Fixed some bugs.
[llvm/zpu.git] / lib / CodeGen / StrongPHIElimination.cpp
blob0bf6f8e4c2384daad8a1cb1644477deac2a79fac
1 //===- StrongPhiElimination.cpp - Eliminate PHI nodes by inserting copies -===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass eliminates machine instruction PHI nodes by inserting copy
11 // instructions, using an intelligent copy-folding technique based on
12 // dominator information. This is technique is derived from:
13 //
14 // Budimlic, et al. Fast copy coalescing and live-range identification.
15 // In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
16 // Design and Implementation (Berlin, Germany, June 17 - 19, 2002).
17 // PLDI '02. ACM, New York, NY, 25-32.
18 // DOI= http://doi.acm.org/10.1145/512529.512534
20 //===----------------------------------------------------------------------===//
22 #define DEBUG_TYPE "strongphielim"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineLoopInfo.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/RegisterCoalescer.h"
32 #include "llvm/Target/TargetInstrInfo.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/ADT/DepthFirstIterator.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/Support/Debug.h"
37 using namespace llvm;
39 namespace {
40 struct StrongPHIElimination : public MachineFunctionPass {
41 static char ID; // Pass identification, replacement for typeid
42 StrongPHIElimination() : MachineFunctionPass(ID) {
43 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
46 // Waiting stores, for each MBB, the set of copies that need to
47 // be inserted into that MBB
48 DenseMap<MachineBasicBlock*,
49 std::multimap<unsigned, unsigned> > Waiting;
51 // Stacks holds the renaming stack for each register
52 std::map<unsigned, std::vector<unsigned> > Stacks;
54 // Registers in UsedByAnother are PHI nodes that are themselves
55 // used as operands to another PHI node
56 std::set<unsigned> UsedByAnother;
58 // RenameSets are the is a map from a PHI-defined register
59 // to the input registers to be coalesced along with the
60 // predecessor block for those input registers.
61 std::map<unsigned, std::map<unsigned, MachineBasicBlock*> > RenameSets;
63 // PhiValueNumber holds the ID numbers of the VNs for each phi that we're
64 // eliminating, indexed by the register defined by that phi.
65 std::map<unsigned, unsigned> PhiValueNumber;
67 // Store the DFS-in number of each block
68 DenseMap<MachineBasicBlock*, unsigned> preorder;
70 // Store the DFS-out number of each block
71 DenseMap<MachineBasicBlock*, unsigned> maxpreorder;
73 bool runOnMachineFunction(MachineFunction &Fn);
75 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
76 AU.setPreservesCFG();
77 AU.addRequired<MachineDominatorTree>();
78 AU.addRequired<SlotIndexes>();
79 AU.addPreserved<SlotIndexes>();
80 AU.addRequired<LiveIntervals>();
82 // TODO: Actually make this true.
83 AU.addPreserved<LiveIntervals>();
84 AU.addPreserved<RegisterCoalescer>();
85 MachineFunctionPass::getAnalysisUsage(AU);
88 virtual void releaseMemory() {
89 preorder.clear();
90 maxpreorder.clear();
92 Waiting.clear();
93 Stacks.clear();
94 UsedByAnother.clear();
95 RenameSets.clear();
98 private:
100 /// DomForestNode - Represents a node in the "dominator forest". This is
101 /// a forest in which the nodes represent registers and the edges
102 /// represent a dominance relation in the block defining those registers.
103 struct DomForestNode {
104 private:
105 // Store references to our children
106 std::vector<DomForestNode*> children;
107 // The register we represent
108 unsigned reg;
110 // Add another node as our child
111 void addChild(DomForestNode* DFN) { children.push_back(DFN); }
113 public:
114 typedef std::vector<DomForestNode*>::iterator iterator;
116 // Create a DomForestNode by providing the register it represents, and
117 // the node to be its parent. The virtual root node has register 0
118 // and a null parent.
119 DomForestNode(unsigned r, DomForestNode* parent) : reg(r) {
120 if (parent)
121 parent->addChild(this);
124 ~DomForestNode() {
125 for (iterator I = begin(), E = end(); I != E; ++I)
126 delete *I;
129 /// getReg - Return the regiser that this node represents
130 inline unsigned getReg() { return reg; }
132 // Provide iterator access to our children
133 inline DomForestNode::iterator begin() { return children.begin(); }
134 inline DomForestNode::iterator end() { return children.end(); }
137 void computeDFS(MachineFunction& MF);
138 void processBlock(MachineBasicBlock* MBB);
140 std::vector<DomForestNode*> computeDomForest(
141 std::map<unsigned, MachineBasicBlock*>& instrs,
142 MachineRegisterInfo& MRI);
143 void processPHIUnion(MachineInstr* Inst,
144 std::map<unsigned, MachineBasicBlock*>& PHIUnion,
145 std::vector<StrongPHIElimination::DomForestNode*>& DF,
146 std::vector<std::pair<unsigned, unsigned> >& locals);
147 void ScheduleCopies(MachineBasicBlock* MBB, std::set<unsigned>& pushed);
148 void InsertCopies(MachineDomTreeNode* MBB,
149 SmallPtrSet<MachineBasicBlock*, 16>& v);
150 bool mergeLiveIntervals(unsigned primary, unsigned secondary);
154 char StrongPHIElimination::ID = 0;
155 INITIALIZE_PASS_BEGIN(StrongPHIElimination, "strong-phi-node-elimination",
156 "Eliminate PHI nodes for register allocation, intelligently", false, false)
157 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
158 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
159 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
160 INITIALIZE_PASS_END(StrongPHIElimination, "strong-phi-node-elimination",
161 "Eliminate PHI nodes for register allocation, intelligently", false, false)
163 char &llvm::StrongPHIEliminationID = StrongPHIElimination::ID;
165 /// computeDFS - Computes the DFS-in and DFS-out numbers of the dominator tree
166 /// of the given MachineFunction. These numbers are then used in other parts
167 /// of the PHI elimination process.
168 void StrongPHIElimination::computeDFS(MachineFunction& MF) {
169 SmallPtrSet<MachineDomTreeNode*, 8> frontier;
170 SmallPtrSet<MachineDomTreeNode*, 8> visited;
172 unsigned time = 0;
174 MachineDominatorTree& DT = getAnalysis<MachineDominatorTree>();
176 MachineDomTreeNode* node = DT.getRootNode();
178 std::vector<MachineDomTreeNode*> worklist;
179 worklist.push_back(node);
181 while (!worklist.empty()) {
182 MachineDomTreeNode* currNode = worklist.back();
184 if (!frontier.count(currNode)) {
185 frontier.insert(currNode);
186 ++time;
187 preorder.insert(std::make_pair(currNode->getBlock(), time));
190 bool inserted = false;
191 for (MachineDomTreeNode::iterator I = currNode->begin(), E = currNode->end();
192 I != E; ++I)
193 if (!frontier.count(*I) && !visited.count(*I)) {
194 worklist.push_back(*I);
195 inserted = true;
196 break;
199 if (!inserted) {
200 frontier.erase(currNode);
201 visited.insert(currNode);
202 maxpreorder.insert(std::make_pair(currNode->getBlock(), time));
204 worklist.pop_back();
209 namespace {
211 /// PreorderSorter - a helper class that is used to sort registers
212 /// according to the preorder number of their defining blocks
213 class PreorderSorter {
214 private:
215 DenseMap<MachineBasicBlock*, unsigned>& preorder;
216 MachineRegisterInfo& MRI;
218 public:
219 PreorderSorter(DenseMap<MachineBasicBlock*, unsigned>& p,
220 MachineRegisterInfo& M) : preorder(p), MRI(M) { }
222 bool operator()(unsigned A, unsigned B) {
223 if (A == B)
224 return false;
226 MachineBasicBlock* ABlock = MRI.getVRegDef(A)->getParent();
227 MachineBasicBlock* BBlock = MRI.getVRegDef(B)->getParent();
229 if (preorder[ABlock] < preorder[BBlock])
230 return true;
231 else if (preorder[ABlock] > preorder[BBlock])
232 return false;
234 return false;
240 /// computeDomForest - compute the subforest of the DomTree corresponding
241 /// to the defining blocks of the registers in question
242 std::vector<StrongPHIElimination::DomForestNode*>
243 StrongPHIElimination::computeDomForest(
244 std::map<unsigned, MachineBasicBlock*>& regs,
245 MachineRegisterInfo& MRI) {
246 // Begin by creating a virtual root node, since the actual results
247 // may well be a forest. Assume this node has maximum DFS-out number.
248 DomForestNode* VirtualRoot = new DomForestNode(0, 0);
249 maxpreorder.insert(std::make_pair((MachineBasicBlock*)0, ~0UL));
251 // Populate a worklist with the registers
252 std::vector<unsigned> worklist;
253 worklist.reserve(regs.size());
254 for (std::map<unsigned, MachineBasicBlock*>::iterator I = regs.begin(),
255 E = regs.end(); I != E; ++I)
256 worklist.push_back(I->first);
258 // Sort the registers by the DFS-in number of their defining block
259 PreorderSorter PS(preorder, MRI);
260 std::sort(worklist.begin(), worklist.end(), PS);
262 // Create a "current parent" stack, and put the virtual root on top of it
263 DomForestNode* CurrentParent = VirtualRoot;
264 std::vector<DomForestNode*> stack;
265 stack.push_back(VirtualRoot);
267 // Iterate over all the registers in the previously computed order
268 for (std::vector<unsigned>::iterator I = worklist.begin(), E = worklist.end();
269 I != E; ++I) {
270 unsigned pre = preorder[MRI.getVRegDef(*I)->getParent()];
271 MachineBasicBlock* parentBlock = CurrentParent->getReg() ?
272 MRI.getVRegDef(CurrentParent->getReg())->getParent() :
275 // If the DFS-in number of the register is greater than the DFS-out number
276 // of the current parent, repeatedly pop the parent stack until it isn't.
277 while (pre > maxpreorder[parentBlock]) {
278 stack.pop_back();
279 CurrentParent = stack.back();
281 parentBlock = CurrentParent->getReg() ?
282 MRI.getVRegDef(CurrentParent->getReg())->getParent() :
286 // Now that we've found the appropriate parent, create a DomForestNode for
287 // this register and attach it to the forest
288 DomForestNode* child = new DomForestNode(*I, CurrentParent);
290 // Push this new node on the "current parent" stack
291 stack.push_back(child);
292 CurrentParent = child;
295 // Return a vector containing the children of the virtual root node
296 std::vector<DomForestNode*> ret;
297 ret.insert(ret.end(), VirtualRoot->begin(), VirtualRoot->end());
298 return ret;
301 /// isLiveIn - helper method that determines, from a regno, if a register
302 /// is live into a block
303 static bool isLiveIn(unsigned r, MachineBasicBlock* MBB,
304 LiveIntervals& LI) {
305 LiveInterval& I = LI.getOrCreateInterval(r);
306 SlotIndex idx = LI.getMBBStartIdx(MBB);
307 return I.liveAt(idx);
310 /// isLiveOut - help method that determines, from a regno, if a register is
311 /// live out of a block.
312 static bool isLiveOut(unsigned r, MachineBasicBlock* MBB,
313 LiveIntervals& LI) {
314 for (MachineBasicBlock::succ_iterator PI = MBB->succ_begin(),
315 E = MBB->succ_end(); PI != E; ++PI)
316 if (isLiveIn(r, *PI, LI))
317 return true;
319 return false;
322 /// interferes - checks for local interferences by scanning a block. The only
323 /// trick parameter is 'mode' which tells it the relationship of the two
324 /// registers. 0 - defined in the same block, 1 - first properly dominates
325 /// second, 2 - second properly dominates first
326 static bool interferes(unsigned a, unsigned b, MachineBasicBlock* scan,
327 LiveIntervals& LV, unsigned mode) {
328 MachineInstr* def = 0;
329 MachineInstr* kill = 0;
331 // The code is still in SSA form at this point, so there is only one
332 // definition per VReg. Thus we can safely use MRI->getVRegDef().
333 const MachineRegisterInfo* MRI = &scan->getParent()->getRegInfo();
335 bool interference = false;
337 // Wallk the block, checking for interferences
338 for (MachineBasicBlock::iterator MBI = scan->begin(), MBE = scan->end();
339 MBI != MBE; ++MBI) {
340 MachineInstr* curr = MBI;
342 // Same defining block...
343 if (mode == 0) {
344 if (curr == MRI->getVRegDef(a)) {
345 // If we find our first definition, save it
346 if (!def) {
347 def = curr;
348 // If there's already an unkilled definition, then
349 // this is an interference
350 } else if (!kill) {
351 interference = true;
352 break;
353 // If there's a definition followed by a KillInst, then
354 // they can't interfere
355 } else {
356 interference = false;
357 break;
359 // Symmetric with the above
360 } else if (curr == MRI->getVRegDef(b)) {
361 if (!def) {
362 def = curr;
363 } else if (!kill) {
364 interference = true;
365 break;
366 } else {
367 interference = false;
368 break;
370 // Store KillInsts if they match up with the definition
371 } else if (curr->killsRegister(a)) {
372 if (def == MRI->getVRegDef(a)) {
373 kill = curr;
374 } else if (curr->killsRegister(b)) {
375 if (def == MRI->getVRegDef(b)) {
376 kill = curr;
380 // First properly dominates second...
381 } else if (mode == 1) {
382 if (curr == MRI->getVRegDef(b)) {
383 // Definition of second without kill of first is an interference
384 if (!kill) {
385 interference = true;
386 break;
387 // Definition after a kill is a non-interference
388 } else {
389 interference = false;
390 break;
392 // Save KillInsts of First
393 } else if (curr->killsRegister(a)) {
394 kill = curr;
396 // Symmetric with the above
397 } else if (mode == 2) {
398 if (curr == MRI->getVRegDef(a)) {
399 if (!kill) {
400 interference = true;
401 break;
402 } else {
403 interference = false;
404 break;
406 } else if (curr->killsRegister(b)) {
407 kill = curr;
412 return interference;
415 /// processBlock - Determine how to break up PHIs in the current block. Each
416 /// PHI is broken up by some combination of renaming its operands and inserting
417 /// copies. This method is responsible for determining which operands receive
418 /// which treatment.
419 void StrongPHIElimination::processBlock(MachineBasicBlock* MBB) {
420 LiveIntervals& LI = getAnalysis<LiveIntervals>();
421 MachineRegisterInfo& MRI = MBB->getParent()->getRegInfo();
423 // Holds names that have been added to a set in any PHI within this block
424 // before the current one.
425 std::set<unsigned> ProcessedNames;
427 // Iterate over all the PHI nodes in this block
428 MachineBasicBlock::iterator P = MBB->begin();
429 while (P != MBB->end() && P->isPHI()) {
430 unsigned DestReg = P->getOperand(0).getReg();
432 // Don't both doing PHI elimination for dead PHI's.
433 if (P->registerDefIsDead(DestReg)) {
434 ++P;
435 continue;
438 LiveInterval& PI = LI.getOrCreateInterval(DestReg);
439 SlotIndex pIdx = LI.getInstructionIndex(P).getDefIndex();
440 VNInfo* PVN = PI.getLiveRangeContaining(pIdx)->valno;
441 PhiValueNumber.insert(std::make_pair(DestReg, PVN->id));
443 // PHIUnion is the set of incoming registers to the PHI node that
444 // are going to be renames rather than having copies inserted. This set
445 // is refinded over the course of this function. UnionedBlocks is the set
446 // of corresponding MBBs.
447 std::map<unsigned, MachineBasicBlock*> PHIUnion;
448 SmallPtrSet<MachineBasicBlock*, 8> UnionedBlocks;
450 // Iterate over the operands of the PHI node
451 for (int i = P->getNumOperands() - 1; i >= 2; i-=2) {
452 unsigned SrcReg = P->getOperand(i-1).getReg();
454 // Don't need to try to coalesce a register with itself.
455 if (SrcReg == DestReg) {
456 ProcessedNames.insert(SrcReg);
457 continue;
460 // We don't need to insert copies for implicit_defs.
461 MachineInstr* DefMI = MRI.getVRegDef(SrcReg);
462 if (DefMI->isImplicitDef())
463 ProcessedNames.insert(SrcReg);
465 // Check for trivial interferences via liveness information, allowing us
466 // to avoid extra work later. Any registers that interfere cannot both
467 // be in the renaming set, so choose one and add copies for it instead.
468 // The conditions are:
469 // 1) if the operand is live into the PHI node's block OR
470 // 2) if the PHI node is live out of the operand's defining block OR
471 // 3) if the operand is itself a PHI node and the original PHI is
472 // live into the operand's defining block OR
473 // 4) if the operand is already being renamed for another PHI node
474 // in this block OR
475 // 5) if any two operands are defined in the same block, insert copies
476 // for one of them
477 if (isLiveIn(SrcReg, P->getParent(), LI) ||
478 isLiveOut(P->getOperand(0).getReg(),
479 MRI.getVRegDef(SrcReg)->getParent(), LI) ||
480 ( MRI.getVRegDef(SrcReg)->isPHI() &&
481 isLiveIn(P->getOperand(0).getReg(),
482 MRI.getVRegDef(SrcReg)->getParent(), LI) ) ||
483 ProcessedNames.count(SrcReg) ||
484 UnionedBlocks.count(MRI.getVRegDef(SrcReg)->getParent())) {
486 // Add a copy for the selected register
487 MachineBasicBlock* From = P->getOperand(i).getMBB();
488 Waiting[From].insert(std::make_pair(SrcReg, DestReg));
489 UsedByAnother.insert(SrcReg);
490 } else {
491 // Otherwise, add it to the renaming set
492 PHIUnion.insert(std::make_pair(SrcReg,P->getOperand(i).getMBB()));
493 UnionedBlocks.insert(MRI.getVRegDef(SrcReg)->getParent());
497 // Compute the dominator forest for the renaming set. This is a forest
498 // where the nodes are the registers and the edges represent dominance
499 // relations between the defining blocks of the registers
500 std::vector<StrongPHIElimination::DomForestNode*> DF =
501 computeDomForest(PHIUnion, MRI);
503 // Walk DomForest to resolve interferences at an inter-block level. This
504 // will remove registers from the renaming set (and insert copies for them)
505 // if interferences are found.
506 std::vector<std::pair<unsigned, unsigned> > localInterferences;
507 processPHIUnion(P, PHIUnion, DF, localInterferences);
509 // If one of the inputs is defined in the same block as the current PHI
510 // then we need to check for a local interference between that input and
511 // the PHI.
512 for (std::map<unsigned, MachineBasicBlock*>::iterator I = PHIUnion.begin(),
513 E = PHIUnion.end(); I != E; ++I)
514 if (MRI.getVRegDef(I->first)->getParent() == P->getParent())
515 localInterferences.push_back(std::make_pair(I->first,
516 P->getOperand(0).getReg()));
518 // The dominator forest walk may have returned some register pairs whose
519 // interference cannot be determined from dominator analysis. We now
520 // examine these pairs for local interferences.
521 for (std::vector<std::pair<unsigned, unsigned> >::iterator I =
522 localInterferences.begin(), E = localInterferences.end(); I != E; ++I) {
523 std::pair<unsigned, unsigned> p = *I;
525 MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
527 // Determine the block we need to scan and the relationship between
528 // the two registers
529 MachineBasicBlock* scan = 0;
530 unsigned mode = 0;
531 if (MRI.getVRegDef(p.first)->getParent() ==
532 MRI.getVRegDef(p.second)->getParent()) {
533 scan = MRI.getVRegDef(p.first)->getParent();
534 mode = 0; // Same block
535 } else if (MDT.dominates(MRI.getVRegDef(p.first)->getParent(),
536 MRI.getVRegDef(p.second)->getParent())) {
537 scan = MRI.getVRegDef(p.second)->getParent();
538 mode = 1; // First dominates second
539 } else {
540 scan = MRI.getVRegDef(p.first)->getParent();
541 mode = 2; // Second dominates first
544 // If there's an interference, we need to insert copies
545 if (interferes(p.first, p.second, scan, LI, mode)) {
546 // Insert copies for First
547 for (int i = P->getNumOperands() - 1; i >= 2; i-=2) {
548 if (P->getOperand(i-1).getReg() == p.first) {
549 unsigned SrcReg = p.first;
550 MachineBasicBlock* From = P->getOperand(i).getMBB();
552 Waiting[From].insert(std::make_pair(SrcReg,
553 P->getOperand(0).getReg()));
554 UsedByAnother.insert(SrcReg);
556 PHIUnion.erase(SrcReg);
562 // Add the renaming set for this PHI node to our overall renaming information
563 for (std::map<unsigned, MachineBasicBlock*>::iterator QI = PHIUnion.begin(),
564 QE = PHIUnion.end(); QI != QE; ++QI) {
565 DEBUG(dbgs() << "Adding Renaming: " << QI->first << " -> "
566 << P->getOperand(0).getReg() << "\n");
569 RenameSets.insert(std::make_pair(P->getOperand(0).getReg(), PHIUnion));
571 // Remember which registers are already renamed, so that we don't try to
572 // rename them for another PHI node in this block
573 for (std::map<unsigned, MachineBasicBlock*>::iterator I = PHIUnion.begin(),
574 E = PHIUnion.end(); I != E; ++I)
575 ProcessedNames.insert(I->first);
577 ++P;
581 /// processPHIUnion - Take a set of candidate registers to be coalesced when
582 /// decomposing the PHI instruction. Use the DominanceForest to remove the ones
583 /// that are known to interfere, and flag others that need to be checked for
584 /// local interferences.
585 void StrongPHIElimination::processPHIUnion(MachineInstr* Inst,
586 std::map<unsigned, MachineBasicBlock*>& PHIUnion,
587 std::vector<StrongPHIElimination::DomForestNode*>& DF,
588 std::vector<std::pair<unsigned, unsigned> >& locals) {
590 std::vector<DomForestNode*> worklist(DF.begin(), DF.end());
591 SmallPtrSet<DomForestNode*, 4> visited;
593 // Code is still in SSA form, so we can use MRI::getVRegDef()
594 MachineRegisterInfo& MRI = Inst->getParent()->getParent()->getRegInfo();
596 LiveIntervals& LI = getAnalysis<LiveIntervals>();
597 unsigned DestReg = Inst->getOperand(0).getReg();
599 // DF walk on the DomForest
600 while (!worklist.empty()) {
601 DomForestNode* DFNode = worklist.back();
603 visited.insert(DFNode);
605 bool inserted = false;
606 for (DomForestNode::iterator CI = DFNode->begin(), CE = DFNode->end();
607 CI != CE; ++CI) {
608 DomForestNode* child = *CI;
610 // If the current node is live-out of the defining block of one of its
611 // children, insert a copy for it. NOTE: The paper actually calls for
612 // a more elaborate heuristic for determining whether to insert copies
613 // for the child or the parent. In the interest of simplicity, we're
614 // just always choosing the parent.
615 if (isLiveOut(DFNode->getReg(),
616 MRI.getVRegDef(child->getReg())->getParent(), LI)) {
617 // Insert copies for parent
618 for (int i = Inst->getNumOperands() - 1; i >= 2; i-=2) {
619 if (Inst->getOperand(i-1).getReg() == DFNode->getReg()) {
620 unsigned SrcReg = DFNode->getReg();
621 MachineBasicBlock* From = Inst->getOperand(i).getMBB();
623 Waiting[From].insert(std::make_pair(SrcReg, DestReg));
624 UsedByAnother.insert(SrcReg);
626 PHIUnion.erase(SrcReg);
630 // If a node is live-in to the defining block of one of its children, but
631 // not live-out, then we need to scan that block for local interferences.
632 } else if (isLiveIn(DFNode->getReg(),
633 MRI.getVRegDef(child->getReg())->getParent(), LI) ||
634 MRI.getVRegDef(DFNode->getReg())->getParent() ==
635 MRI.getVRegDef(child->getReg())->getParent()) {
636 // Add (p, c) to possible local interferences
637 locals.push_back(std::make_pair(DFNode->getReg(), child->getReg()));
640 if (!visited.count(child)) {
641 worklist.push_back(child);
642 inserted = true;
646 if (!inserted) worklist.pop_back();
650 /// ScheduleCopies - Insert copies into predecessor blocks, scheduling
651 /// them properly so as to avoid the 'lost copy' and the 'virtual swap'
652 /// problems.
654 /// Based on "Practical Improvements to the Construction and Destruction
655 /// of Static Single Assignment Form" by Briggs, et al.
656 void StrongPHIElimination::ScheduleCopies(MachineBasicBlock* MBB,
657 std::set<unsigned>& pushed) {
658 // FIXME: This function needs to update LiveIntervals
659 std::multimap<unsigned, unsigned>& copy_set= Waiting[MBB];
661 std::multimap<unsigned, unsigned> worklist;
662 std::map<unsigned, unsigned> map;
664 // Setup worklist of initial copies
665 for (std::multimap<unsigned, unsigned>::iterator I = copy_set.begin(),
666 E = copy_set.end(); I != E; ) {
667 map.insert(std::make_pair(I->first, I->first));
668 map.insert(std::make_pair(I->second, I->second));
670 if (!UsedByAnother.count(I->second)) {
671 worklist.insert(*I);
673 // Avoid iterator invalidation
674 std::multimap<unsigned, unsigned>::iterator OI = I;
675 ++I;
676 copy_set.erase(OI);
677 } else {
678 ++I;
682 LiveIntervals& LI = getAnalysis<LiveIntervals>();
683 MachineFunction* MF = MBB->getParent();
684 MachineRegisterInfo& MRI = MF->getRegInfo();
685 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
687 SmallVector<std::pair<unsigned, MachineInstr*>, 4> InsertedPHIDests;
689 // Iterate over the worklist, inserting copies
690 while (!worklist.empty() || !copy_set.empty()) {
691 while (!worklist.empty()) {
692 std::multimap<unsigned, unsigned>::iterator WI = worklist.begin();
693 std::pair<unsigned, unsigned> curr = *WI;
694 worklist.erase(WI);
696 const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(curr.first);
698 if (isLiveOut(curr.second, MBB, LI)) {
699 // Create a temporary
700 unsigned t = MF->getRegInfo().createVirtualRegister(RC);
702 // Insert copy from curr.second to a temporary at
703 // the Phi defining curr.second
704 MachineBasicBlock::iterator PI = MRI.getVRegDef(curr.second);
705 BuildMI(*PI->getParent(), PI, DebugLoc(), TII->get(TargetOpcode::COPY),
706 t).addReg(curr.second);
707 DEBUG(dbgs() << "Inserted copy from " << curr.second << " to " << t
708 << "\n");
710 // Push temporary on Stacks
711 Stacks[curr.second].push_back(t);
713 // Insert curr.second in pushed
714 pushed.insert(curr.second);
716 // Create a live interval for this temporary
717 InsertedPHIDests.push_back(std::make_pair(t, --PI));
720 // Insert copy from map[curr.first] to curr.second
721 BuildMI(*MBB, MBB->getFirstTerminator(), DebugLoc(),
722 TII->get(TargetOpcode::COPY), curr.second).addReg(map[curr.first]);
723 map[curr.first] = curr.second;
724 DEBUG(dbgs() << "Inserted copy from " << curr.first << " to "
725 << curr.second << "\n");
727 // Push this copy onto InsertedPHICopies so we can
728 // update LiveIntervals with it.
729 MachineBasicBlock::iterator MI = MBB->getFirstTerminator();
730 InsertedPHIDests.push_back(std::make_pair(curr.second, --MI));
732 // If curr.first is a destination in copy_set...
733 for (std::multimap<unsigned, unsigned>::iterator I = copy_set.begin(),
734 E = copy_set.end(); I != E; )
735 if (curr.first == I->second) {
736 std::pair<unsigned, unsigned> temp = *I;
737 worklist.insert(temp);
739 // Avoid iterator invalidation
740 std::multimap<unsigned, unsigned>::iterator OI = I;
741 ++I;
742 copy_set.erase(OI);
744 break;
745 } else {
746 ++I;
750 if (!copy_set.empty()) {
751 std::multimap<unsigned, unsigned>::iterator CI = copy_set.begin();
752 std::pair<unsigned, unsigned> curr = *CI;
753 worklist.insert(curr);
754 copy_set.erase(CI);
756 LiveInterval& I = LI.getInterval(curr.second);
757 MachineBasicBlock::iterator term = MBB->getFirstTerminator();
758 SlotIndex endIdx = SlotIndex();
759 if (term != MBB->end())
760 endIdx = LI.getInstructionIndex(term);
761 else
762 endIdx = LI.getMBBEndIdx(MBB);
764 if (I.liveAt(endIdx)) {
765 const TargetRegisterClass *RC =
766 MF->getRegInfo().getRegClass(curr.first);
768 // Insert a copy from dest to a new temporary t at the end of b
769 unsigned t = MF->getRegInfo().createVirtualRegister(RC);
770 BuildMI(*MBB, MBB->getFirstTerminator(), DebugLoc(),
771 TII->get(TargetOpcode::COPY), t).addReg(curr.second);
772 map[curr.second] = t;
774 MachineBasicBlock::iterator TI = MBB->getFirstTerminator();
775 InsertedPHIDests.push_back(std::make_pair(t, --TI));
780 // Renumber the instructions so that we can perform the index computations
781 // needed to create new live intervals.
782 LI.renumber();
784 // For copies that we inserted at the ends of predecessors, we construct
785 // live intervals. This is pretty easy, since we know that the destination
786 // register cannot have be in live at that point previously. We just have
787 // to make sure that, for registers that serve as inputs to more than one
788 // PHI, we don't create multiple overlapping live intervals.
789 std::set<unsigned> RegHandled;
790 for (SmallVector<std::pair<unsigned, MachineInstr*>, 4>::iterator I =
791 InsertedPHIDests.begin(), E = InsertedPHIDests.end(); I != E; ++I) {
792 if (RegHandled.insert(I->first).second) {
793 LiveInterval& Int = LI.getOrCreateInterval(I->first);
794 SlotIndex instrIdx = LI.getInstructionIndex(I->second);
795 if (Int.liveAt(instrIdx.getDefIndex()))
796 Int.removeRange(instrIdx.getDefIndex(),
797 LI.getMBBEndIdx(I->second->getParent()).getNextSlot(),
798 true);
800 LiveRange R = LI.addLiveRangeToEndOfBlock(I->first, I->second);
801 R.valno->setCopy(I->second);
802 R.valno->def = LI.getInstructionIndex(I->second).getDefIndex();
807 /// InsertCopies - insert copies into MBB and all of its successors
808 void StrongPHIElimination::InsertCopies(MachineDomTreeNode* MDTN,
809 SmallPtrSet<MachineBasicBlock*, 16>& visited) {
810 MachineBasicBlock* MBB = MDTN->getBlock();
811 visited.insert(MBB);
813 std::set<unsigned> pushed;
815 LiveIntervals& LI = getAnalysis<LiveIntervals>();
816 // Rewrite register uses from Stacks
817 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
818 I != E; ++I) {
819 if (I->isPHI())
820 continue;
822 for (unsigned i = 0; i < I->getNumOperands(); ++i)
823 if (I->getOperand(i).isReg() &&
824 Stacks[I->getOperand(i).getReg()].size()) {
825 // Remove the live range for the old vreg.
826 LiveInterval& OldInt = LI.getInterval(I->getOperand(i).getReg());
827 LiveInterval::iterator OldLR =
828 OldInt.FindLiveRangeContaining(LI.getInstructionIndex(I).getUseIndex());
829 if (OldLR != OldInt.end())
830 OldInt.removeRange(*OldLR, true);
832 // Change the register
833 I->getOperand(i).setReg(Stacks[I->getOperand(i).getReg()].back());
835 // Add a live range for the new vreg
836 LiveInterval& Int = LI.getInterval(I->getOperand(i).getReg());
837 VNInfo* FirstVN = *Int.vni_begin();
838 FirstVN->setHasPHIKill(false);
839 LiveRange LR (LI.getMBBStartIdx(I->getParent()),
840 LI.getInstructionIndex(I).getUseIndex().getNextSlot(),
841 FirstVN);
843 Int.addRange(LR);
847 // Schedule the copies for this block
848 ScheduleCopies(MBB, pushed);
850 // Recur down the dominator tree.
851 for (MachineDomTreeNode::iterator I = MDTN->begin(),
852 E = MDTN->end(); I != E; ++I)
853 if (!visited.count((*I)->getBlock()))
854 InsertCopies(*I, visited);
856 // As we exit this block, pop the names we pushed while processing it
857 for (std::set<unsigned>::iterator I = pushed.begin(),
858 E = pushed.end(); I != E; ++I)
859 Stacks[*I].pop_back();
862 bool StrongPHIElimination::mergeLiveIntervals(unsigned primary,
863 unsigned secondary) {
865 LiveIntervals& LI = getAnalysis<LiveIntervals>();
866 LiveInterval& LHS = LI.getOrCreateInterval(primary);
867 LiveInterval& RHS = LI.getOrCreateInterval(secondary);
869 LI.renumber();
871 DenseMap<VNInfo*, VNInfo*> VNMap;
872 for (LiveInterval::iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) {
873 LiveRange R = *I;
875 SlotIndex Start = R.start;
876 SlotIndex End = R.end;
877 if (LHS.getLiveRangeContaining(Start))
878 return false;
880 if (LHS.getLiveRangeContaining(End))
881 return false;
883 LiveInterval::iterator RI = std::upper_bound(LHS.begin(), LHS.end(), R);
884 if (RI != LHS.end() && RI->start < End)
885 return false;
888 for (LiveInterval::iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) {
889 LiveRange R = *I;
890 VNInfo* OldVN = R.valno;
891 VNInfo*& NewVN = VNMap[OldVN];
892 if (!NewVN) {
893 NewVN = LHS.createValueCopy(OldVN, LI.getVNInfoAllocator());
896 LiveRange LR (R.start, R.end, NewVN);
897 LHS.addRange(LR);
900 LI.removeInterval(RHS.reg);
902 return true;
905 bool StrongPHIElimination::runOnMachineFunction(MachineFunction &Fn) {
906 LiveIntervals& LI = getAnalysis<LiveIntervals>();
908 // Compute DFS numbers of each block
909 computeDFS(Fn);
911 // Determine which phi node operands need copies
912 for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
913 if (!I->empty() && I->begin()->isPHI())
914 processBlock(I);
916 // Break interferences where two different phis want to coalesce
917 // in the same register.
918 std::set<unsigned> seen;
919 typedef std::map<unsigned, std::map<unsigned, MachineBasicBlock*> >
920 RenameSetType;
921 for (RenameSetType::iterator I = RenameSets.begin(), E = RenameSets.end();
922 I != E; ++I) {
923 for (std::map<unsigned, MachineBasicBlock*>::iterator
924 OI = I->second.begin(), OE = I->second.end(); OI != OE; ) {
925 if (!seen.count(OI->first)) {
926 seen.insert(OI->first);
927 ++OI;
928 } else {
929 Waiting[OI->second].insert(std::make_pair(OI->first, I->first));
930 unsigned reg = OI->first;
931 ++OI;
932 I->second.erase(reg);
933 DEBUG(dbgs() << "Removing Renaming: " << reg << " -> " << I->first
934 << "\n");
939 // Insert copies
940 // FIXME: This process should probably preserve LiveIntervals
941 SmallPtrSet<MachineBasicBlock*, 16> visited;
942 MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
943 InsertCopies(MDT.getRootNode(), visited);
945 // Perform renaming
946 for (RenameSetType::iterator I = RenameSets.begin(), E = RenameSets.end();
947 I != E; ++I)
948 while (I->second.size()) {
949 std::map<unsigned, MachineBasicBlock*>::iterator SI = I->second.begin();
951 DEBUG(dbgs() << "Renaming: " << SI->first << " -> " << I->first << "\n");
953 if (SI->first != I->first) {
954 if (mergeLiveIntervals(I->first, SI->first)) {
955 Fn.getRegInfo().replaceRegWith(SI->first, I->first);
957 if (RenameSets.count(SI->first)) {
958 I->second.insert(RenameSets[SI->first].begin(),
959 RenameSets[SI->first].end());
960 RenameSets.erase(SI->first);
962 } else {
963 // Insert a last-minute copy if a conflict was detected.
964 const TargetInstrInfo *TII = Fn.getTarget().getInstrInfo();
965 BuildMI(*SI->second, SI->second->getFirstTerminator(), DebugLoc(),
966 TII->get(TargetOpcode::COPY), I->first).addReg(SI->first);
968 LI.renumber();
970 LiveInterval& Int = LI.getOrCreateInterval(I->first);
971 SlotIndex instrIdx =
972 LI.getInstructionIndex(--SI->second->getFirstTerminator());
973 if (Int.liveAt(instrIdx.getDefIndex()))
974 Int.removeRange(instrIdx.getDefIndex(),
975 LI.getMBBEndIdx(SI->second).getNextSlot(), true);
977 LiveRange R = LI.addLiveRangeToEndOfBlock(I->first,
978 --SI->second->getFirstTerminator());
979 R.valno->setCopy(--SI->second->getFirstTerminator());
980 R.valno->def = instrIdx.getDefIndex();
982 DEBUG(dbgs() << "Renaming failed: " << SI->first << " -> "
983 << I->first << "\n");
987 LiveInterval& Int = LI.getOrCreateInterval(I->first);
988 const LiveRange* LR =
989 Int.getLiveRangeContaining(LI.getMBBEndIdx(SI->second));
990 LR->valno->setHasPHIKill(true);
992 I->second.erase(SI->first);
995 // Remove PHIs
996 std::vector<MachineInstr*> phis;
997 for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
998 for (MachineBasicBlock::iterator BI = I->begin(), BE = I->end();
999 BI != BE; ++BI)
1000 if (BI->isPHI())
1001 phis.push_back(BI);
1004 for (std::vector<MachineInstr*>::iterator I = phis.begin(), E = phis.end();
1005 I != E; ) {
1006 MachineInstr* PInstr = *(I++);
1008 // If this is a dead PHI node, then remove it from LiveIntervals.
1009 unsigned DestReg = PInstr->getOperand(0).getReg();
1010 LiveInterval& PI = LI.getInterval(DestReg);
1011 if (PInstr->registerDefIsDead(DestReg)) {
1012 if (PI.containsOneValue()) {
1013 LI.removeInterval(DestReg);
1014 } else {
1015 SlotIndex idx = LI.getInstructionIndex(PInstr).getDefIndex();
1016 PI.removeRange(*PI.getLiveRangeContaining(idx), true);
1018 } else {
1019 // Trim live intervals of input registers. They are no longer live into
1020 // this block if they died after the PHI. If they lived after it, don't
1021 // trim them because they might have other legitimate uses.
1022 for (unsigned i = 1; i < PInstr->getNumOperands(); i += 2) {
1023 unsigned reg = PInstr->getOperand(i).getReg();
1025 MachineBasicBlock* MBB = PInstr->getOperand(i+1).getMBB();
1026 LiveInterval& InputI = LI.getInterval(reg);
1027 if (MBB != PInstr->getParent() &&
1028 InputI.liveAt(LI.getMBBStartIdx(PInstr->getParent())) &&
1029 InputI.expiredAt(LI.getInstructionIndex(PInstr).getNextIndex()))
1030 InputI.removeRange(LI.getMBBStartIdx(PInstr->getParent()),
1031 LI.getInstructionIndex(PInstr),
1032 true);
1035 // If the PHI is not dead, then the valno defined by the PHI
1036 // now has an unknown def.
1037 SlotIndex idx = LI.getInstructionIndex(PInstr).getDefIndex();
1038 const LiveRange* PLR = PI.getLiveRangeContaining(idx);
1039 PLR->valno->setIsPHIDef(true);
1040 LiveRange R (LI.getMBBStartIdx(PInstr->getParent()),
1041 PLR->start, PLR->valno);
1042 PI.addRange(R);
1045 LI.RemoveMachineInstrFromMaps(PInstr);
1046 PInstr->eraseFromParent();
1049 LI.renumber();
1051 return true;