1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 #define DEBUG_TYPE "assembler"
11 #include "llvm/MC/MCAssembler.h"
12 #include "llvm/MC/MCAsmLayout.h"
13 #include "llvm/MC/MCCodeEmitter.h"
14 #include "llvm/MC/MCExpr.h"
15 #include "llvm/MC/MCObjectWriter.h"
16 #include "llvm/MC/MCSection.h"
17 #include "llvm/MC/MCSymbol.h"
18 #include "llvm/MC/MCValue.h"
19 #include "llvm/MC/MCDwarf.h"
20 #include "llvm/ADT/OwningPtr.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Target/TargetRegistry.h"
28 #include "llvm/Target/TargetAsmBackend.h"
35 STATISTIC(EmittedFragments
, "Number of emitted assembler fragments");
36 STATISTIC(EvaluateFixup
, "Number of evaluated fixups");
37 STATISTIC(FragmentLayouts
, "Number of fragment layouts");
38 STATISTIC(ObjectBytes
, "Number of emitted object file bytes");
39 STATISTIC(RelaxationSteps
, "Number of assembler layout and relaxation steps");
40 STATISTIC(RelaxedInstructions
, "Number of relaxed instructions");
41 STATISTIC(SectionLayouts
, "Number of section layouts");
45 // FIXME FIXME FIXME: There are number of places in this file where we convert
46 // what is a 64-bit assembler value used for computation into a value in the
47 // object file, which may truncate it. We should detect that truncation where
48 // invalid and report errors back.
52 MCAsmLayout::MCAsmLayout(MCAssembler
&Asm
)
53 : Assembler(Asm
), LastValidFragment(0)
55 // Compute the section layout order. Virtual sections must go last.
56 for (MCAssembler::iterator it
= Asm
.begin(), ie
= Asm
.end(); it
!= ie
; ++it
)
57 if (!Asm
.getBackend().isVirtualSection(it
->getSection()))
58 SectionOrder
.push_back(&*it
);
59 for (MCAssembler::iterator it
= Asm
.begin(), ie
= Asm
.end(); it
!= ie
; ++it
)
60 if (Asm
.getBackend().isVirtualSection(it
->getSection()))
61 SectionOrder
.push_back(&*it
);
64 bool MCAsmLayout::isSectionUpToDate(const MCSectionData
*SD
) const {
65 // The first section is always up-to-date.
66 unsigned Index
= SD
->getLayoutOrder();
70 // Otherwise, sections are always implicitly computed when the preceeding
71 // fragment is layed out.
72 const MCSectionData
*Prev
= getSectionOrder()[Index
- 1];
73 return isFragmentUpToDate(&(Prev
->getFragmentList().back()));
76 bool MCAsmLayout::isFragmentUpToDate(const MCFragment
*F
) const {
77 return (LastValidFragment
&&
78 F
->getLayoutOrder() <= LastValidFragment
->getLayoutOrder());
81 void MCAsmLayout::UpdateForSlide(MCFragment
*F
, int SlideAmount
) {
82 // If this fragment wasn't already up-to-date, we don't need to do anything.
83 if (!isFragmentUpToDate(F
))
86 // Otherwise, reset the last valid fragment to the predecessor of the
87 // invalidated fragment.
88 LastValidFragment
= F
->getPrevNode();
89 if (!LastValidFragment
) {
90 unsigned Index
= F
->getParent()->getLayoutOrder();
92 MCSectionData
*Prev
= getSectionOrder()[Index
- 1];
93 LastValidFragment
= &(Prev
->getFragmentList().back());
98 void MCAsmLayout::EnsureValid(const MCFragment
*F
) const {
99 // Advance the layout position until the fragment is up-to-date.
100 while (!isFragmentUpToDate(F
)) {
101 // Advance to the next fragment.
102 MCFragment
*Cur
= LastValidFragment
;
104 Cur
= Cur
->getNextNode();
106 unsigned NextIndex
= 0;
107 if (LastValidFragment
)
108 NextIndex
= LastValidFragment
->getParent()->getLayoutOrder() + 1;
109 Cur
= SectionOrder
[NextIndex
]->begin();
112 const_cast<MCAsmLayout
*>(this)->LayoutFragment(Cur
);
116 void MCAsmLayout::FragmentReplaced(MCFragment
*Src
, MCFragment
*Dst
) {
117 if (LastValidFragment
== Src
)
118 LastValidFragment
= Dst
;
120 Dst
->Offset
= Src
->Offset
;
121 Dst
->EffectiveSize
= Src
->EffectiveSize
;
124 uint64_t MCAsmLayout::getFragmentAddress(const MCFragment
*F
) const {
125 assert(F
->getParent() && "Missing section()!");
126 return getSectionAddress(F
->getParent()) + getFragmentOffset(F
);
129 uint64_t MCAsmLayout::getFragmentEffectiveSize(const MCFragment
*F
) const {
131 assert(F
->EffectiveSize
!= ~UINT64_C(0) && "Address not set!");
132 return F
->EffectiveSize
;
135 uint64_t MCAsmLayout::getFragmentOffset(const MCFragment
*F
) const {
137 assert(F
->Offset
!= ~UINT64_C(0) && "Address not set!");
141 uint64_t MCAsmLayout::getSymbolAddress(const MCSymbolData
*SD
) const {
142 assert(SD
->getFragment() && "Invalid getAddress() on undefined symbol!");
143 return getFragmentAddress(SD
->getFragment()) + SD
->getOffset();
146 uint64_t MCAsmLayout::getSectionAddress(const MCSectionData
*SD
) const {
147 EnsureValid(SD
->begin());
148 assert(SD
->Address
!= ~UINT64_C(0) && "Address not set!");
152 uint64_t MCAsmLayout::getSectionAddressSize(const MCSectionData
*SD
) const {
153 // The size is the last fragment's end offset.
154 const MCFragment
&F
= SD
->getFragmentList().back();
155 return getFragmentOffset(&F
) + getFragmentEffectiveSize(&F
);
158 uint64_t MCAsmLayout::getSectionFileSize(const MCSectionData
*SD
) const {
159 // Virtual sections have no file size.
160 if (getAssembler().getBackend().isVirtualSection(SD
->getSection()))
163 // Otherwise, the file size is the same as the address space size.
164 return getSectionAddressSize(SD
);
167 uint64_t MCAsmLayout::getSectionSize(const MCSectionData
*SD
) const {
168 // The logical size is the address space size minus any tail padding.
169 uint64_t Size
= getSectionAddressSize(SD
);
170 const MCAlignFragment
*AF
=
171 dyn_cast
<MCAlignFragment
>(&(SD
->getFragmentList().back()));
172 if (AF
&& AF
->hasOnlyAlignAddress())
173 Size
-= getFragmentEffectiveSize(AF
);
180 MCFragment::MCFragment() : Kind(FragmentType(~0)) {
183 MCFragment::~MCFragment() {
186 MCFragment::MCFragment(FragmentType _Kind
, MCSectionData
*_Parent
)
187 : Kind(_Kind
), Parent(_Parent
), Atom(0), Offset(~UINT64_C(0)),
188 EffectiveSize(~UINT64_C(0))
191 Parent
->getFragmentList().push_back(this);
196 MCSectionData::MCSectionData() : Section(0) {}
198 MCSectionData::MCSectionData(const MCSection
&_Section
, MCAssembler
*A
)
199 : Section(&_Section
),
201 Address(~UINT64_C(0)),
202 HasInstructions(false)
205 A
->getSectionList().push_back(this);
210 MCSymbolData::MCSymbolData() : Symbol(0) {}
212 MCSymbolData::MCSymbolData(const MCSymbol
&_Symbol
, MCFragment
*_Fragment
,
213 uint64_t _Offset
, MCAssembler
*A
)
214 : Symbol(&_Symbol
), Fragment(_Fragment
), Offset(_Offset
),
215 IsExternal(false), IsPrivateExtern(false),
216 CommonSize(0), SymbolSize(0), CommonAlign(0),
220 A
->getSymbolList().push_back(this);
225 MCAssembler::MCAssembler(MCContext
&_Context
, TargetAsmBackend
&_Backend
,
226 MCCodeEmitter
&_Emitter
, bool _PadSectionToAlignment
,
228 : Context(_Context
), Backend(_Backend
), Emitter(_Emitter
),
229 OS(_OS
), RelaxAll(false), SubsectionsViaSymbols(false),
230 PadSectionToAlignment(_PadSectionToAlignment
)
234 MCAssembler::~MCAssembler() {
237 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol
&Symbol
) const {
238 // Non-temporary labels should always be visible to the linker.
239 if (!Symbol
.isTemporary())
242 // Absolute temporary labels are never visible.
243 if (!Symbol
.isInSection())
246 // Otherwise, check if the section requires symbols even for temporary labels.
247 return getBackend().doesSectionRequireSymbols(Symbol
.getSection());
250 const MCSymbolData
*MCAssembler::getAtom(const MCSymbolData
*SD
) const {
251 // Linker visible symbols define atoms.
252 if (isSymbolLinkerVisible(SD
->getSymbol()))
255 // Absolute and undefined symbols have no defining atom.
256 if (!SD
->getFragment())
259 // Non-linker visible symbols in sections which can't be atomized have no
261 if (!getBackend().isSectionAtomizable(
262 SD
->getFragment()->getParent()->getSection()))
265 // Otherwise, return the atom for the containing fragment.
266 return SD
->getFragment()->getAtom();
269 bool MCAssembler::EvaluateFixup(const MCObjectWriter
&Writer
,
270 const MCAsmLayout
&Layout
,
271 const MCFixup
&Fixup
, const MCFragment
*DF
,
272 MCValue
&Target
, uint64_t &Value
) const {
273 ++stats::EvaluateFixup
;
275 if (!Fixup
.getValue()->EvaluateAsRelocatable(Target
, &Layout
))
276 report_fatal_error("expected relocatable expression");
278 // FIXME: How do non-scattered symbols work in ELF? I presume the linker
279 // doesn't support small relocations, but then under what criteria does the
280 // assembler allow symbol differences?
282 Value
= Target
.getConstant();
284 bool IsPCRel
= Emitter
.getFixupKindInfo(
285 Fixup
.getKind()).Flags
& MCFixupKindInfo::FKF_IsPCRel
;
286 bool IsResolved
= true;
287 if (const MCSymbolRefExpr
*A
= Target
.getSymA()) {
288 if (A
->getSymbol().isDefined())
289 Value
+= Layout
.getSymbolAddress(&getSymbolData(A
->getSymbol()));
293 if (const MCSymbolRefExpr
*B
= Target
.getSymB()) {
294 if (B
->getSymbol().isDefined())
295 Value
-= Layout
.getSymbolAddress(&getSymbolData(B
->getSymbol()));
301 IsResolved
= Writer
.IsFixupFullyResolved(*this, Target
, IsPCRel
, DF
);
304 Value
-= Layout
.getFragmentAddress(DF
) + Fixup
.getOffset();
309 uint64_t MCAssembler::ComputeFragmentSize(MCAsmLayout
&Layout
,
311 uint64_t SectionAddress
,
312 uint64_t FragmentOffset
) const {
313 switch (F
.getKind()) {
314 case MCFragment::FT_Data
:
315 return cast
<MCDataFragment
>(F
).getContents().size();
316 case MCFragment::FT_Fill
:
317 return cast
<MCFillFragment
>(F
).getSize();
318 case MCFragment::FT_Inst
:
319 return cast
<MCInstFragment
>(F
).getInstSize();
321 case MCFragment::FT_LEB
:
322 return cast
<MCLEBFragment
>(F
).getSize();
324 case MCFragment::FT_Align
: {
325 const MCAlignFragment
&AF
= cast
<MCAlignFragment
>(F
);
327 assert((!AF
.hasOnlyAlignAddress() || !AF
.getNextNode()) &&
328 "Invalid OnlyAlignAddress bit, not the last fragment!");
330 uint64_t Size
= OffsetToAlignment(SectionAddress
+ FragmentOffset
,
333 // Honor MaxBytesToEmit.
334 if (Size
> AF
.getMaxBytesToEmit())
340 case MCFragment::FT_Org
:
341 return cast
<MCOrgFragment
>(F
).getSize();
343 case MCFragment::FT_Dwarf
: {
344 const MCDwarfLineAddrFragment
&OF
= cast
<MCDwarfLineAddrFragment
>(F
);
346 // The AddrDelta is really unsigned and it can only increase.
349 OF
.getAddrDelta().EvaluateAsAbsolute(AddrDelta
, &Layout
);
352 LineDelta
= OF
.getLineDelta();
354 return MCDwarfLineAddr::ComputeSize(LineDelta
, AddrDelta
);
358 assert(0 && "invalid fragment kind");
362 void MCAsmLayout::LayoutFile() {
363 // Initialize the first section and set the valid fragment layout point. All
364 // actual layout computations are done lazily.
365 LastValidFragment
= 0;
366 if (!getSectionOrder().empty())
367 getSectionOrder().front()->Address
= 0;
370 void MCAsmLayout::LayoutFragment(MCFragment
*F
) {
371 MCFragment
*Prev
= F
->getPrevNode();
373 // We should never try to recompute something which is up-to-date.
374 assert(!isFragmentUpToDate(F
) && "Attempt to recompute up-to-date fragment!");
375 // We should never try to compute the fragment layout if the section isn't
377 assert(isSectionUpToDate(F
->getParent()) &&
378 "Attempt to compute fragment before it's section!");
379 // We should never try to compute the fragment layout if it's predecessor
381 assert((!Prev
|| isFragmentUpToDate(Prev
)) &&
382 "Attempt to compute fragment before it's predecessor!");
384 ++stats::FragmentLayouts
;
386 // Compute the fragment start address.
387 uint64_t StartAddress
= F
->getParent()->Address
;
388 uint64_t Address
= StartAddress
;
390 Address
+= Prev
->Offset
+ Prev
->EffectiveSize
;
392 // Compute fragment offset and size.
393 F
->Offset
= Address
- StartAddress
;
394 F
->EffectiveSize
= getAssembler().ComputeFragmentSize(*this, *F
, StartAddress
,
396 LastValidFragment
= F
;
398 // If this is the last fragment in a section, update the next section address.
399 if (!F
->getNextNode()) {
400 unsigned NextIndex
= F
->getParent()->getLayoutOrder() + 1;
401 if (NextIndex
!= getSectionOrder().size())
402 LayoutSection(getSectionOrder()[NextIndex
]);
406 void MCAsmLayout::LayoutSection(MCSectionData
*SD
) {
407 unsigned SectionOrderIndex
= SD
->getLayoutOrder();
409 ++stats::SectionLayouts
;
411 // Compute the section start address.
412 uint64_t StartAddress
= 0;
413 if (SectionOrderIndex
) {
414 MCSectionData
*Prev
= getSectionOrder()[SectionOrderIndex
- 1];
415 StartAddress
= getSectionAddress(Prev
) + getSectionAddressSize(Prev
);
418 // Honor the section alignment requirements.
419 StartAddress
= RoundUpToAlignment(StartAddress
, SD
->getAlignment());
421 // Set the section address.
422 SD
->Address
= StartAddress
;
425 /// WriteFragmentData - Write the \arg F data to the output file.
426 static void WriteFragmentData(const MCAssembler
&Asm
, const MCAsmLayout
&Layout
,
427 const MCFragment
&F
, MCObjectWriter
*OW
) {
428 uint64_t Start
= OW
->getStream().tell();
431 ++stats::EmittedFragments
;
433 // FIXME: Embed in fragments instead?
434 uint64_t FragmentSize
= Layout
.getFragmentEffectiveSize(&F
);
435 switch (F
.getKind()) {
436 case MCFragment::FT_Align
: {
437 MCAlignFragment
&AF
= cast
<MCAlignFragment
>(F
);
438 uint64_t Count
= FragmentSize
/ AF
.getValueSize();
440 assert(AF
.getValueSize() && "Invalid virtual align in concrete fragment!");
442 // FIXME: This error shouldn't actually occur (the front end should emit
443 // multiple .align directives to enforce the semantics it wants), but is
444 // severe enough that we want to report it. How to handle this?
445 if (Count
* AF
.getValueSize() != FragmentSize
)
446 report_fatal_error("undefined .align directive, value size '" +
447 Twine(AF
.getValueSize()) +
448 "' is not a divisor of padding size '" +
449 Twine(FragmentSize
) + "'");
451 // See if we are aligning with nops, and if so do that first to try to fill
452 // the Count bytes. Then if that did not fill any bytes or there are any
453 // bytes left to fill use the the Value and ValueSize to fill the rest.
454 // If we are aligning with nops, ask that target to emit the right data.
455 if (AF
.hasEmitNops()) {
456 if (!Asm
.getBackend().WriteNopData(Count
, OW
))
457 report_fatal_error("unable to write nop sequence of " +
458 Twine(Count
) + " bytes");
462 // Otherwise, write out in multiples of the value size.
463 for (uint64_t i
= 0; i
!= Count
; ++i
) {
464 switch (AF
.getValueSize()) {
466 assert(0 && "Invalid size!");
467 case 1: OW
->Write8 (uint8_t (AF
.getValue())); break;
468 case 2: OW
->Write16(uint16_t(AF
.getValue())); break;
469 case 4: OW
->Write32(uint32_t(AF
.getValue())); break;
470 case 8: OW
->Write64(uint64_t(AF
.getValue())); break;
476 case MCFragment::FT_Data
: {
477 MCDataFragment
&DF
= cast
<MCDataFragment
>(F
);
478 assert(FragmentSize
== DF
.getContents().size() && "Invalid size!");
479 OW
->WriteBytes(DF
.getContents().str());
483 case MCFragment::FT_Fill
: {
484 MCFillFragment
&FF
= cast
<MCFillFragment
>(F
);
486 assert(FF
.getValueSize() && "Invalid virtual align in concrete fragment!");
488 for (uint64_t i
= 0, e
= FF
.getSize() / FF
.getValueSize(); i
!= e
; ++i
) {
489 switch (FF
.getValueSize()) {
491 assert(0 && "Invalid size!");
492 case 1: OW
->Write8 (uint8_t (FF
.getValue())); break;
493 case 2: OW
->Write16(uint16_t(FF
.getValue())); break;
494 case 4: OW
->Write32(uint32_t(FF
.getValue())); break;
495 case 8: OW
->Write64(uint64_t(FF
.getValue())); break;
501 case MCFragment::FT_Inst
:
502 llvm_unreachable("unexpected inst fragment after lowering");
505 case MCFragment::FT_LEB
: {
506 MCLEBFragment
&LF
= cast
<MCLEBFragment
>(F
);
508 // FIXME: It is probably better if we don't call EvaluateAsAbsolute in
511 LF
.getValue().EvaluateAsAbsolute(Value
, &Layout
);
513 raw_svector_ostream
OSE(Tmp
);
515 MCObjectWriter::EncodeSLEB128(Value
, OSE
);
517 MCObjectWriter::EncodeULEB128(Value
, OSE
);
518 OW
->WriteBytes(OSE
.str());
522 case MCFragment::FT_Org
: {
523 MCOrgFragment
&OF
= cast
<MCOrgFragment
>(F
);
525 for (uint64_t i
= 0, e
= FragmentSize
; i
!= e
; ++i
)
526 OW
->Write8(uint8_t(OF
.getValue()));
531 case MCFragment::FT_Dwarf
: {
532 const MCDwarfLineAddrFragment
&OF
= cast
<MCDwarfLineAddrFragment
>(F
);
534 // The AddrDelta is really unsigned and it can only increase.
536 OF
.getAddrDelta().EvaluateAsAbsolute(AddrDelta
, &Layout
);
539 LineDelta
= OF
.getLineDelta();
541 MCDwarfLineAddr::Write(OW
, LineDelta
, (uint64_t)AddrDelta
);
546 assert(OW
->getStream().tell() - Start
== FragmentSize
);
549 void MCAssembler::WriteSectionData(const MCSectionData
*SD
,
550 const MCAsmLayout
&Layout
,
551 MCObjectWriter
*OW
) const {
552 // Ignore virtual sections.
553 if (getBackend().isVirtualSection(SD
->getSection())) {
554 assert(Layout
.getSectionFileSize(SD
) == 0 && "Invalid size for section!");
556 // Check that contents are only things legal inside a virtual section.
557 for (MCSectionData::const_iterator it
= SD
->begin(),
558 ie
= SD
->end(); it
!= ie
; ++it
) {
559 switch (it
->getKind()) {
561 assert(0 && "Invalid fragment in virtual section!");
562 case MCFragment::FT_Data
: {
563 // Check that we aren't trying to write a non-zero contents (or fixups)
564 // into a virtual section. This is to support clients which use standard
565 // directives to fill the contents of virtual sections.
566 MCDataFragment
&DF
= cast
<MCDataFragment
>(*it
);
567 assert(DF
.fixup_begin() == DF
.fixup_end() &&
568 "Cannot have fixups in virtual section!");
569 for (unsigned i
= 0, e
= DF
.getContents().size(); i
!= e
; ++i
)
570 assert(DF
.getContents()[i
] == 0 &&
571 "Invalid data value for virtual section!");
574 case MCFragment::FT_Align
:
575 // Check that we aren't trying to write a non-zero value into a virtual
577 assert((!cast
<MCAlignFragment
>(it
)->getValueSize() ||
578 !cast
<MCAlignFragment
>(it
)->getValue()) &&
579 "Invalid align in virtual section!");
581 case MCFragment::FT_Fill
:
582 assert(!cast
<MCFillFragment
>(it
)->getValueSize() &&
583 "Invalid fill in virtual section!");
591 uint64_t Start
= OW
->getStream().tell();
594 for (MCSectionData::const_iterator it
= SD
->begin(),
595 ie
= SD
->end(); it
!= ie
; ++it
)
596 WriteFragmentData(*this, Layout
, *it
, OW
);
598 assert(OW
->getStream().tell() - Start
== Layout
.getSectionFileSize(SD
));
601 void MCAssembler::AddSectionToTheEnd(const MCObjectWriter
&Writer
,
602 MCSectionData
&SD
, MCAsmLayout
&Layout
) {
603 // Create dummy fragments and assign section ordinals.
604 unsigned SectionIndex
= 0;
605 for (MCAssembler::iterator it
= begin(), ie
= end(); it
!= ie
; ++it
)
608 SD
.setOrdinal(SectionIndex
);
610 // Assign layout order indices to sections and fragments.
611 unsigned FragmentIndex
= 0;
613 for (unsigned e
= Layout
.getSectionOrder().size(); i
!= e
; ++i
) {
614 MCSectionData
*SD
= Layout
.getSectionOrder()[i
];
616 for (MCSectionData::iterator it2
= SD
->begin(),
617 ie2
= SD
->end(); it2
!= ie2
; ++it2
)
621 SD
.setLayoutOrder(i
);
622 for (MCSectionData::iterator it2
= SD
.begin(),
623 ie2
= SD
.end(); it2
!= ie2
; ++it2
) {
624 it2
->setLayoutOrder(FragmentIndex
++);
626 Layout
.getSectionOrder().push_back(&SD
);
628 Layout
.LayoutSection(&SD
);
630 // Layout until everything fits.
631 while (LayoutOnce(Writer
, Layout
))
636 void MCAssembler::Finish(MCObjectWriter
*Writer
) {
637 DEBUG_WITH_TYPE("mc-dump", {
638 llvm::errs() << "assembler backend - pre-layout\n--\n";
641 // Create the layout object.
642 MCAsmLayout
Layout(*this);
644 // Insert additional align fragments for concrete sections to explicitly pad
645 // the previous section to match their alignment requirements. This is for
646 // 'gas' compatibility, it shouldn't strictly be necessary.
647 if (PadSectionToAlignment
) {
648 for (unsigned i
= 1, e
= Layout
.getSectionOrder().size(); i
< e
; ++i
) {
649 MCSectionData
*SD
= Layout
.getSectionOrder()[i
];
651 // Ignore sections without alignment requirements.
652 unsigned Align
= SD
->getAlignment();
656 // Ignore virtual sections, they don't cause file size modifications.
657 if (getBackend().isVirtualSection(SD
->getSection()))
660 // Otherwise, create a new align fragment at the end of the previous
662 MCAlignFragment
*AF
= new MCAlignFragment(Align
, 0, 1, Align
,
663 Layout
.getSectionOrder()[i
- 1]);
664 AF
->setOnlyAlignAddress(true);
668 // Create dummy fragments and assign section ordinals.
669 unsigned SectionIndex
= 0;
670 for (MCAssembler::iterator it
= begin(), ie
= end(); it
!= ie
; ++it
) {
671 // Create dummy fragments to eliminate any empty sections, this simplifies
673 if (it
->getFragmentList().empty())
674 new MCDataFragment(it
);
676 it
->setOrdinal(SectionIndex
++);
679 // Assign layout order indices to sections and fragments.
680 unsigned FragmentIndex
= 0;
681 for (unsigned i
= 0, e
= Layout
.getSectionOrder().size(); i
!= e
; ++i
) {
682 MCSectionData
*SD
= Layout
.getSectionOrder()[i
];
683 SD
->setLayoutOrder(i
);
685 for (MCSectionData::iterator it2
= SD
->begin(),
686 ie2
= SD
->end(); it2
!= ie2
; ++it2
)
687 it2
->setLayoutOrder(FragmentIndex
++);
690 llvm::OwningPtr
<MCObjectWriter
> OwnWriter(0);
692 //no custom Writer_ : create the default one life-managed by OwningPtr
693 OwnWriter
.reset(getBackend().createObjectWriter(OS
));
694 Writer
= OwnWriter
.get();
696 report_fatal_error("unable to create object writer!");
699 // Layout until everything fits.
700 while (LayoutOnce(*Writer
, Layout
))
703 DEBUG_WITH_TYPE("mc-dump", {
704 llvm::errs() << "assembler backend - post-relaxation\n--\n";
707 // Finalize the layout, including fragment lowering.
708 FinishLayout(Layout
);
710 DEBUG_WITH_TYPE("mc-dump", {
711 llvm::errs() << "assembler backend - final-layout\n--\n";
714 uint64_t StartOffset
= OS
.tell();
716 // Allow the object writer a chance to perform post-layout binding (for
717 // example, to set the index fields in the symbol data).
718 Writer
->ExecutePostLayoutBinding(*this);
720 // Evaluate and apply the fixups, generating relocation entries as necessary.
721 for (MCAssembler::iterator it
= begin(), ie
= end(); it
!= ie
; ++it
) {
722 for (MCSectionData::iterator it2
= it
->begin(),
723 ie2
= it
->end(); it2
!= ie2
; ++it2
) {
724 MCDataFragment
*DF
= dyn_cast
<MCDataFragment
>(it2
);
728 for (MCDataFragment::fixup_iterator it3
= DF
->fixup_begin(),
729 ie3
= DF
->fixup_end(); it3
!= ie3
; ++it3
) {
730 MCFixup
&Fixup
= *it3
;
732 // Evaluate the fixup.
735 if (!EvaluateFixup(*Writer
, Layout
, Fixup
, DF
, Target
, FixedValue
)) {
736 // The fixup was unresolved, we need a relocation. Inform the object
737 // writer of the relocation, and give it an opportunity to adjust the
738 // fixup value if need be.
739 Writer
->RecordRelocation(*this, Layout
, DF
, Fixup
, Target
,FixedValue
);
742 getBackend().ApplyFixup(Fixup
, *DF
, FixedValue
);
747 // Write the object file.
748 Writer
->WriteObject(*this, Layout
);
750 stats::ObjectBytes
+= OS
.tell() - StartOffset
;
753 bool MCAssembler::FixupNeedsRelaxation(const MCObjectWriter
&Writer
,
754 const MCFixup
&Fixup
,
755 const MCFragment
*DF
,
756 const MCAsmLayout
&Layout
) const {
760 // If we cannot resolve the fixup value, it requires relaxation.
763 if (!EvaluateFixup(Writer
, Layout
, Fixup
, DF
, Target
, Value
))
766 // Otherwise, relax if the value is too big for a (signed) i8.
768 // FIXME: This is target dependent!
769 return int64_t(Value
) != int64_t(int8_t(Value
));
772 bool MCAssembler::FragmentNeedsRelaxation(const MCObjectWriter
&Writer
,
773 const MCInstFragment
*IF
,
774 const MCAsmLayout
&Layout
) const {
775 // If this inst doesn't ever need relaxation, ignore it. This occurs when we
776 // are intentionally pushing out inst fragments, or because we relaxed a
777 // previous instruction to one that doesn't need relaxation.
778 if (!getBackend().MayNeedRelaxation(IF
->getInst()))
781 for (MCInstFragment::const_fixup_iterator it
= IF
->fixup_begin(),
782 ie
= IF
->fixup_end(); it
!= ie
; ++it
)
783 if (FixupNeedsRelaxation(Writer
, *it
, IF
, Layout
))
789 bool MCAssembler::RelaxInstruction(const MCObjectWriter
&Writer
,
791 MCInstFragment
&IF
) {
792 if (!FragmentNeedsRelaxation(Writer
, &IF
, Layout
))
795 ++stats::RelaxedInstructions
;
797 // FIXME-PERF: We could immediately lower out instructions if we can tell
798 // they are fully resolved, to avoid retesting on later passes.
800 // Relax the fragment.
803 getBackend().RelaxInstruction(IF
.getInst(), Relaxed
);
805 // Encode the new instruction.
807 // FIXME-PERF: If it matters, we could let the target do this. It can
808 // probably do so more efficiently in many cases.
809 SmallVector
<MCFixup
, 4> Fixups
;
810 SmallString
<256> Code
;
811 raw_svector_ostream
VecOS(Code
);
812 getEmitter().EncodeInstruction(Relaxed
, VecOS
, Fixups
);
815 // Update the instruction fragment.
816 int SlideAmount
= Code
.size() - IF
.getInstSize();
819 IF
.getFixups().clear();
820 // FIXME: Eliminate copy.
821 for (unsigned i
= 0, e
= Fixups
.size(); i
!= e
; ++i
)
822 IF
.getFixups().push_back(Fixups
[i
]);
824 // Update the layout, and remember that we relaxed.
825 Layout
.UpdateForSlide(&IF
, SlideAmount
);
829 bool MCAssembler::RelaxOrg(const MCObjectWriter
&Writer
,
832 int64_t TargetLocation
;
833 if (!OF
.getOffset().EvaluateAsAbsolute(TargetLocation
, &Layout
))
834 report_fatal_error("expected assembly-time absolute expression");
836 // FIXME: We need a way to communicate this error.
837 uint64_t FragmentOffset
= Layout
.getFragmentOffset(&OF
);
838 int64_t Offset
= TargetLocation
- FragmentOffset
;
839 if (Offset
< 0 || Offset
>= 0x40000000)
840 report_fatal_error("invalid .org offset '" + Twine(TargetLocation
) +
841 "' (at offset '" + Twine(FragmentOffset
) + "')");
843 unsigned OldSize
= OF
.getSize();
845 return OldSize
!= OF
.getSize();
848 bool MCAssembler::RelaxLEB(const MCObjectWriter
&Writer
,
852 LF
.getValue().EvaluateAsAbsolute(Value
, &Layout
);
854 raw_svector_ostream
OSE(Tmp
);
856 MCObjectWriter::EncodeSLEB128(Value
, OSE
);
858 MCObjectWriter::EncodeULEB128(Value
, OSE
);
859 uint64_t OldSize
= LF
.getSize();
860 LF
.setSize(OSE
.GetNumBytesInBuffer());
861 return OldSize
!= LF
.getSize();
864 bool MCAssembler::LayoutOnce(const MCObjectWriter
&Writer
,
865 MCAsmLayout
&Layout
) {
866 ++stats::RelaxationSteps
;
868 // Layout the sections in order.
871 // Scan for fragments that need relaxation.
872 bool WasRelaxed
= false;
873 for (iterator it
= begin(), ie
= end(); it
!= ie
; ++it
) {
874 MCSectionData
&SD
= *it
;
876 for (MCSectionData::iterator it2
= SD
.begin(),
877 ie2
= SD
.end(); it2
!= ie2
; ++it2
) {
878 // Check if this is an fragment that needs relaxation.
879 switch(it2
->getKind()) {
882 case MCFragment::FT_Inst
:
883 WasRelaxed
|= RelaxInstruction(Writer
, Layout
,
884 *cast
<MCInstFragment
>(it2
));
886 case MCFragment::FT_Org
:
887 WasRelaxed
|= RelaxOrg(Writer
, Layout
, *cast
<MCOrgFragment
>(it2
));
889 case MCFragment::FT_LEB
:
890 WasRelaxed
|= RelaxLEB(Writer
, Layout
, *cast
<MCLEBFragment
>(it2
));
899 void MCAssembler::FinishLayout(MCAsmLayout
&Layout
) {
900 // Lower out any instruction fragments, to simplify the fixup application and
903 // FIXME-PERF: We don't have to do this, but the assumption is that it is
904 // cheap (we will mostly end up eliminating fragments and appending on to data
905 // fragments), so the extra complexity downstream isn't worth it. Evaluate
907 for (iterator it
= begin(), ie
= end(); it
!= ie
; ++it
) {
908 MCSectionData
&SD
= *it
;
910 for (MCSectionData::iterator it2
= SD
.begin(),
911 ie2
= SD
.end(); it2
!= ie2
; ++it2
) {
912 MCInstFragment
*IF
= dyn_cast
<MCInstFragment
>(it2
);
916 // Create a new data fragment for the instruction.
918 // FIXME-PERF: Reuse previous data fragment if possible.
919 MCDataFragment
*DF
= new MCDataFragment();
920 SD
.getFragmentList().insert(it2
, DF
);
922 // Update the data fragments layout data.
923 DF
->setParent(IF
->getParent());
924 DF
->setAtom(IF
->getAtom());
925 DF
->setLayoutOrder(IF
->getLayoutOrder());
926 Layout
.FragmentReplaced(IF
, DF
);
928 // Copy in the data and the fixups.
929 DF
->getContents().append(IF
->getCode().begin(), IF
->getCode().end());
930 for (unsigned i
= 0, e
= IF
->getFixups().size(); i
!= e
; ++i
)
931 DF
->getFixups().push_back(IF
->getFixups()[i
]);
933 // Delete the instruction fragment and update the iterator.
934 SD
.getFragmentList().erase(IF
);
944 raw_ostream
&operator<<(raw_ostream
&OS
, const MCFixup
&AF
) {
945 OS
<< "<MCFixup" << " Offset:" << AF
.getOffset()
946 << " Value:" << *AF
.getValue()
947 << " Kind:" << AF
.getKind() << ">";
953 void MCFragment::dump() {
954 raw_ostream
&OS
= llvm::errs();
958 case MCFragment::FT_Align
: OS
<< "MCAlignFragment"; break;
959 case MCFragment::FT_Data
: OS
<< "MCDataFragment"; break;
960 case MCFragment::FT_Fill
: OS
<< "MCFillFragment"; break;
961 case MCFragment::FT_Inst
: OS
<< "MCInstFragment"; break;
962 case MCFragment::FT_Org
: OS
<< "MCOrgFragment"; break;
963 case MCFragment::FT_Dwarf
: OS
<< "MCDwarfFragment"; break;
964 case MCFragment::FT_LEB
: OS
<< "MCLEBFragment"; break;
967 OS
<< "<MCFragment " << (void*) this << " LayoutOrder:" << LayoutOrder
968 << " Offset:" << Offset
<< " EffectiveSize:" << EffectiveSize
<< ">";
971 case MCFragment::FT_Align
: {
972 const MCAlignFragment
*AF
= cast
<MCAlignFragment
>(this);
973 if (AF
->hasEmitNops())
974 OS
<< " (emit nops)";
975 if (AF
->hasOnlyAlignAddress())
976 OS
<< " (only align section)";
978 OS
<< " Alignment:" << AF
->getAlignment()
979 << " Value:" << AF
->getValue() << " ValueSize:" << AF
->getValueSize()
980 << " MaxBytesToEmit:" << AF
->getMaxBytesToEmit() << ">";
983 case MCFragment::FT_Data
: {
984 const MCDataFragment
*DF
= cast
<MCDataFragment
>(this);
987 const SmallVectorImpl
<char> &Contents
= DF
->getContents();
988 for (unsigned i
= 0, e
= Contents
.size(); i
!= e
; ++i
) {
990 OS
<< hexdigit((Contents
[i
] >> 4) & 0xF) << hexdigit(Contents
[i
] & 0xF);
992 OS
<< "] (" << Contents
.size() << " bytes)";
994 if (!DF
->getFixups().empty()) {
997 for (MCDataFragment::const_fixup_iterator it
= DF
->fixup_begin(),
998 ie
= DF
->fixup_end(); it
!= ie
; ++it
) {
999 if (it
!= DF
->fixup_begin()) OS
<< ",\n ";
1006 case MCFragment::FT_Fill
: {
1007 const MCFillFragment
*FF
= cast
<MCFillFragment
>(this);
1008 OS
<< " Value:" << FF
->getValue() << " ValueSize:" << FF
->getValueSize()
1009 << " Size:" << FF
->getSize();
1012 case MCFragment::FT_Inst
: {
1013 const MCInstFragment
*IF
= cast
<MCInstFragment
>(this);
1016 IF
->getInst().dump_pretty(OS
);
1019 case MCFragment::FT_Org
: {
1020 const MCOrgFragment
*OF
= cast
<MCOrgFragment
>(this);
1022 OS
<< " Offset:" << OF
->getOffset() << " Value:" << OF
->getValue();
1025 case MCFragment::FT_Dwarf
: {
1026 const MCDwarfLineAddrFragment
*OF
= cast
<MCDwarfLineAddrFragment
>(this);
1028 OS
<< " AddrDelta:" << OF
->getAddrDelta()
1029 << " LineDelta:" << OF
->getLineDelta();
1032 case MCFragment::FT_LEB
: {
1033 const MCLEBFragment
*LF
= cast
<MCLEBFragment
>(this);
1035 OS
<< " Value:" << LF
->getValue() << " Signed:" << LF
->isSigned();
1042 void MCSectionData::dump() {
1043 raw_ostream
&OS
= llvm::errs();
1045 OS
<< "<MCSectionData";
1046 OS
<< " Alignment:" << getAlignment() << " Address:" << Address
1047 << " Fragments:[\n ";
1048 for (iterator it
= begin(), ie
= end(); it
!= ie
; ++it
) {
1049 if (it
!= begin()) OS
<< ",\n ";
1055 void MCSymbolData::dump() {
1056 raw_ostream
&OS
= llvm::errs();
1058 OS
<< "<MCSymbolData Symbol:" << getSymbol()
1059 << " Fragment:" << getFragment() << " Offset:" << getOffset()
1060 << " Flags:" << getFlags() << " Index:" << getIndex();
1062 OS
<< " (common, size:" << getCommonSize()
1063 << " align: " << getCommonAlignment() << ")";
1065 OS
<< " (external)";
1066 if (isPrivateExtern())
1067 OS
<< " (private extern)";
1071 void MCAssembler::dump() {
1072 raw_ostream
&OS
= llvm::errs();
1074 OS
<< "<MCAssembler\n";
1075 OS
<< " Sections:[\n ";
1076 for (iterator it
= begin(), ie
= end(); it
!= ie
; ++it
) {
1077 if (it
!= begin()) OS
<< ",\n ";
1083 for (symbol_iterator it
= symbol_begin(), ie
= symbol_end(); it
!= ie
; ++it
) {
1084 if (it
!= symbol_begin()) OS
<< ",\n ";