Fixed some bugs.
[llvm/zpu.git] / lib / Linker / LinkModules.cpp
blob2903a7e71548e5b9061c743917be48afc109f0ce
1 //===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LLVM module linker.
12 // Specifically, this:
13 // * Merges global variables between the two modules
14 // * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
15 // * Merges functions between two modules
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Linker.h"
20 #include "llvm/Constants.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/Module.h"
24 #include "llvm/TypeSymbolTable.h"
25 #include "llvm/ValueSymbolTable.h"
26 #include "llvm/Instructions.h"
27 #include "llvm/Assembly/Writer.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/System/Path.h"
32 #include "llvm/Transforms/Utils/ValueMapper.h"
33 #include "llvm/ADT/DenseMap.h"
34 using namespace llvm;
36 // Error - Simple wrapper function to conditionally assign to E and return true.
37 // This just makes error return conditions a little bit simpler...
38 static inline bool Error(std::string *E, const Twine &Message) {
39 if (E) *E = Message.str();
40 return true;
43 // Function: ResolveTypes()
45 // Description:
46 // Attempt to link the two specified types together.
48 // Inputs:
49 // DestTy - The type to which we wish to resolve.
50 // SrcTy - The original type which we want to resolve.
52 // Outputs:
53 // DestST - The symbol table in which the new type should be placed.
55 // Return value:
56 // true - There is an error and the types cannot yet be linked.
57 // false - No errors.
59 static bool ResolveTypes(const Type *DestTy, const Type *SrcTy) {
60 if (DestTy == SrcTy) return false; // If already equal, noop
61 assert(DestTy && SrcTy && "Can't handle null types");
63 if (const OpaqueType *OT = dyn_cast<OpaqueType>(DestTy)) {
64 // Type _is_ in module, just opaque...
65 const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(SrcTy);
66 } else if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
67 const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
68 } else {
69 return true; // Cannot link types... not-equal and neither is opaque.
71 return false;
74 /// LinkerTypeMap - This implements a map of types that is stable
75 /// even if types are resolved/refined to other types. This is not a general
76 /// purpose map, it is specific to the linker's use.
77 namespace {
78 class LinkerTypeMap : public AbstractTypeUser {
79 typedef DenseMap<const Type*, PATypeHolder> TheMapTy;
80 TheMapTy TheMap;
82 LinkerTypeMap(const LinkerTypeMap&); // DO NOT IMPLEMENT
83 void operator=(const LinkerTypeMap&); // DO NOT IMPLEMENT
84 public:
85 LinkerTypeMap() {}
86 ~LinkerTypeMap() {
87 for (DenseMap<const Type*, PATypeHolder>::iterator I = TheMap.begin(),
88 E = TheMap.end(); I != E; ++I)
89 I->first->removeAbstractTypeUser(this);
92 /// lookup - Return the value for the specified type or null if it doesn't
93 /// exist.
94 const Type *lookup(const Type *Ty) const {
95 TheMapTy::const_iterator I = TheMap.find(Ty);
96 if (I != TheMap.end()) return I->second;
97 return 0;
100 /// insert - This returns true if the pointer was new to the set, false if it
101 /// was already in the set.
102 bool insert(const Type *Src, const Type *Dst) {
103 if (!TheMap.insert(std::make_pair(Src, PATypeHolder(Dst))).second)
104 return false; // Already in map.
105 if (Src->isAbstract())
106 Src->addAbstractTypeUser(this);
107 return true;
110 protected:
111 /// refineAbstractType - The callback method invoked when an abstract type is
112 /// resolved to another type. An object must override this method to update
113 /// its internal state to reference NewType instead of OldType.
115 virtual void refineAbstractType(const DerivedType *OldTy,
116 const Type *NewTy) {
117 TheMapTy::iterator I = TheMap.find(OldTy);
118 const Type *DstTy = I->second;
120 TheMap.erase(I);
121 if (OldTy->isAbstract())
122 OldTy->removeAbstractTypeUser(this);
124 // Don't reinsert into the map if the key is concrete now.
125 if (NewTy->isAbstract())
126 insert(NewTy, DstTy);
129 /// The other case which AbstractTypeUsers must be aware of is when a type
130 /// makes the transition from being abstract (where it has clients on it's
131 /// AbstractTypeUsers list) to concrete (where it does not). This method
132 /// notifies ATU's when this occurs for a type.
133 virtual void typeBecameConcrete(const DerivedType *AbsTy) {
134 TheMap.erase(AbsTy);
135 AbsTy->removeAbstractTypeUser(this);
138 // for debugging...
139 virtual void dump() const {
140 dbgs() << "AbstractTypeSet!\n";
146 // RecursiveResolveTypes - This is just like ResolveTypes, except that it
147 // recurses down into derived types, merging the used types if the parent types
148 // are compatible.
149 static bool RecursiveResolveTypesI(const Type *DstTy, const Type *SrcTy,
150 LinkerTypeMap &Pointers) {
151 if (DstTy == SrcTy) return false; // If already equal, noop
153 // If we found our opaque type, resolve it now!
154 if (DstTy->isOpaqueTy() || SrcTy->isOpaqueTy())
155 return ResolveTypes(DstTy, SrcTy);
157 // Two types cannot be resolved together if they are of different primitive
158 // type. For example, we cannot resolve an int to a float.
159 if (DstTy->getTypeID() != SrcTy->getTypeID()) return true;
161 // If neither type is abstract, then they really are just different types.
162 if (!DstTy->isAbstract() && !SrcTy->isAbstract())
163 return true;
165 // Otherwise, resolve the used type used by this derived type...
166 switch (DstTy->getTypeID()) {
167 default:
168 return true;
169 case Type::FunctionTyID: {
170 const FunctionType *DstFT = cast<FunctionType>(DstTy);
171 const FunctionType *SrcFT = cast<FunctionType>(SrcTy);
172 if (DstFT->isVarArg() != SrcFT->isVarArg() ||
173 DstFT->getNumContainedTypes() != SrcFT->getNumContainedTypes())
174 return true;
176 // Use TypeHolder's so recursive resolution won't break us.
177 PATypeHolder ST(SrcFT), DT(DstFT);
178 for (unsigned i = 0, e = DstFT->getNumContainedTypes(); i != e; ++i) {
179 const Type *SE = ST->getContainedType(i), *DE = DT->getContainedType(i);
180 if (SE != DE && RecursiveResolveTypesI(DE, SE, Pointers))
181 return true;
183 return false;
185 case Type::StructTyID: {
186 const StructType *DstST = cast<StructType>(DstTy);
187 const StructType *SrcST = cast<StructType>(SrcTy);
188 if (DstST->getNumContainedTypes() != SrcST->getNumContainedTypes())
189 return true;
191 PATypeHolder ST(SrcST), DT(DstST);
192 for (unsigned i = 0, e = DstST->getNumContainedTypes(); i != e; ++i) {
193 const Type *SE = ST->getContainedType(i), *DE = DT->getContainedType(i);
194 if (SE != DE && RecursiveResolveTypesI(DE, SE, Pointers))
195 return true;
197 return false;
199 case Type::ArrayTyID: {
200 const ArrayType *DAT = cast<ArrayType>(DstTy);
201 const ArrayType *SAT = cast<ArrayType>(SrcTy);
202 if (DAT->getNumElements() != SAT->getNumElements()) return true;
203 return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
204 Pointers);
206 case Type::VectorTyID: {
207 const VectorType *DVT = cast<VectorType>(DstTy);
208 const VectorType *SVT = cast<VectorType>(SrcTy);
209 if (DVT->getNumElements() != SVT->getNumElements()) return true;
210 return RecursiveResolveTypesI(DVT->getElementType(), SVT->getElementType(),
211 Pointers);
213 case Type::PointerTyID: {
214 const PointerType *DstPT = cast<PointerType>(DstTy);
215 const PointerType *SrcPT = cast<PointerType>(SrcTy);
217 if (DstPT->getAddressSpace() != SrcPT->getAddressSpace())
218 return true;
220 // If this is a pointer type, check to see if we have already seen it. If
221 // so, we are in a recursive branch. Cut off the search now. We cannot use
222 // an associative container for this search, because the type pointers (keys
223 // in the container) change whenever types get resolved.
224 if (SrcPT->isAbstract())
225 if (const Type *ExistingDestTy = Pointers.lookup(SrcPT))
226 return ExistingDestTy != DstPT;
228 if (DstPT->isAbstract())
229 if (const Type *ExistingSrcTy = Pointers.lookup(DstPT))
230 return ExistingSrcTy != SrcPT;
231 // Otherwise, add the current pointers to the vector to stop recursion on
232 // this pair.
233 if (DstPT->isAbstract())
234 Pointers.insert(DstPT, SrcPT);
235 if (SrcPT->isAbstract())
236 Pointers.insert(SrcPT, DstPT);
238 return RecursiveResolveTypesI(DstPT->getElementType(),
239 SrcPT->getElementType(), Pointers);
244 static bool RecursiveResolveTypes(const Type *DestTy, const Type *SrcTy) {
245 LinkerTypeMap PointerTypes;
246 return RecursiveResolveTypesI(DestTy, SrcTy, PointerTypes);
250 // LinkTypes - Go through the symbol table of the Src module and see if any
251 // types are named in the src module that are not named in the Dst module.
252 // Make sure there are no type name conflicts.
253 static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
254 TypeSymbolTable *DestST = &Dest->getTypeSymbolTable();
255 const TypeSymbolTable *SrcST = &Src->getTypeSymbolTable();
257 // Look for a type plane for Type's...
258 TypeSymbolTable::const_iterator TI = SrcST->begin();
259 TypeSymbolTable::const_iterator TE = SrcST->end();
260 if (TI == TE) return false; // No named types, do nothing.
262 // Some types cannot be resolved immediately because they depend on other
263 // types being resolved to each other first. This contains a list of types we
264 // are waiting to recheck.
265 std::vector<std::string> DelayedTypesToResolve;
267 for ( ; TI != TE; ++TI ) {
268 const std::string &Name = TI->first;
269 const Type *RHS = TI->second;
271 // Check to see if this type name is already in the dest module.
272 Type *Entry = DestST->lookup(Name);
274 // If the name is just in the source module, bring it over to the dest.
275 if (Entry == 0) {
276 if (!Name.empty())
277 DestST->insert(Name, const_cast<Type*>(RHS));
278 } else if (ResolveTypes(Entry, RHS)) {
279 // They look different, save the types 'till later to resolve.
280 DelayedTypesToResolve.push_back(Name);
284 // Iteratively resolve types while we can...
285 while (!DelayedTypesToResolve.empty()) {
286 // Loop over all of the types, attempting to resolve them if possible...
287 unsigned OldSize = DelayedTypesToResolve.size();
289 // Try direct resolution by name...
290 for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
291 const std::string &Name = DelayedTypesToResolve[i];
292 Type *T1 = SrcST->lookup(Name);
293 Type *T2 = DestST->lookup(Name);
294 if (!ResolveTypes(T2, T1)) {
295 // We are making progress!
296 DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
297 --i;
301 // Did we not eliminate any types?
302 if (DelayedTypesToResolve.size() == OldSize) {
303 // Attempt to resolve subelements of types. This allows us to merge these
304 // two types: { int* } and { opaque* }
305 for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
306 const std::string &Name = DelayedTypesToResolve[i];
307 if (!RecursiveResolveTypes(SrcST->lookup(Name), DestST->lookup(Name))) {
308 // We are making progress!
309 DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
311 // Go back to the main loop, perhaps we can resolve directly by name
312 // now...
313 break;
317 // If we STILL cannot resolve the types, then there is something wrong.
318 if (DelayedTypesToResolve.size() == OldSize) {
319 // Remove the symbol name from the destination.
320 DelayedTypesToResolve.pop_back();
326 return false;
329 /// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict
330 /// in the symbol table. This is good for all clients except for us. Go
331 /// through the trouble to force this back.
332 static void ForceRenaming(GlobalValue *GV, const std::string &Name) {
333 assert(GV->getName() != Name && "Can't force rename to self");
334 ValueSymbolTable &ST = GV->getParent()->getValueSymbolTable();
336 // If there is a conflict, rename the conflict.
337 if (GlobalValue *ConflictGV = cast_or_null<GlobalValue>(ST.lookup(Name))) {
338 assert(ConflictGV->hasLocalLinkage() &&
339 "Not conflicting with a static global, should link instead!");
340 GV->takeName(ConflictGV);
341 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
342 assert(ConflictGV->getName() != Name && "ForceRenaming didn't work");
343 } else {
344 GV->setName(Name); // Force the name back
348 /// CopyGVAttributes - copy additional attributes (those not needed to construct
349 /// a GlobalValue) from the SrcGV to the DestGV.
350 static void CopyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
351 // Use the maximum alignment, rather than just copying the alignment of SrcGV.
352 unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
353 DestGV->copyAttributesFrom(SrcGV);
354 DestGV->setAlignment(Alignment);
357 /// GetLinkageResult - This analyzes the two global values and determines what
358 /// the result will look like in the destination module. In particular, it
359 /// computes the resultant linkage type, computes whether the global in the
360 /// source should be copied over to the destination (replacing the existing
361 /// one), and computes whether this linkage is an error or not. It also performs
362 /// visibility checks: we cannot link together two symbols with different
363 /// visibilities.
364 static bool GetLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
365 GlobalValue::LinkageTypes &LT, bool &LinkFromSrc,
366 std::string *Err) {
367 assert((!Dest || !Src->hasLocalLinkage()) &&
368 "If Src has internal linkage, Dest shouldn't be set!");
369 if (!Dest) {
370 // Linking something to nothing.
371 LinkFromSrc = true;
372 LT = Src->getLinkage();
373 } else if (Src->isDeclaration()) {
374 // If Src is external or if both Src & Dest are external.. Just link the
375 // external globals, we aren't adding anything.
376 if (Src->hasDLLImportLinkage()) {
377 // If one of GVs has DLLImport linkage, result should be dllimport'ed.
378 if (Dest->isDeclaration()) {
379 LinkFromSrc = true;
380 LT = Src->getLinkage();
382 } else if (Dest->hasExternalWeakLinkage()) {
383 // If the Dest is weak, use the source linkage.
384 LinkFromSrc = true;
385 LT = Src->getLinkage();
386 } else {
387 LinkFromSrc = false;
388 LT = Dest->getLinkage();
390 } else if (Dest->isDeclaration() && !Dest->hasDLLImportLinkage()) {
391 // If Dest is external but Src is not:
392 LinkFromSrc = true;
393 LT = Src->getLinkage();
394 } else if (Src->hasAppendingLinkage() || Dest->hasAppendingLinkage()) {
395 if (Src->getLinkage() != Dest->getLinkage())
396 return Error(Err, "Linking globals named '" + Src->getName() +
397 "': can only link appending global with another appending global!");
398 LinkFromSrc = true; // Special cased.
399 LT = Src->getLinkage();
400 } else if (Src->isWeakForLinker()) {
401 // At this point we know that Dest has LinkOnce, External*, Weak, Common,
402 // or DLL* linkage.
403 if (Dest->hasExternalWeakLinkage() ||
404 Dest->hasAvailableExternallyLinkage() ||
405 (Dest->hasLinkOnceLinkage() &&
406 (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
407 LinkFromSrc = true;
408 LT = Src->getLinkage();
409 } else {
410 LinkFromSrc = false;
411 LT = Dest->getLinkage();
413 } else if (Dest->isWeakForLinker()) {
414 // At this point we know that Src has External* or DLL* linkage.
415 if (Src->hasExternalWeakLinkage()) {
416 LinkFromSrc = false;
417 LT = Dest->getLinkage();
418 } else {
419 LinkFromSrc = true;
420 LT = GlobalValue::ExternalLinkage;
422 } else {
423 assert((Dest->hasExternalLinkage() ||
424 Dest->hasDLLImportLinkage() ||
425 Dest->hasDLLExportLinkage() ||
426 Dest->hasExternalWeakLinkage()) &&
427 (Src->hasExternalLinkage() ||
428 Src->hasDLLImportLinkage() ||
429 Src->hasDLLExportLinkage() ||
430 Src->hasExternalWeakLinkage()) &&
431 "Unexpected linkage type!");
432 return Error(Err, "Linking globals named '" + Src->getName() +
433 "': symbol multiply defined!");
436 // Check visibility
437 if (Dest && Src->getVisibility() != Dest->getVisibility())
438 if (!Src->isDeclaration() && !Dest->isDeclaration())
439 return Error(Err, "Linking globals named '" + Src->getName() +
440 "': symbols have different visibilities!");
441 return false;
444 // Insert all of the named mdnoes in Src into the Dest module.
445 static void LinkNamedMDNodes(Module *Dest, Module *Src,
446 ValueToValueMapTy &ValueMap) {
447 for (Module::const_named_metadata_iterator I = Src->named_metadata_begin(),
448 E = Src->named_metadata_end(); I != E; ++I) {
449 const NamedMDNode *SrcNMD = I;
450 NamedMDNode *DestNMD = Dest->getOrInsertNamedMetadata(SrcNMD->getName());
451 // Add Src elements into Dest node.
452 for (unsigned i = 0, e = SrcNMD->getNumOperands(); i != e; ++i)
453 DestNMD->addOperand(cast<MDNode>(MapValue(SrcNMD->getOperand(i),
454 ValueMap,
455 true)));
459 // LinkGlobals - Loop through the global variables in the src module and merge
460 // them into the dest module.
461 static bool LinkGlobals(Module *Dest, const Module *Src,
462 ValueToValueMapTy &ValueMap,
463 std::multimap<std::string, GlobalVariable *> &AppendingVars,
464 std::string *Err) {
465 ValueSymbolTable &DestSymTab = Dest->getValueSymbolTable();
467 // Loop over all of the globals in the src module, mapping them over as we go
468 for (Module::const_global_iterator I = Src->global_begin(),
469 E = Src->global_end(); I != E; ++I) {
470 const GlobalVariable *SGV = I;
471 GlobalValue *DGV = 0;
473 // Check to see if may have to link the global with the global, alias or
474 // function.
475 if (SGV->hasName() && !SGV->hasLocalLinkage())
476 DGV = cast_or_null<GlobalValue>(DestSymTab.lookup(SGV->getName()));
478 // If we found a global with the same name in the dest module, but it has
479 // internal linkage, we are really not doing any linkage here.
480 if (DGV && DGV->hasLocalLinkage())
481 DGV = 0;
483 // If types don't agree due to opaque types, try to resolve them.
484 if (DGV && DGV->getType() != SGV->getType())
485 RecursiveResolveTypes(SGV->getType(), DGV->getType());
487 assert((SGV->hasInitializer() || SGV->hasExternalWeakLinkage() ||
488 SGV->hasExternalLinkage() || SGV->hasDLLImportLinkage()) &&
489 "Global must either be external or have an initializer!");
491 GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
492 bool LinkFromSrc = false;
493 if (GetLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc, Err))
494 return true;
496 if (DGV == 0) {
497 // No linking to be performed, simply create an identical version of the
498 // symbol over in the dest module... the initializer will be filled in
499 // later by LinkGlobalInits.
500 GlobalVariable *NewDGV =
501 new GlobalVariable(*Dest, SGV->getType()->getElementType(),
502 SGV->isConstant(), SGV->getLinkage(), /*init*/0,
503 SGV->getName(), 0, false,
504 SGV->getType()->getAddressSpace());
505 // Propagate alignment, visibility and section info.
506 CopyGVAttributes(NewDGV, SGV);
508 // If the LLVM runtime renamed the global, but it is an externally visible
509 // symbol, DGV must be an existing global with internal linkage. Rename
510 // it.
511 if (!NewDGV->hasLocalLinkage() && NewDGV->getName() != SGV->getName())
512 ForceRenaming(NewDGV, SGV->getName());
514 // Make sure to remember this mapping.
515 ValueMap[SGV] = NewDGV;
517 // Keep track that this is an appending variable.
518 if (SGV->hasAppendingLinkage())
519 AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
520 continue;
523 // If the visibilities of the symbols disagree and the destination is a
524 // prototype, take the visibility of its input.
525 if (DGV->isDeclaration())
526 DGV->setVisibility(SGV->getVisibility());
528 if (DGV->hasAppendingLinkage()) {
529 // No linking is performed yet. Just insert a new copy of the global, and
530 // keep track of the fact that it is an appending variable in the
531 // AppendingVars map. The name is cleared out so that no linkage is
532 // performed.
533 GlobalVariable *NewDGV =
534 new GlobalVariable(*Dest, SGV->getType()->getElementType(),
535 SGV->isConstant(), SGV->getLinkage(), /*init*/0,
536 "", 0, false,
537 SGV->getType()->getAddressSpace());
539 // Set alignment allowing CopyGVAttributes merge it with alignment of SGV.
540 NewDGV->setAlignment(DGV->getAlignment());
541 // Propagate alignment, section and visibility info.
542 CopyGVAttributes(NewDGV, SGV);
544 // Make sure to remember this mapping...
545 ValueMap[SGV] = NewDGV;
547 // Keep track that this is an appending variable...
548 AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
549 continue;
552 if (LinkFromSrc) {
553 if (isa<GlobalAlias>(DGV))
554 return Error(Err, "Global-Alias Collision on '" + SGV->getName() +
555 "': symbol multiple defined");
557 // If the types don't match, and if we are to link from the source, nuke
558 // DGV and create a new one of the appropriate type. Note that the thing
559 // we are replacing may be a function (if a prototype, weak, etc) or a
560 // global variable.
561 GlobalVariable *NewDGV =
562 new GlobalVariable(*Dest, SGV->getType()->getElementType(),
563 SGV->isConstant(), NewLinkage, /*init*/0,
564 DGV->getName(), 0, false,
565 SGV->getType()->getAddressSpace());
567 // Propagate alignment, section, and visibility info.
568 CopyGVAttributes(NewDGV, SGV);
569 DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV,
570 DGV->getType()));
572 // DGV will conflict with NewDGV because they both had the same
573 // name. We must erase this now so ForceRenaming doesn't assert
574 // because DGV might not have internal linkage.
575 if (GlobalVariable *Var = dyn_cast<GlobalVariable>(DGV))
576 Var->eraseFromParent();
577 else
578 cast<Function>(DGV)->eraseFromParent();
580 // If the symbol table renamed the global, but it is an externally visible
581 // symbol, DGV must be an existing global with internal linkage. Rename.
582 if (NewDGV->getName() != SGV->getName() && !NewDGV->hasLocalLinkage())
583 ForceRenaming(NewDGV, SGV->getName());
585 // Inherit const as appropriate.
586 NewDGV->setConstant(SGV->isConstant());
588 // Make sure to remember this mapping.
589 ValueMap[SGV] = NewDGV;
590 continue;
593 // Not "link from source", keep the one in the DestModule and remap the
594 // input onto it.
596 // Special case for const propagation.
597 if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
598 if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
599 DGVar->setConstant(true);
601 // SGV is global, but DGV is alias.
602 if (isa<GlobalAlias>(DGV)) {
603 // The only valid mappings are:
604 // - SGV is external declaration, which is effectively a no-op.
605 // - SGV is weak, when we just need to throw SGV out.
606 if (!SGV->isDeclaration() && !SGV->isWeakForLinker())
607 return Error(Err, "Global-Alias Collision on '" + SGV->getName() +
608 "': symbol multiple defined");
611 // Set calculated linkage
612 DGV->setLinkage(NewLinkage);
614 // Make sure to remember this mapping...
615 ValueMap[SGV] = ConstantExpr::getBitCast(DGV, SGV->getType());
617 return false;
620 static GlobalValue::LinkageTypes
621 CalculateAliasLinkage(const GlobalValue *SGV, const GlobalValue *DGV) {
622 GlobalValue::LinkageTypes SL = SGV->getLinkage();
623 GlobalValue::LinkageTypes DL = DGV->getLinkage();
624 if (SL == GlobalValue::ExternalLinkage || DL == GlobalValue::ExternalLinkage)
625 return GlobalValue::ExternalLinkage;
626 else if (SL == GlobalValue::WeakAnyLinkage ||
627 DL == GlobalValue::WeakAnyLinkage)
628 return GlobalValue::WeakAnyLinkage;
629 else if (SL == GlobalValue::WeakODRLinkage ||
630 DL == GlobalValue::WeakODRLinkage)
631 return GlobalValue::WeakODRLinkage;
632 else if (SL == GlobalValue::InternalLinkage &&
633 DL == GlobalValue::InternalLinkage)
634 return GlobalValue::InternalLinkage;
635 else if (SL == GlobalValue::LinkerPrivateLinkage &&
636 DL == GlobalValue::LinkerPrivateLinkage)
637 return GlobalValue::LinkerPrivateLinkage;
638 else if (SL == GlobalValue::LinkerPrivateWeakLinkage &&
639 DL == GlobalValue::LinkerPrivateWeakLinkage)
640 return GlobalValue::LinkerPrivateWeakLinkage;
641 else if (SL == GlobalValue::LinkerPrivateWeakDefAutoLinkage &&
642 DL == GlobalValue::LinkerPrivateWeakDefAutoLinkage)
643 return GlobalValue::LinkerPrivateWeakDefAutoLinkage;
644 else {
645 assert (SL == GlobalValue::PrivateLinkage &&
646 DL == GlobalValue::PrivateLinkage && "Unexpected linkage type");
647 return GlobalValue::PrivateLinkage;
651 // LinkAlias - Loop through the alias in the src module and link them into the
652 // dest module. We're assuming, that all functions/global variables were already
653 // linked in.
654 static bool LinkAlias(Module *Dest, const Module *Src,
655 ValueToValueMapTy &ValueMap,
656 std::string *Err) {
657 // Loop over all alias in the src module
658 for (Module::const_alias_iterator I = Src->alias_begin(),
659 E = Src->alias_end(); I != E; ++I) {
660 const GlobalAlias *SGA = I;
661 const GlobalValue *SAliasee = SGA->getAliasedGlobal();
662 GlobalAlias *NewGA = NULL;
664 // Globals were already linked, thus we can just query ValueMap for variant
665 // of SAliasee in Dest.
666 ValueToValueMapTy::const_iterator VMI = ValueMap.find(SAliasee);
667 assert(VMI != ValueMap.end() && "Aliasee not linked");
668 GlobalValue* DAliasee = cast<GlobalValue>(VMI->second);
669 GlobalValue* DGV = NULL;
671 // Fixup aliases to bitcasts. Note that aliases to GEPs are still broken
672 // by this, but aliases to GEPs are broken to a lot of other things, so
673 // it's less important.
674 Constant *DAliaseeConst = DAliasee;
675 if (SGA->getType() != DAliasee->getType())
676 DAliaseeConst = ConstantExpr::getBitCast(DAliasee, SGA->getType());
678 // Try to find something 'similar' to SGA in destination module.
679 if (!DGV && !SGA->hasLocalLinkage()) {
680 DGV = Dest->getNamedAlias(SGA->getName());
682 // If types don't agree due to opaque types, try to resolve them.
683 if (DGV && DGV->getType() != SGA->getType())
684 RecursiveResolveTypes(SGA->getType(), DGV->getType());
687 if (!DGV && !SGA->hasLocalLinkage()) {
688 DGV = Dest->getGlobalVariable(SGA->getName());
690 // If types don't agree due to opaque types, try to resolve them.
691 if (DGV && DGV->getType() != SGA->getType())
692 RecursiveResolveTypes(SGA->getType(), DGV->getType());
695 if (!DGV && !SGA->hasLocalLinkage()) {
696 DGV = Dest->getFunction(SGA->getName());
698 // If types don't agree due to opaque types, try to resolve them.
699 if (DGV && DGV->getType() != SGA->getType())
700 RecursiveResolveTypes(SGA->getType(), DGV->getType());
703 // No linking to be performed on internal stuff.
704 if (DGV && DGV->hasLocalLinkage())
705 DGV = NULL;
707 if (GlobalAlias *DGA = dyn_cast_or_null<GlobalAlias>(DGV)) {
708 // Types are known to be the same, check whether aliasees equal. As
709 // globals are already linked we just need query ValueMap to find the
710 // mapping.
711 if (DAliasee == DGA->getAliasedGlobal()) {
712 // This is just two copies of the same alias. Propagate linkage, if
713 // necessary.
714 DGA->setLinkage(CalculateAliasLinkage(SGA, DGA));
716 NewGA = DGA;
717 // Proceed to 'common' steps
718 } else
719 return Error(Err, "Alias Collision on '" + SGA->getName()+
720 "': aliases have different aliasees");
721 } else if (GlobalVariable *DGVar = dyn_cast_or_null<GlobalVariable>(DGV)) {
722 // The only allowed way is to link alias with external declaration or weak
723 // symbol..
724 if (DGVar->isDeclaration() || DGVar->isWeakForLinker()) {
725 // But only if aliasee is global too...
726 if (!isa<GlobalVariable>(DAliasee))
727 return Error(Err, "Global-Alias Collision on '" + SGA->getName() +
728 "': aliasee is not global variable");
730 NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
731 SGA->getName(), DAliaseeConst, Dest);
732 CopyGVAttributes(NewGA, SGA);
734 // Any uses of DGV need to change to NewGA, with cast, if needed.
735 if (SGA->getType() != DGVar->getType())
736 DGVar->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
737 DGVar->getType()));
738 else
739 DGVar->replaceAllUsesWith(NewGA);
741 // DGVar will conflict with NewGA because they both had the same
742 // name. We must erase this now so ForceRenaming doesn't assert
743 // because DGV might not have internal linkage.
744 DGVar->eraseFromParent();
746 // Proceed to 'common' steps
747 } else
748 return Error(Err, "Global-Alias Collision on '" + SGA->getName() +
749 "': symbol multiple defined");
750 } else if (Function *DF = dyn_cast_or_null<Function>(DGV)) {
751 // The only allowed way is to link alias with external declaration or weak
752 // symbol...
753 if (DF->isDeclaration() || DF->isWeakForLinker()) {
754 // But only if aliasee is function too...
755 if (!isa<Function>(DAliasee))
756 return Error(Err, "Function-Alias Collision on '" + SGA->getName() +
757 "': aliasee is not function");
759 NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
760 SGA->getName(), DAliaseeConst, Dest);
761 CopyGVAttributes(NewGA, SGA);
763 // Any uses of DF need to change to NewGA, with cast, if needed.
764 if (SGA->getType() != DF->getType())
765 DF->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
766 DF->getType()));
767 else
768 DF->replaceAllUsesWith(NewGA);
770 // DF will conflict with NewGA because they both had the same
771 // name. We must erase this now so ForceRenaming doesn't assert
772 // because DF might not have internal linkage.
773 DF->eraseFromParent();
775 // Proceed to 'common' steps
776 } else
777 return Error(Err, "Function-Alias Collision on '" + SGA->getName() +
778 "': symbol multiple defined");
779 } else {
780 // No linking to be performed, simply create an identical version of the
781 // alias over in the dest module...
782 NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
783 SGA->getName(), DAliaseeConst, Dest);
784 CopyGVAttributes(NewGA, SGA);
786 // Proceed to 'common' steps
789 assert(NewGA && "No alias was created in destination module!");
791 // If the symbol table renamed the alias, but it is an externally visible
792 // symbol, DGA must be an global value with internal linkage. Rename it.
793 if (NewGA->getName() != SGA->getName() &&
794 !NewGA->hasLocalLinkage())
795 ForceRenaming(NewGA, SGA->getName());
797 // Remember this mapping so uses in the source module get remapped
798 // later by MapValue.
799 ValueMap[SGA] = NewGA;
802 return false;
806 // LinkGlobalInits - Update the initializers in the Dest module now that all
807 // globals that may be referenced are in Dest.
808 static bool LinkGlobalInits(Module *Dest, const Module *Src,
809 ValueToValueMapTy &ValueMap,
810 std::string *Err) {
811 // Loop over all of the globals in the src module, mapping them over as we go
812 for (Module::const_global_iterator I = Src->global_begin(),
813 E = Src->global_end(); I != E; ++I) {
814 const GlobalVariable *SGV = I;
816 if (SGV->hasInitializer()) { // Only process initialized GV's
817 // Figure out what the initializer looks like in the dest module...
818 Constant *SInit =
819 cast<Constant>(MapValue(SGV->getInitializer(), ValueMap, true));
820 // Grab destination global variable or alias.
821 GlobalValue *DGV = cast<GlobalValue>(ValueMap[SGV]->stripPointerCasts());
823 // If dest if global variable, check that initializers match.
824 if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV)) {
825 if (DGVar->hasInitializer()) {
826 if (SGV->hasExternalLinkage()) {
827 if (DGVar->getInitializer() != SInit)
828 return Error(Err, "Global Variable Collision on '" +
829 SGV->getName() +
830 "': global variables have different initializers");
831 } else if (DGVar->isWeakForLinker()) {
832 // Nothing is required, mapped values will take the new global
833 // automatically.
834 } else if (SGV->isWeakForLinker()) {
835 // Nothing is required, mapped values will take the new global
836 // automatically.
837 } else if (DGVar->hasAppendingLinkage()) {
838 llvm_unreachable("Appending linkage unimplemented!");
839 } else {
840 llvm_unreachable("Unknown linkage!");
842 } else {
843 // Copy the initializer over now...
844 DGVar->setInitializer(SInit);
846 } else {
847 // Destination is alias, the only valid situation is when source is
848 // weak. Also, note, that we already checked linkage in LinkGlobals(),
849 // thus we assert here.
850 // FIXME: Should we weaken this assumption, 'dereference' alias and
851 // check for initializer of aliasee?
852 assert(SGV->isWeakForLinker());
856 return false;
859 // LinkFunctionProtos - Link the functions together between the two modules,
860 // without doing function bodies... this just adds external function prototypes
861 // to the Dest function...
863 static bool LinkFunctionProtos(Module *Dest, const Module *Src,
864 ValueToValueMapTy &ValueMap,
865 std::string *Err) {
866 ValueSymbolTable &DestSymTab = Dest->getValueSymbolTable();
868 // Loop over all of the functions in the src module, mapping them over
869 for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
870 const Function *SF = I; // SrcFunction
871 GlobalValue *DGV = 0;
873 // Check to see if may have to link the function with the global, alias or
874 // function.
875 if (SF->hasName() && !SF->hasLocalLinkage())
876 DGV = cast_or_null<GlobalValue>(DestSymTab.lookup(SF->getName()));
878 // If we found a global with the same name in the dest module, but it has
879 // internal linkage, we are really not doing any linkage here.
880 if (DGV && DGV->hasLocalLinkage())
881 DGV = 0;
883 // If types don't agree due to opaque types, try to resolve them.
884 if (DGV && DGV->getType() != SF->getType())
885 RecursiveResolveTypes(SF->getType(), DGV->getType());
887 GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
888 bool LinkFromSrc = false;
889 if (GetLinkageResult(DGV, SF, NewLinkage, LinkFromSrc, Err))
890 return true;
892 // If there is no linkage to be performed, just bring over SF without
893 // modifying it.
894 if (DGV == 0) {
895 // Function does not already exist, simply insert an function signature
896 // identical to SF into the dest module.
897 Function *NewDF = Function::Create(SF->getFunctionType(),
898 SF->getLinkage(),
899 SF->getName(), Dest);
900 CopyGVAttributes(NewDF, SF);
902 // If the LLVM runtime renamed the function, but it is an externally
903 // visible symbol, DF must be an existing function with internal linkage.
904 // Rename it.
905 if (!NewDF->hasLocalLinkage() && NewDF->getName() != SF->getName())
906 ForceRenaming(NewDF, SF->getName());
908 // ... and remember this mapping...
909 ValueMap[SF] = NewDF;
910 continue;
913 // If the visibilities of the symbols disagree and the destination is a
914 // prototype, take the visibility of its input.
915 if (DGV->isDeclaration())
916 DGV->setVisibility(SF->getVisibility());
918 if (LinkFromSrc) {
919 if (isa<GlobalAlias>(DGV))
920 return Error(Err, "Function-Alias Collision on '" + SF->getName() +
921 "': symbol multiple defined");
923 // We have a definition of the same name but different type in the
924 // source module. Copy the prototype to the destination and replace
925 // uses of the destination's prototype with the new prototype.
926 Function *NewDF = Function::Create(SF->getFunctionType(), NewLinkage,
927 SF->getName(), Dest);
928 CopyGVAttributes(NewDF, SF);
930 // Any uses of DF need to change to NewDF, with cast
931 DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF,
932 DGV->getType()));
934 // DF will conflict with NewDF because they both had the same. We must
935 // erase this now so ForceRenaming doesn't assert because DF might
936 // not have internal linkage.
937 if (GlobalVariable *Var = dyn_cast<GlobalVariable>(DGV))
938 Var->eraseFromParent();
939 else
940 cast<Function>(DGV)->eraseFromParent();
942 // If the symbol table renamed the function, but it is an externally
943 // visible symbol, DF must be an existing function with internal
944 // linkage. Rename it.
945 if (NewDF->getName() != SF->getName() && !NewDF->hasLocalLinkage())
946 ForceRenaming(NewDF, SF->getName());
948 // Remember this mapping so uses in the source module get remapped
949 // later by MapValue.
950 ValueMap[SF] = NewDF;
951 continue;
954 // Not "link from source", keep the one in the DestModule and remap the
955 // input onto it.
957 if (isa<GlobalAlias>(DGV)) {
958 // The only valid mappings are:
959 // - SF is external declaration, which is effectively a no-op.
960 // - SF is weak, when we just need to throw SF out.
961 if (!SF->isDeclaration() && !SF->isWeakForLinker())
962 return Error(Err, "Function-Alias Collision on '" + SF->getName() +
963 "': symbol multiple defined");
966 // Set calculated linkage
967 DGV->setLinkage(NewLinkage);
969 // Make sure to remember this mapping.
970 ValueMap[SF] = ConstantExpr::getBitCast(DGV, SF->getType());
972 return false;
975 // LinkFunctionBody - Copy the source function over into the dest function and
976 // fix up references to values. At this point we know that Dest is an external
977 // function, and that Src is not.
978 static bool LinkFunctionBody(Function *Dest, Function *Src,
979 ValueToValueMapTy &ValueMap,
980 std::string *Err) {
981 assert(Src && Dest && Dest->isDeclaration() && !Src->isDeclaration());
983 // Go through and convert function arguments over, remembering the mapping.
984 Function::arg_iterator DI = Dest->arg_begin();
985 for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
986 I != E; ++I, ++DI) {
987 DI->setName(I->getName()); // Copy the name information over...
989 // Add a mapping to our local map
990 ValueMap[I] = DI;
993 // Splice the body of the source function into the dest function.
994 Dest->getBasicBlockList().splice(Dest->end(), Src->getBasicBlockList());
996 // At this point, all of the instructions and values of the function are now
997 // copied over. The only problem is that they are still referencing values in
998 // the Source function as operands. Loop through all of the operands of the
999 // functions and patch them up to point to the local versions...
1001 // This is the same as RemapInstruction, except that it avoids remapping
1002 // instruction and basic block operands.
1004 for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
1005 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1006 // Remap operands.
1007 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
1008 OI != OE; ++OI)
1009 if (!isa<Instruction>(*OI) && !isa<BasicBlock>(*OI))
1010 *OI = MapValue(*OI, ValueMap, true);
1012 // Remap attached metadata.
1013 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1014 I->getAllMetadata(MDs);
1015 for (SmallVectorImpl<std::pair<unsigned, MDNode *> >::iterator
1016 MI = MDs.begin(), ME = MDs.end(); MI != ME; ++MI) {
1017 Value *Old = MI->second;
1018 if (!isa<Instruction>(Old) && !isa<BasicBlock>(Old)) {
1019 Value *New = MapValue(Old, ValueMap, true);
1020 if (New != Old)
1021 I->setMetadata(MI->first, cast<MDNode>(New));
1026 // There is no need to map the arguments anymore.
1027 for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
1028 I != E; ++I)
1029 ValueMap.erase(I);
1031 return false;
1035 // LinkFunctionBodies - Link in the function bodies that are defined in the
1036 // source module into the DestModule. This consists basically of copying the
1037 // function over and fixing up references to values.
1038 static bool LinkFunctionBodies(Module *Dest, Module *Src,
1039 ValueToValueMapTy &ValueMap,
1040 std::string *Err) {
1042 // Loop over all of the functions in the src module, mapping them over as we
1043 // go
1044 for (Module::iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF) {
1045 if (!SF->isDeclaration()) { // No body if function is external
1046 Function *DF = dyn_cast<Function>(ValueMap[SF]); // Destination function
1048 // DF not external SF external?
1049 if (DF && DF->isDeclaration())
1050 // Only provide the function body if there isn't one already.
1051 if (LinkFunctionBody(DF, SF, ValueMap, Err))
1052 return true;
1055 return false;
1058 // LinkAppendingVars - If there were any appending global variables, link them
1059 // together now. Return true on error.
1060 static bool LinkAppendingVars(Module *M,
1061 std::multimap<std::string, GlobalVariable *> &AppendingVars,
1062 std::string *ErrorMsg) {
1063 if (AppendingVars.empty()) return false; // Nothing to do.
1065 // Loop over the multimap of appending vars, processing any variables with the
1066 // same name, forming a new appending global variable with both of the
1067 // initializers merged together, then rewrite references to the old variables
1068 // and delete them.
1069 std::vector<Constant*> Inits;
1070 while (AppendingVars.size() > 1) {
1071 // Get the first two elements in the map...
1072 std::multimap<std::string,
1073 GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;
1075 // If the first two elements are for different names, there is no pair...
1076 // Otherwise there is a pair, so link them together...
1077 if (First->first == Second->first) {
1078 GlobalVariable *G1 = First->second, *G2 = Second->second;
1079 const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
1080 const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
1082 // Check to see that they two arrays agree on type...
1083 if (T1->getElementType() != T2->getElementType())
1084 return Error(ErrorMsg,
1085 "Appending variables with different element types need to be linked!");
1086 if (G1->isConstant() != G2->isConstant())
1087 return Error(ErrorMsg,
1088 "Appending variables linked with different const'ness!");
1090 if (G1->getAlignment() != G2->getAlignment())
1091 return Error(ErrorMsg,
1092 "Appending variables with different alignment need to be linked!");
1094 if (G1->getVisibility() != G2->getVisibility())
1095 return Error(ErrorMsg,
1096 "Appending variables with different visibility need to be linked!");
1098 if (G1->getSection() != G2->getSection())
1099 return Error(ErrorMsg,
1100 "Appending variables with different section name need to be linked!");
1102 unsigned NewSize = T1->getNumElements() + T2->getNumElements();
1103 ArrayType *NewType = ArrayType::get(T1->getElementType(),
1104 NewSize);
1106 G1->setName(""); // Clear G1's name in case of a conflict!
1108 // Create the new global variable...
1109 GlobalVariable *NG =
1110 new GlobalVariable(*M, NewType, G1->isConstant(), G1->getLinkage(),
1111 /*init*/0, First->first, 0, G1->isThreadLocal(),
1112 G1->getType()->getAddressSpace());
1114 // Propagate alignment, visibility and section info.
1115 CopyGVAttributes(NG, G1);
1117 // Merge the initializer...
1118 Inits.reserve(NewSize);
1119 if (ConstantArray *I = dyn_cast<ConstantArray>(G1->getInitializer())) {
1120 for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
1121 Inits.push_back(I->getOperand(i));
1122 } else {
1123 assert(isa<ConstantAggregateZero>(G1->getInitializer()));
1124 Constant *CV = Constant::getNullValue(T1->getElementType());
1125 for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
1126 Inits.push_back(CV);
1128 if (ConstantArray *I = dyn_cast<ConstantArray>(G2->getInitializer())) {
1129 for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
1130 Inits.push_back(I->getOperand(i));
1131 } else {
1132 assert(isa<ConstantAggregateZero>(G2->getInitializer()));
1133 Constant *CV = Constant::getNullValue(T2->getElementType());
1134 for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
1135 Inits.push_back(CV);
1137 NG->setInitializer(ConstantArray::get(NewType, Inits));
1138 Inits.clear();
1140 // Replace any uses of the two global variables with uses of the new
1141 // global...
1143 // FIXME: This should rewrite simple/straight-forward uses such as
1144 // getelementptr instructions to not use the Cast!
1145 G1->replaceAllUsesWith(ConstantExpr::getBitCast(NG,
1146 G1->getType()));
1147 G2->replaceAllUsesWith(ConstantExpr::getBitCast(NG,
1148 G2->getType()));
1150 // Remove the two globals from the module now...
1151 M->getGlobalList().erase(G1);
1152 M->getGlobalList().erase(G2);
1154 // Put the new global into the AppendingVars map so that we can handle
1155 // linking of more than two vars...
1156 Second->second = NG;
1158 AppendingVars.erase(First);
1161 return false;
1164 static bool ResolveAliases(Module *Dest) {
1165 for (Module::alias_iterator I = Dest->alias_begin(), E = Dest->alias_end();
1166 I != E; ++I)
1167 // We can't sue resolveGlobalAlias here because we need to preserve
1168 // bitcasts and GEPs.
1169 if (const Constant *C = I->getAliasee()) {
1170 while (dyn_cast<GlobalAlias>(C))
1171 C = cast<GlobalAlias>(C)->getAliasee();
1172 const GlobalValue *GV = dyn_cast<GlobalValue>(C);
1173 if (C != I && !(GV && GV->isDeclaration()))
1174 I->replaceAllUsesWith(const_cast<Constant*>(C));
1177 return false;
1180 // LinkModules - This function links two modules together, with the resulting
1181 // left module modified to be the composite of the two input modules. If an
1182 // error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1183 // the problem. Upon failure, the Dest module could be in a modified state, and
1184 // shouldn't be relied on to be consistent.
1185 bool
1186 Linker::LinkModules(Module *Dest, Module *Src, std::string *ErrorMsg) {
1187 assert(Dest != 0 && "Invalid Destination module");
1188 assert(Src != 0 && "Invalid Source Module");
1190 if (Dest->getDataLayout().empty()) {
1191 if (!Src->getDataLayout().empty()) {
1192 Dest->setDataLayout(Src->getDataLayout());
1193 } else {
1194 std::string DataLayout;
1196 if (Dest->getEndianness() == Module::AnyEndianness) {
1197 if (Src->getEndianness() == Module::BigEndian)
1198 DataLayout.append("E");
1199 else if (Src->getEndianness() == Module::LittleEndian)
1200 DataLayout.append("e");
1203 if (Dest->getPointerSize() == Module::AnyPointerSize) {
1204 if (Src->getPointerSize() == Module::Pointer64)
1205 DataLayout.append(DataLayout.length() == 0 ? "p:64:64" : "-p:64:64");
1206 else if (Src->getPointerSize() == Module::Pointer32)
1207 DataLayout.append(DataLayout.length() == 0 ? "p:32:32" : "-p:32:32");
1209 Dest->setDataLayout(DataLayout);
1213 // Copy the target triple from the source to dest if the dest's is empty.
1214 if (Dest->getTargetTriple().empty() && !Src->getTargetTriple().empty())
1215 Dest->setTargetTriple(Src->getTargetTriple());
1217 if (!Src->getDataLayout().empty() && !Dest->getDataLayout().empty() &&
1218 Src->getDataLayout() != Dest->getDataLayout())
1219 errs() << "WARNING: Linking two modules of different data layouts!\n";
1220 if (!Src->getTargetTriple().empty() &&
1221 Dest->getTargetTriple() != Src->getTargetTriple())
1222 errs() << "WARNING: Linking two modules of different target triples!\n";
1224 // Append the module inline asm string.
1225 if (!Src->getModuleInlineAsm().empty()) {
1226 if (Dest->getModuleInlineAsm().empty())
1227 Dest->setModuleInlineAsm(Src->getModuleInlineAsm());
1228 else
1229 Dest->setModuleInlineAsm(Dest->getModuleInlineAsm()+"\n"+
1230 Src->getModuleInlineAsm());
1233 // Update the destination module's dependent libraries list with the libraries
1234 // from the source module. There's no opportunity for duplicates here as the
1235 // Module ensures that duplicate insertions are discarded.
1236 for (Module::lib_iterator SI = Src->lib_begin(), SE = Src->lib_end();
1237 SI != SE; ++SI)
1238 Dest->addLibrary(*SI);
1240 // LinkTypes - Go through the symbol table of the Src module and see if any
1241 // types are named in the src module that are not named in the Dst module.
1242 // Make sure there are no type name conflicts.
1243 if (LinkTypes(Dest, Src, ErrorMsg))
1244 return true;
1246 // ValueMap - Mapping of values from what they used to be in Src, to what they
1247 // are now in Dest. ValueToValueMapTy is a ValueMap, which involves some
1248 // overhead due to the use of Value handles which the Linker doesn't actually
1249 // need, but this allows us to reuse the ValueMapper code.
1250 ValueToValueMapTy ValueMap;
1252 // AppendingVars - Keep track of global variables in the destination module
1253 // with appending linkage. After the module is linked together, they are
1254 // appended and the module is rewritten.
1255 std::multimap<std::string, GlobalVariable *> AppendingVars;
1256 for (Module::global_iterator I = Dest->global_begin(), E = Dest->global_end();
1257 I != E; ++I) {
1258 // Add all of the appending globals already in the Dest module to
1259 // AppendingVars.
1260 if (I->hasAppendingLinkage())
1261 AppendingVars.insert(std::make_pair(I->getName(), I));
1264 // Insert all of the globals in src into the Dest module... without linking
1265 // initializers (which could refer to functions not yet mapped over).
1266 if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, ErrorMsg))
1267 return true;
1269 // Link the functions together between the two modules, without doing function
1270 // bodies... this just adds external function prototypes to the Dest
1271 // function... We do this so that when we begin processing function bodies,
1272 // all of the global values that may be referenced are available in our
1273 // ValueMap.
1274 if (LinkFunctionProtos(Dest, Src, ValueMap, ErrorMsg))
1275 return true;
1277 // If there were any alias, link them now. We really need to do this now,
1278 // because all of the aliases that may be referenced need to be available in
1279 // ValueMap
1280 if (LinkAlias(Dest, Src, ValueMap, ErrorMsg)) return true;
1282 // Update the initializers in the Dest module now that all globals that may
1283 // be referenced are in Dest.
1284 if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;
1286 // Link in the function bodies that are defined in the source module into the
1287 // DestModule. This consists basically of copying the function over and
1288 // fixing up references to values.
1289 if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;
1291 // If there were any appending global variables, link them together now.
1292 if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;
1294 // Resolve all uses of aliases with aliasees
1295 if (ResolveAliases(Dest)) return true;
1297 // Remap all of the named mdnoes in Src into the Dest module. We do this
1298 // after linking GlobalValues so that MDNodes that reference GlobalValues
1299 // are properly remapped.
1300 LinkNamedMDNodes(Dest, Src, ValueMap);
1302 // If the source library's module id is in the dependent library list of the
1303 // destination library, remove it since that module is now linked in.
1304 sys::Path modId;
1305 modId.set(Src->getModuleIdentifier());
1306 if (!modId.isEmpty())
1307 Dest->removeLibrary(modId.getBasename());
1309 return false;
1312 // vim: sw=2