Check for well-known libc/libm calls. If the function is internal, it
5076 // can't be a library call.
5077 if (!F
->hasLocalLinkage() && F
->hasName()) {
5078 StringRef Name
= F
->getName();
5079 if (Name
== "copysign" || Name
== "copysignf" || Name
== "copysignl") {
5080 if (I
.getNumArgOperands() == 2 && // Basic sanity checks.
5081 I
.getArgOperand(0)->getType()->isFloatingPointTy() &&
5082 I
.getType() == I
.getArgOperand(0)->getType() &&
5083 I
.getType() == I
.getArgOperand(1)->getType()) {
5084 SDValue LHS
= getValue(I
.getArgOperand(0));
5085 SDValue RHS
= getValue(I
.getArgOperand(1));
5086 setValue(&I
, DAG
.getNode(ISD::FCOPYSIGN
, getCurDebugLoc(),
5087 LHS
.getValueType(), LHS
, RHS
));
5090 } else if (Name
== "fabs" || Name
== "fabsf" || Name
== "fabsl") {
5091 if (I
.getNumArgOperands() == 1 && // Basic sanity checks.
5092 I
.getArgOperand(0)->getType()->isFloatingPointTy() &&
5093 I
.getType() == I
.getArgOperand(0)->getType()) {
5094 SDValue Tmp
= getValue(I
.getArgOperand(0));
5095 setValue(&I
, DAG
.getNode(ISD::FABS
, getCurDebugLoc(),
5096 Tmp
.getValueType(), Tmp
));
5099 } else if (Name
== "sin" || Name
== "sinf" || Name
== "sinl") {
5100 if (I
.getNumArgOperands() == 1 && // Basic sanity checks.
5101 I
.getArgOperand(0)->getType()->isFloatingPointTy() &&
5102 I
.getType() == I
.getArgOperand(0)->getType() &&
5103 I
.onlyReadsMemory()) {
5104 SDValue Tmp
= getValue(I
.getArgOperand(0));
5105 setValue(&I
, DAG
.getNode(ISD::FSIN
, getCurDebugLoc(),
5106 Tmp
.getValueType(), Tmp
));
5109 } else if (Name
== "cos" || Name
== "cosf" || Name
== "cosl") {
5110 if (I
.getNumArgOperands() == 1 && // Basic sanity checks.
5111 I
.getArgOperand(0)->getType()->isFloatingPointTy() &&
5112 I
.getType() == I
.getArgOperand(0)->getType() &&
5113 I
.onlyReadsMemory()) {
5114 SDValue Tmp
= getValue(I
.getArgOperand(0));
5115 setValue(&I
, DAG
.getNode(ISD::FCOS
, getCurDebugLoc(),
5116 Tmp
.getValueType(), Tmp
));
5119 } else if (Name
== "sqrt" || Name
== "sqrtf" || Name
== "sqrtl") {
5120 if (I
.getNumArgOperands() == 1 && // Basic sanity checks.
5121 I
.getArgOperand(0)->getType()->isFloatingPointTy() &&
5122 I
.getType() == I
.getArgOperand(0)->getType() &&
5123 I
.onlyReadsMemory()) {
5124 SDValue Tmp
= getValue(I
.getArgOperand(0));
5125 setValue(&I
, DAG
.getNode(ISD::FSQRT
, getCurDebugLoc(),
5126 Tmp
.getValueType(), Tmp
));
5129 } else if (Name
== "memcmp") {
5130 if (visitMemCmpCall(I
))
5138 Callee
= getValue(I
.getCalledValue());
5140 Callee
= DAG
.getExternalSymbol(RenameFn
, TLI
.getPointerTy());
5142 // Check if we can potentially perform a tail call. More detailed checking is
5143 // be done within LowerCallTo, after more information about the call is known.
5144 LowerCallTo(&I
, Callee
, I
.isTailCall());
5149 /// AsmOperandInfo - This contains information for each constraint that we are
5151 class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo
:
5152 public TargetLowering::AsmOperandInfo
{
5154 /// CallOperand - If this is the result output operand or a clobber
5155 /// this is null, otherwise it is the incoming operand to the CallInst.
5156 /// This gets modified as the asm is processed.
5157 SDValue CallOperand
;
5159 /// AssignedRegs - If this is a register or register class operand, this
5160 /// contains the set of register corresponding to the operand.
5161 RegsForValue AssignedRegs
;
5163 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo
&info
)
5164 : TargetLowering::AsmOperandInfo(info
), CallOperand(0,0) {
5167 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5168 /// busy in OutputRegs/InputRegs.
5169 void MarkAllocatedRegs(bool isOutReg
, bool isInReg
,
5170 std::set
<unsigned> &OutputRegs
,
5171 std::set
<unsigned> &InputRegs
,
5172 const TargetRegisterInfo
&TRI
) const {
5174 for (unsigned i
= 0, e
= AssignedRegs
.Regs
.size(); i
!= e
; ++i
)
5175 MarkRegAndAliases(AssignedRegs
.Regs
[i
], OutputRegs
, TRI
);
5178 for (unsigned i
= 0, e
= AssignedRegs
.Regs
.size(); i
!= e
; ++i
)
5179 MarkRegAndAliases(AssignedRegs
.Regs
[i
], InputRegs
, TRI
);
5183 /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5184 /// corresponds to. If there is no Value* for this operand, it returns
5186 EVT
getCallOperandValEVT(LLVMContext
&Context
,
5187 const TargetLowering
&TLI
,
5188 const TargetData
*TD
) const {
5189 if (CallOperandVal
== 0) return MVT::Other
;
5191 if (isa
<BasicBlock
>(CallOperandVal
))
5192 return TLI
.getPointerTy();
5194 const llvm::Type
*OpTy
= CallOperandVal
->getType();
5196 // If this is an indirect operand, the operand is a pointer to the
5199 const llvm::PointerType
*PtrTy
= dyn_cast
<PointerType
>(OpTy
);
5201 report_fatal_error("Indirect operand for inline asm not a pointer!");
5202 OpTy
= PtrTy
->getElementType();
5205 // If OpTy is not a single value, it may be a struct/union that we
5206 // can tile with integers.
5207 if (!OpTy
->isSingleValueType() && OpTy
->isSized()) {
5208 unsigned BitSize
= TD
->getTypeSizeInBits(OpTy
);
5217 OpTy
= IntegerType::get(Context
, BitSize
);
5222 return TLI
.getValueType(OpTy
, true);
5226 /// MarkRegAndAliases - Mark the specified register and all aliases in the
5228 static void MarkRegAndAliases(unsigned Reg
, std::set
<unsigned> &Regs
,
5229 const TargetRegisterInfo
&TRI
) {
5230 assert(TargetRegisterInfo::isPhysicalRegister(Reg
) && "Isn't a physreg");
5232 if (const unsigned *Aliases
= TRI
.getAliasSet(Reg
))
5233 for (; *Aliases
; ++Aliases
)
5234 Regs
.insert(*Aliases
);
5238 typedef SmallVector
<SDISelAsmOperandInfo
,16> SDISelAsmOperandInfoVector
;
5240 } // end llvm namespace.
5242 /// isAllocatableRegister - If the specified register is safe to allocate,
5243 /// i.e. it isn't a stack pointer or some other special register, return the
5244 /// register class for the register. Otherwise, return null.
5245 static const TargetRegisterClass
*
5246 isAllocatableRegister(unsigned Reg
, MachineFunction
&MF
,
5247 const TargetLowering
&TLI
,
5248 const TargetRegisterInfo
*TRI
) {
5249 EVT FoundVT
= MVT::Other
;
5250 const TargetRegisterClass
*FoundRC
= 0;
5251 for (TargetRegisterInfo::regclass_iterator RCI
= TRI
->regclass_begin(),
5252 E
= TRI
->regclass_end(); RCI
!= E
; ++RCI
) {
5253 EVT ThisVT
= MVT::Other
;
5255 const TargetRegisterClass
*RC
= *RCI
;
5256 // If none of the value types for this register class are valid, we
5257 // can't use it. For example, 64-bit reg classes on 32-bit targets.
5258 for (TargetRegisterClass::vt_iterator I
= RC
->vt_begin(), E
= RC
->vt_end();
5260 if (TLI
.isTypeLegal(*I
)) {
5261 // If we have already found this register in a different register class,
5262 // choose the one with the largest VT specified. For example, on
5263 // PowerPC, we favor f64 register classes over f32.
5264 if (FoundVT
== MVT::Other
|| FoundVT
.bitsLT(*I
)) {
5271 if (ThisVT
== MVT::Other
) continue;
5273 // NOTE: This isn't ideal. In particular, this might allocate the
5274 // frame pointer in functions that need it (due to them not being taken
5275 // out of allocation, because a variable sized allocation hasn't been seen
5276 // yet). This is a slight code pessimization, but should still work.
5277 for (TargetRegisterClass::iterator I
= RC
->allocation_order_begin(MF
),
5278 E
= RC
->allocation_order_end(MF
); I
!= E
; ++I
)
5280 // We found a matching register class. Keep looking at others in case
5281 // we find one with larger registers that this physreg is also in.
5290 /// GetRegistersForValue - Assign registers (virtual or physical) for the
5291 /// specified operand. We prefer to assign virtual registers, to allow the
5292 /// register allocator to handle the assignment process. However, if the asm
5293 /// uses features that we can't model on machineinstrs, we have SDISel do the
5294 /// allocation. This produces generally horrible, but correct, code.
5296 /// OpInfo describes the operand.
5297 /// Input and OutputRegs are the set of already allocated physical registers.
5299 void SelectionDAGBuilder::
5300 GetRegistersForValue(SDISelAsmOperandInfo
&OpInfo
,
5301 std::set
<unsigned> &OutputRegs
,
5302 std::set
<unsigned> &InputRegs
) {
5303 LLVMContext
&Context
= FuncInfo
.Fn
->getContext();
5305 // Compute whether this value requires an input register, an output register,
5307 bool isOutReg
= false;
5308 bool isInReg
= false;
5309 switch (OpInfo
.Type
) {
5310 case InlineAsm::isOutput
:
5313 // If there is an input constraint that matches this, we need to reserve
5314 // the input register so no other inputs allocate to it.
5315 isInReg
= OpInfo
.hasMatchingInput();
5317 case InlineAsm::isInput
:
5321 case InlineAsm::isClobber
:
5328 MachineFunction
&MF
= DAG
.getMachineFunction();
5329 SmallVector
<unsigned, 4> Regs
;
5331 // If this is a constraint for a single physreg, or a constraint for a
5332 // register class, find it.
5333 std::pair
<unsigned, const TargetRegisterClass
*> PhysReg
=
5334 TLI
.getRegForInlineAsmConstraint(OpInfo
.ConstraintCode
,
5335 OpInfo
.ConstraintVT
);
5337 unsigned NumRegs
= 1;
5338 if (OpInfo
.ConstraintVT
!= MVT::Other
) {
5339 // If this is a FP input in an integer register (or visa versa) insert a bit
5340 // cast of the input value. More generally, handle any case where the input
5341 // value disagrees with the register class we plan to stick this in.
5342 if (OpInfo
.Type
== InlineAsm::isInput
&&
5343 PhysReg
.second
&& !PhysReg
.second
->hasType(OpInfo
.ConstraintVT
)) {
5344 // Try to convert to the first EVT that the reg class contains. If the
5345 // types are identical size, use a bitcast to convert (e.g. two differing
5347 EVT RegVT
= *PhysReg
.second
->vt_begin();
5348 if (RegVT
.getSizeInBits() == OpInfo
.ConstraintVT
.getSizeInBits()) {
5349 OpInfo
.CallOperand
= DAG
.getNode(ISD::BIT_CONVERT
, getCurDebugLoc(),
5350 RegVT
, OpInfo
.CallOperand
);
5351 OpInfo
.ConstraintVT
= RegVT
;
5352 } else if (RegVT
.isInteger() && OpInfo
.ConstraintVT
.isFloatingPoint()) {
5353 // If the input is a FP value and we want it in FP registers, do a
5354 // bitcast to the corresponding integer type. This turns an f64 value
5355 // into i64, which can be passed with two i32 values on a 32-bit
5357 RegVT
= EVT::getIntegerVT(Context
,
5358 OpInfo
.ConstraintVT
.getSizeInBits());
5359 OpInfo
.CallOperand
= DAG
.getNode(ISD::BIT_CONVERT
, getCurDebugLoc(),
5360 RegVT
, OpInfo
.CallOperand
);
5361 OpInfo
.ConstraintVT
= RegVT
;
5365 NumRegs
= TLI
.getNumRegisters(Context
, OpInfo
.ConstraintVT
);
5369 EVT ValueVT
= OpInfo
.ConstraintVT
;
5371 // If this is a constraint for a specific physical register, like {r17},
5373 if (unsigned AssignedReg
= PhysReg
.first
) {
5374 const TargetRegisterClass
*RC
= PhysReg
.second
;
5375 if (OpInfo
.ConstraintVT
== MVT::Other
)
5376 ValueVT
= *RC
->vt_begin();
5378 // Get the actual register value type. This is important, because the user
5379 // may have asked for (e.g.) the AX register in i32 type. We need to
5380 // remember that AX is actually i16 to get the right extension.
5381 RegVT
= *RC
->vt_begin();
5383 // This is a explicit reference to a physical register.
5384 Regs
.push_back(AssignedReg
);
5386 // If this is an expanded reference, add the rest of the regs to Regs.
5388 TargetRegisterClass::iterator I
= RC
->begin();
5389 for (; *I
!= AssignedReg
; ++I
)
5390 assert(I
!= RC
->end() && "Didn't find reg!");
5392 // Already added the first reg.
5394 for (; NumRegs
; --NumRegs
, ++I
) {
5395 assert(I
!= RC
->end() && "Ran out of registers to allocate!");
5400 OpInfo
.AssignedRegs
= RegsForValue(Regs
, RegVT
, ValueVT
);
5401 const TargetRegisterInfo
*TRI
= DAG
.getTarget().getRegisterInfo();
5402 OpInfo
.MarkAllocatedRegs(isOutReg
, isInReg
, OutputRegs
, InputRegs
, *TRI
);
5406 // Otherwise, if this was a reference to an LLVM register class, create vregs
5407 // for this reference.
5408 if (const TargetRegisterClass
*RC
= PhysReg
.second
) {
5409 RegVT
= *RC
->vt_begin();
5410 if (OpInfo
.ConstraintVT
== MVT::Other
)
5413 // Create the appropriate number of virtual registers.
5414 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
5415 for (; NumRegs
; --NumRegs
)
5416 Regs
.push_back(RegInfo
.createVirtualRegister(RC
));
5418 OpInfo
.AssignedRegs
= RegsForValue(Regs
, RegVT
, ValueVT
);
5422 // This is a reference to a register class that doesn't directly correspond
5423 // to an LLVM register class. Allocate NumRegs consecutive, available,
5424 // registers from the class.
5425 std::vector
<unsigned> RegClassRegs
5426 = TLI
.getRegClassForInlineAsmConstraint(OpInfo
.ConstraintCode
,
5427 OpInfo
.ConstraintVT
);
5429 const TargetRegisterInfo
*TRI
= DAG
.getTarget().getRegisterInfo();
5430 unsigned NumAllocated
= 0;
5431 for (unsigned i
= 0, e
= RegClassRegs
.size(); i
!= e
; ++i
) {
5432 unsigned Reg
= RegClassRegs
[i
];
5433 // See if this register is available.
5434 if ((isOutReg
&& OutputRegs
.count(Reg
)) || // Already used.
5435 (isInReg
&& InputRegs
.count(Reg
))) { // Already used.
5436 // Make sure we find consecutive registers.
5441 // Check to see if this register is allocatable (i.e. don't give out the
5443 const TargetRegisterClass
*RC
= isAllocatableRegister(Reg
, MF
, TLI
, TRI
);
5444 if (!RC
) { // Couldn't allocate this register.
5445 // Reset NumAllocated to make sure we return consecutive registers.
5450 // Okay, this register is good, we can use it.
5453 // If we allocated enough consecutive registers, succeed.
5454 if (NumAllocated
== NumRegs
) {
5455 unsigned RegStart
= (i
-NumAllocated
)+1;
5456 unsigned RegEnd
= i
+1;
5457 // Mark all of the allocated registers used.
5458 for (unsigned i
= RegStart
; i
!= RegEnd
; ++i
)
5459 Regs
.push_back(RegClassRegs
[i
]);
5461 OpInfo
.AssignedRegs
= RegsForValue(Regs
, *RC
->vt_begin(),
5462 OpInfo
.ConstraintVT
);
5463 OpInfo
.MarkAllocatedRegs(isOutReg
, isInReg
, OutputRegs
, InputRegs
, *TRI
);
5468 // Otherwise, we couldn't allocate enough registers for this.
5471 /// visitInlineAsm - Handle a call to an InlineAsm object.
5473 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS
) {
5474 const InlineAsm
*IA
= cast
<InlineAsm
>(CS
.getCalledValue());
5476 /// ConstraintOperands - Information about all of the constraints.
5477 SDISelAsmOperandInfoVector ConstraintOperands
;
5479 std::set
<unsigned> OutputRegs
, InputRegs
;
5481 TargetLowering::AsmOperandInfoVector TargetConstraints
= TLI
.ParseConstraints(CS
);
5482 bool hasMemory
= false;
5484 unsigned ArgNo
= 0; // ArgNo - The argument of the CallInst.
5485 unsigned ResNo
= 0; // ResNo - The result number of the next output.
5486 for (unsigned i
= 0, e
= TargetConstraints
.size(); i
!= e
; ++i
) {
5487 ConstraintOperands
.push_back(SDISelAsmOperandInfo(TargetConstraints
[i
]));
5488 SDISelAsmOperandInfo
&OpInfo
= ConstraintOperands
.back();
5490 EVT OpVT
= MVT::Other
;
5492 // Compute the value type for each operand.
5493 switch (OpInfo
.Type
) {
5494 case InlineAsm::isOutput
:
5495 // Indirect outputs just consume an argument.
5496 if (OpInfo
.isIndirect
) {
5497 OpInfo
.CallOperandVal
= const_cast<Value
*>(CS
.getArgument(ArgNo
++));
5501 // The return value of the call is this value. As such, there is no
5502 // corresponding argument.
5503 assert(!CS
.getType()->isVoidTy() &&
5505 if (const StructType
*STy
= dyn_cast
<StructType
>(CS
.getType())) {
5506 OpVT
= TLI
.getValueType(STy
->getElementType(ResNo
));
5508 assert(ResNo
== 0 && "Asm only has one result!");
5509 OpVT
= TLI
.getValueType(CS
.getType());
5513 case InlineAsm::isInput
:
5514 OpInfo
.CallOperandVal
= const_cast<Value
*>(CS
.getArgument(ArgNo
++));
5516 case InlineAsm::isClobber
:
5521 // If this is an input or an indirect output, process the call argument.
5522 // BasicBlocks are labels, currently appearing only in asm's.
5523 if (OpInfo
.CallOperandVal
) {
5524 // Strip bitcasts, if any. This mostly comes up for functions.
5525 OpInfo
.CallOperandVal
= OpInfo
.CallOperandVal
->stripPointerCasts();
5527 if (const BasicBlock
*BB
= dyn_cast
<BasicBlock
>(OpInfo
.CallOperandVal
)) {
5528 OpInfo
.CallOperand
= DAG
.getBasicBlock(FuncInfo
.MBBMap
[BB
]);
5530 OpInfo
.CallOperand
= getValue(OpInfo
.CallOperandVal
);
5533 OpVT
= OpInfo
.getCallOperandValEVT(*DAG
.getContext(), TLI
, TD
);
5536 OpInfo
.ConstraintVT
= OpVT
;
5538 // Indirect operand accesses access memory.
5539 if (OpInfo
.isIndirect
)
5542 for (unsigned j
= 0, ee
= OpInfo
.Codes
.size(); j
!= ee
; ++j
) {
5543 TargetLowering::ConstraintType CType
= TLI
.getConstraintType(OpInfo
.Codes
[j
]);
5544 if (CType
== TargetLowering::C_Memory
) {
5552 SDValue Chain
, Flag
;
5554 // We won't need to flush pending loads if this asm doesn't touch
5555 // memory and is nonvolatile.
5556 if (hasMemory
|| IA
->hasSideEffects())
5559 Chain
= DAG
.getRoot();
5561 // Second pass over the constraints: compute which constraint option to use
5562 // and assign registers to constraints that want a specific physreg.
5563 for (unsigned i
= 0, e
= ConstraintOperands
.size(); i
!= e
; ++i
) {
5564 SDISelAsmOperandInfo
&OpInfo
= ConstraintOperands
[i
];
5566 // If this is an output operand with a matching input operand, look up the
5567 // matching input. If their types mismatch, e.g. one is an integer, the
5568 // other is floating point, or their sizes are different, flag it as an
5570 if (OpInfo
.hasMatchingInput()) {
5571 SDISelAsmOperandInfo
&Input
= ConstraintOperands
[OpInfo
.MatchingInput
];
5573 if (OpInfo
.ConstraintVT
!= Input
.ConstraintVT
) {
5574 if ((OpInfo
.ConstraintVT
.isInteger() !=
5575 Input
.ConstraintVT
.isInteger()) ||
5576 (OpInfo
.ConstraintVT
.getSizeInBits() !=
5577 Input
.ConstraintVT
.getSizeInBits())) {
5578 report_fatal_error("Unsupported asm: input constraint"
5579 " with a matching output constraint of"
5580 " incompatible type!");
5582 Input
.ConstraintVT
= OpInfo
.ConstraintVT
;
5586 // Compute the constraint code and ConstraintType to use.
5587 TLI
.ComputeConstraintToUse(OpInfo
, OpInfo
.CallOperand
, &DAG
);
5589 // If this is a memory input, and if the operand is not indirect, do what we
5590 // need to to provide an address for the memory input.
5591 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
&&
5592 !OpInfo
.isIndirect
) {
5593 assert((OpInfo
.isMultipleAlternative
|| (OpInfo
.Type
== InlineAsm::isInput
)) &&
5594 "Can only indirectify direct input operands!");
5596 // Memory operands really want the address of the value. If we don't have
5597 // an indirect input, put it in the constpool if we can, otherwise spill
5598 // it to a stack slot.
5600 // If the operand is a float, integer, or vector constant, spill to a
5601 // constant pool entry to get its address.
5602 const Value
*OpVal
= OpInfo
.CallOperandVal
;
5603 if (isa
<ConstantFP
>(OpVal
) || isa
<ConstantInt
>(OpVal
) ||
5604 isa
<ConstantVector
>(OpVal
)) {
5605 OpInfo
.CallOperand
= DAG
.getConstantPool(cast
<Constant
>(OpVal
),
5606 TLI
.getPointerTy());
5608 // Otherwise, create a stack slot and emit a store to it before the
5610 const Type
*Ty
= OpVal
->getType();
5611 uint64_t TySize
= TLI
.getTargetData()->getTypeAllocSize(Ty
);
5612 unsigned Align
= TLI
.getTargetData()->getPrefTypeAlignment(Ty
);
5613 MachineFunction
&MF
= DAG
.getMachineFunction();
5614 int SSFI
= MF
.getFrameInfo()->CreateStackObject(TySize
, Align
, false);
5615 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, TLI
.getPointerTy());
5616 Chain
= DAG
.getStore(Chain
, getCurDebugLoc(),
5617 OpInfo
.CallOperand
, StackSlot
,
5618 MachinePointerInfo::getFixedStack(SSFI
),
5620 OpInfo
.CallOperand
= StackSlot
;
5623 // There is no longer a Value* corresponding to this operand.
5624 OpInfo
.CallOperandVal
= 0;
5626 // It is now an indirect operand.
5627 OpInfo
.isIndirect
= true;
5630 // If this constraint is for a specific register, allocate it before
5632 if (OpInfo
.ConstraintType
== TargetLowering::C_Register
)
5633 GetRegistersForValue(OpInfo
, OutputRegs
, InputRegs
);
5636 // Second pass - Loop over all of the operands, assigning virtual or physregs
5637 // to register class operands.
5638 for (unsigned i
= 0, e
= ConstraintOperands
.size(); i
!= e
; ++i
) {
5639 SDISelAsmOperandInfo
&OpInfo
= ConstraintOperands
[i
];
5641 // C_Register operands have already been allocated, Other/Memory don't need
5643 if (OpInfo
.ConstraintType
== TargetLowering::C_RegisterClass
)
5644 GetRegistersForValue(OpInfo
, OutputRegs
, InputRegs
);
5647 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5648 std::vector
<SDValue
> AsmNodeOperands
;
5649 AsmNodeOperands
.push_back(SDValue()); // reserve space for input chain
5650 AsmNodeOperands
.push_back(
5651 DAG
.getTargetExternalSymbol(IA
->getAsmString().c_str(),
5652 TLI
.getPointerTy()));
5654 // If we have a !srcloc metadata node associated with it, we want to attach
5655 // this to the ultimately generated inline asm machineinstr. To do this, we
5656 // pass in the third operand as this (potentially null) inline asm MDNode.
5657 const MDNode
*SrcLoc
= CS
.getInstruction()->getMetadata("srcloc");
5658 AsmNodeOperands
.push_back(DAG
.getMDNode(SrcLoc
));
5660 // Remember the AlignStack bit as operand 3.
5661 AsmNodeOperands
.push_back(DAG
.getTargetConstant(IA
->isAlignStack() ? 1 : 0,
5664 // Loop over all of the inputs, copying the operand values into the
5665 // appropriate registers and processing the output regs.
5666 RegsForValue RetValRegs
;
5668 // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5669 std::vector
<std::pair
<RegsForValue
, Value
*> > IndirectStoresToEmit
;
5671 for (unsigned i
= 0, e
= ConstraintOperands
.size(); i
!= e
; ++i
) {
5672 SDISelAsmOperandInfo
&OpInfo
= ConstraintOperands
[i
];
5674 switch (OpInfo
.Type
) {
5675 case InlineAsm::isOutput
: {
5676 if (OpInfo
.ConstraintType
!= TargetLowering::C_RegisterClass
&&
5677 OpInfo
.ConstraintType
!= TargetLowering::C_Register
) {
5678 // Memory output, or 'other' output (e.g. 'X' constraint).
5679 assert(OpInfo
.isIndirect
&& "Memory output must be indirect operand");
5681 // Add information to the INLINEASM node to know about this output.
5682 unsigned OpFlags
= InlineAsm::getFlagWord(InlineAsm::Kind_Mem
, 1);
5683 AsmNodeOperands
.push_back(DAG
.getTargetConstant(OpFlags
,
5684 TLI
.getPointerTy()));
5685 AsmNodeOperands
.push_back(OpInfo
.CallOperand
);
5689 // Otherwise, this is a register or register class output.
5691 // Copy the output from the appropriate register. Find a register that
5693 if (OpInfo
.AssignedRegs
.Regs
.empty())
5694 report_fatal_error("Couldn't allocate output reg for constraint '" +
5695 Twine(OpInfo
.ConstraintCode
) + "'!");
5697 // If this is an indirect operand, store through the pointer after the
5699 if (OpInfo
.isIndirect
) {
5700 IndirectStoresToEmit
.push_back(std::make_pair(OpInfo
.AssignedRegs
,
5701 OpInfo
.CallOperandVal
));
5703 // This is the result value of the call.
5704 assert(!CS
.getType()->isVoidTy() && "Bad inline asm!");
5705 // Concatenate this output onto the outputs list.
5706 RetValRegs
.append(OpInfo
.AssignedRegs
);
5709 // Add information to the INLINEASM node to know that this register is
5711 OpInfo
.AssignedRegs
.AddInlineAsmOperands(OpInfo
.isEarlyClobber
?
5712 InlineAsm::Kind_RegDefEarlyClobber
:
5713 InlineAsm::Kind_RegDef
,
5720 case InlineAsm::isInput
: {
5721 SDValue InOperandVal
= OpInfo
.CallOperand
;
5723 if (OpInfo
.isMatchingInputConstraint()) { // Matching constraint?
5724 // If this is required to match an output register we have already set,
5725 // just use its register.
5726 unsigned OperandNo
= OpInfo
.getMatchedOperand();
5728 // Scan until we find the definition we already emitted of this operand.
5729 // When we find it, create a RegsForValue operand.
5730 unsigned CurOp
= InlineAsm::Op_FirstOperand
;
5731 for (; OperandNo
; --OperandNo
) {
5732 // Advance to the next operand.
5734 cast
<ConstantSDNode
>(AsmNodeOperands
[CurOp
])->getZExtValue();
5735 assert((InlineAsm::isRegDefKind(OpFlag
) ||
5736 InlineAsm::isRegDefEarlyClobberKind(OpFlag
) ||
5737 InlineAsm::isMemKind(OpFlag
)) && "Skipped past definitions?");
5738 CurOp
+= InlineAsm::getNumOperandRegisters(OpFlag
)+1;
5742 cast
<ConstantSDNode
>(AsmNodeOperands
[CurOp
])->getZExtValue();
5743 if (InlineAsm::isRegDefKind(OpFlag
) ||
5744 InlineAsm::isRegDefEarlyClobberKind(OpFlag
)) {
5745 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5746 if (OpInfo
.isIndirect
) {
5747 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5748 LLVMContext
&Ctx
= *DAG
.getContext();
5749 Ctx
.emitError(CS
.getInstruction(), "inline asm not supported yet:"
5750 " don't know how to handle tied "
5751 "indirect register inputs");
5754 RegsForValue MatchedRegs
;
5755 MatchedRegs
.ValueVTs
.push_back(InOperandVal
.getValueType());
5756 EVT RegVT
= AsmNodeOperands
[CurOp
+1].getValueType();
5757 MatchedRegs
.RegVTs
.push_back(RegVT
);
5758 MachineRegisterInfo
&RegInfo
= DAG
.getMachineFunction().getRegInfo();
5759 for (unsigned i
= 0, e
= InlineAsm::getNumOperandRegisters(OpFlag
);
5761 MatchedRegs
.Regs
.push_back
5762 (RegInfo
.createVirtualRegister(TLI
.getRegClassFor(RegVT
)));
5764 // Use the produced MatchedRegs object to
5765 MatchedRegs
.getCopyToRegs(InOperandVal
, DAG
, getCurDebugLoc(),
5767 MatchedRegs
.AddInlineAsmOperands(InlineAsm::Kind_RegUse
,
5768 true, OpInfo
.getMatchedOperand(),
5769 DAG
, AsmNodeOperands
);
5773 assert(InlineAsm::isMemKind(OpFlag
) && "Unknown matching constraint!");
5774 assert(InlineAsm::getNumOperandRegisters(OpFlag
) == 1 &&
5775 "Unexpected number of operands");
5776 // Add information to the INLINEASM node to know about this input.
5777 // See InlineAsm.h isUseOperandTiedToDef.
5778 OpFlag
= InlineAsm::getFlagWordForMatchingOp(OpFlag
,
5779 OpInfo
.getMatchedOperand());
5780 AsmNodeOperands
.push_back(DAG
.getTargetConstant(OpFlag
,
5781 TLI
.getPointerTy()));
5782 AsmNodeOperands
.push_back(AsmNodeOperands
[CurOp
+1]);
5786 // Treat indirect 'X' constraint as memory.
5787 if (OpInfo
.ConstraintType
== TargetLowering::C_Other
&&
5789 OpInfo
.ConstraintType
= TargetLowering::C_Memory
;
5791 if (OpInfo
.ConstraintType
== TargetLowering::C_Other
) {
5792 std::vector
<SDValue
> Ops
;
5793 TLI
.LowerAsmOperandForConstraint(InOperandVal
, OpInfo
.ConstraintCode
[0],
5796 report_fatal_error("Invalid operand for inline asm constraint '" +
5797 Twine(OpInfo
.ConstraintCode
) + "'!");
5799 // Add information to the INLINEASM node to know about this input.
5800 unsigned ResOpType
=
5801 InlineAsm::getFlagWord(InlineAsm::Kind_Imm
, Ops
.size());
5802 AsmNodeOperands
.push_back(DAG
.getTargetConstant(ResOpType
,
5803 TLI
.getPointerTy()));
5804 AsmNodeOperands
.insert(AsmNodeOperands
.end(), Ops
.begin(), Ops
.end());
5808 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
) {
5809 assert(OpInfo
.isIndirect
&& "Operand must be indirect to be a mem!");
5810 assert(InOperandVal
.getValueType() == TLI
.getPointerTy() &&
5811 "Memory operands expect pointer values");
5813 // Add information to the INLINEASM node to know about this input.
5814 unsigned ResOpType
= InlineAsm::getFlagWord(InlineAsm::Kind_Mem
, 1);
5815 AsmNodeOperands
.push_back(DAG
.getTargetConstant(ResOpType
,
5816 TLI
.getPointerTy()));
5817 AsmNodeOperands
.push_back(InOperandVal
);
5821 assert((OpInfo
.ConstraintType
== TargetLowering::C_RegisterClass
||
5822 OpInfo
.ConstraintType
== TargetLowering::C_Register
) &&
5823 "Unknown constraint type!");
5824 assert(!OpInfo
.isIndirect
&&
5825 "Don't know how to handle indirect register inputs yet!");
5827 // Copy the input into the appropriate registers.
5828 if (OpInfo
.AssignedRegs
.Regs
.empty() ||
5829 !OpInfo
.AssignedRegs
.areValueTypesLegal(TLI
))
5830 report_fatal_error("Couldn't allocate input reg for constraint '" +
5831 Twine(OpInfo
.ConstraintCode
) + "'!");
5833 OpInfo
.AssignedRegs
.getCopyToRegs(InOperandVal
, DAG
, getCurDebugLoc(),
5836 OpInfo
.AssignedRegs
.AddInlineAsmOperands(InlineAsm::Kind_RegUse
, false, 0,
5837 DAG
, AsmNodeOperands
);
5840 case InlineAsm::isClobber
: {
5841 // Add the clobbered value to the operand list, so that the register
5842 // allocator is aware that the physreg got clobbered.
5843 if (!OpInfo
.AssignedRegs
.Regs
.empty())
5844 OpInfo
.AssignedRegs
.AddInlineAsmOperands(
5845 InlineAsm::Kind_RegDefEarlyClobber
,
5853 // Finish up input operands. Set the input chain and add the flag last.
5854 AsmNodeOperands
[InlineAsm::Op_InputChain
] = Chain
;
5855 if (Flag
.getNode()) AsmNodeOperands
.push_back(Flag
);
5857 Chain
= DAG
.getNode(ISD::INLINEASM
, getCurDebugLoc(),
5858 DAG
.getVTList(MVT::Other
, MVT::Flag
),
5859 &AsmNodeOperands
[0], AsmNodeOperands
.size());
5860 Flag
= Chain
.getValue(1);
5862 // If this asm returns a register value, copy the result from that register
5863 // and set it as the value of the call.
5864 if (!RetValRegs
.Regs
.empty()) {
5865 SDValue Val
= RetValRegs
.getCopyFromRegs(DAG
, FuncInfo
, getCurDebugLoc(),
5868 // FIXME: Why don't we do this for inline asms with MRVs?
5869 if (CS
.getType()->isSingleValueType() && CS
.getType()->isSized()) {
5870 EVT ResultType
= TLI
.getValueType(CS
.getType());
5872 // If any of the results of the inline asm is a vector, it may have the
5873 // wrong width/num elts. This can happen for register classes that can
5874 // contain multiple different value types. The preg or vreg allocated may
5875 // not have the same VT as was expected. Convert it to the right type
5876 // with bit_convert.
5877 if (ResultType
!= Val
.getValueType() && Val
.getValueType().isVector()) {
5878 Val
= DAG
.getNode(ISD::BIT_CONVERT
, getCurDebugLoc(),
5881 } else if (ResultType
!= Val
.getValueType() &&
5882 ResultType
.isInteger() && Val
.getValueType().isInteger()) {
5883 // If a result value was tied to an input value, the computed result may
5884 // have a wider width than the expected result. Extract the relevant
5886 Val
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(), ResultType
, Val
);
5889 assert(ResultType
== Val
.getValueType() && "Asm result value mismatch!");
5892 setValue(CS
.getInstruction(), Val
);
5893 // Don't need to use this as a chain in this case.
5894 if (!IA
->hasSideEffects() && !hasMemory
&& IndirectStoresToEmit
.empty())
5898 std::vector
<std::pair
<SDValue
, const Value
*> > StoresToEmit
;
5900 // Process indirect outputs, first output all of the flagged copies out of
5902 for (unsigned i
= 0, e
= IndirectStoresToEmit
.size(); i
!= e
; ++i
) {
5903 RegsForValue
&OutRegs
= IndirectStoresToEmit
[i
].first
;
5904 const Value
*Ptr
= IndirectStoresToEmit
[i
].second
;
5905 SDValue OutVal
= OutRegs
.getCopyFromRegs(DAG
, FuncInfo
, getCurDebugLoc(),
5907 StoresToEmit
.push_back(std::make_pair(OutVal
, Ptr
));
5910 // Emit the non-flagged stores from the physregs.
5911 SmallVector
<SDValue
, 8> OutChains
;
5912 for (unsigned i
= 0, e
= StoresToEmit
.size(); i
!= e
; ++i
) {
5913 SDValue Val
= DAG
.getStore(Chain
, getCurDebugLoc(),
5914 StoresToEmit
[i
].first
,
5915 getValue(StoresToEmit
[i
].second
),
5916 MachinePointerInfo(StoresToEmit
[i
].second
),
5918 OutChains
.push_back(Val
);
5921 if (!OutChains
.empty())
5922 Chain
= DAG
.getNode(ISD::TokenFactor
, getCurDebugLoc(), MVT::Other
,
5923 &OutChains
[0], OutChains
.size());
5928 void SelectionDAGBuilder::visitVAStart(const CallInst
&I
) {
5929 DAG
.setRoot(DAG
.getNode(ISD::VASTART
, getCurDebugLoc(),
5930 MVT::Other
, getRoot(),
5931 getValue(I
.getArgOperand(0)),
5932 DAG
.getSrcValue(I
.getArgOperand(0))));
5935 void SelectionDAGBuilder::visitVAArg(const VAArgInst
&I
) {
5936 const TargetData
&TD
= *TLI
.getTargetData();
5937 SDValue V
= DAG
.getVAArg(TLI
.getValueType(I
.getType()), getCurDebugLoc(),
5938 getRoot(), getValue(I
.getOperand(0)),
5939 DAG
.getSrcValue(I
.getOperand(0)),
5940 TD
.getABITypeAlignment(I
.getType()));
5942 DAG
.setRoot(V
.getValue(1));
5945 void SelectionDAGBuilder::visitVAEnd(const CallInst
&I
) {
5946 DAG
.setRoot(DAG
.getNode(ISD::VAEND
, getCurDebugLoc(),
5947 MVT::Other
, getRoot(),
5948 getValue(I
.getArgOperand(0)),
5949 DAG
.getSrcValue(I
.getArgOperand(0))));
5952 void SelectionDAGBuilder::visitVACopy(const CallInst
&I
) {
5953 DAG
.setRoot(DAG
.getNode(ISD::VACOPY
, getCurDebugLoc(),
5954 MVT::Other
, getRoot(),
5955 getValue(I
.getArgOperand(0)),
5956 getValue(I
.getArgOperand(1)),
5957 DAG
.getSrcValue(I
.getArgOperand(0)),
5958 DAG
.getSrcValue(I
.getArgOperand(1))));
5961 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
5962 /// implementation, which just calls LowerCall.
5963 /// FIXME: When all targets are
5964 /// migrated to using LowerCall, this hook should be integrated into SDISel.
5965 std::pair
<SDValue
, SDValue
>
5966 TargetLowering::LowerCallTo(SDValue Chain
, const Type
*RetTy
,
5967 bool RetSExt
, bool RetZExt
, bool isVarArg
,
5968 bool isInreg
, unsigned NumFixedArgs
,
5969 CallingConv::ID CallConv
, bool isTailCall
,
5970 bool isReturnValueUsed
,
5972 ArgListTy
&Args
, SelectionDAG
&DAG
,
5973 DebugLoc dl
) const {
5974 // Handle all of the outgoing arguments.
5975 SmallVector
<ISD::OutputArg
, 32> Outs
;
5976 SmallVector
<SDValue
, 32> OutVals
;
5977 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; ++i
) {
5978 SmallVector
<EVT
, 4> ValueVTs
;
5979 ComputeValueVTs(*this, Args
[i
].Ty
, ValueVTs
);
5980 for (unsigned Value
= 0, NumValues
= ValueVTs
.size();
5981 Value
!= NumValues
; ++Value
) {
5982 EVT VT
= ValueVTs
[Value
];
5983 const Type
*ArgTy
= VT
.getTypeForEVT(RetTy
->getContext());
5984 SDValue Op
= SDValue(Args
[i
].Node
.getNode(),
5985 Args
[i
].Node
.getResNo() + Value
);
5986 ISD::ArgFlagsTy Flags
;
5987 unsigned OriginalAlignment
=
5988 getTargetData()->getABITypeAlignment(ArgTy
);
5994 if (Args
[i
].isInReg
)
5998 if (Args
[i
].isByVal
) {
6000 const PointerType
*Ty
= cast
<PointerType
>(Args
[i
].Ty
);
6001 const Type
*ElementTy
= Ty
->getElementType();
6002 unsigned FrameAlign
= getByValTypeAlignment(ElementTy
);
6003 unsigned FrameSize
= getTargetData()->getTypeAllocSize(ElementTy
);
6004 // For ByVal, alignment should come from FE. BE will guess if this
6005 // info is not there but there are cases it cannot get right.
6006 if (Args
[i
].Alignment
)
6007 FrameAlign
= Args
[i
].Alignment
;
6008 Flags
.setByValAlign(FrameAlign
);
6009 Flags
.setByValSize(FrameSize
);
6013 Flags
.setOrigAlign(OriginalAlignment
);
6015 EVT PartVT
= getRegisterType(RetTy
->getContext(), VT
);
6016 unsigned NumParts
= getNumRegisters(RetTy
->getContext(), VT
);
6017 SmallVector
<SDValue
, 4> Parts(NumParts
);
6018 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
;
6021 ExtendKind
= ISD::SIGN_EXTEND
;
6022 else if (Args
[i
].isZExt
)
6023 ExtendKind
= ISD::ZERO_EXTEND
;
6025 getCopyToParts(DAG
, dl
, Op
, &Parts
[0], NumParts
,
6026 PartVT
, ExtendKind
);
6028 for (unsigned j
= 0; j
!= NumParts
; ++j
) {
6029 // if it isn't first piece, alignment must be 1
6030 ISD::OutputArg
MyFlags(Flags
, Parts
[j
].getValueType(),
6032 if (NumParts
> 1 && j
== 0)
6033 MyFlags
.Flags
.setSplit();
6035 MyFlags
.Flags
.setOrigAlign(1);
6037 Outs
.push_back(MyFlags
);
6038 OutVals
.push_back(Parts
[j
]);
6043 // Handle the incoming return values from the call.
6044 SmallVector
<ISD::InputArg
, 32> Ins
;
6045 SmallVector
<EVT
, 4> RetTys
;
6046 ComputeValueVTs(*this, RetTy
, RetTys
);
6047 for (unsigned I
= 0, E
= RetTys
.size(); I
!= E
; ++I
) {
6049 EVT RegisterVT
= getRegisterType(RetTy
->getContext(), VT
);
6050 unsigned NumRegs
= getNumRegisters(RetTy
->getContext(), VT
);
6051 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
6052 ISD::InputArg MyFlags
;
6053 MyFlags
.VT
= RegisterVT
.getSimpleVT();
6054 MyFlags
.Used
= isReturnValueUsed
;
6056 MyFlags
.Flags
.setSExt();
6058 MyFlags
.Flags
.setZExt();
6060 MyFlags
.Flags
.setInReg();
6061 Ins
.push_back(MyFlags
);
6065 SmallVector
<SDValue
, 4> InVals
;
6066 Chain
= LowerCall(Chain
, Callee
, CallConv
, isVarArg
, isTailCall
,
6067 Outs
, OutVals
, Ins
, dl
, DAG
, InVals
);
6069 // Verify that the target's LowerCall behaved as expected.
6070 assert(Chain
.getNode() && Chain
.getValueType() == MVT::Other
&&
6071 "LowerCall didn't return a valid chain!");
6072 assert((!isTailCall
|| InVals
.empty()) &&
6073 "LowerCall emitted a return value for a tail call!");
6074 assert((isTailCall
|| InVals
.size() == Ins
.size()) &&
6075 "LowerCall didn't emit the correct number of values!");
6077 // For a tail call, the return value is merely live-out and there aren't
6078 // any nodes in the DAG representing it. Return a special value to
6079 // indicate that a tail call has been emitted and no more Instructions
6080 // should be processed in the current block.
6083 return std::make_pair(SDValue(), SDValue());
6086 DEBUG(for (unsigned i
= 0, e
= Ins
.size(); i
!= e
; ++i
) {
6087 assert(InVals
[i
].getNode() &&
6088 "LowerCall emitted a null value!");
6089 assert(EVT(Ins
[i
].VT
) == InVals
[i
].getValueType() &&
6090 "LowerCall emitted a value with the wrong type!");
6093 // Collect the legal value parts into potentially illegal values
6094 // that correspond to the original function's return values.
6095 ISD::NodeType AssertOp
= ISD::DELETED_NODE
;
6097 AssertOp
= ISD::AssertSext
;
6099 AssertOp
= ISD::AssertZext
;
6100 SmallVector
<SDValue
, 4> ReturnValues
;
6101 unsigned CurReg
= 0;
6102 for (unsigned I
= 0, E
= RetTys
.size(); I
!= E
; ++I
) {
6104 EVT RegisterVT
= getRegisterType(RetTy
->getContext(), VT
);
6105 unsigned NumRegs
= getNumRegisters(RetTy
->getContext(), VT
);
6107 ReturnValues
.push_back(getCopyFromParts(DAG
, dl
, &InVals
[CurReg
],
6108 NumRegs
, RegisterVT
, VT
,
6113 // For a function returning void, there is no return value. We can't create
6114 // such a node, so we just return a null return value in that case. In
6115 // that case, nothing will actualy look at the value.
6116 if (ReturnValues
.empty())
6117 return std::make_pair(SDValue(), Chain
);
6119 SDValue Res
= DAG
.getNode(ISD::MERGE_VALUES
, dl
,
6120 DAG
.getVTList(&RetTys
[0], RetTys
.size()),
6121 &ReturnValues
[0], ReturnValues
.size());
6122 return std::make_pair(Res
, Chain
);
6125 void TargetLowering::LowerOperationWrapper(SDNode
*N
,
6126 SmallVectorImpl
<SDValue
> &Results
,
6127 SelectionDAG
&DAG
) const {
6128 SDValue Res
= LowerOperation(SDValue(N
, 0), DAG
);
6130 Results
.push_back(Res
);
6133 SDValue
TargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const {
6134 llvm_unreachable("LowerOperation not implemented for this target!");
6139 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value
*V
, unsigned Reg
) {
6140 SDValue Op
= getNonRegisterValue(V
);
6141 assert((Op
.getOpcode() != ISD::CopyFromReg
||
6142 cast
<RegisterSDNode
>(Op
.getOperand(1))->getReg() != Reg
) &&
6143 "Copy from a reg to the same reg!");
6144 assert(!TargetRegisterInfo::isPhysicalRegister(Reg
) && "Is a physreg");
6146 RegsForValue
RFV(V
->getContext(), TLI
, Reg
, V
->getType());
6147 SDValue Chain
= DAG
.getEntryNode();
6148 RFV
.getCopyToRegs(Op
, DAG
, getCurDebugLoc(), Chain
, 0);
6149 PendingExports
.push_back(Chain
);
6152 #include "llvm/CodeGen/SelectionDAGISel.h"
6154 void SelectionDAGISel::LowerArguments(const BasicBlock
*LLVMBB
) {
6155 // If this is the entry block, emit arguments.
6156 const Function
&F
= *LLVMBB
->getParent();
6157 SelectionDAG
&DAG
= SDB
->DAG
;
6158 DebugLoc dl
= SDB
->getCurDebugLoc();
6159 const TargetData
*TD
= TLI
.getTargetData();
6160 SmallVector
<ISD::InputArg
, 16> Ins
;
6162 // Check whether the function can return without sret-demotion.
6163 SmallVector
<ISD::OutputArg
, 4> Outs
;
6164 GetReturnInfo(F
.getReturnType(), F
.getAttributes().getRetAttributes(),
6167 if (!FuncInfo
->CanLowerReturn
) {
6168 // Put in an sret pointer parameter before all the other parameters.
6169 SmallVector
<EVT
, 1> ValueVTs
;
6170 ComputeValueVTs(TLI
, PointerType::getUnqual(F
.getReturnType()), ValueVTs
);
6172 // NOTE: Assuming that a pointer will never break down to more than one VT
6174 ISD::ArgFlagsTy Flags
;
6176 EVT RegisterVT
= TLI
.getRegisterType(*DAG
.getContext(), ValueVTs
[0]);
6177 ISD::InputArg
RetArg(Flags
, RegisterVT
, true);
6178 Ins
.push_back(RetArg
);
6181 // Set up the incoming argument description vector.
6183 for (Function::const_arg_iterator I
= F
.arg_begin(), E
= F
.arg_end();
6184 I
!= E
; ++I
, ++Idx
) {
6185 SmallVector
<EVT
, 4> ValueVTs
;
6186 ComputeValueVTs(TLI
, I
->getType(), ValueVTs
);
6187 bool isArgValueUsed
= !I
->use_empty();
6188 for (unsigned Value
= 0, NumValues
= ValueVTs
.size();
6189 Value
!= NumValues
; ++Value
) {
6190 EVT VT
= ValueVTs
[Value
];
6191 const Type
*ArgTy
= VT
.getTypeForEVT(*DAG
.getContext());
6192 ISD::ArgFlagsTy Flags
;
6193 unsigned OriginalAlignment
=
6194 TD
->getABITypeAlignment(ArgTy
);
6196 if (F
.paramHasAttr(Idx
, Attribute::ZExt
))
6198 if (F
.paramHasAttr(Idx
, Attribute::SExt
))
6200 if (F
.paramHasAttr(Idx
, Attribute::InReg
))
6202 if (F
.paramHasAttr(Idx
, Attribute::StructRet
))
6204 if (F
.paramHasAttr(Idx
, Attribute::ByVal
)) {
6206 const PointerType
*Ty
= cast
<PointerType
>(I
->getType());
6207 const Type
*ElementTy
= Ty
->getElementType();
6208 unsigned FrameAlign
= TLI
.getByValTypeAlignment(ElementTy
);
6209 unsigned FrameSize
= TD
->getTypeAllocSize(ElementTy
);
6210 // For ByVal, alignment should be passed from FE. BE will guess if
6211 // this info is not there but there are cases it cannot get right.
6212 if (F
.getParamAlignment(Idx
))
6213 FrameAlign
= F
.getParamAlignment(Idx
);
6214 Flags
.setByValAlign(FrameAlign
);
6215 Flags
.setByValSize(FrameSize
);
6217 if (F
.paramHasAttr(Idx
, Attribute::Nest
))
6219 Flags
.setOrigAlign(OriginalAlignment
);
6221 EVT RegisterVT
= TLI
.getRegisterType(*CurDAG
->getContext(), VT
);
6222 unsigned NumRegs
= TLI
.getNumRegisters(*CurDAG
->getContext(), VT
);
6223 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
6224 ISD::InputArg
MyFlags(Flags
, RegisterVT
, isArgValueUsed
);
6225 if (NumRegs
> 1 && i
== 0)
6226 MyFlags
.Flags
.setSplit();
6227 // if it isn't first piece, alignment must be 1
6229 MyFlags
.Flags
.setOrigAlign(1);
6230 Ins
.push_back(MyFlags
);
6235 // Call the target to set up the argument values.
6236 SmallVector
<SDValue
, 8> InVals
;
6237 SDValue NewRoot
= TLI
.LowerFormalArguments(DAG
.getRoot(), F
.getCallingConv(),
6241 // Verify that the target's LowerFormalArguments behaved as expected.
6242 assert(NewRoot
.getNode() && NewRoot
.getValueType() == MVT::Other
&&
6243 "LowerFormalArguments didn't return a valid chain!");
6244 assert(InVals
.size() == Ins
.size() &&
6245 "LowerFormalArguments didn't emit the correct number of values!");
6247 for (unsigned i
= 0, e
= Ins
.size(); i
!= e
; ++i
) {
6248 assert(InVals
[i
].getNode() &&
6249 "LowerFormalArguments emitted a null value!");
6250 assert(EVT(Ins
[i
].VT
) == InVals
[i
].getValueType() &&
6251 "LowerFormalArguments emitted a value with the wrong type!");
6255 // Update the DAG with the new chain value resulting from argument lowering.
6256 DAG
.setRoot(NewRoot
);
6258 // Set up the argument values.
6261 if (!FuncInfo
->CanLowerReturn
) {
6262 // Create a virtual register for the sret pointer, and put in a copy
6263 // from the sret argument into it.
6264 SmallVector
<EVT
, 1> ValueVTs
;
6265 ComputeValueVTs(TLI
, PointerType::getUnqual(F
.getReturnType()), ValueVTs
);
6266 EVT VT
= ValueVTs
[0];
6267 EVT RegVT
= TLI
.getRegisterType(*CurDAG
->getContext(), VT
);
6268 ISD::NodeType AssertOp
= ISD::DELETED_NODE
;
6269 SDValue ArgValue
= getCopyFromParts(DAG
, dl
, &InVals
[0], 1,
6270 RegVT
, VT
, AssertOp
);
6272 MachineFunction
& MF
= SDB
->DAG
.getMachineFunction();
6273 MachineRegisterInfo
& RegInfo
= MF
.getRegInfo();
6274 unsigned SRetReg
= RegInfo
.createVirtualRegister(TLI
.getRegClassFor(RegVT
));
6275 FuncInfo
->DemoteRegister
= SRetReg
;
6276 NewRoot
= SDB
->DAG
.getCopyToReg(NewRoot
, SDB
->getCurDebugLoc(),
6278 DAG
.setRoot(NewRoot
);
6280 // i indexes lowered arguments. Bump it past the hidden sret argument.
6281 // Idx indexes LLVM arguments. Don't touch it.
6285 for (Function::const_arg_iterator I
= F
.arg_begin(), E
= F
.arg_end(); I
!= E
;
6287 SmallVector
<SDValue
, 4> ArgValues
;
6288 SmallVector
<EVT
, 4> ValueVTs
;
6289 ComputeValueVTs(TLI
, I
->getType(), ValueVTs
);
6290 unsigned NumValues
= ValueVTs
.size();
6292 // If this argument is unused then remember its value. It is used to generate
6293 // debugging information.
6294 if (I
->use_empty() && NumValues
)
6295 SDB
->setUnusedArgValue(I
, InVals
[i
]);
6297 for (unsigned Value
= 0; Value
!= NumValues
; ++Value
) {
6298 EVT VT
= ValueVTs
[Value
];
6299 EVT PartVT
= TLI
.getRegisterType(*CurDAG
->getContext(), VT
);
6300 unsigned NumParts
= TLI
.getNumRegisters(*CurDAG
->getContext(), VT
);
6302 if (!I
->use_empty()) {
6303 ISD::NodeType AssertOp
= ISD::DELETED_NODE
;
6304 if (F
.paramHasAttr(Idx
, Attribute::SExt
))
6305 AssertOp
= ISD::AssertSext
;
6306 else if (F
.paramHasAttr(Idx
, Attribute::ZExt
))
6307 AssertOp
= ISD::AssertZext
;
6309 ArgValues
.push_back(getCopyFromParts(DAG
, dl
, &InVals
[i
],
6310 NumParts
, PartVT
, VT
,
6317 // Note down frame index for byval arguments.
6318 if (I
->hasByValAttr() && !ArgValues
.empty())
6319 if (FrameIndexSDNode
*FI
=
6320 dyn_cast
<FrameIndexSDNode
>(ArgValues
[0].getNode()))
6321 FuncInfo
->setByValArgumentFrameIndex(I
, FI
->getIndex());
6323 if (!I
->use_empty()) {
6325 if (!ArgValues
.empty())
6326 Res
= DAG
.getMergeValues(&ArgValues
[0], NumValues
,
6327 SDB
->getCurDebugLoc());
6328 SDB
->setValue(I
, Res
);
6330 // If this argument is live outside of the entry block, insert a copy from
6331 // whereever we got it to the vreg that other BB's will reference it as.
6332 SDB
->CopyToExportRegsIfNeeded(I
);
6336 assert(i
== InVals
.size() && "Argument register count mismatch!");
6338 // Finally, if the target has anything special to do, allow it to do so.
6339 // FIXME: this should insert code into the DAG!
6340 EmitFunctionEntryCode();
6343 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
6344 /// ensure constants are generated when needed. Remember the virtual registers
6345 /// that need to be added to the Machine PHI nodes as input. We cannot just
6346 /// directly add them, because expansion might result in multiple MBB's for one
6347 /// BB. As such, the start of the BB might correspond to a different MBB than
6351 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock
*LLVMBB
) {
6352 const TerminatorInst
*TI
= LLVMBB
->getTerminator();
6354 SmallPtrSet
<MachineBasicBlock
*, 4> SuccsHandled
;
6356 // Check successor nodes' PHI nodes that expect a constant to be available
6358 for (unsigned succ
= 0, e
= TI
->getNumSuccessors(); succ
!= e
; ++succ
) {
6359 const BasicBlock
*SuccBB
= TI
->getSuccessor(succ
);
6360 if (!isa
<PHINode
>(SuccBB
->begin())) continue;
6361 MachineBasicBlock
*SuccMBB
= FuncInfo
.MBBMap
[SuccBB
];
6363 // If this terminator has multiple identical successors (common for
6364 // switches), only handle each succ once.
6365 if (!SuccsHandled
.insert(SuccMBB
)) continue;
6367 MachineBasicBlock::iterator MBBI
= SuccMBB
->begin();
6369 // At this point we know that there is a 1-1 correspondence between LLVM PHI
6370 // nodes and Machine PHI nodes, but the incoming operands have not been
6372 for (BasicBlock::const_iterator I
= SuccBB
->begin();
6373 const PHINode
*PN
= dyn_cast
<PHINode
>(I
); ++I
) {
6374 // Ignore dead phi's.
6375 if (PN
->use_empty()) continue;
6378 const Value
*PHIOp
= PN
->getIncomingValueForBlock(LLVMBB
);
6380 if (const Constant
*C
= dyn_cast
<Constant
>(PHIOp
)) {
6381 unsigned &RegOut
= ConstantsOut
[C
];
6383 RegOut
= FuncInfo
.CreateRegs(C
->getType());
6384 CopyValueToVirtualRegister(C
, RegOut
);
6388 DenseMap
<const Value
*, unsigned>::iterator I
=
6389 FuncInfo
.ValueMap
.find(PHIOp
);
6390 if (I
!= FuncInfo
.ValueMap
.end())
6393 assert(isa
<AllocaInst
>(PHIOp
) &&
6394 FuncInfo
.StaticAllocaMap
.count(cast
<AllocaInst
>(PHIOp
)) &&
6395 "Didn't codegen value into a register!??");
6396 Reg
= FuncInfo
.CreateRegs(PHIOp
->getType());
6397 CopyValueToVirtualRegister(PHIOp
, Reg
);
6401 // Remember that this register needs to added to the machine PHI node as
6402 // the input for this MBB.
6403 SmallVector
<EVT
, 4> ValueVTs
;
6404 ComputeValueVTs(TLI
, PN
->getType(), ValueVTs
);
6405 for (unsigned vti
= 0, vte
= ValueVTs
.size(); vti
!= vte
; ++vti
) {
6406 EVT VT
= ValueVTs
[vti
];
6407 unsigned NumRegisters
= TLI
.getNumRegisters(*DAG
.getContext(), VT
);
6408 for (unsigned i
= 0, e
= NumRegisters
; i
!= e
; ++i
)
6409 FuncInfo
.PHINodesToUpdate
.push_back(std::make_pair(MBBI
++, Reg
+i
));
6410 Reg
+= NumRegisters
;
6414 ConstantsOut
.clear();