Fixed some bugs.
[llvm/zpu.git] / lib / Target / ARM / ARMCodeEmitter.cpp
blob15b3aab5b3acb4c206d400f28589ef6e904e2e9d
1 //===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the pass that transforms the ARM machine instructions into
11 // relocatable machine code.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "jit"
16 #include "ARM.h"
17 #include "ARMAddressingModes.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMInstrInfo.h"
20 #include "ARMRelocations.h"
21 #include "ARMSubtarget.h"
22 #include "ARMTargetMachine.h"
23 #include "llvm/Constants.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/PassManager.h"
27 #include "llvm/CodeGen/JITCodeEmitter.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineJumpTableInfo.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/Passes.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #ifndef NDEBUG
39 #include <iomanip>
40 #endif
41 using namespace llvm;
43 STATISTIC(NumEmitted, "Number of machine instructions emitted");
45 namespace {
47 class ARMCodeEmitter : public MachineFunctionPass {
48 ARMJITInfo *JTI;
49 const ARMInstrInfo *II;
50 const TargetData *TD;
51 const ARMSubtarget *Subtarget;
52 TargetMachine &TM;
53 JITCodeEmitter &MCE;
54 MachineModuleInfo *MMI;
55 const std::vector<MachineConstantPoolEntry> *MCPEs;
56 const std::vector<MachineJumpTableEntry> *MJTEs;
57 bool IsPIC;
58 bool IsThumb;
60 void getAnalysisUsage(AnalysisUsage &AU) const {
61 AU.addRequired<MachineModuleInfo>();
62 MachineFunctionPass::getAnalysisUsage(AU);
65 static char ID;
66 public:
67 ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
68 : MachineFunctionPass(ID), JTI(0),
69 II((const ARMInstrInfo *)tm.getInstrInfo()),
70 TD(tm.getTargetData()), TM(tm),
71 MCE(mce), MCPEs(0), MJTEs(0),
72 IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {}
74 /// getBinaryCodeForInstr - This function, generated by the
75 /// CodeEmitterGenerator using TableGen, produces the binary encoding for
76 /// machine instructions.
77 unsigned getBinaryCodeForInstr(const MachineInstr &MI) const;
79 bool runOnMachineFunction(MachineFunction &MF);
81 virtual const char *getPassName() const {
82 return "ARM Machine Code Emitter";
85 void emitInstruction(const MachineInstr &MI);
87 private:
89 void emitWordLE(unsigned Binary);
90 void emitDWordLE(uint64_t Binary);
91 void emitConstPoolInstruction(const MachineInstr &MI);
92 void emitMOVi32immInstruction(const MachineInstr &MI);
93 void emitMOVi2piecesInstruction(const MachineInstr &MI);
94 void emitLEApcrelJTInstruction(const MachineInstr &MI);
95 void emitPseudoMoveInstruction(const MachineInstr &MI);
96 void addPCLabel(unsigned LabelID);
97 void emitPseudoInstruction(const MachineInstr &MI);
98 unsigned getMachineSoRegOpValue(const MachineInstr &MI,
99 const TargetInstrDesc &TID,
100 const MachineOperand &MO,
101 unsigned OpIdx);
103 unsigned getMachineSoImmOpValue(unsigned SoImm);
104 unsigned getAddrModeSBit(const MachineInstr &MI,
105 const TargetInstrDesc &TID) const;
107 void emitDataProcessingInstruction(const MachineInstr &MI,
108 unsigned ImplicitRd = 0,
109 unsigned ImplicitRn = 0);
111 void emitLoadStoreInstruction(const MachineInstr &MI,
112 unsigned ImplicitRd = 0,
113 unsigned ImplicitRn = 0);
115 void emitMiscLoadStoreInstruction(const MachineInstr &MI,
116 unsigned ImplicitRn = 0);
118 void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
120 void emitMulFrmInstruction(const MachineInstr &MI);
122 void emitExtendInstruction(const MachineInstr &MI);
124 void emitMiscArithInstruction(const MachineInstr &MI);
126 void emitSaturateInstruction(const MachineInstr &MI);
128 void emitBranchInstruction(const MachineInstr &MI);
130 void emitInlineJumpTable(unsigned JTIndex);
132 void emitMiscBranchInstruction(const MachineInstr &MI);
134 void emitVFPArithInstruction(const MachineInstr &MI);
136 void emitVFPConversionInstruction(const MachineInstr &MI);
138 void emitVFPLoadStoreInstruction(const MachineInstr &MI);
140 void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
142 void emitNEONLaneInstruction(const MachineInstr &MI);
143 void emitNEONDupInstruction(const MachineInstr &MI);
144 void emitNEON1RegModImmInstruction(const MachineInstr &MI);
145 void emitNEON2RegInstruction(const MachineInstr &MI);
146 void emitNEON3RegInstruction(const MachineInstr &MI);
148 /// getMachineOpValue - Return binary encoding of operand. If the machine
149 /// operand requires relocation, record the relocation and return zero.
150 unsigned getMachineOpValue(const MachineInstr &MI,
151 const MachineOperand &MO) const;
152 unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const {
153 return getMachineOpValue(MI, MI.getOperand(OpIdx));
156 // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the
157 // TableGen'erated getBinaryCodeForInstr() function to encode any
158 // operand values, instead querying getMachineOpValue() directly for
159 // each operand it needs to encode. Thus, any of the new encoder
160 // helper functions can simply return 0 as the values the return
161 // are already handled elsewhere. They are placeholders to allow this
162 // encoder to continue to function until the MC encoder is sufficiently
163 // far along that this one can be eliminated entirely.
164 unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op)
165 const { return 0; }
166 unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op)
167 const { return 0; }
168 unsigned getSORegOpValue(const MachineInstr &MI, unsigned Op)
169 const { return 0; }
170 unsigned getRotImmOpValue(const MachineInstr &MI, unsigned Op)
171 const { return 0; }
172 unsigned getImmMinusOneOpValue(const MachineInstr &MI, unsigned Op)
173 const { return 0; }
174 unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op)
175 const { return 0; }
176 unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op)
177 const { return 0; }
178 unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI,
179 unsigned Op) const { return 0; }
181 unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
182 const {
183 // {17-13} = reg
184 // {12} = (U)nsigned (add == '1', sub == '0')
185 // {11-0} = imm12
186 const MachineOperand &MO = MI.getOperand(Op);
187 const MachineOperand &MO1 = MI.getOperand(Op + 1);
188 if (!MO.isReg()) {
189 emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
190 return 0;
192 unsigned Reg = getARMRegisterNumbering(MO.getReg());
193 int32_t Imm12 = MO1.getImm();
194 uint32_t Binary;
195 Binary = Imm12 & 0xfff;
196 if (Imm12 >= 0)
197 Binary |= (1 << 12);
198 Binary |= (Reg << 13);
199 return Binary;
201 uint32_t getAddrMode5OpValue(const MachineInstr &MI, unsigned Op) const {
202 // {12-9} = reg
203 // {8} = (U)nsigned (add == '1', sub == '0')
204 // {7-0} = imm12
205 const MachineOperand &MO = MI.getOperand(Op);
206 const MachineOperand &MO1 = MI.getOperand(Op + 1);
207 if (!MO.isReg()) {
208 emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
209 return 0;
211 unsigned Reg = getARMRegisterNumbering(MO.getReg());
212 int32_t Imm8 = MO1.getImm();
213 uint32_t Binary;
214 Binary = Imm8 & 0xff;
215 if (Imm8 >= 0)
216 Binary |= (1 << 8);
217 Binary |= (Reg << 9);
218 return Binary;
220 unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op)
221 const { return 0; }
223 unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op)
224 const { return 0; }
226 /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
227 /// machine operand requires relocation, record the relocation and return
228 /// zero.
229 unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO,
230 unsigned Reloc);
232 /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
234 unsigned getShiftOp(unsigned Imm) const ;
236 /// Routines that handle operands which add machine relocations which are
237 /// fixed up by the relocation stage.
238 void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
239 bool MayNeedFarStub, bool Indirect,
240 intptr_t ACPV = 0) const;
241 void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const;
242 void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const;
243 void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const;
244 void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
245 intptr_t JTBase = 0) const;
249 char ARMCodeEmitter::ID = 0;
251 /// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
252 /// code to the specified MCE object.
253 FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
254 JITCodeEmitter &JCE) {
255 return new ARMCodeEmitter(TM, JCE);
258 bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
259 assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
260 MF.getTarget().getRelocationModel() != Reloc::Static) &&
261 "JIT relocation model must be set to static or default!");
262 JTI = ((ARMTargetMachine &)MF.getTarget()).getJITInfo();
263 II = ((const ARMTargetMachine &)MF.getTarget()).getInstrInfo();
264 TD = ((const ARMTargetMachine &)MF.getTarget()).getTargetData();
265 Subtarget = &TM.getSubtarget<ARMSubtarget>();
266 MCPEs = &MF.getConstantPool()->getConstants();
267 MJTEs = 0;
268 if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
269 IsPIC = TM.getRelocationModel() == Reloc::PIC_;
270 IsThumb = MF.getInfo<ARMFunctionInfo>()->isThumbFunction();
271 JTI->Initialize(MF, IsPIC);
272 MMI = &getAnalysis<MachineModuleInfo>();
273 MCE.setModuleInfo(MMI);
275 do {
276 DEBUG(errs() << "JITTing function '"
277 << MF.getFunction()->getName() << "'\n");
278 MCE.startFunction(MF);
279 for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
280 MBB != E; ++MBB) {
281 MCE.StartMachineBasicBlock(MBB);
282 for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
283 I != E; ++I)
284 emitInstruction(*I);
286 } while (MCE.finishFunction(MF));
288 return false;
291 /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
293 unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
294 switch (ARM_AM::getAM2ShiftOpc(Imm)) {
295 default: llvm_unreachable("Unknown shift opc!");
296 case ARM_AM::asr: return 2;
297 case ARM_AM::lsl: return 0;
298 case ARM_AM::lsr: return 1;
299 case ARM_AM::ror:
300 case ARM_AM::rrx: return 3;
302 return 0;
305 /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
306 /// machine operand requires relocation, record the relocation and return zero.
307 unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI,
308 const MachineOperand &MO,
309 unsigned Reloc) {
310 assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw))
311 && "Relocation to this function should be for movt or movw");
313 if (MO.isImm())
314 return static_cast<unsigned>(MO.getImm());
315 else if (MO.isGlobal())
316 emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
317 else if (MO.isSymbol())
318 emitExternalSymbolAddress(MO.getSymbolName(), Reloc);
319 else if (MO.isMBB())
320 emitMachineBasicBlock(MO.getMBB(), Reloc);
321 else {
322 #ifndef NDEBUG
323 errs() << MO;
324 #endif
325 llvm_unreachable("Unsupported operand type for movw/movt");
327 return 0;
330 /// getMachineOpValue - Return binary encoding of operand. If the machine
331 /// operand requires relocation, record the relocation and return zero.
332 unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
333 const MachineOperand &MO) const {
334 if (MO.isReg())
335 return getARMRegisterNumbering(MO.getReg());
336 else if (MO.isImm())
337 return static_cast<unsigned>(MO.getImm());
338 else if (MO.isGlobal())
339 emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
340 else if (MO.isSymbol())
341 emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
342 else if (MO.isCPI()) {
343 const TargetInstrDesc &TID = MI.getDesc();
344 // For VFP load, the immediate offset is multiplied by 4.
345 unsigned Reloc = ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
346 ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
347 emitConstPoolAddress(MO.getIndex(), Reloc);
348 } else if (MO.isJTI())
349 emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
350 else if (MO.isMBB())
351 emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
352 else {
353 #ifndef NDEBUG
354 errs() << MO;
355 #endif
356 llvm_unreachable(0);
358 return 0;
361 /// emitGlobalAddress - Emit the specified address to the code stream.
363 void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
364 bool MayNeedFarStub, bool Indirect,
365 intptr_t ACPV) const {
366 MachineRelocation MR = Indirect
367 ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
368 const_cast<GlobalValue *>(GV),
369 ACPV, MayNeedFarStub)
370 : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
371 const_cast<GlobalValue *>(GV), ACPV,
372 MayNeedFarStub);
373 MCE.addRelocation(MR);
376 /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
377 /// be emitted to the current location in the function, and allow it to be PC
378 /// relative.
379 void ARMCodeEmitter::
380 emitExternalSymbolAddress(const char *ES, unsigned Reloc) const {
381 MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
382 Reloc, ES));
385 /// emitConstPoolAddress - Arrange for the address of an constant pool
386 /// to be emitted to the current location in the function, and allow it to be PC
387 /// relative.
388 void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const {
389 // Tell JIT emitter we'll resolve the address.
390 MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
391 Reloc, CPI, 0, true));
394 /// emitJumpTableAddress - Arrange for the address of a jump table to
395 /// be emitted to the current location in the function, and allow it to be PC
396 /// relative.
397 void ARMCodeEmitter::
398 emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const {
399 MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
400 Reloc, JTIndex, 0, true));
403 /// emitMachineBasicBlock - Emit the specified address basic block.
404 void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
405 unsigned Reloc,
406 intptr_t JTBase) const {
407 MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
408 Reloc, BB, JTBase));
411 void ARMCodeEmitter::emitWordLE(unsigned Binary) {
412 DEBUG(errs() << " 0x";
413 errs().write_hex(Binary) << "\n");
414 MCE.emitWordLE(Binary);
417 void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
418 DEBUG(errs() << " 0x";
419 errs().write_hex(Binary) << "\n");
420 MCE.emitDWordLE(Binary);
423 void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
424 DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
426 MCE.processDebugLoc(MI.getDebugLoc(), true);
428 ++NumEmitted; // Keep track of the # of mi's emitted
429 switch (MI.getDesc().TSFlags & ARMII::FormMask) {
430 default: {
431 llvm_unreachable("Unhandled instruction encoding format!");
432 break;
434 case ARMII::Pseudo:
435 emitPseudoInstruction(MI);
436 break;
437 case ARMII::DPFrm:
438 case ARMII::DPSoRegFrm:
439 emitDataProcessingInstruction(MI);
440 break;
441 case ARMII::LdFrm:
442 case ARMII::StFrm:
443 emitLoadStoreInstruction(MI);
444 break;
445 case ARMII::LdMiscFrm:
446 case ARMII::StMiscFrm:
447 emitMiscLoadStoreInstruction(MI);
448 break;
449 case ARMII::LdStMulFrm:
450 emitLoadStoreMultipleInstruction(MI);
451 break;
452 case ARMII::MulFrm:
453 emitMulFrmInstruction(MI);
454 break;
455 case ARMII::ExtFrm:
456 emitExtendInstruction(MI);
457 break;
458 case ARMII::ArithMiscFrm:
459 emitMiscArithInstruction(MI);
460 break;
461 case ARMII::SatFrm:
462 emitSaturateInstruction(MI);
463 break;
464 case ARMII::BrFrm:
465 emitBranchInstruction(MI);
466 break;
467 case ARMII::BrMiscFrm:
468 emitMiscBranchInstruction(MI);
469 break;
470 // VFP instructions.
471 case ARMII::VFPUnaryFrm:
472 case ARMII::VFPBinaryFrm:
473 emitVFPArithInstruction(MI);
474 break;
475 case ARMII::VFPConv1Frm:
476 case ARMII::VFPConv2Frm:
477 case ARMII::VFPConv3Frm:
478 case ARMII::VFPConv4Frm:
479 case ARMII::VFPConv5Frm:
480 emitVFPConversionInstruction(MI);
481 break;
482 case ARMII::VFPLdStFrm:
483 emitVFPLoadStoreInstruction(MI);
484 break;
485 case ARMII::VFPLdStMulFrm:
486 emitVFPLoadStoreMultipleInstruction(MI);
487 break;
489 // NEON instructions.
490 case ARMII::NGetLnFrm:
491 case ARMII::NSetLnFrm:
492 emitNEONLaneInstruction(MI);
493 break;
494 case ARMII::NDupFrm:
495 emitNEONDupInstruction(MI);
496 break;
497 case ARMII::N1RegModImmFrm:
498 emitNEON1RegModImmInstruction(MI);
499 break;
500 case ARMII::N2RegFrm:
501 emitNEON2RegInstruction(MI);
502 break;
503 case ARMII::N3RegFrm:
504 emitNEON3RegInstruction(MI);
505 break;
507 MCE.processDebugLoc(MI.getDebugLoc(), false);
510 void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
511 unsigned CPI = MI.getOperand(0).getImm(); // CP instruction index.
512 unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
513 const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
515 // Remember the CONSTPOOL_ENTRY address for later relocation.
516 JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
518 // Emit constpool island entry. In most cases, the actual values will be
519 // resolved and relocated after code emission.
520 if (MCPE.isMachineConstantPoolEntry()) {
521 ARMConstantPoolValue *ACPV =
522 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
524 DEBUG(errs() << " ** ARM constant pool #" << CPI << " @ "
525 << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
527 assert(ACPV->isGlobalValue() && "unsupported constant pool value");
528 const GlobalValue *GV = ACPV->getGV();
529 if (GV) {
530 Reloc::Model RelocM = TM.getRelocationModel();
531 emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
532 isa<Function>(GV),
533 Subtarget->GVIsIndirectSymbol(GV, RelocM),
534 (intptr_t)ACPV);
535 } else {
536 emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute);
538 emitWordLE(0);
539 } else {
540 const Constant *CV = MCPE.Val.ConstVal;
542 DEBUG({
543 errs() << " ** Constant pool #" << CPI << " @ "
544 << (void*)MCE.getCurrentPCValue() << " ";
545 if (const Function *F = dyn_cast<Function>(CV))
546 errs() << F->getName();
547 else
548 errs() << *CV;
549 errs() << '\n';
552 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
553 emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV), false);
554 emitWordLE(0);
555 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
556 uint32_t Val = uint32_t(*CI->getValue().getRawData());
557 emitWordLE(Val);
558 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
559 if (CFP->getType()->isFloatTy())
560 emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
561 else if (CFP->getType()->isDoubleTy())
562 emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
563 else {
564 llvm_unreachable("Unable to handle this constantpool entry!");
566 } else {
567 llvm_unreachable("Unable to handle this constantpool entry!");
572 void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) {
573 const MachineOperand &MO0 = MI.getOperand(0);
574 const MachineOperand &MO1 = MI.getOperand(1);
576 // Emit the 'movw' instruction.
577 unsigned Binary = 0x30 << 20; // mov: Insts{27-20} = 0b00110000
579 unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF;
581 // Set the conditional execution predicate.
582 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
584 // Encode Rd.
585 Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
587 // Encode imm16 as imm4:imm12
588 Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12
589 Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4
590 emitWordLE(Binary);
592 unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16;
593 // Emit the 'movt' instruction.
594 Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100
596 // Set the conditional execution predicate.
597 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
599 // Encode Rd.
600 Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
602 // Encode imm16 as imm4:imm1, same as movw above.
603 Binary |= Hi16 & 0xFFF;
604 Binary |= ((Hi16 >> 12) & 0xF) << 16;
605 emitWordLE(Binary);
608 void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
609 const MachineOperand &MO0 = MI.getOperand(0);
610 const MachineOperand &MO1 = MI.getOperand(1);
611 assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
612 "Not a valid so_imm value!");
613 unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
614 unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
616 // Emit the 'mov' instruction.
617 unsigned Binary = 0xd << 21; // mov: Insts{24-21} = 0b1101
619 // Set the conditional execution predicate.
620 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
622 // Encode Rd.
623 Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
625 // Encode so_imm.
626 // Set bit I(25) to identify this is the immediate form of <shifter_op>
627 Binary |= 1 << ARMII::I_BitShift;
628 Binary |= getMachineSoImmOpValue(V1);
629 emitWordLE(Binary);
631 // Now the 'orr' instruction.
632 Binary = 0xc << 21; // orr: Insts{24-21} = 0b1100
634 // Set the conditional execution predicate.
635 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
637 // Encode Rd.
638 Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
640 // Encode Rn.
641 Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
643 // Encode so_imm.
644 // Set bit I(25) to identify this is the immediate form of <shifter_op>
645 Binary |= 1 << ARMII::I_BitShift;
646 Binary |= getMachineSoImmOpValue(V2);
647 emitWordLE(Binary);
650 void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
651 // It's basically add r, pc, (LJTI - $+8)
653 const TargetInstrDesc &TID = MI.getDesc();
655 // Emit the 'add' instruction.
656 unsigned Binary = 0x4 << 21; // add: Insts{24-31} = 0b0100
658 // Set the conditional execution predicate
659 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
661 // Encode S bit if MI modifies CPSR.
662 Binary |= getAddrModeSBit(MI, TID);
664 // Encode Rd.
665 Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
667 // Encode Rn which is PC.
668 Binary |= getARMRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
670 // Encode the displacement.
671 Binary |= 1 << ARMII::I_BitShift;
672 emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
674 emitWordLE(Binary);
677 void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
678 unsigned Opcode = MI.getDesc().Opcode;
680 // Part of binary is determined by TableGn.
681 unsigned Binary = getBinaryCodeForInstr(MI);
683 // Set the conditional execution predicate
684 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
686 // Encode S bit if MI modifies CPSR.
687 if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
688 Binary |= 1 << ARMII::S_BitShift;
690 // Encode register def if there is one.
691 Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
693 // Encode the shift operation.
694 switch (Opcode) {
695 default: break;
696 case ARM::RRX:
697 // rrx
698 Binary |= 0x6 << 4;
699 break;
700 case ARM::MOVsrl_flag:
701 // lsr #1
702 Binary |= (0x2 << 4) | (1 << 7);
703 break;
704 case ARM::MOVsra_flag:
705 // asr #1
706 Binary |= (0x4 << 4) | (1 << 7);
707 break;
710 // Encode register Rm.
711 Binary |= getMachineOpValue(MI, 1);
713 emitWordLE(Binary);
716 void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
717 DEBUG(errs() << " ** LPC" << LabelID << " @ "
718 << (void*)MCE.getCurrentPCValue() << '\n');
719 JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
722 void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
723 unsigned Opcode = MI.getDesc().Opcode;
724 switch (Opcode) {
725 default:
726 llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
727 case ARM::BX:
728 case ARM::BMOVPCRX:
729 case ARM::BXr9:
730 case ARM::BMOVPCRXr9: {
731 // First emit mov lr, pc
732 unsigned Binary = 0x01a0e00f;
733 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
734 emitWordLE(Binary);
736 // and then emit the branch.
737 emitMiscBranchInstruction(MI);
738 break;
740 case TargetOpcode::INLINEASM: {
741 // We allow inline assembler nodes with empty bodies - they can
742 // implicitly define registers, which is ok for JIT.
743 if (MI.getOperand(0).getSymbolName()[0]) {
744 report_fatal_error("JIT does not support inline asm!");
746 break;
748 case TargetOpcode::PROLOG_LABEL:
749 case TargetOpcode::EH_LABEL:
750 MCE.emitLabel(MI.getOperand(0).getMCSymbol());
751 break;
752 case TargetOpcode::IMPLICIT_DEF:
753 case TargetOpcode::KILL:
754 // Do nothing.
755 break;
756 case ARM::CONSTPOOL_ENTRY:
757 emitConstPoolInstruction(MI);
758 break;
759 case ARM::PICADD: {
760 // Remember of the address of the PC label for relocation later.
761 addPCLabel(MI.getOperand(2).getImm());
762 // PICADD is just an add instruction that implicitly read pc.
763 emitDataProcessingInstruction(MI, 0, ARM::PC);
764 break;
766 case ARM::PICLDR:
767 case ARM::PICLDRB:
768 case ARM::PICSTR:
769 case ARM::PICSTRB: {
770 // Remember of the address of the PC label for relocation later.
771 addPCLabel(MI.getOperand(2).getImm());
772 // These are just load / store instructions that implicitly read pc.
773 emitLoadStoreInstruction(MI, 0, ARM::PC);
774 break;
776 case ARM::PICLDRH:
777 case ARM::PICLDRSH:
778 case ARM::PICLDRSB:
779 case ARM::PICSTRH: {
780 // Remember of the address of the PC label for relocation later.
781 addPCLabel(MI.getOperand(2).getImm());
782 // These are just load / store instructions that implicitly read pc.
783 emitMiscLoadStoreInstruction(MI, ARM::PC);
784 break;
787 case ARM::MOVi32imm:
788 emitMOVi32immInstruction(MI);
789 break;
791 case ARM::MOVi2pieces:
792 // Two instructions to materialize a constant.
793 emitMOVi2piecesInstruction(MI);
794 break;
795 case ARM::LEApcrelJT:
796 // Materialize jumptable address.
797 emitLEApcrelJTInstruction(MI);
798 break;
799 case ARM::RRX:
800 case ARM::MOVsrl_flag:
801 case ARM::MOVsra_flag:
802 emitPseudoMoveInstruction(MI);
803 break;
807 unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
808 const TargetInstrDesc &TID,
809 const MachineOperand &MO,
810 unsigned OpIdx) {
811 unsigned Binary = getMachineOpValue(MI, MO);
813 const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
814 const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
815 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
817 // Encode the shift opcode.
818 unsigned SBits = 0;
819 unsigned Rs = MO1.getReg();
820 if (Rs) {
821 // Set shift operand (bit[7:4]).
822 // LSL - 0001
823 // LSR - 0011
824 // ASR - 0101
825 // ROR - 0111
826 // RRX - 0110 and bit[11:8] clear.
827 switch (SOpc) {
828 default: llvm_unreachable("Unknown shift opc!");
829 case ARM_AM::lsl: SBits = 0x1; break;
830 case ARM_AM::lsr: SBits = 0x3; break;
831 case ARM_AM::asr: SBits = 0x5; break;
832 case ARM_AM::ror: SBits = 0x7; break;
833 case ARM_AM::rrx: SBits = 0x6; break;
835 } else {
836 // Set shift operand (bit[6:4]).
837 // LSL - 000
838 // LSR - 010
839 // ASR - 100
840 // ROR - 110
841 switch (SOpc) {
842 default: llvm_unreachable("Unknown shift opc!");
843 case ARM_AM::lsl: SBits = 0x0; break;
844 case ARM_AM::lsr: SBits = 0x2; break;
845 case ARM_AM::asr: SBits = 0x4; break;
846 case ARM_AM::ror: SBits = 0x6; break;
849 Binary |= SBits << 4;
850 if (SOpc == ARM_AM::rrx)
851 return Binary;
853 // Encode the shift operation Rs or shift_imm (except rrx).
854 if (Rs) {
855 // Encode Rs bit[11:8].
856 assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
857 return Binary | (getARMRegisterNumbering(Rs) << ARMII::RegRsShift);
860 // Encode shift_imm bit[11:7].
861 return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
864 unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
865 int SoImmVal = ARM_AM::getSOImmVal(SoImm);
866 assert(SoImmVal != -1 && "Not a valid so_imm value!");
868 // Encode rotate_imm.
869 unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
870 << ARMII::SoRotImmShift;
872 // Encode immed_8.
873 Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
874 return Binary;
877 unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
878 const TargetInstrDesc &TID) const {
879 for (unsigned i = MI.getNumOperands(), e = TID.getNumOperands(); i != e; --i){
880 const MachineOperand &MO = MI.getOperand(i-1);
881 if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
882 return 1 << ARMII::S_BitShift;
884 return 0;
887 void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
888 unsigned ImplicitRd,
889 unsigned ImplicitRn) {
890 const TargetInstrDesc &TID = MI.getDesc();
892 // Part of binary is determined by TableGn.
893 unsigned Binary = getBinaryCodeForInstr(MI);
895 // Set the conditional execution predicate
896 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
898 // Encode S bit if MI modifies CPSR.
899 Binary |= getAddrModeSBit(MI, TID);
901 // Encode register def if there is one.
902 unsigned NumDefs = TID.getNumDefs();
903 unsigned OpIdx = 0;
904 if (NumDefs)
905 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
906 else if (ImplicitRd)
907 // Special handling for implicit use (e.g. PC).
908 Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
910 if (TID.Opcode == ARM::MOVi16) {
911 // Get immediate from MI.
912 unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx),
913 ARM::reloc_arm_movw);
914 // Encode imm which is the same as in emitMOVi32immInstruction().
915 Binary |= Lo16 & 0xFFF;
916 Binary |= ((Lo16 >> 12) & 0xF) << 16;
917 emitWordLE(Binary);
918 return;
919 } else if(TID.Opcode == ARM::MOVTi16) {
920 unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx),
921 ARM::reloc_arm_movt) >> 16);
922 Binary |= Hi16 & 0xFFF;
923 Binary |= ((Hi16 >> 12) & 0xF) << 16;
924 emitWordLE(Binary);
925 return;
926 } else if ((TID.Opcode == ARM::BFC) || (TID.Opcode == ARM::BFI)) {
927 uint32_t v = ~MI.getOperand(2).getImm();
928 int32_t lsb = CountTrailingZeros_32(v);
929 int32_t msb = (32 - CountLeadingZeros_32(v)) - 1;
930 // Instr{20-16} = msb, Instr{11-7} = lsb
931 Binary |= (msb & 0x1F) << 16;
932 Binary |= (lsb & 0x1F) << 7;
933 emitWordLE(Binary);
934 return;
935 } else if ((TID.Opcode == ARM::UBFX) || (TID.Opcode == ARM::SBFX)) {
936 // Encode Rn in Instr{0-3}
937 Binary |= getMachineOpValue(MI, OpIdx++);
939 uint32_t lsb = MI.getOperand(OpIdx++).getImm();
940 uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1;
942 // Instr{20-16} = widthm1, Instr{11-7} = lsb
943 Binary |= (widthm1 & 0x1F) << 16;
944 Binary |= (lsb & 0x1F) << 7;
945 emitWordLE(Binary);
946 return;
949 // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
950 if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
951 ++OpIdx;
953 // Encode first non-shifter register operand if there is one.
954 bool isUnary = TID.TSFlags & ARMII::UnaryDP;
955 if (!isUnary) {
956 if (ImplicitRn)
957 // Special handling for implicit use (e.g. PC).
958 Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
959 else {
960 Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
961 ++OpIdx;
965 // Encode shifter operand.
966 const MachineOperand &MO = MI.getOperand(OpIdx);
967 if ((TID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
968 // Encode SoReg.
969 emitWordLE(Binary | getMachineSoRegOpValue(MI, TID, MO, OpIdx));
970 return;
973 if (MO.isReg()) {
974 // Encode register Rm.
975 emitWordLE(Binary | getARMRegisterNumbering(MO.getReg()));
976 return;
979 // Encode so_imm.
980 Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
982 emitWordLE(Binary);
985 void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
986 unsigned ImplicitRd,
987 unsigned ImplicitRn) {
988 const TargetInstrDesc &TID = MI.getDesc();
989 unsigned Form = TID.TSFlags & ARMII::FormMask;
990 bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
992 // Part of binary is determined by TableGn.
993 unsigned Binary = getBinaryCodeForInstr(MI);
995 // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done.
996 if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp ||
997 MI.getOpcode() == ARM::STRi12) {
998 emitWordLE(Binary);
999 return;
1002 // Set the conditional execution predicate
1003 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1005 unsigned OpIdx = 0;
1007 // Operand 0 of a pre- and post-indexed store is the address base
1008 // writeback. Skip it.
1009 bool Skipped = false;
1010 if (IsPrePost && Form == ARMII::StFrm) {
1011 ++OpIdx;
1012 Skipped = true;
1015 // Set first operand
1016 if (ImplicitRd)
1017 // Special handling for implicit use (e.g. PC).
1018 Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
1019 else
1020 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1022 // Set second operand
1023 if (ImplicitRn)
1024 // Special handling for implicit use (e.g. PC).
1025 Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1026 else
1027 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1029 // If this is a two-address operand, skip it. e.g. LDR_PRE.
1030 if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1031 ++OpIdx;
1033 const MachineOperand &MO2 = MI.getOperand(OpIdx);
1034 unsigned AM2Opc = (ImplicitRn == ARM::PC)
1035 ? 0 : MI.getOperand(OpIdx+1).getImm();
1037 // Set bit U(23) according to sign of immed value (positive or negative).
1038 Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
1039 ARMII::U_BitShift);
1040 if (!MO2.getReg()) { // is immediate
1041 if (ARM_AM::getAM2Offset(AM2Opc))
1042 // Set the value of offset_12 field
1043 Binary |= ARM_AM::getAM2Offset(AM2Opc);
1044 emitWordLE(Binary);
1045 return;
1048 // Set bit I(25), because this is not in immediate encoding.
1049 Binary |= 1 << ARMII::I_BitShift;
1050 assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
1051 // Set bit[3:0] to the corresponding Rm register
1052 Binary |= getARMRegisterNumbering(MO2.getReg());
1054 // If this instr is in scaled register offset/index instruction, set
1055 // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
1056 if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
1057 Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift; // shift
1058 Binary |= ShImm << ARMII::ShiftShift; // shift_immed
1061 emitWordLE(Binary);
1064 void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
1065 unsigned ImplicitRn) {
1066 const TargetInstrDesc &TID = MI.getDesc();
1067 unsigned Form = TID.TSFlags & ARMII::FormMask;
1068 bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1070 // Part of binary is determined by TableGn.
1071 unsigned Binary = getBinaryCodeForInstr(MI);
1073 // Set the conditional execution predicate
1074 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1076 unsigned OpIdx = 0;
1078 // Operand 0 of a pre- and post-indexed store is the address base
1079 // writeback. Skip it.
1080 bool Skipped = false;
1081 if (IsPrePost && Form == ARMII::StMiscFrm) {
1082 ++OpIdx;
1083 Skipped = true;
1086 // Set first operand
1087 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1089 // Skip LDRD and STRD's second operand.
1090 if (TID.Opcode == ARM::LDRD || TID.Opcode == ARM::STRD)
1091 ++OpIdx;
1093 // Set second operand
1094 if (ImplicitRn)
1095 // Special handling for implicit use (e.g. PC).
1096 Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1097 else
1098 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1100 // If this is a two-address operand, skip it. e.g. LDRH_POST.
1101 if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1102 ++OpIdx;
1104 const MachineOperand &MO2 = MI.getOperand(OpIdx);
1105 unsigned AM3Opc = (ImplicitRn == ARM::PC)
1106 ? 0 : MI.getOperand(OpIdx+1).getImm();
1108 // Set bit U(23) according to sign of immed value (positive or negative)
1109 Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
1110 ARMII::U_BitShift);
1112 // If this instr is in register offset/index encoding, set bit[3:0]
1113 // to the corresponding Rm register.
1114 if (MO2.getReg()) {
1115 Binary |= getARMRegisterNumbering(MO2.getReg());
1116 emitWordLE(Binary);
1117 return;
1120 // This instr is in immediate offset/index encoding, set bit 22 to 1.
1121 Binary |= 1 << ARMII::AM3_I_BitShift;
1122 if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
1123 // Set operands
1124 Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift; // immedH
1125 Binary |= (ImmOffs & 0xF); // immedL
1128 emitWordLE(Binary);
1131 static unsigned getAddrModeUPBits(unsigned Mode) {
1132 unsigned Binary = 0;
1134 // Set addressing mode by modifying bits U(23) and P(24)
1135 // IA - Increment after - bit U = 1 and bit P = 0
1136 // IB - Increment before - bit U = 1 and bit P = 1
1137 // DA - Decrement after - bit U = 0 and bit P = 0
1138 // DB - Decrement before - bit U = 0 and bit P = 1
1139 switch (Mode) {
1140 default: llvm_unreachable("Unknown addressing sub-mode!");
1141 case ARM_AM::da: break;
1142 case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
1143 case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
1144 case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
1147 return Binary;
1150 void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
1151 const TargetInstrDesc &TID = MI.getDesc();
1152 bool IsUpdating = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1154 // Part of binary is determined by TableGn.
1155 unsigned Binary = getBinaryCodeForInstr(MI);
1157 // Set the conditional execution predicate
1158 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1160 // Skip operand 0 of an instruction with base register update.
1161 unsigned OpIdx = 0;
1162 if (IsUpdating)
1163 ++OpIdx;
1165 // Set base address operand
1166 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1168 // Set addressing mode by modifying bits U(23) and P(24)
1169 const MachineOperand &MO = MI.getOperand(OpIdx++);
1170 Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(MO.getImm()));
1172 // Set bit W(21)
1173 if (IsUpdating)
1174 Binary |= 0x1 << ARMII::W_BitShift;
1176 // Set registers
1177 for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
1178 const MachineOperand &MO = MI.getOperand(i);
1179 if (!MO.isReg() || MO.isImplicit())
1180 break;
1181 unsigned RegNum = getARMRegisterNumbering(MO.getReg());
1182 assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
1183 RegNum < 16);
1184 Binary |= 0x1 << RegNum;
1187 emitWordLE(Binary);
1190 void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
1191 const TargetInstrDesc &TID = MI.getDesc();
1193 // Part of binary is determined by TableGn.
1194 unsigned Binary = getBinaryCodeForInstr(MI);
1196 // Set the conditional execution predicate
1197 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1199 // Encode S bit if MI modifies CPSR.
1200 Binary |= getAddrModeSBit(MI, TID);
1202 // 32x32->64bit operations have two destination registers. The number
1203 // of register definitions will tell us if that's what we're dealing with.
1204 unsigned OpIdx = 0;
1205 if (TID.getNumDefs() == 2)
1206 Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
1208 // Encode Rd
1209 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
1211 // Encode Rm
1212 Binary |= getMachineOpValue(MI, OpIdx++);
1214 // Encode Rs
1215 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
1217 // Many multiple instructions (e.g. MLA) have three src operands. Encode
1218 // it as Rn (for multiply, that's in the same offset as RdLo.
1219 if (TID.getNumOperands() > OpIdx &&
1220 !TID.OpInfo[OpIdx].isPredicate() &&
1221 !TID.OpInfo[OpIdx].isOptionalDef())
1222 Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
1224 emitWordLE(Binary);
1227 void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
1228 const TargetInstrDesc &TID = MI.getDesc();
1230 // Part of binary is determined by TableGn.
1231 unsigned Binary = getBinaryCodeForInstr(MI);
1233 // Set the conditional execution predicate
1234 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1236 unsigned OpIdx = 0;
1238 // Encode Rd
1239 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1241 const MachineOperand &MO1 = MI.getOperand(OpIdx++);
1242 const MachineOperand &MO2 = MI.getOperand(OpIdx);
1243 if (MO2.isReg()) {
1244 // Two register operand form.
1245 // Encode Rn.
1246 Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
1248 // Encode Rm.
1249 Binary |= getMachineOpValue(MI, MO2);
1250 ++OpIdx;
1251 } else {
1252 Binary |= getMachineOpValue(MI, MO1);
1255 // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
1256 if (MI.getOperand(OpIdx).isImm() &&
1257 !TID.OpInfo[OpIdx].isPredicate() &&
1258 !TID.OpInfo[OpIdx].isOptionalDef())
1259 Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
1261 emitWordLE(Binary);
1264 void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
1265 const TargetInstrDesc &TID = MI.getDesc();
1267 // Part of binary is determined by TableGn.
1268 unsigned Binary = getBinaryCodeForInstr(MI);
1270 // Set the conditional execution predicate
1271 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1273 unsigned OpIdx = 0;
1275 // Encode Rd
1276 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1278 const MachineOperand &MO = MI.getOperand(OpIdx++);
1279 if (OpIdx == TID.getNumOperands() ||
1280 TID.OpInfo[OpIdx].isPredicate() ||
1281 TID.OpInfo[OpIdx].isOptionalDef()) {
1282 // Encode Rm and it's done.
1283 Binary |= getMachineOpValue(MI, MO);
1284 emitWordLE(Binary);
1285 return;
1288 // Encode Rn.
1289 Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
1291 // Encode Rm.
1292 Binary |= getMachineOpValue(MI, OpIdx++);
1294 // Encode shift_imm.
1295 unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
1296 if (TID.Opcode == ARM::PKHTB) {
1297 assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!");
1298 if (ShiftAmt == 32)
1299 ShiftAmt = 0;
1301 assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1302 Binary |= ShiftAmt << ARMII::ShiftShift;
1304 emitWordLE(Binary);
1307 void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) {
1308 const TargetInstrDesc &TID = MI.getDesc();
1310 // Part of binary is determined by TableGen.
1311 unsigned Binary = getBinaryCodeForInstr(MI);
1313 // Set the conditional execution predicate
1314 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1316 // Encode Rd
1317 Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
1319 // Encode saturate bit position.
1320 unsigned Pos = MI.getOperand(1).getImm();
1321 if (TID.Opcode == ARM::SSAT || TID.Opcode == ARM::SSAT16)
1322 Pos -= 1;
1323 assert((Pos < 16 || (Pos < 32 &&
1324 TID.Opcode != ARM::SSAT16 &&
1325 TID.Opcode != ARM::USAT16)) &&
1326 "saturate bit position out of range");
1327 Binary |= Pos << 16;
1329 // Encode Rm
1330 Binary |= getMachineOpValue(MI, 2);
1332 // Encode shift_imm.
1333 if (TID.getNumOperands() == 4) {
1334 unsigned ShiftOp = MI.getOperand(3).getImm();
1335 ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp);
1336 if (Opc == ARM_AM::asr)
1337 Binary |= (1 << 6);
1338 unsigned ShiftAmt = MI.getOperand(3).getImm();
1339 if (ShiftAmt == 32 && Opc == ARM_AM::asr)
1340 ShiftAmt = 0;
1341 assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1342 Binary |= ShiftAmt << ARMII::ShiftShift;
1345 emitWordLE(Binary);
1348 void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
1349 const TargetInstrDesc &TID = MI.getDesc();
1351 if (TID.Opcode == ARM::TPsoft) {
1352 llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
1355 // Part of binary is determined by TableGn.
1356 unsigned Binary = getBinaryCodeForInstr(MI);
1358 // Set the conditional execution predicate
1359 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1361 // Set signed_immed_24 field
1362 Binary |= getMachineOpValue(MI, 0);
1364 emitWordLE(Binary);
1367 void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
1368 // Remember the base address of the inline jump table.
1369 uintptr_t JTBase = MCE.getCurrentPCValue();
1370 JTI->addJumpTableBaseAddr(JTIndex, JTBase);
1371 DEBUG(errs() << " ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
1372 << '\n');
1374 // Now emit the jump table entries.
1375 const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
1376 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
1377 if (IsPIC)
1378 // DestBB address - JT base.
1379 emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
1380 else
1381 // Absolute DestBB address.
1382 emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
1383 emitWordLE(0);
1387 void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
1388 const TargetInstrDesc &TID = MI.getDesc();
1390 // Handle jump tables.
1391 if (TID.Opcode == ARM::BR_JTr || TID.Opcode == ARM::BR_JTadd) {
1392 // First emit a ldr pc, [] instruction.
1393 emitDataProcessingInstruction(MI, ARM::PC);
1395 // Then emit the inline jump table.
1396 unsigned JTIndex =
1397 (TID.Opcode == ARM::BR_JTr)
1398 ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
1399 emitInlineJumpTable(JTIndex);
1400 return;
1401 } else if (TID.Opcode == ARM::BR_JTm) {
1402 // First emit a ldr pc, [] instruction.
1403 emitLoadStoreInstruction(MI, ARM::PC);
1405 // Then emit the inline jump table.
1406 emitInlineJumpTable(MI.getOperand(3).getIndex());
1407 return;
1410 // Part of binary is determined by TableGn.
1411 unsigned Binary = getBinaryCodeForInstr(MI);
1413 // Set the conditional execution predicate
1414 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1416 if (TID.Opcode == ARM::BX_RET || TID.Opcode == ARM::MOVPCLR)
1417 // The return register is LR.
1418 Binary |= getARMRegisterNumbering(ARM::LR);
1419 else
1420 // otherwise, set the return register
1421 Binary |= getMachineOpValue(MI, 0);
1423 emitWordLE(Binary);
1426 static unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) {
1427 unsigned RegD = MI.getOperand(OpIdx).getReg();
1428 unsigned Binary = 0;
1429 bool isSPVFP = ARM::SPRRegisterClass->contains(RegD);
1430 RegD = getARMRegisterNumbering(RegD);
1431 if (!isSPVFP)
1432 Binary |= RegD << ARMII::RegRdShift;
1433 else {
1434 Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
1435 Binary |= (RegD & 0x01) << ARMII::D_BitShift;
1437 return Binary;
1440 static unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) {
1441 unsigned RegN = MI.getOperand(OpIdx).getReg();
1442 unsigned Binary = 0;
1443 bool isSPVFP = ARM::SPRRegisterClass->contains(RegN);
1444 RegN = getARMRegisterNumbering(RegN);
1445 if (!isSPVFP)
1446 Binary |= RegN << ARMII::RegRnShift;
1447 else {
1448 Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
1449 Binary |= (RegN & 0x01) << ARMII::N_BitShift;
1451 return Binary;
1454 static unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) {
1455 unsigned RegM = MI.getOperand(OpIdx).getReg();
1456 unsigned Binary = 0;
1457 bool isSPVFP = ARM::SPRRegisterClass->contains(RegM);
1458 RegM = getARMRegisterNumbering(RegM);
1459 if (!isSPVFP)
1460 Binary |= RegM;
1461 else {
1462 Binary |= ((RegM & 0x1E) >> 1);
1463 Binary |= (RegM & 0x01) << ARMII::M_BitShift;
1465 return Binary;
1468 void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
1469 const TargetInstrDesc &TID = MI.getDesc();
1471 // Part of binary is determined by TableGn.
1472 unsigned Binary = getBinaryCodeForInstr(MI);
1474 // Set the conditional execution predicate
1475 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1477 unsigned OpIdx = 0;
1478 assert((Binary & ARMII::D_BitShift) == 0 &&
1479 (Binary & ARMII::N_BitShift) == 0 &&
1480 (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!");
1482 // Encode Dd / Sd.
1483 Binary |= encodeVFPRd(MI, OpIdx++);
1485 // If this is a two-address operand, skip it, e.g. FMACD.
1486 if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1487 ++OpIdx;
1489 // Encode Dn / Sn.
1490 if ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
1491 Binary |= encodeVFPRn(MI, OpIdx++);
1493 if (OpIdx == TID.getNumOperands() ||
1494 TID.OpInfo[OpIdx].isPredicate() ||
1495 TID.OpInfo[OpIdx].isOptionalDef()) {
1496 // FCMPEZD etc. has only one operand.
1497 emitWordLE(Binary);
1498 return;
1501 // Encode Dm / Sm.
1502 Binary |= encodeVFPRm(MI, OpIdx);
1504 emitWordLE(Binary);
1507 void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
1508 const TargetInstrDesc &TID = MI.getDesc();
1509 unsigned Form = TID.TSFlags & ARMII::FormMask;
1511 // Part of binary is determined by TableGn.
1512 unsigned Binary = getBinaryCodeForInstr(MI);
1514 // Set the conditional execution predicate
1515 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1517 switch (Form) {
1518 default: break;
1519 case ARMII::VFPConv1Frm:
1520 case ARMII::VFPConv2Frm:
1521 case ARMII::VFPConv3Frm:
1522 // Encode Dd / Sd.
1523 Binary |= encodeVFPRd(MI, 0);
1524 break;
1525 case ARMII::VFPConv4Frm:
1526 // Encode Dn / Sn.
1527 Binary |= encodeVFPRn(MI, 0);
1528 break;
1529 case ARMII::VFPConv5Frm:
1530 // Encode Dm / Sm.
1531 Binary |= encodeVFPRm(MI, 0);
1532 break;
1535 switch (Form) {
1536 default: break;
1537 case ARMII::VFPConv1Frm:
1538 // Encode Dm / Sm.
1539 Binary |= encodeVFPRm(MI, 1);
1540 break;
1541 case ARMII::VFPConv2Frm:
1542 case ARMII::VFPConv3Frm:
1543 // Encode Dn / Sn.
1544 Binary |= encodeVFPRn(MI, 1);
1545 break;
1546 case ARMII::VFPConv4Frm:
1547 case ARMII::VFPConv5Frm:
1548 // Encode Dd / Sd.
1549 Binary |= encodeVFPRd(MI, 1);
1550 break;
1553 if (Form == ARMII::VFPConv5Frm)
1554 // Encode Dn / Sn.
1555 Binary |= encodeVFPRn(MI, 2);
1556 else if (Form == ARMII::VFPConv3Frm)
1557 // Encode Dm / Sm.
1558 Binary |= encodeVFPRm(MI, 2);
1560 emitWordLE(Binary);
1563 void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
1564 // Part of binary is determined by TableGn.
1565 unsigned Binary = getBinaryCodeForInstr(MI);
1567 // Set the conditional execution predicate
1568 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1570 unsigned OpIdx = 0;
1572 // Encode Dd / Sd.
1573 Binary |= encodeVFPRd(MI, OpIdx++);
1575 // Encode address base.
1576 const MachineOperand &Base = MI.getOperand(OpIdx++);
1577 Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
1579 // If there is a non-zero immediate offset, encode it.
1580 if (Base.isReg()) {
1581 const MachineOperand &Offset = MI.getOperand(OpIdx);
1582 if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
1583 if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
1584 Binary |= 1 << ARMII::U_BitShift;
1585 Binary |= ImmOffs;
1586 emitWordLE(Binary);
1587 return;
1591 // If immediate offset is omitted, default to +0.
1592 Binary |= 1 << ARMII::U_BitShift;
1594 emitWordLE(Binary);
1597 void
1598 ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
1599 const TargetInstrDesc &TID = MI.getDesc();
1600 bool IsUpdating = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1602 // Part of binary is determined by TableGn.
1603 unsigned Binary = getBinaryCodeForInstr(MI);
1605 // Set the conditional execution predicate
1606 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1608 // Skip operand 0 of an instruction with base register update.
1609 unsigned OpIdx = 0;
1610 if (IsUpdating)
1611 ++OpIdx;
1613 // Set base address operand
1614 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1616 // Set addressing mode by modifying bits U(23) and P(24)
1617 const MachineOperand &MO = MI.getOperand(OpIdx++);
1618 Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(MO.getImm()));
1620 // Set bit W(21)
1621 if (IsUpdating)
1622 Binary |= 0x1 << ARMII::W_BitShift;
1624 // First register is encoded in Dd.
1625 Binary |= encodeVFPRd(MI, OpIdx+2);
1627 // Count the number of registers.
1628 unsigned NumRegs = 1;
1629 for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
1630 const MachineOperand &MO = MI.getOperand(i);
1631 if (!MO.isReg() || MO.isImplicit())
1632 break;
1633 ++NumRegs;
1635 // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
1636 // Otherwise, it will be 0, in the case of 32-bit registers.
1637 if(Binary & 0x100)
1638 Binary |= NumRegs * 2;
1639 else
1640 Binary |= NumRegs;
1642 emitWordLE(Binary);
1645 static unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) {
1646 unsigned RegD = MI.getOperand(OpIdx).getReg();
1647 unsigned Binary = 0;
1648 RegD = getARMRegisterNumbering(RegD);
1649 Binary |= (RegD & 0xf) << ARMII::RegRdShift;
1650 Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift;
1651 return Binary;
1654 static unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) {
1655 unsigned RegN = MI.getOperand(OpIdx).getReg();
1656 unsigned Binary = 0;
1657 RegN = getARMRegisterNumbering(RegN);
1658 Binary |= (RegN & 0xf) << ARMII::RegRnShift;
1659 Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift;
1660 return Binary;
1663 static unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) {
1664 unsigned RegM = MI.getOperand(OpIdx).getReg();
1665 unsigned Binary = 0;
1666 RegM = getARMRegisterNumbering(RegM);
1667 Binary |= (RegM & 0xf);
1668 Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift;
1669 return Binary;
1672 /// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON
1673 /// data-processing instruction to the corresponding Thumb encoding.
1674 static unsigned convertNEONDataProcToThumb(unsigned Binary) {
1675 assert((Binary & 0xfe000000) == 0xf2000000 &&
1676 "not an ARM NEON data-processing instruction");
1677 unsigned UBit = (Binary >> 24) & 1;
1678 return 0xef000000 | (UBit << 28) | (Binary & 0xffffff);
1681 void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) {
1682 unsigned Binary = getBinaryCodeForInstr(MI);
1684 unsigned RegTOpIdx, RegNOpIdx, LnOpIdx;
1685 const TargetInstrDesc &TID = MI.getDesc();
1686 if ((TID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) {
1687 RegTOpIdx = 0;
1688 RegNOpIdx = 1;
1689 LnOpIdx = 2;
1690 } else { // ARMII::NSetLnFrm
1691 RegTOpIdx = 2;
1692 RegNOpIdx = 0;
1693 LnOpIdx = 3;
1696 // Set the conditional execution predicate
1697 Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1699 unsigned RegT = MI.getOperand(RegTOpIdx).getReg();
1700 RegT = getARMRegisterNumbering(RegT);
1701 Binary |= (RegT << ARMII::RegRdShift);
1702 Binary |= encodeNEONRn(MI, RegNOpIdx);
1704 unsigned LaneShift;
1705 if ((Binary & (1 << 22)) != 0)
1706 LaneShift = 0; // 8-bit elements
1707 else if ((Binary & (1 << 5)) != 0)
1708 LaneShift = 1; // 16-bit elements
1709 else
1710 LaneShift = 2; // 32-bit elements
1712 unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift;
1713 unsigned Opc1 = Lane >> 2;
1714 unsigned Opc2 = Lane & 3;
1715 assert((Opc1 & 3) == 0 && "out-of-range lane number operand");
1716 Binary |= (Opc1 << 21);
1717 Binary |= (Opc2 << 5);
1719 emitWordLE(Binary);
1722 void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) {
1723 unsigned Binary = getBinaryCodeForInstr(MI);
1725 // Set the conditional execution predicate
1726 Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1728 unsigned RegT = MI.getOperand(1).getReg();
1729 RegT = getARMRegisterNumbering(RegT);
1730 Binary |= (RegT << ARMII::RegRdShift);
1731 Binary |= encodeNEONRn(MI, 0);
1732 emitWordLE(Binary);
1735 void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) {
1736 unsigned Binary = getBinaryCodeForInstr(MI);
1737 // Destination register is encoded in Dd.
1738 Binary |= encodeNEONRd(MI, 0);
1739 // Immediate fields: Op, Cmode, I, Imm3, Imm4
1740 unsigned Imm = MI.getOperand(1).getImm();
1741 unsigned Op = (Imm >> 12) & 1;
1742 unsigned Cmode = (Imm >> 8) & 0xf;
1743 unsigned I = (Imm >> 7) & 1;
1744 unsigned Imm3 = (Imm >> 4) & 0x7;
1745 unsigned Imm4 = Imm & 0xf;
1746 Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4;
1747 if (IsThumb)
1748 Binary = convertNEONDataProcToThumb(Binary);
1749 emitWordLE(Binary);
1752 void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) {
1753 const TargetInstrDesc &TID = MI.getDesc();
1754 unsigned Binary = getBinaryCodeForInstr(MI);
1755 // Destination register is encoded in Dd; source register in Dm.
1756 unsigned OpIdx = 0;
1757 Binary |= encodeNEONRd(MI, OpIdx++);
1758 if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1759 ++OpIdx;
1760 Binary |= encodeNEONRm(MI, OpIdx);
1761 if (IsThumb)
1762 Binary = convertNEONDataProcToThumb(Binary);
1763 // FIXME: This does not handle VDUPfdf or VDUPfqf.
1764 emitWordLE(Binary);
1767 void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) {
1768 const TargetInstrDesc &TID = MI.getDesc();
1769 unsigned Binary = getBinaryCodeForInstr(MI);
1770 // Destination register is encoded in Dd; source registers in Dn and Dm.
1771 unsigned OpIdx = 0;
1772 Binary |= encodeNEONRd(MI, OpIdx++);
1773 if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1774 ++OpIdx;
1775 Binary |= encodeNEONRn(MI, OpIdx++);
1776 if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1777 ++OpIdx;
1778 Binary |= encodeNEONRm(MI, OpIdx);
1779 if (IsThumb)
1780 Binary = convertNEONDataProcToThumb(Binary);
1781 // FIXME: This does not handle VMOVDneon or VMOVQ.
1782 emitWordLE(Binary);
1785 #include "ARMGenCodeEmitter.inc"