1 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the TwoAddress instruction pass which is used
11 // by most register allocators. Two-Address instructions are rewritten
21 // Note that if a register allocator chooses to use this pass, that it
22 // has to be capable of handling the non-SSA nature of these rewritten
25 // It is also worth noting that the duplicate operand of the two
26 // address instruction is removed.
28 //===----------------------------------------------------------------------===//
30 #define DEBUG_TYPE "twoaddrinstr"
31 #include "llvm/CodeGen/Passes.h"
32 #include "llvm/Function.h"
33 #include "llvm/CodeGen/LiveVariables.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/Analysis/AliasAnalysis.h"
39 #include "llvm/Target/TargetRegisterInfo.h"
40 #include "llvm/Target/TargetInstrInfo.h"
41 #include "llvm/Target/TargetMachine.h"
42 #include "llvm/Target/TargetOptions.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/ADT/BitVector.h"
46 #include "llvm/ADT/DenseMap.h"
47 #include "llvm/ADT/SmallSet.h"
48 #include "llvm/ADT/Statistic.h"
49 #include "llvm/ADT/STLExtras.h"
52 STATISTIC(NumTwoAddressInstrs
, "Number of two-address instructions");
53 STATISTIC(NumCommuted
, "Number of instructions commuted to coalesce");
54 STATISTIC(NumAggrCommuted
, "Number of instructions aggressively commuted");
55 STATISTIC(NumConvertedTo3Addr
, "Number of instructions promoted to 3-address");
56 STATISTIC(Num3AddrSunk
, "Number of 3-address instructions sunk");
57 STATISTIC(NumReMats
, "Number of instructions re-materialized");
58 STATISTIC(NumDeletes
, "Number of dead instructions deleted");
61 class TwoAddressInstructionPass
: public MachineFunctionPass
{
62 const TargetInstrInfo
*TII
;
63 const TargetRegisterInfo
*TRI
;
64 MachineRegisterInfo
*MRI
;
68 // DistanceMap - Keep track the distance of a MI from the start of the
69 // current basic block.
70 DenseMap
<MachineInstr
*, unsigned> DistanceMap
;
72 // SrcRegMap - A map from virtual registers to physical registers which
73 // are likely targets to be coalesced to due to copies from physical
74 // registers to virtual registers. e.g. v1024 = move r0.
75 DenseMap
<unsigned, unsigned> SrcRegMap
;
77 // DstRegMap - A map from virtual registers to physical registers which
78 // are likely targets to be coalesced to due to copies to physical
79 // registers from virtual registers. e.g. r1 = move v1024.
80 DenseMap
<unsigned, unsigned> DstRegMap
;
82 /// RegSequences - Keep track the list of REG_SEQUENCE instructions seen
83 /// during the initial walk of the machine function.
84 SmallVector
<MachineInstr
*, 16> RegSequences
;
86 bool Sink3AddrInstruction(MachineBasicBlock
*MBB
, MachineInstr
*MI
,
88 MachineBasicBlock::iterator OldPos
);
90 bool isProfitableToReMat(unsigned Reg
, const TargetRegisterClass
*RC
,
91 MachineInstr
*MI
, MachineInstr
*DefMI
,
92 MachineBasicBlock
*MBB
, unsigned Loc
);
94 bool NoUseAfterLastDef(unsigned Reg
, MachineBasicBlock
*MBB
, unsigned Dist
,
97 MachineInstr
*FindLastUseInMBB(unsigned Reg
, MachineBasicBlock
*MBB
,
100 bool isProfitableToCommute(unsigned regB
, unsigned regC
,
101 MachineInstr
*MI
, MachineBasicBlock
*MBB
,
104 bool CommuteInstruction(MachineBasicBlock::iterator
&mi
,
105 MachineFunction::iterator
&mbbi
,
106 unsigned RegB
, unsigned RegC
, unsigned Dist
);
108 bool isProfitableToConv3Addr(unsigned RegA
);
110 bool ConvertInstTo3Addr(MachineBasicBlock::iterator
&mi
,
111 MachineBasicBlock::iterator
&nmi
,
112 MachineFunction::iterator
&mbbi
,
113 unsigned RegB
, unsigned Dist
);
115 typedef std::pair
<std::pair
<unsigned, bool>, MachineInstr
*> NewKill
;
116 bool canUpdateDeletedKills(SmallVector
<unsigned, 4> &Kills
,
117 SmallVector
<NewKill
, 4> &NewKills
,
118 MachineBasicBlock
*MBB
, unsigned Dist
);
119 bool DeleteUnusedInstr(MachineBasicBlock::iterator
&mi
,
120 MachineBasicBlock::iterator
&nmi
,
121 MachineFunction::iterator
&mbbi
, unsigned Dist
);
123 bool TryInstructionTransform(MachineBasicBlock::iterator
&mi
,
124 MachineBasicBlock::iterator
&nmi
,
125 MachineFunction::iterator
&mbbi
,
126 unsigned SrcIdx
, unsigned DstIdx
,
129 void ProcessCopy(MachineInstr
*MI
, MachineBasicBlock
*MBB
,
130 SmallPtrSet
<MachineInstr
*, 8> &Processed
);
132 void CoalesceExtSubRegs(SmallVector
<unsigned,4> &Srcs
, unsigned DstReg
);
134 /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
135 /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
136 /// sub-register references of the register defined by REG_SEQUENCE.
137 bool EliminateRegSequences();
140 static char ID
; // Pass identification, replacement for typeid
141 TwoAddressInstructionPass() : MachineFunctionPass(ID
) {
142 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
145 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
146 AU
.setPreservesCFG();
147 AU
.addRequired
<AliasAnalysis
>();
148 AU
.addPreserved
<LiveVariables
>();
149 AU
.addPreservedID(MachineLoopInfoID
);
150 AU
.addPreservedID(MachineDominatorsID
);
152 AU
.addPreservedID(StrongPHIEliminationID
);
154 AU
.addPreservedID(PHIEliminationID
);
155 MachineFunctionPass::getAnalysisUsage(AU
);
158 /// runOnMachineFunction - Pass entry point.
159 bool runOnMachineFunction(MachineFunction
&);
163 char TwoAddressInstructionPass::ID
= 0;
164 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass
, "twoaddressinstruction",
165 "Two-Address instruction pass", false, false)
166 INITIALIZE_AG_DEPENDENCY(AliasAnalysis
)
167 INITIALIZE_PASS_END(TwoAddressInstructionPass
, "twoaddressinstruction",
168 "Two-Address instruction pass", false, false)
170 char &llvm::TwoAddressInstructionPassID
= TwoAddressInstructionPass::ID
;
172 /// Sink3AddrInstruction - A two-address instruction has been converted to a
173 /// three-address instruction to avoid clobbering a register. Try to sink it
174 /// past the instruction that would kill the above mentioned register to reduce
175 /// register pressure.
176 bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock
*MBB
,
177 MachineInstr
*MI
, unsigned SavedReg
,
178 MachineBasicBlock::iterator OldPos
) {
179 // Check if it's safe to move this instruction.
180 bool SeenStore
= true; // Be conservative.
181 if (!MI
->isSafeToMove(TII
, AA
, SeenStore
))
185 SmallSet
<unsigned, 4> UseRegs
;
187 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
188 const MachineOperand
&MO
= MI
->getOperand(i
);
191 unsigned MOReg
= MO
.getReg();
194 if (MO
.isUse() && MOReg
!= SavedReg
)
195 UseRegs
.insert(MO
.getReg());
199 // Don't try to move it if it implicitly defines a register.
202 // For now, don't move any instructions that define multiple registers.
204 DefReg
= MO
.getReg();
207 // Find the instruction that kills SavedReg.
208 MachineInstr
*KillMI
= NULL
;
209 for (MachineRegisterInfo::use_nodbg_iterator
210 UI
= MRI
->use_nodbg_begin(SavedReg
),
211 UE
= MRI
->use_nodbg_end(); UI
!= UE
; ++UI
) {
212 MachineOperand
&UseMO
= UI
.getOperand();
215 KillMI
= UseMO
.getParent();
219 if (!KillMI
|| KillMI
->getParent() != MBB
|| KillMI
== MI
)
222 // If any of the definitions are used by another instruction between the
223 // position and the kill use, then it's not safe to sink it.
225 // FIXME: This can be sped up if there is an easy way to query whether an
226 // instruction is before or after another instruction. Then we can use
227 // MachineRegisterInfo def / use instead.
228 MachineOperand
*KillMO
= NULL
;
229 MachineBasicBlock::iterator KillPos
= KillMI
;
232 unsigned NumVisited
= 0;
233 for (MachineBasicBlock::iterator I
= llvm::next(OldPos
); I
!= KillPos
; ++I
) {
234 MachineInstr
*OtherMI
= I
;
235 // DBG_VALUE cannot be counted against the limit.
236 if (OtherMI
->isDebugValue())
238 if (NumVisited
> 30) // FIXME: Arbitrary limit to reduce compile time cost.
241 for (unsigned i
= 0, e
= OtherMI
->getNumOperands(); i
!= e
; ++i
) {
242 MachineOperand
&MO
= OtherMI
->getOperand(i
);
245 unsigned MOReg
= MO
.getReg();
252 if (OtherMI
== KillMI
&& MOReg
== SavedReg
)
253 // Save the operand that kills the register. We want to unset the kill
254 // marker if we can sink MI past it.
256 else if (UseRegs
.count(MOReg
))
257 // One of the uses is killed before the destination.
263 // Update kill and LV information.
264 KillMO
->setIsKill(false);
265 KillMO
= MI
->findRegisterUseOperand(SavedReg
, false, TRI
);
266 KillMO
->setIsKill(true);
269 LV
->replaceKillInstruction(SavedReg
, KillMI
, MI
);
271 // Move instruction to its destination.
273 MBB
->insert(KillPos
, MI
);
279 /// isTwoAddrUse - Return true if the specified MI is using the specified
280 /// register as a two-address operand.
281 static bool isTwoAddrUse(MachineInstr
*UseMI
, unsigned Reg
) {
282 const TargetInstrDesc
&TID
= UseMI
->getDesc();
283 for (unsigned i
= 0, e
= TID
.getNumOperands(); i
!= e
; ++i
) {
284 MachineOperand
&MO
= UseMI
->getOperand(i
);
285 if (MO
.isReg() && MO
.getReg() == Reg
&&
286 (MO
.isDef() || UseMI
->isRegTiedToDefOperand(i
)))
287 // Earlier use is a two-address one.
293 /// isProfitableToReMat - Return true if the heuristics determines it is likely
294 /// to be profitable to re-materialize the definition of Reg rather than copy
297 TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg
,
298 const TargetRegisterClass
*RC
,
299 MachineInstr
*MI
, MachineInstr
*DefMI
,
300 MachineBasicBlock
*MBB
, unsigned Loc
) {
301 bool OtherUse
= false;
302 for (MachineRegisterInfo::use_nodbg_iterator UI
= MRI
->use_nodbg_begin(Reg
),
303 UE
= MRI
->use_nodbg_end(); UI
!= UE
; ++UI
) {
304 MachineOperand
&UseMO
= UI
.getOperand();
305 MachineInstr
*UseMI
= UseMO
.getParent();
306 MachineBasicBlock
*UseMBB
= UseMI
->getParent();
308 DenseMap
<MachineInstr
*, unsigned>::iterator DI
= DistanceMap
.find(UseMI
);
309 if (DI
!= DistanceMap
.end() && DI
->second
== Loc
)
310 continue; // Current use.
312 // There is at least one other use in the MBB that will clobber the
314 if (isTwoAddrUse(UseMI
, Reg
))
319 // If other uses in MBB are not two-address uses, then don't remat.
323 // No other uses in the same block, remat if it's defined in the same
324 // block so it does not unnecessarily extend the live range.
325 return MBB
== DefMI
->getParent();
328 /// NoUseAfterLastDef - Return true if there are no intervening uses between the
329 /// last instruction in the MBB that defines the specified register and the
330 /// two-address instruction which is being processed. It also returns the last
331 /// def location by reference
332 bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg
,
333 MachineBasicBlock
*MBB
, unsigned Dist
,
336 unsigned LastUse
= Dist
;
337 for (MachineRegisterInfo::reg_iterator I
= MRI
->reg_begin(Reg
),
338 E
= MRI
->reg_end(); I
!= E
; ++I
) {
339 MachineOperand
&MO
= I
.getOperand();
340 MachineInstr
*MI
= MO
.getParent();
341 if (MI
->getParent() != MBB
|| MI
->isDebugValue())
343 DenseMap
<MachineInstr
*, unsigned>::iterator DI
= DistanceMap
.find(MI
);
344 if (DI
== DistanceMap
.end())
346 if (MO
.isUse() && DI
->second
< LastUse
)
347 LastUse
= DI
->second
;
348 if (MO
.isDef() && DI
->second
> LastDef
)
349 LastDef
= DI
->second
;
352 return !(LastUse
> LastDef
&& LastUse
< Dist
);
355 MachineInstr
*TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg
,
356 MachineBasicBlock
*MBB
,
358 unsigned LastUseDist
= 0;
359 MachineInstr
*LastUse
= 0;
360 for (MachineRegisterInfo::reg_iterator I
= MRI
->reg_begin(Reg
),
361 E
= MRI
->reg_end(); I
!= E
; ++I
) {
362 MachineOperand
&MO
= I
.getOperand();
363 MachineInstr
*MI
= MO
.getParent();
364 if (MI
->getParent() != MBB
|| MI
->isDebugValue())
366 DenseMap
<MachineInstr
*, unsigned>::iterator DI
= DistanceMap
.find(MI
);
367 if (DI
== DistanceMap
.end())
369 if (DI
->second
>= Dist
)
372 if (MO
.isUse() && DI
->second
> LastUseDist
) {
374 LastUseDist
= DI
->second
;
380 /// isCopyToReg - Return true if the specified MI is a copy instruction or
381 /// a extract_subreg instruction. It also returns the source and destination
382 /// registers and whether they are physical registers by reference.
383 static bool isCopyToReg(MachineInstr
&MI
, const TargetInstrInfo
*TII
,
384 unsigned &SrcReg
, unsigned &DstReg
,
385 bool &IsSrcPhys
, bool &IsDstPhys
) {
389 DstReg
= MI
.getOperand(0).getReg();
390 SrcReg
= MI
.getOperand(1).getReg();
391 } else if (MI
.isInsertSubreg() || MI
.isSubregToReg()) {
392 DstReg
= MI
.getOperand(0).getReg();
393 SrcReg
= MI
.getOperand(2).getReg();
397 IsSrcPhys
= TargetRegisterInfo::isPhysicalRegister(SrcReg
);
398 IsDstPhys
= TargetRegisterInfo::isPhysicalRegister(DstReg
);
402 /// isKilled - Test if the given register value, which is used by the given
403 /// instruction, is killed by the given instruction. This looks through
404 /// coalescable copies to see if the original value is potentially not killed.
406 /// For example, in this code:
408 /// %reg1034 = copy %reg1024
409 /// %reg1035 = copy %reg1025<kill>
410 /// %reg1036 = add %reg1034<kill>, %reg1035<kill>
412 /// %reg1034 is not considered to be killed, since it is copied from a
413 /// register which is not killed. Treating it as not killed lets the
414 /// normal heuristics commute the (two-address) add, which lets
415 /// coalescing eliminate the extra copy.
417 static bool isKilled(MachineInstr
&MI
, unsigned Reg
,
418 const MachineRegisterInfo
*MRI
,
419 const TargetInstrInfo
*TII
) {
420 MachineInstr
*DefMI
= &MI
;
422 if (!DefMI
->killsRegister(Reg
))
424 if (TargetRegisterInfo::isPhysicalRegister(Reg
))
426 MachineRegisterInfo::def_iterator Begin
= MRI
->def_begin(Reg
);
427 // If there are multiple defs, we can't do a simple analysis, so just
428 // go with what the kill flag says.
429 if (llvm::next(Begin
) != MRI
->def_end())
432 bool IsSrcPhys
, IsDstPhys
;
433 unsigned SrcReg
, DstReg
;
434 // If the def is something other than a copy, then it isn't going to
435 // be coalesced, so follow the kill flag.
436 if (!isCopyToReg(*DefMI
, TII
, SrcReg
, DstReg
, IsSrcPhys
, IsDstPhys
))
442 /// isTwoAddrUse - Return true if the specified MI uses the specified register
443 /// as a two-address use. If so, return the destination register by reference.
444 static bool isTwoAddrUse(MachineInstr
&MI
, unsigned Reg
, unsigned &DstReg
) {
445 const TargetInstrDesc
&TID
= MI
.getDesc();
446 unsigned NumOps
= MI
.isInlineAsm() ? MI
.getNumOperands():TID
.getNumOperands();
447 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
448 const MachineOperand
&MO
= MI
.getOperand(i
);
449 if (!MO
.isReg() || !MO
.isUse() || MO
.getReg() != Reg
)
452 if (MI
.isRegTiedToDefOperand(i
, &ti
)) {
453 DstReg
= MI
.getOperand(ti
).getReg();
460 /// findOnlyInterestingUse - Given a register, if has a single in-basic block
461 /// use, return the use instruction if it's a copy or a two-address use.
463 MachineInstr
*findOnlyInterestingUse(unsigned Reg
, MachineBasicBlock
*MBB
,
464 MachineRegisterInfo
*MRI
,
465 const TargetInstrInfo
*TII
,
467 unsigned &DstReg
, bool &IsDstPhys
) {
468 if (!MRI
->hasOneNonDBGUse(Reg
))
469 // None or more than one use.
471 MachineInstr
&UseMI
= *MRI
->use_nodbg_begin(Reg
);
472 if (UseMI
.getParent() != MBB
)
476 if (isCopyToReg(UseMI
, TII
, SrcReg
, DstReg
, IsSrcPhys
, IsDstPhys
)) {
481 if (isTwoAddrUse(UseMI
, Reg
, DstReg
)) {
482 IsDstPhys
= TargetRegisterInfo::isPhysicalRegister(DstReg
);
488 /// getMappedReg - Return the physical register the specified virtual register
489 /// might be mapped to.
491 getMappedReg(unsigned Reg
, DenseMap
<unsigned, unsigned> &RegMap
) {
492 while (TargetRegisterInfo::isVirtualRegister(Reg
)) {
493 DenseMap
<unsigned, unsigned>::iterator SI
= RegMap
.find(Reg
);
494 if (SI
== RegMap
.end())
498 if (TargetRegisterInfo::isPhysicalRegister(Reg
))
503 /// regsAreCompatible - Return true if the two registers are equal or aliased.
506 regsAreCompatible(unsigned RegA
, unsigned RegB
, const TargetRegisterInfo
*TRI
) {
511 return TRI
->regsOverlap(RegA
, RegB
);
515 /// isProfitableToReMat - Return true if it's potentially profitable to commute
516 /// the two-address instruction that's being processed.
518 TwoAddressInstructionPass::isProfitableToCommute(unsigned regB
, unsigned regC
,
519 MachineInstr
*MI
, MachineBasicBlock
*MBB
,
521 // Determine if it's profitable to commute this two address instruction. In
522 // general, we want no uses between this instruction and the definition of
523 // the two-address register.
525 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
526 // %reg1029<def> = MOV8rr %reg1028
527 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
528 // insert => %reg1030<def> = MOV8rr %reg1028
529 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
530 // In this case, it might not be possible to coalesce the second MOV8rr
531 // instruction if the first one is coalesced. So it would be profitable to
533 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
534 // %reg1029<def> = MOV8rr %reg1028
535 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
536 // insert => %reg1030<def> = MOV8rr %reg1029
537 // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
539 if (!MI
->killsRegister(regC
))
542 // Ok, we have something like:
543 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
544 // let's see if it's worth commuting it.
546 // Look for situations like this:
547 // %reg1024<def> = MOV r1
548 // %reg1025<def> = MOV r0
549 // %reg1026<def> = ADD %reg1024, %reg1025
551 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
552 unsigned FromRegB
= getMappedReg(regB
, SrcRegMap
);
553 unsigned FromRegC
= getMappedReg(regC
, SrcRegMap
);
554 unsigned ToRegB
= getMappedReg(regB
, DstRegMap
);
555 unsigned ToRegC
= getMappedReg(regC
, DstRegMap
);
556 if (!regsAreCompatible(FromRegB
, ToRegB
, TRI
) &&
557 (regsAreCompatible(FromRegB
, ToRegC
, TRI
) ||
558 regsAreCompatible(FromRegC
, ToRegB
, TRI
)))
561 // If there is a use of regC between its last def (could be livein) and this
562 // instruction, then bail.
563 unsigned LastDefC
= 0;
564 if (!NoUseAfterLastDef(regC
, MBB
, Dist
, LastDefC
))
567 // If there is a use of regB between its last def (could be livein) and this
568 // instruction, then go ahead and make this transformation.
569 unsigned LastDefB
= 0;
570 if (!NoUseAfterLastDef(regB
, MBB
, Dist
, LastDefB
))
573 // Since there are no intervening uses for both registers, then commute
574 // if the def of regC is closer. Its live interval is shorter.
575 return LastDefB
&& LastDefC
&& LastDefC
> LastDefB
;
578 /// CommuteInstruction - Commute a two-address instruction and update the basic
579 /// block, distance map, and live variables if needed. Return true if it is
582 TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator
&mi
,
583 MachineFunction::iterator
&mbbi
,
584 unsigned RegB
, unsigned RegC
, unsigned Dist
) {
585 MachineInstr
*MI
= mi
;
586 DEBUG(dbgs() << "2addr: COMMUTING : " << *MI
);
587 MachineInstr
*NewMI
= TII
->commuteInstruction(MI
);
590 DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
594 DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI
);
595 // If the instruction changed to commute it, update livevar.
598 // Update live variables
599 LV
->replaceKillInstruction(RegC
, MI
, NewMI
);
601 mbbi
->insert(mi
, NewMI
); // Insert the new inst
602 mbbi
->erase(mi
); // Nuke the old inst.
604 DistanceMap
.insert(std::make_pair(NewMI
, Dist
));
607 // Update source register map.
608 unsigned FromRegC
= getMappedReg(RegC
, SrcRegMap
);
610 unsigned RegA
= MI
->getOperand(0).getReg();
611 SrcRegMap
[RegA
] = FromRegC
;
617 /// isProfitableToConv3Addr - Return true if it is profitable to convert the
618 /// given 2-address instruction to a 3-address one.
620 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA
) {
621 // Look for situations like this:
622 // %reg1024<def> = MOV r1
623 // %reg1025<def> = MOV r0
624 // %reg1026<def> = ADD %reg1024, %reg1025
626 // Turn ADD into a 3-address instruction to avoid a copy.
627 unsigned FromRegA
= getMappedReg(RegA
, SrcRegMap
);
628 unsigned ToRegA
= getMappedReg(RegA
, DstRegMap
);
629 return (FromRegA
&& ToRegA
&& !regsAreCompatible(FromRegA
, ToRegA
, TRI
));
632 /// ConvertInstTo3Addr - Convert the specified two-address instruction into a
633 /// three address one. Return true if this transformation was successful.
635 TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator
&mi
,
636 MachineBasicBlock::iterator
&nmi
,
637 MachineFunction::iterator
&mbbi
,
638 unsigned RegB
, unsigned Dist
) {
639 MachineInstr
*NewMI
= TII
->convertToThreeAddress(mbbi
, mi
, LV
);
641 DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi
);
642 DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI
);
645 if (NewMI
->findRegisterUseOperand(RegB
, false, TRI
))
646 // FIXME: Temporary workaround. If the new instruction doesn't
647 // uses RegB, convertToThreeAddress must have created more
648 // then one instruction.
649 Sunk
= Sink3AddrInstruction(mbbi
, NewMI
, RegB
, mi
);
651 mbbi
->erase(mi
); // Nuke the old inst.
654 DistanceMap
.insert(std::make_pair(NewMI
, Dist
));
656 nmi
= llvm::next(mi
);
664 /// ProcessCopy - If the specified instruction is not yet processed, process it
665 /// if it's a copy. For a copy instruction, we find the physical registers the
666 /// source and destination registers might be mapped to. These are kept in
667 /// point-to maps used to determine future optimizations. e.g.
670 /// v1026 = add v1024, v1025
672 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
673 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
674 /// potentially joined with r1 on the output side. It's worthwhile to commute
675 /// 'add' to eliminate a copy.
676 void TwoAddressInstructionPass::ProcessCopy(MachineInstr
*MI
,
677 MachineBasicBlock
*MBB
,
678 SmallPtrSet
<MachineInstr
*, 8> &Processed
) {
679 if (Processed
.count(MI
))
682 bool IsSrcPhys
, IsDstPhys
;
683 unsigned SrcReg
, DstReg
;
684 if (!isCopyToReg(*MI
, TII
, SrcReg
, DstReg
, IsSrcPhys
, IsDstPhys
))
687 if (IsDstPhys
&& !IsSrcPhys
)
688 DstRegMap
.insert(std::make_pair(SrcReg
, DstReg
));
689 else if (!IsDstPhys
&& IsSrcPhys
) {
690 bool isNew
= SrcRegMap
.insert(std::make_pair(DstReg
, SrcReg
)).second
;
692 assert(SrcRegMap
[DstReg
] == SrcReg
&&
693 "Can't map to two src physical registers!");
695 SmallVector
<unsigned, 4> VirtRegPairs
;
698 while (MachineInstr
*UseMI
= findOnlyInterestingUse(DstReg
, MBB
, MRI
,TII
,
699 IsCopy
, NewReg
, IsDstPhys
)) {
701 if (!Processed
.insert(UseMI
))
705 DenseMap
<MachineInstr
*, unsigned>::iterator DI
= DistanceMap
.find(UseMI
);
706 if (DI
!= DistanceMap
.end())
707 // Earlier in the same MBB.Reached via a back edge.
711 VirtRegPairs
.push_back(NewReg
);
714 bool isNew
= SrcRegMap
.insert(std::make_pair(NewReg
, DstReg
)).second
;
716 assert(SrcRegMap
[NewReg
] == DstReg
&&
717 "Can't map to two src physical registers!");
718 VirtRegPairs
.push_back(NewReg
);
722 if (!VirtRegPairs
.empty()) {
723 unsigned ToReg
= VirtRegPairs
.back();
724 VirtRegPairs
.pop_back();
725 while (!VirtRegPairs
.empty()) {
726 unsigned FromReg
= VirtRegPairs
.back();
727 VirtRegPairs
.pop_back();
728 bool isNew
= DstRegMap
.insert(std::make_pair(FromReg
, ToReg
)).second
;
730 assert(DstRegMap
[FromReg
] == ToReg
&&
731 "Can't map to two dst physical registers!");
737 Processed
.insert(MI
);
740 /// isSafeToDelete - If the specified instruction does not produce any side
741 /// effects and all of its defs are dead, then it's safe to delete.
742 static bool isSafeToDelete(MachineInstr
*MI
,
743 const TargetInstrInfo
*TII
,
744 SmallVector
<unsigned, 4> &Kills
) {
745 const TargetInstrDesc
&TID
= MI
->getDesc();
746 if (TID
.mayStore() || TID
.isCall())
748 if (TID
.isTerminator() || TID
.hasUnmodeledSideEffects())
751 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
752 MachineOperand
&MO
= MI
->getOperand(i
);
755 if (MO
.isDef() && !MO
.isDead())
757 if (MO
.isUse() && MO
.isKill())
758 Kills
.push_back(MO
.getReg());
763 /// canUpdateDeletedKills - Check if all the registers listed in Kills are
764 /// killed by instructions in MBB preceding the current instruction at
765 /// position Dist. If so, return true and record information about the
766 /// preceding kills in NewKills.
767 bool TwoAddressInstructionPass::
768 canUpdateDeletedKills(SmallVector
<unsigned, 4> &Kills
,
769 SmallVector
<NewKill
, 4> &NewKills
,
770 MachineBasicBlock
*MBB
, unsigned Dist
) {
771 while (!Kills
.empty()) {
772 unsigned Kill
= Kills
.back();
774 if (TargetRegisterInfo::isPhysicalRegister(Kill
))
777 MachineInstr
*LastKill
= FindLastUseInMBB(Kill
, MBB
, Dist
);
781 bool isModRef
= LastKill
->definesRegister(Kill
);
782 NewKills
.push_back(std::make_pair(std::make_pair(Kill
, isModRef
),
788 /// DeleteUnusedInstr - If an instruction with a tied register operand can
789 /// be safely deleted, just delete it.
791 TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator
&mi
,
792 MachineBasicBlock::iterator
&nmi
,
793 MachineFunction::iterator
&mbbi
,
795 // Check if the instruction has no side effects and if all its defs are dead.
796 SmallVector
<unsigned, 4> Kills
;
797 if (!isSafeToDelete(mi
, TII
, Kills
))
800 // If this instruction kills some virtual registers, we need to
801 // update the kill information. If it's not possible to do so,
803 SmallVector
<NewKill
, 4> NewKills
;
804 if (!canUpdateDeletedKills(Kills
, NewKills
, &*mbbi
, Dist
))
808 while (!NewKills
.empty()) {
809 MachineInstr
*NewKill
= NewKills
.back().second
;
810 unsigned Kill
= NewKills
.back().first
.first
;
811 bool isDead
= NewKills
.back().first
.second
;
813 if (LV
->removeVirtualRegisterKilled(Kill
, mi
)) {
815 LV
->addVirtualRegisterDead(Kill
, NewKill
);
817 LV
->addVirtualRegisterKilled(Kill
, NewKill
);
822 mbbi
->erase(mi
); // Nuke the old inst.
827 /// TryInstructionTransform - For the case where an instruction has a single
828 /// pair of tied register operands, attempt some transformations that may
829 /// either eliminate the tied operands or improve the opportunities for
830 /// coalescing away the register copy. Returns true if the tied operands
831 /// are eliminated altogether.
832 bool TwoAddressInstructionPass::
833 TryInstructionTransform(MachineBasicBlock::iterator
&mi
,
834 MachineBasicBlock::iterator
&nmi
,
835 MachineFunction::iterator
&mbbi
,
836 unsigned SrcIdx
, unsigned DstIdx
, unsigned Dist
) {
837 const TargetInstrDesc
&TID
= mi
->getDesc();
838 unsigned regA
= mi
->getOperand(DstIdx
).getReg();
839 unsigned regB
= mi
->getOperand(SrcIdx
).getReg();
841 assert(TargetRegisterInfo::isVirtualRegister(regB
) &&
842 "cannot make instruction into two-address form");
844 // If regA is dead and the instruction can be deleted, just delete
845 // it so it doesn't clobber regB.
846 bool regBKilled
= isKilled(*mi
, regB
, MRI
, TII
);
847 if (!regBKilled
&& mi
->getOperand(DstIdx
).isDead() &&
848 DeleteUnusedInstr(mi
, nmi
, mbbi
, Dist
)) {
850 return true; // Done with this instruction.
853 // Check if it is profitable to commute the operands.
854 unsigned SrcOp1
, SrcOp2
;
856 unsigned regCIdx
= ~0U;
857 bool TryCommute
= false;
858 bool AggressiveCommute
= false;
859 if (TID
.isCommutable() && mi
->getNumOperands() >= 3 &&
860 TII
->findCommutedOpIndices(mi
, SrcOp1
, SrcOp2
)) {
861 if (SrcIdx
== SrcOp1
)
863 else if (SrcIdx
== SrcOp2
)
866 if (regCIdx
!= ~0U) {
867 regC
= mi
->getOperand(regCIdx
).getReg();
868 if (!regBKilled
&& isKilled(*mi
, regC
, MRI
, TII
))
869 // If C dies but B does not, swap the B and C operands.
870 // This makes the live ranges of A and C joinable.
872 else if (isProfitableToCommute(regB
, regC
, mi
, mbbi
, Dist
)) {
874 AggressiveCommute
= true;
879 // If it's profitable to commute, try to do so.
880 if (TryCommute
&& CommuteInstruction(mi
, mbbi
, regB
, regC
, Dist
)) {
882 if (AggressiveCommute
)
887 if (TID
.isConvertibleTo3Addr()) {
888 // This instruction is potentially convertible to a true
889 // three-address instruction. Check if it is profitable.
890 if (!regBKilled
|| isProfitableToConv3Addr(regA
)) {
891 // Try to convert it.
892 if (ConvertInstTo3Addr(mi
, nmi
, mbbi
, regB
, Dist
)) {
893 ++NumConvertedTo3Addr
;
894 return true; // Done with this instruction.
899 // If this is an instruction with a load folded into it, try unfolding
900 // the load, e.g. avoid this:
906 // because it's preferable to schedule a load than a register copy.
907 if (TID
.mayLoad() && !regBKilled
) {
908 // Determine if a load can be unfolded.
909 unsigned LoadRegIndex
;
911 TII
->getOpcodeAfterMemoryUnfold(mi
->getOpcode(),
913 /*UnfoldStore=*/false,
916 const TargetInstrDesc
&UnfoldTID
= TII
->get(NewOpc
);
917 if (UnfoldTID
.getNumDefs() == 1) {
918 MachineFunction
&MF
= *mbbi
->getParent();
921 DEBUG(dbgs() << "2addr: UNFOLDING: " << *mi
);
922 const TargetRegisterClass
*RC
=
923 UnfoldTID
.OpInfo
[LoadRegIndex
].getRegClass(TRI
);
924 unsigned Reg
= MRI
->createVirtualRegister(RC
);
925 SmallVector
<MachineInstr
*, 2> NewMIs
;
926 if (!TII
->unfoldMemoryOperand(MF
, mi
, Reg
,
927 /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
929 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
932 assert(NewMIs
.size() == 2 &&
933 "Unfolded a load into multiple instructions!");
934 // The load was previously folded, so this is the only use.
935 NewMIs
[1]->addRegisterKilled(Reg
, TRI
);
937 // Tentatively insert the instructions into the block so that they
938 // look "normal" to the transformation logic.
939 mbbi
->insert(mi
, NewMIs
[0]);
940 mbbi
->insert(mi
, NewMIs
[1]);
942 DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs
[0]
943 << "2addr: NEW INST: " << *NewMIs
[1]);
945 // Transform the instruction, now that it no longer has a load.
946 unsigned NewDstIdx
= NewMIs
[1]->findRegisterDefOperandIdx(regA
);
947 unsigned NewSrcIdx
= NewMIs
[1]->findRegisterUseOperandIdx(regB
);
948 MachineBasicBlock::iterator NewMI
= NewMIs
[1];
949 bool TransformSuccess
=
950 TryInstructionTransform(NewMI
, mi
, mbbi
,
951 NewSrcIdx
, NewDstIdx
, Dist
);
952 if (TransformSuccess
||
953 NewMIs
[1]->getOperand(NewSrcIdx
).isKill()) {
954 // Success, or at least we made an improvement. Keep the unfolded
955 // instructions and discard the original.
957 for (unsigned i
= 0, e
= mi
->getNumOperands(); i
!= e
; ++i
) {
958 MachineOperand
&MO
= mi
->getOperand(i
);
959 if (MO
.isReg() && MO
.getReg() != 0 &&
960 TargetRegisterInfo::isVirtualRegister(MO
.getReg())) {
963 if (NewMIs
[0]->killsRegister(MO
.getReg()))
964 LV
->replaceKillInstruction(MO
.getReg(), mi
, NewMIs
[0]);
966 assert(NewMIs
[1]->killsRegister(MO
.getReg()) &&
967 "Kill missing after load unfold!");
968 LV
->replaceKillInstruction(MO
.getReg(), mi
, NewMIs
[1]);
971 } else if (LV
->removeVirtualRegisterDead(MO
.getReg(), mi
)) {
972 if (NewMIs
[1]->registerDefIsDead(MO
.getReg()))
973 LV
->addVirtualRegisterDead(MO
.getReg(), NewMIs
[1]);
975 assert(NewMIs
[0]->registerDefIsDead(MO
.getReg()) &&
976 "Dead flag missing after load unfold!");
977 LV
->addVirtualRegisterDead(MO
.getReg(), NewMIs
[0]);
982 LV
->addVirtualRegisterKilled(Reg
, NewMIs
[1]);
984 mi
->eraseFromParent();
986 if (TransformSuccess
)
989 // Transforming didn't eliminate the tie and didn't lead to an
990 // improvement. Clean up the unfolded instructions and keep the
992 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
993 NewMIs
[0]->eraseFromParent();
994 NewMIs
[1]->eraseFromParent();
1003 /// runOnMachineFunction - Reduce two-address instructions to two operands.
1005 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction
&MF
) {
1006 DEBUG(dbgs() << "Machine Function\n");
1007 const TargetMachine
&TM
= MF
.getTarget();
1008 MRI
= &MF
.getRegInfo();
1009 TII
= TM
.getInstrInfo();
1010 TRI
= TM
.getRegisterInfo();
1011 LV
= getAnalysisIfAvailable
<LiveVariables
>();
1012 AA
= &getAnalysis
<AliasAnalysis
>();
1014 bool MadeChange
= false;
1016 DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1017 DEBUG(dbgs() << "********** Function: "
1018 << MF
.getFunction()->getName() << '\n');
1020 // ReMatRegs - Keep track of the registers whose def's are remat'ed.
1021 BitVector ReMatRegs
;
1022 ReMatRegs
.resize(MRI
->getLastVirtReg()+1);
1024 typedef DenseMap
<unsigned, SmallVector
<std::pair
<unsigned, unsigned>, 4> >
1026 TiedOperandMap
TiedOperands(4);
1028 SmallPtrSet
<MachineInstr
*, 8> Processed
;
1029 for (MachineFunction::iterator mbbi
= MF
.begin(), mbbe
= MF
.end();
1030 mbbi
!= mbbe
; ++mbbi
) {
1032 DistanceMap
.clear();
1036 for (MachineBasicBlock::iterator mi
= mbbi
->begin(), me
= mbbi
->end();
1038 MachineBasicBlock::iterator nmi
= llvm::next(mi
);
1039 if (mi
->isDebugValue()) {
1044 // Remember REG_SEQUENCE instructions, we'll deal with them later.
1045 if (mi
->isRegSequence())
1046 RegSequences
.push_back(&*mi
);
1048 const TargetInstrDesc
&TID
= mi
->getDesc();
1049 bool FirstTied
= true;
1051 DistanceMap
.insert(std::make_pair(mi
, ++Dist
));
1053 ProcessCopy(&*mi
, &*mbbi
, Processed
);
1055 // First scan through all the tied register uses in this instruction
1056 // and record a list of pairs of tied operands for each register.
1057 unsigned NumOps
= mi
->isInlineAsm()
1058 ? mi
->getNumOperands() : TID
.getNumOperands();
1059 for (unsigned SrcIdx
= 0; SrcIdx
< NumOps
; ++SrcIdx
) {
1060 unsigned DstIdx
= 0;
1061 if (!mi
->isRegTiedToDefOperand(SrcIdx
, &DstIdx
))
1066 ++NumTwoAddressInstrs
;
1067 DEBUG(dbgs() << '\t' << *mi
);
1070 assert(mi
->getOperand(SrcIdx
).isReg() &&
1071 mi
->getOperand(SrcIdx
).getReg() &&
1072 mi
->getOperand(SrcIdx
).isUse() &&
1073 "two address instruction invalid");
1075 unsigned regB
= mi
->getOperand(SrcIdx
).getReg();
1076 TiedOperandMap::iterator OI
= TiedOperands
.find(regB
);
1077 if (OI
== TiedOperands
.end()) {
1078 SmallVector
<std::pair
<unsigned, unsigned>, 4> TiedPair
;
1079 OI
= TiedOperands
.insert(std::make_pair(regB
, TiedPair
)).first
;
1081 OI
->second
.push_back(std::make_pair(SrcIdx
, DstIdx
));
1084 // Now iterate over the information collected above.
1085 for (TiedOperandMap::iterator OI
= TiedOperands
.begin(),
1086 OE
= TiedOperands
.end(); OI
!= OE
; ++OI
) {
1087 SmallVector
<std::pair
<unsigned, unsigned>, 4> &TiedPairs
= OI
->second
;
1089 // If the instruction has a single pair of tied operands, try some
1090 // transformations that may either eliminate the tied operands or
1091 // improve the opportunities for coalescing away the register copy.
1092 if (TiedOperands
.size() == 1 && TiedPairs
.size() == 1) {
1093 unsigned SrcIdx
= TiedPairs
[0].first
;
1094 unsigned DstIdx
= TiedPairs
[0].second
;
1096 // If the registers are already equal, nothing needs to be done.
1097 if (mi
->getOperand(SrcIdx
).getReg() ==
1098 mi
->getOperand(DstIdx
).getReg())
1099 break; // Done with this instruction.
1101 if (TryInstructionTransform(mi
, nmi
, mbbi
, SrcIdx
, DstIdx
, Dist
))
1102 break; // The tied operands have been eliminated.
1105 bool RemovedKillFlag
= false;
1106 bool AllUsesCopied
= true;
1107 unsigned LastCopiedReg
= 0;
1108 unsigned regB
= OI
->first
;
1109 for (unsigned tpi
= 0, tpe
= TiedPairs
.size(); tpi
!= tpe
; ++tpi
) {
1110 unsigned SrcIdx
= TiedPairs
[tpi
].first
;
1111 unsigned DstIdx
= TiedPairs
[tpi
].second
;
1112 unsigned regA
= mi
->getOperand(DstIdx
).getReg();
1113 // Grab regB from the instruction because it may have changed if the
1114 // instruction was commuted.
1115 regB
= mi
->getOperand(SrcIdx
).getReg();
1118 // The register is tied to multiple destinations (or else we would
1119 // not have continued this far), but this use of the register
1120 // already matches the tied destination. Leave it.
1121 AllUsesCopied
= false;
1124 LastCopiedReg
= regA
;
1126 assert(TargetRegisterInfo::isVirtualRegister(regB
) &&
1127 "cannot make instruction into two-address form");
1130 // First, verify that we don't have a use of "a" in the instruction
1131 // (a = b + a for example) because our transformation will not
1132 // work. This should never occur because we are in SSA form.
1133 for (unsigned i
= 0; i
!= mi
->getNumOperands(); ++i
)
1134 assert(i
== DstIdx
||
1135 !mi
->getOperand(i
).isReg() ||
1136 mi
->getOperand(i
).getReg() != regA
);
1139 // Emit a copy or rematerialize the definition.
1140 const TargetRegisterClass
*rc
= MRI
->getRegClass(regB
);
1141 MachineInstr
*DefMI
= MRI
->getVRegDef(regB
);
1142 // If it's safe and profitable, remat the definition instead of
1145 DefMI
->getDesc().isAsCheapAsAMove() &&
1146 DefMI
->isSafeToReMat(TII
, AA
, regB
) &&
1147 isProfitableToReMat(regB
, rc
, mi
, DefMI
, mbbi
, Dist
)){
1148 DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI
<< "\n");
1149 unsigned regASubIdx
= mi
->getOperand(DstIdx
).getSubReg();
1150 TII
->reMaterialize(*mbbi
, mi
, regA
, regASubIdx
, DefMI
, *TRI
);
1151 ReMatRegs
.set(regB
);
1154 BuildMI(*mbbi
, mi
, mi
->getDebugLoc(), TII
->get(TargetOpcode::COPY
),
1158 MachineBasicBlock::iterator prevMI
= prior(mi
);
1159 // Update DistanceMap.
1160 DistanceMap
.insert(std::make_pair(prevMI
, Dist
));
1161 DistanceMap
[mi
] = ++Dist
;
1163 DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI
);
1165 MachineOperand
&MO
= mi
->getOperand(SrcIdx
);
1166 assert(MO
.isReg() && MO
.getReg() == regB
&& MO
.isUse() &&
1167 "inconsistent operand info for 2-reg pass");
1169 MO
.setIsKill(false);
1170 RemovedKillFlag
= true;
1175 if (AllUsesCopied
) {
1176 // Replace other (un-tied) uses of regB with LastCopiedReg.
1177 for (unsigned i
= 0, e
= mi
->getNumOperands(); i
!= e
; ++i
) {
1178 MachineOperand
&MO
= mi
->getOperand(i
);
1179 if (MO
.isReg() && MO
.getReg() == regB
&& MO
.isUse()) {
1181 MO
.setIsKill(false);
1182 RemovedKillFlag
= true;
1184 MO
.setReg(LastCopiedReg
);
1188 // Update live variables for regB.
1189 if (RemovedKillFlag
&& LV
&& LV
->getVarInfo(regB
).removeKill(mi
))
1190 LV
->addVirtualRegisterKilled(regB
, prior(mi
));
1192 } else if (RemovedKillFlag
) {
1193 // Some tied uses of regB matched their destination registers, so
1194 // regB is still used in this instruction, but a kill flag was
1195 // removed from a different tied use of regB, so now we need to add
1196 // a kill flag to one of the remaining uses of regB.
1197 for (unsigned i
= 0, e
= mi
->getNumOperands(); i
!= e
; ++i
) {
1198 MachineOperand
&MO
= mi
->getOperand(i
);
1199 if (MO
.isReg() && MO
.getReg() == regB
&& MO
.isUse()) {
1206 // Schedule the source copy / remat inserted to form two-address
1207 // instruction. FIXME: Does it matter the distance map may not be
1208 // accurate after it's scheduled?
1209 TII
->scheduleTwoAddrSource(prior(mi
), mi
, *TRI
);
1213 DEBUG(dbgs() << "\t\trewrite to:\t" << *mi
);
1216 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1217 if (mi
->isInsertSubreg()) {
1218 // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1219 // To %reg:subidx = COPY %subreg
1220 unsigned SubIdx
= mi
->getOperand(3).getImm();
1221 mi
->RemoveOperand(3);
1222 assert(mi
->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1223 mi
->getOperand(0).setSubReg(SubIdx
);
1224 mi
->RemoveOperand(1);
1225 mi
->setDesc(TII
->get(TargetOpcode::COPY
));
1226 DEBUG(dbgs() << "\t\tconvert to:\t" << *mi
);
1229 // Clear TiedOperands here instead of at the top of the loop
1230 // since most instructions do not have tied operands.
1231 TiedOperands
.clear();
1236 // Some remat'ed instructions are dead.
1237 int VReg
= ReMatRegs
.find_first();
1238 while (VReg
!= -1) {
1239 if (MRI
->use_nodbg_empty(VReg
)) {
1240 MachineInstr
*DefMI
= MRI
->getVRegDef(VReg
);
1241 DefMI
->eraseFromParent();
1243 VReg
= ReMatRegs
.find_next(VReg
);
1246 // Eliminate REG_SEQUENCE instructions. Their whole purpose was to preseve
1247 // SSA form. It's now safe to de-SSA.
1248 MadeChange
|= EliminateRegSequences();
1253 static void UpdateRegSequenceSrcs(unsigned SrcReg
,
1254 unsigned DstReg
, unsigned SubIdx
,
1255 MachineRegisterInfo
*MRI
,
1256 const TargetRegisterInfo
&TRI
) {
1257 for (MachineRegisterInfo::reg_iterator RI
= MRI
->reg_begin(SrcReg
),
1258 RE
= MRI
->reg_end(); RI
!= RE
; ) {
1259 MachineOperand
&MO
= RI
.getOperand();
1261 MO
.substVirtReg(DstReg
, SubIdx
, TRI
);
1265 /// CoalesceExtSubRegs - If a number of sources of the REG_SEQUENCE are
1266 /// EXTRACT_SUBREG from the same register and to the same virtual register
1267 /// with different sub-register indices, attempt to combine the
1268 /// EXTRACT_SUBREGs and pre-coalesce them. e.g.
1269 /// %reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0
1270 /// %reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6
1271 /// %reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5
1272 /// Since D subregs 5, 6 can combine to a Q register, we can coalesce
1273 /// reg1026 to reg1029.
1275 TwoAddressInstructionPass::CoalesceExtSubRegs(SmallVector
<unsigned,4> &Srcs
,
1277 SmallSet
<unsigned, 4> Seen
;
1278 for (unsigned i
= 0, e
= Srcs
.size(); i
!= e
; ++i
) {
1279 unsigned SrcReg
= Srcs
[i
];
1280 if (!Seen
.insert(SrcReg
))
1283 // Check that the instructions are all in the same basic block.
1284 MachineInstr
*SrcDefMI
= MRI
->getVRegDef(SrcReg
);
1285 MachineInstr
*DstDefMI
= MRI
->getVRegDef(DstReg
);
1286 if (SrcDefMI
->getParent() != DstDefMI
->getParent())
1289 // If there are no other uses than copies which feed into
1290 // the reg_sequence, then we might be able to coalesce them.
1291 bool CanCoalesce
= true;
1292 SmallVector
<unsigned, 4> SrcSubIndices
, DstSubIndices
;
1293 for (MachineRegisterInfo::use_nodbg_iterator
1294 UI
= MRI
->use_nodbg_begin(SrcReg
),
1295 UE
= MRI
->use_nodbg_end(); UI
!= UE
; ++UI
) {
1296 MachineInstr
*UseMI
= &*UI
;
1297 if (!UseMI
->isCopy() || UseMI
->getOperand(0).getReg() != DstReg
) {
1298 CanCoalesce
= false;
1301 SrcSubIndices
.push_back(UseMI
->getOperand(1).getSubReg());
1302 DstSubIndices
.push_back(UseMI
->getOperand(0).getSubReg());
1305 if (!CanCoalesce
|| SrcSubIndices
.size() < 2)
1308 // Check that the source subregisters can be combined.
1309 std::sort(SrcSubIndices
.begin(), SrcSubIndices
.end());
1310 unsigned NewSrcSubIdx
= 0;
1311 if (!TRI
->canCombineSubRegIndices(MRI
->getRegClass(SrcReg
), SrcSubIndices
,
1315 // Check that the destination subregisters can also be combined.
1316 std::sort(DstSubIndices
.begin(), DstSubIndices
.end());
1317 unsigned NewDstSubIdx
= 0;
1318 if (!TRI
->canCombineSubRegIndices(MRI
->getRegClass(DstReg
), DstSubIndices
,
1322 // If neither source nor destination can be combined to the full register,
1323 // just give up. This could be improved if it ever matters.
1324 if (NewSrcSubIdx
!= 0 && NewDstSubIdx
!= 0)
1327 // Now that we know that all the uses are extract_subregs and that those
1328 // subregs can somehow be combined, scan all the extract_subregs again to
1329 // make sure the subregs are in the right order and can be composed.
1330 MachineInstr
*SomeMI
= 0;
1332 for (MachineRegisterInfo::use_nodbg_iterator
1333 UI
= MRI
->use_nodbg_begin(SrcReg
),
1334 UE
= MRI
->use_nodbg_end(); UI
!= UE
; ++UI
) {
1335 MachineInstr
*UseMI
= &*UI
;
1336 assert(UseMI
->isCopy());
1337 unsigned DstSubIdx
= UseMI
->getOperand(0).getSubReg();
1338 unsigned SrcSubIdx
= UseMI
->getOperand(1).getSubReg();
1339 assert(DstSubIdx
!= 0 && "missing subreg from RegSequence elimination");
1340 if ((NewDstSubIdx
== 0 &&
1341 TRI
->composeSubRegIndices(NewSrcSubIdx
, DstSubIdx
) != SrcSubIdx
) ||
1342 (NewSrcSubIdx
== 0 &&
1343 TRI
->composeSubRegIndices(NewDstSubIdx
, SrcSubIdx
) != DstSubIdx
)) {
1344 CanCoalesce
= false;
1347 // Keep track of one of the uses.
1353 // Insert a copy to replace the original.
1354 MachineInstr
*CopyMI
= BuildMI(*SomeMI
->getParent(), SomeMI
,
1355 SomeMI
->getDebugLoc(),
1356 TII
->get(TargetOpcode::COPY
))
1357 .addReg(DstReg
, RegState::Define
, NewDstSubIdx
)
1358 .addReg(SrcReg
, 0, NewSrcSubIdx
);
1360 // Remove all the old extract instructions.
1361 for (MachineRegisterInfo::use_nodbg_iterator
1362 UI
= MRI
->use_nodbg_begin(SrcReg
),
1363 UE
= MRI
->use_nodbg_end(); UI
!= UE
; ) {
1364 MachineInstr
*UseMI
= &*UI
;
1366 if (UseMI
== CopyMI
)
1368 assert(UseMI
->isCopy());
1369 // Move any kills to the new copy or extract instruction.
1370 if (UseMI
->getOperand(1).isKill()) {
1371 CopyMI
->getOperand(1).setIsKill();
1373 // Update live variables
1374 LV
->replaceKillInstruction(SrcReg
, UseMI
, &*CopyMI
);
1376 UseMI
->eraseFromParent();
1381 static bool HasOtherRegSequenceUses(unsigned Reg
, MachineInstr
*RegSeq
,
1382 MachineRegisterInfo
*MRI
) {
1383 for (MachineRegisterInfo::use_iterator UI
= MRI
->use_begin(Reg
),
1384 UE
= MRI
->use_end(); UI
!= UE
; ++UI
) {
1385 MachineInstr
*UseMI
= &*UI
;
1386 if (UseMI
!= RegSeq
&& UseMI
->isRegSequence())
1392 /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
1393 /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
1394 /// sub-register references of the register defined by REG_SEQUENCE. e.g.
1396 /// %reg1029<def>, %reg1030<def> = VLD1q16 %reg1024<kill>, ...
1397 /// %reg1031<def> = REG_SEQUENCE %reg1029<kill>, 5, %reg1030<kill>, 6
1399 /// %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
1400 bool TwoAddressInstructionPass::EliminateRegSequences() {
1401 if (RegSequences
.empty())
1404 for (unsigned i
= 0, e
= RegSequences
.size(); i
!= e
; ++i
) {
1405 MachineInstr
*MI
= RegSequences
[i
];
1406 unsigned DstReg
= MI
->getOperand(0).getReg();
1407 if (MI
->getOperand(0).getSubReg() ||
1408 TargetRegisterInfo::isPhysicalRegister(DstReg
) ||
1409 !(MI
->getNumOperands() & 1)) {
1410 DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI
);
1411 llvm_unreachable(0);
1414 bool IsImpDef
= true;
1415 SmallVector
<unsigned, 4> RealSrcs
;
1416 SmallSet
<unsigned, 4> Seen
;
1417 for (unsigned i
= 1, e
= MI
->getNumOperands(); i
< e
; i
+= 2) {
1418 unsigned SrcReg
= MI
->getOperand(i
).getReg();
1419 if (MI
->getOperand(i
).getSubReg() ||
1420 TargetRegisterInfo::isPhysicalRegister(SrcReg
)) {
1421 DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI
);
1422 llvm_unreachable(0);
1425 MachineInstr
*DefMI
= MRI
->getVRegDef(SrcReg
);
1426 if (DefMI
->isImplicitDef()) {
1427 DefMI
->eraseFromParent();
1432 // Remember COPY sources. These might be candidate for coalescing.
1433 if (DefMI
->isCopy() && DefMI
->getOperand(1).getSubReg())
1434 RealSrcs
.push_back(DefMI
->getOperand(1).getReg());
1436 bool isKill
= MI
->getOperand(i
).isKill();
1437 if (!Seen
.insert(SrcReg
) || MI
->getParent() != DefMI
->getParent() ||
1438 !isKill
|| HasOtherRegSequenceUses(SrcReg
, MI
, MRI
)) {
1439 // REG_SEQUENCE cannot have duplicated operands, add a copy.
1440 // Also add an copy if the source is live-in the block. We don't want
1441 // to end up with a partial-redef of a livein, e.g.
1443 // reg1051:10<def> =
1449 // LiveIntervalAnalysis won't like it.
1451 // If the REG_SEQUENCE doesn't kill its source, keeping live variables
1452 // correctly up to date becomes very difficult. Insert a copy.
1454 // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1455 // might insert a COPY that uses SrcReg after is was killed.
1457 for (unsigned j
= i
+ 2; j
< e
; j
+= 2)
1458 if (MI
->getOperand(j
).getReg() == SrcReg
) {
1459 MI
->getOperand(j
).setIsKill();
1464 MachineBasicBlock::iterator InsertLoc
= MI
;
1465 MachineInstr
*CopyMI
= BuildMI(*MI
->getParent(), InsertLoc
,
1466 MI
->getDebugLoc(), TII
->get(TargetOpcode::COPY
))
1467 .addReg(DstReg
, RegState::Define
, MI
->getOperand(i
+1).getImm())
1468 .addReg(SrcReg
, getKillRegState(isKill
));
1469 MI
->getOperand(i
).setReg(0);
1471 LV
->replaceKillInstruction(SrcReg
, MI
, CopyMI
);
1472 DEBUG(dbgs() << "Inserted: " << *CopyMI
);
1476 for (unsigned i
= 1, e
= MI
->getNumOperands(); i
< e
; i
+= 2) {
1477 unsigned SrcReg
= MI
->getOperand(i
).getReg();
1478 if (!SrcReg
) continue;
1479 unsigned SubIdx
= MI
->getOperand(i
+1).getImm();
1480 UpdateRegSequenceSrcs(SrcReg
, DstReg
, SubIdx
, MRI
, *TRI
);
1484 DEBUG(dbgs() << "Turned: " << *MI
<< " into an IMPLICIT_DEF");
1485 MI
->setDesc(TII
->get(TargetOpcode::IMPLICIT_DEF
));
1486 for (int j
= MI
->getNumOperands() - 1, ee
= 0; j
> ee
; --j
)
1487 MI
->RemoveOperand(j
);
1489 DEBUG(dbgs() << "Eliminated: " << *MI
);
1490 MI
->eraseFromParent();
1493 // Try coalescing some EXTRACT_SUBREG instructions. This can create
1494 // INSERT_SUBREG instructions that must have <undef> flags added by
1495 // LiveIntervalAnalysis, so only run it when LiveVariables is available.
1497 CoalesceExtSubRegs(RealSrcs
, DstReg
);
1500 RegSequences
.clear();