1 //===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the pass that transforms the ARM machine instructions into
11 // relocatable machine code.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "jit"
17 #include "ARMAddressingModes.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMInstrInfo.h"
20 #include "ARMRelocations.h"
21 #include "ARMSubtarget.h"
22 #include "ARMTargetMachine.h"
23 #include "llvm/Constants.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/PassManager.h"
27 #include "llvm/CodeGen/JITCodeEmitter.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineJumpTableInfo.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/Passes.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
43 STATISTIC(NumEmitted
, "Number of machine instructions emitted");
47 class ARMCodeEmitter
: public MachineFunctionPass
{
49 const ARMInstrInfo
*II
;
51 const ARMSubtarget
*Subtarget
;
54 MachineModuleInfo
*MMI
;
55 const std::vector
<MachineConstantPoolEntry
> *MCPEs
;
56 const std::vector
<MachineJumpTableEntry
> *MJTEs
;
60 void getAnalysisUsage(AnalysisUsage
&AU
) const {
61 AU
.addRequired
<MachineModuleInfo
>();
62 MachineFunctionPass::getAnalysisUsage(AU
);
67 ARMCodeEmitter(TargetMachine
&tm
, JITCodeEmitter
&mce
)
68 : MachineFunctionPass(ID
), JTI(0),
69 II((const ARMInstrInfo
*)tm
.getInstrInfo()),
70 TD(tm
.getTargetData()), TM(tm
),
71 MCE(mce
), MCPEs(0), MJTEs(0),
72 IsPIC(TM
.getRelocationModel() == Reloc::PIC_
), IsThumb(false) {}
74 /// getBinaryCodeForInstr - This function, generated by the
75 /// CodeEmitterGenerator using TableGen, produces the binary encoding for
76 /// machine instructions.
77 unsigned getBinaryCodeForInstr(const MachineInstr
&MI
) const;
79 bool runOnMachineFunction(MachineFunction
&MF
);
81 virtual const char *getPassName() const {
82 return "ARM Machine Code Emitter";
85 void emitInstruction(const MachineInstr
&MI
);
89 void emitWordLE(unsigned Binary
);
90 void emitDWordLE(uint64_t Binary
);
91 void emitConstPoolInstruction(const MachineInstr
&MI
);
92 void emitMOVi32immInstruction(const MachineInstr
&MI
);
93 void emitMOVi2piecesInstruction(const MachineInstr
&MI
);
94 void emitLEApcrelJTInstruction(const MachineInstr
&MI
);
95 void emitPseudoMoveInstruction(const MachineInstr
&MI
);
96 void addPCLabel(unsigned LabelID
);
97 void emitPseudoInstruction(const MachineInstr
&MI
);
98 unsigned getMachineSoRegOpValue(const MachineInstr
&MI
,
99 const TargetInstrDesc
&TID
,
100 const MachineOperand
&MO
,
103 unsigned getMachineSoImmOpValue(unsigned SoImm
);
104 unsigned getAddrModeSBit(const MachineInstr
&MI
,
105 const TargetInstrDesc
&TID
) const;
107 void emitDataProcessingInstruction(const MachineInstr
&MI
,
108 unsigned ImplicitRd
= 0,
109 unsigned ImplicitRn
= 0);
111 void emitLoadStoreInstruction(const MachineInstr
&MI
,
112 unsigned ImplicitRd
= 0,
113 unsigned ImplicitRn
= 0);
115 void emitMiscLoadStoreInstruction(const MachineInstr
&MI
,
116 unsigned ImplicitRn
= 0);
118 void emitLoadStoreMultipleInstruction(const MachineInstr
&MI
);
120 void emitMulFrmInstruction(const MachineInstr
&MI
);
122 void emitExtendInstruction(const MachineInstr
&MI
);
124 void emitMiscArithInstruction(const MachineInstr
&MI
);
126 void emitSaturateInstruction(const MachineInstr
&MI
);
128 void emitBranchInstruction(const MachineInstr
&MI
);
130 void emitInlineJumpTable(unsigned JTIndex
);
132 void emitMiscBranchInstruction(const MachineInstr
&MI
);
134 void emitVFPArithInstruction(const MachineInstr
&MI
);
136 void emitVFPConversionInstruction(const MachineInstr
&MI
);
138 void emitVFPLoadStoreInstruction(const MachineInstr
&MI
);
140 void emitVFPLoadStoreMultipleInstruction(const MachineInstr
&MI
);
142 void emitNEONLaneInstruction(const MachineInstr
&MI
);
143 void emitNEONDupInstruction(const MachineInstr
&MI
);
144 void emitNEON1RegModImmInstruction(const MachineInstr
&MI
);
145 void emitNEON2RegInstruction(const MachineInstr
&MI
);
146 void emitNEON3RegInstruction(const MachineInstr
&MI
);
148 /// getMachineOpValue - Return binary encoding of operand. If the machine
149 /// operand requires relocation, record the relocation and return zero.
150 unsigned getMachineOpValue(const MachineInstr
&MI
,
151 const MachineOperand
&MO
) const;
152 unsigned getMachineOpValue(const MachineInstr
&MI
, unsigned OpIdx
) const {
153 return getMachineOpValue(MI
, MI
.getOperand(OpIdx
));
156 // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the
157 // TableGen'erated getBinaryCodeForInstr() function to encode any
158 // operand values, instead querying getMachineOpValue() directly for
159 // each operand it needs to encode. Thus, any of the new encoder
160 // helper functions can simply return 0 as the values the return
161 // are already handled elsewhere. They are placeholders to allow this
162 // encoder to continue to function until the MC encoder is sufficiently
163 // far along that this one can be eliminated entirely.
164 unsigned getCCOutOpValue(const MachineInstr
&MI
, unsigned Op
)
166 unsigned getSOImmOpValue(const MachineInstr
&MI
, unsigned Op
)
168 unsigned getSORegOpValue(const MachineInstr
&MI
, unsigned Op
)
170 unsigned getRotImmOpValue(const MachineInstr
&MI
, unsigned Op
)
172 unsigned getImmMinusOneOpValue(const MachineInstr
&MI
, unsigned Op
)
174 unsigned getAddrMode6AddressOpValue(const MachineInstr
&MI
, unsigned Op
)
176 unsigned getAddrMode6OffsetOpValue(const MachineInstr
&MI
, unsigned Op
)
178 unsigned getBitfieldInvertedMaskOpValue(const MachineInstr
&MI
,
179 unsigned Op
) const { return 0; }
181 unsigned getAddrModeImm12OpValue(const MachineInstr
&MI
, unsigned Op
)
184 // {12} = (U)nsigned (add == '1', sub == '0')
186 const MachineOperand
&MO
= MI
.getOperand(Op
);
187 const MachineOperand
&MO1
= MI
.getOperand(Op
+ 1);
189 emitConstPoolAddress(MO
.getIndex(), ARM::reloc_arm_cp_entry
);
192 unsigned Reg
= getARMRegisterNumbering(MO
.getReg());
193 int32_t Imm12
= MO1
.getImm();
195 Binary
= Imm12
& 0xfff;
198 Binary
|= (Reg
<< 13);
201 uint32_t getAddrMode5OpValue(const MachineInstr
&MI
, unsigned Op
) const {
203 // {8} = (U)nsigned (add == '1', sub == '0')
205 const MachineOperand
&MO
= MI
.getOperand(Op
);
206 const MachineOperand
&MO1
= MI
.getOperand(Op
+ 1);
208 emitConstPoolAddress(MO
.getIndex(), ARM::reloc_arm_cp_entry
);
211 unsigned Reg
= getARMRegisterNumbering(MO
.getReg());
212 int32_t Imm8
= MO1
.getImm();
214 Binary
= Imm8
& 0xff;
217 Binary
|= (Reg
<< 9);
220 unsigned getNEONVcvtImm32OpValue(const MachineInstr
&MI
, unsigned Op
)
223 unsigned getRegisterListOpValue(const MachineInstr
&MI
, unsigned Op
)
226 /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
227 /// machine operand requires relocation, record the relocation and return
229 unsigned getMovi32Value(const MachineInstr
&MI
,const MachineOperand
&MO
,
232 /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
234 unsigned getShiftOp(unsigned Imm
) const ;
236 /// Routines that handle operands which add machine relocations which are
237 /// fixed up by the relocation stage.
238 void emitGlobalAddress(const GlobalValue
*GV
, unsigned Reloc
,
239 bool MayNeedFarStub
, bool Indirect
,
240 intptr_t ACPV
= 0) const;
241 void emitExternalSymbolAddress(const char *ES
, unsigned Reloc
) const;
242 void emitConstPoolAddress(unsigned CPI
, unsigned Reloc
) const;
243 void emitJumpTableAddress(unsigned JTIndex
, unsigned Reloc
) const;
244 void emitMachineBasicBlock(MachineBasicBlock
*BB
, unsigned Reloc
,
245 intptr_t JTBase
= 0) const;
249 char ARMCodeEmitter::ID
= 0;
251 /// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
252 /// code to the specified MCE object.
253 FunctionPass
*llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine
&TM
,
254 JITCodeEmitter
&JCE
) {
255 return new ARMCodeEmitter(TM
, JCE
);
258 bool ARMCodeEmitter::runOnMachineFunction(MachineFunction
&MF
) {
259 assert((MF
.getTarget().getRelocationModel() != Reloc::Default
||
260 MF
.getTarget().getRelocationModel() != Reloc::Static
) &&
261 "JIT relocation model must be set to static or default!");
262 JTI
= ((ARMTargetMachine
&)MF
.getTarget()).getJITInfo();
263 II
= ((const ARMTargetMachine
&)MF
.getTarget()).getInstrInfo();
264 TD
= ((const ARMTargetMachine
&)MF
.getTarget()).getTargetData();
265 Subtarget
= &TM
.getSubtarget
<ARMSubtarget
>();
266 MCPEs
= &MF
.getConstantPool()->getConstants();
268 if (MF
.getJumpTableInfo()) MJTEs
= &MF
.getJumpTableInfo()->getJumpTables();
269 IsPIC
= TM
.getRelocationModel() == Reloc::PIC_
;
270 IsThumb
= MF
.getInfo
<ARMFunctionInfo
>()->isThumbFunction();
271 JTI
->Initialize(MF
, IsPIC
);
272 MMI
= &getAnalysis
<MachineModuleInfo
>();
273 MCE
.setModuleInfo(MMI
);
276 DEBUG(errs() << "JITTing function '"
277 << MF
.getFunction()->getName() << "'\n");
278 MCE
.startFunction(MF
);
279 for (MachineFunction::iterator MBB
= MF
.begin(), E
= MF
.end();
281 MCE
.StartMachineBasicBlock(MBB
);
282 for (MachineBasicBlock::const_iterator I
= MBB
->begin(), E
= MBB
->end();
286 } while (MCE
.finishFunction(MF
));
291 /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
293 unsigned ARMCodeEmitter::getShiftOp(unsigned Imm
) const {
294 switch (ARM_AM::getAM2ShiftOpc(Imm
)) {
295 default: llvm_unreachable("Unknown shift opc!");
296 case ARM_AM::asr
: return 2;
297 case ARM_AM::lsl
: return 0;
298 case ARM_AM::lsr
: return 1;
300 case ARM_AM::rrx
: return 3;
305 /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
306 /// machine operand requires relocation, record the relocation and return zero.
307 unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr
&MI
,
308 const MachineOperand
&MO
,
310 assert(((Reloc
== ARM::reloc_arm_movt
) || (Reloc
== ARM::reloc_arm_movw
))
311 && "Relocation to this function should be for movt or movw");
314 return static_cast<unsigned>(MO
.getImm());
315 else if (MO
.isGlobal())
316 emitGlobalAddress(MO
.getGlobal(), Reloc
, true, false);
317 else if (MO
.isSymbol())
318 emitExternalSymbolAddress(MO
.getSymbolName(), Reloc
);
320 emitMachineBasicBlock(MO
.getMBB(), Reloc
);
325 llvm_unreachable("Unsupported operand type for movw/movt");
330 /// getMachineOpValue - Return binary encoding of operand. If the machine
331 /// operand requires relocation, record the relocation and return zero.
332 unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr
&MI
,
333 const MachineOperand
&MO
) const {
335 return getARMRegisterNumbering(MO
.getReg());
337 return static_cast<unsigned>(MO
.getImm());
338 else if (MO
.isGlobal())
339 emitGlobalAddress(MO
.getGlobal(), ARM::reloc_arm_branch
, true, false);
340 else if (MO
.isSymbol())
341 emitExternalSymbolAddress(MO
.getSymbolName(), ARM::reloc_arm_branch
);
342 else if (MO
.isCPI()) {
343 const TargetInstrDesc
&TID
= MI
.getDesc();
344 // For VFP load, the immediate offset is multiplied by 4.
345 unsigned Reloc
= ((TID
.TSFlags
& ARMII::FormMask
) == ARMII::VFPLdStFrm
)
346 ? ARM::reloc_arm_vfp_cp_entry
: ARM::reloc_arm_cp_entry
;
347 emitConstPoolAddress(MO
.getIndex(), Reloc
);
348 } else if (MO
.isJTI())
349 emitJumpTableAddress(MO
.getIndex(), ARM::reloc_arm_relative
);
351 emitMachineBasicBlock(MO
.getMBB(), ARM::reloc_arm_branch
);
361 /// emitGlobalAddress - Emit the specified address to the code stream.
363 void ARMCodeEmitter::emitGlobalAddress(const GlobalValue
*GV
, unsigned Reloc
,
364 bool MayNeedFarStub
, bool Indirect
,
365 intptr_t ACPV
) const {
366 MachineRelocation MR
= Indirect
367 ? MachineRelocation::getIndirectSymbol(MCE
.getCurrentPCOffset(), Reloc
,
368 const_cast<GlobalValue
*>(GV
),
369 ACPV
, MayNeedFarStub
)
370 : MachineRelocation::getGV(MCE
.getCurrentPCOffset(), Reloc
,
371 const_cast<GlobalValue
*>(GV
), ACPV
,
373 MCE
.addRelocation(MR
);
376 /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
377 /// be emitted to the current location in the function, and allow it to be PC
379 void ARMCodeEmitter::
380 emitExternalSymbolAddress(const char *ES
, unsigned Reloc
) const {
381 MCE
.addRelocation(MachineRelocation::getExtSym(MCE
.getCurrentPCOffset(),
385 /// emitConstPoolAddress - Arrange for the address of an constant pool
386 /// to be emitted to the current location in the function, and allow it to be PC
388 void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI
, unsigned Reloc
) const {
389 // Tell JIT emitter we'll resolve the address.
390 MCE
.addRelocation(MachineRelocation::getConstPool(MCE
.getCurrentPCOffset(),
391 Reloc
, CPI
, 0, true));
394 /// emitJumpTableAddress - Arrange for the address of a jump table to
395 /// be emitted to the current location in the function, and allow it to be PC
397 void ARMCodeEmitter::
398 emitJumpTableAddress(unsigned JTIndex
, unsigned Reloc
) const {
399 MCE
.addRelocation(MachineRelocation::getJumpTable(MCE
.getCurrentPCOffset(),
400 Reloc
, JTIndex
, 0, true));
403 /// emitMachineBasicBlock - Emit the specified address basic block.
404 void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock
*BB
,
406 intptr_t JTBase
) const {
407 MCE
.addRelocation(MachineRelocation::getBB(MCE
.getCurrentPCOffset(),
411 void ARMCodeEmitter::emitWordLE(unsigned Binary
) {
412 DEBUG(errs() << " 0x";
413 errs().write_hex(Binary
) << "\n");
414 MCE
.emitWordLE(Binary
);
417 void ARMCodeEmitter::emitDWordLE(uint64_t Binary
) {
418 DEBUG(errs() << " 0x";
419 errs().write_hex(Binary
) << "\n");
420 MCE
.emitDWordLE(Binary
);
423 void ARMCodeEmitter::emitInstruction(const MachineInstr
&MI
) {
424 DEBUG(errs() << "JIT: " << (void*)MCE
.getCurrentPCValue() << ":\t" << MI
);
426 MCE
.processDebugLoc(MI
.getDebugLoc(), true);
428 ++NumEmitted
; // Keep track of the # of mi's emitted
429 switch (MI
.getDesc().TSFlags
& ARMII::FormMask
) {
431 llvm_unreachable("Unhandled instruction encoding format!");
435 emitPseudoInstruction(MI
);
438 case ARMII::DPSoRegFrm
:
439 emitDataProcessingInstruction(MI
);
443 emitLoadStoreInstruction(MI
);
445 case ARMII::LdMiscFrm
:
446 case ARMII::StMiscFrm
:
447 emitMiscLoadStoreInstruction(MI
);
449 case ARMII::LdStMulFrm
:
450 emitLoadStoreMultipleInstruction(MI
);
453 emitMulFrmInstruction(MI
);
456 emitExtendInstruction(MI
);
458 case ARMII::ArithMiscFrm
:
459 emitMiscArithInstruction(MI
);
462 emitSaturateInstruction(MI
);
465 emitBranchInstruction(MI
);
467 case ARMII::BrMiscFrm
:
468 emitMiscBranchInstruction(MI
);
471 case ARMII::VFPUnaryFrm
:
472 case ARMII::VFPBinaryFrm
:
473 emitVFPArithInstruction(MI
);
475 case ARMII::VFPConv1Frm
:
476 case ARMII::VFPConv2Frm
:
477 case ARMII::VFPConv3Frm
:
478 case ARMII::VFPConv4Frm
:
479 case ARMII::VFPConv5Frm
:
480 emitVFPConversionInstruction(MI
);
482 case ARMII::VFPLdStFrm
:
483 emitVFPLoadStoreInstruction(MI
);
485 case ARMII::VFPLdStMulFrm
:
486 emitVFPLoadStoreMultipleInstruction(MI
);
489 // NEON instructions.
490 case ARMII::NGetLnFrm
:
491 case ARMII::NSetLnFrm
:
492 emitNEONLaneInstruction(MI
);
495 emitNEONDupInstruction(MI
);
497 case ARMII::N1RegModImmFrm
:
498 emitNEON1RegModImmInstruction(MI
);
500 case ARMII::N2RegFrm
:
501 emitNEON2RegInstruction(MI
);
503 case ARMII::N3RegFrm
:
504 emitNEON3RegInstruction(MI
);
507 MCE
.processDebugLoc(MI
.getDebugLoc(), false);
510 void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr
&MI
) {
511 unsigned CPI
= MI
.getOperand(0).getImm(); // CP instruction index.
512 unsigned CPIndex
= MI
.getOperand(1).getIndex(); // Actual cp entry index.
513 const MachineConstantPoolEntry
&MCPE
= (*MCPEs
)[CPIndex
];
515 // Remember the CONSTPOOL_ENTRY address for later relocation.
516 JTI
->addConstantPoolEntryAddr(CPI
, MCE
.getCurrentPCValue());
518 // Emit constpool island entry. In most cases, the actual values will be
519 // resolved and relocated after code emission.
520 if (MCPE
.isMachineConstantPoolEntry()) {
521 ARMConstantPoolValue
*ACPV
=
522 static_cast<ARMConstantPoolValue
*>(MCPE
.Val
.MachineCPVal
);
524 DEBUG(errs() << " ** ARM constant pool #" << CPI
<< " @ "
525 << (void*)MCE
.getCurrentPCValue() << " " << *ACPV
<< '\n');
527 assert(ACPV
->isGlobalValue() && "unsupported constant pool value");
528 const GlobalValue
*GV
= ACPV
->getGV();
530 Reloc::Model RelocM
= TM
.getRelocationModel();
531 emitGlobalAddress(GV
, ARM::reloc_arm_machine_cp_entry
,
533 Subtarget
->GVIsIndirectSymbol(GV
, RelocM
),
536 emitExternalSymbolAddress(ACPV
->getSymbol(), ARM::reloc_arm_absolute
);
540 const Constant
*CV
= MCPE
.Val
.ConstVal
;
543 errs() << " ** Constant pool #" << CPI
<< " @ "
544 << (void*)MCE
.getCurrentPCValue() << " ";
545 if (const Function
*F
= dyn_cast
<Function
>(CV
))
546 errs() << F
->getName();
552 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CV
)) {
553 emitGlobalAddress(GV
, ARM::reloc_arm_absolute
, isa
<Function
>(GV
), false);
555 } else if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
)) {
556 uint32_t Val
= uint32_t(*CI
->getValue().getRawData());
558 } else if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CV
)) {
559 if (CFP
->getType()->isFloatTy())
560 emitWordLE(CFP
->getValueAPF().bitcastToAPInt().getZExtValue());
561 else if (CFP
->getType()->isDoubleTy())
562 emitDWordLE(CFP
->getValueAPF().bitcastToAPInt().getZExtValue());
564 llvm_unreachable("Unable to handle this constantpool entry!");
567 llvm_unreachable("Unable to handle this constantpool entry!");
572 void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr
&MI
) {
573 const MachineOperand
&MO0
= MI
.getOperand(0);
574 const MachineOperand
&MO1
= MI
.getOperand(1);
576 // Emit the 'movw' instruction.
577 unsigned Binary
= 0x30 << 20; // mov: Insts{27-20} = 0b00110000
579 unsigned Lo16
= getMovi32Value(MI
, MO1
, ARM::reloc_arm_movw
) & 0xFFFF;
581 // Set the conditional execution predicate.
582 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
585 Binary
|= getMachineOpValue(MI
, MO0
) << ARMII::RegRdShift
;
587 // Encode imm16 as imm4:imm12
588 Binary
|= Lo16
& 0xFFF; // Insts{11-0} = imm12
589 Binary
|= ((Lo16
>> 12) & 0xF) << 16; // Insts{19-16} = imm4
592 unsigned Hi16
= getMovi32Value(MI
, MO1
, ARM::reloc_arm_movt
) >> 16;
593 // Emit the 'movt' instruction.
594 Binary
= 0x34 << 20; // movt: Insts{27-20} = 0b00110100
596 // Set the conditional execution predicate.
597 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
600 Binary
|= getMachineOpValue(MI
, MO0
) << ARMII::RegRdShift
;
602 // Encode imm16 as imm4:imm1, same as movw above.
603 Binary
|= Hi16
& 0xFFF;
604 Binary
|= ((Hi16
>> 12) & 0xF) << 16;
608 void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr
&MI
) {
609 const MachineOperand
&MO0
= MI
.getOperand(0);
610 const MachineOperand
&MO1
= MI
.getOperand(1);
611 assert(MO1
.isImm() && ARM_AM::isSOImmTwoPartVal(MO1
.getImm()) &&
612 "Not a valid so_imm value!");
613 unsigned V1
= ARM_AM::getSOImmTwoPartFirst(MO1
.getImm());
614 unsigned V2
= ARM_AM::getSOImmTwoPartSecond(MO1
.getImm());
616 // Emit the 'mov' instruction.
617 unsigned Binary
= 0xd << 21; // mov: Insts{24-21} = 0b1101
619 // Set the conditional execution predicate.
620 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
623 Binary
|= getMachineOpValue(MI
, MO0
) << ARMII::RegRdShift
;
626 // Set bit I(25) to identify this is the immediate form of <shifter_op>
627 Binary
|= 1 << ARMII::I_BitShift
;
628 Binary
|= getMachineSoImmOpValue(V1
);
631 // Now the 'orr' instruction.
632 Binary
= 0xc << 21; // orr: Insts{24-21} = 0b1100
634 // Set the conditional execution predicate.
635 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
638 Binary
|= getMachineOpValue(MI
, MO0
) << ARMII::RegRdShift
;
641 Binary
|= getMachineOpValue(MI
, MO0
) << ARMII::RegRnShift
;
644 // Set bit I(25) to identify this is the immediate form of <shifter_op>
645 Binary
|= 1 << ARMII::I_BitShift
;
646 Binary
|= getMachineSoImmOpValue(V2
);
650 void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr
&MI
) {
651 // It's basically add r, pc, (LJTI - $+8)
653 const TargetInstrDesc
&TID
= MI
.getDesc();
655 // Emit the 'add' instruction.
656 unsigned Binary
= 0x4 << 21; // add: Insts{24-31} = 0b0100
658 // Set the conditional execution predicate
659 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
661 // Encode S bit if MI modifies CPSR.
662 Binary
|= getAddrModeSBit(MI
, TID
);
665 Binary
|= getMachineOpValue(MI
, 0) << ARMII::RegRdShift
;
667 // Encode Rn which is PC.
668 Binary
|= getARMRegisterNumbering(ARM::PC
) << ARMII::RegRnShift
;
670 // Encode the displacement.
671 Binary
|= 1 << ARMII::I_BitShift
;
672 emitJumpTableAddress(MI
.getOperand(1).getIndex(), ARM::reloc_arm_jt_base
);
677 void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr
&MI
) {
678 unsigned Opcode
= MI
.getDesc().Opcode
;
680 // Part of binary is determined by TableGn.
681 unsigned Binary
= getBinaryCodeForInstr(MI
);
683 // Set the conditional execution predicate
684 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
686 // Encode S bit if MI modifies CPSR.
687 if (Opcode
== ARM::MOVsrl_flag
|| Opcode
== ARM::MOVsra_flag
)
688 Binary
|= 1 << ARMII::S_BitShift
;
690 // Encode register def if there is one.
691 Binary
|= getMachineOpValue(MI
, 0) << ARMII::RegRdShift
;
693 // Encode the shift operation.
700 case ARM::MOVsrl_flag
:
702 Binary
|= (0x2 << 4) | (1 << 7);
704 case ARM::MOVsra_flag
:
706 Binary
|= (0x4 << 4) | (1 << 7);
710 // Encode register Rm.
711 Binary
|= getMachineOpValue(MI
, 1);
716 void ARMCodeEmitter::addPCLabel(unsigned LabelID
) {
717 DEBUG(errs() << " ** LPC" << LabelID
<< " @ "
718 << (void*)MCE
.getCurrentPCValue() << '\n');
719 JTI
->addPCLabelAddr(LabelID
, MCE
.getCurrentPCValue());
722 void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr
&MI
) {
723 unsigned Opcode
= MI
.getDesc().Opcode
;
726 llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
730 case ARM::BMOVPCRXr9
: {
731 // First emit mov lr, pc
732 unsigned Binary
= 0x01a0e00f;
733 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
736 // and then emit the branch.
737 emitMiscBranchInstruction(MI
);
740 case TargetOpcode::INLINEASM
: {
741 // We allow inline assembler nodes with empty bodies - they can
742 // implicitly define registers, which is ok for JIT.
743 if (MI
.getOperand(0).getSymbolName()[0]) {
744 report_fatal_error("JIT does not support inline asm!");
748 case TargetOpcode::PROLOG_LABEL
:
749 case TargetOpcode::EH_LABEL
:
750 MCE
.emitLabel(MI
.getOperand(0).getMCSymbol());
752 case TargetOpcode::IMPLICIT_DEF
:
753 case TargetOpcode::KILL
:
756 case ARM::CONSTPOOL_ENTRY
:
757 emitConstPoolInstruction(MI
);
760 // Remember of the address of the PC label for relocation later.
761 addPCLabel(MI
.getOperand(2).getImm());
762 // PICADD is just an add instruction that implicitly read pc.
763 emitDataProcessingInstruction(MI
, 0, ARM::PC
);
770 // Remember of the address of the PC label for relocation later.
771 addPCLabel(MI
.getOperand(2).getImm());
772 // These are just load / store instructions that implicitly read pc.
773 emitLoadStoreInstruction(MI
, 0, ARM::PC
);
780 // Remember of the address of the PC label for relocation later.
781 addPCLabel(MI
.getOperand(2).getImm());
782 // These are just load / store instructions that implicitly read pc.
783 emitMiscLoadStoreInstruction(MI
, ARM::PC
);
788 emitMOVi32immInstruction(MI
);
791 case ARM::MOVi2pieces
:
792 // Two instructions to materialize a constant.
793 emitMOVi2piecesInstruction(MI
);
795 case ARM::LEApcrelJT
:
796 // Materialize jumptable address.
797 emitLEApcrelJTInstruction(MI
);
800 case ARM::MOVsrl_flag
:
801 case ARM::MOVsra_flag
:
802 emitPseudoMoveInstruction(MI
);
807 unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr
&MI
,
808 const TargetInstrDesc
&TID
,
809 const MachineOperand
&MO
,
811 unsigned Binary
= getMachineOpValue(MI
, MO
);
813 const MachineOperand
&MO1
= MI
.getOperand(OpIdx
+ 1);
814 const MachineOperand
&MO2
= MI
.getOperand(OpIdx
+ 2);
815 ARM_AM::ShiftOpc SOpc
= ARM_AM::getSORegShOp(MO2
.getImm());
817 // Encode the shift opcode.
819 unsigned Rs
= MO1
.getReg();
821 // Set shift operand (bit[7:4]).
826 // RRX - 0110 and bit[11:8] clear.
828 default: llvm_unreachable("Unknown shift opc!");
829 case ARM_AM::lsl
: SBits
= 0x1; break;
830 case ARM_AM::lsr
: SBits
= 0x3; break;
831 case ARM_AM::asr
: SBits
= 0x5; break;
832 case ARM_AM::ror
: SBits
= 0x7; break;
833 case ARM_AM::rrx
: SBits
= 0x6; break;
836 // Set shift operand (bit[6:4]).
842 default: llvm_unreachable("Unknown shift opc!");
843 case ARM_AM::lsl
: SBits
= 0x0; break;
844 case ARM_AM::lsr
: SBits
= 0x2; break;
845 case ARM_AM::asr
: SBits
= 0x4; break;
846 case ARM_AM::ror
: SBits
= 0x6; break;
849 Binary
|= SBits
<< 4;
850 if (SOpc
== ARM_AM::rrx
)
853 // Encode the shift operation Rs or shift_imm (except rrx).
855 // Encode Rs bit[11:8].
856 assert(ARM_AM::getSORegOffset(MO2
.getImm()) == 0);
857 return Binary
| (getARMRegisterNumbering(Rs
) << ARMII::RegRsShift
);
860 // Encode shift_imm bit[11:7].
861 return Binary
| ARM_AM::getSORegOffset(MO2
.getImm()) << 7;
864 unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm
) {
865 int SoImmVal
= ARM_AM::getSOImmVal(SoImm
);
866 assert(SoImmVal
!= -1 && "Not a valid so_imm value!");
868 // Encode rotate_imm.
869 unsigned Binary
= (ARM_AM::getSOImmValRot((unsigned)SoImmVal
) >> 1)
870 << ARMII::SoRotImmShift
;
873 Binary
|= ARM_AM::getSOImmValImm((unsigned)SoImmVal
);
877 unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr
&MI
,
878 const TargetInstrDesc
&TID
) const {
879 for (unsigned i
= MI
.getNumOperands(), e
= TID
.getNumOperands(); i
!= e
; --i
){
880 const MachineOperand
&MO
= MI
.getOperand(i
-1);
881 if (MO
.isReg() && MO
.isDef() && MO
.getReg() == ARM::CPSR
)
882 return 1 << ARMII::S_BitShift
;
887 void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr
&MI
,
889 unsigned ImplicitRn
) {
890 const TargetInstrDesc
&TID
= MI
.getDesc();
892 // Part of binary is determined by TableGn.
893 unsigned Binary
= getBinaryCodeForInstr(MI
);
895 // Set the conditional execution predicate
896 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
898 // Encode S bit if MI modifies CPSR.
899 Binary
|= getAddrModeSBit(MI
, TID
);
901 // Encode register def if there is one.
902 unsigned NumDefs
= TID
.getNumDefs();
905 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRdShift
;
907 // Special handling for implicit use (e.g. PC).
908 Binary
|= (getARMRegisterNumbering(ImplicitRd
) << ARMII::RegRdShift
);
910 if (TID
.Opcode
== ARM::MOVi16
) {
911 // Get immediate from MI.
912 unsigned Lo16
= getMovi32Value(MI
, MI
.getOperand(OpIdx
),
913 ARM::reloc_arm_movw
);
914 // Encode imm which is the same as in emitMOVi32immInstruction().
915 Binary
|= Lo16
& 0xFFF;
916 Binary
|= ((Lo16
>> 12) & 0xF) << 16;
919 } else if(TID
.Opcode
== ARM::MOVTi16
) {
920 unsigned Hi16
= (getMovi32Value(MI
, MI
.getOperand(OpIdx
),
921 ARM::reloc_arm_movt
) >> 16);
922 Binary
|= Hi16
& 0xFFF;
923 Binary
|= ((Hi16
>> 12) & 0xF) << 16;
926 } else if ((TID
.Opcode
== ARM::BFC
) || (TID
.Opcode
== ARM::BFI
)) {
927 uint32_t v
= ~MI
.getOperand(2).getImm();
928 int32_t lsb
= CountTrailingZeros_32(v
);
929 int32_t msb
= (32 - CountLeadingZeros_32(v
)) - 1;
930 // Instr{20-16} = msb, Instr{11-7} = lsb
931 Binary
|= (msb
& 0x1F) << 16;
932 Binary
|= (lsb
& 0x1F) << 7;
935 } else if ((TID
.Opcode
== ARM::UBFX
) || (TID
.Opcode
== ARM::SBFX
)) {
936 // Encode Rn in Instr{0-3}
937 Binary
|= getMachineOpValue(MI
, OpIdx
++);
939 uint32_t lsb
= MI
.getOperand(OpIdx
++).getImm();
940 uint32_t widthm1
= MI
.getOperand(OpIdx
++).getImm() - 1;
942 // Instr{20-16} = widthm1, Instr{11-7} = lsb
943 Binary
|= (widthm1
& 0x1F) << 16;
944 Binary
|= (lsb
& 0x1F) << 7;
949 // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
950 if (TID
.getOperandConstraint(OpIdx
, TOI::TIED_TO
) != -1)
953 // Encode first non-shifter register operand if there is one.
954 bool isUnary
= TID
.TSFlags
& ARMII::UnaryDP
;
957 // Special handling for implicit use (e.g. PC).
958 Binary
|= (getARMRegisterNumbering(ImplicitRn
) << ARMII::RegRnShift
);
960 Binary
|= getMachineOpValue(MI
, OpIdx
) << ARMII::RegRnShift
;
965 // Encode shifter operand.
966 const MachineOperand
&MO
= MI
.getOperand(OpIdx
);
967 if ((TID
.TSFlags
& ARMII::FormMask
) == ARMII::DPSoRegFrm
) {
969 emitWordLE(Binary
| getMachineSoRegOpValue(MI
, TID
, MO
, OpIdx
));
974 // Encode register Rm.
975 emitWordLE(Binary
| getARMRegisterNumbering(MO
.getReg()));
980 Binary
|= getMachineSoImmOpValue((unsigned)MO
.getImm());
985 void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr
&MI
,
987 unsigned ImplicitRn
) {
988 const TargetInstrDesc
&TID
= MI
.getDesc();
989 unsigned Form
= TID
.TSFlags
& ARMII::FormMask
;
990 bool IsPrePost
= (TID
.TSFlags
& ARMII::IndexModeMask
) != 0;
992 // Part of binary is determined by TableGn.
993 unsigned Binary
= getBinaryCodeForInstr(MI
);
995 // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done.
996 if (MI
.getOpcode() == ARM::LDRi12
|| MI
.getOpcode() == ARM::LDRcp
||
997 MI
.getOpcode() == ARM::STRi12
) {
1002 // Set the conditional execution predicate
1003 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1007 // Operand 0 of a pre- and post-indexed store is the address base
1008 // writeback. Skip it.
1009 bool Skipped
= false;
1010 if (IsPrePost
&& Form
== ARMII::StFrm
) {
1015 // Set first operand
1017 // Special handling for implicit use (e.g. PC).
1018 Binary
|= (getARMRegisterNumbering(ImplicitRd
) << ARMII::RegRdShift
);
1020 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRdShift
;
1022 // Set second operand
1024 // Special handling for implicit use (e.g. PC).
1025 Binary
|= (getARMRegisterNumbering(ImplicitRn
) << ARMII::RegRnShift
);
1027 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRnShift
;
1029 // If this is a two-address operand, skip it. e.g. LDR_PRE.
1030 if (!Skipped
&& TID
.getOperandConstraint(OpIdx
, TOI::TIED_TO
) != -1)
1033 const MachineOperand
&MO2
= MI
.getOperand(OpIdx
);
1034 unsigned AM2Opc
= (ImplicitRn
== ARM::PC
)
1035 ? 0 : MI
.getOperand(OpIdx
+1).getImm();
1037 // Set bit U(23) according to sign of immed value (positive or negative).
1038 Binary
|= ((ARM_AM::getAM2Op(AM2Opc
) == ARM_AM::add
? 1 : 0) <<
1040 if (!MO2
.getReg()) { // is immediate
1041 if (ARM_AM::getAM2Offset(AM2Opc
))
1042 // Set the value of offset_12 field
1043 Binary
|= ARM_AM::getAM2Offset(AM2Opc
);
1048 // Set bit I(25), because this is not in immediate encoding.
1049 Binary
|= 1 << ARMII::I_BitShift
;
1050 assert(TargetRegisterInfo::isPhysicalRegister(MO2
.getReg()));
1051 // Set bit[3:0] to the corresponding Rm register
1052 Binary
|= getARMRegisterNumbering(MO2
.getReg());
1054 // If this instr is in scaled register offset/index instruction, set
1055 // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
1056 if (unsigned ShImm
= ARM_AM::getAM2Offset(AM2Opc
)) {
1057 Binary
|= getShiftOp(AM2Opc
) << ARMII::ShiftImmShift
; // shift
1058 Binary
|= ShImm
<< ARMII::ShiftShift
; // shift_immed
1064 void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr
&MI
,
1065 unsigned ImplicitRn
) {
1066 const TargetInstrDesc
&TID
= MI
.getDesc();
1067 unsigned Form
= TID
.TSFlags
& ARMII::FormMask
;
1068 bool IsPrePost
= (TID
.TSFlags
& ARMII::IndexModeMask
) != 0;
1070 // Part of binary is determined by TableGn.
1071 unsigned Binary
= getBinaryCodeForInstr(MI
);
1073 // Set the conditional execution predicate
1074 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1078 // Operand 0 of a pre- and post-indexed store is the address base
1079 // writeback. Skip it.
1080 bool Skipped
= false;
1081 if (IsPrePost
&& Form
== ARMII::StMiscFrm
) {
1086 // Set first operand
1087 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRdShift
;
1089 // Skip LDRD and STRD's second operand.
1090 if (TID
.Opcode
== ARM::LDRD
|| TID
.Opcode
== ARM::STRD
)
1093 // Set second operand
1095 // Special handling for implicit use (e.g. PC).
1096 Binary
|= (getARMRegisterNumbering(ImplicitRn
) << ARMII::RegRnShift
);
1098 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRnShift
;
1100 // If this is a two-address operand, skip it. e.g. LDRH_POST.
1101 if (!Skipped
&& TID
.getOperandConstraint(OpIdx
, TOI::TIED_TO
) != -1)
1104 const MachineOperand
&MO2
= MI
.getOperand(OpIdx
);
1105 unsigned AM3Opc
= (ImplicitRn
== ARM::PC
)
1106 ? 0 : MI
.getOperand(OpIdx
+1).getImm();
1108 // Set bit U(23) according to sign of immed value (positive or negative)
1109 Binary
|= ((ARM_AM::getAM3Op(AM3Opc
) == ARM_AM::add
? 1 : 0) <<
1112 // If this instr is in register offset/index encoding, set bit[3:0]
1113 // to the corresponding Rm register.
1115 Binary
|= getARMRegisterNumbering(MO2
.getReg());
1120 // This instr is in immediate offset/index encoding, set bit 22 to 1.
1121 Binary
|= 1 << ARMII::AM3_I_BitShift
;
1122 if (unsigned ImmOffs
= ARM_AM::getAM3Offset(AM3Opc
)) {
1124 Binary
|= (ImmOffs
>> 4) << ARMII::ImmHiShift
; // immedH
1125 Binary
|= (ImmOffs
& 0xF); // immedL
1131 static unsigned getAddrModeUPBits(unsigned Mode
) {
1132 unsigned Binary
= 0;
1134 // Set addressing mode by modifying bits U(23) and P(24)
1135 // IA - Increment after - bit U = 1 and bit P = 0
1136 // IB - Increment before - bit U = 1 and bit P = 1
1137 // DA - Decrement after - bit U = 0 and bit P = 0
1138 // DB - Decrement before - bit U = 0 and bit P = 1
1140 default: llvm_unreachable("Unknown addressing sub-mode!");
1141 case ARM_AM::da
: break;
1142 case ARM_AM::db
: Binary
|= 0x1 << ARMII::P_BitShift
; break;
1143 case ARM_AM::ia
: Binary
|= 0x1 << ARMII::U_BitShift
; break;
1144 case ARM_AM::ib
: Binary
|= 0x3 << ARMII::U_BitShift
; break;
1150 void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr
&MI
) {
1151 const TargetInstrDesc
&TID
= MI
.getDesc();
1152 bool IsUpdating
= (TID
.TSFlags
& ARMII::IndexModeMask
) != 0;
1154 // Part of binary is determined by TableGn.
1155 unsigned Binary
= getBinaryCodeForInstr(MI
);
1157 // Set the conditional execution predicate
1158 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1160 // Skip operand 0 of an instruction with base register update.
1165 // Set base address operand
1166 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRnShift
;
1168 // Set addressing mode by modifying bits U(23) and P(24)
1169 const MachineOperand
&MO
= MI
.getOperand(OpIdx
++);
1170 Binary
|= getAddrModeUPBits(ARM_AM::getAM4SubMode(MO
.getImm()));
1174 Binary
|= 0x1 << ARMII::W_BitShift
;
1177 for (unsigned i
= OpIdx
+2, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
1178 const MachineOperand
&MO
= MI
.getOperand(i
);
1179 if (!MO
.isReg() || MO
.isImplicit())
1181 unsigned RegNum
= getARMRegisterNumbering(MO
.getReg());
1182 assert(TargetRegisterInfo::isPhysicalRegister(MO
.getReg()) &&
1184 Binary
|= 0x1 << RegNum
;
1190 void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr
&MI
) {
1191 const TargetInstrDesc
&TID
= MI
.getDesc();
1193 // Part of binary is determined by TableGn.
1194 unsigned Binary
= getBinaryCodeForInstr(MI
);
1196 // Set the conditional execution predicate
1197 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1199 // Encode S bit if MI modifies CPSR.
1200 Binary
|= getAddrModeSBit(MI
, TID
);
1202 // 32x32->64bit operations have two destination registers. The number
1203 // of register definitions will tell us if that's what we're dealing with.
1205 if (TID
.getNumDefs() == 2)
1206 Binary
|= getMachineOpValue (MI
, OpIdx
++) << ARMII::RegRdLoShift
;
1209 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRdHiShift
;
1212 Binary
|= getMachineOpValue(MI
, OpIdx
++);
1215 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRsShift
;
1217 // Many multiple instructions (e.g. MLA) have three src operands. Encode
1218 // it as Rn (for multiply, that's in the same offset as RdLo.
1219 if (TID
.getNumOperands() > OpIdx
&&
1220 !TID
.OpInfo
[OpIdx
].isPredicate() &&
1221 !TID
.OpInfo
[OpIdx
].isOptionalDef())
1222 Binary
|= getMachineOpValue(MI
, OpIdx
) << ARMII::RegRdLoShift
;
1227 void ARMCodeEmitter::emitExtendInstruction(const MachineInstr
&MI
) {
1228 const TargetInstrDesc
&TID
= MI
.getDesc();
1230 // Part of binary is determined by TableGn.
1231 unsigned Binary
= getBinaryCodeForInstr(MI
);
1233 // Set the conditional execution predicate
1234 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1239 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRdShift
;
1241 const MachineOperand
&MO1
= MI
.getOperand(OpIdx
++);
1242 const MachineOperand
&MO2
= MI
.getOperand(OpIdx
);
1244 // Two register operand form.
1246 Binary
|= getMachineOpValue(MI
, MO1
) << ARMII::RegRnShift
;
1249 Binary
|= getMachineOpValue(MI
, MO2
);
1252 Binary
|= getMachineOpValue(MI
, MO1
);
1255 // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
1256 if (MI
.getOperand(OpIdx
).isImm() &&
1257 !TID
.OpInfo
[OpIdx
].isPredicate() &&
1258 !TID
.OpInfo
[OpIdx
].isOptionalDef())
1259 Binary
|= (getMachineOpValue(MI
, OpIdx
) / 8) << ARMII::ExtRotImmShift
;
1264 void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr
&MI
) {
1265 const TargetInstrDesc
&TID
= MI
.getDesc();
1267 // Part of binary is determined by TableGn.
1268 unsigned Binary
= getBinaryCodeForInstr(MI
);
1270 // Set the conditional execution predicate
1271 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1276 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRdShift
;
1278 const MachineOperand
&MO
= MI
.getOperand(OpIdx
++);
1279 if (OpIdx
== TID
.getNumOperands() ||
1280 TID
.OpInfo
[OpIdx
].isPredicate() ||
1281 TID
.OpInfo
[OpIdx
].isOptionalDef()) {
1282 // Encode Rm and it's done.
1283 Binary
|= getMachineOpValue(MI
, MO
);
1289 Binary
|= getMachineOpValue(MI
, MO
) << ARMII::RegRnShift
;
1292 Binary
|= getMachineOpValue(MI
, OpIdx
++);
1294 // Encode shift_imm.
1295 unsigned ShiftAmt
= MI
.getOperand(OpIdx
).getImm();
1296 if (TID
.Opcode
== ARM::PKHTB
) {
1297 assert(ShiftAmt
!= 0 && "PKHTB shift_imm is 0!");
1301 assert(ShiftAmt
< 32 && "shift_imm range is 0 to 31!");
1302 Binary
|= ShiftAmt
<< ARMII::ShiftShift
;
1307 void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr
&MI
) {
1308 const TargetInstrDesc
&TID
= MI
.getDesc();
1310 // Part of binary is determined by TableGen.
1311 unsigned Binary
= getBinaryCodeForInstr(MI
);
1313 // Set the conditional execution predicate
1314 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1317 Binary
|= getMachineOpValue(MI
, 0) << ARMII::RegRdShift
;
1319 // Encode saturate bit position.
1320 unsigned Pos
= MI
.getOperand(1).getImm();
1321 if (TID
.Opcode
== ARM::SSAT
|| TID
.Opcode
== ARM::SSAT16
)
1323 assert((Pos
< 16 || (Pos
< 32 &&
1324 TID
.Opcode
!= ARM::SSAT16
&&
1325 TID
.Opcode
!= ARM::USAT16
)) &&
1326 "saturate bit position out of range");
1327 Binary
|= Pos
<< 16;
1330 Binary
|= getMachineOpValue(MI
, 2);
1332 // Encode shift_imm.
1333 if (TID
.getNumOperands() == 4) {
1334 unsigned ShiftOp
= MI
.getOperand(3).getImm();
1335 ARM_AM::ShiftOpc Opc
= ARM_AM::getSORegShOp(ShiftOp
);
1336 if (Opc
== ARM_AM::asr
)
1338 unsigned ShiftAmt
= MI
.getOperand(3).getImm();
1339 if (ShiftAmt
== 32 && Opc
== ARM_AM::asr
)
1341 assert(ShiftAmt
< 32 && "shift_imm range is 0 to 31!");
1342 Binary
|= ShiftAmt
<< ARMII::ShiftShift
;
1348 void ARMCodeEmitter::emitBranchInstruction(const MachineInstr
&MI
) {
1349 const TargetInstrDesc
&TID
= MI
.getDesc();
1351 if (TID
.Opcode
== ARM::TPsoft
) {
1352 llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
1355 // Part of binary is determined by TableGn.
1356 unsigned Binary
= getBinaryCodeForInstr(MI
);
1358 // Set the conditional execution predicate
1359 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1361 // Set signed_immed_24 field
1362 Binary
|= getMachineOpValue(MI
, 0);
1367 void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex
) {
1368 // Remember the base address of the inline jump table.
1369 uintptr_t JTBase
= MCE
.getCurrentPCValue();
1370 JTI
->addJumpTableBaseAddr(JTIndex
, JTBase
);
1371 DEBUG(errs() << " ** Jump Table #" << JTIndex
<< " @ " << (void*)JTBase
1374 // Now emit the jump table entries.
1375 const std::vector
<MachineBasicBlock
*> &MBBs
= (*MJTEs
)[JTIndex
].MBBs
;
1376 for (unsigned i
= 0, e
= MBBs
.size(); i
!= e
; ++i
) {
1378 // DestBB address - JT base.
1379 emitMachineBasicBlock(MBBs
[i
], ARM::reloc_arm_pic_jt
, JTBase
);
1381 // Absolute DestBB address.
1382 emitMachineBasicBlock(MBBs
[i
], ARM::reloc_arm_absolute
);
1387 void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr
&MI
) {
1388 const TargetInstrDesc
&TID
= MI
.getDesc();
1390 // Handle jump tables.
1391 if (TID
.Opcode
== ARM::BR_JTr
|| TID
.Opcode
== ARM::BR_JTadd
) {
1392 // First emit a ldr pc, [] instruction.
1393 emitDataProcessingInstruction(MI
, ARM::PC
);
1395 // Then emit the inline jump table.
1397 (TID
.Opcode
== ARM::BR_JTr
)
1398 ? MI
.getOperand(1).getIndex() : MI
.getOperand(2).getIndex();
1399 emitInlineJumpTable(JTIndex
);
1401 } else if (TID
.Opcode
== ARM::BR_JTm
) {
1402 // First emit a ldr pc, [] instruction.
1403 emitLoadStoreInstruction(MI
, ARM::PC
);
1405 // Then emit the inline jump table.
1406 emitInlineJumpTable(MI
.getOperand(3).getIndex());
1410 // Part of binary is determined by TableGn.
1411 unsigned Binary
= getBinaryCodeForInstr(MI
);
1413 // Set the conditional execution predicate
1414 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1416 if (TID
.Opcode
== ARM::BX_RET
|| TID
.Opcode
== ARM::MOVPCLR
)
1417 // The return register is LR.
1418 Binary
|= getARMRegisterNumbering(ARM::LR
);
1420 // otherwise, set the return register
1421 Binary
|= getMachineOpValue(MI
, 0);
1426 static unsigned encodeVFPRd(const MachineInstr
&MI
, unsigned OpIdx
) {
1427 unsigned RegD
= MI
.getOperand(OpIdx
).getReg();
1428 unsigned Binary
= 0;
1429 bool isSPVFP
= ARM::SPRRegisterClass
->contains(RegD
);
1430 RegD
= getARMRegisterNumbering(RegD
);
1432 Binary
|= RegD
<< ARMII::RegRdShift
;
1434 Binary
|= ((RegD
& 0x1E) >> 1) << ARMII::RegRdShift
;
1435 Binary
|= (RegD
& 0x01) << ARMII::D_BitShift
;
1440 static unsigned encodeVFPRn(const MachineInstr
&MI
, unsigned OpIdx
) {
1441 unsigned RegN
= MI
.getOperand(OpIdx
).getReg();
1442 unsigned Binary
= 0;
1443 bool isSPVFP
= ARM::SPRRegisterClass
->contains(RegN
);
1444 RegN
= getARMRegisterNumbering(RegN
);
1446 Binary
|= RegN
<< ARMII::RegRnShift
;
1448 Binary
|= ((RegN
& 0x1E) >> 1) << ARMII::RegRnShift
;
1449 Binary
|= (RegN
& 0x01) << ARMII::N_BitShift
;
1454 static unsigned encodeVFPRm(const MachineInstr
&MI
, unsigned OpIdx
) {
1455 unsigned RegM
= MI
.getOperand(OpIdx
).getReg();
1456 unsigned Binary
= 0;
1457 bool isSPVFP
= ARM::SPRRegisterClass
->contains(RegM
);
1458 RegM
= getARMRegisterNumbering(RegM
);
1462 Binary
|= ((RegM
& 0x1E) >> 1);
1463 Binary
|= (RegM
& 0x01) << ARMII::M_BitShift
;
1468 void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr
&MI
) {
1469 const TargetInstrDesc
&TID
= MI
.getDesc();
1471 // Part of binary is determined by TableGn.
1472 unsigned Binary
= getBinaryCodeForInstr(MI
);
1474 // Set the conditional execution predicate
1475 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1478 assert((Binary
& ARMII::D_BitShift
) == 0 &&
1479 (Binary
& ARMII::N_BitShift
) == 0 &&
1480 (Binary
& ARMII::M_BitShift
) == 0 && "VFP encoding bug!");
1483 Binary
|= encodeVFPRd(MI
, OpIdx
++);
1485 // If this is a two-address operand, skip it, e.g. FMACD.
1486 if (TID
.getOperandConstraint(OpIdx
, TOI::TIED_TO
) != -1)
1490 if ((TID
.TSFlags
& ARMII::FormMask
) == ARMII::VFPBinaryFrm
)
1491 Binary
|= encodeVFPRn(MI
, OpIdx
++);
1493 if (OpIdx
== TID
.getNumOperands() ||
1494 TID
.OpInfo
[OpIdx
].isPredicate() ||
1495 TID
.OpInfo
[OpIdx
].isOptionalDef()) {
1496 // FCMPEZD etc. has only one operand.
1502 Binary
|= encodeVFPRm(MI
, OpIdx
);
1507 void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr
&MI
) {
1508 const TargetInstrDesc
&TID
= MI
.getDesc();
1509 unsigned Form
= TID
.TSFlags
& ARMII::FormMask
;
1511 // Part of binary is determined by TableGn.
1512 unsigned Binary
= getBinaryCodeForInstr(MI
);
1514 // Set the conditional execution predicate
1515 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1519 case ARMII::VFPConv1Frm
:
1520 case ARMII::VFPConv2Frm
:
1521 case ARMII::VFPConv3Frm
:
1523 Binary
|= encodeVFPRd(MI
, 0);
1525 case ARMII::VFPConv4Frm
:
1527 Binary
|= encodeVFPRn(MI
, 0);
1529 case ARMII::VFPConv5Frm
:
1531 Binary
|= encodeVFPRm(MI
, 0);
1537 case ARMII::VFPConv1Frm
:
1539 Binary
|= encodeVFPRm(MI
, 1);
1541 case ARMII::VFPConv2Frm
:
1542 case ARMII::VFPConv3Frm
:
1544 Binary
|= encodeVFPRn(MI
, 1);
1546 case ARMII::VFPConv4Frm
:
1547 case ARMII::VFPConv5Frm
:
1549 Binary
|= encodeVFPRd(MI
, 1);
1553 if (Form
== ARMII::VFPConv5Frm
)
1555 Binary
|= encodeVFPRn(MI
, 2);
1556 else if (Form
== ARMII::VFPConv3Frm
)
1558 Binary
|= encodeVFPRm(MI
, 2);
1563 void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr
&MI
) {
1564 // Part of binary is determined by TableGn.
1565 unsigned Binary
= getBinaryCodeForInstr(MI
);
1567 // Set the conditional execution predicate
1568 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1573 Binary
|= encodeVFPRd(MI
, OpIdx
++);
1575 // Encode address base.
1576 const MachineOperand
&Base
= MI
.getOperand(OpIdx
++);
1577 Binary
|= getMachineOpValue(MI
, Base
) << ARMII::RegRnShift
;
1579 // If there is a non-zero immediate offset, encode it.
1581 const MachineOperand
&Offset
= MI
.getOperand(OpIdx
);
1582 if (unsigned ImmOffs
= ARM_AM::getAM5Offset(Offset
.getImm())) {
1583 if (ARM_AM::getAM5Op(Offset
.getImm()) == ARM_AM::add
)
1584 Binary
|= 1 << ARMII::U_BitShift
;
1591 // If immediate offset is omitted, default to +0.
1592 Binary
|= 1 << ARMII::U_BitShift
;
1598 ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr
&MI
) {
1599 const TargetInstrDesc
&TID
= MI
.getDesc();
1600 bool IsUpdating
= (TID
.TSFlags
& ARMII::IndexModeMask
) != 0;
1602 // Part of binary is determined by TableGn.
1603 unsigned Binary
= getBinaryCodeForInstr(MI
);
1605 // Set the conditional execution predicate
1606 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1608 // Skip operand 0 of an instruction with base register update.
1613 // Set base address operand
1614 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRnShift
;
1616 // Set addressing mode by modifying bits U(23) and P(24)
1617 const MachineOperand
&MO
= MI
.getOperand(OpIdx
++);
1618 Binary
|= getAddrModeUPBits(ARM_AM::getAM4SubMode(MO
.getImm()));
1622 Binary
|= 0x1 << ARMII::W_BitShift
;
1624 // First register is encoded in Dd.
1625 Binary
|= encodeVFPRd(MI
, OpIdx
+2);
1627 // Count the number of registers.
1628 unsigned NumRegs
= 1;
1629 for (unsigned i
= OpIdx
+3, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
1630 const MachineOperand
&MO
= MI
.getOperand(i
);
1631 if (!MO
.isReg() || MO
.isImplicit())
1635 // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
1636 // Otherwise, it will be 0, in the case of 32-bit registers.
1638 Binary
|= NumRegs
* 2;
1645 static unsigned encodeNEONRd(const MachineInstr
&MI
, unsigned OpIdx
) {
1646 unsigned RegD
= MI
.getOperand(OpIdx
).getReg();
1647 unsigned Binary
= 0;
1648 RegD
= getARMRegisterNumbering(RegD
);
1649 Binary
|= (RegD
& 0xf) << ARMII::RegRdShift
;
1650 Binary
|= ((RegD
>> 4) & 1) << ARMII::D_BitShift
;
1654 static unsigned encodeNEONRn(const MachineInstr
&MI
, unsigned OpIdx
) {
1655 unsigned RegN
= MI
.getOperand(OpIdx
).getReg();
1656 unsigned Binary
= 0;
1657 RegN
= getARMRegisterNumbering(RegN
);
1658 Binary
|= (RegN
& 0xf) << ARMII::RegRnShift
;
1659 Binary
|= ((RegN
>> 4) & 1) << ARMII::N_BitShift
;
1663 static unsigned encodeNEONRm(const MachineInstr
&MI
, unsigned OpIdx
) {
1664 unsigned RegM
= MI
.getOperand(OpIdx
).getReg();
1665 unsigned Binary
= 0;
1666 RegM
= getARMRegisterNumbering(RegM
);
1667 Binary
|= (RegM
& 0xf);
1668 Binary
|= ((RegM
>> 4) & 1) << ARMII::M_BitShift
;
1672 /// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON
1673 /// data-processing instruction to the corresponding Thumb encoding.
1674 static unsigned convertNEONDataProcToThumb(unsigned Binary
) {
1675 assert((Binary
& 0xfe000000) == 0xf2000000 &&
1676 "not an ARM NEON data-processing instruction");
1677 unsigned UBit
= (Binary
>> 24) & 1;
1678 return 0xef000000 | (UBit
<< 28) | (Binary
& 0xffffff);
1681 void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr
&MI
) {
1682 unsigned Binary
= getBinaryCodeForInstr(MI
);
1684 unsigned RegTOpIdx
, RegNOpIdx
, LnOpIdx
;
1685 const TargetInstrDesc
&TID
= MI
.getDesc();
1686 if ((TID
.TSFlags
& ARMII::FormMask
) == ARMII::NGetLnFrm
) {
1690 } else { // ARMII::NSetLnFrm
1696 // Set the conditional execution predicate
1697 Binary
|= (IsThumb
? ARMCC::AL
: II
->getPredicate(&MI
)) << ARMII::CondShift
;
1699 unsigned RegT
= MI
.getOperand(RegTOpIdx
).getReg();
1700 RegT
= getARMRegisterNumbering(RegT
);
1701 Binary
|= (RegT
<< ARMII::RegRdShift
);
1702 Binary
|= encodeNEONRn(MI
, RegNOpIdx
);
1705 if ((Binary
& (1 << 22)) != 0)
1706 LaneShift
= 0; // 8-bit elements
1707 else if ((Binary
& (1 << 5)) != 0)
1708 LaneShift
= 1; // 16-bit elements
1710 LaneShift
= 2; // 32-bit elements
1712 unsigned Lane
= MI
.getOperand(LnOpIdx
).getImm() << LaneShift
;
1713 unsigned Opc1
= Lane
>> 2;
1714 unsigned Opc2
= Lane
& 3;
1715 assert((Opc1
& 3) == 0 && "out-of-range lane number operand");
1716 Binary
|= (Opc1
<< 21);
1717 Binary
|= (Opc2
<< 5);
1722 void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr
&MI
) {
1723 unsigned Binary
= getBinaryCodeForInstr(MI
);
1725 // Set the conditional execution predicate
1726 Binary
|= (IsThumb
? ARMCC::AL
: II
->getPredicate(&MI
)) << ARMII::CondShift
;
1728 unsigned RegT
= MI
.getOperand(1).getReg();
1729 RegT
= getARMRegisterNumbering(RegT
);
1730 Binary
|= (RegT
<< ARMII::RegRdShift
);
1731 Binary
|= encodeNEONRn(MI
, 0);
1735 void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr
&MI
) {
1736 unsigned Binary
= getBinaryCodeForInstr(MI
);
1737 // Destination register is encoded in Dd.
1738 Binary
|= encodeNEONRd(MI
, 0);
1739 // Immediate fields: Op, Cmode, I, Imm3, Imm4
1740 unsigned Imm
= MI
.getOperand(1).getImm();
1741 unsigned Op
= (Imm
>> 12) & 1;
1742 unsigned Cmode
= (Imm
>> 8) & 0xf;
1743 unsigned I
= (Imm
>> 7) & 1;
1744 unsigned Imm3
= (Imm
>> 4) & 0x7;
1745 unsigned Imm4
= Imm
& 0xf;
1746 Binary
|= (I
<< 24) | (Imm3
<< 16) | (Cmode
<< 8) | (Op
<< 5) | Imm4
;
1748 Binary
= convertNEONDataProcToThumb(Binary
);
1752 void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr
&MI
) {
1753 const TargetInstrDesc
&TID
= MI
.getDesc();
1754 unsigned Binary
= getBinaryCodeForInstr(MI
);
1755 // Destination register is encoded in Dd; source register in Dm.
1757 Binary
|= encodeNEONRd(MI
, OpIdx
++);
1758 if (TID
.getOperandConstraint(OpIdx
, TOI::TIED_TO
) != -1)
1760 Binary
|= encodeNEONRm(MI
, OpIdx
);
1762 Binary
= convertNEONDataProcToThumb(Binary
);
1763 // FIXME: This does not handle VDUPfdf or VDUPfqf.
1767 void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr
&MI
) {
1768 const TargetInstrDesc
&TID
= MI
.getDesc();
1769 unsigned Binary
= getBinaryCodeForInstr(MI
);
1770 // Destination register is encoded in Dd; source registers in Dn and Dm.
1772 Binary
|= encodeNEONRd(MI
, OpIdx
++);
1773 if (TID
.getOperandConstraint(OpIdx
, TOI::TIED_TO
) != -1)
1775 Binary
|= encodeNEONRn(MI
, OpIdx
++);
1776 if (TID
.getOperandConstraint(OpIdx
, TOI::TIED_TO
) != -1)
1778 Binary
|= encodeNEONRm(MI
, OpIdx
);
1780 Binary
= convertNEONDataProcToThumb(Binary
);
1781 // FIXME: This does not handle VMOVDneon or VMOVQ.
1785 #include "ARMGenCodeEmitter.inc"