Fixed some bugs.
[llvm/zpu.git] / lib / CodeGen / SimpleRegisterCoalescing.cpp
blobd87a666bbea454f67d8392448e00102c809c6565
1 //===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a simple register coalescing pass that attempts to
11 // aggressively coalesce every register copy that it can.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regcoalescing"
16 #include "SimpleRegisterCoalescing.h"
17 #include "VirtRegMap.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/Value.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/Passes.h"
26 #include "llvm/CodeGen/RegisterCoalescer.h"
27 #include "llvm/Target/TargetInstrInfo.h"
28 #include "llvm/Target/TargetMachine.h"
29 #include "llvm/Target/TargetOptions.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/ADT/OwningPtr.h"
35 #include "llvm/ADT/SmallSet.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/ADT/STLExtras.h"
38 #include <algorithm>
39 #include <cmath>
40 using namespace llvm;
42 STATISTIC(numJoins , "Number of interval joins performed");
43 STATISTIC(numCrossRCs , "Number of cross class joins performed");
44 STATISTIC(numCommutes , "Number of instruction commuting performed");
45 STATISTIC(numExtends , "Number of copies extended");
46 STATISTIC(NumReMats , "Number of instructions re-materialized");
47 STATISTIC(numPeep , "Number of identity moves eliminated after coalescing");
48 STATISTIC(numAborts , "Number of times interval joining aborted");
49 STATISTIC(numDeadValNo, "Number of valno def marked dead");
51 char SimpleRegisterCoalescing::ID = 0;
52 static cl::opt<bool>
53 EnableJoining("join-liveintervals",
54 cl::desc("Coalesce copies (default=true)"),
55 cl::init(true));
57 static cl::opt<bool>
58 DisableCrossClassJoin("disable-cross-class-join",
59 cl::desc("Avoid coalescing cross register class copies"),
60 cl::init(false), cl::Hidden);
62 static cl::opt<bool>
63 DisablePhysicalJoin("disable-physical-join",
64 cl::desc("Avoid coalescing physical register copies"),
65 cl::init(false), cl::Hidden);
67 INITIALIZE_AG_PASS_BEGIN(SimpleRegisterCoalescing, RegisterCoalescer,
68 "simple-register-coalescing", "Simple Register Coalescing",
69 false, false, true)
70 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
71 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
72 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
73 INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination)
74 INITIALIZE_PASS_DEPENDENCY(PHIElimination)
75 INITIALIZE_PASS_DEPENDENCY(TwoAddressInstructionPass)
76 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
77 INITIALIZE_AG_PASS_END(SimpleRegisterCoalescing, RegisterCoalescer,
78 "simple-register-coalescing", "Simple Register Coalescing",
79 false, false, true)
81 char &llvm::SimpleRegisterCoalescingID = SimpleRegisterCoalescing::ID;
83 void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage &AU) const {
84 AU.setPreservesCFG();
85 AU.addRequired<AliasAnalysis>();
86 AU.addRequired<LiveIntervals>();
87 AU.addPreserved<LiveIntervals>();
88 AU.addPreserved<SlotIndexes>();
89 AU.addRequired<MachineLoopInfo>();
90 AU.addPreserved<MachineLoopInfo>();
91 AU.addPreservedID(MachineDominatorsID);
92 if (StrongPHIElim)
93 AU.addPreservedID(StrongPHIEliminationID);
94 else
95 AU.addPreservedID(PHIEliminationID);
96 AU.addPreservedID(TwoAddressInstructionPassID);
97 MachineFunctionPass::getAnalysisUsage(AU);
100 /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
101 /// being the source and IntB being the dest, thus this defines a value number
102 /// in IntB. If the source value number (in IntA) is defined by a copy from B,
103 /// see if we can merge these two pieces of B into a single value number,
104 /// eliminating a copy. For example:
106 /// A3 = B0
107 /// ...
108 /// B1 = A3 <- this copy
110 /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
111 /// value number to be replaced with B0 (which simplifies the B liveinterval).
113 /// This returns true if an interval was modified.
115 bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(const CoalescerPair &CP,
116 MachineInstr *CopyMI) {
117 // Bail if there is no dst interval - can happen when merging physical subreg
118 // operations.
119 if (!li_->hasInterval(CP.getDstReg()))
120 return false;
122 LiveInterval &IntA =
123 li_->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
124 LiveInterval &IntB =
125 li_->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
126 SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getDefIndex();
128 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
129 // the example above.
130 LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
131 if (BLR == IntB.end()) return false;
132 VNInfo *BValNo = BLR->valno;
134 // Get the location that B is defined at. Two options: either this value has
135 // an unknown definition point or it is defined at CopyIdx. If unknown, we
136 // can't process it.
137 if (!BValNo->isDefByCopy()) return false;
138 assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
140 // AValNo is the value number in A that defines the copy, A3 in the example.
141 SlotIndex CopyUseIdx = CopyIdx.getUseIndex();
142 LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
143 // The live range might not exist after fun with physreg coalescing.
144 if (ALR == IntA.end()) return false;
145 VNInfo *AValNo = ALR->valno;
146 // If it's re-defined by an early clobber somewhere in the live range, then
147 // it's not safe to eliminate the copy. FIXME: This is a temporary workaround.
148 // See PR3149:
149 // 172 %ECX<def> = MOV32rr %reg1039<kill>
150 // 180 INLINEASM <es:subl $5,$1
151 // sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9,
152 // %EAX<kill>,
153 // 36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
154 // 188 %EAX<def> = MOV32rr %EAX<kill>
155 // 196 %ECX<def> = MOV32rr %ECX<kill>
156 // 204 %ECX<def> = MOV32rr %ECX<kill>
157 // 212 %EAX<def> = MOV32rr %EAX<kill>
158 // 220 %EAX<def> = MOV32rr %EAX
159 // 228 %reg1039<def> = MOV32rr %ECX<kill>
160 // The early clobber operand ties ECX input to the ECX def.
162 // The live interval of ECX is represented as this:
163 // %reg20,inf = [46,47:1)[174,230:0) 0@174-(230) 1@46-(47)
164 // The coalescer has no idea there was a def in the middle of [174,230].
165 if (AValNo->hasRedefByEC())
166 return false;
168 // If AValNo is defined as a copy from IntB, we can potentially process this.
169 // Get the instruction that defines this value number.
170 if (!CP.isCoalescable(AValNo->getCopy()))
171 return false;
173 // Get the LiveRange in IntB that this value number starts with.
174 LiveInterval::iterator ValLR =
175 IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
176 if (ValLR == IntB.end())
177 return false;
179 // Make sure that the end of the live range is inside the same block as
180 // CopyMI.
181 MachineInstr *ValLREndInst =
182 li_->getInstructionFromIndex(ValLR->end.getPrevSlot());
183 if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent())
184 return false;
186 // Okay, we now know that ValLR ends in the same block that the CopyMI
187 // live-range starts. If there are no intervening live ranges between them in
188 // IntB, we can merge them.
189 if (ValLR+1 != BLR) return false;
191 // If a live interval is a physical register, conservatively check if any
192 // of its sub-registers is overlapping the live interval of the virtual
193 // register. If so, do not coalesce.
194 if (TargetRegisterInfo::isPhysicalRegister(IntB.reg) &&
195 *tri_->getSubRegisters(IntB.reg)) {
196 for (const unsigned* SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR)
197 if (li_->hasInterval(*SR) && IntA.overlaps(li_->getInterval(*SR))) {
198 DEBUG({
199 dbgs() << "\t\tInterfere with sub-register ";
200 li_->getInterval(*SR).print(dbgs(), tri_);
202 return false;
206 DEBUG({
207 dbgs() << "Extending: ";
208 IntB.print(dbgs(), tri_);
211 SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
212 // We are about to delete CopyMI, so need to remove it as the 'instruction
213 // that defines this value #'. Update the valnum with the new defining
214 // instruction #.
215 BValNo->def = FillerStart;
216 BValNo->setCopy(0);
218 // Okay, we can merge them. We need to insert a new liverange:
219 // [ValLR.end, BLR.begin) of either value number, then we merge the
220 // two value numbers.
221 IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
223 // If the IntB live range is assigned to a physical register, and if that
224 // physreg has sub-registers, update their live intervals as well.
225 if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
226 for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
227 if (!li_->hasInterval(*SR))
228 continue;
229 LiveInterval &SRLI = li_->getInterval(*SR);
230 SRLI.addRange(LiveRange(FillerStart, FillerEnd,
231 SRLI.getNextValue(FillerStart, 0,
232 li_->getVNInfoAllocator())));
236 // Okay, merge "B1" into the same value number as "B0".
237 if (BValNo != ValLR->valno) {
238 IntB.MergeValueNumberInto(BValNo, ValLR->valno);
240 DEBUG({
241 dbgs() << " result = ";
242 IntB.print(dbgs(), tri_);
243 dbgs() << "\n";
246 // If the source instruction was killing the source register before the
247 // merge, unset the isKill marker given the live range has been extended.
248 int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
249 if (UIdx != -1) {
250 ValLREndInst->getOperand(UIdx).setIsKill(false);
253 // If the copy instruction was killing the destination register before the
254 // merge, find the last use and trim the live range. That will also add the
255 // isKill marker.
256 if (ALR->end == CopyIdx)
257 TrimLiveIntervalToLastUse(CopyUseIdx, CopyMI->getParent(), IntA, ALR);
259 ++numExtends;
260 return true;
263 /// HasOtherReachingDefs - Return true if there are definitions of IntB
264 /// other than BValNo val# that can reach uses of AValno val# of IntA.
265 bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval &IntA,
266 LiveInterval &IntB,
267 VNInfo *AValNo,
268 VNInfo *BValNo) {
269 for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
270 AI != AE; ++AI) {
271 if (AI->valno != AValNo) continue;
272 LiveInterval::Ranges::iterator BI =
273 std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
274 if (BI != IntB.ranges.begin())
275 --BI;
276 for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
277 if (BI->valno == BValNo)
278 continue;
279 if (BI->start <= AI->start && BI->end > AI->start)
280 return true;
281 if (BI->start > AI->start && BI->start < AI->end)
282 return true;
285 return false;
288 /// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with
289 /// IntA being the source and IntB being the dest, thus this defines a value
290 /// number in IntB. If the source value number (in IntA) is defined by a
291 /// commutable instruction and its other operand is coalesced to the copy dest
292 /// register, see if we can transform the copy into a noop by commuting the
293 /// definition. For example,
295 /// A3 = op A2 B0<kill>
296 /// ...
297 /// B1 = A3 <- this copy
298 /// ...
299 /// = op A3 <- more uses
301 /// ==>
303 /// B2 = op B0 A2<kill>
304 /// ...
305 /// B1 = B2 <- now an identify copy
306 /// ...
307 /// = op B2 <- more uses
309 /// This returns true if an interval was modified.
311 bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(const CoalescerPair &CP,
312 MachineInstr *CopyMI) {
313 // FIXME: For now, only eliminate the copy by commuting its def when the
314 // source register is a virtual register. We want to guard against cases
315 // where the copy is a back edge copy and commuting the def lengthen the
316 // live interval of the source register to the entire loop.
317 if (CP.isPhys() && CP.isFlipped())
318 return false;
320 // Bail if there is no dst interval.
321 if (!li_->hasInterval(CP.getDstReg()))
322 return false;
324 SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getDefIndex();
326 LiveInterval &IntA =
327 li_->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
328 LiveInterval &IntB =
329 li_->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
331 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
332 // the example above.
333 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
334 if (!BValNo || !BValNo->isDefByCopy())
335 return false;
337 assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
339 // AValNo is the value number in A that defines the copy, A3 in the example.
340 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getUseIndex());
341 assert(AValNo && "COPY source not live");
343 // If other defs can reach uses of this def, then it's not safe to perform
344 // the optimization.
345 if (AValNo->isPHIDef() || AValNo->isUnused() || AValNo->hasPHIKill())
346 return false;
347 MachineInstr *DefMI = li_->getInstructionFromIndex(AValNo->def);
348 if (!DefMI)
349 return false;
350 const TargetInstrDesc &TID = DefMI->getDesc();
351 if (!TID.isCommutable())
352 return false;
353 // If DefMI is a two-address instruction then commuting it will change the
354 // destination register.
355 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
356 assert(DefIdx != -1);
357 unsigned UseOpIdx;
358 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
359 return false;
360 unsigned Op1, Op2, NewDstIdx;
361 if (!tii_->findCommutedOpIndices(DefMI, Op1, Op2))
362 return false;
363 if (Op1 == UseOpIdx)
364 NewDstIdx = Op2;
365 else if (Op2 == UseOpIdx)
366 NewDstIdx = Op1;
367 else
368 return false;
370 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
371 unsigned NewReg = NewDstMO.getReg();
372 if (NewReg != IntB.reg || !NewDstMO.isKill())
373 return false;
375 // Make sure there are no other definitions of IntB that would reach the
376 // uses which the new definition can reach.
377 if (HasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
378 return false;
380 // Abort if the aliases of IntB.reg have values that are not simply the
381 // clobbers from the superreg.
382 if (TargetRegisterInfo::isPhysicalRegister(IntB.reg))
383 for (const unsigned *AS = tri_->getAliasSet(IntB.reg); *AS; ++AS)
384 if (li_->hasInterval(*AS) &&
385 HasOtherReachingDefs(IntA, li_->getInterval(*AS), AValNo, 0))
386 return false;
388 // If some of the uses of IntA.reg is already coalesced away, return false.
389 // It's not possible to determine whether it's safe to perform the coalescing.
390 for (MachineRegisterInfo::use_nodbg_iterator UI =
391 mri_->use_nodbg_begin(IntA.reg),
392 UE = mri_->use_nodbg_end(); UI != UE; ++UI) {
393 MachineInstr *UseMI = &*UI;
394 SlotIndex UseIdx = li_->getInstructionIndex(UseMI);
395 LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
396 if (ULR == IntA.end())
397 continue;
398 if (ULR->valno == AValNo && JoinedCopies.count(UseMI))
399 return false;
402 DEBUG(dbgs() << "\tRemoveCopyByCommutingDef: " << AValNo->def << '\t'
403 << *DefMI);
405 // At this point we have decided that it is legal to do this
406 // transformation. Start by commuting the instruction.
407 MachineBasicBlock *MBB = DefMI->getParent();
408 MachineInstr *NewMI = tii_->commuteInstruction(DefMI);
409 if (!NewMI)
410 return false;
411 if (NewMI != DefMI) {
412 li_->ReplaceMachineInstrInMaps(DefMI, NewMI);
413 MBB->insert(DefMI, NewMI);
414 MBB->erase(DefMI);
416 unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
417 NewMI->getOperand(OpIdx).setIsKill();
419 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
420 // A = or A, B
421 // ...
422 // B = A
423 // ...
424 // C = A<kill>
425 // ...
426 // = B
428 // Update uses of IntA of the specific Val# with IntB.
429 for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
430 UE = mri_->use_end(); UI != UE;) {
431 MachineOperand &UseMO = UI.getOperand();
432 MachineInstr *UseMI = &*UI;
433 ++UI;
434 if (JoinedCopies.count(UseMI))
435 continue;
436 if (UseMI->isDebugValue()) {
437 // FIXME These don't have an instruction index. Not clear we have enough
438 // info to decide whether to do this replacement or not. For now do it.
439 UseMO.setReg(NewReg);
440 continue;
442 SlotIndex UseIdx = li_->getInstructionIndex(UseMI).getUseIndex();
443 LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
444 if (ULR == IntA.end() || ULR->valno != AValNo)
445 continue;
446 if (TargetRegisterInfo::isPhysicalRegister(NewReg))
447 UseMO.substPhysReg(NewReg, *tri_);
448 else
449 UseMO.setReg(NewReg);
450 if (UseMI == CopyMI)
451 continue;
452 if (!UseMI->isCopy())
453 continue;
454 if (UseMI->getOperand(0).getReg() != IntB.reg ||
455 UseMI->getOperand(0).getSubReg())
456 continue;
458 // This copy will become a noop. If it's defining a new val#, merge it into
459 // BValNo.
460 SlotIndex DefIdx = UseIdx.getDefIndex();
461 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
462 if (!DVNI)
463 continue;
464 DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
465 assert(DVNI->def == DefIdx);
466 BValNo = IntB.MergeValueNumberInto(BValNo, DVNI);
467 JoinedCopies.insert(UseMI);
470 // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
471 // is updated.
472 VNInfo *ValNo = BValNo;
473 ValNo->def = AValNo->def;
474 ValNo->setCopy(0);
475 for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
476 AI != AE; ++AI) {
477 if (AI->valno != AValNo) continue;
478 IntB.addRange(LiveRange(AI->start, AI->end, ValNo));
480 DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
482 IntA.removeValNo(AValNo);
483 DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n');
484 ++numCommutes;
485 return true;
488 /// isSameOrFallThroughBB - Return true if MBB == SuccMBB or MBB simply
489 /// fallthoughs to SuccMBB.
490 static bool isSameOrFallThroughBB(MachineBasicBlock *MBB,
491 MachineBasicBlock *SuccMBB,
492 const TargetInstrInfo *tii_) {
493 if (MBB == SuccMBB)
494 return true;
495 MachineBasicBlock *TBB = 0, *FBB = 0;
496 SmallVector<MachineOperand, 4> Cond;
497 return !tii_->AnalyzeBranch(*MBB, TBB, FBB, Cond) && !TBB && !FBB &&
498 MBB->isSuccessor(SuccMBB);
501 /// removeRange - Wrapper for LiveInterval::removeRange. This removes a range
502 /// from a physical register live interval as well as from the live intervals
503 /// of its sub-registers.
504 static void removeRange(LiveInterval &li,
505 SlotIndex Start, SlotIndex End,
506 LiveIntervals *li_, const TargetRegisterInfo *tri_) {
507 li.removeRange(Start, End, true);
508 if (TargetRegisterInfo::isPhysicalRegister(li.reg)) {
509 for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
510 if (!li_->hasInterval(*SR))
511 continue;
512 LiveInterval &sli = li_->getInterval(*SR);
513 SlotIndex RemoveStart = Start;
514 SlotIndex RemoveEnd = Start;
516 while (RemoveEnd != End) {
517 LiveInterval::iterator LR = sli.FindLiveRangeContaining(RemoveStart);
518 if (LR == sli.end())
519 break;
520 RemoveEnd = (LR->end < End) ? LR->end : End;
521 sli.removeRange(RemoveStart, RemoveEnd, true);
522 RemoveStart = RemoveEnd;
528 /// TrimLiveIntervalToLastUse - If there is a last use in the same basic block
529 /// as the copy instruction, trim the live interval to the last use and return
530 /// true.
531 bool
532 SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(SlotIndex CopyIdx,
533 MachineBasicBlock *CopyMBB,
534 LiveInterval &li,
535 const LiveRange *LR) {
536 SlotIndex MBBStart = li_->getMBBStartIdx(CopyMBB);
537 SlotIndex LastUseIdx;
538 MachineOperand *LastUse =
539 lastRegisterUse(LR->start, CopyIdx.getPrevSlot(), li.reg, LastUseIdx);
540 if (LastUse) {
541 MachineInstr *LastUseMI = LastUse->getParent();
542 if (!isSameOrFallThroughBB(LastUseMI->getParent(), CopyMBB, tii_)) {
543 // r1024 = op
544 // ...
545 // BB1:
546 // = r1024
548 // BB2:
549 // r1025<dead> = r1024<kill>
550 if (MBBStart < LR->end)
551 removeRange(li, MBBStart, LR->end, li_, tri_);
552 return true;
555 // There are uses before the copy, just shorten the live range to the end
556 // of last use.
557 LastUse->setIsKill();
558 removeRange(li, LastUseIdx.getDefIndex(), LR->end, li_, tri_);
559 if (LastUseMI->isCopy()) {
560 MachineOperand &DefMO = LastUseMI->getOperand(0);
561 if (DefMO.getReg() == li.reg && !DefMO.getSubReg())
562 DefMO.setIsDead();
564 return true;
567 // Is it livein?
568 if (LR->start <= MBBStart && LR->end > MBBStart) {
569 if (LR->start == li_->getZeroIndex()) {
570 assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
571 // Live-in to the function but dead. Remove it from entry live-in set.
572 mf_->begin()->removeLiveIn(li.reg);
574 // FIXME: Shorten intervals in BBs that reaches this BB.
577 return false;
580 /// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
581 /// computation, replace the copy by rematerialize the definition.
582 bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval &SrcInt,
583 unsigned DstReg,
584 unsigned DstSubIdx,
585 MachineInstr *CopyMI) {
586 SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getUseIndex();
587 LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
588 assert(SrcLR != SrcInt.end() && "Live range not found!");
589 VNInfo *ValNo = SrcLR->valno;
590 // If other defs can reach uses of this def, then it's not safe to perform
591 // the optimization.
592 if (ValNo->isPHIDef() || ValNo->isUnused() || ValNo->hasPHIKill())
593 return false;
594 MachineInstr *DefMI = li_->getInstructionFromIndex(ValNo->def);
595 if (!DefMI)
596 return false;
597 assert(DefMI && "Defining instruction disappeared");
598 const TargetInstrDesc &TID = DefMI->getDesc();
599 if (!TID.isAsCheapAsAMove())
600 return false;
601 if (!tii_->isTriviallyReMaterializable(DefMI, AA))
602 return false;
603 bool SawStore = false;
604 if (!DefMI->isSafeToMove(tii_, AA, SawStore))
605 return false;
606 if (TID.getNumDefs() != 1)
607 return false;
608 if (!DefMI->isImplicitDef()) {
609 // Make sure the copy destination register class fits the instruction
610 // definition register class. The mismatch can happen as a result of earlier
611 // extract_subreg, insert_subreg, subreg_to_reg coalescing.
612 const TargetRegisterClass *RC = TID.OpInfo[0].getRegClass(tri_);
613 if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
614 if (mri_->getRegClass(DstReg) != RC)
615 return false;
616 } else if (!RC->contains(DstReg))
617 return false;
620 // If destination register has a sub-register index on it, make sure it mtches
621 // the instruction register class.
622 if (DstSubIdx) {
623 const TargetInstrDesc &TID = DefMI->getDesc();
624 if (TID.getNumDefs() != 1)
625 return false;
626 const TargetRegisterClass *DstRC = mri_->getRegClass(DstReg);
627 const TargetRegisterClass *DstSubRC =
628 DstRC->getSubRegisterRegClass(DstSubIdx);
629 const TargetRegisterClass *DefRC = TID.OpInfo[0].getRegClass(tri_);
630 if (DefRC == DstRC)
631 DstSubIdx = 0;
632 else if (DefRC != DstSubRC)
633 return false;
636 RemoveCopyFlag(DstReg, CopyMI);
638 // If copy kills the source register, find the last use and propagate
639 // kill.
640 bool checkForDeadDef = false;
641 MachineBasicBlock *MBB = CopyMI->getParent();
642 if (SrcLR->end == CopyIdx.getDefIndex())
643 if (!TrimLiveIntervalToLastUse(CopyIdx, MBB, SrcInt, SrcLR)) {
644 checkForDeadDef = true;
647 MachineBasicBlock::iterator MII =
648 llvm::next(MachineBasicBlock::iterator(CopyMI));
649 tii_->reMaterialize(*MBB, MII, DstReg, DstSubIdx, DefMI, *tri_);
650 MachineInstr *NewMI = prior(MII);
652 if (checkForDeadDef) {
653 // PR4090 fix: Trim interval failed because there was no use of the
654 // source interval in this MBB. If the def is in this MBB too then we
655 // should mark it dead:
656 if (DefMI->getParent() == MBB) {
657 DefMI->addRegisterDead(SrcInt.reg, tri_);
658 SrcLR->end = SrcLR->start.getNextSlot();
662 // CopyMI may have implicit operands, transfer them over to the newly
663 // rematerialized instruction. And update implicit def interval valnos.
664 for (unsigned i = CopyMI->getDesc().getNumOperands(),
665 e = CopyMI->getNumOperands(); i != e; ++i) {
666 MachineOperand &MO = CopyMI->getOperand(i);
667 if (MO.isReg() && MO.isImplicit())
668 NewMI->addOperand(MO);
669 if (MO.isDef())
670 RemoveCopyFlag(MO.getReg(), CopyMI);
673 NewMI->copyImplicitOps(CopyMI);
674 li_->ReplaceMachineInstrInMaps(CopyMI, NewMI);
675 CopyMI->eraseFromParent();
676 ReMatCopies.insert(CopyMI);
677 ReMatDefs.insert(DefMI);
678 DEBUG(dbgs() << "Remat: " << *NewMI);
679 ++NumReMats;
680 return true;
683 /// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
684 /// update the subregister number if it is not zero. If DstReg is a
685 /// physical register and the existing subregister number of the def / use
686 /// being updated is not zero, make sure to set it to the correct physical
687 /// subregister.
688 void
689 SimpleRegisterCoalescing::UpdateRegDefsUses(const CoalescerPair &CP) {
690 bool DstIsPhys = CP.isPhys();
691 unsigned SrcReg = CP.getSrcReg();
692 unsigned DstReg = CP.getDstReg();
693 unsigned SubIdx = CP.getSubIdx();
695 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg);
696 MachineInstr *UseMI = I.skipInstruction();) {
697 // A PhysReg copy that won't be coalesced can perhaps be rematerialized
698 // instead.
699 if (DstIsPhys) {
700 if (UseMI->isCopy() &&
701 !UseMI->getOperand(1).getSubReg() &&
702 !UseMI->getOperand(0).getSubReg() &&
703 UseMI->getOperand(1).getReg() == SrcReg &&
704 UseMI->getOperand(0).getReg() != SrcReg &&
705 UseMI->getOperand(0).getReg() != DstReg &&
706 !JoinedCopies.count(UseMI) &&
707 ReMaterializeTrivialDef(li_->getInterval(SrcReg),
708 UseMI->getOperand(0).getReg(), 0, UseMI))
709 continue;
712 SmallVector<unsigned,8> Ops;
713 bool Reads, Writes;
714 tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
715 bool Kills = false, Deads = false;
717 // Replace SrcReg with DstReg in all UseMI operands.
718 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
719 MachineOperand &MO = UseMI->getOperand(Ops[i]);
720 Kills |= MO.isKill();
721 Deads |= MO.isDead();
723 if (DstIsPhys)
724 MO.substPhysReg(DstReg, *tri_);
725 else
726 MO.substVirtReg(DstReg, SubIdx, *tri_);
729 // This instruction is a copy that will be removed.
730 if (JoinedCopies.count(UseMI))
731 continue;
733 if (SubIdx) {
734 // If UseMI was a simple SrcReg def, make sure we didn't turn it into a
735 // read-modify-write of DstReg.
736 if (Deads)
737 UseMI->addRegisterDead(DstReg, tri_);
738 else if (!Reads && Writes)
739 UseMI->addRegisterDefined(DstReg, tri_);
741 // Kill flags apply to the whole physical register.
742 if (DstIsPhys && Kills)
743 UseMI->addRegisterKilled(DstReg, tri_);
746 DEBUG({
747 dbgs() << "\t\tupdated: ";
748 if (!UseMI->isDebugValue())
749 dbgs() << li_->getInstructionIndex(UseMI) << "\t";
750 dbgs() << *UseMI;
755 /// removeIntervalIfEmpty - Check if the live interval of a physical register
756 /// is empty, if so remove it and also remove the empty intervals of its
757 /// sub-registers. Return true if live interval is removed.
758 static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *li_,
759 const TargetRegisterInfo *tri_) {
760 if (li.empty()) {
761 if (TargetRegisterInfo::isPhysicalRegister(li.reg))
762 for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
763 if (!li_->hasInterval(*SR))
764 continue;
765 LiveInterval &sli = li_->getInterval(*SR);
766 if (sli.empty())
767 li_->removeInterval(*SR);
769 li_->removeInterval(li.reg);
770 return true;
772 return false;
775 /// ShortenDeadCopyLiveRange - Shorten a live range defined by a dead copy.
776 /// Return true if live interval is removed.
777 bool SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval &li,
778 MachineInstr *CopyMI) {
779 SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI);
780 LiveInterval::iterator MLR =
781 li.FindLiveRangeContaining(CopyIdx.getDefIndex());
782 if (MLR == li.end())
783 return false; // Already removed by ShortenDeadCopySrcLiveRange.
784 SlotIndex RemoveStart = MLR->start;
785 SlotIndex RemoveEnd = MLR->end;
786 SlotIndex DefIdx = CopyIdx.getDefIndex();
787 // Remove the liverange that's defined by this.
788 if (RemoveStart == DefIdx && RemoveEnd == DefIdx.getStoreIndex()) {
789 removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
790 return removeIntervalIfEmpty(li, li_, tri_);
792 return false;
795 /// RemoveDeadDef - If a def of a live interval is now determined dead, remove
796 /// the val# it defines. If the live interval becomes empty, remove it as well.
797 bool SimpleRegisterCoalescing::RemoveDeadDef(LiveInterval &li,
798 MachineInstr *DefMI) {
799 SlotIndex DefIdx = li_->getInstructionIndex(DefMI).getDefIndex();
800 LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx);
801 if (DefIdx != MLR->valno->def)
802 return false;
803 li.removeValNo(MLR->valno);
804 return removeIntervalIfEmpty(li, li_, tri_);
807 void SimpleRegisterCoalescing::RemoveCopyFlag(unsigned DstReg,
808 const MachineInstr *CopyMI) {
809 SlotIndex DefIdx = li_->getInstructionIndex(CopyMI).getDefIndex();
810 if (li_->hasInterval(DstReg)) {
811 LiveInterval &LI = li_->getInterval(DstReg);
812 if (const LiveRange *LR = LI.getLiveRangeContaining(DefIdx))
813 if (LR->valno->def == DefIdx)
814 LR->valno->setCopy(0);
816 if (!TargetRegisterInfo::isPhysicalRegister(DstReg))
817 return;
818 for (const unsigned* AS = tri_->getAliasSet(DstReg); *AS; ++AS) {
819 if (!li_->hasInterval(*AS))
820 continue;
821 LiveInterval &LI = li_->getInterval(*AS);
822 if (const LiveRange *LR = LI.getLiveRangeContaining(DefIdx))
823 if (LR->valno->def == DefIdx)
824 LR->valno->setCopy(0);
828 /// PropagateDeadness - Propagate the dead marker to the instruction which
829 /// defines the val#.
830 static void PropagateDeadness(LiveInterval &li, MachineInstr *CopyMI,
831 SlotIndex &LRStart, LiveIntervals *li_,
832 const TargetRegisterInfo* tri_) {
833 MachineInstr *DefMI =
834 li_->getInstructionFromIndex(LRStart.getDefIndex());
835 if (DefMI && DefMI != CopyMI) {
836 int DeadIdx = DefMI->findRegisterDefOperandIdx(li.reg);
837 if (DeadIdx != -1)
838 DefMI->getOperand(DeadIdx).setIsDead();
839 else
840 DefMI->addOperand(MachineOperand::CreateReg(li.reg,
841 /*def*/true, /*implicit*/true, /*kill*/false, /*dead*/true));
842 LRStart = LRStart.getNextSlot();
846 /// ShortenDeadCopySrcLiveRange - Shorten a live range as it's artificially
847 /// extended by a dead copy. Mark the last use (if any) of the val# as kill as
848 /// ends the live range there. If there isn't another use, then this live range
849 /// is dead. Return true if live interval is removed.
850 bool
851 SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval &li,
852 MachineInstr *CopyMI) {
853 SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI);
854 if (CopyIdx == SlotIndex()) {
855 // FIXME: special case: function live in. It can be a general case if the
856 // first instruction index starts at > 0 value.
857 assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
858 // Live-in to the function but dead. Remove it from entry live-in set.
859 if (mf_->begin()->isLiveIn(li.reg))
860 mf_->begin()->removeLiveIn(li.reg);
861 if (const LiveRange *LR = li.getLiveRangeContaining(CopyIdx))
862 removeRange(li, LR->start, LR->end, li_, tri_);
863 return removeIntervalIfEmpty(li, li_, tri_);
866 LiveInterval::iterator LR =
867 li.FindLiveRangeContaining(CopyIdx.getPrevIndex().getStoreIndex());
868 if (LR == li.end())
869 // Livein but defined by a phi.
870 return false;
872 SlotIndex RemoveStart = LR->start;
873 SlotIndex RemoveEnd = CopyIdx.getStoreIndex();
874 if (LR->end > RemoveEnd)
875 // More uses past this copy? Nothing to do.
876 return false;
878 // If there is a last use in the same bb, we can't remove the live range.
879 // Shorten the live interval and return.
880 MachineBasicBlock *CopyMBB = CopyMI->getParent();
881 if (TrimLiveIntervalToLastUse(CopyIdx, CopyMBB, li, LR))
882 return false;
884 // There are other kills of the val#. Nothing to do.
885 if (!li.isOnlyLROfValNo(LR))
886 return false;
888 MachineBasicBlock *StartMBB = li_->getMBBFromIndex(RemoveStart);
889 if (!isSameOrFallThroughBB(StartMBB, CopyMBB, tii_))
890 // If the live range starts in another mbb and the copy mbb is not a fall
891 // through mbb, then we can only cut the range from the beginning of the
892 // copy mbb.
893 RemoveStart = li_->getMBBStartIdx(CopyMBB).getNextIndex().getBaseIndex();
895 if (LR->valno->def == RemoveStart) {
896 // If the def MI defines the val# and this copy is the only kill of the
897 // val#, then propagate the dead marker.
898 PropagateDeadness(li, CopyMI, RemoveStart, li_, tri_);
899 ++numDeadValNo;
902 removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
903 return removeIntervalIfEmpty(li, li_, tri_);
907 /// isWinToJoinCrossClass - Return true if it's profitable to coalesce
908 /// two virtual registers from different register classes.
909 bool
910 SimpleRegisterCoalescing::isWinToJoinCrossClass(unsigned SrcReg,
911 unsigned DstReg,
912 const TargetRegisterClass *SrcRC,
913 const TargetRegisterClass *DstRC,
914 const TargetRegisterClass *NewRC) {
915 unsigned NewRCCount = allocatableRCRegs_[NewRC].count();
916 // This heuristics is good enough in practice, but it's obviously not *right*.
917 // 4 is a magic number that works well enough for x86, ARM, etc. It filter
918 // out all but the most restrictive register classes.
919 if (NewRCCount > 4 ||
920 // Early exit if the function is fairly small, coalesce aggressively if
921 // that's the case. For really special register classes with 3 or
922 // fewer registers, be a bit more careful.
923 (li_->getFuncInstructionCount() / NewRCCount) < 8)
924 return true;
925 LiveInterval &SrcInt = li_->getInterval(SrcReg);
926 LiveInterval &DstInt = li_->getInterval(DstReg);
927 unsigned SrcSize = li_->getApproximateInstructionCount(SrcInt);
928 unsigned DstSize = li_->getApproximateInstructionCount(DstInt);
929 if (SrcSize <= NewRCCount && DstSize <= NewRCCount)
930 return true;
931 // Estimate *register use density*. If it doubles or more, abort.
932 unsigned SrcUses = std::distance(mri_->use_nodbg_begin(SrcReg),
933 mri_->use_nodbg_end());
934 unsigned DstUses = std::distance(mri_->use_nodbg_begin(DstReg),
935 mri_->use_nodbg_end());
936 unsigned NewUses = SrcUses + DstUses;
937 unsigned NewSize = SrcSize + DstSize;
938 if (SrcRC != NewRC && SrcSize > NewRCCount) {
939 unsigned SrcRCCount = allocatableRCRegs_[SrcRC].count();
940 if (NewUses*SrcSize*SrcRCCount > 2*SrcUses*NewSize*NewRCCount)
941 return false;
943 if (DstRC != NewRC && DstSize > NewRCCount) {
944 unsigned DstRCCount = allocatableRCRegs_[DstRC].count();
945 if (NewUses*DstSize*DstRCCount > 2*DstUses*NewSize*NewRCCount)
946 return false;
948 return true;
952 /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
953 /// which are the src/dst of the copy instruction CopyMI. This returns true
954 /// if the copy was successfully coalesced away. If it is not currently
955 /// possible to coalesce this interval, but it may be possible if other
956 /// things get coalesced, then it returns true by reference in 'Again'.
957 bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
958 MachineInstr *CopyMI = TheCopy.MI;
960 Again = false;
961 if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI))
962 return false; // Already done.
964 DEBUG(dbgs() << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
966 CoalescerPair CP(*tii_, *tri_);
967 if (!CP.setRegisters(CopyMI)) {
968 DEBUG(dbgs() << "\tNot coalescable.\n");
969 return false;
972 // If they are already joined we continue.
973 if (CP.getSrcReg() == CP.getDstReg()) {
974 DEBUG(dbgs() << "\tCopy already coalesced.\n");
975 return false; // Not coalescable.
978 if (DisablePhysicalJoin && CP.isPhys()) {
979 DEBUG(dbgs() << "\tPhysical joins disabled.\n");
980 return false;
983 DEBUG(dbgs() << "\tConsidering merging %reg" << CP.getSrcReg());
985 // Enforce policies.
986 if (CP.isPhys()) {
987 DEBUG(dbgs() <<" with physreg %" << tri_->getName(CP.getDstReg()) << "\n");
988 // Only coalesce to allocatable physreg.
989 if (!li_->isAllocatable(CP.getDstReg())) {
990 DEBUG(dbgs() << "\tRegister is an unallocatable physreg.\n");
991 return false; // Not coalescable.
993 } else {
994 DEBUG({
995 dbgs() << " with reg%" << CP.getDstReg();
996 if (CP.getSubIdx())
997 dbgs() << ":" << tri_->getSubRegIndexName(CP.getSubIdx());
998 dbgs() << " to " << CP.getNewRC()->getName() << "\n";
1001 // Avoid constraining virtual register regclass too much.
1002 if (CP.isCrossClass()) {
1003 if (DisableCrossClassJoin) {
1004 DEBUG(dbgs() << "\tCross-class joins disabled.\n");
1005 return false;
1007 if (!isWinToJoinCrossClass(CP.getSrcReg(), CP.getDstReg(),
1008 mri_->getRegClass(CP.getSrcReg()),
1009 mri_->getRegClass(CP.getDstReg()),
1010 CP.getNewRC())) {
1011 DEBUG(dbgs() << "\tAvoid coalescing to constrained register class: "
1012 << CP.getNewRC()->getName() << ".\n");
1013 Again = true; // May be possible to coalesce later.
1014 return false;
1018 // When possible, let DstReg be the larger interval.
1019 if (!CP.getSubIdx() && li_->getInterval(CP.getSrcReg()).ranges.size() >
1020 li_->getInterval(CP.getDstReg()).ranges.size())
1021 CP.flip();
1024 // We need to be careful about coalescing a source physical register with a
1025 // virtual register. Once the coalescing is done, it cannot be broken and
1026 // these are not spillable! If the destination interval uses are far away,
1027 // think twice about coalescing them!
1028 // FIXME: Why are we skipping this test for partial copies?
1029 // CodeGen/X86/phys_subreg_coalesce-3.ll needs it.
1030 if (!CP.isPartial() && CP.isPhys()) {
1031 LiveInterval &JoinVInt = li_->getInterval(CP.getSrcReg());
1033 // Don't join with physregs that have a ridiculous number of live
1034 // ranges. The data structure performance is really bad when that
1035 // happens.
1036 if (li_->hasInterval(CP.getDstReg()) &&
1037 li_->getInterval(CP.getDstReg()).ranges.size() > 1000) {
1038 ++numAborts;
1039 DEBUG(dbgs()
1040 << "\tPhysical register live interval too complicated, abort!\n");
1041 return false;
1044 const TargetRegisterClass *RC = mri_->getRegClass(CP.getSrcReg());
1045 unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
1046 unsigned Length = li_->getApproximateInstructionCount(JoinVInt);
1047 if (Length > Threshold &&
1048 std::distance(mri_->use_nodbg_begin(CP.getSrcReg()),
1049 mri_->use_nodbg_end()) * Threshold < Length) {
1050 // Before giving up coalescing, if definition of source is defined by
1051 // trivial computation, try rematerializing it.
1052 if (!CP.isFlipped() &&
1053 ReMaterializeTrivialDef(JoinVInt, CP.getDstReg(), 0, CopyMI))
1054 return true;
1056 ++numAborts;
1057 DEBUG(dbgs() << "\tMay tie down a physical register, abort!\n");
1058 Again = true; // May be possible to coalesce later.
1059 return false;
1063 // Okay, attempt to join these two intervals. On failure, this returns false.
1064 // Otherwise, if one of the intervals being joined is a physreg, this method
1065 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
1066 // been modified, so we can use this information below to update aliases.
1067 if (!JoinIntervals(CP)) {
1068 // Coalescing failed.
1070 // If definition of source is defined by trivial computation, try
1071 // rematerializing it.
1072 if (!CP.isFlipped() &&
1073 ReMaterializeTrivialDef(li_->getInterval(CP.getSrcReg()),
1074 CP.getDstReg(), 0, CopyMI))
1075 return true;
1077 // If we can eliminate the copy without merging the live ranges, do so now.
1078 if (!CP.isPartial()) {
1079 if (AdjustCopiesBackFrom(CP, CopyMI) ||
1080 RemoveCopyByCommutingDef(CP, CopyMI)) {
1081 JoinedCopies.insert(CopyMI);
1082 DEBUG(dbgs() << "\tTrivial!\n");
1083 return true;
1087 // Otherwise, we are unable to join the intervals.
1088 DEBUG(dbgs() << "\tInterference!\n");
1089 Again = true; // May be possible to coalesce later.
1090 return false;
1093 // Coalescing to a virtual register that is of a sub-register class of the
1094 // other. Make sure the resulting register is set to the right register class.
1095 if (CP.isCrossClass()) {
1096 ++numCrossRCs;
1097 mri_->setRegClass(CP.getDstReg(), CP.getNewRC());
1100 // Remember to delete the copy instruction.
1101 JoinedCopies.insert(CopyMI);
1103 UpdateRegDefsUses(CP);
1105 // If we have extended the live range of a physical register, make sure we
1106 // update live-in lists as well.
1107 if (CP.isPhys()) {
1108 SmallVector<MachineBasicBlock*, 16> BlockSeq;
1109 // JoinIntervals invalidates the VNInfos in SrcInt, but we only need the
1110 // ranges for this, and they are preserved.
1111 LiveInterval &SrcInt = li_->getInterval(CP.getSrcReg());
1112 for (LiveInterval::const_iterator I = SrcInt.begin(), E = SrcInt.end();
1113 I != E; ++I ) {
1114 li_->findLiveInMBBs(I->start, I->end, BlockSeq);
1115 for (unsigned idx = 0, size = BlockSeq.size(); idx != size; ++idx) {
1116 MachineBasicBlock &block = *BlockSeq[idx];
1117 if (!block.isLiveIn(CP.getDstReg()))
1118 block.addLiveIn(CP.getDstReg());
1120 BlockSeq.clear();
1124 // SrcReg is guarateed to be the register whose live interval that is
1125 // being merged.
1126 li_->removeInterval(CP.getSrcReg());
1128 // Update regalloc hint.
1129 tri_->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *mf_);
1131 DEBUG({
1132 LiveInterval &DstInt = li_->getInterval(CP.getDstReg());
1133 dbgs() << "\tJoined. Result = ";
1134 DstInt.print(dbgs(), tri_);
1135 dbgs() << "\n";
1138 ++numJoins;
1139 return true;
1142 /// ComputeUltimateVN - Assuming we are going to join two live intervals,
1143 /// compute what the resultant value numbers for each value in the input two
1144 /// ranges will be. This is complicated by copies between the two which can
1145 /// and will commonly cause multiple value numbers to be merged into one.
1147 /// VN is the value number that we're trying to resolve. InstDefiningValue
1148 /// keeps track of the new InstDefiningValue assignment for the result
1149 /// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of
1150 /// whether a value in this or other is a copy from the opposite set.
1151 /// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
1152 /// already been assigned.
1154 /// ThisFromOther[x] - If x is defined as a copy from the other interval, this
1155 /// contains the value number the copy is from.
1157 static unsigned ComputeUltimateVN(VNInfo *VNI,
1158 SmallVector<VNInfo*, 16> &NewVNInfo,
1159 DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
1160 DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
1161 SmallVector<int, 16> &ThisValNoAssignments,
1162 SmallVector<int, 16> &OtherValNoAssignments) {
1163 unsigned VN = VNI->id;
1165 // If the VN has already been computed, just return it.
1166 if (ThisValNoAssignments[VN] >= 0)
1167 return ThisValNoAssignments[VN];
1168 assert(ThisValNoAssignments[VN] != -2 && "Cyclic value numbers");
1170 // If this val is not a copy from the other val, then it must be a new value
1171 // number in the destination.
1172 DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
1173 if (I == ThisFromOther.end()) {
1174 NewVNInfo.push_back(VNI);
1175 return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
1177 VNInfo *OtherValNo = I->second;
1179 // Otherwise, this *is* a copy from the RHS. If the other side has already
1180 // been computed, return it.
1181 if (OtherValNoAssignments[OtherValNo->id] >= 0)
1182 return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
1184 // Mark this value number as currently being computed, then ask what the
1185 // ultimate value # of the other value is.
1186 ThisValNoAssignments[VN] = -2;
1187 unsigned UltimateVN =
1188 ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
1189 OtherValNoAssignments, ThisValNoAssignments);
1190 return ThisValNoAssignments[VN] = UltimateVN;
1193 /// JoinIntervals - Attempt to join these two intervals. On failure, this
1194 /// returns false.
1195 bool SimpleRegisterCoalescing::JoinIntervals(CoalescerPair &CP) {
1196 LiveInterval &RHS = li_->getInterval(CP.getSrcReg());
1197 DEBUG({ dbgs() << "\t\tRHS = "; RHS.print(dbgs(), tri_); dbgs() << "\n"; });
1199 // If a live interval is a physical register, check for interference with any
1200 // aliases. The interference check implemented here is a bit more conservative
1201 // than the full interfeence check below. We allow overlapping live ranges
1202 // only when one is a copy of the other.
1203 if (CP.isPhys()) {
1204 for (const unsigned *AS = tri_->getAliasSet(CP.getDstReg()); *AS; ++AS){
1205 if (!li_->hasInterval(*AS))
1206 continue;
1207 const LiveInterval &LHS = li_->getInterval(*AS);
1208 LiveInterval::const_iterator LI = LHS.begin();
1209 for (LiveInterval::const_iterator RI = RHS.begin(), RE = RHS.end();
1210 RI != RE; ++RI) {
1211 LI = std::lower_bound(LI, LHS.end(), RI->start);
1212 // Does LHS have an overlapping live range starting before RI?
1213 if ((LI != LHS.begin() && LI[-1].end > RI->start) &&
1214 (RI->start != RI->valno->def ||
1215 !CP.isCoalescable(li_->getInstructionFromIndex(RI->start)))) {
1216 DEBUG({
1217 dbgs() << "\t\tInterference from alias: ";
1218 LHS.print(dbgs(), tri_);
1219 dbgs() << "\n\t\tOverlap at " << RI->start << " and no copy.\n";
1221 return false;
1224 // Check that LHS ranges beginning in this range are copies.
1225 for (; LI != LHS.end() && LI->start < RI->end; ++LI) {
1226 if (LI->start != LI->valno->def ||
1227 !CP.isCoalescable(li_->getInstructionFromIndex(LI->start))) {
1228 DEBUG({
1229 dbgs() << "\t\tInterference from alias: ";
1230 LHS.print(dbgs(), tri_);
1231 dbgs() << "\n\t\tDef at " << LI->start << " is not a copy.\n";
1233 return false;
1240 // Compute the final value assignment, assuming that the live ranges can be
1241 // coalesced.
1242 SmallVector<int, 16> LHSValNoAssignments;
1243 SmallVector<int, 16> RHSValNoAssignments;
1244 DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
1245 DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
1246 SmallVector<VNInfo*, 16> NewVNInfo;
1248 LiveInterval &LHS = li_->getOrCreateInterval(CP.getDstReg());
1249 DEBUG({ dbgs() << "\t\tLHS = "; LHS.print(dbgs(), tri_); dbgs() << "\n"; });
1251 // Loop over the value numbers of the LHS, seeing if any are defined from
1252 // the RHS.
1253 for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
1254 i != e; ++i) {
1255 VNInfo *VNI = *i;
1256 if (VNI->isUnused() || !VNI->isDefByCopy()) // Src not defined by a copy?
1257 continue;
1259 // Never join with a register that has EarlyClobber redefs.
1260 if (VNI->hasRedefByEC())
1261 return false;
1263 // DstReg is known to be a register in the LHS interval. If the src is
1264 // from the RHS interval, we can use its value #.
1265 if (!CP.isCoalescable(VNI->getCopy()))
1266 continue;
1268 // Figure out the value # from the RHS.
1269 LiveRange *lr = RHS.getLiveRangeContaining(VNI->def.getPrevSlot());
1270 // The copy could be to an aliased physreg.
1271 if (!lr) continue;
1272 LHSValsDefinedFromRHS[VNI] = lr->valno;
1275 // Loop over the value numbers of the RHS, seeing if any are defined from
1276 // the LHS.
1277 for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
1278 i != e; ++i) {
1279 VNInfo *VNI = *i;
1280 if (VNI->isUnused() || !VNI->isDefByCopy()) // Src not defined by a copy?
1281 continue;
1283 // Never join with a register that has EarlyClobber redefs.
1284 if (VNI->hasRedefByEC())
1285 return false;
1287 // DstReg is known to be a register in the RHS interval. If the src is
1288 // from the LHS interval, we can use its value #.
1289 if (!CP.isCoalescable(VNI->getCopy()))
1290 continue;
1292 // Figure out the value # from the LHS.
1293 LiveRange *lr = LHS.getLiveRangeContaining(VNI->def.getPrevSlot());
1294 // The copy could be to an aliased physreg.
1295 if (!lr) continue;
1296 RHSValsDefinedFromLHS[VNI] = lr->valno;
1299 LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
1300 RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
1301 NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
1303 for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
1304 i != e; ++i) {
1305 VNInfo *VNI = *i;
1306 unsigned VN = VNI->id;
1307 if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
1308 continue;
1309 ComputeUltimateVN(VNI, NewVNInfo,
1310 LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
1311 LHSValNoAssignments, RHSValNoAssignments);
1313 for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
1314 i != e; ++i) {
1315 VNInfo *VNI = *i;
1316 unsigned VN = VNI->id;
1317 if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused())
1318 continue;
1319 // If this value number isn't a copy from the LHS, it's a new number.
1320 if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
1321 NewVNInfo.push_back(VNI);
1322 RHSValNoAssignments[VN] = NewVNInfo.size()-1;
1323 continue;
1326 ComputeUltimateVN(VNI, NewVNInfo,
1327 RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
1328 RHSValNoAssignments, LHSValNoAssignments);
1331 // Armed with the mappings of LHS/RHS values to ultimate values, walk the
1332 // interval lists to see if these intervals are coalescable.
1333 LiveInterval::const_iterator I = LHS.begin();
1334 LiveInterval::const_iterator IE = LHS.end();
1335 LiveInterval::const_iterator J = RHS.begin();
1336 LiveInterval::const_iterator JE = RHS.end();
1338 // Skip ahead until the first place of potential sharing.
1339 if (I != IE && J != JE) {
1340 if (I->start < J->start) {
1341 I = std::upper_bound(I, IE, J->start);
1342 if (I != LHS.begin()) --I;
1343 } else if (J->start < I->start) {
1344 J = std::upper_bound(J, JE, I->start);
1345 if (J != RHS.begin()) --J;
1349 while (I != IE && J != JE) {
1350 // Determine if these two live ranges overlap.
1351 bool Overlaps;
1352 if (I->start < J->start) {
1353 Overlaps = I->end > J->start;
1354 } else {
1355 Overlaps = J->end > I->start;
1358 // If so, check value # info to determine if they are really different.
1359 if (Overlaps) {
1360 // If the live range overlap will map to the same value number in the
1361 // result liverange, we can still coalesce them. If not, we can't.
1362 if (LHSValNoAssignments[I->valno->id] !=
1363 RHSValNoAssignments[J->valno->id])
1364 return false;
1365 // If it's re-defined by an early clobber somewhere in the live range,
1366 // then conservatively abort coalescing.
1367 if (NewVNInfo[LHSValNoAssignments[I->valno->id]]->hasRedefByEC())
1368 return false;
1371 if (I->end < J->end)
1372 ++I;
1373 else
1374 ++J;
1377 // Update kill info. Some live ranges are extended due to copy coalescing.
1378 for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
1379 E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
1380 VNInfo *VNI = I->first;
1381 unsigned LHSValID = LHSValNoAssignments[VNI->id];
1382 if (VNI->hasPHIKill())
1383 NewVNInfo[LHSValID]->setHasPHIKill(true);
1386 // Update kill info. Some live ranges are extended due to copy coalescing.
1387 for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
1388 E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
1389 VNInfo *VNI = I->first;
1390 unsigned RHSValID = RHSValNoAssignments[VNI->id];
1391 if (VNI->hasPHIKill())
1392 NewVNInfo[RHSValID]->setHasPHIKill(true);
1395 if (LHSValNoAssignments.empty())
1396 LHSValNoAssignments.push_back(-1);
1397 if (RHSValNoAssignments.empty())
1398 RHSValNoAssignments.push_back(-1);
1400 // If we get here, we know that we can coalesce the live ranges. Ask the
1401 // intervals to coalesce themselves now.
1402 LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo,
1403 mri_);
1404 return true;
1407 namespace {
1408 // DepthMBBCompare - Comparison predicate that sort first based on the loop
1409 // depth of the basic block (the unsigned), and then on the MBB number.
1410 struct DepthMBBCompare {
1411 typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
1412 bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
1413 // Deeper loops first
1414 if (LHS.first != RHS.first)
1415 return LHS.first > RHS.first;
1417 // Prefer blocks that are more connected in the CFG. This takes care of
1418 // the most difficult copies first while intervals are short.
1419 unsigned cl = LHS.second->pred_size() + LHS.second->succ_size();
1420 unsigned cr = RHS.second->pred_size() + RHS.second->succ_size();
1421 if (cl != cr)
1422 return cl > cr;
1424 // As a last resort, sort by block number.
1425 return LHS.second->getNumber() < RHS.second->getNumber();
1430 void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB,
1431 std::vector<CopyRec> &TryAgain) {
1432 DEBUG(dbgs() << MBB->getName() << ":\n");
1434 std::vector<CopyRec> VirtCopies;
1435 std::vector<CopyRec> PhysCopies;
1436 std::vector<CopyRec> ImpDefCopies;
1437 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
1438 MII != E;) {
1439 MachineInstr *Inst = MII++;
1441 // If this isn't a copy nor a extract_subreg, we can't join intervals.
1442 unsigned SrcReg, DstReg;
1443 if (Inst->isCopy()) {
1444 DstReg = Inst->getOperand(0).getReg();
1445 SrcReg = Inst->getOperand(1).getReg();
1446 } else if (Inst->isSubregToReg()) {
1447 DstReg = Inst->getOperand(0).getReg();
1448 SrcReg = Inst->getOperand(2).getReg();
1449 } else
1450 continue;
1452 bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
1453 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
1454 if (li_->hasInterval(SrcReg) && li_->getInterval(SrcReg).empty())
1455 ImpDefCopies.push_back(CopyRec(Inst, 0));
1456 else if (SrcIsPhys || DstIsPhys)
1457 PhysCopies.push_back(CopyRec(Inst, 0));
1458 else
1459 VirtCopies.push_back(CopyRec(Inst, 0));
1462 // Try coalescing implicit copies and insert_subreg <undef> first,
1463 // followed by copies to / from physical registers, then finally copies
1464 // from virtual registers to virtual registers.
1465 for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) {
1466 CopyRec &TheCopy = ImpDefCopies[i];
1467 bool Again = false;
1468 if (!JoinCopy(TheCopy, Again))
1469 if (Again)
1470 TryAgain.push_back(TheCopy);
1472 for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) {
1473 CopyRec &TheCopy = PhysCopies[i];
1474 bool Again = false;
1475 if (!JoinCopy(TheCopy, Again))
1476 if (Again)
1477 TryAgain.push_back(TheCopy);
1479 for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) {
1480 CopyRec &TheCopy = VirtCopies[i];
1481 bool Again = false;
1482 if (!JoinCopy(TheCopy, Again))
1483 if (Again)
1484 TryAgain.push_back(TheCopy);
1488 void SimpleRegisterCoalescing::joinIntervals() {
1489 DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
1491 std::vector<CopyRec> TryAgainList;
1492 if (loopInfo->empty()) {
1493 // If there are no loops in the function, join intervals in function order.
1494 for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
1495 I != E; ++I)
1496 CopyCoalesceInMBB(I, TryAgainList);
1497 } else {
1498 // Otherwise, join intervals in inner loops before other intervals.
1499 // Unfortunately we can't just iterate over loop hierarchy here because
1500 // there may be more MBB's than BB's. Collect MBB's for sorting.
1502 // Join intervals in the function prolog first. We want to join physical
1503 // registers with virtual registers before the intervals got too long.
1504 std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
1505 for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();I != E;++I){
1506 MachineBasicBlock *MBB = I;
1507 MBBs.push_back(std::make_pair(loopInfo->getLoopDepth(MBB), I));
1510 // Sort by loop depth.
1511 std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
1513 // Finally, join intervals in loop nest order.
1514 for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
1515 CopyCoalesceInMBB(MBBs[i].second, TryAgainList);
1518 // Joining intervals can allow other intervals to be joined. Iteratively join
1519 // until we make no progress.
1520 bool ProgressMade = true;
1521 while (ProgressMade) {
1522 ProgressMade = false;
1524 for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
1525 CopyRec &TheCopy = TryAgainList[i];
1526 if (!TheCopy.MI)
1527 continue;
1529 bool Again = false;
1530 bool Success = JoinCopy(TheCopy, Again);
1531 if (Success || !Again) {
1532 TheCopy.MI = 0; // Mark this one as done.
1533 ProgressMade = true;
1539 /// Return true if the two specified registers belong to different register
1540 /// classes. The registers may be either phys or virt regs.
1541 bool
1542 SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA,
1543 unsigned RegB) const {
1544 // Get the register classes for the first reg.
1545 if (TargetRegisterInfo::isPhysicalRegister(RegA)) {
1546 assert(TargetRegisterInfo::isVirtualRegister(RegB) &&
1547 "Shouldn't consider two physregs!");
1548 return !mri_->getRegClass(RegB)->contains(RegA);
1551 // Compare against the regclass for the second reg.
1552 const TargetRegisterClass *RegClassA = mri_->getRegClass(RegA);
1553 if (TargetRegisterInfo::isVirtualRegister(RegB)) {
1554 const TargetRegisterClass *RegClassB = mri_->getRegClass(RegB);
1555 return RegClassA != RegClassB;
1557 return !RegClassA->contains(RegB);
1560 /// lastRegisterUse - Returns the last (non-debug) use of the specific register
1561 /// between cycles Start and End or NULL if there are no uses.
1562 MachineOperand *
1563 SimpleRegisterCoalescing::lastRegisterUse(SlotIndex Start,
1564 SlotIndex End,
1565 unsigned Reg,
1566 SlotIndex &UseIdx) const{
1567 UseIdx = SlotIndex();
1568 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1569 MachineOperand *LastUse = NULL;
1570 for (MachineRegisterInfo::use_nodbg_iterator I = mri_->use_nodbg_begin(Reg),
1571 E = mri_->use_nodbg_end(); I != E; ++I) {
1572 MachineOperand &Use = I.getOperand();
1573 MachineInstr *UseMI = Use.getParent();
1574 if (UseMI->isIdentityCopy())
1575 continue;
1576 SlotIndex Idx = li_->getInstructionIndex(UseMI);
1577 // FIXME: Should this be Idx != UseIdx? SlotIndex() will return something
1578 // that compares higher than any other interval.
1579 if (Idx >= Start && Idx < End && Idx >= UseIdx) {
1580 LastUse = &Use;
1581 UseIdx = Idx.getUseIndex();
1584 return LastUse;
1587 SlotIndex s = Start;
1588 SlotIndex e = End.getPrevSlot().getBaseIndex();
1589 while (e >= s) {
1590 // Skip deleted instructions
1591 MachineInstr *MI = li_->getInstructionFromIndex(e);
1592 while (e != SlotIndex() && e.getPrevIndex() >= s && !MI) {
1593 e = e.getPrevIndex();
1594 MI = li_->getInstructionFromIndex(e);
1596 if (e < s || MI == NULL)
1597 return NULL;
1599 // Ignore identity copies.
1600 if (!MI->isIdentityCopy())
1601 for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) {
1602 MachineOperand &Use = MI->getOperand(i);
1603 if (Use.isReg() && Use.isUse() && Use.getReg() &&
1604 tri_->regsOverlap(Use.getReg(), Reg)) {
1605 UseIdx = e.getUseIndex();
1606 return &Use;
1610 e = e.getPrevIndex();
1613 return NULL;
1616 void SimpleRegisterCoalescing::releaseMemory() {
1617 JoinedCopies.clear();
1618 ReMatCopies.clear();
1619 ReMatDefs.clear();
1622 bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) {
1623 mf_ = &fn;
1624 mri_ = &fn.getRegInfo();
1625 tm_ = &fn.getTarget();
1626 tri_ = tm_->getRegisterInfo();
1627 tii_ = tm_->getInstrInfo();
1628 li_ = &getAnalysis<LiveIntervals>();
1629 AA = &getAnalysis<AliasAnalysis>();
1630 loopInfo = &getAnalysis<MachineLoopInfo>();
1632 DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
1633 << "********** Function: "
1634 << ((Value*)mf_->getFunction())->getName() << '\n');
1636 for (TargetRegisterInfo::regclass_iterator I = tri_->regclass_begin(),
1637 E = tri_->regclass_end(); I != E; ++I)
1638 allocatableRCRegs_.insert(std::make_pair(*I,
1639 tri_->getAllocatableSet(fn, *I)));
1641 // Join (coalesce) intervals if requested.
1642 if (EnableJoining) {
1643 joinIntervals();
1644 DEBUG({
1645 dbgs() << "********** INTERVALS POST JOINING **********\n";
1646 for (LiveIntervals::iterator I = li_->begin(), E = li_->end();
1647 I != E; ++I){
1648 I->second->print(dbgs(), tri_);
1649 dbgs() << "\n";
1654 // Perform a final pass over the instructions and compute spill weights
1655 // and remove identity moves.
1656 SmallVector<unsigned, 4> DeadDefs;
1657 for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
1658 mbbi != mbbe; ++mbbi) {
1659 MachineBasicBlock* mbb = mbbi;
1660 for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
1661 mii != mie; ) {
1662 MachineInstr *MI = mii;
1663 if (JoinedCopies.count(MI)) {
1664 // Delete all coalesced copies.
1665 bool DoDelete = true;
1666 assert(MI->isCopyLike() && "Unrecognized copy instruction");
1667 unsigned SrcReg = MI->getOperand(MI->isSubregToReg() ? 2 : 1).getReg();
1668 if (TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
1669 MI->getNumOperands() > 2)
1670 // Do not delete extract_subreg, insert_subreg of physical
1671 // registers unless the definition is dead. e.g.
1672 // %DO<def> = INSERT_SUBREG %D0<undef>, %S0<kill>, 1
1673 // or else the scavenger may complain. LowerSubregs will
1674 // delete them later.
1675 DoDelete = false;
1677 if (MI->allDefsAreDead()) {
1678 LiveInterval &li = li_->getInterval(SrcReg);
1679 if (!ShortenDeadCopySrcLiveRange(li, MI))
1680 ShortenDeadCopyLiveRange(li, MI);
1681 DoDelete = true;
1683 if (!DoDelete) {
1684 // We need the instruction to adjust liveness, so make it a KILL.
1685 if (MI->isSubregToReg()) {
1686 MI->RemoveOperand(3);
1687 MI->RemoveOperand(1);
1689 MI->setDesc(tii_->get(TargetOpcode::KILL));
1690 mii = llvm::next(mii);
1691 } else {
1692 li_->RemoveMachineInstrFromMaps(MI);
1693 mii = mbbi->erase(mii);
1694 ++numPeep;
1696 continue;
1699 // Now check if this is a remat'ed def instruction which is now dead.
1700 if (ReMatDefs.count(MI)) {
1701 bool isDead = true;
1702 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1703 const MachineOperand &MO = MI->getOperand(i);
1704 if (!MO.isReg())
1705 continue;
1706 unsigned Reg = MO.getReg();
1707 if (!Reg)
1708 continue;
1709 if (TargetRegisterInfo::isVirtualRegister(Reg))
1710 DeadDefs.push_back(Reg);
1711 if (MO.isDead())
1712 continue;
1713 if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
1714 !mri_->use_nodbg_empty(Reg)) {
1715 isDead = false;
1716 break;
1719 if (isDead) {
1720 while (!DeadDefs.empty()) {
1721 unsigned DeadDef = DeadDefs.back();
1722 DeadDefs.pop_back();
1723 RemoveDeadDef(li_->getInterval(DeadDef), MI);
1725 li_->RemoveMachineInstrFromMaps(mii);
1726 mii = mbbi->erase(mii);
1727 continue;
1728 } else
1729 DeadDefs.clear();
1732 // If the move will be an identity move delete it
1733 if (MI->isIdentityCopy()) {
1734 unsigned SrcReg = MI->getOperand(1).getReg();
1735 if (li_->hasInterval(SrcReg)) {
1736 LiveInterval &RegInt = li_->getInterval(SrcReg);
1737 // If def of this move instruction is dead, remove its live range
1738 // from the destination register's live interval.
1739 if (MI->allDefsAreDead()) {
1740 if (!ShortenDeadCopySrcLiveRange(RegInt, MI))
1741 ShortenDeadCopyLiveRange(RegInt, MI);
1744 li_->RemoveMachineInstrFromMaps(MI);
1745 mii = mbbi->erase(mii);
1746 ++numPeep;
1747 continue;
1750 ++mii;
1752 // Check for now unnecessary kill flags.
1753 if (li_->isNotInMIMap(MI)) continue;
1754 SlotIndex DefIdx = li_->getInstructionIndex(MI).getDefIndex();
1755 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1756 MachineOperand &MO = MI->getOperand(i);
1757 if (!MO.isReg() || !MO.isKill()) continue;
1758 unsigned reg = MO.getReg();
1759 if (!reg || !li_->hasInterval(reg)) continue;
1760 if (!li_->getInterval(reg).killedAt(DefIdx)) {
1761 MO.setIsKill(false);
1762 continue;
1764 // When leaving a kill flag on a physreg, check if any subregs should
1765 // remain alive.
1766 if (!TargetRegisterInfo::isPhysicalRegister(reg))
1767 continue;
1768 for (const unsigned *SR = tri_->getSubRegisters(reg);
1769 unsigned S = *SR; ++SR)
1770 if (li_->hasInterval(S) && li_->getInterval(S).liveAt(DefIdx))
1771 MI->addRegisterDefined(S, tri_);
1776 DEBUG(dump());
1777 return true;
1780 /// print - Implement the dump method.
1781 void SimpleRegisterCoalescing::print(raw_ostream &O, const Module* m) const {
1782 li_->print(O, m);
1785 RegisterCoalescer* llvm::createSimpleRegisterCoalescer() {
1786 return new SimpleRegisterCoalescing();
1789 // Make sure that anything that uses RegisterCoalescer pulls in this file...
1790 DEFINING_FILE_FOR(SimpleRegisterCoalescing)