Fixed some bugs.
[llvm/zpu.git] / lib / CodeGen / SelectionDAG / SelectionDAGBuilder.h
blobdfd1df75f10701893478e17151873fc76b9c24e1
1 //===-- SelectionDAGBuilder.h - Selection-DAG building --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
12 //===----------------------------------------------------------------------===//
14 #ifndef SELECTIONDAGBUILDER_H
15 #define SELECTIONDAGBUILDER_H
17 #include "llvm/Constants.h"
18 #include "llvm/CodeGen/SelectionDAG.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/CodeGen/SelectionDAGNodes.h"
22 #include "llvm/CodeGen/ValueTypes.h"
23 #include "llvm/Support/CallSite.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include <vector>
26 #include <set>
28 namespace llvm {
30 class AliasAnalysis;
31 class AllocaInst;
32 class BasicBlock;
33 class BitCastInst;
34 class BranchInst;
35 class CallInst;
36 class DbgValueInst;
37 class ExtractElementInst;
38 class ExtractValueInst;
39 class FCmpInst;
40 class FPExtInst;
41 class FPToSIInst;
42 class FPToUIInst;
43 class FPTruncInst;
44 class Function;
45 class FunctionLoweringInfo;
46 class GetElementPtrInst;
47 class GCFunctionInfo;
48 class ICmpInst;
49 class IntToPtrInst;
50 class IndirectBrInst;
51 class InvokeInst;
52 class InsertElementInst;
53 class InsertValueInst;
54 class Instruction;
55 class LoadInst;
56 class MachineBasicBlock;
57 class MachineInstr;
58 class MachineRegisterInfo;
59 class MDNode;
60 class PHINode;
61 class PtrToIntInst;
62 class ReturnInst;
63 class SDISelAsmOperandInfo;
64 class SDDbgValue;
65 class SExtInst;
66 class SelectInst;
67 class ShuffleVectorInst;
68 class SIToFPInst;
69 class StoreInst;
70 class SwitchInst;
71 class TargetData;
72 class TargetLowering;
73 class TruncInst;
74 class UIToFPInst;
75 class UnreachableInst;
76 class UnwindInst;
77 class VAArgInst;
78 class ZExtInst;
80 //===----------------------------------------------------------------------===//
81 /// SelectionDAGBuilder - This is the common target-independent lowering
82 /// implementation that is parameterized by a TargetLowering object.
83 ///
84 class SelectionDAGBuilder {
85 /// CurDebugLoc - current file + line number. Changes as we build the DAG.
86 DebugLoc CurDebugLoc;
88 DenseMap<const Value*, SDValue> NodeMap;
90 /// UnusedArgNodeMap - Maps argument value for unused arguments. This is used
91 /// to preserve debug information for incoming arguments.
92 DenseMap<const Value*, SDValue> UnusedArgNodeMap;
94 /// DanglingDebugInfo - Helper type for DanglingDebugInfoMap.
95 class DanglingDebugInfo {
96 const DbgValueInst* DI;
97 DebugLoc dl;
98 unsigned SDNodeOrder;
99 public:
100 DanglingDebugInfo() : DI(0), dl(DebugLoc()), SDNodeOrder(0) { }
101 DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO) :
102 DI(di), dl(DL), SDNodeOrder(SDNO) { }
103 const DbgValueInst* getDI() { return DI; }
104 DebugLoc getdl() { return dl; }
105 unsigned getSDNodeOrder() { return SDNodeOrder; }
108 /// DanglingDebugInfoMap - Keeps track of dbg_values for which we have not
109 /// yet seen the referent. We defer handling these until we do see it.
110 DenseMap<const Value*, DanglingDebugInfo> DanglingDebugInfoMap;
112 public:
113 /// PendingLoads - Loads are not emitted to the program immediately. We bunch
114 /// them up and then emit token factor nodes when possible. This allows us to
115 /// get simple disambiguation between loads without worrying about alias
116 /// analysis.
117 SmallVector<SDValue, 8> PendingLoads;
118 private:
120 /// PendingExports - CopyToReg nodes that copy values to virtual registers
121 /// for export to other blocks need to be emitted before any terminator
122 /// instruction, but they have no other ordering requirements. We bunch them
123 /// up and the emit a single tokenfactor for them just before terminator
124 /// instructions.
125 SmallVector<SDValue, 8> PendingExports;
127 /// SDNodeOrder - A unique monotonically increasing number used to order the
128 /// SDNodes we create.
129 unsigned SDNodeOrder;
131 /// Case - A struct to record the Value for a switch case, and the
132 /// case's target basic block.
133 struct Case {
134 Constant* Low;
135 Constant* High;
136 MachineBasicBlock* BB;
138 Case() : Low(0), High(0), BB(0) { }
139 Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
140 Low(low), High(high), BB(bb) { }
141 APInt size() const {
142 const APInt &rHigh = cast<ConstantInt>(High)->getValue();
143 const APInt &rLow = cast<ConstantInt>(Low)->getValue();
144 return (rHigh - rLow + 1ULL);
148 struct CaseBits {
149 uint64_t Mask;
150 MachineBasicBlock* BB;
151 unsigned Bits;
153 CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
154 Mask(mask), BB(bb), Bits(bits) { }
157 typedef std::vector<Case> CaseVector;
158 typedef std::vector<CaseBits> CaseBitsVector;
159 typedef CaseVector::iterator CaseItr;
160 typedef std::pair<CaseItr, CaseItr> CaseRange;
162 /// CaseRec - A struct with ctor used in lowering switches to a binary tree
163 /// of conditional branches.
164 struct CaseRec {
165 CaseRec(MachineBasicBlock *bb, const Constant *lt, const Constant *ge,
166 CaseRange r) :
167 CaseBB(bb), LT(lt), GE(ge), Range(r) {}
169 /// CaseBB - The MBB in which to emit the compare and branch
170 MachineBasicBlock *CaseBB;
171 /// LT, GE - If nonzero, we know the current case value must be less-than or
172 /// greater-than-or-equal-to these Constants.
173 const Constant *LT;
174 const Constant *GE;
175 /// Range - A pair of iterators representing the range of case values to be
176 /// processed at this point in the binary search tree.
177 CaseRange Range;
180 typedef std::vector<CaseRec> CaseRecVector;
182 /// The comparison function for sorting the switch case values in the vector.
183 /// WARNING: Case ranges should be disjoint!
184 struct CaseCmp {
185 bool operator()(const Case &C1, const Case &C2) {
186 assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
187 const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
188 const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
189 return CI1->getValue().slt(CI2->getValue());
193 struct CaseBitsCmp {
194 bool operator()(const CaseBits &C1, const CaseBits &C2) {
195 return C1.Bits > C2.Bits;
199 size_t Clusterify(CaseVector &Cases, const SwitchInst &SI);
201 /// CaseBlock - This structure is used to communicate between
202 /// SelectionDAGBuilder and SDISel for the code generation of additional basic
203 /// blocks needed by multi-case switch statements.
204 struct CaseBlock {
205 CaseBlock(ISD::CondCode cc, const Value *cmplhs, const Value *cmprhs,
206 const Value *cmpmiddle,
207 MachineBasicBlock *truebb, MachineBasicBlock *falsebb,
208 MachineBasicBlock *me)
209 : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs),
210 TrueBB(truebb), FalseBB(falsebb), ThisBB(me) {}
211 // CC - the condition code to use for the case block's setcc node
212 ISD::CondCode CC;
213 // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit.
214 // Emit by default LHS op RHS. MHS is used for range comparisons:
215 // If MHS is not null: (LHS <= MHS) and (MHS <= RHS).
216 const Value *CmpLHS, *CmpMHS, *CmpRHS;
217 // TrueBB/FalseBB - the block to branch to if the setcc is true/false.
218 MachineBasicBlock *TrueBB, *FalseBB;
219 // ThisBB - the block into which to emit the code for the setcc and branches
220 MachineBasicBlock *ThisBB;
222 struct JumpTable {
223 JumpTable(unsigned R, unsigned J, MachineBasicBlock *M,
224 MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {}
226 /// Reg - the virtual register containing the index of the jump table entry
227 //. to jump to.
228 unsigned Reg;
229 /// JTI - the JumpTableIndex for this jump table in the function.
230 unsigned JTI;
231 /// MBB - the MBB into which to emit the code for the indirect jump.
232 MachineBasicBlock *MBB;
233 /// Default - the MBB of the default bb, which is a successor of the range
234 /// check MBB. This is when updating PHI nodes in successors.
235 MachineBasicBlock *Default;
237 struct JumpTableHeader {
238 JumpTableHeader(APInt F, APInt L, const Value *SV, MachineBasicBlock *H,
239 bool E = false):
240 First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {}
241 APInt First;
242 APInt Last;
243 const Value *SValue;
244 MachineBasicBlock *HeaderBB;
245 bool Emitted;
247 typedef std::pair<JumpTableHeader, JumpTable> JumpTableBlock;
249 struct BitTestCase {
250 BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr):
251 Mask(M), ThisBB(T), TargetBB(Tr) { }
252 uint64_t Mask;
253 MachineBasicBlock *ThisBB;
254 MachineBasicBlock *TargetBB;
257 typedef SmallVector<BitTestCase, 3> BitTestInfo;
259 struct BitTestBlock {
260 BitTestBlock(APInt F, APInt R, const Value* SV,
261 unsigned Rg, bool E,
262 MachineBasicBlock* P, MachineBasicBlock* D,
263 const BitTestInfo& C):
264 First(F), Range(R), SValue(SV), Reg(Rg), Emitted(E),
265 Parent(P), Default(D), Cases(C) { }
266 APInt First;
267 APInt Range;
268 const Value *SValue;
269 unsigned Reg;
270 bool Emitted;
271 MachineBasicBlock *Parent;
272 MachineBasicBlock *Default;
273 BitTestInfo Cases;
276 public:
277 // TLI - This is information that describes the available target features we
278 // need for lowering. This indicates when operations are unavailable,
279 // implemented with a libcall, etc.
280 const TargetMachine &TM;
281 const TargetLowering &TLI;
282 SelectionDAG &DAG;
283 const TargetData *TD;
284 AliasAnalysis *AA;
286 /// SwitchCases - Vector of CaseBlock structures used to communicate
287 /// SwitchInst code generation information.
288 std::vector<CaseBlock> SwitchCases;
289 /// JTCases - Vector of JumpTable structures used to communicate
290 /// SwitchInst code generation information.
291 std::vector<JumpTableBlock> JTCases;
292 /// BitTestCases - Vector of BitTestBlock structures used to communicate
293 /// SwitchInst code generation information.
294 std::vector<BitTestBlock> BitTestCases;
296 // Emit PHI-node-operand constants only once even if used by multiple
297 // PHI nodes.
298 DenseMap<const Constant *, unsigned> ConstantsOut;
300 /// FuncInfo - Information about the function as a whole.
302 FunctionLoweringInfo &FuncInfo;
304 /// OptLevel - What optimization level we're generating code for.
305 ///
306 CodeGenOpt::Level OptLevel;
308 /// GFI - Garbage collection metadata for the function.
309 GCFunctionInfo *GFI;
311 /// HasTailCall - This is set to true if a call in the current
312 /// block has been translated as a tail call. In this case,
313 /// no subsequent DAG nodes should be created.
315 bool HasTailCall;
317 LLVMContext *Context;
319 SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo,
320 CodeGenOpt::Level ol)
321 : SDNodeOrder(0), TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
322 DAG(dag), FuncInfo(funcinfo), OptLevel(ol),
323 HasTailCall(false), Context(dag.getContext()) {
326 void init(GCFunctionInfo *gfi, AliasAnalysis &aa);
328 /// clear - Clear out the current SelectionDAG and the associated
329 /// state and prepare this SelectionDAGBuilder object to be used
330 /// for a new block. This doesn't clear out information about
331 /// additional blocks that are needed to complete switch lowering
332 /// or PHI node updating; that information is cleared out as it is
333 /// consumed.
334 void clear();
336 /// getRoot - Return the current virtual root of the Selection DAG,
337 /// flushing any PendingLoad items. This must be done before emitting
338 /// a store or any other node that may need to be ordered after any
339 /// prior load instructions.
341 SDValue getRoot();
343 /// getControlRoot - Similar to getRoot, but instead of flushing all the
344 /// PendingLoad items, flush all the PendingExports items. It is necessary
345 /// to do this before emitting a terminator instruction.
347 SDValue getControlRoot();
349 DebugLoc getCurDebugLoc() const { return CurDebugLoc; }
351 unsigned getSDNodeOrder() const { return SDNodeOrder; }
353 void CopyValueToVirtualRegister(const Value *V, unsigned Reg);
355 /// AssignOrderingToNode - Assign an ordering to the node. The order is gotten
356 /// from how the code appeared in the source. The ordering is used by the
357 /// scheduler to effectively turn off scheduling.
358 void AssignOrderingToNode(const SDNode *Node);
360 void visit(const Instruction &I);
362 void visit(unsigned Opcode, const User &I);
364 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
365 // generate the debug data structures now that we've seen its definition.
366 void resolveDanglingDebugInfo(const Value *V, SDValue Val);
367 SDValue getValue(const Value *V);
368 SDValue getNonRegisterValue(const Value *V);
369 SDValue getValueImpl(const Value *V);
371 void setValue(const Value *V, SDValue NewN) {
372 SDValue &N = NodeMap[V];
373 assert(N.getNode() == 0 && "Already set a value for this node!");
374 N = NewN;
377 void setUnusedArgValue(const Value *V, SDValue NewN) {
378 SDValue &N = UnusedArgNodeMap[V];
379 assert(N.getNode() == 0 && "Already set a value for this node!");
380 N = NewN;
383 void GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
384 std::set<unsigned> &OutputRegs,
385 std::set<unsigned> &InputRegs);
387 void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB,
388 MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
389 MachineBasicBlock *SwitchBB, unsigned Opc);
390 void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB,
391 MachineBasicBlock *FBB,
392 MachineBasicBlock *CurBB,
393 MachineBasicBlock *SwitchBB);
394 bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases);
395 bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB);
396 void CopyToExportRegsIfNeeded(const Value *V);
397 void ExportFromCurrentBlock(const Value *V);
398 void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall,
399 MachineBasicBlock *LandingPad = NULL);
401 /// UpdateSplitBlock - When an MBB was split during scheduling, update the
402 /// references that ned to refer to the last resulting block.
403 void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last);
405 private:
406 // Terminator instructions.
407 void visitRet(const ReturnInst &I);
408 void visitBr(const BranchInst &I);
409 void visitSwitch(const SwitchInst &I);
410 void visitIndirectBr(const IndirectBrInst &I);
411 void visitUnreachable(const UnreachableInst &I) { /* noop */ }
413 // Helpers for visitSwitch
414 bool handleSmallSwitchRange(CaseRec& CR,
415 CaseRecVector& WorkList,
416 const Value* SV,
417 MachineBasicBlock* Default,
418 MachineBasicBlock *SwitchBB);
419 bool handleJTSwitchCase(CaseRec& CR,
420 CaseRecVector& WorkList,
421 const Value* SV,
422 MachineBasicBlock* Default,
423 MachineBasicBlock *SwitchBB);
424 bool handleBTSplitSwitchCase(CaseRec& CR,
425 CaseRecVector& WorkList,
426 const Value* SV,
427 MachineBasicBlock* Default,
428 MachineBasicBlock *SwitchBB);
429 bool handleBitTestsSwitchCase(CaseRec& CR,
430 CaseRecVector& WorkList,
431 const Value* SV,
432 MachineBasicBlock* Default,
433 MachineBasicBlock *SwitchBB);
434 public:
435 void visitSwitchCase(CaseBlock &CB,
436 MachineBasicBlock *SwitchBB);
437 void visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB);
438 void visitBitTestCase(MachineBasicBlock* NextMBB,
439 unsigned Reg,
440 BitTestCase &B,
441 MachineBasicBlock *SwitchBB);
442 void visitJumpTable(JumpTable &JT);
443 void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH,
444 MachineBasicBlock *SwitchBB);
446 private:
447 // These all get lowered before this pass.
448 void visitInvoke(const InvokeInst &I);
449 void visitUnwind(const UnwindInst &I);
451 void visitBinary(const User &I, unsigned OpCode);
452 void visitShift(const User &I, unsigned Opcode);
453 void visitAdd(const User &I) { visitBinary(I, ISD::ADD); }
454 void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); }
455 void visitSub(const User &I) { visitBinary(I, ISD::SUB); }
456 void visitFSub(const User &I);
457 void visitMul(const User &I) { visitBinary(I, ISD::MUL); }
458 void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); }
459 void visitURem(const User &I) { visitBinary(I, ISD::UREM); }
460 void visitSRem(const User &I) { visitBinary(I, ISD::SREM); }
461 void visitFRem(const User &I) { visitBinary(I, ISD::FREM); }
462 void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); }
463 void visitSDiv(const User &I) { visitBinary(I, ISD::SDIV); }
464 void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); }
465 void visitAnd (const User &I) { visitBinary(I, ISD::AND); }
466 void visitOr (const User &I) { visitBinary(I, ISD::OR); }
467 void visitXor (const User &I) { visitBinary(I, ISD::XOR); }
468 void visitShl (const User &I) { visitShift(I, ISD::SHL); }
469 void visitLShr(const User &I) { visitShift(I, ISD::SRL); }
470 void visitAShr(const User &I) { visitShift(I, ISD::SRA); }
471 void visitICmp(const User &I);
472 void visitFCmp(const User &I);
473 // Visit the conversion instructions
474 void visitTrunc(const User &I);
475 void visitZExt(const User &I);
476 void visitSExt(const User &I);
477 void visitFPTrunc(const User &I);
478 void visitFPExt(const User &I);
479 void visitFPToUI(const User &I);
480 void visitFPToSI(const User &I);
481 void visitUIToFP(const User &I);
482 void visitSIToFP(const User &I);
483 void visitPtrToInt(const User &I);
484 void visitIntToPtr(const User &I);
485 void visitBitCast(const User &I);
487 void visitExtractElement(const User &I);
488 void visitInsertElement(const User &I);
489 void visitShuffleVector(const User &I);
491 void visitExtractValue(const ExtractValueInst &I);
492 void visitInsertValue(const InsertValueInst &I);
494 void visitGetElementPtr(const User &I);
495 void visitSelect(const User &I);
497 void visitAlloca(const AllocaInst &I);
498 void visitLoad(const LoadInst &I);
499 void visitStore(const StoreInst &I);
500 void visitPHI(const PHINode &I);
501 void visitCall(const CallInst &I);
502 bool visitMemCmpCall(const CallInst &I);
504 void visitInlineAsm(ImmutableCallSite CS);
505 const char *visitIntrinsicCall(const CallInst &I, unsigned Intrinsic);
506 void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic);
508 void visitPow(const CallInst &I);
509 void visitExp2(const CallInst &I);
510 void visitExp(const CallInst &I);
511 void visitLog(const CallInst &I);
512 void visitLog2(const CallInst &I);
513 void visitLog10(const CallInst &I);
515 void visitVAStart(const CallInst &I);
516 void visitVAArg(const VAArgInst &I);
517 void visitVAEnd(const CallInst &I);
518 void visitVACopy(const CallInst &I);
520 void visitUserOp1(const Instruction &I) {
521 llvm_unreachable("UserOp1 should not exist at instruction selection time!");
523 void visitUserOp2(const Instruction &I) {
524 llvm_unreachable("UserOp2 should not exist at instruction selection time!");
527 const char *implVisitBinaryAtomic(const CallInst& I, ISD::NodeType Op);
528 const char *implVisitAluOverflow(const CallInst &I, ISD::NodeType Op);
530 void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
532 /// EmitFuncArgumentDbgValue - If V is an function argument then create
533 /// corresponding DBG_VALUE machine instruction for it now. At the end of
534 /// instruction selection, they will be inserted to the entry BB.
535 bool EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
536 int64_t Offset, const SDValue &N);
539 } // end namespace llvm
541 #endif