1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements the TargetLowering class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/MC/MCAsmInfo.h"
16 #include "llvm/MC/MCExpr.h"
17 #include "llvm/Target/TargetData.h"
18 #include "llvm/Target/TargetLoweringObjectFile.h"
19 #include "llvm/Target/TargetMachine.h"
20 #include "llvm/Target/TargetRegisterInfo.h"
21 #include "llvm/GlobalVariable.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/CodeGen/Analysis.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineJumpTableInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MathExtras.h"
34 TLSModel::Model
getTLSModel(const GlobalValue
*GV
, Reloc::Model reloc
) {
35 bool isLocal
= GV
->hasLocalLinkage();
36 bool isDeclaration
= GV
->isDeclaration();
37 // FIXME: what should we do for protected and internal visibility?
38 // For variables, is internal different from hidden?
39 bool isHidden
= GV
->hasHiddenVisibility();
41 if (reloc
== Reloc::PIC_
) {
42 if (isLocal
|| isHidden
)
43 return TLSModel::LocalDynamic
;
45 return TLSModel::GeneralDynamic
;
47 if (!isDeclaration
|| isHidden
)
48 return TLSModel::LocalExec
;
50 return TLSModel::InitialExec
;
55 /// InitLibcallNames - Set default libcall names.
57 static void InitLibcallNames(const char **Names
) {
58 Names
[RTLIB::SHL_I16
] = "__ashlhi3";
59 Names
[RTLIB::SHL_I32
] = "__ashlsi3";
60 Names
[RTLIB::SHL_I64
] = "__ashldi3";
61 Names
[RTLIB::SHL_I128
] = "__ashlti3";
62 Names
[RTLIB::SRL_I16
] = "__lshrhi3";
63 Names
[RTLIB::SRL_I32
] = "__lshrsi3";
64 Names
[RTLIB::SRL_I64
] = "__lshrdi3";
65 Names
[RTLIB::SRL_I128
] = "__lshrti3";
66 Names
[RTLIB::SRA_I16
] = "__ashrhi3";
67 Names
[RTLIB::SRA_I32
] = "__ashrsi3";
68 Names
[RTLIB::SRA_I64
] = "__ashrdi3";
69 Names
[RTLIB::SRA_I128
] = "__ashrti3";
70 Names
[RTLIB::MUL_I8
] = "__mulqi3";
71 Names
[RTLIB::MUL_I16
] = "__mulhi3";
72 Names
[RTLIB::MUL_I32
] = "__mulsi3";
73 Names
[RTLIB::MUL_I64
] = "__muldi3";
74 Names
[RTLIB::MUL_I128
] = "__multi3";
75 Names
[RTLIB::SDIV_I8
] = "__divqi3";
76 Names
[RTLIB::SDIV_I16
] = "__divhi3";
77 Names
[RTLIB::SDIV_I32
] = "__divsi3";
78 Names
[RTLIB::SDIV_I64
] = "__divdi3";
79 Names
[RTLIB::SDIV_I128
] = "__divti3";
80 Names
[RTLIB::UDIV_I8
] = "__udivqi3";
81 Names
[RTLIB::UDIV_I16
] = "__udivhi3";
82 Names
[RTLIB::UDIV_I32
] = "__udivsi3";
83 Names
[RTLIB::UDIV_I64
] = "__udivdi3";
84 Names
[RTLIB::UDIV_I128
] = "__udivti3";
85 Names
[RTLIB::SREM_I8
] = "__modqi3";
86 Names
[RTLIB::SREM_I16
] = "__modhi3";
87 Names
[RTLIB::SREM_I32
] = "__modsi3";
88 Names
[RTLIB::SREM_I64
] = "__moddi3";
89 Names
[RTLIB::SREM_I128
] = "__modti3";
90 Names
[RTLIB::UREM_I8
] = "__umodqi3";
91 Names
[RTLIB::UREM_I16
] = "__umodhi3";
92 Names
[RTLIB::UREM_I32
] = "__umodsi3";
93 Names
[RTLIB::UREM_I64
] = "__umoddi3";
94 Names
[RTLIB::UREM_I128
] = "__umodti3";
95 Names
[RTLIB::NEG_I32
] = "__negsi2";
96 Names
[RTLIB::NEG_I64
] = "__negdi2";
97 Names
[RTLIB::ADD_F32
] = "__addsf3";
98 Names
[RTLIB::ADD_F64
] = "__adddf3";
99 Names
[RTLIB::ADD_F80
] = "__addxf3";
100 Names
[RTLIB::ADD_PPCF128
] = "__gcc_qadd";
101 Names
[RTLIB::SUB_F32
] = "__subsf3";
102 Names
[RTLIB::SUB_F64
] = "__subdf3";
103 Names
[RTLIB::SUB_F80
] = "__subxf3";
104 Names
[RTLIB::SUB_PPCF128
] = "__gcc_qsub";
105 Names
[RTLIB::MUL_F32
] = "__mulsf3";
106 Names
[RTLIB::MUL_F64
] = "__muldf3";
107 Names
[RTLIB::MUL_F80
] = "__mulxf3";
108 Names
[RTLIB::MUL_PPCF128
] = "__gcc_qmul";
109 Names
[RTLIB::DIV_F32
] = "__divsf3";
110 Names
[RTLIB::DIV_F64
] = "__divdf3";
111 Names
[RTLIB::DIV_F80
] = "__divxf3";
112 Names
[RTLIB::DIV_PPCF128
] = "__gcc_qdiv";
113 Names
[RTLIB::REM_F32
] = "fmodf";
114 Names
[RTLIB::REM_F64
] = "fmod";
115 Names
[RTLIB::REM_F80
] = "fmodl";
116 Names
[RTLIB::REM_PPCF128
] = "fmodl";
117 Names
[RTLIB::POWI_F32
] = "__powisf2";
118 Names
[RTLIB::POWI_F64
] = "__powidf2";
119 Names
[RTLIB::POWI_F80
] = "__powixf2";
120 Names
[RTLIB::POWI_PPCF128
] = "__powitf2";
121 Names
[RTLIB::SQRT_F32
] = "sqrtf";
122 Names
[RTLIB::SQRT_F64
] = "sqrt";
123 Names
[RTLIB::SQRT_F80
] = "sqrtl";
124 Names
[RTLIB::SQRT_PPCF128
] = "sqrtl";
125 Names
[RTLIB::LOG_F32
] = "logf";
126 Names
[RTLIB::LOG_F64
] = "log";
127 Names
[RTLIB::LOG_F80
] = "logl";
128 Names
[RTLIB::LOG_PPCF128
] = "logl";
129 Names
[RTLIB::LOG2_F32
] = "log2f";
130 Names
[RTLIB::LOG2_F64
] = "log2";
131 Names
[RTLIB::LOG2_F80
] = "log2l";
132 Names
[RTLIB::LOG2_PPCF128
] = "log2l";
133 Names
[RTLIB::LOG10_F32
] = "log10f";
134 Names
[RTLIB::LOG10_F64
] = "log10";
135 Names
[RTLIB::LOG10_F80
] = "log10l";
136 Names
[RTLIB::LOG10_PPCF128
] = "log10l";
137 Names
[RTLIB::EXP_F32
] = "expf";
138 Names
[RTLIB::EXP_F64
] = "exp";
139 Names
[RTLIB::EXP_F80
] = "expl";
140 Names
[RTLIB::EXP_PPCF128
] = "expl";
141 Names
[RTLIB::EXP2_F32
] = "exp2f";
142 Names
[RTLIB::EXP2_F64
] = "exp2";
143 Names
[RTLIB::EXP2_F80
] = "exp2l";
144 Names
[RTLIB::EXP2_PPCF128
] = "exp2l";
145 Names
[RTLIB::SIN_F32
] = "sinf";
146 Names
[RTLIB::SIN_F64
] = "sin";
147 Names
[RTLIB::SIN_F80
] = "sinl";
148 Names
[RTLIB::SIN_PPCF128
] = "sinl";
149 Names
[RTLIB::COS_F32
] = "cosf";
150 Names
[RTLIB::COS_F64
] = "cos";
151 Names
[RTLIB::COS_F80
] = "cosl";
152 Names
[RTLIB::COS_PPCF128
] = "cosl";
153 Names
[RTLIB::POW_F32
] = "powf";
154 Names
[RTLIB::POW_F64
] = "pow";
155 Names
[RTLIB::POW_F80
] = "powl";
156 Names
[RTLIB::POW_PPCF128
] = "powl";
157 Names
[RTLIB::CEIL_F32
] = "ceilf";
158 Names
[RTLIB::CEIL_F64
] = "ceil";
159 Names
[RTLIB::CEIL_F80
] = "ceill";
160 Names
[RTLIB::CEIL_PPCF128
] = "ceill";
161 Names
[RTLIB::TRUNC_F32
] = "truncf";
162 Names
[RTLIB::TRUNC_F64
] = "trunc";
163 Names
[RTLIB::TRUNC_F80
] = "truncl";
164 Names
[RTLIB::TRUNC_PPCF128
] = "truncl";
165 Names
[RTLIB::RINT_F32
] = "rintf";
166 Names
[RTLIB::RINT_F64
] = "rint";
167 Names
[RTLIB::RINT_F80
] = "rintl";
168 Names
[RTLIB::RINT_PPCF128
] = "rintl";
169 Names
[RTLIB::NEARBYINT_F32
] = "nearbyintf";
170 Names
[RTLIB::NEARBYINT_F64
] = "nearbyint";
171 Names
[RTLIB::NEARBYINT_F80
] = "nearbyintl";
172 Names
[RTLIB::NEARBYINT_PPCF128
] = "nearbyintl";
173 Names
[RTLIB::FLOOR_F32
] = "floorf";
174 Names
[RTLIB::FLOOR_F64
] = "floor";
175 Names
[RTLIB::FLOOR_F80
] = "floorl";
176 Names
[RTLIB::FLOOR_PPCF128
] = "floorl";
177 Names
[RTLIB::COPYSIGN_F32
] = "copysignf";
178 Names
[RTLIB::COPYSIGN_F64
] = "copysign";
179 Names
[RTLIB::COPYSIGN_F80
] = "copysignl";
180 Names
[RTLIB::COPYSIGN_PPCF128
] = "copysignl";
181 Names
[RTLIB::FPEXT_F32_F64
] = "__extendsfdf2";
182 Names
[RTLIB::FPEXT_F16_F32
] = "__gnu_h2f_ieee";
183 Names
[RTLIB::FPROUND_F32_F16
] = "__gnu_f2h_ieee";
184 Names
[RTLIB::FPROUND_F64_F32
] = "__truncdfsf2";
185 Names
[RTLIB::FPROUND_F80_F32
] = "__truncxfsf2";
186 Names
[RTLIB::FPROUND_PPCF128_F32
] = "__trunctfsf2";
187 Names
[RTLIB::FPROUND_F80_F64
] = "__truncxfdf2";
188 Names
[RTLIB::FPROUND_PPCF128_F64
] = "__trunctfdf2";
189 Names
[RTLIB::FPTOSINT_F32_I8
] = "__fixsfqi";
190 Names
[RTLIB::FPTOSINT_F32_I16
] = "__fixsfhi";
191 Names
[RTLIB::FPTOSINT_F32_I32
] = "__fixsfsi";
192 Names
[RTLIB::FPTOSINT_F32_I64
] = "__fixsfdi";
193 Names
[RTLIB::FPTOSINT_F32_I128
] = "__fixsfti";
194 Names
[RTLIB::FPTOSINT_F64_I8
] = "__fixdfqi";
195 Names
[RTLIB::FPTOSINT_F64_I16
] = "__fixdfhi";
196 Names
[RTLIB::FPTOSINT_F64_I32
] = "__fixdfsi";
197 Names
[RTLIB::FPTOSINT_F64_I64
] = "__fixdfdi";
198 Names
[RTLIB::FPTOSINT_F64_I128
] = "__fixdfti";
199 Names
[RTLIB::FPTOSINT_F80_I32
] = "__fixxfsi";
200 Names
[RTLIB::FPTOSINT_F80_I64
] = "__fixxfdi";
201 Names
[RTLIB::FPTOSINT_F80_I128
] = "__fixxfti";
202 Names
[RTLIB::FPTOSINT_PPCF128_I32
] = "__fixtfsi";
203 Names
[RTLIB::FPTOSINT_PPCF128_I64
] = "__fixtfdi";
204 Names
[RTLIB::FPTOSINT_PPCF128_I128
] = "__fixtfti";
205 Names
[RTLIB::FPTOUINT_F32_I8
] = "__fixunssfqi";
206 Names
[RTLIB::FPTOUINT_F32_I16
] = "__fixunssfhi";
207 Names
[RTLIB::FPTOUINT_F32_I32
] = "__fixunssfsi";
208 Names
[RTLIB::FPTOUINT_F32_I64
] = "__fixunssfdi";
209 Names
[RTLIB::FPTOUINT_F32_I128
] = "__fixunssfti";
210 Names
[RTLIB::FPTOUINT_F64_I8
] = "__fixunsdfqi";
211 Names
[RTLIB::FPTOUINT_F64_I16
] = "__fixunsdfhi";
212 Names
[RTLIB::FPTOUINT_F64_I32
] = "__fixunsdfsi";
213 Names
[RTLIB::FPTOUINT_F64_I64
] = "__fixunsdfdi";
214 Names
[RTLIB::FPTOUINT_F64_I128
] = "__fixunsdfti";
215 Names
[RTLIB::FPTOUINT_F80_I32
] = "__fixunsxfsi";
216 Names
[RTLIB::FPTOUINT_F80_I64
] = "__fixunsxfdi";
217 Names
[RTLIB::FPTOUINT_F80_I128
] = "__fixunsxfti";
218 Names
[RTLIB::FPTOUINT_PPCF128_I32
] = "__fixunstfsi";
219 Names
[RTLIB::FPTOUINT_PPCF128_I64
] = "__fixunstfdi";
220 Names
[RTLIB::FPTOUINT_PPCF128_I128
] = "__fixunstfti";
221 Names
[RTLIB::SINTTOFP_I32_F32
] = "__floatsisf";
222 Names
[RTLIB::SINTTOFP_I32_F64
] = "__floatsidf";
223 Names
[RTLIB::SINTTOFP_I32_F80
] = "__floatsixf";
224 Names
[RTLIB::SINTTOFP_I32_PPCF128
] = "__floatsitf";
225 Names
[RTLIB::SINTTOFP_I64_F32
] = "__floatdisf";
226 Names
[RTLIB::SINTTOFP_I64_F64
] = "__floatdidf";
227 Names
[RTLIB::SINTTOFP_I64_F80
] = "__floatdixf";
228 Names
[RTLIB::SINTTOFP_I64_PPCF128
] = "__floatditf";
229 Names
[RTLIB::SINTTOFP_I128_F32
] = "__floattisf";
230 Names
[RTLIB::SINTTOFP_I128_F64
] = "__floattidf";
231 Names
[RTLIB::SINTTOFP_I128_F80
] = "__floattixf";
232 Names
[RTLIB::SINTTOFP_I128_PPCF128
] = "__floattitf";
233 Names
[RTLIB::UINTTOFP_I32_F32
] = "__floatunsisf";
234 Names
[RTLIB::UINTTOFP_I32_F64
] = "__floatunsidf";
235 Names
[RTLIB::UINTTOFP_I32_F80
] = "__floatunsixf";
236 Names
[RTLIB::UINTTOFP_I32_PPCF128
] = "__floatunsitf";
237 Names
[RTLIB::UINTTOFP_I64_F32
] = "__floatundisf";
238 Names
[RTLIB::UINTTOFP_I64_F64
] = "__floatundidf";
239 Names
[RTLIB::UINTTOFP_I64_F80
] = "__floatundixf";
240 Names
[RTLIB::UINTTOFP_I64_PPCF128
] = "__floatunditf";
241 Names
[RTLIB::UINTTOFP_I128_F32
] = "__floatuntisf";
242 Names
[RTLIB::UINTTOFP_I128_F64
] = "__floatuntidf";
243 Names
[RTLIB::UINTTOFP_I128_F80
] = "__floatuntixf";
244 Names
[RTLIB::UINTTOFP_I128_PPCF128
] = "__floatuntitf";
245 Names
[RTLIB::OEQ_F32
] = "__eqsf2";
246 Names
[RTLIB::OEQ_F64
] = "__eqdf2";
247 Names
[RTLIB::UNE_F32
] = "__nesf2";
248 Names
[RTLIB::UNE_F64
] = "__nedf2";
249 Names
[RTLIB::OGE_F32
] = "__gesf2";
250 Names
[RTLIB::OGE_F64
] = "__gedf2";
251 Names
[RTLIB::OLT_F32
] = "__ltsf2";
252 Names
[RTLIB::OLT_F64
] = "__ltdf2";
253 Names
[RTLIB::OLE_F32
] = "__lesf2";
254 Names
[RTLIB::OLE_F64
] = "__ledf2";
255 Names
[RTLIB::OGT_F32
] = "__gtsf2";
256 Names
[RTLIB::OGT_F64
] = "__gtdf2";
257 Names
[RTLIB::UO_F32
] = "__unordsf2";
258 Names
[RTLIB::UO_F64
] = "__unorddf2";
259 Names
[RTLIB::O_F32
] = "__unordsf2";
260 Names
[RTLIB::O_F64
] = "__unorddf2";
261 Names
[RTLIB::MEMCPY
] = "memcpy";
262 Names
[RTLIB::MEMMOVE
] = "memmove";
263 Names
[RTLIB::MEMSET
] = "memset";
264 Names
[RTLIB::UNWIND_RESUME
] = "_Unwind_Resume";
265 Names
[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1
] = "__sync_val_compare_and_swap_1";
266 Names
[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2
] = "__sync_val_compare_and_swap_2";
267 Names
[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4
] = "__sync_val_compare_and_swap_4";
268 Names
[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8
] = "__sync_val_compare_and_swap_8";
269 Names
[RTLIB::SYNC_LOCK_TEST_AND_SET_1
] = "__sync_lock_test_and_set_1";
270 Names
[RTLIB::SYNC_LOCK_TEST_AND_SET_2
] = "__sync_lock_test_and_set_2";
271 Names
[RTLIB::SYNC_LOCK_TEST_AND_SET_4
] = "__sync_lock_test_and_set_4";
272 Names
[RTLIB::SYNC_LOCK_TEST_AND_SET_8
] = "__sync_lock_test_and_set_8";
273 Names
[RTLIB::SYNC_FETCH_AND_ADD_1
] = "__sync_fetch_and_add_1";
274 Names
[RTLIB::SYNC_FETCH_AND_ADD_2
] = "__sync_fetch_and_add_2";
275 Names
[RTLIB::SYNC_FETCH_AND_ADD_4
] = "__sync_fetch_and_add_4";
276 Names
[RTLIB::SYNC_FETCH_AND_ADD_8
] = "__sync_fetch_and_add_8";
277 Names
[RTLIB::SYNC_FETCH_AND_SUB_1
] = "__sync_fetch_and_sub_1";
278 Names
[RTLIB::SYNC_FETCH_AND_SUB_2
] = "__sync_fetch_and_sub_2";
279 Names
[RTLIB::SYNC_FETCH_AND_SUB_4
] = "__sync_fetch_and_sub_4";
280 Names
[RTLIB::SYNC_FETCH_AND_SUB_8
] = "__sync_fetch_and_sub_8";
281 Names
[RTLIB::SYNC_FETCH_AND_AND_1
] = "__sync_fetch_and_and_1";
282 Names
[RTLIB::SYNC_FETCH_AND_AND_2
] = "__sync_fetch_and_and_2";
283 Names
[RTLIB::SYNC_FETCH_AND_AND_4
] = "__sync_fetch_and_and_4";
284 Names
[RTLIB::SYNC_FETCH_AND_AND_8
] = "__sync_fetch_and_and_8";
285 Names
[RTLIB::SYNC_FETCH_AND_OR_1
] = "__sync_fetch_and_or_1";
286 Names
[RTLIB::SYNC_FETCH_AND_OR_2
] = "__sync_fetch_and_or_2";
287 Names
[RTLIB::SYNC_FETCH_AND_OR_4
] = "__sync_fetch_and_or_4";
288 Names
[RTLIB::SYNC_FETCH_AND_OR_8
] = "__sync_fetch_and_or_8";
289 Names
[RTLIB::SYNC_FETCH_AND_XOR_1
] = "__sync_fetch_and_xor_1";
290 Names
[RTLIB::SYNC_FETCH_AND_XOR_2
] = "__sync_fetch_and_xor_2";
291 Names
[RTLIB::SYNC_FETCH_AND_XOR_4
] = "__sync_fetch_and-xor_4";
292 Names
[RTLIB::SYNC_FETCH_AND_XOR_8
] = "__sync_fetch_and_xor_8";
293 Names
[RTLIB::SYNC_FETCH_AND_NAND_1
] = "__sync_fetch_and_nand_1";
294 Names
[RTLIB::SYNC_FETCH_AND_NAND_2
] = "__sync_fetch_and_nand_2";
295 Names
[RTLIB::SYNC_FETCH_AND_NAND_4
] = "__sync_fetch_and_nand_4";
296 Names
[RTLIB::SYNC_FETCH_AND_NAND_8
] = "__sync_fetch_and_nand_8";
299 /// InitLibcallCallingConvs - Set default libcall CallingConvs.
301 static void InitLibcallCallingConvs(CallingConv::ID
*CCs
) {
302 for (int i
= 0; i
< RTLIB::UNKNOWN_LIBCALL
; ++i
) {
303 CCs
[i
] = CallingConv::C
;
307 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
308 /// UNKNOWN_LIBCALL if there is none.
309 RTLIB::Libcall
RTLIB::getFPEXT(EVT OpVT
, EVT RetVT
) {
310 if (OpVT
== MVT::f32
) {
311 if (RetVT
== MVT::f64
)
312 return FPEXT_F32_F64
;
315 return UNKNOWN_LIBCALL
;
318 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
319 /// UNKNOWN_LIBCALL if there is none.
320 RTLIB::Libcall
RTLIB::getFPROUND(EVT OpVT
, EVT RetVT
) {
321 if (RetVT
== MVT::f32
) {
322 if (OpVT
== MVT::f64
)
323 return FPROUND_F64_F32
;
324 if (OpVT
== MVT::f80
)
325 return FPROUND_F80_F32
;
326 if (OpVT
== MVT::ppcf128
)
327 return FPROUND_PPCF128_F32
;
328 } else if (RetVT
== MVT::f64
) {
329 if (OpVT
== MVT::f80
)
330 return FPROUND_F80_F64
;
331 if (OpVT
== MVT::ppcf128
)
332 return FPROUND_PPCF128_F64
;
335 return UNKNOWN_LIBCALL
;
338 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
339 /// UNKNOWN_LIBCALL if there is none.
340 RTLIB::Libcall
RTLIB::getFPTOSINT(EVT OpVT
, EVT RetVT
) {
341 if (OpVT
== MVT::f32
) {
342 if (RetVT
== MVT::i8
)
343 return FPTOSINT_F32_I8
;
344 if (RetVT
== MVT::i16
)
345 return FPTOSINT_F32_I16
;
346 if (RetVT
== MVT::i32
)
347 return FPTOSINT_F32_I32
;
348 if (RetVT
== MVT::i64
)
349 return FPTOSINT_F32_I64
;
350 if (RetVT
== MVT::i128
)
351 return FPTOSINT_F32_I128
;
352 } else if (OpVT
== MVT::f64
) {
353 if (RetVT
== MVT::i8
)
354 return FPTOSINT_F64_I8
;
355 if (RetVT
== MVT::i16
)
356 return FPTOSINT_F64_I16
;
357 if (RetVT
== MVT::i32
)
358 return FPTOSINT_F64_I32
;
359 if (RetVT
== MVT::i64
)
360 return FPTOSINT_F64_I64
;
361 if (RetVT
== MVT::i128
)
362 return FPTOSINT_F64_I128
;
363 } else if (OpVT
== MVT::f80
) {
364 if (RetVT
== MVT::i32
)
365 return FPTOSINT_F80_I32
;
366 if (RetVT
== MVT::i64
)
367 return FPTOSINT_F80_I64
;
368 if (RetVT
== MVT::i128
)
369 return FPTOSINT_F80_I128
;
370 } else if (OpVT
== MVT::ppcf128
) {
371 if (RetVT
== MVT::i32
)
372 return FPTOSINT_PPCF128_I32
;
373 if (RetVT
== MVT::i64
)
374 return FPTOSINT_PPCF128_I64
;
375 if (RetVT
== MVT::i128
)
376 return FPTOSINT_PPCF128_I128
;
378 return UNKNOWN_LIBCALL
;
381 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
382 /// UNKNOWN_LIBCALL if there is none.
383 RTLIB::Libcall
RTLIB::getFPTOUINT(EVT OpVT
, EVT RetVT
) {
384 if (OpVT
== MVT::f32
) {
385 if (RetVT
== MVT::i8
)
386 return FPTOUINT_F32_I8
;
387 if (RetVT
== MVT::i16
)
388 return FPTOUINT_F32_I16
;
389 if (RetVT
== MVT::i32
)
390 return FPTOUINT_F32_I32
;
391 if (RetVT
== MVT::i64
)
392 return FPTOUINT_F32_I64
;
393 if (RetVT
== MVT::i128
)
394 return FPTOUINT_F32_I128
;
395 } else if (OpVT
== MVT::f64
) {
396 if (RetVT
== MVT::i8
)
397 return FPTOUINT_F64_I8
;
398 if (RetVT
== MVT::i16
)
399 return FPTOUINT_F64_I16
;
400 if (RetVT
== MVT::i32
)
401 return FPTOUINT_F64_I32
;
402 if (RetVT
== MVT::i64
)
403 return FPTOUINT_F64_I64
;
404 if (RetVT
== MVT::i128
)
405 return FPTOUINT_F64_I128
;
406 } else if (OpVT
== MVT::f80
) {
407 if (RetVT
== MVT::i32
)
408 return FPTOUINT_F80_I32
;
409 if (RetVT
== MVT::i64
)
410 return FPTOUINT_F80_I64
;
411 if (RetVT
== MVT::i128
)
412 return FPTOUINT_F80_I128
;
413 } else if (OpVT
== MVT::ppcf128
) {
414 if (RetVT
== MVT::i32
)
415 return FPTOUINT_PPCF128_I32
;
416 if (RetVT
== MVT::i64
)
417 return FPTOUINT_PPCF128_I64
;
418 if (RetVT
== MVT::i128
)
419 return FPTOUINT_PPCF128_I128
;
421 return UNKNOWN_LIBCALL
;
424 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
425 /// UNKNOWN_LIBCALL if there is none.
426 RTLIB::Libcall
RTLIB::getSINTTOFP(EVT OpVT
, EVT RetVT
) {
427 if (OpVT
== MVT::i32
) {
428 if (RetVT
== MVT::f32
)
429 return SINTTOFP_I32_F32
;
430 else if (RetVT
== MVT::f64
)
431 return SINTTOFP_I32_F64
;
432 else if (RetVT
== MVT::f80
)
433 return SINTTOFP_I32_F80
;
434 else if (RetVT
== MVT::ppcf128
)
435 return SINTTOFP_I32_PPCF128
;
436 } else if (OpVT
== MVT::i64
) {
437 if (RetVT
== MVT::f32
)
438 return SINTTOFP_I64_F32
;
439 else if (RetVT
== MVT::f64
)
440 return SINTTOFP_I64_F64
;
441 else if (RetVT
== MVT::f80
)
442 return SINTTOFP_I64_F80
;
443 else if (RetVT
== MVT::ppcf128
)
444 return SINTTOFP_I64_PPCF128
;
445 } else if (OpVT
== MVT::i128
) {
446 if (RetVT
== MVT::f32
)
447 return SINTTOFP_I128_F32
;
448 else if (RetVT
== MVT::f64
)
449 return SINTTOFP_I128_F64
;
450 else if (RetVT
== MVT::f80
)
451 return SINTTOFP_I128_F80
;
452 else if (RetVT
== MVT::ppcf128
)
453 return SINTTOFP_I128_PPCF128
;
455 return UNKNOWN_LIBCALL
;
458 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
459 /// UNKNOWN_LIBCALL if there is none.
460 RTLIB::Libcall
RTLIB::getUINTTOFP(EVT OpVT
, EVT RetVT
) {
461 if (OpVT
== MVT::i32
) {
462 if (RetVT
== MVT::f32
)
463 return UINTTOFP_I32_F32
;
464 else if (RetVT
== MVT::f64
)
465 return UINTTOFP_I32_F64
;
466 else if (RetVT
== MVT::f80
)
467 return UINTTOFP_I32_F80
;
468 else if (RetVT
== MVT::ppcf128
)
469 return UINTTOFP_I32_PPCF128
;
470 } else if (OpVT
== MVT::i64
) {
471 if (RetVT
== MVT::f32
)
472 return UINTTOFP_I64_F32
;
473 else if (RetVT
== MVT::f64
)
474 return UINTTOFP_I64_F64
;
475 else if (RetVT
== MVT::f80
)
476 return UINTTOFP_I64_F80
;
477 else if (RetVT
== MVT::ppcf128
)
478 return UINTTOFP_I64_PPCF128
;
479 } else if (OpVT
== MVT::i128
) {
480 if (RetVT
== MVT::f32
)
481 return UINTTOFP_I128_F32
;
482 else if (RetVT
== MVT::f64
)
483 return UINTTOFP_I128_F64
;
484 else if (RetVT
== MVT::f80
)
485 return UINTTOFP_I128_F80
;
486 else if (RetVT
== MVT::ppcf128
)
487 return UINTTOFP_I128_PPCF128
;
489 return UNKNOWN_LIBCALL
;
492 /// InitCmpLibcallCCs - Set default comparison libcall CC.
494 static void InitCmpLibcallCCs(ISD::CondCode
*CCs
) {
495 memset(CCs
, ISD::SETCC_INVALID
, sizeof(ISD::CondCode
)*RTLIB::UNKNOWN_LIBCALL
);
496 CCs
[RTLIB::OEQ_F32
] = ISD::SETEQ
;
497 CCs
[RTLIB::OEQ_F64
] = ISD::SETEQ
;
498 CCs
[RTLIB::UNE_F32
] = ISD::SETNE
;
499 CCs
[RTLIB::UNE_F64
] = ISD::SETNE
;
500 CCs
[RTLIB::OGE_F32
] = ISD::SETGE
;
501 CCs
[RTLIB::OGE_F64
] = ISD::SETGE
;
502 CCs
[RTLIB::OLT_F32
] = ISD::SETLT
;
503 CCs
[RTLIB::OLT_F64
] = ISD::SETLT
;
504 CCs
[RTLIB::OLE_F32
] = ISD::SETLE
;
505 CCs
[RTLIB::OLE_F64
] = ISD::SETLE
;
506 CCs
[RTLIB::OGT_F32
] = ISD::SETGT
;
507 CCs
[RTLIB::OGT_F64
] = ISD::SETGT
;
508 CCs
[RTLIB::UO_F32
] = ISD::SETNE
;
509 CCs
[RTLIB::UO_F64
] = ISD::SETNE
;
510 CCs
[RTLIB::O_F32
] = ISD::SETEQ
;
511 CCs
[RTLIB::O_F64
] = ISD::SETEQ
;
514 /// NOTE: The constructor takes ownership of TLOF.
515 TargetLowering::TargetLowering(const TargetMachine
&tm
,
516 const TargetLoweringObjectFile
*tlof
)
517 : TM(tm
), TD(TM
.getTargetData()), TLOF(*tlof
) {
518 // All operations default to being supported.
519 memset(OpActions
, 0, sizeof(OpActions
));
520 memset(LoadExtActions
, 0, sizeof(LoadExtActions
));
521 memset(TruncStoreActions
, 0, sizeof(TruncStoreActions
));
522 memset(IndexedModeActions
, 0, sizeof(IndexedModeActions
));
523 memset(CondCodeActions
, 0, sizeof(CondCodeActions
));
525 // Set default actions for various operations.
526 for (unsigned VT
= 0; VT
!= (unsigned)MVT::LAST_VALUETYPE
; ++VT
) {
527 // Default all indexed load / store to expand.
528 for (unsigned IM
= (unsigned)ISD::PRE_INC
;
529 IM
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++IM
) {
530 setIndexedLoadAction(IM
, (MVT::SimpleValueType
)VT
, Expand
);
531 setIndexedStoreAction(IM
, (MVT::SimpleValueType
)VT
, Expand
);
534 // These operations default to expand.
535 setOperationAction(ISD::FGETSIGN
, (MVT::SimpleValueType
)VT
, Expand
);
536 setOperationAction(ISD::CONCAT_VECTORS
, (MVT::SimpleValueType
)VT
, Expand
);
539 // Most targets ignore the @llvm.prefetch intrinsic.
540 setOperationAction(ISD::PREFETCH
, MVT::Other
, Expand
);
542 // ConstantFP nodes default to expand. Targets can either change this to
543 // Legal, in which case all fp constants are legal, or use isFPImmLegal()
544 // to optimize expansions for certain constants.
545 setOperationAction(ISD::ConstantFP
, MVT::f32
, Expand
);
546 setOperationAction(ISD::ConstantFP
, MVT::f64
, Expand
);
547 setOperationAction(ISD::ConstantFP
, MVT::f80
, Expand
);
549 // These library functions default to expand.
550 setOperationAction(ISD::FLOG
, MVT::f64
, Expand
);
551 setOperationAction(ISD::FLOG2
, MVT::f64
, Expand
);
552 setOperationAction(ISD::FLOG10
,MVT::f64
, Expand
);
553 setOperationAction(ISD::FEXP
, MVT::f64
, Expand
);
554 setOperationAction(ISD::FEXP2
, MVT::f64
, Expand
);
555 setOperationAction(ISD::FLOG
, MVT::f32
, Expand
);
556 setOperationAction(ISD::FLOG2
, MVT::f32
, Expand
);
557 setOperationAction(ISD::FLOG10
,MVT::f32
, Expand
);
558 setOperationAction(ISD::FEXP
, MVT::f32
, Expand
);
559 setOperationAction(ISD::FEXP2
, MVT::f32
, Expand
);
561 // Default ISD::TRAP to expand (which turns it into abort).
562 setOperationAction(ISD::TRAP
, MVT::Other
, Expand
);
564 IsLittleEndian
= TD
->isLittleEndian();
565 ShiftAmountTy
= PointerTy
= MVT::getIntegerVT(8*TD
->getPointerSize());
566 memset(RegClassForVT
, 0,MVT::LAST_VALUETYPE
*sizeof(TargetRegisterClass
*));
567 memset(TargetDAGCombineArray
, 0, array_lengthof(TargetDAGCombineArray
));
568 maxStoresPerMemset
= maxStoresPerMemcpy
= maxStoresPerMemmove
= 8;
569 benefitFromCodePlacementOpt
= false;
570 UseUnderscoreSetJmp
= false;
571 UseUnderscoreLongJmp
= false;
572 SelectIsExpensive
= false;
573 IntDivIsCheap
= false;
574 Pow2DivIsCheap
= false;
575 StackPointerRegisterToSaveRestore
= 0;
576 ExceptionPointerRegister
= 0;
577 ExceptionSelectorRegister
= 0;
578 BooleanContents
= UndefinedBooleanContent
;
579 SchedPreferenceInfo
= Sched::Latency
;
581 JumpBufAlignment
= 0;
582 PrefLoopAlignment
= 0;
583 MinStackArgumentAlignment
= 1;
584 ShouldFoldAtomicFences
= false;
586 InitLibcallNames(LibcallRoutineNames
);
587 InitCmpLibcallCCs(CmpLibcallCCs
);
588 InitLibcallCallingConvs(LibcallCallingConvs
);
591 TargetLowering::~TargetLowering() {
595 /// canOpTrap - Returns true if the operation can trap for the value type.
596 /// VT must be a legal type.
597 bool TargetLowering::canOpTrap(unsigned Op
, EVT VT
) const {
598 assert(isTypeLegal(VT
));
613 static unsigned getVectorTypeBreakdownMVT(MVT VT
, MVT
&IntermediateVT
,
614 unsigned &NumIntermediates
,
616 TargetLowering
*TLI
) {
617 // Figure out the right, legal destination reg to copy into.
618 unsigned NumElts
= VT
.getVectorNumElements();
619 MVT EltTy
= VT
.getVectorElementType();
621 unsigned NumVectorRegs
= 1;
623 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
624 // could break down into LHS/RHS like LegalizeDAG does.
625 if (!isPowerOf2_32(NumElts
)) {
626 NumVectorRegs
= NumElts
;
630 // Divide the input until we get to a supported size. This will always
631 // end with a scalar if the target doesn't support vectors.
632 while (NumElts
> 1 && !TLI
->isTypeLegal(MVT::getVectorVT(EltTy
, NumElts
))) {
637 NumIntermediates
= NumVectorRegs
;
639 MVT NewVT
= MVT::getVectorVT(EltTy
, NumElts
);
640 if (!TLI
->isTypeLegal(NewVT
))
642 IntermediateVT
= NewVT
;
644 EVT DestVT
= TLI
->getRegisterType(NewVT
);
646 if (EVT(DestVT
).bitsLT(NewVT
)) // Value is expanded, e.g. i64 -> i16.
647 return NumVectorRegs
*(NewVT
.getSizeInBits()/DestVT
.getSizeInBits());
649 // Otherwise, promotion or legal types use the same number of registers as
650 // the vector decimated to the appropriate level.
651 return NumVectorRegs
;
654 /// isLegalRC - Return true if the value types that can be represented by the
655 /// specified register class are all legal.
656 bool TargetLowering::isLegalRC(const TargetRegisterClass
*RC
) const {
657 for (TargetRegisterClass::vt_iterator I
= RC
->vt_begin(), E
= RC
->vt_end();
665 /// hasLegalSuperRegRegClasses - Return true if the specified register class
666 /// has one or more super-reg register classes that are legal.
668 TargetLowering::hasLegalSuperRegRegClasses(const TargetRegisterClass
*RC
) const{
669 if (*RC
->superregclasses_begin() == 0)
671 for (TargetRegisterInfo::regclass_iterator I
= RC
->superregclasses_begin(),
672 E
= RC
->superregclasses_end(); I
!= E
; ++I
) {
673 const TargetRegisterClass
*RRC
= *I
;
680 /// findRepresentativeClass - Return the largest legal super-reg register class
681 /// of the register class for the specified type and its associated "cost".
682 std::pair
<const TargetRegisterClass
*, uint8_t>
683 TargetLowering::findRepresentativeClass(EVT VT
) const {
684 const TargetRegisterClass
*RC
= RegClassForVT
[VT
.getSimpleVT().SimpleTy
];
686 return std::make_pair(RC
, 0);
687 const TargetRegisterClass
*BestRC
= RC
;
688 for (TargetRegisterInfo::regclass_iterator I
= RC
->superregclasses_begin(),
689 E
= RC
->superregclasses_end(); I
!= E
; ++I
) {
690 const TargetRegisterClass
*RRC
= *I
;
691 if (RRC
->isASubClass() || !isLegalRC(RRC
))
693 if (!hasLegalSuperRegRegClasses(RRC
))
694 return std::make_pair(RRC
, 1);
697 return std::make_pair(BestRC
, 1);
701 /// computeRegisterProperties - Once all of the register classes are added,
702 /// this allows us to compute derived properties we expose.
703 void TargetLowering::computeRegisterProperties() {
704 assert(MVT::LAST_VALUETYPE
<= MVT::MAX_ALLOWED_VALUETYPE
&&
705 "Too many value types for ValueTypeActions to hold!");
707 // Everything defaults to needing one register.
708 for (unsigned i
= 0; i
!= MVT::LAST_VALUETYPE
; ++i
) {
709 NumRegistersForVT
[i
] = 1;
710 RegisterTypeForVT
[i
] = TransformToType
[i
] = (MVT::SimpleValueType
)i
;
712 // ...except isVoid, which doesn't need any registers.
713 NumRegistersForVT
[MVT::isVoid
] = 0;
715 // Find the largest integer register class.
716 unsigned LargestIntReg
= MVT::LAST_INTEGER_VALUETYPE
;
717 for (; RegClassForVT
[LargestIntReg
] == 0; --LargestIntReg
)
718 assert(LargestIntReg
!= MVT::i1
&& "No integer registers defined!");
720 // Every integer value type larger than this largest register takes twice as
721 // many registers to represent as the previous ValueType.
722 for (unsigned ExpandedReg
= LargestIntReg
+ 1; ; ++ExpandedReg
) {
723 EVT ExpandedVT
= (MVT::SimpleValueType
)ExpandedReg
;
724 if (!ExpandedVT
.isInteger())
726 NumRegistersForVT
[ExpandedReg
] = 2*NumRegistersForVT
[ExpandedReg
-1];
727 RegisterTypeForVT
[ExpandedReg
] = (MVT::SimpleValueType
)LargestIntReg
;
728 TransformToType
[ExpandedReg
] = (MVT::SimpleValueType
)(ExpandedReg
- 1);
729 ValueTypeActions
.setTypeAction(ExpandedVT
, Expand
);
732 // Inspect all of the ValueType's smaller than the largest integer
733 // register to see which ones need promotion.
734 unsigned LegalIntReg
= LargestIntReg
;
735 for (unsigned IntReg
= LargestIntReg
- 1;
736 IntReg
>= (unsigned)MVT::i1
; --IntReg
) {
737 EVT IVT
= (MVT::SimpleValueType
)IntReg
;
738 if (isTypeLegal(IVT
)) {
739 LegalIntReg
= IntReg
;
741 RegisterTypeForVT
[IntReg
] = TransformToType
[IntReg
] =
742 (MVT::SimpleValueType
)LegalIntReg
;
743 ValueTypeActions
.setTypeAction(IVT
, Promote
);
747 // ppcf128 type is really two f64's.
748 if (!isTypeLegal(MVT::ppcf128
)) {
749 NumRegistersForVT
[MVT::ppcf128
] = 2*NumRegistersForVT
[MVT::f64
];
750 RegisterTypeForVT
[MVT::ppcf128
] = MVT::f64
;
751 TransformToType
[MVT::ppcf128
] = MVT::f64
;
752 ValueTypeActions
.setTypeAction(MVT::ppcf128
, Expand
);
755 // Decide how to handle f64. If the target does not have native f64 support,
756 // expand it to i64 and we will be generating soft float library calls.
757 if (!isTypeLegal(MVT::f64
)) {
758 NumRegistersForVT
[MVT::f64
] = NumRegistersForVT
[MVT::i64
];
759 RegisterTypeForVT
[MVT::f64
] = RegisterTypeForVT
[MVT::i64
];
760 TransformToType
[MVT::f64
] = MVT::i64
;
761 ValueTypeActions
.setTypeAction(MVT::f64
, Expand
);
764 // Decide how to handle f32. If the target does not have native support for
765 // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
766 if (!isTypeLegal(MVT::f32
)) {
767 if (isTypeLegal(MVT::f64
)) {
768 NumRegistersForVT
[MVT::f32
] = NumRegistersForVT
[MVT::f64
];
769 RegisterTypeForVT
[MVT::f32
] = RegisterTypeForVT
[MVT::f64
];
770 TransformToType
[MVT::f32
] = MVT::f64
;
771 ValueTypeActions
.setTypeAction(MVT::f32
, Promote
);
773 NumRegistersForVT
[MVT::f32
] = NumRegistersForVT
[MVT::i32
];
774 RegisterTypeForVT
[MVT::f32
] = RegisterTypeForVT
[MVT::i32
];
775 TransformToType
[MVT::f32
] = MVT::i32
;
776 ValueTypeActions
.setTypeAction(MVT::f32
, Expand
);
780 // Loop over all of the vector value types to see which need transformations.
781 for (unsigned i
= MVT::FIRST_VECTOR_VALUETYPE
;
782 i
<= (unsigned)MVT::LAST_VECTOR_VALUETYPE
; ++i
) {
783 MVT VT
= (MVT::SimpleValueType
)i
;
784 if (isTypeLegal(VT
)) continue;
786 // Determine if there is a legal wider type. If so, we should promote to
787 // that wider vector type.
788 EVT EltVT
= VT
.getVectorElementType();
789 unsigned NElts
= VT
.getVectorNumElements();
791 bool IsLegalWiderType
= false;
792 for (unsigned nVT
= i
+1; nVT
<= MVT::LAST_VECTOR_VALUETYPE
; ++nVT
) {
793 EVT SVT
= (MVT::SimpleValueType
)nVT
;
794 if (SVT
.getVectorElementType() == EltVT
&&
795 SVT
.getVectorNumElements() > NElts
&&
797 TransformToType
[i
] = SVT
;
798 RegisterTypeForVT
[i
] = SVT
;
799 NumRegistersForVT
[i
] = 1;
800 ValueTypeActions
.setTypeAction(VT
, Promote
);
801 IsLegalWiderType
= true;
805 if (IsLegalWiderType
) continue;
810 unsigned NumIntermediates
;
811 NumRegistersForVT
[i
] =
812 getVectorTypeBreakdownMVT(VT
, IntermediateVT
, NumIntermediates
,
814 RegisterTypeForVT
[i
] = RegisterVT
;
816 EVT NVT
= VT
.getPow2VectorType();
818 // Type is already a power of 2. The default action is to split.
819 TransformToType
[i
] = MVT::Other
;
820 ValueTypeActions
.setTypeAction(VT
, Expand
);
822 TransformToType
[i
] = NVT
;
823 ValueTypeActions
.setTypeAction(VT
, Promote
);
827 // Determine the 'representative' register class for each value type.
828 // An representative register class is the largest (meaning one which is
829 // not a sub-register class / subreg register class) legal register class for
830 // a group of value types. For example, on i386, i8, i16, and i32
831 // representative would be GR32; while on x86_64 it's GR64.
832 for (unsigned i
= 0; i
!= MVT::LAST_VALUETYPE
; ++i
) {
833 const TargetRegisterClass
* RRC
;
835 tie(RRC
, Cost
) = findRepresentativeClass((MVT::SimpleValueType
)i
);
836 RepRegClassForVT
[i
] = RRC
;
837 RepRegClassCostForVT
[i
] = Cost
;
841 const char *TargetLowering::getTargetNodeName(unsigned Opcode
) const {
846 MVT::SimpleValueType
TargetLowering::getSetCCResultType(EVT VT
) const {
847 return PointerTy
.SimpleTy
;
850 MVT::SimpleValueType
TargetLowering::getCmpLibcallReturnType() const {
851 return MVT::i32
; // return the default value
854 /// getVectorTypeBreakdown - Vector types are broken down into some number of
855 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
856 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
857 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
859 /// This method returns the number of registers needed, and the VT for each
860 /// register. It also returns the VT and quantity of the intermediate values
861 /// before they are promoted/expanded.
863 unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext
&Context
, EVT VT
,
865 unsigned &NumIntermediates
,
866 EVT
&RegisterVT
) const {
867 unsigned NumElts
= VT
.getVectorNumElements();
869 // If there is a wider vector type with the same element type as this one,
870 // we should widen to that legal vector type. This handles things like
871 // <2 x float> -> <4 x float>.
872 if (NumElts
!= 1 && getTypeAction(VT
) == Promote
) {
873 RegisterVT
= getTypeToTransformTo(Context
, VT
);
874 if (isTypeLegal(RegisterVT
)) {
875 IntermediateVT
= RegisterVT
;
876 NumIntermediates
= 1;
881 // Figure out the right, legal destination reg to copy into.
882 EVT EltTy
= VT
.getVectorElementType();
884 unsigned NumVectorRegs
= 1;
886 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
887 // could break down into LHS/RHS like LegalizeDAG does.
888 if (!isPowerOf2_32(NumElts
)) {
889 NumVectorRegs
= NumElts
;
893 // Divide the input until we get to a supported size. This will always
894 // end with a scalar if the target doesn't support vectors.
895 while (NumElts
> 1 && !isTypeLegal(
896 EVT::getVectorVT(Context
, EltTy
, NumElts
))) {
901 NumIntermediates
= NumVectorRegs
;
903 EVT NewVT
= EVT::getVectorVT(Context
, EltTy
, NumElts
);
904 if (!isTypeLegal(NewVT
))
906 IntermediateVT
= NewVT
;
908 EVT DestVT
= getRegisterType(Context
, NewVT
);
910 if (DestVT
.bitsLT(NewVT
)) // Value is expanded, e.g. i64 -> i16.
911 return NumVectorRegs
*(NewVT
.getSizeInBits()/DestVT
.getSizeInBits());
913 // Otherwise, promotion or legal types use the same number of registers as
914 // the vector decimated to the appropriate level.
915 return NumVectorRegs
;
918 /// Get the EVTs and ArgFlags collections that represent the legalized return
919 /// type of the given function. This does not require a DAG or a return value,
920 /// and is suitable for use before any DAGs for the function are constructed.
921 /// TODO: Move this out of TargetLowering.cpp.
922 void llvm::GetReturnInfo(const Type
* ReturnType
, Attributes attr
,
923 SmallVectorImpl
<ISD::OutputArg
> &Outs
,
924 const TargetLowering
&TLI
,
925 SmallVectorImpl
<uint64_t> *Offsets
) {
926 SmallVector
<EVT
, 4> ValueVTs
;
927 ComputeValueVTs(TLI
, ReturnType
, ValueVTs
);
928 unsigned NumValues
= ValueVTs
.size();
929 if (NumValues
== 0) return;
932 for (unsigned j
= 0, f
= NumValues
; j
!= f
; ++j
) {
933 EVT VT
= ValueVTs
[j
];
934 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
;
936 if (attr
& Attribute::SExt
)
937 ExtendKind
= ISD::SIGN_EXTEND
;
938 else if (attr
& Attribute::ZExt
)
939 ExtendKind
= ISD::ZERO_EXTEND
;
941 // FIXME: C calling convention requires the return type to be promoted to
942 // at least 32-bit. But this is not necessary for non-C calling
943 // conventions. The frontend should mark functions whose return values
944 // require promoting with signext or zeroext attributes.
945 if (ExtendKind
!= ISD::ANY_EXTEND
&& VT
.isInteger()) {
946 EVT MinVT
= TLI
.getRegisterType(ReturnType
->getContext(), MVT::i32
);
947 if (VT
.bitsLT(MinVT
))
951 unsigned NumParts
= TLI
.getNumRegisters(ReturnType
->getContext(), VT
);
952 EVT PartVT
= TLI
.getRegisterType(ReturnType
->getContext(), VT
);
953 unsigned PartSize
= TLI
.getTargetData()->getTypeAllocSize(
954 PartVT
.getTypeForEVT(ReturnType
->getContext()));
956 // 'inreg' on function refers to return value
957 ISD::ArgFlagsTy Flags
= ISD::ArgFlagsTy();
958 if (attr
& Attribute::InReg
)
961 // Propagate extension type if any
962 if (attr
& Attribute::SExt
)
964 else if (attr
& Attribute::ZExt
)
967 for (unsigned i
= 0; i
< NumParts
; ++i
) {
968 Outs
.push_back(ISD::OutputArg(Flags
, PartVT
, /*isFixed=*/true));
970 Offsets
->push_back(Offset
);
977 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
978 /// function arguments in the caller parameter area. This is the actual
979 /// alignment, not its logarithm.
980 unsigned TargetLowering::getByValTypeAlignment(const Type
*Ty
) const {
981 return TD
->getCallFrameTypeAlignment(Ty
);
984 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
985 /// current function. The returned value is a member of the
986 /// MachineJumpTableInfo::JTEntryKind enum.
987 unsigned TargetLowering::getJumpTableEncoding() const {
988 // In non-pic modes, just use the address of a block.
989 if (getTargetMachine().getRelocationModel() != Reloc::PIC_
)
990 return MachineJumpTableInfo::EK_BlockAddress
;
992 // In PIC mode, if the target supports a GPRel32 directive, use it.
993 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
994 return MachineJumpTableInfo::EK_GPRel32BlockAddress
;
996 // Otherwise, use a label difference.
997 return MachineJumpTableInfo::EK_LabelDifference32
;
1000 SDValue
TargetLowering::getPICJumpTableRelocBase(SDValue Table
,
1001 SelectionDAG
&DAG
) const {
1002 // If our PIC model is GP relative, use the global offset table as the base.
1003 if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress
)
1004 return DAG
.getGLOBAL_OFFSET_TABLE(getPointerTy());
1008 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1009 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1012 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction
*MF
,
1013 unsigned JTI
,MCContext
&Ctx
) const{
1014 // The normal PIC reloc base is the label at the start of the jump table.
1015 return MCSymbolRefExpr::Create(MF
->getJTISymbol(JTI
, Ctx
), Ctx
);
1019 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
1020 // Assume that everything is safe in static mode.
1021 if (getTargetMachine().getRelocationModel() == Reloc::Static
)
1024 // In dynamic-no-pic mode, assume that known defined values are safe.
1025 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC
&&
1027 !GA
->getGlobal()->isDeclaration() &&
1028 !GA
->getGlobal()->isWeakForLinker())
1031 // Otherwise assume nothing is safe.
1035 //===----------------------------------------------------------------------===//
1036 // Optimization Methods
1037 //===----------------------------------------------------------------------===//
1039 /// ShrinkDemandedConstant - Check to see if the specified operand of the
1040 /// specified instruction is a constant integer. If so, check to see if there
1041 /// are any bits set in the constant that are not demanded. If so, shrink the
1042 /// constant and return true.
1043 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op
,
1044 const APInt
&Demanded
) {
1045 DebugLoc dl
= Op
.getDebugLoc();
1047 // FIXME: ISD::SELECT, ISD::SELECT_CC
1048 switch (Op
.getOpcode()) {
1053 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
1054 if (!C
) return false;
1056 if (Op
.getOpcode() == ISD::XOR
&&
1057 (C
->getAPIntValue() | (~Demanded
)).isAllOnesValue())
1060 // if we can expand it to have all bits set, do it
1061 if (C
->getAPIntValue().intersects(~Demanded
)) {
1062 EVT VT
= Op
.getValueType();
1063 SDValue New
= DAG
.getNode(Op
.getOpcode(), dl
, VT
, Op
.getOperand(0),
1064 DAG
.getConstant(Demanded
&
1067 return CombineTo(Op
, New
);
1077 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
1078 /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening
1079 /// cast, but it could be generalized for targets with other types of
1080 /// implicit widening casts.
1082 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op
,
1084 const APInt
&Demanded
,
1086 assert(Op
.getNumOperands() == 2 &&
1087 "ShrinkDemandedOp only supports binary operators!");
1088 assert(Op
.getNode()->getNumValues() == 1 &&
1089 "ShrinkDemandedOp only supports nodes with one result!");
1091 // Don't do this if the node has another user, which may require the
1093 if (!Op
.getNode()->hasOneUse())
1096 // Search for the smallest integer type with free casts to and from
1097 // Op's type. For expedience, just check power-of-2 integer types.
1098 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
1099 unsigned SmallVTBits
= BitWidth
- Demanded
.countLeadingZeros();
1100 if (!isPowerOf2_32(SmallVTBits
))
1101 SmallVTBits
= NextPowerOf2(SmallVTBits
);
1102 for (; SmallVTBits
< BitWidth
; SmallVTBits
= NextPowerOf2(SmallVTBits
)) {
1103 EVT SmallVT
= EVT::getIntegerVT(*DAG
.getContext(), SmallVTBits
);
1104 if (TLI
.isTruncateFree(Op
.getValueType(), SmallVT
) &&
1105 TLI
.isZExtFree(SmallVT
, Op
.getValueType())) {
1106 // We found a type with free casts.
1107 SDValue X
= DAG
.getNode(Op
.getOpcode(), dl
, SmallVT
,
1108 DAG
.getNode(ISD::TRUNCATE
, dl
, SmallVT
,
1109 Op
.getNode()->getOperand(0)),
1110 DAG
.getNode(ISD::TRUNCATE
, dl
, SmallVT
,
1111 Op
.getNode()->getOperand(1)));
1112 SDValue Z
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, Op
.getValueType(), X
);
1113 return CombineTo(Op
, Z
);
1119 /// SimplifyDemandedBits - Look at Op. At this point, we know that only the
1120 /// DemandedMask bits of the result of Op are ever used downstream. If we can
1121 /// use this information to simplify Op, create a new simplified DAG node and
1122 /// return true, returning the original and new nodes in Old and New. Otherwise,
1123 /// analyze the expression and return a mask of KnownOne and KnownZero bits for
1124 /// the expression (used to simplify the caller). The KnownZero/One bits may
1125 /// only be accurate for those bits in the DemandedMask.
1126 bool TargetLowering::SimplifyDemandedBits(SDValue Op
,
1127 const APInt
&DemandedMask
,
1130 TargetLoweringOpt
&TLO
,
1131 unsigned Depth
) const {
1132 unsigned BitWidth
= DemandedMask
.getBitWidth();
1133 assert(Op
.getValueType().getScalarType().getSizeInBits() == BitWidth
&&
1134 "Mask size mismatches value type size!");
1135 APInt NewMask
= DemandedMask
;
1136 DebugLoc dl
= Op
.getDebugLoc();
1138 // Don't know anything.
1139 KnownZero
= KnownOne
= APInt(BitWidth
, 0);
1141 // Other users may use these bits.
1142 if (!Op
.getNode()->hasOneUse()) {
1144 // If not at the root, Just compute the KnownZero/KnownOne bits to
1145 // simplify things downstream.
1146 TLO
.DAG
.ComputeMaskedBits(Op
, DemandedMask
, KnownZero
, KnownOne
, Depth
);
1149 // If this is the root being simplified, allow it to have multiple uses,
1150 // just set the NewMask to all bits.
1151 NewMask
= APInt::getAllOnesValue(BitWidth
);
1152 } else if (DemandedMask
== 0) {
1153 // Not demanding any bits from Op.
1154 if (Op
.getOpcode() != ISD::UNDEF
)
1155 return TLO
.CombineTo(Op
, TLO
.DAG
.getUNDEF(Op
.getValueType()));
1157 } else if (Depth
== 6) { // Limit search depth.
1161 APInt KnownZero2
, KnownOne2
, KnownZeroOut
, KnownOneOut
;
1162 switch (Op
.getOpcode()) {
1164 // We know all of the bits for a constant!
1165 KnownOne
= cast
<ConstantSDNode
>(Op
)->getAPIntValue() & NewMask
;
1166 KnownZero
= ~KnownOne
& NewMask
;
1167 return false; // Don't fall through, will infinitely loop.
1169 // If the RHS is a constant, check to see if the LHS would be zero without
1170 // using the bits from the RHS. Below, we use knowledge about the RHS to
1171 // simplify the LHS, here we're using information from the LHS to simplify
1173 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1174 APInt LHSZero
, LHSOne
;
1175 TLO
.DAG
.ComputeMaskedBits(Op
.getOperand(0), NewMask
,
1176 LHSZero
, LHSOne
, Depth
+1);
1177 // If the LHS already has zeros where RHSC does, this and is dead.
1178 if ((LHSZero
& NewMask
) == (~RHSC
->getAPIntValue() & NewMask
))
1179 return TLO
.CombineTo(Op
, Op
.getOperand(0));
1180 // If any of the set bits in the RHS are known zero on the LHS, shrink
1182 if (TLO
.ShrinkDemandedConstant(Op
, ~LHSZero
& NewMask
))
1186 if (SimplifyDemandedBits(Op
.getOperand(1), NewMask
, KnownZero
,
1187 KnownOne
, TLO
, Depth
+1))
1189 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1190 if (SimplifyDemandedBits(Op
.getOperand(0), ~KnownZero
& NewMask
,
1191 KnownZero2
, KnownOne2
, TLO
, Depth
+1))
1193 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1195 // If all of the demanded bits are known one on one side, return the other.
1196 // These bits cannot contribute to the result of the 'and'.
1197 if ((NewMask
& ~KnownZero2
& KnownOne
) == (~KnownZero2
& NewMask
))
1198 return TLO
.CombineTo(Op
, Op
.getOperand(0));
1199 if ((NewMask
& ~KnownZero
& KnownOne2
) == (~KnownZero
& NewMask
))
1200 return TLO
.CombineTo(Op
, Op
.getOperand(1));
1201 // If all of the demanded bits in the inputs are known zeros, return zero.
1202 if ((NewMask
& (KnownZero
|KnownZero2
)) == NewMask
)
1203 return TLO
.CombineTo(Op
, TLO
.DAG
.getConstant(0, Op
.getValueType()));
1204 // If the RHS is a constant, see if we can simplify it.
1205 if (TLO
.ShrinkDemandedConstant(Op
, ~KnownZero2
& NewMask
))
1207 // If the operation can be done in a smaller type, do so.
1208 if (TLO
.ShrinkDemandedOp(Op
, BitWidth
, NewMask
, dl
))
1211 // Output known-1 bits are only known if set in both the LHS & RHS.
1212 KnownOne
&= KnownOne2
;
1213 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1214 KnownZero
|= KnownZero2
;
1217 if (SimplifyDemandedBits(Op
.getOperand(1), NewMask
, KnownZero
,
1218 KnownOne
, TLO
, Depth
+1))
1220 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1221 if (SimplifyDemandedBits(Op
.getOperand(0), ~KnownOne
& NewMask
,
1222 KnownZero2
, KnownOne2
, TLO
, Depth
+1))
1224 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1226 // If all of the demanded bits are known zero on one side, return the other.
1227 // These bits cannot contribute to the result of the 'or'.
1228 if ((NewMask
& ~KnownOne2
& KnownZero
) == (~KnownOne2
& NewMask
))
1229 return TLO
.CombineTo(Op
, Op
.getOperand(0));
1230 if ((NewMask
& ~KnownOne
& KnownZero2
) == (~KnownOne
& NewMask
))
1231 return TLO
.CombineTo(Op
, Op
.getOperand(1));
1232 // If all of the potentially set bits on one side are known to be set on
1233 // the other side, just use the 'other' side.
1234 if ((NewMask
& ~KnownZero
& KnownOne2
) == (~KnownZero
& NewMask
))
1235 return TLO
.CombineTo(Op
, Op
.getOperand(0));
1236 if ((NewMask
& ~KnownZero2
& KnownOne
) == (~KnownZero2
& NewMask
))
1237 return TLO
.CombineTo(Op
, Op
.getOperand(1));
1238 // If the RHS is a constant, see if we can simplify it.
1239 if (TLO
.ShrinkDemandedConstant(Op
, NewMask
))
1241 // If the operation can be done in a smaller type, do so.
1242 if (TLO
.ShrinkDemandedOp(Op
, BitWidth
, NewMask
, dl
))
1245 // Output known-0 bits are only known if clear in both the LHS & RHS.
1246 KnownZero
&= KnownZero2
;
1247 // Output known-1 are known to be set if set in either the LHS | RHS.
1248 KnownOne
|= KnownOne2
;
1251 if (SimplifyDemandedBits(Op
.getOperand(1), NewMask
, KnownZero
,
1252 KnownOne
, TLO
, Depth
+1))
1254 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1255 if (SimplifyDemandedBits(Op
.getOperand(0), NewMask
, KnownZero2
,
1256 KnownOne2
, TLO
, Depth
+1))
1258 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1260 // If all of the demanded bits are known zero on one side, return the other.
1261 // These bits cannot contribute to the result of the 'xor'.
1262 if ((KnownZero
& NewMask
) == NewMask
)
1263 return TLO
.CombineTo(Op
, Op
.getOperand(0));
1264 if ((KnownZero2
& NewMask
) == NewMask
)
1265 return TLO
.CombineTo(Op
, Op
.getOperand(1));
1266 // If the operation can be done in a smaller type, do so.
1267 if (TLO
.ShrinkDemandedOp(Op
, BitWidth
, NewMask
, dl
))
1270 // If all of the unknown bits are known to be zero on one side or the other
1271 // (but not both) turn this into an *inclusive* or.
1272 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1273 if ((NewMask
& ~KnownZero
& ~KnownZero2
) == 0)
1274 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::OR
, dl
, Op
.getValueType(),
1278 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1279 KnownZeroOut
= (KnownZero
& KnownZero2
) | (KnownOne
& KnownOne2
);
1280 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1281 KnownOneOut
= (KnownZero
& KnownOne2
) | (KnownOne
& KnownZero2
);
1283 // If all of the demanded bits on one side are known, and all of the set
1284 // bits on that side are also known to be set on the other side, turn this
1285 // into an AND, as we know the bits will be cleared.
1286 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1287 if ((NewMask
& (KnownZero
|KnownOne
)) == NewMask
) { // all known
1288 if ((KnownOne
& KnownOne2
) == KnownOne
) {
1289 EVT VT
= Op
.getValueType();
1290 SDValue ANDC
= TLO
.DAG
.getConstant(~KnownOne
& NewMask
, VT
);
1291 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::AND
, dl
, VT
,
1292 Op
.getOperand(0), ANDC
));
1296 // If the RHS is a constant, see if we can simplify it.
1297 // for XOR, we prefer to force bits to 1 if they will make a -1.
1298 // if we can't force bits, try to shrink constant
1299 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1300 APInt Expanded
= C
->getAPIntValue() | (~NewMask
);
1301 // if we can expand it to have all bits set, do it
1302 if (Expanded
.isAllOnesValue()) {
1303 if (Expanded
!= C
->getAPIntValue()) {
1304 EVT VT
= Op
.getValueType();
1305 SDValue New
= TLO
.DAG
.getNode(Op
.getOpcode(), dl
,VT
, Op
.getOperand(0),
1306 TLO
.DAG
.getConstant(Expanded
, VT
));
1307 return TLO
.CombineTo(Op
, New
);
1309 // if it already has all the bits set, nothing to change
1310 // but don't shrink either!
1311 } else if (TLO
.ShrinkDemandedConstant(Op
, NewMask
)) {
1316 KnownZero
= KnownZeroOut
;
1317 KnownOne
= KnownOneOut
;
1320 if (SimplifyDemandedBits(Op
.getOperand(2), NewMask
, KnownZero
,
1321 KnownOne
, TLO
, Depth
+1))
1323 if (SimplifyDemandedBits(Op
.getOperand(1), NewMask
, KnownZero2
,
1324 KnownOne2
, TLO
, Depth
+1))
1326 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1327 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1329 // If the operands are constants, see if we can simplify them.
1330 if (TLO
.ShrinkDemandedConstant(Op
, NewMask
))
1333 // Only known if known in both the LHS and RHS.
1334 KnownOne
&= KnownOne2
;
1335 KnownZero
&= KnownZero2
;
1337 case ISD::SELECT_CC
:
1338 if (SimplifyDemandedBits(Op
.getOperand(3), NewMask
, KnownZero
,
1339 KnownOne
, TLO
, Depth
+1))
1341 if (SimplifyDemandedBits(Op
.getOperand(2), NewMask
, KnownZero2
,
1342 KnownOne2
, TLO
, Depth
+1))
1344 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1345 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1347 // If the operands are constants, see if we can simplify them.
1348 if (TLO
.ShrinkDemandedConstant(Op
, NewMask
))
1351 // Only known if known in both the LHS and RHS.
1352 KnownOne
&= KnownOne2
;
1353 KnownZero
&= KnownZero2
;
1356 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1357 unsigned ShAmt
= SA
->getZExtValue();
1358 SDValue InOp
= Op
.getOperand(0);
1360 // If the shift count is an invalid immediate, don't do anything.
1361 if (ShAmt
>= BitWidth
)
1364 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1365 // single shift. We can do this if the bottom bits (which are shifted
1366 // out) are never demanded.
1367 if (InOp
.getOpcode() == ISD::SRL
&&
1368 isa
<ConstantSDNode
>(InOp
.getOperand(1))) {
1369 if (ShAmt
&& (NewMask
& APInt::getLowBitsSet(BitWidth
, ShAmt
)) == 0) {
1370 unsigned C1
= cast
<ConstantSDNode
>(InOp
.getOperand(1))->getZExtValue();
1371 unsigned Opc
= ISD::SHL
;
1372 int Diff
= ShAmt
-C1
;
1379 TLO
.DAG
.getConstant(Diff
, Op
.getOperand(1).getValueType());
1380 EVT VT
= Op
.getValueType();
1381 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(Opc
, dl
, VT
,
1382 InOp
.getOperand(0), NewSA
));
1386 if (SimplifyDemandedBits(InOp
, NewMask
.lshr(ShAmt
),
1387 KnownZero
, KnownOne
, TLO
, Depth
+1))
1390 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1391 // are not demanded. This will likely allow the anyext to be folded away.
1392 if (InOp
.getNode()->getOpcode() == ISD::ANY_EXTEND
) {
1393 SDValue InnerOp
= InOp
.getNode()->getOperand(0);
1394 EVT InnerVT
= InnerOp
.getValueType();
1395 if ((APInt::getHighBitsSet(BitWidth
,
1396 BitWidth
- InnerVT
.getSizeInBits()) &
1397 DemandedMask
) == 0 &&
1398 isTypeDesirableForOp(ISD::SHL
, InnerVT
)) {
1399 EVT ShTy
= getShiftAmountTy();
1400 if (!APInt(BitWidth
, ShAmt
).isIntN(ShTy
.getSizeInBits()))
1403 TLO
.DAG
.getNode(ISD::SHL
, dl
, InnerVT
, InnerOp
,
1404 TLO
.DAG
.getConstant(ShAmt
, ShTy
));
1407 TLO
.DAG
.getNode(ISD::ANY_EXTEND
, dl
, Op
.getValueType(),
1412 KnownZero
<<= SA
->getZExtValue();
1413 KnownOne
<<= SA
->getZExtValue();
1414 // low bits known zero.
1415 KnownZero
|= APInt::getLowBitsSet(BitWidth
, SA
->getZExtValue());
1419 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1420 EVT VT
= Op
.getValueType();
1421 unsigned ShAmt
= SA
->getZExtValue();
1422 unsigned VTSize
= VT
.getSizeInBits();
1423 SDValue InOp
= Op
.getOperand(0);
1425 // If the shift count is an invalid immediate, don't do anything.
1426 if (ShAmt
>= BitWidth
)
1429 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1430 // single shift. We can do this if the top bits (which are shifted out)
1431 // are never demanded.
1432 if (InOp
.getOpcode() == ISD::SHL
&&
1433 isa
<ConstantSDNode
>(InOp
.getOperand(1))) {
1434 if (ShAmt
&& (NewMask
& APInt::getHighBitsSet(VTSize
, ShAmt
)) == 0) {
1435 unsigned C1
= cast
<ConstantSDNode
>(InOp
.getOperand(1))->getZExtValue();
1436 unsigned Opc
= ISD::SRL
;
1437 int Diff
= ShAmt
-C1
;
1444 TLO
.DAG
.getConstant(Diff
, Op
.getOperand(1).getValueType());
1445 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(Opc
, dl
, VT
,
1446 InOp
.getOperand(0), NewSA
));
1450 // Compute the new bits that are at the top now.
1451 if (SimplifyDemandedBits(InOp
, (NewMask
<< ShAmt
),
1452 KnownZero
, KnownOne
, TLO
, Depth
+1))
1454 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1455 KnownZero
= KnownZero
.lshr(ShAmt
);
1456 KnownOne
= KnownOne
.lshr(ShAmt
);
1458 APInt HighBits
= APInt::getHighBitsSet(BitWidth
, ShAmt
);
1459 KnownZero
|= HighBits
; // High bits known zero.
1463 // If this is an arithmetic shift right and only the low-bit is set, we can
1464 // always convert this into a logical shr, even if the shift amount is
1465 // variable. The low bit of the shift cannot be an input sign bit unless
1466 // the shift amount is >= the size of the datatype, which is undefined.
1467 if (DemandedMask
== 1)
1468 return TLO
.CombineTo(Op
,
1469 TLO
.DAG
.getNode(ISD::SRL
, dl
, Op
.getValueType(),
1470 Op
.getOperand(0), Op
.getOperand(1)));
1472 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1473 EVT VT
= Op
.getValueType();
1474 unsigned ShAmt
= SA
->getZExtValue();
1476 // If the shift count is an invalid immediate, don't do anything.
1477 if (ShAmt
>= BitWidth
)
1480 APInt InDemandedMask
= (NewMask
<< ShAmt
);
1482 // If any of the demanded bits are produced by the sign extension, we also
1483 // demand the input sign bit.
1484 APInt HighBits
= APInt::getHighBitsSet(BitWidth
, ShAmt
);
1485 if (HighBits
.intersects(NewMask
))
1486 InDemandedMask
|= APInt::getSignBit(VT
.getScalarType().getSizeInBits());
1488 if (SimplifyDemandedBits(Op
.getOperand(0), InDemandedMask
,
1489 KnownZero
, KnownOne
, TLO
, Depth
+1))
1491 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1492 KnownZero
= KnownZero
.lshr(ShAmt
);
1493 KnownOne
= KnownOne
.lshr(ShAmt
);
1495 // Handle the sign bit, adjusted to where it is now in the mask.
1496 APInt SignBit
= APInt::getSignBit(BitWidth
).lshr(ShAmt
);
1498 // If the input sign bit is known to be zero, or if none of the top bits
1499 // are demanded, turn this into an unsigned shift right.
1500 if (KnownZero
.intersects(SignBit
) || (HighBits
& ~NewMask
) == HighBits
) {
1501 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::SRL
, dl
, VT
,
1504 } else if (KnownOne
.intersects(SignBit
)) { // New bits are known one.
1505 KnownOne
|= HighBits
;
1509 case ISD::SIGN_EXTEND_INREG
: {
1510 EVT EVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1512 // Sign extension. Compute the demanded bits in the result that are not
1513 // present in the input.
1515 APInt::getHighBitsSet(BitWidth
,
1516 BitWidth
- EVT
.getScalarType().getSizeInBits());
1518 // If none of the extended bits are demanded, eliminate the sextinreg.
1519 if ((NewBits
& NewMask
) == 0)
1520 return TLO
.CombineTo(Op
, Op
.getOperand(0));
1522 APInt InSignBit
= APInt::getSignBit(EVT
.getScalarType().getSizeInBits());
1523 InSignBit
.zext(BitWidth
);
1524 APInt InputDemandedBits
=
1525 APInt::getLowBitsSet(BitWidth
,
1526 EVT
.getScalarType().getSizeInBits()) &
1529 // Since the sign extended bits are demanded, we know that the sign
1531 InputDemandedBits
|= InSignBit
;
1533 if (SimplifyDemandedBits(Op
.getOperand(0), InputDemandedBits
,
1534 KnownZero
, KnownOne
, TLO
, Depth
+1))
1536 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1538 // If the sign bit of the input is known set or clear, then we know the
1539 // top bits of the result.
1541 // If the input sign bit is known zero, convert this into a zero extension.
1542 if (KnownZero
.intersects(InSignBit
))
1543 return TLO
.CombineTo(Op
,
1544 TLO
.DAG
.getZeroExtendInReg(Op
.getOperand(0),dl
,EVT
));
1546 if (KnownOne
.intersects(InSignBit
)) { // Input sign bit known set
1547 KnownOne
|= NewBits
;
1548 KnownZero
&= ~NewBits
;
1549 } else { // Input sign bit unknown
1550 KnownZero
&= ~NewBits
;
1551 KnownOne
&= ~NewBits
;
1555 case ISD::ZERO_EXTEND
: {
1556 unsigned OperandBitWidth
=
1557 Op
.getOperand(0).getValueType().getScalarType().getSizeInBits();
1558 APInt InMask
= NewMask
;
1559 InMask
.trunc(OperandBitWidth
);
1561 // If none of the top bits are demanded, convert this into an any_extend.
1563 APInt::getHighBitsSet(BitWidth
, BitWidth
- OperandBitWidth
) & NewMask
;
1564 if (!NewBits
.intersects(NewMask
))
1565 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::ANY_EXTEND
, dl
,
1569 if (SimplifyDemandedBits(Op
.getOperand(0), InMask
,
1570 KnownZero
, KnownOne
, TLO
, Depth
+1))
1572 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1573 KnownZero
.zext(BitWidth
);
1574 KnownOne
.zext(BitWidth
);
1575 KnownZero
|= NewBits
;
1578 case ISD::SIGN_EXTEND
: {
1579 EVT InVT
= Op
.getOperand(0).getValueType();
1580 unsigned InBits
= InVT
.getScalarType().getSizeInBits();
1581 APInt InMask
= APInt::getLowBitsSet(BitWidth
, InBits
);
1582 APInt InSignBit
= APInt::getBitsSet(BitWidth
, InBits
- 1, InBits
);
1583 APInt NewBits
= ~InMask
& NewMask
;
1585 // If none of the top bits are demanded, convert this into an any_extend.
1587 return TLO
.CombineTo(Op
,TLO
.DAG
.getNode(ISD::ANY_EXTEND
, dl
,
1591 // Since some of the sign extended bits are demanded, we know that the sign
1593 APInt InDemandedBits
= InMask
& NewMask
;
1594 InDemandedBits
|= InSignBit
;
1595 InDemandedBits
.trunc(InBits
);
1597 if (SimplifyDemandedBits(Op
.getOperand(0), InDemandedBits
, KnownZero
,
1598 KnownOne
, TLO
, Depth
+1))
1600 KnownZero
.zext(BitWidth
);
1601 KnownOne
.zext(BitWidth
);
1603 // If the sign bit is known zero, convert this to a zero extend.
1604 if (KnownZero
.intersects(InSignBit
))
1605 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::ZERO_EXTEND
, dl
,
1609 // If the sign bit is known one, the top bits match.
1610 if (KnownOne
.intersects(InSignBit
)) {
1611 KnownOne
|= NewBits
;
1612 KnownZero
&= ~NewBits
;
1613 } else { // Otherwise, top bits aren't known.
1614 KnownOne
&= ~NewBits
;
1615 KnownZero
&= ~NewBits
;
1619 case ISD::ANY_EXTEND
: {
1620 unsigned OperandBitWidth
=
1621 Op
.getOperand(0).getValueType().getScalarType().getSizeInBits();
1622 APInt InMask
= NewMask
;
1623 InMask
.trunc(OperandBitWidth
);
1624 if (SimplifyDemandedBits(Op
.getOperand(0), InMask
,
1625 KnownZero
, KnownOne
, TLO
, Depth
+1))
1627 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1628 KnownZero
.zext(BitWidth
);
1629 KnownOne
.zext(BitWidth
);
1632 case ISD::TRUNCATE
: {
1633 // Simplify the input, using demanded bit information, and compute the known
1634 // zero/one bits live out.
1635 unsigned OperandBitWidth
=
1636 Op
.getOperand(0).getValueType().getScalarType().getSizeInBits();
1637 APInt TruncMask
= NewMask
;
1638 TruncMask
.zext(OperandBitWidth
);
1639 if (SimplifyDemandedBits(Op
.getOperand(0), TruncMask
,
1640 KnownZero
, KnownOne
, TLO
, Depth
+1))
1642 KnownZero
.trunc(BitWidth
);
1643 KnownOne
.trunc(BitWidth
);
1645 // If the input is only used by this truncate, see if we can shrink it based
1646 // on the known demanded bits.
1647 if (Op
.getOperand(0).getNode()->hasOneUse()) {
1648 SDValue In
= Op
.getOperand(0);
1649 switch (In
.getOpcode()) {
1652 // Shrink SRL by a constant if none of the high bits shifted in are
1654 if (TLO
.LegalTypes() &&
1655 !isTypeDesirableForOp(ISD::SRL
, Op
.getValueType()))
1656 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1659 ConstantSDNode
*ShAmt
= dyn_cast
<ConstantSDNode
>(In
.getOperand(1));
1662 APInt HighBits
= APInt::getHighBitsSet(OperandBitWidth
,
1663 OperandBitWidth
- BitWidth
);
1664 HighBits
= HighBits
.lshr(ShAmt
->getZExtValue());
1665 HighBits
.trunc(BitWidth
);
1667 if (ShAmt
->getZExtValue() < BitWidth
&& !(HighBits
& NewMask
)) {
1668 // None of the shifted in bits are needed. Add a truncate of the
1669 // shift input, then shift it.
1670 SDValue NewTrunc
= TLO
.DAG
.getNode(ISD::TRUNCATE
, dl
,
1673 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::SRL
, dl
,
1682 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1685 case ISD::AssertZext
: {
1686 // Demand all the bits of the input that are demanded in the output.
1687 // The low bits are obvious; the high bits are demanded because we're
1688 // asserting that they're zero here.
1689 if (SimplifyDemandedBits(Op
.getOperand(0), NewMask
,
1690 KnownZero
, KnownOne
, TLO
, Depth
+1))
1692 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1694 EVT VT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1695 APInt InMask
= APInt::getLowBitsSet(BitWidth
,
1696 VT
.getSizeInBits());
1697 KnownZero
|= ~InMask
& NewMask
;
1700 case ISD::BIT_CONVERT
:
1702 // If this is an FP->Int bitcast and if the sign bit is the only thing that
1703 // is demanded, turn this into a FGETSIGN.
1704 if (NewMask
== EVT::getIntegerVTSignBit(Op
.getValueType()) &&
1705 MVT::isFloatingPoint(Op
.getOperand(0).getValueType()) &&
1706 !MVT::isVector(Op
.getOperand(0).getValueType())) {
1707 // Only do this xform if FGETSIGN is valid or if before legalize.
1708 if (!TLO
.AfterLegalize
||
1709 isOperationLegal(ISD::FGETSIGN
, Op
.getValueType())) {
1710 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1711 // place. We expect the SHL to be eliminated by other optimizations.
1712 SDValue Sign
= TLO
.DAG
.getNode(ISD::FGETSIGN
, Op
.getValueType(),
1714 unsigned ShVal
= Op
.getValueType().getSizeInBits()-1;
1715 SDValue ShAmt
= TLO
.DAG
.getConstant(ShVal
, getShiftAmountTy());
1716 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::SHL
, Op
.getValueType(),
1725 // Add, Sub, and Mul don't demand any bits in positions beyond that
1726 // of the highest bit demanded of them.
1727 APInt LoMask
= APInt::getLowBitsSet(BitWidth
,
1728 BitWidth
- NewMask
.countLeadingZeros());
1729 if (SimplifyDemandedBits(Op
.getOperand(0), LoMask
, KnownZero2
,
1730 KnownOne2
, TLO
, Depth
+1))
1732 if (SimplifyDemandedBits(Op
.getOperand(1), LoMask
, KnownZero2
,
1733 KnownOne2
, TLO
, Depth
+1))
1735 // See if the operation should be performed at a smaller bit width.
1736 if (TLO
.ShrinkDemandedOp(Op
, BitWidth
, NewMask
, dl
))
1741 // Just use ComputeMaskedBits to compute output bits.
1742 TLO
.DAG
.ComputeMaskedBits(Op
, NewMask
, KnownZero
, KnownOne
, Depth
);
1746 // If we know the value of all of the demanded bits, return this as a
1748 if ((NewMask
& (KnownZero
|KnownOne
)) == NewMask
)
1749 return TLO
.CombineTo(Op
, TLO
.DAG
.getConstant(KnownOne
, Op
.getValueType()));
1754 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
1755 /// in Mask are known to be either zero or one and return them in the
1756 /// KnownZero/KnownOne bitsets.
1757 void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op
,
1761 const SelectionDAG
&DAG
,
1762 unsigned Depth
) const {
1763 assert((Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
1764 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
1765 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
1766 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
1767 "Should use MaskedValueIsZero if you don't know whether Op"
1768 " is a target node!");
1769 KnownZero
= KnownOne
= APInt(Mask
.getBitWidth(), 0);
1772 /// ComputeNumSignBitsForTargetNode - This method can be implemented by
1773 /// targets that want to expose additional information about sign bits to the
1775 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op
,
1776 unsigned Depth
) const {
1777 assert((Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
1778 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
1779 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
1780 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
1781 "Should use ComputeNumSignBits if you don't know whether Op"
1782 " is a target node!");
1786 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1787 /// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1788 /// determine which bit is set.
1790 static bool ValueHasExactlyOneBitSet(SDValue Val
, const SelectionDAG
&DAG
) {
1791 // A left-shift of a constant one will have exactly one bit set, because
1792 // shifting the bit off the end is undefined.
1793 if (Val
.getOpcode() == ISD::SHL
)
1794 if (ConstantSDNode
*C
=
1795 dyn_cast
<ConstantSDNode
>(Val
.getNode()->getOperand(0)))
1796 if (C
->getAPIntValue() == 1)
1799 // Similarly, a right-shift of a constant sign-bit will have exactly
1801 if (Val
.getOpcode() == ISD::SRL
)
1802 if (ConstantSDNode
*C
=
1803 dyn_cast
<ConstantSDNode
>(Val
.getNode()->getOperand(0)))
1804 if (C
->getAPIntValue().isSignBit())
1807 // More could be done here, though the above checks are enough
1808 // to handle some common cases.
1810 // Fall back to ComputeMaskedBits to catch other known cases.
1811 EVT OpVT
= Val
.getValueType();
1812 unsigned BitWidth
= OpVT
.getScalarType().getSizeInBits();
1813 APInt Mask
= APInt::getAllOnesValue(BitWidth
);
1814 APInt KnownZero
, KnownOne
;
1815 DAG
.ComputeMaskedBits(Val
, Mask
, KnownZero
, KnownOne
);
1816 return (KnownZero
.countPopulation() == BitWidth
- 1) &&
1817 (KnownOne
.countPopulation() == 1);
1820 /// SimplifySetCC - Try to simplify a setcc built with the specified operands
1821 /// and cc. If it is unable to simplify it, return a null SDValue.
1823 TargetLowering::SimplifySetCC(EVT VT
, SDValue N0
, SDValue N1
,
1824 ISD::CondCode Cond
, bool foldBooleans
,
1825 DAGCombinerInfo
&DCI
, DebugLoc dl
) const {
1826 SelectionDAG
&DAG
= DCI
.DAG
;
1827 LLVMContext
&Context
= *DAG
.getContext();
1829 // These setcc operations always fold.
1833 case ISD::SETFALSE2
: return DAG
.getConstant(0, VT
);
1835 case ISD::SETTRUE2
: return DAG
.getConstant(1, VT
);
1838 if (isa
<ConstantSDNode
>(N0
.getNode())) {
1839 // Ensure that the constant occurs on the RHS, and fold constant
1841 return DAG
.getSetCC(dl
, VT
, N1
, N0
, ISD::getSetCCSwappedOperands(Cond
));
1844 if (ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode())) {
1845 const APInt
&C1
= N1C
->getAPIntValue();
1847 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1848 // equality comparison, then we're just comparing whether X itself is
1850 if (N0
.getOpcode() == ISD::SRL
&& (C1
== 0 || C1
== 1) &&
1851 N0
.getOperand(0).getOpcode() == ISD::CTLZ
&&
1852 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
1854 = cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
1855 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
1856 ShAmt
== Log2_32(N0
.getValueType().getSizeInBits())) {
1857 if ((C1
== 0) == (Cond
== ISD::SETEQ
)) {
1858 // (srl (ctlz x), 5) == 0 -> X != 0
1859 // (srl (ctlz x), 5) != 1 -> X != 0
1862 // (srl (ctlz x), 5) != 0 -> X == 0
1863 // (srl (ctlz x), 5) == 1 -> X == 0
1866 SDValue Zero
= DAG
.getConstant(0, N0
.getValueType());
1867 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0).getOperand(0),
1872 // If the LHS is '(and load, const)', the RHS is 0,
1873 // the test is for equality or unsigned, and all 1 bits of the const are
1874 // in the same partial word, see if we can shorten the load.
1875 if (DCI
.isBeforeLegalize() &&
1876 N0
.getOpcode() == ISD::AND
&& C1
== 0 &&
1877 N0
.getNode()->hasOneUse() &&
1878 isa
<LoadSDNode
>(N0
.getOperand(0)) &&
1879 N0
.getOperand(0).getNode()->hasOneUse() &&
1880 isa
<ConstantSDNode
>(N0
.getOperand(1))) {
1881 LoadSDNode
*Lod
= cast
<LoadSDNode
>(N0
.getOperand(0));
1883 unsigned bestWidth
= 0, bestOffset
= 0;
1884 if (!Lod
->isVolatile() && Lod
->isUnindexed()) {
1885 unsigned origWidth
= N0
.getValueType().getSizeInBits();
1886 unsigned maskWidth
= origWidth
;
1887 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1888 // 8 bits, but have to be careful...
1889 if (Lod
->getExtensionType() != ISD::NON_EXTLOAD
)
1890 origWidth
= Lod
->getMemoryVT().getSizeInBits();
1892 cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
1893 for (unsigned width
= origWidth
/ 2; width
>=8; width
/= 2) {
1894 APInt newMask
= APInt::getLowBitsSet(maskWidth
, width
);
1895 for (unsigned offset
=0; offset
<origWidth
/width
; offset
++) {
1896 if ((newMask
& Mask
) == Mask
) {
1897 if (!TD
->isLittleEndian())
1898 bestOffset
= (origWidth
/width
- offset
- 1) * (width
/8);
1900 bestOffset
= (uint64_t)offset
* (width
/8);
1901 bestMask
= Mask
.lshr(offset
* (width
/8) * 8);
1905 newMask
= newMask
<< width
;
1910 EVT newVT
= EVT::getIntegerVT(Context
, bestWidth
);
1911 if (newVT
.isRound()) {
1912 EVT PtrType
= Lod
->getOperand(1).getValueType();
1913 SDValue Ptr
= Lod
->getBasePtr();
1914 if (bestOffset
!= 0)
1915 Ptr
= DAG
.getNode(ISD::ADD
, dl
, PtrType
, Lod
->getBasePtr(),
1916 DAG
.getConstant(bestOffset
, PtrType
));
1917 unsigned NewAlign
= MinAlign(Lod
->getAlignment(), bestOffset
);
1918 SDValue NewLoad
= DAG
.getLoad(newVT
, dl
, Lod
->getChain(), Ptr
,
1919 Lod
->getPointerInfo().getWithOffset(bestOffset
),
1920 false, false, NewAlign
);
1921 return DAG
.getSetCC(dl
, VT
,
1922 DAG
.getNode(ISD::AND
, dl
, newVT
, NewLoad
,
1923 DAG
.getConstant(bestMask
.trunc(bestWidth
),
1925 DAG
.getConstant(0LL, newVT
), Cond
);
1930 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1931 if (N0
.getOpcode() == ISD::ZERO_EXTEND
) {
1932 unsigned InSize
= N0
.getOperand(0).getValueType().getSizeInBits();
1934 // If the comparison constant has bits in the upper part, the
1935 // zero-extended value could never match.
1936 if (C1
.intersects(APInt::getHighBitsSet(C1
.getBitWidth(),
1937 C1
.getBitWidth() - InSize
))) {
1941 case ISD::SETEQ
: return DAG
.getConstant(0, VT
);
1944 case ISD::SETNE
: return DAG
.getConstant(1, VT
);
1947 // True if the sign bit of C1 is set.
1948 return DAG
.getConstant(C1
.isNegative(), VT
);
1951 // True if the sign bit of C1 isn't set.
1952 return DAG
.getConstant(C1
.isNonNegative(), VT
);
1958 // Otherwise, we can perform the comparison with the low bits.
1966 EVT newVT
= N0
.getOperand(0).getValueType();
1967 if (DCI
.isBeforeLegalizeOps() ||
1968 (isOperationLegal(ISD::SETCC
, newVT
) &&
1969 getCondCodeAction(Cond
, newVT
)==Legal
))
1970 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0),
1971 DAG
.getConstant(APInt(C1
).trunc(InSize
), newVT
),
1976 break; // todo, be more careful with signed comparisons
1978 } else if (N0
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
1979 (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
1980 EVT ExtSrcTy
= cast
<VTSDNode
>(N0
.getOperand(1))->getVT();
1981 unsigned ExtSrcTyBits
= ExtSrcTy
.getSizeInBits();
1982 EVT ExtDstTy
= N0
.getValueType();
1983 unsigned ExtDstTyBits
= ExtDstTy
.getSizeInBits();
1985 // If the constant doesn't fit into the number of bits for the source of
1986 // the sign extension, it is impossible for both sides to be equal.
1987 if (C1
.getMinSignedBits() > ExtSrcTyBits
)
1988 return DAG
.getConstant(Cond
== ISD::SETNE
, VT
);
1991 EVT Op0Ty
= N0
.getOperand(0).getValueType();
1992 if (Op0Ty
== ExtSrcTy
) {
1993 ZextOp
= N0
.getOperand(0);
1995 APInt Imm
= APInt::getLowBitsSet(ExtDstTyBits
, ExtSrcTyBits
);
1996 ZextOp
= DAG
.getNode(ISD::AND
, dl
, Op0Ty
, N0
.getOperand(0),
1997 DAG
.getConstant(Imm
, Op0Ty
));
1999 if (!DCI
.isCalledByLegalizer())
2000 DCI
.AddToWorklist(ZextOp
.getNode());
2001 // Otherwise, make this a use of a zext.
2002 return DAG
.getSetCC(dl
, VT
, ZextOp
,
2003 DAG
.getConstant(C1
& APInt::getLowBitsSet(
2008 } else if ((N1C
->isNullValue() || N1C
->getAPIntValue() == 1) &&
2009 (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
2010 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
2011 if (N0
.getOpcode() == ISD::SETCC
&&
2012 isTypeLegal(VT
) && VT
.bitsLE(N0
.getValueType())) {
2013 bool TrueWhenTrue
= (Cond
== ISD::SETEQ
) ^ (N1C
->getAPIntValue() != 1);
2015 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, N0
);
2016 // Invert the condition.
2017 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N0
.getOperand(2))->get();
2018 CC
= ISD::getSetCCInverse(CC
,
2019 N0
.getOperand(0).getValueType().isInteger());
2020 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N0
.getOperand(1), CC
);
2023 if ((N0
.getOpcode() == ISD::XOR
||
2024 (N0
.getOpcode() == ISD::AND
&&
2025 N0
.getOperand(0).getOpcode() == ISD::XOR
&&
2026 N0
.getOperand(1) == N0
.getOperand(0).getOperand(1))) &&
2027 isa
<ConstantSDNode
>(N0
.getOperand(1)) &&
2028 cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue() == 1) {
2029 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
2030 // can only do this if the top bits are known zero.
2031 unsigned BitWidth
= N0
.getValueSizeInBits();
2032 if (DAG
.MaskedValueIsZero(N0
,
2033 APInt::getHighBitsSet(BitWidth
,
2035 // Okay, get the un-inverted input value.
2037 if (N0
.getOpcode() == ISD::XOR
)
2038 Val
= N0
.getOperand(0);
2040 assert(N0
.getOpcode() == ISD::AND
&&
2041 N0
.getOperand(0).getOpcode() == ISD::XOR
);
2042 // ((X^1)&1)^1 -> X & 1
2043 Val
= DAG
.getNode(ISD::AND
, dl
, N0
.getValueType(),
2044 N0
.getOperand(0).getOperand(0),
2048 return DAG
.getSetCC(dl
, VT
, Val
, N1
,
2049 Cond
== ISD::SETEQ
? ISD::SETNE
: ISD::SETEQ
);
2051 } else if (N1C
->getAPIntValue() == 1 &&
2053 getBooleanContents() == ZeroOrOneBooleanContent
)) {
2055 if (Op0
.getOpcode() == ISD::TRUNCATE
)
2056 Op0
= Op0
.getOperand(0);
2058 if ((Op0
.getOpcode() == ISD::XOR
) &&
2059 Op0
.getOperand(0).getOpcode() == ISD::SETCC
&&
2060 Op0
.getOperand(1).getOpcode() == ISD::SETCC
) {
2061 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2062 Cond
= (Cond
== ISD::SETEQ
) ? ISD::SETNE
: ISD::SETEQ
;
2063 return DAG
.getSetCC(dl
, VT
, Op0
.getOperand(0), Op0
.getOperand(1),
2065 } else if (Op0
.getOpcode() == ISD::AND
&&
2066 isa
<ConstantSDNode
>(Op0
.getOperand(1)) &&
2067 cast
<ConstantSDNode
>(Op0
.getOperand(1))->getAPIntValue() == 1) {
2068 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2069 if (Op0
.getValueType().bitsGT(VT
))
2070 Op0
= DAG
.getNode(ISD::AND
, dl
, VT
,
2071 DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Op0
.getOperand(0)),
2072 DAG
.getConstant(1, VT
));
2073 else if (Op0
.getValueType().bitsLT(VT
))
2074 Op0
= DAG
.getNode(ISD::AND
, dl
, VT
,
2075 DAG
.getNode(ISD::ANY_EXTEND
, dl
, VT
, Op0
.getOperand(0)),
2076 DAG
.getConstant(1, VT
));
2078 return DAG
.getSetCC(dl
, VT
, Op0
,
2079 DAG
.getConstant(0, Op0
.getValueType()),
2080 Cond
== ISD::SETEQ
? ISD::SETNE
: ISD::SETEQ
);
2085 APInt MinVal
, MaxVal
;
2086 unsigned OperandBitSize
= N1C
->getValueType(0).getSizeInBits();
2087 if (ISD::isSignedIntSetCC(Cond
)) {
2088 MinVal
= APInt::getSignedMinValue(OperandBitSize
);
2089 MaxVal
= APInt::getSignedMaxValue(OperandBitSize
);
2091 MinVal
= APInt::getMinValue(OperandBitSize
);
2092 MaxVal
= APInt::getMaxValue(OperandBitSize
);
2095 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2096 if (Cond
== ISD::SETGE
|| Cond
== ISD::SETUGE
) {
2097 if (C1
== MinVal
) return DAG
.getConstant(1, VT
); // X >= MIN --> true
2098 // X >= C0 --> X > (C0-1)
2099 return DAG
.getSetCC(dl
, VT
, N0
,
2100 DAG
.getConstant(C1
-1, N1
.getValueType()),
2101 (Cond
== ISD::SETGE
) ? ISD::SETGT
: ISD::SETUGT
);
2104 if (Cond
== ISD::SETLE
|| Cond
== ISD::SETULE
) {
2105 if (C1
== MaxVal
) return DAG
.getConstant(1, VT
); // X <= MAX --> true
2106 // X <= C0 --> X < (C0+1)
2107 return DAG
.getSetCC(dl
, VT
, N0
,
2108 DAG
.getConstant(C1
+1, N1
.getValueType()),
2109 (Cond
== ISD::SETLE
) ? ISD::SETLT
: ISD::SETULT
);
2112 if ((Cond
== ISD::SETLT
|| Cond
== ISD::SETULT
) && C1
== MinVal
)
2113 return DAG
.getConstant(0, VT
); // X < MIN --> false
2114 if ((Cond
== ISD::SETGE
|| Cond
== ISD::SETUGE
) && C1
== MinVal
)
2115 return DAG
.getConstant(1, VT
); // X >= MIN --> true
2116 if ((Cond
== ISD::SETGT
|| Cond
== ISD::SETUGT
) && C1
== MaxVal
)
2117 return DAG
.getConstant(0, VT
); // X > MAX --> false
2118 if ((Cond
== ISD::SETLE
|| Cond
== ISD::SETULE
) && C1
== MaxVal
)
2119 return DAG
.getConstant(1, VT
); // X <= MAX --> true
2121 // Canonicalize setgt X, Min --> setne X, Min
2122 if ((Cond
== ISD::SETGT
|| Cond
== ISD::SETUGT
) && C1
== MinVal
)
2123 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETNE
);
2124 // Canonicalize setlt X, Max --> setne X, Max
2125 if ((Cond
== ISD::SETLT
|| Cond
== ISD::SETULT
) && C1
== MaxVal
)
2126 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETNE
);
2128 // If we have setult X, 1, turn it into seteq X, 0
2129 if ((Cond
== ISD::SETLT
|| Cond
== ISD::SETULT
) && C1
== MinVal
+1)
2130 return DAG
.getSetCC(dl
, VT
, N0
,
2131 DAG
.getConstant(MinVal
, N0
.getValueType()),
2133 // If we have setugt X, Max-1, turn it into seteq X, Max
2134 else if ((Cond
== ISD::SETGT
|| Cond
== ISD::SETUGT
) && C1
== MaxVal
-1)
2135 return DAG
.getSetCC(dl
, VT
, N0
,
2136 DAG
.getConstant(MaxVal
, N0
.getValueType()),
2139 // If we have "setcc X, C0", check to see if we can shrink the immediate
2142 // SETUGT X, SINTMAX -> SETLT X, 0
2143 if (Cond
== ISD::SETUGT
&&
2144 C1
== APInt::getSignedMaxValue(OperandBitSize
))
2145 return DAG
.getSetCC(dl
, VT
, N0
,
2146 DAG
.getConstant(0, N1
.getValueType()),
2149 // SETULT X, SINTMIN -> SETGT X, -1
2150 if (Cond
== ISD::SETULT
&&
2151 C1
== APInt::getSignedMinValue(OperandBitSize
)) {
2152 SDValue ConstMinusOne
=
2153 DAG
.getConstant(APInt::getAllOnesValue(OperandBitSize
),
2155 return DAG
.getSetCC(dl
, VT
, N0
, ConstMinusOne
, ISD::SETGT
);
2158 // Fold bit comparisons when we can.
2159 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
2160 (VT
== N0
.getValueType() ||
2161 (isTypeLegal(VT
) && VT
.bitsLE(N0
.getValueType()))) &&
2162 N0
.getOpcode() == ISD::AND
)
2163 if (ConstantSDNode
*AndRHS
=
2164 dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
2165 EVT ShiftTy
= DCI
.isBeforeLegalize() ?
2166 getPointerTy() : getShiftAmountTy();
2167 if (Cond
== ISD::SETNE
&& C1
== 0) {// (X & 8) != 0 --> (X & 8) >> 3
2168 // Perform the xform if the AND RHS is a single bit.
2169 if (AndRHS
->getAPIntValue().isPowerOf2()) {
2170 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
,
2171 DAG
.getNode(ISD::SRL
, dl
, N0
.getValueType(), N0
,
2172 DAG
.getConstant(AndRHS
->getAPIntValue().logBase2(), ShiftTy
)));
2174 } else if (Cond
== ISD::SETEQ
&& C1
== AndRHS
->getAPIntValue()) {
2175 // (X & 8) == 8 --> (X & 8) >> 3
2176 // Perform the xform if C1 is a single bit.
2177 if (C1
.isPowerOf2()) {
2178 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
,
2179 DAG
.getNode(ISD::SRL
, dl
, N0
.getValueType(), N0
,
2180 DAG
.getConstant(C1
.logBase2(), ShiftTy
)));
2186 if (isa
<ConstantFPSDNode
>(N0
.getNode())) {
2187 // Constant fold or commute setcc.
2188 SDValue O
= DAG
.FoldSetCC(VT
, N0
, N1
, Cond
, dl
);
2189 if (O
.getNode()) return O
;
2190 } else if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N1
.getNode())) {
2191 // If the RHS of an FP comparison is a constant, simplify it away in
2193 if (CFP
->getValueAPF().isNaN()) {
2194 // If an operand is known to be a nan, we can fold it.
2195 switch (ISD::getUnorderedFlavor(Cond
)) {
2196 default: llvm_unreachable("Unknown flavor!");
2197 case 0: // Known false.
2198 return DAG
.getConstant(0, VT
);
2199 case 1: // Known true.
2200 return DAG
.getConstant(1, VT
);
2201 case 2: // Undefined.
2202 return DAG
.getUNDEF(VT
);
2206 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
2207 // constant if knowing that the operand is non-nan is enough. We prefer to
2208 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2210 if (Cond
== ISD::SETO
|| Cond
== ISD::SETUO
)
2211 return DAG
.getSetCC(dl
, VT
, N0
, N0
, Cond
);
2213 // If the condition is not legal, see if we can find an equivalent one
2215 if (!isCondCodeLegal(Cond
, N0
.getValueType())) {
2216 // If the comparison was an awkward floating-point == or != and one of
2217 // the comparison operands is infinity or negative infinity, convert the
2218 // condition to a less-awkward <= or >=.
2219 if (CFP
->getValueAPF().isInfinity()) {
2220 if (CFP
->getValueAPF().isNegative()) {
2221 if (Cond
== ISD::SETOEQ
&&
2222 isCondCodeLegal(ISD::SETOLE
, N0
.getValueType()))
2223 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETOLE
);
2224 if (Cond
== ISD::SETUEQ
&&
2225 isCondCodeLegal(ISD::SETOLE
, N0
.getValueType()))
2226 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETULE
);
2227 if (Cond
== ISD::SETUNE
&&
2228 isCondCodeLegal(ISD::SETUGT
, N0
.getValueType()))
2229 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETUGT
);
2230 if (Cond
== ISD::SETONE
&&
2231 isCondCodeLegal(ISD::SETUGT
, N0
.getValueType()))
2232 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETOGT
);
2234 if (Cond
== ISD::SETOEQ
&&
2235 isCondCodeLegal(ISD::SETOGE
, N0
.getValueType()))
2236 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETOGE
);
2237 if (Cond
== ISD::SETUEQ
&&
2238 isCondCodeLegal(ISD::SETOGE
, N0
.getValueType()))
2239 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETUGE
);
2240 if (Cond
== ISD::SETUNE
&&
2241 isCondCodeLegal(ISD::SETULT
, N0
.getValueType()))
2242 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETULT
);
2243 if (Cond
== ISD::SETONE
&&
2244 isCondCodeLegal(ISD::SETULT
, N0
.getValueType()))
2245 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETOLT
);
2252 // We can always fold X == X for integer setcc's.
2253 if (N0
.getValueType().isInteger())
2254 return DAG
.getConstant(ISD::isTrueWhenEqual(Cond
), VT
);
2255 unsigned UOF
= ISD::getUnorderedFlavor(Cond
);
2256 if (UOF
== 2) // FP operators that are undefined on NaNs.
2257 return DAG
.getConstant(ISD::isTrueWhenEqual(Cond
), VT
);
2258 if (UOF
== unsigned(ISD::isTrueWhenEqual(Cond
)))
2259 return DAG
.getConstant(UOF
, VT
);
2260 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
2261 // if it is not already.
2262 ISD::CondCode NewCond
= UOF
== 0 ? ISD::SETO
: ISD::SETUO
;
2263 if (NewCond
!= Cond
)
2264 return DAG
.getSetCC(dl
, VT
, N0
, N1
, NewCond
);
2267 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
2268 N0
.getValueType().isInteger()) {
2269 if (N0
.getOpcode() == ISD::ADD
|| N0
.getOpcode() == ISD::SUB
||
2270 N0
.getOpcode() == ISD::XOR
) {
2271 // Simplify (X+Y) == (X+Z) --> Y == Z
2272 if (N0
.getOpcode() == N1
.getOpcode()) {
2273 if (N0
.getOperand(0) == N1
.getOperand(0))
2274 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(1), N1
.getOperand(1), Cond
);
2275 if (N0
.getOperand(1) == N1
.getOperand(1))
2276 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N1
.getOperand(0), Cond
);
2277 if (DAG
.isCommutativeBinOp(N0
.getOpcode())) {
2278 // If X op Y == Y op X, try other combinations.
2279 if (N0
.getOperand(0) == N1
.getOperand(1))
2280 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(1), N1
.getOperand(0),
2282 if (N0
.getOperand(1) == N1
.getOperand(0))
2283 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N1
.getOperand(1),
2288 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(N1
)) {
2289 if (ConstantSDNode
*LHSR
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
2290 // Turn (X+C1) == C2 --> X == C2-C1
2291 if (N0
.getOpcode() == ISD::ADD
&& N0
.getNode()->hasOneUse()) {
2292 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0),
2293 DAG
.getConstant(RHSC
->getAPIntValue()-
2294 LHSR
->getAPIntValue(),
2295 N0
.getValueType()), Cond
);
2298 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2299 if (N0
.getOpcode() == ISD::XOR
)
2300 // If we know that all of the inverted bits are zero, don't bother
2301 // performing the inversion.
2302 if (DAG
.MaskedValueIsZero(N0
.getOperand(0), ~LHSR
->getAPIntValue()))
2304 DAG
.getSetCC(dl
, VT
, N0
.getOperand(0),
2305 DAG
.getConstant(LHSR
->getAPIntValue() ^
2306 RHSC
->getAPIntValue(),
2311 // Turn (C1-X) == C2 --> X == C1-C2
2312 if (ConstantSDNode
*SUBC
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(0))) {
2313 if (N0
.getOpcode() == ISD::SUB
&& N0
.getNode()->hasOneUse()) {
2315 DAG
.getSetCC(dl
, VT
, N0
.getOperand(1),
2316 DAG
.getConstant(SUBC
->getAPIntValue() -
2317 RHSC
->getAPIntValue(),
2324 // Simplify (X+Z) == X --> Z == 0
2325 if (N0
.getOperand(0) == N1
)
2326 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(1),
2327 DAG
.getConstant(0, N0
.getValueType()), Cond
);
2328 if (N0
.getOperand(1) == N1
) {
2329 if (DAG
.isCommutativeBinOp(N0
.getOpcode()))
2330 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0),
2331 DAG
.getConstant(0, N0
.getValueType()), Cond
);
2332 else if (N0
.getNode()->hasOneUse()) {
2333 assert(N0
.getOpcode() == ISD::SUB
&& "Unexpected operation!");
2334 // (Z-X) == X --> Z == X<<1
2335 SDValue SH
= DAG
.getNode(ISD::SHL
, dl
, N1
.getValueType(),
2337 DAG
.getConstant(1, getShiftAmountTy()));
2338 if (!DCI
.isCalledByLegalizer())
2339 DCI
.AddToWorklist(SH
.getNode());
2340 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), SH
, Cond
);
2345 if (N1
.getOpcode() == ISD::ADD
|| N1
.getOpcode() == ISD::SUB
||
2346 N1
.getOpcode() == ISD::XOR
) {
2347 // Simplify X == (X+Z) --> Z == 0
2348 if (N1
.getOperand(0) == N0
) {
2349 return DAG
.getSetCC(dl
, VT
, N1
.getOperand(1),
2350 DAG
.getConstant(0, N1
.getValueType()), Cond
);
2351 } else if (N1
.getOperand(1) == N0
) {
2352 if (DAG
.isCommutativeBinOp(N1
.getOpcode())) {
2353 return DAG
.getSetCC(dl
, VT
, N1
.getOperand(0),
2354 DAG
.getConstant(0, N1
.getValueType()), Cond
);
2355 } else if (N1
.getNode()->hasOneUse()) {
2356 assert(N1
.getOpcode() == ISD::SUB
&& "Unexpected operation!");
2357 // X == (Z-X) --> X<<1 == Z
2358 SDValue SH
= DAG
.getNode(ISD::SHL
, dl
, N1
.getValueType(), N0
,
2359 DAG
.getConstant(1, getShiftAmountTy()));
2360 if (!DCI
.isCalledByLegalizer())
2361 DCI
.AddToWorklist(SH
.getNode());
2362 return DAG
.getSetCC(dl
, VT
, SH
, N1
.getOperand(0), Cond
);
2367 // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2368 // Note that where y is variable and is known to have at most
2369 // one bit set (for example, if it is z&1) we cannot do this;
2370 // the expressions are not equivalent when y==0.
2371 if (N0
.getOpcode() == ISD::AND
)
2372 if (N0
.getOperand(0) == N1
|| N0
.getOperand(1) == N1
) {
2373 if (ValueHasExactlyOneBitSet(N1
, DAG
)) {
2374 Cond
= ISD::getSetCCInverse(Cond
, /*isInteger=*/true);
2375 SDValue Zero
= DAG
.getConstant(0, N1
.getValueType());
2376 return DAG
.getSetCC(dl
, VT
, N0
, Zero
, Cond
);
2379 if (N1
.getOpcode() == ISD::AND
)
2380 if (N1
.getOperand(0) == N0
|| N1
.getOperand(1) == N0
) {
2381 if (ValueHasExactlyOneBitSet(N0
, DAG
)) {
2382 Cond
= ISD::getSetCCInverse(Cond
, /*isInteger=*/true);
2383 SDValue Zero
= DAG
.getConstant(0, N0
.getValueType());
2384 return DAG
.getSetCC(dl
, VT
, N1
, Zero
, Cond
);
2389 // Fold away ALL boolean setcc's.
2391 if (N0
.getValueType() == MVT::i1
&& foldBooleans
) {
2393 default: llvm_unreachable("Unknown integer setcc!");
2394 case ISD::SETEQ
: // X == Y -> ~(X^Y)
2395 Temp
= DAG
.getNode(ISD::XOR
, dl
, MVT::i1
, N0
, N1
);
2396 N0
= DAG
.getNOT(dl
, Temp
, MVT::i1
);
2397 if (!DCI
.isCalledByLegalizer())
2398 DCI
.AddToWorklist(Temp
.getNode());
2400 case ISD::SETNE
: // X != Y --> (X^Y)
2401 N0
= DAG
.getNode(ISD::XOR
, dl
, MVT::i1
, N0
, N1
);
2403 case ISD::SETGT
: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
2404 case ISD::SETULT
: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
2405 Temp
= DAG
.getNOT(dl
, N0
, MVT::i1
);
2406 N0
= DAG
.getNode(ISD::AND
, dl
, MVT::i1
, N1
, Temp
);
2407 if (!DCI
.isCalledByLegalizer())
2408 DCI
.AddToWorklist(Temp
.getNode());
2410 case ISD::SETLT
: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
2411 case ISD::SETUGT
: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
2412 Temp
= DAG
.getNOT(dl
, N1
, MVT::i1
);
2413 N0
= DAG
.getNode(ISD::AND
, dl
, MVT::i1
, N0
, Temp
);
2414 if (!DCI
.isCalledByLegalizer())
2415 DCI
.AddToWorklist(Temp
.getNode());
2417 case ISD::SETULE
: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
2418 case ISD::SETGE
: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
2419 Temp
= DAG
.getNOT(dl
, N0
, MVT::i1
);
2420 N0
= DAG
.getNode(ISD::OR
, dl
, MVT::i1
, N1
, Temp
);
2421 if (!DCI
.isCalledByLegalizer())
2422 DCI
.AddToWorklist(Temp
.getNode());
2424 case ISD::SETUGE
: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
2425 case ISD::SETLE
: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
2426 Temp
= DAG
.getNOT(dl
, N1
, MVT::i1
);
2427 N0
= DAG
.getNode(ISD::OR
, dl
, MVT::i1
, N0
, Temp
);
2430 if (VT
!= MVT::i1
) {
2431 if (!DCI
.isCalledByLegalizer())
2432 DCI
.AddToWorklist(N0
.getNode());
2433 // FIXME: If running after legalize, we probably can't do this.
2434 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, N0
);
2439 // Could not fold it.
2443 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2444 /// node is a GlobalAddress + offset.
2445 bool TargetLowering::isGAPlusOffset(SDNode
*N
, const GlobalValue
* &GA
,
2446 int64_t &Offset
) const {
2447 if (isa
<GlobalAddressSDNode
>(N
)) {
2448 GlobalAddressSDNode
*GASD
= cast
<GlobalAddressSDNode
>(N
);
2449 GA
= GASD
->getGlobal();
2450 Offset
+= GASD
->getOffset();
2454 if (N
->getOpcode() == ISD::ADD
) {
2455 SDValue N1
= N
->getOperand(0);
2456 SDValue N2
= N
->getOperand(1);
2457 if (isGAPlusOffset(N1
.getNode(), GA
, Offset
)) {
2458 ConstantSDNode
*V
= dyn_cast
<ConstantSDNode
>(N2
);
2460 Offset
+= V
->getSExtValue();
2463 } else if (isGAPlusOffset(N2
.getNode(), GA
, Offset
)) {
2464 ConstantSDNode
*V
= dyn_cast
<ConstantSDNode
>(N1
);
2466 Offset
+= V
->getSExtValue();
2475 SDValue
TargetLowering::
2476 PerformDAGCombine(SDNode
*N
, DAGCombinerInfo
&DCI
) const {
2477 // Default implementation: no optimization.
2481 //===----------------------------------------------------------------------===//
2482 // Inline Assembler Implementation Methods
2483 //===----------------------------------------------------------------------===//
2486 TargetLowering::ConstraintType
2487 TargetLowering::getConstraintType(const std::string
&Constraint
) const {
2488 // FIXME: lots more standard ones to handle.
2489 if (Constraint
.size() == 1) {
2490 switch (Constraint
[0]) {
2492 case 'r': return C_RegisterClass
;
2494 case 'o': // offsetable
2495 case 'V': // not offsetable
2497 case 'i': // Simple Integer or Relocatable Constant
2498 case 'n': // Simple Integer
2499 case 'E': // Floating Point Constant
2500 case 'F': // Floating Point Constant
2501 case 's': // Relocatable Constant
2502 case 'p': // Address.
2503 case 'X': // Allow ANY value.
2504 case 'I': // Target registers.
2518 if (Constraint
.size() > 1 && Constraint
[0] == '{' &&
2519 Constraint
[Constraint
.size()-1] == '}')
2524 /// LowerXConstraint - try to replace an X constraint, which matches anything,
2525 /// with another that has more specific requirements based on the type of the
2526 /// corresponding operand.
2527 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT
) const{
2528 if (ConstraintVT
.isInteger())
2530 if (ConstraintVT
.isFloatingPoint())
2531 return "f"; // works for many targets
2535 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2536 /// vector. If it is invalid, don't add anything to Ops.
2537 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
2538 char ConstraintLetter
,
2539 std::vector
<SDValue
> &Ops
,
2540 SelectionDAG
&DAG
) const {
2541 switch (ConstraintLetter
) {
2543 case 'X': // Allows any operand; labels (basic block) use this.
2544 if (Op
.getOpcode() == ISD::BasicBlock
) {
2549 case 'i': // Simple Integer or Relocatable Constant
2550 case 'n': // Simple Integer
2551 case 's': { // Relocatable Constant
2552 // These operands are interested in values of the form (GV+C), where C may
2553 // be folded in as an offset of GV, or it may be explicitly added. Also, it
2554 // is possible and fine if either GV or C are missing.
2555 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
);
2556 GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(Op
);
2558 // If we have "(add GV, C)", pull out GV/C
2559 if (Op
.getOpcode() == ISD::ADD
) {
2560 C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
2561 GA
= dyn_cast
<GlobalAddressSDNode
>(Op
.getOperand(0));
2562 if (C
== 0 || GA
== 0) {
2563 C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0));
2564 GA
= dyn_cast
<GlobalAddressSDNode
>(Op
.getOperand(1));
2566 if (C
== 0 || GA
== 0)
2570 // If we find a valid operand, map to the TargetXXX version so that the
2571 // value itself doesn't get selected.
2572 if (GA
) { // Either &GV or &GV+C
2573 if (ConstraintLetter
!= 'n') {
2574 int64_t Offs
= GA
->getOffset();
2575 if (C
) Offs
+= C
->getZExtValue();
2576 Ops
.push_back(DAG
.getTargetGlobalAddress(GA
->getGlobal(),
2577 C
? C
->getDebugLoc() : DebugLoc(),
2578 Op
.getValueType(), Offs
));
2582 if (C
) { // just C, no GV.
2583 // Simple constants are not allowed for 's'.
2584 if (ConstraintLetter
!= 's') {
2585 // gcc prints these as sign extended. Sign extend value to 64 bits
2586 // now; without this it would get ZExt'd later in
2587 // ScheduleDAGSDNodes::EmitNode, which is very generic.
2588 Ops
.push_back(DAG
.getTargetConstant(C
->getAPIntValue().getSExtValue(),
2598 std::vector
<unsigned> TargetLowering::
2599 getRegClassForInlineAsmConstraint(const std::string
&Constraint
,
2601 return std::vector
<unsigned>();
2605 std::pair
<unsigned, const TargetRegisterClass
*> TargetLowering::
2606 getRegForInlineAsmConstraint(const std::string
&Constraint
,
2608 if (Constraint
[0] != '{')
2609 return std::make_pair(0u, static_cast<TargetRegisterClass
*>(0));
2610 assert(*(Constraint
.end()-1) == '}' && "Not a brace enclosed constraint?");
2612 // Remove the braces from around the name.
2613 StringRef
RegName(Constraint
.data()+1, Constraint
.size()-2);
2615 // Figure out which register class contains this reg.
2616 const TargetRegisterInfo
*RI
= TM
.getRegisterInfo();
2617 for (TargetRegisterInfo::regclass_iterator RCI
= RI
->regclass_begin(),
2618 E
= RI
->regclass_end(); RCI
!= E
; ++RCI
) {
2619 const TargetRegisterClass
*RC
= *RCI
;
2621 // If none of the value types for this register class are valid, we
2622 // can't use it. For example, 64-bit reg classes on 32-bit targets.
2623 bool isLegal
= false;
2624 for (TargetRegisterClass::vt_iterator I
= RC
->vt_begin(), E
= RC
->vt_end();
2626 if (isTypeLegal(*I
)) {
2632 if (!isLegal
) continue;
2634 for (TargetRegisterClass::iterator I
= RC
->begin(), E
= RC
->end();
2636 if (RegName
.equals_lower(RI
->getName(*I
)))
2637 return std::make_pair(*I
, RC
);
2641 return std::make_pair(0u, static_cast<const TargetRegisterClass
*>(0));
2644 //===----------------------------------------------------------------------===//
2645 // Constraint Selection.
2647 /// isMatchingInputConstraint - Return true of this is an input operand that is
2648 /// a matching constraint like "4".
2649 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2650 assert(!ConstraintCode
.empty() && "No known constraint!");
2651 return isdigit(ConstraintCode
[0]);
2654 /// getMatchedOperand - If this is an input matching constraint, this method
2655 /// returns the output operand it matches.
2656 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2657 assert(!ConstraintCode
.empty() && "No known constraint!");
2658 return atoi(ConstraintCode
.c_str());
2662 /// ParseConstraints - Split up the constraint string from the inline
2663 /// assembly value into the specific constraints and their prefixes,
2664 /// and also tie in the associated operand values.
2665 /// If this returns an empty vector, and if the constraint string itself
2666 /// isn't empty, there was an error parsing.
2667 TargetLowering::AsmOperandInfoVector
TargetLowering::ParseConstraints(
2668 ImmutableCallSite CS
) const {
2669 /// ConstraintOperands - Information about all of the constraints.
2670 AsmOperandInfoVector ConstraintOperands
;
2671 const InlineAsm
*IA
= cast
<InlineAsm
>(CS
.getCalledValue());
2672 unsigned maCount
= 0; // Largest number of multiple alternative constraints.
2674 // Do a prepass over the constraints, canonicalizing them, and building up the
2675 // ConstraintOperands list.
2676 InlineAsm::ConstraintInfoVector
2677 ConstraintInfos
= IA
->ParseConstraints();
2679 unsigned ArgNo
= 0; // ArgNo - The argument of the CallInst.
2680 unsigned ResNo
= 0; // ResNo - The result number of the next output.
2682 for (unsigned i
= 0, e
= ConstraintInfos
.size(); i
!= e
; ++i
) {
2683 ConstraintOperands
.push_back(AsmOperandInfo(ConstraintInfos
[i
]));
2684 AsmOperandInfo
&OpInfo
= ConstraintOperands
.back();
2686 // Update multiple alternative constraint count.
2687 if (OpInfo
.multipleAlternatives
.size() > maCount
)
2688 maCount
= OpInfo
.multipleAlternatives
.size();
2690 OpInfo
.ConstraintVT
= MVT::Other
;
2692 // Compute the value type for each operand.
2693 switch (OpInfo
.Type
) {
2694 case InlineAsm::isOutput
:
2695 // Indirect outputs just consume an argument.
2696 if (OpInfo
.isIndirect
) {
2697 OpInfo
.CallOperandVal
= const_cast<Value
*>(CS
.getArgument(ArgNo
++));
2701 // The return value of the call is this value. As such, there is no
2702 // corresponding argument.
2703 assert(!CS
.getType()->isVoidTy() &&
2705 if (const StructType
*STy
= dyn_cast
<StructType
>(CS
.getType())) {
2706 OpInfo
.ConstraintVT
= getValueType(STy
->getElementType(ResNo
));
2708 assert(ResNo
== 0 && "Asm only has one result!");
2709 OpInfo
.ConstraintVT
= getValueType(CS
.getType());
2713 case InlineAsm::isInput
:
2714 OpInfo
.CallOperandVal
= const_cast<Value
*>(CS
.getArgument(ArgNo
++));
2716 case InlineAsm::isClobber
:
2721 if (OpInfo
.CallOperandVal
) {
2722 const llvm::Type
*OpTy
= OpInfo
.CallOperandVal
->getType();
2723 if (OpInfo
.isIndirect
) {
2724 const llvm::PointerType
*PtrTy
= dyn_cast
<PointerType
>(OpTy
);
2726 report_fatal_error("Indirect operand for inline asm not a pointer!");
2727 OpTy
= PtrTy
->getElementType();
2729 // If OpTy is not a single value, it may be a struct/union that we
2730 // can tile with integers.
2731 if (!OpTy
->isSingleValueType() && OpTy
->isSized()) {
2732 unsigned BitSize
= TD
->getTypeSizeInBits(OpTy
);
2741 OpTy
= IntegerType::get(OpTy
->getContext(), BitSize
);
2744 } else if (dyn_cast
<PointerType
>(OpTy
)) {
2745 OpInfo
.ConstraintVT
= MVT::getIntegerVT(8*TD
->getPointerSize());
2747 OpInfo
.ConstraintVT
= EVT::getEVT(OpTy
, true);
2752 // If we have multiple alternative constraints, select the best alternative.
2753 if (ConstraintInfos
.size()) {
2755 unsigned bestMAIndex
= 0;
2756 int bestWeight
= -1;
2757 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
2760 // Compute the sums of the weights for each alternative, keeping track
2761 // of the best (highest weight) one so far.
2762 for (maIndex
= 0; maIndex
< maCount
; ++maIndex
) {
2764 for (unsigned cIndex
= 0, eIndex
= ConstraintOperands
.size();
2765 cIndex
!= eIndex
; ++cIndex
) {
2766 AsmOperandInfo
& OpInfo
= ConstraintOperands
[cIndex
];
2767 if (OpInfo
.Type
== InlineAsm::isClobber
)
2770 // If this is an output operand with a matching input operand,
2771 // look up the matching input. If their types mismatch, e.g. one
2772 // is an integer, the other is floating point, or their sizes are
2773 // different, flag it as an maCantMatch.
2774 if (OpInfo
.hasMatchingInput()) {
2775 AsmOperandInfo
&Input
= ConstraintOperands
[OpInfo
.MatchingInput
];
2776 if (OpInfo
.ConstraintVT
!= Input
.ConstraintVT
) {
2777 if ((OpInfo
.ConstraintVT
.isInteger() !=
2778 Input
.ConstraintVT
.isInteger()) ||
2779 (OpInfo
.ConstraintVT
.getSizeInBits() !=
2780 Input
.ConstraintVT
.getSizeInBits())) {
2781 weightSum
= -1; // Can't match.
2786 weight
= getMultipleConstraintMatchWeight(OpInfo
, maIndex
);
2791 weightSum
+= weight
;
2794 if (weightSum
> bestWeight
) {
2795 bestWeight
= weightSum
;
2796 bestMAIndex
= maIndex
;
2800 // Now select chosen alternative in each constraint.
2801 for (unsigned cIndex
= 0, eIndex
= ConstraintOperands
.size();
2802 cIndex
!= eIndex
; ++cIndex
) {
2803 AsmOperandInfo
& cInfo
= ConstraintOperands
[cIndex
];
2804 if (cInfo
.Type
== InlineAsm::isClobber
)
2806 cInfo
.selectAlternative(bestMAIndex
);
2811 // Check and hook up tied operands, choose constraint code to use.
2812 for (unsigned cIndex
= 0, eIndex
= ConstraintOperands
.size();
2813 cIndex
!= eIndex
; ++cIndex
) {
2814 AsmOperandInfo
& OpInfo
= ConstraintOperands
[cIndex
];
2816 // If this is an output operand with a matching input operand, look up the
2817 // matching input. If their types mismatch, e.g. one is an integer, the
2818 // other is floating point, or their sizes are different, flag it as an
2820 if (OpInfo
.hasMatchingInput()) {
2821 AsmOperandInfo
&Input
= ConstraintOperands
[OpInfo
.MatchingInput
];
2823 if (OpInfo
.ConstraintVT
!= Input
.ConstraintVT
) {
2824 if ((OpInfo
.ConstraintVT
.isInteger() !=
2825 Input
.ConstraintVT
.isInteger()) ||
2826 (OpInfo
.ConstraintVT
.getSizeInBits() !=
2827 Input
.ConstraintVT
.getSizeInBits())) {
2828 report_fatal_error("Unsupported asm: input constraint"
2829 " with a matching output constraint of"
2830 " incompatible type!");
2837 return ConstraintOperands
;
2841 /// getConstraintGenerality - Return an integer indicating how general CT
2843 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT
) {
2845 default: llvm_unreachable("Unknown constraint type!");
2846 case TargetLowering::C_Other
:
2847 case TargetLowering::C_Unknown
:
2849 case TargetLowering::C_Register
:
2851 case TargetLowering::C_RegisterClass
:
2853 case TargetLowering::C_Memory
:
2858 /// Examine constraint type and operand type and determine a weight value.
2859 /// This object must already have been set up with the operand type
2860 /// and the current alternative constraint selected.
2861 TargetLowering::ConstraintWeight
2862 TargetLowering::getMultipleConstraintMatchWeight(
2863 AsmOperandInfo
&info
, int maIndex
) const {
2864 InlineAsm::ConstraintCodeVector
*rCodes
;
2865 if (maIndex
>= (int)info
.multipleAlternatives
.size())
2866 rCodes
= &info
.Codes
;
2868 rCodes
= &info
.multipleAlternatives
[maIndex
].Codes
;
2869 ConstraintWeight BestWeight
= CW_Invalid
;
2871 // Loop over the options, keeping track of the most general one.
2872 for (unsigned i
= 0, e
= rCodes
->size(); i
!= e
; ++i
) {
2873 ConstraintWeight weight
=
2874 getSingleConstraintMatchWeight(info
, (*rCodes
)[i
].c_str());
2875 if (weight
> BestWeight
)
2876 BestWeight
= weight
;
2882 /// Examine constraint type and operand type and determine a weight value.
2883 /// This object must already have been set up with the operand type
2884 /// and the current alternative constraint selected.
2885 TargetLowering::ConstraintWeight
2886 TargetLowering::getSingleConstraintMatchWeight(
2887 AsmOperandInfo
&info
, const char *constraint
) const {
2888 ConstraintWeight weight
= CW_Invalid
;
2889 Value
*CallOperandVal
= info
.CallOperandVal
;
2890 // If we don't have a value, we can't do a match,
2891 // but allow it at the lowest weight.
2892 if (CallOperandVal
== NULL
)
2894 // Look at the constraint type.
2895 switch (*constraint
) {
2896 case 'i': // immediate integer.
2897 case 'n': // immediate integer with a known value.
2898 if (isa
<ConstantInt
>(CallOperandVal
))
2899 weight
= CW_Constant
;
2901 case 's': // non-explicit intregal immediate.
2902 if (isa
<GlobalValue
>(CallOperandVal
))
2903 weight
= CW_Constant
;
2905 case 'E': // immediate float if host format.
2906 case 'F': // immediate float.
2907 if (isa
<ConstantFP
>(CallOperandVal
))
2908 weight
= CW_Constant
;
2910 case '<': // memory operand with autodecrement.
2911 case '>': // memory operand with autoincrement.
2912 case 'm': // memory operand.
2913 case 'o': // offsettable memory operand
2914 case 'V': // non-offsettable memory operand
2917 case 'r': // general register.
2918 case 'g': // general register, memory operand or immediate integer.
2919 // note: Clang converts "g" to "imr".
2920 if (CallOperandVal
->getType()->isIntegerTy())
2921 weight
= CW_Register
;
2923 case 'X': // any operand.
2925 weight
= CW_Default
;
2931 /// ChooseConstraint - If there are multiple different constraints that we
2932 /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2933 /// This is somewhat tricky: constraints fall into four classes:
2934 /// Other -> immediates and magic values
2935 /// Register -> one specific register
2936 /// RegisterClass -> a group of regs
2937 /// Memory -> memory
2938 /// Ideally, we would pick the most specific constraint possible: if we have
2939 /// something that fits into a register, we would pick it. The problem here
2940 /// is that if we have something that could either be in a register or in
2941 /// memory that use of the register could cause selection of *other*
2942 /// operands to fail: they might only succeed if we pick memory. Because of
2943 /// this the heuristic we use is:
2945 /// 1) If there is an 'other' constraint, and if the operand is valid for
2946 /// that constraint, use it. This makes us take advantage of 'i'
2947 /// constraints when available.
2948 /// 2) Otherwise, pick the most general constraint present. This prefers
2949 /// 'm' over 'r', for example.
2951 static void ChooseConstraint(TargetLowering::AsmOperandInfo
&OpInfo
,
2952 const TargetLowering
&TLI
,
2953 SDValue Op
, SelectionDAG
*DAG
) {
2954 assert(OpInfo
.Codes
.size() > 1 && "Doesn't have multiple constraint options");
2955 unsigned BestIdx
= 0;
2956 TargetLowering::ConstraintType BestType
= TargetLowering::C_Unknown
;
2957 int BestGenerality
= -1;
2959 // Loop over the options, keeping track of the most general one.
2960 for (unsigned i
= 0, e
= OpInfo
.Codes
.size(); i
!= e
; ++i
) {
2961 TargetLowering::ConstraintType CType
=
2962 TLI
.getConstraintType(OpInfo
.Codes
[i
]);
2964 // If this is an 'other' constraint, see if the operand is valid for it.
2965 // For example, on X86 we might have an 'rI' constraint. If the operand
2966 // is an integer in the range [0..31] we want to use I (saving a load
2967 // of a register), otherwise we must use 'r'.
2968 if (CType
== TargetLowering::C_Other
&& Op
.getNode()) {
2969 assert(OpInfo
.Codes
[i
].size() == 1 &&
2970 "Unhandled multi-letter 'other' constraint");
2971 std::vector
<SDValue
> ResultOps
;
2972 TLI
.LowerAsmOperandForConstraint(Op
, OpInfo
.Codes
[i
][0],
2974 if (!ResultOps
.empty()) {
2981 // Things with matching constraints can only be registers, per gcc
2982 // documentation. This mainly affects "g" constraints.
2983 if (CType
== TargetLowering::C_Memory
&& OpInfo
.hasMatchingInput())
2986 // This constraint letter is more general than the previous one, use it.
2987 int Generality
= getConstraintGenerality(CType
);
2988 if (Generality
> BestGenerality
) {
2991 BestGenerality
= Generality
;
2995 OpInfo
.ConstraintCode
= OpInfo
.Codes
[BestIdx
];
2996 OpInfo
.ConstraintType
= BestType
;
2999 /// ComputeConstraintToUse - Determines the constraint code and constraint
3000 /// type to use for the specific AsmOperandInfo, setting
3001 /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
3002 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo
&OpInfo
,
3004 SelectionDAG
*DAG
) const {
3005 assert(!OpInfo
.Codes
.empty() && "Must have at least one constraint");
3007 // Single-letter constraints ('r') are very common.
3008 if (OpInfo
.Codes
.size() == 1) {
3009 OpInfo
.ConstraintCode
= OpInfo
.Codes
[0];
3010 OpInfo
.ConstraintType
= getConstraintType(OpInfo
.ConstraintCode
);
3012 ChooseConstraint(OpInfo
, *this, Op
, DAG
);
3015 // 'X' matches anything.
3016 if (OpInfo
.ConstraintCode
== "X" && OpInfo
.CallOperandVal
) {
3017 // Labels and constants are handled elsewhere ('X' is the only thing
3018 // that matches labels). For Functions, the type here is the type of
3019 // the result, which is not what we want to look at; leave them alone.
3020 Value
*v
= OpInfo
.CallOperandVal
;
3021 if (isa
<BasicBlock
>(v
) || isa
<ConstantInt
>(v
) || isa
<Function
>(v
)) {
3022 OpInfo
.CallOperandVal
= v
;
3026 // Otherwise, try to resolve it to something we know about by looking at
3027 // the actual operand type.
3028 if (const char *Repl
= LowerXConstraint(OpInfo
.ConstraintVT
)) {
3029 OpInfo
.ConstraintCode
= Repl
;
3030 OpInfo
.ConstraintType
= getConstraintType(OpInfo
.ConstraintCode
);
3035 //===----------------------------------------------------------------------===//
3036 // Loop Strength Reduction hooks
3037 //===----------------------------------------------------------------------===//
3039 /// isLegalAddressingMode - Return true if the addressing mode represented
3040 /// by AM is legal for this target, for a load/store of the specified type.
3041 bool TargetLowering::isLegalAddressingMode(const AddrMode
&AM
,
3042 const Type
*Ty
) const {
3043 // The default implementation of this implements a conservative RISCy, r+r and
3046 // Allows a sign-extended 16-bit immediate field.
3047 if (AM
.BaseOffs
<= -(1LL << 16) || AM
.BaseOffs
>= (1LL << 16)-1)
3050 // No global is ever allowed as a base.
3054 // Only support r+r,
3056 case 0: // "r+i" or just "i", depending on HasBaseReg.
3059 if (AM
.HasBaseReg
&& AM
.BaseOffs
) // "r+r+i" is not allowed.
3061 // Otherwise we have r+r or r+i.
3064 if (AM
.HasBaseReg
|| AM
.BaseOffs
) // 2*r+r or 2*r+i is not allowed.
3066 // Allow 2*r as r+r.
3073 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
3074 /// return a DAG expression to select that will generate the same value by
3075 /// multiplying by a magic number. See:
3076 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3077 SDValue
TargetLowering::BuildSDIV(SDNode
*N
, SelectionDAG
&DAG
,
3078 std::vector
<SDNode
*>* Created
) const {
3079 EVT VT
= N
->getValueType(0);
3080 DebugLoc dl
= N
->getDebugLoc();
3082 // Check to see if we can do this.
3083 // FIXME: We should be more aggressive here.
3084 if (!isTypeLegal(VT
))
3087 APInt d
= cast
<ConstantSDNode
>(N
->getOperand(1))->getAPIntValue();
3088 APInt::ms magics
= d
.magic();
3090 // Multiply the numerator (operand 0) by the magic value
3091 // FIXME: We should support doing a MUL in a wider type
3093 if (isOperationLegalOrCustom(ISD::MULHS
, VT
))
3094 Q
= DAG
.getNode(ISD::MULHS
, dl
, VT
, N
->getOperand(0),
3095 DAG
.getConstant(magics
.m
, VT
));
3096 else if (isOperationLegalOrCustom(ISD::SMUL_LOHI
, VT
))
3097 Q
= SDValue(DAG
.getNode(ISD::SMUL_LOHI
, dl
, DAG
.getVTList(VT
, VT
),
3099 DAG
.getConstant(magics
.m
, VT
)).getNode(), 1);
3101 return SDValue(); // No mulhs or equvialent
3102 // If d > 0 and m < 0, add the numerator
3103 if (d
.isStrictlyPositive() && magics
.m
.isNegative()) {
3104 Q
= DAG
.getNode(ISD::ADD
, dl
, VT
, Q
, N
->getOperand(0));
3106 Created
->push_back(Q
.getNode());
3108 // If d < 0 and m > 0, subtract the numerator.
3109 if (d
.isNegative() && magics
.m
.isStrictlyPositive()) {
3110 Q
= DAG
.getNode(ISD::SUB
, dl
, VT
, Q
, N
->getOperand(0));
3112 Created
->push_back(Q
.getNode());
3114 // Shift right algebraic if shift value is nonzero
3116 Q
= DAG
.getNode(ISD::SRA
, dl
, VT
, Q
,
3117 DAG
.getConstant(magics
.s
, getShiftAmountTy()));
3119 Created
->push_back(Q
.getNode());
3121 // Extract the sign bit and add it to the quotient
3123 DAG
.getNode(ISD::SRL
, dl
, VT
, Q
, DAG
.getConstant(VT
.getSizeInBits()-1,
3124 getShiftAmountTy()));
3126 Created
->push_back(T
.getNode());
3127 return DAG
.getNode(ISD::ADD
, dl
, VT
, Q
, T
);
3130 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
3131 /// return a DAG expression to select that will generate the same value by
3132 /// multiplying by a magic number. See:
3133 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3134 SDValue
TargetLowering::BuildUDIV(SDNode
*N
, SelectionDAG
&DAG
,
3135 std::vector
<SDNode
*>* Created
) const {
3136 EVT VT
= N
->getValueType(0);
3137 DebugLoc dl
= N
->getDebugLoc();
3139 // Check to see if we can do this.
3140 // FIXME: We should be more aggressive here.
3141 if (!isTypeLegal(VT
))
3144 // FIXME: We should use a narrower constant when the upper
3145 // bits are known to be zero.
3146 ConstantSDNode
*N1C
= cast
<ConstantSDNode
>(N
->getOperand(1));
3147 APInt::mu magics
= N1C
->getAPIntValue().magicu();
3149 // Multiply the numerator (operand 0) by the magic value
3150 // FIXME: We should support doing a MUL in a wider type
3152 if (isOperationLegalOrCustom(ISD::MULHU
, VT
))
3153 Q
= DAG
.getNode(ISD::MULHU
, dl
, VT
, N
->getOperand(0),
3154 DAG
.getConstant(magics
.m
, VT
));
3155 else if (isOperationLegalOrCustom(ISD::UMUL_LOHI
, VT
))
3156 Q
= SDValue(DAG
.getNode(ISD::UMUL_LOHI
, dl
, DAG
.getVTList(VT
, VT
),
3158 DAG
.getConstant(magics
.m
, VT
)).getNode(), 1);
3160 return SDValue(); // No mulhu or equvialent
3162 Created
->push_back(Q
.getNode());
3164 if (magics
.a
== 0) {
3165 assert(magics
.s
< N1C
->getAPIntValue().getBitWidth() &&
3166 "We shouldn't generate an undefined shift!");
3167 return DAG
.getNode(ISD::SRL
, dl
, VT
, Q
,
3168 DAG
.getConstant(magics
.s
, getShiftAmountTy()));
3170 SDValue NPQ
= DAG
.getNode(ISD::SUB
, dl
, VT
, N
->getOperand(0), Q
);
3172 Created
->push_back(NPQ
.getNode());
3173 NPQ
= DAG
.getNode(ISD::SRL
, dl
, VT
, NPQ
,
3174 DAG
.getConstant(1, getShiftAmountTy()));
3176 Created
->push_back(NPQ
.getNode());
3177 NPQ
= DAG
.getNode(ISD::ADD
, dl
, VT
, NPQ
, Q
);
3179 Created
->push_back(NPQ
.getNode());
3180 return DAG
.getNode(ISD::SRL
, dl
, VT
, NPQ
,
3181 DAG
.getConstant(magics
.s
-1, getShiftAmountTy()));