Fixed some bugs.
[llvm/zpu.git] / lib / MC / MCAssembler.cpp
blob6558a1b927b6ac5e5e4b9cb99045fb084275db50
1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #define DEBUG_TYPE "assembler"
11 #include "llvm/MC/MCAssembler.h"
12 #include "llvm/MC/MCAsmLayout.h"
13 #include "llvm/MC/MCCodeEmitter.h"
14 #include "llvm/MC/MCExpr.h"
15 #include "llvm/MC/MCObjectWriter.h"
16 #include "llvm/MC/MCSection.h"
17 #include "llvm/MC/MCSymbol.h"
18 #include "llvm/MC/MCValue.h"
19 #include "llvm/MC/MCDwarf.h"
20 #include "llvm/ADT/OwningPtr.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Target/TargetRegistry.h"
28 #include "llvm/Target/TargetAsmBackend.h"
30 #include <vector>
31 using namespace llvm;
33 namespace {
34 namespace stats {
35 STATISTIC(EmittedFragments, "Number of emitted assembler fragments");
36 STATISTIC(EvaluateFixup, "Number of evaluated fixups");
37 STATISTIC(FragmentLayouts, "Number of fragment layouts");
38 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
39 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
40 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
41 STATISTIC(SectionLayouts, "Number of section layouts");
45 // FIXME FIXME FIXME: There are number of places in this file where we convert
46 // what is a 64-bit assembler value used for computation into a value in the
47 // object file, which may truncate it. We should detect that truncation where
48 // invalid and report errors back.
50 /* *** */
52 MCAsmLayout::MCAsmLayout(MCAssembler &Asm)
53 : Assembler(Asm), LastValidFragment(0)
55 // Compute the section layout order. Virtual sections must go last.
56 for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
57 if (!Asm.getBackend().isVirtualSection(it->getSection()))
58 SectionOrder.push_back(&*it);
59 for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
60 if (Asm.getBackend().isVirtualSection(it->getSection()))
61 SectionOrder.push_back(&*it);
64 bool MCAsmLayout::isSectionUpToDate(const MCSectionData *SD) const {
65 // The first section is always up-to-date.
66 unsigned Index = SD->getLayoutOrder();
67 if (!Index)
68 return true;
70 // Otherwise, sections are always implicitly computed when the preceeding
71 // fragment is layed out.
72 const MCSectionData *Prev = getSectionOrder()[Index - 1];
73 return isFragmentUpToDate(&(Prev->getFragmentList().back()));
76 bool MCAsmLayout::isFragmentUpToDate(const MCFragment *F) const {
77 return (LastValidFragment &&
78 F->getLayoutOrder() <= LastValidFragment->getLayoutOrder());
81 void MCAsmLayout::UpdateForSlide(MCFragment *F, int SlideAmount) {
82 // If this fragment wasn't already up-to-date, we don't need to do anything.
83 if (!isFragmentUpToDate(F))
84 return;
86 // Otherwise, reset the last valid fragment to the predecessor of the
87 // invalidated fragment.
88 LastValidFragment = F->getPrevNode();
89 if (!LastValidFragment) {
90 unsigned Index = F->getParent()->getLayoutOrder();
91 if (Index != 0) {
92 MCSectionData *Prev = getSectionOrder()[Index - 1];
93 LastValidFragment = &(Prev->getFragmentList().back());
98 void MCAsmLayout::EnsureValid(const MCFragment *F) const {
99 // Advance the layout position until the fragment is up-to-date.
100 while (!isFragmentUpToDate(F)) {
101 // Advance to the next fragment.
102 MCFragment *Cur = LastValidFragment;
103 if (Cur)
104 Cur = Cur->getNextNode();
105 if (!Cur) {
106 unsigned NextIndex = 0;
107 if (LastValidFragment)
108 NextIndex = LastValidFragment->getParent()->getLayoutOrder() + 1;
109 Cur = SectionOrder[NextIndex]->begin();
112 const_cast<MCAsmLayout*>(this)->LayoutFragment(Cur);
116 void MCAsmLayout::FragmentReplaced(MCFragment *Src, MCFragment *Dst) {
117 if (LastValidFragment == Src)
118 LastValidFragment = Dst;
120 Dst->Offset = Src->Offset;
121 Dst->EffectiveSize = Src->EffectiveSize;
124 uint64_t MCAsmLayout::getFragmentAddress(const MCFragment *F) const {
125 assert(F->getParent() && "Missing section()!");
126 return getSectionAddress(F->getParent()) + getFragmentOffset(F);
129 uint64_t MCAsmLayout::getFragmentEffectiveSize(const MCFragment *F) const {
130 EnsureValid(F);
131 assert(F->EffectiveSize != ~UINT64_C(0) && "Address not set!");
132 return F->EffectiveSize;
135 uint64_t MCAsmLayout::getFragmentOffset(const MCFragment *F) const {
136 EnsureValid(F);
137 assert(F->Offset != ~UINT64_C(0) && "Address not set!");
138 return F->Offset;
141 uint64_t MCAsmLayout::getSymbolAddress(const MCSymbolData *SD) const {
142 assert(SD->getFragment() && "Invalid getAddress() on undefined symbol!");
143 return getFragmentAddress(SD->getFragment()) + SD->getOffset();
146 uint64_t MCAsmLayout::getSectionAddress(const MCSectionData *SD) const {
147 EnsureValid(SD->begin());
148 assert(SD->Address != ~UINT64_C(0) && "Address not set!");
149 return SD->Address;
152 uint64_t MCAsmLayout::getSectionAddressSize(const MCSectionData *SD) const {
153 // The size is the last fragment's end offset.
154 const MCFragment &F = SD->getFragmentList().back();
155 return getFragmentOffset(&F) + getFragmentEffectiveSize(&F);
158 uint64_t MCAsmLayout::getSectionFileSize(const MCSectionData *SD) const {
159 // Virtual sections have no file size.
160 if (getAssembler().getBackend().isVirtualSection(SD->getSection()))
161 return 0;
163 // Otherwise, the file size is the same as the address space size.
164 return getSectionAddressSize(SD);
167 uint64_t MCAsmLayout::getSectionSize(const MCSectionData *SD) const {
168 // The logical size is the address space size minus any tail padding.
169 uint64_t Size = getSectionAddressSize(SD);
170 const MCAlignFragment *AF =
171 dyn_cast<MCAlignFragment>(&(SD->getFragmentList().back()));
172 if (AF && AF->hasOnlyAlignAddress())
173 Size -= getFragmentEffectiveSize(AF);
175 return Size;
178 /* *** */
180 MCFragment::MCFragment() : Kind(FragmentType(~0)) {
183 MCFragment::~MCFragment() {
186 MCFragment::MCFragment(FragmentType _Kind, MCSectionData *_Parent)
187 : Kind(_Kind), Parent(_Parent), Atom(0), Offset(~UINT64_C(0)),
188 EffectiveSize(~UINT64_C(0))
190 if (Parent)
191 Parent->getFragmentList().push_back(this);
194 /* *** */
196 MCSectionData::MCSectionData() : Section(0) {}
198 MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A)
199 : Section(&_Section),
200 Alignment(1),
201 Address(~UINT64_C(0)),
202 HasInstructions(false)
204 if (A)
205 A->getSectionList().push_back(this);
208 /* *** */
210 MCSymbolData::MCSymbolData() : Symbol(0) {}
212 MCSymbolData::MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment,
213 uint64_t _Offset, MCAssembler *A)
214 : Symbol(&_Symbol), Fragment(_Fragment), Offset(_Offset),
215 IsExternal(false), IsPrivateExtern(false),
216 CommonSize(0), SymbolSize(0), CommonAlign(0),
217 Flags(0), Index(0)
219 if (A)
220 A->getSymbolList().push_back(this);
223 /* *** */
225 MCAssembler::MCAssembler(MCContext &_Context, TargetAsmBackend &_Backend,
226 MCCodeEmitter &_Emitter, bool _PadSectionToAlignment,
227 raw_ostream &_OS)
228 : Context(_Context), Backend(_Backend), Emitter(_Emitter),
229 OS(_OS), RelaxAll(false), SubsectionsViaSymbols(false),
230 PadSectionToAlignment(_PadSectionToAlignment)
234 MCAssembler::~MCAssembler() {
237 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
238 // Non-temporary labels should always be visible to the linker.
239 if (!Symbol.isTemporary())
240 return true;
242 // Absolute temporary labels are never visible.
243 if (!Symbol.isInSection())
244 return false;
246 // Otherwise, check if the section requires symbols even for temporary labels.
247 return getBackend().doesSectionRequireSymbols(Symbol.getSection());
250 const MCSymbolData *MCAssembler::getAtom(const MCSymbolData *SD) const {
251 // Linker visible symbols define atoms.
252 if (isSymbolLinkerVisible(SD->getSymbol()))
253 return SD;
255 // Absolute and undefined symbols have no defining atom.
256 if (!SD->getFragment())
257 return 0;
259 // Non-linker visible symbols in sections which can't be atomized have no
260 // defining atom.
261 if (!getBackend().isSectionAtomizable(
262 SD->getFragment()->getParent()->getSection()))
263 return 0;
265 // Otherwise, return the atom for the containing fragment.
266 return SD->getFragment()->getAtom();
269 bool MCAssembler::EvaluateFixup(const MCObjectWriter &Writer,
270 const MCAsmLayout &Layout,
271 const MCFixup &Fixup, const MCFragment *DF,
272 MCValue &Target, uint64_t &Value) const {
273 ++stats::EvaluateFixup;
275 if (!Fixup.getValue()->EvaluateAsRelocatable(Target, &Layout))
276 report_fatal_error("expected relocatable expression");
278 // FIXME: How do non-scattered symbols work in ELF? I presume the linker
279 // doesn't support small relocations, but then under what criteria does the
280 // assembler allow symbol differences?
282 Value = Target.getConstant();
284 bool IsPCRel = Emitter.getFixupKindInfo(
285 Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsPCRel;
286 bool IsResolved = true;
287 if (const MCSymbolRefExpr *A = Target.getSymA()) {
288 if (A->getSymbol().isDefined())
289 Value += Layout.getSymbolAddress(&getSymbolData(A->getSymbol()));
290 else
291 IsResolved = false;
293 if (const MCSymbolRefExpr *B = Target.getSymB()) {
294 if (B->getSymbol().isDefined())
295 Value -= Layout.getSymbolAddress(&getSymbolData(B->getSymbol()));
296 else
297 IsResolved = false;
300 if (IsResolved)
301 IsResolved = Writer.IsFixupFullyResolved(*this, Target, IsPCRel, DF);
303 if (IsPCRel)
304 Value -= Layout.getFragmentAddress(DF) + Fixup.getOffset();
306 return IsResolved;
309 uint64_t MCAssembler::ComputeFragmentSize(MCAsmLayout &Layout,
310 const MCFragment &F,
311 uint64_t SectionAddress,
312 uint64_t FragmentOffset) const {
313 switch (F.getKind()) {
314 case MCFragment::FT_Data:
315 return cast<MCDataFragment>(F).getContents().size();
316 case MCFragment::FT_Fill:
317 return cast<MCFillFragment>(F).getSize();
318 case MCFragment::FT_Inst:
319 return cast<MCInstFragment>(F).getInstSize();
321 case MCFragment::FT_LEB:
322 return cast<MCLEBFragment>(F).getSize();
324 case MCFragment::FT_Align: {
325 const MCAlignFragment &AF = cast<MCAlignFragment>(F);
327 assert((!AF.hasOnlyAlignAddress() || !AF.getNextNode()) &&
328 "Invalid OnlyAlignAddress bit, not the last fragment!");
330 uint64_t Size = OffsetToAlignment(SectionAddress + FragmentOffset,
331 AF.getAlignment());
333 // Honor MaxBytesToEmit.
334 if (Size > AF.getMaxBytesToEmit())
335 return 0;
337 return Size;
340 case MCFragment::FT_Org:
341 return cast<MCOrgFragment>(F).getSize();
343 case MCFragment::FT_Dwarf: {
344 const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
346 // The AddrDelta is really unsigned and it can only increase.
347 int64_t AddrDelta;
349 OF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, &Layout);
351 int64_t LineDelta;
352 LineDelta = OF.getLineDelta();
354 return MCDwarfLineAddr::ComputeSize(LineDelta, AddrDelta);
358 assert(0 && "invalid fragment kind");
359 return 0;
362 void MCAsmLayout::LayoutFile() {
363 // Initialize the first section and set the valid fragment layout point. All
364 // actual layout computations are done lazily.
365 LastValidFragment = 0;
366 if (!getSectionOrder().empty())
367 getSectionOrder().front()->Address = 0;
370 void MCAsmLayout::LayoutFragment(MCFragment *F) {
371 MCFragment *Prev = F->getPrevNode();
373 // We should never try to recompute something which is up-to-date.
374 assert(!isFragmentUpToDate(F) && "Attempt to recompute up-to-date fragment!");
375 // We should never try to compute the fragment layout if the section isn't
376 // up-to-date.
377 assert(isSectionUpToDate(F->getParent()) &&
378 "Attempt to compute fragment before it's section!");
379 // We should never try to compute the fragment layout if it's predecessor
380 // isn't up-to-date.
381 assert((!Prev || isFragmentUpToDate(Prev)) &&
382 "Attempt to compute fragment before it's predecessor!");
384 ++stats::FragmentLayouts;
386 // Compute the fragment start address.
387 uint64_t StartAddress = F->getParent()->Address;
388 uint64_t Address = StartAddress;
389 if (Prev)
390 Address += Prev->Offset + Prev->EffectiveSize;
392 // Compute fragment offset and size.
393 F->Offset = Address - StartAddress;
394 F->EffectiveSize = getAssembler().ComputeFragmentSize(*this, *F, StartAddress,
395 F->Offset);
396 LastValidFragment = F;
398 // If this is the last fragment in a section, update the next section address.
399 if (!F->getNextNode()) {
400 unsigned NextIndex = F->getParent()->getLayoutOrder() + 1;
401 if (NextIndex != getSectionOrder().size())
402 LayoutSection(getSectionOrder()[NextIndex]);
406 void MCAsmLayout::LayoutSection(MCSectionData *SD) {
407 unsigned SectionOrderIndex = SD->getLayoutOrder();
409 ++stats::SectionLayouts;
411 // Compute the section start address.
412 uint64_t StartAddress = 0;
413 if (SectionOrderIndex) {
414 MCSectionData *Prev = getSectionOrder()[SectionOrderIndex - 1];
415 StartAddress = getSectionAddress(Prev) + getSectionAddressSize(Prev);
418 // Honor the section alignment requirements.
419 StartAddress = RoundUpToAlignment(StartAddress, SD->getAlignment());
421 // Set the section address.
422 SD->Address = StartAddress;
425 /// WriteFragmentData - Write the \arg F data to the output file.
426 static void WriteFragmentData(const MCAssembler &Asm, const MCAsmLayout &Layout,
427 const MCFragment &F, MCObjectWriter *OW) {
428 uint64_t Start = OW->getStream().tell();
429 (void) Start;
431 ++stats::EmittedFragments;
433 // FIXME: Embed in fragments instead?
434 uint64_t FragmentSize = Layout.getFragmentEffectiveSize(&F);
435 switch (F.getKind()) {
436 case MCFragment::FT_Align: {
437 MCAlignFragment &AF = cast<MCAlignFragment>(F);
438 uint64_t Count = FragmentSize / AF.getValueSize();
440 assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
442 // FIXME: This error shouldn't actually occur (the front end should emit
443 // multiple .align directives to enforce the semantics it wants), but is
444 // severe enough that we want to report it. How to handle this?
445 if (Count * AF.getValueSize() != FragmentSize)
446 report_fatal_error("undefined .align directive, value size '" +
447 Twine(AF.getValueSize()) +
448 "' is not a divisor of padding size '" +
449 Twine(FragmentSize) + "'");
451 // See if we are aligning with nops, and if so do that first to try to fill
452 // the Count bytes. Then if that did not fill any bytes or there are any
453 // bytes left to fill use the the Value and ValueSize to fill the rest.
454 // If we are aligning with nops, ask that target to emit the right data.
455 if (AF.hasEmitNops()) {
456 if (!Asm.getBackend().WriteNopData(Count, OW))
457 report_fatal_error("unable to write nop sequence of " +
458 Twine(Count) + " bytes");
459 break;
462 // Otherwise, write out in multiples of the value size.
463 for (uint64_t i = 0; i != Count; ++i) {
464 switch (AF.getValueSize()) {
465 default:
466 assert(0 && "Invalid size!");
467 case 1: OW->Write8 (uint8_t (AF.getValue())); break;
468 case 2: OW->Write16(uint16_t(AF.getValue())); break;
469 case 4: OW->Write32(uint32_t(AF.getValue())); break;
470 case 8: OW->Write64(uint64_t(AF.getValue())); break;
473 break;
476 case MCFragment::FT_Data: {
477 MCDataFragment &DF = cast<MCDataFragment>(F);
478 assert(FragmentSize == DF.getContents().size() && "Invalid size!");
479 OW->WriteBytes(DF.getContents().str());
480 break;
483 case MCFragment::FT_Fill: {
484 MCFillFragment &FF = cast<MCFillFragment>(F);
486 assert(FF.getValueSize() && "Invalid virtual align in concrete fragment!");
488 for (uint64_t i = 0, e = FF.getSize() / FF.getValueSize(); i != e; ++i) {
489 switch (FF.getValueSize()) {
490 default:
491 assert(0 && "Invalid size!");
492 case 1: OW->Write8 (uint8_t (FF.getValue())); break;
493 case 2: OW->Write16(uint16_t(FF.getValue())); break;
494 case 4: OW->Write32(uint32_t(FF.getValue())); break;
495 case 8: OW->Write64(uint64_t(FF.getValue())); break;
498 break;
501 case MCFragment::FT_Inst:
502 llvm_unreachable("unexpected inst fragment after lowering");
503 break;
505 case MCFragment::FT_LEB: {
506 MCLEBFragment &LF = cast<MCLEBFragment>(F);
508 // FIXME: It is probably better if we don't call EvaluateAsAbsolute in
509 // here.
510 int64_t Value;
511 LF.getValue().EvaluateAsAbsolute(Value, &Layout);
512 SmallString<32> Tmp;
513 raw_svector_ostream OSE(Tmp);
514 if (LF.isSigned())
515 MCObjectWriter::EncodeSLEB128(Value, OSE);
516 else
517 MCObjectWriter::EncodeULEB128(Value, OSE);
518 OW->WriteBytes(OSE.str());
519 break;
522 case MCFragment::FT_Org: {
523 MCOrgFragment &OF = cast<MCOrgFragment>(F);
525 for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
526 OW->Write8(uint8_t(OF.getValue()));
528 break;
531 case MCFragment::FT_Dwarf: {
532 const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
534 // The AddrDelta is really unsigned and it can only increase.
535 int64_t AddrDelta;
536 OF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, &Layout);
538 int64_t LineDelta;
539 LineDelta = OF.getLineDelta();
541 MCDwarfLineAddr::Write(OW, LineDelta, (uint64_t)AddrDelta);
542 break;
546 assert(OW->getStream().tell() - Start == FragmentSize);
549 void MCAssembler::WriteSectionData(const MCSectionData *SD,
550 const MCAsmLayout &Layout,
551 MCObjectWriter *OW) const {
552 // Ignore virtual sections.
553 if (getBackend().isVirtualSection(SD->getSection())) {
554 assert(Layout.getSectionFileSize(SD) == 0 && "Invalid size for section!");
556 // Check that contents are only things legal inside a virtual section.
557 for (MCSectionData::const_iterator it = SD->begin(),
558 ie = SD->end(); it != ie; ++it) {
559 switch (it->getKind()) {
560 default:
561 assert(0 && "Invalid fragment in virtual section!");
562 case MCFragment::FT_Data: {
563 // Check that we aren't trying to write a non-zero contents (or fixups)
564 // into a virtual section. This is to support clients which use standard
565 // directives to fill the contents of virtual sections.
566 MCDataFragment &DF = cast<MCDataFragment>(*it);
567 assert(DF.fixup_begin() == DF.fixup_end() &&
568 "Cannot have fixups in virtual section!");
569 for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
570 assert(DF.getContents()[i] == 0 &&
571 "Invalid data value for virtual section!");
572 break;
574 case MCFragment::FT_Align:
575 // Check that we aren't trying to write a non-zero value into a virtual
576 // section.
577 assert((!cast<MCAlignFragment>(it)->getValueSize() ||
578 !cast<MCAlignFragment>(it)->getValue()) &&
579 "Invalid align in virtual section!");
580 break;
581 case MCFragment::FT_Fill:
582 assert(!cast<MCFillFragment>(it)->getValueSize() &&
583 "Invalid fill in virtual section!");
584 break;
588 return;
591 uint64_t Start = OW->getStream().tell();
592 (void) Start;
594 for (MCSectionData::const_iterator it = SD->begin(),
595 ie = SD->end(); it != ie; ++it)
596 WriteFragmentData(*this, Layout, *it, OW);
598 assert(OW->getStream().tell() - Start == Layout.getSectionFileSize(SD));
601 void MCAssembler::AddSectionToTheEnd(const MCObjectWriter &Writer,
602 MCSectionData &SD, MCAsmLayout &Layout) {
603 // Create dummy fragments and assign section ordinals.
604 unsigned SectionIndex = 0;
605 for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it)
606 SectionIndex++;
608 SD.setOrdinal(SectionIndex);
610 // Assign layout order indices to sections and fragments.
611 unsigned FragmentIndex = 0;
612 unsigned i = 0;
613 for (unsigned e = Layout.getSectionOrder().size(); i != e; ++i) {
614 MCSectionData *SD = Layout.getSectionOrder()[i];
616 for (MCSectionData::iterator it2 = SD->begin(),
617 ie2 = SD->end(); it2 != ie2; ++it2)
618 FragmentIndex++;
621 SD.setLayoutOrder(i);
622 for (MCSectionData::iterator it2 = SD.begin(),
623 ie2 = SD.end(); it2 != ie2; ++it2) {
624 it2->setLayoutOrder(FragmentIndex++);
626 Layout.getSectionOrder().push_back(&SD);
628 Layout.LayoutSection(&SD);
630 // Layout until everything fits.
631 while (LayoutOnce(Writer, Layout))
632 continue;
636 void MCAssembler::Finish(MCObjectWriter *Writer) {
637 DEBUG_WITH_TYPE("mc-dump", {
638 llvm::errs() << "assembler backend - pre-layout\n--\n";
639 dump(); });
641 // Create the layout object.
642 MCAsmLayout Layout(*this);
644 // Insert additional align fragments for concrete sections to explicitly pad
645 // the previous section to match their alignment requirements. This is for
646 // 'gas' compatibility, it shouldn't strictly be necessary.
647 if (PadSectionToAlignment) {
648 for (unsigned i = 1, e = Layout.getSectionOrder().size(); i < e; ++i) {
649 MCSectionData *SD = Layout.getSectionOrder()[i];
651 // Ignore sections without alignment requirements.
652 unsigned Align = SD->getAlignment();
653 if (Align <= 1)
654 continue;
656 // Ignore virtual sections, they don't cause file size modifications.
657 if (getBackend().isVirtualSection(SD->getSection()))
658 continue;
660 // Otherwise, create a new align fragment at the end of the previous
661 // section.
662 MCAlignFragment *AF = new MCAlignFragment(Align, 0, 1, Align,
663 Layout.getSectionOrder()[i - 1]);
664 AF->setOnlyAlignAddress(true);
668 // Create dummy fragments and assign section ordinals.
669 unsigned SectionIndex = 0;
670 for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
671 // Create dummy fragments to eliminate any empty sections, this simplifies
672 // layout.
673 if (it->getFragmentList().empty())
674 new MCDataFragment(it);
676 it->setOrdinal(SectionIndex++);
679 // Assign layout order indices to sections and fragments.
680 unsigned FragmentIndex = 0;
681 for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
682 MCSectionData *SD = Layout.getSectionOrder()[i];
683 SD->setLayoutOrder(i);
685 for (MCSectionData::iterator it2 = SD->begin(),
686 ie2 = SD->end(); it2 != ie2; ++it2)
687 it2->setLayoutOrder(FragmentIndex++);
690 llvm::OwningPtr<MCObjectWriter> OwnWriter(0);
691 if (Writer == 0) {
692 //no custom Writer_ : create the default one life-managed by OwningPtr
693 OwnWriter.reset(getBackend().createObjectWriter(OS));
694 Writer = OwnWriter.get();
695 if (!Writer)
696 report_fatal_error("unable to create object writer!");
699 // Layout until everything fits.
700 while (LayoutOnce(*Writer, Layout))
701 continue;
703 DEBUG_WITH_TYPE("mc-dump", {
704 llvm::errs() << "assembler backend - post-relaxation\n--\n";
705 dump(); });
707 // Finalize the layout, including fragment lowering.
708 FinishLayout(Layout);
710 DEBUG_WITH_TYPE("mc-dump", {
711 llvm::errs() << "assembler backend - final-layout\n--\n";
712 dump(); });
714 uint64_t StartOffset = OS.tell();
716 // Allow the object writer a chance to perform post-layout binding (for
717 // example, to set the index fields in the symbol data).
718 Writer->ExecutePostLayoutBinding(*this);
720 // Evaluate and apply the fixups, generating relocation entries as necessary.
721 for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
722 for (MCSectionData::iterator it2 = it->begin(),
723 ie2 = it->end(); it2 != ie2; ++it2) {
724 MCDataFragment *DF = dyn_cast<MCDataFragment>(it2);
725 if (!DF)
726 continue;
728 for (MCDataFragment::fixup_iterator it3 = DF->fixup_begin(),
729 ie3 = DF->fixup_end(); it3 != ie3; ++it3) {
730 MCFixup &Fixup = *it3;
732 // Evaluate the fixup.
733 MCValue Target;
734 uint64_t FixedValue;
735 if (!EvaluateFixup(*Writer, Layout, Fixup, DF, Target, FixedValue)) {
736 // The fixup was unresolved, we need a relocation. Inform the object
737 // writer of the relocation, and give it an opportunity to adjust the
738 // fixup value if need be.
739 Writer->RecordRelocation(*this, Layout, DF, Fixup, Target,FixedValue);
742 getBackend().ApplyFixup(Fixup, *DF, FixedValue);
747 // Write the object file.
748 Writer->WriteObject(*this, Layout);
750 stats::ObjectBytes += OS.tell() - StartOffset;
753 bool MCAssembler::FixupNeedsRelaxation(const MCObjectWriter &Writer,
754 const MCFixup &Fixup,
755 const MCFragment *DF,
756 const MCAsmLayout &Layout) const {
757 if (getRelaxAll())
758 return true;
760 // If we cannot resolve the fixup value, it requires relaxation.
761 MCValue Target;
762 uint64_t Value;
763 if (!EvaluateFixup(Writer, Layout, Fixup, DF, Target, Value))
764 return true;
766 // Otherwise, relax if the value is too big for a (signed) i8.
768 // FIXME: This is target dependent!
769 return int64_t(Value) != int64_t(int8_t(Value));
772 bool MCAssembler::FragmentNeedsRelaxation(const MCObjectWriter &Writer,
773 const MCInstFragment *IF,
774 const MCAsmLayout &Layout) const {
775 // If this inst doesn't ever need relaxation, ignore it. This occurs when we
776 // are intentionally pushing out inst fragments, or because we relaxed a
777 // previous instruction to one that doesn't need relaxation.
778 if (!getBackend().MayNeedRelaxation(IF->getInst()))
779 return false;
781 for (MCInstFragment::const_fixup_iterator it = IF->fixup_begin(),
782 ie = IF->fixup_end(); it != ie; ++it)
783 if (FixupNeedsRelaxation(Writer, *it, IF, Layout))
784 return true;
786 return false;
789 bool MCAssembler::RelaxInstruction(const MCObjectWriter &Writer,
790 MCAsmLayout &Layout,
791 MCInstFragment &IF) {
792 if (!FragmentNeedsRelaxation(Writer, &IF, Layout))
793 return false;
795 ++stats::RelaxedInstructions;
797 // FIXME-PERF: We could immediately lower out instructions if we can tell
798 // they are fully resolved, to avoid retesting on later passes.
800 // Relax the fragment.
802 MCInst Relaxed;
803 getBackend().RelaxInstruction(IF.getInst(), Relaxed);
805 // Encode the new instruction.
807 // FIXME-PERF: If it matters, we could let the target do this. It can
808 // probably do so more efficiently in many cases.
809 SmallVector<MCFixup, 4> Fixups;
810 SmallString<256> Code;
811 raw_svector_ostream VecOS(Code);
812 getEmitter().EncodeInstruction(Relaxed, VecOS, Fixups);
813 VecOS.flush();
815 // Update the instruction fragment.
816 int SlideAmount = Code.size() - IF.getInstSize();
817 IF.setInst(Relaxed);
818 IF.getCode() = Code;
819 IF.getFixups().clear();
820 // FIXME: Eliminate copy.
821 for (unsigned i = 0, e = Fixups.size(); i != e; ++i)
822 IF.getFixups().push_back(Fixups[i]);
824 // Update the layout, and remember that we relaxed.
825 Layout.UpdateForSlide(&IF, SlideAmount);
826 return true;
829 bool MCAssembler::RelaxOrg(const MCObjectWriter &Writer,
830 MCAsmLayout &Layout,
831 MCOrgFragment &OF) {
832 int64_t TargetLocation;
833 if (!OF.getOffset().EvaluateAsAbsolute(TargetLocation, &Layout))
834 report_fatal_error("expected assembly-time absolute expression");
836 // FIXME: We need a way to communicate this error.
837 uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
838 int64_t Offset = TargetLocation - FragmentOffset;
839 if (Offset < 0 || Offset >= 0x40000000)
840 report_fatal_error("invalid .org offset '" + Twine(TargetLocation) +
841 "' (at offset '" + Twine(FragmentOffset) + "')");
843 unsigned OldSize = OF.getSize();
844 OF.setSize(Offset);
845 return OldSize != OF.getSize();
848 bool MCAssembler::RelaxLEB(const MCObjectWriter &Writer,
849 MCAsmLayout &Layout,
850 MCLEBFragment &LF) {
851 int64_t Value;
852 LF.getValue().EvaluateAsAbsolute(Value, &Layout);
853 SmallString<32> Tmp;
854 raw_svector_ostream OSE(Tmp);
855 if (LF.isSigned())
856 MCObjectWriter::EncodeSLEB128(Value, OSE);
857 else
858 MCObjectWriter::EncodeULEB128(Value, OSE);
859 uint64_t OldSize = LF.getSize();
860 LF.setSize(OSE.GetNumBytesInBuffer());
861 return OldSize != LF.getSize();
864 bool MCAssembler::LayoutOnce(const MCObjectWriter &Writer,
865 MCAsmLayout &Layout) {
866 ++stats::RelaxationSteps;
868 // Layout the sections in order.
869 Layout.LayoutFile();
871 // Scan for fragments that need relaxation.
872 bool WasRelaxed = false;
873 for (iterator it = begin(), ie = end(); it != ie; ++it) {
874 MCSectionData &SD = *it;
876 for (MCSectionData::iterator it2 = SD.begin(),
877 ie2 = SD.end(); it2 != ie2; ++it2) {
878 // Check if this is an fragment that needs relaxation.
879 switch(it2->getKind()) {
880 default:
881 break;
882 case MCFragment::FT_Inst:
883 WasRelaxed |= RelaxInstruction(Writer, Layout,
884 *cast<MCInstFragment>(it2));
885 break;
886 case MCFragment::FT_Org:
887 WasRelaxed |= RelaxOrg(Writer, Layout, *cast<MCOrgFragment>(it2));
888 break;
889 case MCFragment::FT_LEB:
890 WasRelaxed |= RelaxLEB(Writer, Layout, *cast<MCLEBFragment>(it2));
891 break;
896 return WasRelaxed;
899 void MCAssembler::FinishLayout(MCAsmLayout &Layout) {
900 // Lower out any instruction fragments, to simplify the fixup application and
901 // output.
903 // FIXME-PERF: We don't have to do this, but the assumption is that it is
904 // cheap (we will mostly end up eliminating fragments and appending on to data
905 // fragments), so the extra complexity downstream isn't worth it. Evaluate
906 // this assumption.
907 for (iterator it = begin(), ie = end(); it != ie; ++it) {
908 MCSectionData &SD = *it;
910 for (MCSectionData::iterator it2 = SD.begin(),
911 ie2 = SD.end(); it2 != ie2; ++it2) {
912 MCInstFragment *IF = dyn_cast<MCInstFragment>(it2);
913 if (!IF)
914 continue;
916 // Create a new data fragment for the instruction.
918 // FIXME-PERF: Reuse previous data fragment if possible.
919 MCDataFragment *DF = new MCDataFragment();
920 SD.getFragmentList().insert(it2, DF);
922 // Update the data fragments layout data.
923 DF->setParent(IF->getParent());
924 DF->setAtom(IF->getAtom());
925 DF->setLayoutOrder(IF->getLayoutOrder());
926 Layout.FragmentReplaced(IF, DF);
928 // Copy in the data and the fixups.
929 DF->getContents().append(IF->getCode().begin(), IF->getCode().end());
930 for (unsigned i = 0, e = IF->getFixups().size(); i != e; ++i)
931 DF->getFixups().push_back(IF->getFixups()[i]);
933 // Delete the instruction fragment and update the iterator.
934 SD.getFragmentList().erase(IF);
935 it2 = DF;
940 // Debugging methods
942 namespace llvm {
944 raw_ostream &operator<<(raw_ostream &OS, const MCFixup &AF) {
945 OS << "<MCFixup" << " Offset:" << AF.getOffset()
946 << " Value:" << *AF.getValue()
947 << " Kind:" << AF.getKind() << ">";
948 return OS;
953 void MCFragment::dump() {
954 raw_ostream &OS = llvm::errs();
956 OS << "<";
957 switch (getKind()) {
958 case MCFragment::FT_Align: OS << "MCAlignFragment"; break;
959 case MCFragment::FT_Data: OS << "MCDataFragment"; break;
960 case MCFragment::FT_Fill: OS << "MCFillFragment"; break;
961 case MCFragment::FT_Inst: OS << "MCInstFragment"; break;
962 case MCFragment::FT_Org: OS << "MCOrgFragment"; break;
963 case MCFragment::FT_Dwarf: OS << "MCDwarfFragment"; break;
964 case MCFragment::FT_LEB: OS << "MCLEBFragment"; break;
967 OS << "<MCFragment " << (void*) this << " LayoutOrder:" << LayoutOrder
968 << " Offset:" << Offset << " EffectiveSize:" << EffectiveSize << ">";
970 switch (getKind()) {
971 case MCFragment::FT_Align: {
972 const MCAlignFragment *AF = cast<MCAlignFragment>(this);
973 if (AF->hasEmitNops())
974 OS << " (emit nops)";
975 if (AF->hasOnlyAlignAddress())
976 OS << " (only align section)";
977 OS << "\n ";
978 OS << " Alignment:" << AF->getAlignment()
979 << " Value:" << AF->getValue() << " ValueSize:" << AF->getValueSize()
980 << " MaxBytesToEmit:" << AF->getMaxBytesToEmit() << ">";
981 break;
983 case MCFragment::FT_Data: {
984 const MCDataFragment *DF = cast<MCDataFragment>(this);
985 OS << "\n ";
986 OS << " Contents:[";
987 const SmallVectorImpl<char> &Contents = DF->getContents();
988 for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
989 if (i) OS << ",";
990 OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
992 OS << "] (" << Contents.size() << " bytes)";
994 if (!DF->getFixups().empty()) {
995 OS << ",\n ";
996 OS << " Fixups:[";
997 for (MCDataFragment::const_fixup_iterator it = DF->fixup_begin(),
998 ie = DF->fixup_end(); it != ie; ++it) {
999 if (it != DF->fixup_begin()) OS << ",\n ";
1000 OS << *it;
1002 OS << "]";
1004 break;
1006 case MCFragment::FT_Fill: {
1007 const MCFillFragment *FF = cast<MCFillFragment>(this);
1008 OS << " Value:" << FF->getValue() << " ValueSize:" << FF->getValueSize()
1009 << " Size:" << FF->getSize();
1010 break;
1012 case MCFragment::FT_Inst: {
1013 const MCInstFragment *IF = cast<MCInstFragment>(this);
1014 OS << "\n ";
1015 OS << " Inst:";
1016 IF->getInst().dump_pretty(OS);
1017 break;
1019 case MCFragment::FT_Org: {
1020 const MCOrgFragment *OF = cast<MCOrgFragment>(this);
1021 OS << "\n ";
1022 OS << " Offset:" << OF->getOffset() << " Value:" << OF->getValue();
1023 break;
1025 case MCFragment::FT_Dwarf: {
1026 const MCDwarfLineAddrFragment *OF = cast<MCDwarfLineAddrFragment>(this);
1027 OS << "\n ";
1028 OS << " AddrDelta:" << OF->getAddrDelta()
1029 << " LineDelta:" << OF->getLineDelta();
1030 break;
1032 case MCFragment::FT_LEB: {
1033 const MCLEBFragment *LF = cast<MCLEBFragment>(this);
1034 OS << "\n ";
1035 OS << " Value:" << LF->getValue() << " Signed:" << LF->isSigned();
1036 break;
1039 OS << ">";
1042 void MCSectionData::dump() {
1043 raw_ostream &OS = llvm::errs();
1045 OS << "<MCSectionData";
1046 OS << " Alignment:" << getAlignment() << " Address:" << Address
1047 << " Fragments:[\n ";
1048 for (iterator it = begin(), ie = end(); it != ie; ++it) {
1049 if (it != begin()) OS << ",\n ";
1050 it->dump();
1052 OS << "]>";
1055 void MCSymbolData::dump() {
1056 raw_ostream &OS = llvm::errs();
1058 OS << "<MCSymbolData Symbol:" << getSymbol()
1059 << " Fragment:" << getFragment() << " Offset:" << getOffset()
1060 << " Flags:" << getFlags() << " Index:" << getIndex();
1061 if (isCommon())
1062 OS << " (common, size:" << getCommonSize()
1063 << " align: " << getCommonAlignment() << ")";
1064 if (isExternal())
1065 OS << " (external)";
1066 if (isPrivateExtern())
1067 OS << " (private extern)";
1068 OS << ">";
1071 void MCAssembler::dump() {
1072 raw_ostream &OS = llvm::errs();
1074 OS << "<MCAssembler\n";
1075 OS << " Sections:[\n ";
1076 for (iterator it = begin(), ie = end(); it != ie; ++it) {
1077 if (it != begin()) OS << ",\n ";
1078 it->dump();
1080 OS << "],\n";
1081 OS << " Symbols:[";
1083 for (symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
1084 if (it != symbol_begin()) OS << ",\n ";
1085 it->dump();
1087 OS << "]>\n";