1 //===-- ARMConstantIslandPass.cpp - ARM constant islands --------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains a pass that splits the constant pool up into 'islands'
11 // which are scattered through-out the function. This is required due to the
12 // limited pc-relative displacements that ARM has.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "arm-cp-islands"
18 #include "ARMAddressingModes.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMInstrInfo.h"
21 #include "Thumb2InstrInfo.h"
22 #include "llvm/CodeGen/MachineConstantPool.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineJumpTableInfo.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/Target/TargetMachine.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/Support/CommandLine.h"
38 STATISTIC(NumCPEs
, "Number of constpool entries");
39 STATISTIC(NumSplit
, "Number of uncond branches inserted");
40 STATISTIC(NumCBrFixed
, "Number of cond branches fixed");
41 STATISTIC(NumUBrFixed
, "Number of uncond branches fixed");
42 STATISTIC(NumTBs
, "Number of table branches generated");
43 STATISTIC(NumT2CPShrunk
, "Number of Thumb2 constantpool instructions shrunk");
44 STATISTIC(NumT2BrShrunk
, "Number of Thumb2 immediate branches shrunk");
45 STATISTIC(NumCBZ
, "Number of CBZ / CBNZ formed");
46 STATISTIC(NumJTMoved
, "Number of jump table destination blocks moved");
47 STATISTIC(NumJTInserted
, "Number of jump table intermediate blocks inserted");
51 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden
, cl::init(true),
52 cl::desc("Adjust basic block layout to better use TB[BH]"));
55 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
56 /// requires constant pool entries to be scattered among the instructions
57 /// inside a function. To do this, it completely ignores the normal LLVM
58 /// constant pool; instead, it places constants wherever it feels like with
59 /// special instructions.
61 /// The terminology used in this pass includes:
62 /// Islands - Clumps of constants placed in the function.
63 /// Water - Potential places where an island could be formed.
64 /// CPE - A constant pool entry that has been placed somewhere, which
65 /// tracks a list of users.
66 class ARMConstantIslands
: public MachineFunctionPass
{
67 /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed
68 /// by MBB Number. The two-byte pads required for Thumb alignment are
69 /// counted as part of the following block (i.e., the offset and size for
70 /// a padded block will both be ==2 mod 4).
71 std::vector
<unsigned> BBSizes
;
73 /// BBOffsets - the offset of each MBB in bytes, starting from 0.
74 /// The two-byte pads required for Thumb alignment are counted as part of
75 /// the following block.
76 std::vector
<unsigned> BBOffsets
;
78 /// WaterList - A sorted list of basic blocks where islands could be placed
79 /// (i.e. blocks that don't fall through to the following block, due
80 /// to a return, unreachable, or unconditional branch).
81 std::vector
<MachineBasicBlock
*> WaterList
;
83 /// NewWaterList - The subset of WaterList that was created since the
84 /// previous iteration by inserting unconditional branches.
85 SmallSet
<MachineBasicBlock
*, 4> NewWaterList
;
87 typedef std::vector
<MachineBasicBlock
*>::iterator water_iterator
;
89 /// CPUser - One user of a constant pool, keeping the machine instruction
90 /// pointer, the constant pool being referenced, and the max displacement
91 /// allowed from the instruction to the CP. The HighWaterMark records the
92 /// highest basic block where a new CPEntry can be placed. To ensure this
93 /// pass terminates, the CP entries are initially placed at the end of the
94 /// function and then move monotonically to lower addresses. The
95 /// exception to this rule is when the current CP entry for a particular
96 /// CPUser is out of range, but there is another CP entry for the same
97 /// constant value in range. We want to use the existing in-range CP
98 /// entry, but if it later moves out of range, the search for new water
99 /// should resume where it left off. The HighWaterMark is used to record
104 MachineBasicBlock
*HighWaterMark
;
108 CPUser(MachineInstr
*mi
, MachineInstr
*cpemi
, unsigned maxdisp
,
109 bool neg
, bool soimm
)
110 : MI(mi
), CPEMI(cpemi
), MaxDisp(maxdisp
), NegOk(neg
), IsSoImm(soimm
) {
111 HighWaterMark
= CPEMI
->getParent();
115 /// CPUsers - Keep track of all of the machine instructions that use various
116 /// constant pools and their max displacement.
117 std::vector
<CPUser
> CPUsers
;
119 /// CPEntry - One per constant pool entry, keeping the machine instruction
120 /// pointer, the constpool index, and the number of CPUser's which
121 /// reference this entry.
126 CPEntry(MachineInstr
*cpemi
, unsigned cpi
, unsigned rc
= 0)
127 : CPEMI(cpemi
), CPI(cpi
), RefCount(rc
) {}
130 /// CPEntries - Keep track of all of the constant pool entry machine
131 /// instructions. For each original constpool index (i.e. those that
132 /// existed upon entry to this pass), it keeps a vector of entries.
133 /// Original elements are cloned as we go along; the clones are
134 /// put in the vector of the original element, but have distinct CPIs.
135 std::vector
<std::vector
<CPEntry
> > CPEntries
;
137 /// ImmBranch - One per immediate branch, keeping the machine instruction
138 /// pointer, conditional or unconditional, the max displacement,
139 /// and (if isCond is true) the corresponding unconditional branch
143 unsigned MaxDisp
: 31;
146 ImmBranch(MachineInstr
*mi
, unsigned maxdisp
, bool cond
, int ubr
)
147 : MI(mi
), MaxDisp(maxdisp
), isCond(cond
), UncondBr(ubr
) {}
150 /// ImmBranches - Keep track of all the immediate branch instructions.
152 std::vector
<ImmBranch
> ImmBranches
;
154 /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
156 SmallVector
<MachineInstr
*, 4> PushPopMIs
;
158 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
159 SmallVector
<MachineInstr
*, 4> T2JumpTables
;
161 /// HasFarJump - True if any far jump instruction has been emitted during
162 /// the branch fix up pass.
165 /// HasInlineAsm - True if the function contains inline assembly.
168 const ARMInstrInfo
*TII
;
169 const ARMSubtarget
*STI
;
170 ARMFunctionInfo
*AFI
;
176 ARMConstantIslands() : MachineFunctionPass(ID
) {}
178 virtual bool runOnMachineFunction(MachineFunction
&MF
);
180 virtual const char *getPassName() const {
181 return "ARM constant island placement and branch shortening pass";
185 void DoInitialPlacement(MachineFunction
&MF
,
186 std::vector
<MachineInstr
*> &CPEMIs
);
187 CPEntry
*findConstPoolEntry(unsigned CPI
, const MachineInstr
*CPEMI
);
188 void JumpTableFunctionScan(MachineFunction
&MF
);
189 void InitialFunctionScan(MachineFunction
&MF
,
190 const std::vector
<MachineInstr
*> &CPEMIs
);
191 MachineBasicBlock
*SplitBlockBeforeInstr(MachineInstr
*MI
);
192 void UpdateForInsertedWaterBlock(MachineBasicBlock
*NewBB
);
193 void AdjustBBOffsetsAfter(MachineBasicBlock
*BB
, int delta
);
194 bool DecrementOldEntry(unsigned CPI
, MachineInstr
* CPEMI
);
195 int LookForExistingCPEntry(CPUser
& U
, unsigned UserOffset
);
196 bool LookForWater(CPUser
&U
, unsigned UserOffset
, water_iterator
&WaterIter
);
197 void CreateNewWater(unsigned CPUserIndex
, unsigned UserOffset
,
198 MachineBasicBlock
*&NewMBB
);
199 bool HandleConstantPoolUser(MachineFunction
&MF
, unsigned CPUserIndex
);
200 void RemoveDeadCPEMI(MachineInstr
*CPEMI
);
201 bool RemoveUnusedCPEntries();
202 bool CPEIsInRange(MachineInstr
*MI
, unsigned UserOffset
,
203 MachineInstr
*CPEMI
, unsigned Disp
, bool NegOk
,
204 bool DoDump
= false);
205 bool WaterIsInRange(unsigned UserOffset
, MachineBasicBlock
*Water
,
207 bool OffsetIsInRange(unsigned UserOffset
, unsigned TrialOffset
,
208 unsigned Disp
, bool NegativeOK
, bool IsSoImm
= false);
209 bool BBIsInRange(MachineInstr
*MI
, MachineBasicBlock
*BB
, unsigned Disp
);
210 bool FixUpImmediateBr(MachineFunction
&MF
, ImmBranch
&Br
);
211 bool FixUpConditionalBr(MachineFunction
&MF
, ImmBranch
&Br
);
212 bool FixUpUnconditionalBr(MachineFunction
&MF
, ImmBranch
&Br
);
213 bool UndoLRSpillRestore();
214 bool OptimizeThumb2Instructions(MachineFunction
&MF
);
215 bool OptimizeThumb2Branches(MachineFunction
&MF
);
216 bool ReorderThumb2JumpTables(MachineFunction
&MF
);
217 bool OptimizeThumb2JumpTables(MachineFunction
&MF
);
218 MachineBasicBlock
*AdjustJTTargetBlockForward(MachineBasicBlock
*BB
,
219 MachineBasicBlock
*JTBB
);
221 unsigned GetOffsetOf(MachineInstr
*MI
) const;
223 void verify(MachineFunction
&MF
);
225 char ARMConstantIslands::ID
= 0;
228 /// verify - check BBOffsets, BBSizes, alignment of islands
229 void ARMConstantIslands::verify(MachineFunction
&MF
) {
230 assert(BBOffsets
.size() == BBSizes
.size());
231 for (unsigned i
= 1, e
= BBOffsets
.size(); i
!= e
; ++i
)
232 assert(BBOffsets
[i
-1]+BBSizes
[i
-1] == BBOffsets
[i
]);
236 for (MachineFunction::iterator MBBI
= MF
.begin(), E
= MF
.end();
238 MachineBasicBlock
*MBB
= MBBI
;
240 MBB
->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY
) {
241 unsigned MBBId
= MBB
->getNumber();
242 assert(HasInlineAsm
||
243 (BBOffsets
[MBBId
]%4 == 0 && BBSizes
[MBBId
]%4 == 0) ||
244 (BBOffsets
[MBBId
]%4 != 0 && BBSizes
[MBBId
]%4 != 0));
247 for (unsigned i
= 0, e
= CPUsers
.size(); i
!= e
; ++i
) {
248 CPUser
&U
= CPUsers
[i
];
249 unsigned UserOffset
= GetOffsetOf(U
.MI
) + (isThumb
? 4 : 8);
250 unsigned CPEOffset
= GetOffsetOf(U
.CPEMI
);
251 unsigned Disp
= UserOffset
< CPEOffset
? CPEOffset
- UserOffset
:
252 UserOffset
- CPEOffset
;
253 assert(Disp
<= U
.MaxDisp
|| "Constant pool entry out of range!");
258 /// print block size and offset information - debugging
259 void ARMConstantIslands::dumpBBs() {
260 for (unsigned J
= 0, E
= BBOffsets
.size(); J
!=E
; ++J
) {
261 DEBUG(errs() << "block " << J
<< " offset " << BBOffsets
[J
]
262 << " size " << BBSizes
[J
] << "\n");
266 /// createARMConstantIslandPass - returns an instance of the constpool
268 FunctionPass
*llvm::createARMConstantIslandPass() {
269 return new ARMConstantIslands();
272 bool ARMConstantIslands::runOnMachineFunction(MachineFunction
&MF
) {
273 MachineConstantPool
&MCP
= *MF
.getConstantPool();
275 TII
= (const ARMInstrInfo
*)MF
.getTarget().getInstrInfo();
276 AFI
= MF
.getInfo
<ARMFunctionInfo
>();
277 STI
= &MF
.getTarget().getSubtarget
<ARMSubtarget
>();
279 isThumb
= AFI
->isThumbFunction();
280 isThumb1
= AFI
->isThumb1OnlyFunction();
281 isThumb2
= AFI
->isThumb2Function();
284 HasInlineAsm
= false;
286 // Renumber all of the machine basic blocks in the function, guaranteeing that
287 // the numbers agree with the position of the block in the function.
290 // Try to reorder and otherwise adjust the block layout to make good use
291 // of the TB[BH] instructions.
292 bool MadeChange
= false;
293 if (isThumb2
&& AdjustJumpTableBlocks
) {
294 JumpTableFunctionScan(MF
);
295 MadeChange
|= ReorderThumb2JumpTables(MF
);
296 // Data is out of date, so clear it. It'll be re-computed later.
297 T2JumpTables
.clear();
298 // Blocks may have shifted around. Keep the numbering up to date.
302 // Thumb1 functions containing constant pools get 4-byte alignment.
303 // This is so we can keep exact track of where the alignment padding goes.
305 // ARM and Thumb2 functions need to be 4-byte aligned.
307 MF
.EnsureAlignment(2); // 2 = log2(4)
309 // Perform the initial placement of the constant pool entries. To start with,
310 // we put them all at the end of the function.
311 std::vector
<MachineInstr
*> CPEMIs
;
312 if (!MCP
.isEmpty()) {
313 DoInitialPlacement(MF
, CPEMIs
);
315 MF
.EnsureAlignment(2); // 2 = log2(4)
318 /// The next UID to take is the first unused one.
319 AFI
->initConstPoolEntryUId(CPEMIs
.size());
321 // Do the initial scan of the function, building up information about the
322 // sizes of each block, the location of all the water, and finding all of the
323 // constant pool users.
324 InitialFunctionScan(MF
, CPEMIs
);
329 /// Remove dead constant pool entries.
330 RemoveUnusedCPEntries();
332 // Iteratively place constant pool entries and fix up branches until there
334 unsigned NoCPIters
= 0, NoBRIters
= 0;
336 bool CPChange
= false;
337 for (unsigned i
= 0, e
= CPUsers
.size(); i
!= e
; ++i
)
338 CPChange
|= HandleConstantPoolUser(MF
, i
);
339 if (CPChange
&& ++NoCPIters
> 30)
340 llvm_unreachable("Constant Island pass failed to converge!");
343 // Clear NewWaterList now. If we split a block for branches, it should
344 // appear as "new water" for the next iteration of constant pool placement.
345 NewWaterList
.clear();
347 bool BRChange
= false;
348 for (unsigned i
= 0, e
= ImmBranches
.size(); i
!= e
; ++i
)
349 BRChange
|= FixUpImmediateBr(MF
, ImmBranches
[i
]);
350 if (BRChange
&& ++NoBRIters
> 30)
351 llvm_unreachable("Branch Fix Up pass failed to converge!");
354 if (!CPChange
&& !BRChange
)
359 // Shrink 32-bit Thumb2 branch, load, and store instructions.
360 if (isThumb2
&& !STI
->prefers32BitThumb())
361 MadeChange
|= OptimizeThumb2Instructions(MF
);
363 // After a while, this might be made debug-only, but it is not expensive.
366 // If LR has been forced spilled and no far jump (i.e. BL) has been issued,
367 // undo the spill / restore of LR if possible.
368 if (isThumb
&& !HasFarJump
&& AFI
->isLRSpilledForFarJump())
369 MadeChange
|= UndoLRSpillRestore();
371 DEBUG(errs() << '\n'; dumpBBs());
380 T2JumpTables
.clear();
385 /// DoInitialPlacement - Perform the initial placement of the constant pool
386 /// entries. To start with, we put them all at the end of the function.
387 void ARMConstantIslands::DoInitialPlacement(MachineFunction
&MF
,
388 std::vector
<MachineInstr
*> &CPEMIs
) {
389 // Create the basic block to hold the CPE's.
390 MachineBasicBlock
*BB
= MF
.CreateMachineBasicBlock();
393 // Add all of the constants from the constant pool to the end block, use an
394 // identity mapping of CPI's to CPE's.
395 const std::vector
<MachineConstantPoolEntry
> &CPs
=
396 MF
.getConstantPool()->getConstants();
398 const TargetData
&TD
= *MF
.getTarget().getTargetData();
399 for (unsigned i
= 0, e
= CPs
.size(); i
!= e
; ++i
) {
400 unsigned Size
= TD
.getTypeAllocSize(CPs
[i
].getType());
401 // Verify that all constant pool entries are a multiple of 4 bytes. If not,
402 // we would have to pad them out or something so that instructions stay
404 assert((Size
& 3) == 0 && "CP Entry not multiple of 4 bytes!");
405 MachineInstr
*CPEMI
=
406 BuildMI(BB
, DebugLoc(), TII
->get(ARM::CONSTPOOL_ENTRY
))
407 .addImm(i
).addConstantPoolIndex(i
).addImm(Size
);
408 CPEMIs
.push_back(CPEMI
);
410 // Add a new CPEntry, but no corresponding CPUser yet.
411 std::vector
<CPEntry
> CPEs
;
412 CPEs
.push_back(CPEntry(CPEMI
, i
));
413 CPEntries
.push_back(CPEs
);
415 DEBUG(errs() << "Moved CPI#" << i
<< " to end of function as #" << i
420 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
421 /// into the block immediately after it.
422 static bool BBHasFallthrough(MachineBasicBlock
*MBB
) {
423 // Get the next machine basic block in the function.
424 MachineFunction::iterator MBBI
= MBB
;
425 // Can't fall off end of function.
426 if (llvm::next(MBBI
) == MBB
->getParent()->end())
429 MachineBasicBlock
*NextBB
= llvm::next(MBBI
);
430 for (MachineBasicBlock::succ_iterator I
= MBB
->succ_begin(),
431 E
= MBB
->succ_end(); I
!= E
; ++I
)
438 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
439 /// look up the corresponding CPEntry.
440 ARMConstantIslands::CPEntry
441 *ARMConstantIslands::findConstPoolEntry(unsigned CPI
,
442 const MachineInstr
*CPEMI
) {
443 std::vector
<CPEntry
> &CPEs
= CPEntries
[CPI
];
444 // Number of entries per constpool index should be small, just do a
446 for (unsigned i
= 0, e
= CPEs
.size(); i
!= e
; ++i
) {
447 if (CPEs
[i
].CPEMI
== CPEMI
)
453 /// JumpTableFunctionScan - Do a scan of the function, building up
454 /// information about the sizes of each block and the locations of all
456 void ARMConstantIslands::JumpTableFunctionScan(MachineFunction
&MF
) {
457 for (MachineFunction::iterator MBBI
= MF
.begin(), E
= MF
.end();
459 MachineBasicBlock
&MBB
= *MBBI
;
461 for (MachineBasicBlock::iterator I
= MBB
.begin(), E
= MBB
.end();
463 if (I
->getDesc().isBranch() && I
->getOpcode() == ARM::t2BR_JT
)
464 T2JumpTables
.push_back(I
);
468 /// InitialFunctionScan - Do the initial scan of the function, building up
469 /// information about the sizes of each block, the location of all the water,
470 /// and finding all of the constant pool users.
471 void ARMConstantIslands::InitialFunctionScan(MachineFunction
&MF
,
472 const std::vector
<MachineInstr
*> &CPEMIs
) {
473 // First thing, see if the function has any inline assembly in it. If so,
474 // we have to be conservative about alignment assumptions, as we don't
475 // know for sure the size of any instructions in the inline assembly.
476 for (MachineFunction::iterator MBBI
= MF
.begin(), E
= MF
.end();
478 MachineBasicBlock
&MBB
= *MBBI
;
479 for (MachineBasicBlock::iterator I
= MBB
.begin(), E
= MBB
.end();
481 if (I
->getOpcode() == ARM::INLINEASM
)
485 // Now go back through the instructions and build up our data structures
487 for (MachineFunction::iterator MBBI
= MF
.begin(), E
= MF
.end();
489 MachineBasicBlock
&MBB
= *MBBI
;
491 // If this block doesn't fall through into the next MBB, then this is
492 // 'water' that a constant pool island could be placed.
493 if (!BBHasFallthrough(&MBB
))
494 WaterList
.push_back(&MBB
);
496 unsigned MBBSize
= 0;
497 for (MachineBasicBlock::iterator I
= MBB
.begin(), E
= MBB
.end();
499 if (I
->isDebugValue())
501 // Add instruction size to MBBSize.
502 MBBSize
+= TII
->GetInstSizeInBytes(I
);
504 int Opc
= I
->getOpcode();
505 if (I
->getDesc().isBranch()) {
512 continue; // Ignore other JT branches
514 // A Thumb1 table jump may involve padding; for the offsets to
515 // be right, functions containing these must be 4-byte aligned.
516 // tBR_JTr expands to a mov pc followed by .align 2 and then the jump
517 // table entries. So this code checks whether offset of tBR_JTr + 2
518 // is aligned. That is held in Offset+MBBSize, which already has
519 // 2 added in for the size of the mov pc instruction.
520 MF
.EnsureAlignment(2U);
521 if ((Offset
+MBBSize
)%4 != 0 || HasInlineAsm
)
522 // FIXME: Add a pseudo ALIGN instruction instead.
523 MBBSize
+= 2; // padding
524 continue; // Does not get an entry in ImmBranches
526 T2JumpTables
.push_back(I
);
527 continue; // Does not get an entry in ImmBranches
558 // Record this immediate branch.
559 unsigned MaxOffs
= ((1 << (Bits
-1))-1) * Scale
;
560 ImmBranches
.push_back(ImmBranch(I
, MaxOffs
, isCond
, UOpc
));
563 if (Opc
== ARM::tPUSH
|| Opc
== ARM::tPOP_RET
)
564 PushPopMIs
.push_back(I
);
566 if (Opc
== ARM::CONSTPOOL_ENTRY
)
569 // Scan the instructions for constant pool operands.
570 for (unsigned op
= 0, e
= I
->getNumOperands(); op
!= e
; ++op
)
571 if (I
->getOperand(op
).isCPI()) {
572 // We found one. The addressing mode tells us the max displacement
573 // from the PC that this instruction permits.
575 // Basic size info comes from the TSFlags field.
579 bool IsSoImm
= false;
583 llvm_unreachable("Unknown addressing mode for CP reference!");
586 // Taking the address of a CP entry.
588 // This takes a SoImm, which is 8 bit immediate rotated. We'll
589 // pretend the maximum offset is 255 * 4. Since each instruction
590 // 4 byte wide, this is always correct. We'll check for other
591 // displacements that fits in a SoImm as well.
597 case ARM::t2LEApcrel
:
609 Bits
= 12; // +-offset_12
616 Scale
= 4; // +(offset_8*4)
622 Scale
= 4; // +-(offset_8*4)
627 // Remember that this is a user of a CP entry.
628 unsigned CPI
= I
->getOperand(op
).getIndex();
629 MachineInstr
*CPEMI
= CPEMIs
[CPI
];
630 unsigned MaxOffs
= ((1 << Bits
)-1) * Scale
;
631 CPUsers
.push_back(CPUser(I
, CPEMI
, MaxOffs
, NegOk
, IsSoImm
));
633 // Increment corresponding CPEntry reference count.
634 CPEntry
*CPE
= findConstPoolEntry(CPI
, CPEMI
);
635 assert(CPE
&& "Cannot find a corresponding CPEntry!");
638 // Instructions can only use one CP entry, don't bother scanning the
639 // rest of the operands.
644 // In thumb mode, if this block is a constpool island, we may need padding
645 // so it's aligned on 4 byte boundary.
648 MBB
.begin()->getOpcode() == ARM::CONSTPOOL_ENTRY
&&
649 ((Offset
%4) != 0 || HasInlineAsm
))
652 BBSizes
.push_back(MBBSize
);
653 BBOffsets
.push_back(Offset
);
658 /// GetOffsetOf - Return the current offset of the specified machine instruction
659 /// from the start of the function. This offset changes as stuff is moved
660 /// around inside the function.
661 unsigned ARMConstantIslands::GetOffsetOf(MachineInstr
*MI
) const {
662 MachineBasicBlock
*MBB
= MI
->getParent();
664 // The offset is composed of two things: the sum of the sizes of all MBB's
665 // before this instruction's block, and the offset from the start of the block
667 unsigned Offset
= BBOffsets
[MBB
->getNumber()];
669 // If we're looking for a CONSTPOOL_ENTRY in Thumb, see if this block has
670 // alignment padding, and compensate if so.
672 MI
->getOpcode() == ARM::CONSTPOOL_ENTRY
&&
673 (Offset
%4 != 0 || HasInlineAsm
))
676 // Sum instructions before MI in MBB.
677 for (MachineBasicBlock::iterator I
= MBB
->begin(); ; ++I
) {
678 assert(I
!= MBB
->end() && "Didn't find MI in its own basic block?");
679 if (&*I
== MI
) return Offset
;
680 Offset
+= TII
->GetInstSizeInBytes(I
);
684 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
686 static bool CompareMBBNumbers(const MachineBasicBlock
*LHS
,
687 const MachineBasicBlock
*RHS
) {
688 return LHS
->getNumber() < RHS
->getNumber();
691 /// UpdateForInsertedWaterBlock - When a block is newly inserted into the
692 /// machine function, it upsets all of the block numbers. Renumber the blocks
693 /// and update the arrays that parallel this numbering.
694 void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock
*NewBB
) {
695 // Renumber the MBB's to keep them consequtive.
696 NewBB
->getParent()->RenumberBlocks(NewBB
);
698 // Insert a size into BBSizes to align it properly with the (newly
699 // renumbered) block numbers.
700 BBSizes
.insert(BBSizes
.begin()+NewBB
->getNumber(), 0);
702 // Likewise for BBOffsets.
703 BBOffsets
.insert(BBOffsets
.begin()+NewBB
->getNumber(), 0);
705 // Next, update WaterList. Specifically, we need to add NewMBB as having
706 // available water after it.
708 std::lower_bound(WaterList
.begin(), WaterList
.end(), NewBB
,
710 WaterList
.insert(IP
, NewBB
);
714 /// Split the basic block containing MI into two blocks, which are joined by
715 /// an unconditional branch. Update data structures and renumber blocks to
716 /// account for this change and returns the newly created block.
717 MachineBasicBlock
*ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr
*MI
) {
718 MachineBasicBlock
*OrigBB
= MI
->getParent();
719 MachineFunction
&MF
= *OrigBB
->getParent();
721 // Create a new MBB for the code after the OrigBB.
722 MachineBasicBlock
*NewBB
=
723 MF
.CreateMachineBasicBlock(OrigBB
->getBasicBlock());
724 MachineFunction::iterator MBBI
= OrigBB
; ++MBBI
;
725 MF
.insert(MBBI
, NewBB
);
727 // Splice the instructions starting with MI over to NewBB.
728 NewBB
->splice(NewBB
->end(), OrigBB
, MI
, OrigBB
->end());
730 // Add an unconditional branch from OrigBB to NewBB.
731 // Note the new unconditional branch is not being recorded.
732 // There doesn't seem to be meaningful DebugInfo available; this doesn't
733 // correspond to anything in the source.
734 unsigned Opc
= isThumb
? (isThumb2
? ARM::t2B
: ARM::tB
) : ARM::B
;
735 BuildMI(OrigBB
, DebugLoc(), TII
->get(Opc
)).addMBB(NewBB
);
738 // Update the CFG. All succs of OrigBB are now succs of NewBB.
739 while (!OrigBB
->succ_empty()) {
740 MachineBasicBlock
*Succ
= *OrigBB
->succ_begin();
741 OrigBB
->removeSuccessor(Succ
);
742 NewBB
->addSuccessor(Succ
);
744 // This pass should be run after register allocation, so there should be no
745 // PHI nodes to update.
746 assert((Succ
->empty() || !Succ
->begin()->isPHI())
747 && "PHI nodes should be eliminated by now!");
750 // OrigBB branches to NewBB.
751 OrigBB
->addSuccessor(NewBB
);
753 // Update internal data structures to account for the newly inserted MBB.
754 // This is almost the same as UpdateForInsertedWaterBlock, except that
755 // the Water goes after OrigBB, not NewBB.
756 MF
.RenumberBlocks(NewBB
);
758 // Insert a size into BBSizes to align it properly with the (newly
759 // renumbered) block numbers.
760 BBSizes
.insert(BBSizes
.begin()+NewBB
->getNumber(), 0);
762 // Likewise for BBOffsets.
763 BBOffsets
.insert(BBOffsets
.begin()+NewBB
->getNumber(), 0);
765 // Next, update WaterList. Specifically, we need to add OrigMBB as having
766 // available water after it (but not if it's already there, which happens
767 // when splitting before a conditional branch that is followed by an
768 // unconditional branch - in that case we want to insert NewBB).
770 std::lower_bound(WaterList
.begin(), WaterList
.end(), OrigBB
,
772 MachineBasicBlock
* WaterBB
= *IP
;
773 if (WaterBB
== OrigBB
)
774 WaterList
.insert(llvm::next(IP
), NewBB
);
776 WaterList
.insert(IP
, OrigBB
);
777 NewWaterList
.insert(OrigBB
);
779 unsigned OrigBBI
= OrigBB
->getNumber();
780 unsigned NewBBI
= NewBB
->getNumber();
782 int delta
= isThumb1
? 2 : 4;
784 // Figure out how large the OrigBB is. As the first half of the original
785 // block, it cannot contain a tablejump. The size includes
786 // the new jump we added. (It should be possible to do this without
787 // recounting everything, but it's very confusing, and this is rarely
789 unsigned OrigBBSize
= 0;
790 for (MachineBasicBlock::iterator I
= OrigBB
->begin(), E
= OrigBB
->end();
792 OrigBBSize
+= TII
->GetInstSizeInBytes(I
);
793 BBSizes
[OrigBBI
] = OrigBBSize
;
795 // ...and adjust BBOffsets for NewBB accordingly.
796 BBOffsets
[NewBBI
] = BBOffsets
[OrigBBI
] + BBSizes
[OrigBBI
];
798 // Figure out how large the NewMBB is. As the second half of the original
799 // block, it may contain a tablejump.
800 unsigned NewBBSize
= 0;
801 for (MachineBasicBlock::iterator I
= NewBB
->begin(), E
= NewBB
->end();
803 NewBBSize
+= TII
->GetInstSizeInBytes(I
);
804 // Set the size of NewBB in BBSizes. It does not include any padding now.
805 BBSizes
[NewBBI
] = NewBBSize
;
807 MachineInstr
* ThumbJTMI
= prior(NewBB
->end());
808 if (ThumbJTMI
->getOpcode() == ARM::tBR_JTr
) {
809 // We've added another 2-byte instruction before this tablejump, which
810 // means we will always need padding if we didn't before, and vice versa.
812 // The original offset of the jump instruction was:
813 unsigned OrigOffset
= BBOffsets
[OrigBBI
] + BBSizes
[OrigBBI
] - delta
;
814 if (OrigOffset
%4 == 0) {
815 // We had padding before and now we don't. No net change in code size.
818 // We didn't have padding before and now we do.
819 BBSizes
[NewBBI
] += 2;
824 // All BBOffsets following these blocks must be modified.
826 AdjustBBOffsetsAfter(NewBB
, delta
);
831 /// OffsetIsInRange - Checks whether UserOffset (the location of a constant pool
832 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
833 /// constant pool entry).
834 bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset
,
835 unsigned TrialOffset
, unsigned MaxDisp
,
836 bool NegativeOK
, bool IsSoImm
) {
837 // On Thumb offsets==2 mod 4 are rounded down by the hardware for
838 // purposes of the displacement computation; compensate for that here.
839 // Effectively, the valid range of displacements is 2 bytes smaller for such
841 unsigned TotalAdj
= 0;
842 if (isThumb
&& UserOffset
%4 !=0) {
846 // CPEs will be rounded up to a multiple of 4.
847 if (isThumb
&& TrialOffset
%4 != 0) {
852 // In Thumb2 mode, later branch adjustments can shift instructions up and
853 // cause alignment change. In the worst case scenario this can cause the
854 // user's effective address to be subtracted by 2 and the CPE's address to
856 if (isThumb2
&& TotalAdj
!= 4)
857 MaxDisp
-= (4 - TotalAdj
);
859 if (UserOffset
<= TrialOffset
) {
860 // User before the Trial.
861 if (TrialOffset
- UserOffset
<= MaxDisp
)
863 // FIXME: Make use full range of soimm values.
864 } else if (NegativeOK
) {
865 if (UserOffset
- TrialOffset
<= MaxDisp
)
867 // FIXME: Make use full range of soimm values.
872 /// WaterIsInRange - Returns true if a CPE placed after the specified
873 /// Water (a basic block) will be in range for the specific MI.
875 bool ARMConstantIslands::WaterIsInRange(unsigned UserOffset
,
876 MachineBasicBlock
* Water
, CPUser
&U
) {
877 unsigned MaxDisp
= U
.MaxDisp
;
878 unsigned CPEOffset
= BBOffsets
[Water
->getNumber()] +
879 BBSizes
[Water
->getNumber()];
881 // If the CPE is to be inserted before the instruction, that will raise
882 // the offset of the instruction.
883 if (CPEOffset
< UserOffset
)
884 UserOffset
+= U
.CPEMI
->getOperand(2).getImm();
886 return OffsetIsInRange(UserOffset
, CPEOffset
, MaxDisp
, U
.NegOk
, U
.IsSoImm
);
889 /// CPEIsInRange - Returns true if the distance between specific MI and
890 /// specific ConstPool entry instruction can fit in MI's displacement field.
891 bool ARMConstantIslands::CPEIsInRange(MachineInstr
*MI
, unsigned UserOffset
,
892 MachineInstr
*CPEMI
, unsigned MaxDisp
,
893 bool NegOk
, bool DoDump
) {
894 unsigned CPEOffset
= GetOffsetOf(CPEMI
);
895 assert((CPEOffset
%4 == 0 || HasInlineAsm
) && "Misaligned CPE");
898 DEBUG(errs() << "User of CPE#" << CPEMI
->getOperand(0).getImm()
899 << " max delta=" << MaxDisp
900 << " insn address=" << UserOffset
901 << " CPE address=" << CPEOffset
902 << " offset=" << int(CPEOffset
-UserOffset
) << "\t" << *MI
);
905 return OffsetIsInRange(UserOffset
, CPEOffset
, MaxDisp
, NegOk
);
909 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
910 /// unconditionally branches to its only successor.
911 static bool BBIsJumpedOver(MachineBasicBlock
*MBB
) {
912 if (MBB
->pred_size() != 1 || MBB
->succ_size() != 1)
915 MachineBasicBlock
*Succ
= *MBB
->succ_begin();
916 MachineBasicBlock
*Pred
= *MBB
->pred_begin();
917 MachineInstr
*PredMI
= &Pred
->back();
918 if (PredMI
->getOpcode() == ARM::B
|| PredMI
->getOpcode() == ARM::tB
919 || PredMI
->getOpcode() == ARM::t2B
)
920 return PredMI
->getOperand(0).getMBB() == Succ
;
925 void ARMConstantIslands::AdjustBBOffsetsAfter(MachineBasicBlock
*BB
,
927 MachineFunction::iterator MBBI
= BB
; MBBI
= llvm::next(MBBI
);
928 for(unsigned i
= BB
->getNumber()+1, e
= BB
->getParent()->getNumBlockIDs();
930 BBOffsets
[i
] += delta
;
931 // If some existing blocks have padding, adjust the padding as needed, a
932 // bit tricky. delta can be negative so don't use % on that.
935 MachineBasicBlock
*MBB
= MBBI
;
936 if (!MBB
->empty() && !HasInlineAsm
) {
937 // Constant pool entries require padding.
938 if (MBB
->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY
) {
939 unsigned OldOffset
= BBOffsets
[i
] - delta
;
940 if ((OldOffset
%4) == 0 && (BBOffsets
[i
]%4) != 0) {
944 } else if ((OldOffset
%4) != 0 && (BBOffsets
[i
]%4) == 0) {
945 // remove existing padding
950 // Thumb1 jump tables require padding. They should be at the end;
951 // following unconditional branches are removed by AnalyzeBranch.
952 // tBR_JTr expands to a mov pc followed by .align 2 and then the jump
953 // table entries. So this code checks whether offset of tBR_JTr
954 // is aligned; if it is, the offset of the jump table following the
955 // instruction will not be aligned, and we need padding.
956 MachineInstr
*ThumbJTMI
= prior(MBB
->end());
957 if (ThumbJTMI
->getOpcode() == ARM::tBR_JTr
) {
958 unsigned NewMIOffset
= GetOffsetOf(ThumbJTMI
);
959 unsigned OldMIOffset
= NewMIOffset
- delta
;
960 if ((OldMIOffset
%4) == 0 && (NewMIOffset
%4) != 0) {
961 // remove existing padding
964 } else if ((OldMIOffset
%4) != 0 && (NewMIOffset
%4) == 0) {
973 MBBI
= llvm::next(MBBI
);
977 /// DecrementOldEntry - find the constant pool entry with index CPI
978 /// and instruction CPEMI, and decrement its refcount. If the refcount
979 /// becomes 0 remove the entry and instruction. Returns true if we removed
980 /// the entry, false if we didn't.
982 bool ARMConstantIslands::DecrementOldEntry(unsigned CPI
, MachineInstr
*CPEMI
) {
983 // Find the old entry. Eliminate it if it is no longer used.
984 CPEntry
*CPE
= findConstPoolEntry(CPI
, CPEMI
);
985 assert(CPE
&& "Unexpected!");
986 if (--CPE
->RefCount
== 0) {
987 RemoveDeadCPEMI(CPEMI
);
995 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
996 /// if not, see if an in-range clone of the CPE is in range, and if so,
997 /// change the data structures so the user references the clone. Returns:
998 /// 0 = no existing entry found
999 /// 1 = entry found, and there were no code insertions or deletions
1000 /// 2 = entry found, and there were code insertions or deletions
1001 int ARMConstantIslands::LookForExistingCPEntry(CPUser
& U
, unsigned UserOffset
)
1003 MachineInstr
*UserMI
= U
.MI
;
1004 MachineInstr
*CPEMI
= U
.CPEMI
;
1006 // Check to see if the CPE is already in-range.
1007 if (CPEIsInRange(UserMI
, UserOffset
, CPEMI
, U
.MaxDisp
, U
.NegOk
, true)) {
1008 DEBUG(errs() << "In range\n");
1012 // No. Look for previously created clones of the CPE that are in range.
1013 unsigned CPI
= CPEMI
->getOperand(1).getIndex();
1014 std::vector
<CPEntry
> &CPEs
= CPEntries
[CPI
];
1015 for (unsigned i
= 0, e
= CPEs
.size(); i
!= e
; ++i
) {
1016 // We already tried this one
1017 if (CPEs
[i
].CPEMI
== CPEMI
)
1019 // Removing CPEs can leave empty entries, skip
1020 if (CPEs
[i
].CPEMI
== NULL
)
1022 if (CPEIsInRange(UserMI
, UserOffset
, CPEs
[i
].CPEMI
, U
.MaxDisp
, U
.NegOk
)) {
1023 DEBUG(errs() << "Replacing CPE#" << CPI
<< " with CPE#"
1024 << CPEs
[i
].CPI
<< "\n");
1025 // Point the CPUser node to the replacement
1026 U
.CPEMI
= CPEs
[i
].CPEMI
;
1027 // Change the CPI in the instruction operand to refer to the clone.
1028 for (unsigned j
= 0, e
= UserMI
->getNumOperands(); j
!= e
; ++j
)
1029 if (UserMI
->getOperand(j
).isCPI()) {
1030 UserMI
->getOperand(j
).setIndex(CPEs
[i
].CPI
);
1033 // Adjust the refcount of the clone...
1035 // ...and the original. If we didn't remove the old entry, none of the
1036 // addresses changed, so we don't need another pass.
1037 return DecrementOldEntry(CPI
, CPEMI
) ? 2 : 1;
1043 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1044 /// the specific unconditional branch instruction.
1045 static inline unsigned getUnconditionalBrDisp(int Opc
) {
1048 return ((1<<10)-1)*2;
1050 return ((1<<23)-1)*2;
1055 return ((1<<23)-1)*4;
1058 /// LookForWater - Look for an existing entry in the WaterList in which
1059 /// we can place the CPE referenced from U so it's within range of U's MI.
1060 /// Returns true if found, false if not. If it returns true, WaterIter
1061 /// is set to the WaterList entry. For Thumb, prefer water that will not
1062 /// introduce padding to water that will. To ensure that this pass
1063 /// terminates, the CPE location for a particular CPUser is only allowed to
1064 /// move to a lower address, so search backward from the end of the list and
1065 /// prefer the first water that is in range.
1066 bool ARMConstantIslands::LookForWater(CPUser
&U
, unsigned UserOffset
,
1067 water_iterator
&WaterIter
) {
1068 if (WaterList
.empty())
1071 bool FoundWaterThatWouldPad
= false;
1072 water_iterator IPThatWouldPad
;
1073 for (water_iterator IP
= prior(WaterList
.end()),
1074 B
= WaterList
.begin();; --IP
) {
1075 MachineBasicBlock
* WaterBB
= *IP
;
1076 // Check if water is in range and is either at a lower address than the
1077 // current "high water mark" or a new water block that was created since
1078 // the previous iteration by inserting an unconditional branch. In the
1079 // latter case, we want to allow resetting the high water mark back to
1080 // this new water since we haven't seen it before. Inserting branches
1081 // should be relatively uncommon and when it does happen, we want to be
1082 // sure to take advantage of it for all the CPEs near that block, so that
1083 // we don't insert more branches than necessary.
1084 if (WaterIsInRange(UserOffset
, WaterBB
, U
) &&
1085 (WaterBB
->getNumber() < U
.HighWaterMark
->getNumber() ||
1086 NewWaterList
.count(WaterBB
))) {
1087 unsigned WBBId
= WaterBB
->getNumber();
1089 (BBOffsets
[WBBId
] + BBSizes
[WBBId
])%4 != 0) {
1090 // This is valid Water, but would introduce padding. Remember
1091 // it in case we don't find any Water that doesn't do this.
1092 if (!FoundWaterThatWouldPad
) {
1093 FoundWaterThatWouldPad
= true;
1094 IPThatWouldPad
= IP
;
1104 if (FoundWaterThatWouldPad
) {
1105 WaterIter
= IPThatWouldPad
;
1111 /// CreateNewWater - No existing WaterList entry will work for
1112 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the
1113 /// block is used if in range, and the conditional branch munged so control
1114 /// flow is correct. Otherwise the block is split to create a hole with an
1115 /// unconditional branch around it. In either case NewMBB is set to a
1116 /// block following which the new island can be inserted (the WaterList
1117 /// is not adjusted).
1118 void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex
,
1119 unsigned UserOffset
,
1120 MachineBasicBlock
*&NewMBB
) {
1121 CPUser
&U
= CPUsers
[CPUserIndex
];
1122 MachineInstr
*UserMI
= U
.MI
;
1123 MachineInstr
*CPEMI
= U
.CPEMI
;
1124 MachineBasicBlock
*UserMBB
= UserMI
->getParent();
1125 unsigned OffsetOfNextBlock
= BBOffsets
[UserMBB
->getNumber()] +
1126 BBSizes
[UserMBB
->getNumber()];
1127 assert(OffsetOfNextBlock
== BBOffsets
[UserMBB
->getNumber()+1]);
1129 // If the block does not end in an unconditional branch already, and if the
1130 // end of the block is within range, make new water there. (The addition
1131 // below is for the unconditional branch we will be adding: 4 bytes on ARM +
1132 // Thumb2, 2 on Thumb1. Possible Thumb1 alignment padding is allowed for
1133 // inside OffsetIsInRange.
1134 if (BBHasFallthrough(UserMBB
) &&
1135 OffsetIsInRange(UserOffset
, OffsetOfNextBlock
+ (isThumb1
? 2: 4),
1136 U
.MaxDisp
, U
.NegOk
, U
.IsSoImm
)) {
1137 DEBUG(errs() << "Split at end of block\n");
1138 if (&UserMBB
->back() == UserMI
)
1139 assert(BBHasFallthrough(UserMBB
) && "Expected a fallthrough BB!");
1140 NewMBB
= llvm::next(MachineFunction::iterator(UserMBB
));
1141 // Add an unconditional branch from UserMBB to fallthrough block.
1142 // Record it for branch lengthening; this new branch will not get out of
1143 // range, but if the preceding conditional branch is out of range, the
1144 // targets will be exchanged, and the altered branch may be out of
1145 // range, so the machinery has to know about it.
1146 int UncondBr
= isThumb
? ((isThumb2
) ? ARM::t2B
: ARM::tB
) : ARM::B
;
1147 BuildMI(UserMBB
, DebugLoc(), TII
->get(UncondBr
)).addMBB(NewMBB
);
1148 unsigned MaxDisp
= getUnconditionalBrDisp(UncondBr
);
1149 ImmBranches
.push_back(ImmBranch(&UserMBB
->back(),
1150 MaxDisp
, false, UncondBr
));
1151 int delta
= isThumb1
? 2 : 4;
1152 BBSizes
[UserMBB
->getNumber()] += delta
;
1153 AdjustBBOffsetsAfter(UserMBB
, delta
);
1155 // What a big block. Find a place within the block to split it.
1156 // This is a little tricky on Thumb1 since instructions are 2 bytes
1157 // and constant pool entries are 4 bytes: if instruction I references
1158 // island CPE, and instruction I+1 references CPE', it will
1159 // not work well to put CPE as far forward as possible, since then
1160 // CPE' cannot immediately follow it (that location is 2 bytes
1161 // farther away from I+1 than CPE was from I) and we'd need to create
1162 // a new island. So, we make a first guess, then walk through the
1163 // instructions between the one currently being looked at and the
1164 // possible insertion point, and make sure any other instructions
1165 // that reference CPEs will be able to use the same island area;
1166 // if not, we back up the insertion point.
1168 // The 4 in the following is for the unconditional branch we'll be
1169 // inserting (allows for long branch on Thumb1). Alignment of the
1170 // island is handled inside OffsetIsInRange.
1171 unsigned BaseInsertOffset
= UserOffset
+ U
.MaxDisp
-4;
1172 // This could point off the end of the block if we've already got
1173 // constant pool entries following this block; only the last one is
1174 // in the water list. Back past any possible branches (allow for a
1175 // conditional and a maximally long unconditional).
1176 if (BaseInsertOffset
>= BBOffsets
[UserMBB
->getNumber()+1])
1177 BaseInsertOffset
= BBOffsets
[UserMBB
->getNumber()+1] -
1179 unsigned EndInsertOffset
= BaseInsertOffset
+
1180 CPEMI
->getOperand(2).getImm();
1181 MachineBasicBlock::iterator MI
= UserMI
;
1183 unsigned CPUIndex
= CPUserIndex
+1;
1184 unsigned NumCPUsers
= CPUsers
.size();
1185 MachineInstr
*LastIT
= 0;
1186 for (unsigned Offset
= UserOffset
+TII
->GetInstSizeInBytes(UserMI
);
1187 Offset
< BaseInsertOffset
;
1188 Offset
+= TII
->GetInstSizeInBytes(MI
),
1189 MI
= llvm::next(MI
)) {
1190 if (CPUIndex
< NumCPUsers
&& CPUsers
[CPUIndex
].MI
== MI
) {
1191 CPUser
&U
= CPUsers
[CPUIndex
];
1192 if (!OffsetIsInRange(Offset
, EndInsertOffset
,
1193 U
.MaxDisp
, U
.NegOk
, U
.IsSoImm
)) {
1194 BaseInsertOffset
-= (isThumb1
? 2 : 4);
1195 EndInsertOffset
-= (isThumb1
? 2 : 4);
1197 // This is overly conservative, as we don't account for CPEMIs
1198 // being reused within the block, but it doesn't matter much.
1199 EndInsertOffset
+= CPUsers
[CPUIndex
].CPEMI
->getOperand(2).getImm();
1203 // Remember the last IT instruction.
1204 if (MI
->getOpcode() == ARM::t2IT
)
1208 DEBUG(errs() << "Split in middle of big block\n");
1211 // Avoid splitting an IT block.
1213 unsigned PredReg
= 0;
1214 ARMCC::CondCodes CC
= llvm::getITInstrPredicate(MI
, PredReg
);
1215 if (CC
!= ARMCC::AL
)
1218 NewMBB
= SplitBlockBeforeInstr(MI
);
1222 /// HandleConstantPoolUser - Analyze the specified user, checking to see if it
1223 /// is out-of-range. If so, pick up the constant pool value and move it some
1224 /// place in-range. Return true if we changed any addresses (thus must run
1225 /// another pass of branch lengthening), false otherwise.
1226 bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction
&MF
,
1227 unsigned CPUserIndex
) {
1228 CPUser
&U
= CPUsers
[CPUserIndex
];
1229 MachineInstr
*UserMI
= U
.MI
;
1230 MachineInstr
*CPEMI
= U
.CPEMI
;
1231 unsigned CPI
= CPEMI
->getOperand(1).getIndex();
1232 unsigned Size
= CPEMI
->getOperand(2).getImm();
1233 // Compute this only once, it's expensive. The 4 or 8 is the value the
1234 // hardware keeps in the PC.
1235 unsigned UserOffset
= GetOffsetOf(UserMI
) + (isThumb
? 4 : 8);
1237 // See if the current entry is within range, or there is a clone of it
1239 int result
= LookForExistingCPEntry(U
, UserOffset
);
1240 if (result
==1) return false;
1241 else if (result
==2) return true;
1243 // No existing clone of this CPE is within range.
1244 // We will be generating a new clone. Get a UID for it.
1245 unsigned ID
= AFI
->createConstPoolEntryUId();
1247 // Look for water where we can place this CPE.
1248 MachineBasicBlock
*NewIsland
= MF
.CreateMachineBasicBlock();
1249 MachineBasicBlock
*NewMBB
;
1251 if (LookForWater(U
, UserOffset
, IP
)) {
1252 DEBUG(errs() << "found water in range\n");
1253 MachineBasicBlock
*WaterBB
= *IP
;
1255 // If the original WaterList entry was "new water" on this iteration,
1256 // propagate that to the new island. This is just keeping NewWaterList
1257 // updated to match the WaterList, which will be updated below.
1258 if (NewWaterList
.count(WaterBB
)) {
1259 NewWaterList
.erase(WaterBB
);
1260 NewWaterList
.insert(NewIsland
);
1262 // The new CPE goes before the following block (NewMBB).
1263 NewMBB
= llvm::next(MachineFunction::iterator(WaterBB
));
1267 DEBUG(errs() << "No water found\n");
1268 CreateNewWater(CPUserIndex
, UserOffset
, NewMBB
);
1270 // SplitBlockBeforeInstr adds to WaterList, which is important when it is
1271 // called while handling branches so that the water will be seen on the
1272 // next iteration for constant pools, but in this context, we don't want
1273 // it. Check for this so it will be removed from the WaterList.
1274 // Also remove any entry from NewWaterList.
1275 MachineBasicBlock
*WaterBB
= prior(MachineFunction::iterator(NewMBB
));
1276 IP
= std::find(WaterList
.begin(), WaterList
.end(), WaterBB
);
1277 if (IP
!= WaterList
.end())
1278 NewWaterList
.erase(WaterBB
);
1280 // We are adding new water. Update NewWaterList.
1281 NewWaterList
.insert(NewIsland
);
1284 // Remove the original WaterList entry; we want subsequent insertions in
1285 // this vicinity to go after the one we're about to insert. This
1286 // considerably reduces the number of times we have to move the same CPE
1287 // more than once and is also important to ensure the algorithm terminates.
1288 if (IP
!= WaterList
.end())
1289 WaterList
.erase(IP
);
1291 // Okay, we know we can put an island before NewMBB now, do it!
1292 MF
.insert(NewMBB
, NewIsland
);
1294 // Update internal data structures to account for the newly inserted MBB.
1295 UpdateForInsertedWaterBlock(NewIsland
);
1297 // Decrement the old entry, and remove it if refcount becomes 0.
1298 DecrementOldEntry(CPI
, CPEMI
);
1300 // Now that we have an island to add the CPE to, clone the original CPE and
1301 // add it to the island.
1302 U
.HighWaterMark
= NewIsland
;
1303 U
.CPEMI
= BuildMI(NewIsland
, DebugLoc(), TII
->get(ARM::CONSTPOOL_ENTRY
))
1304 .addImm(ID
).addConstantPoolIndex(CPI
).addImm(Size
);
1305 CPEntries
[CPI
].push_back(CPEntry(U
.CPEMI
, ID
, 1));
1308 BBOffsets
[NewIsland
->getNumber()] = BBOffsets
[NewMBB
->getNumber()];
1309 // Compensate for .align 2 in thumb mode.
1310 if (isThumb
&& (BBOffsets
[NewIsland
->getNumber()]%4 != 0 || HasInlineAsm
))
1312 // Increase the size of the island block to account for the new entry.
1313 BBSizes
[NewIsland
->getNumber()] += Size
;
1314 AdjustBBOffsetsAfter(NewIsland
, Size
);
1316 // Finally, change the CPI in the instruction operand to be ID.
1317 for (unsigned i
= 0, e
= UserMI
->getNumOperands(); i
!= e
; ++i
)
1318 if (UserMI
->getOperand(i
).isCPI()) {
1319 UserMI
->getOperand(i
).setIndex(ID
);
1323 DEBUG(errs() << " Moved CPE to #" << ID
<< " CPI=" << CPI
1324 << '\t' << *UserMI
);
1329 /// RemoveDeadCPEMI - Remove a dead constant pool entry instruction. Update
1330 /// sizes and offsets of impacted basic blocks.
1331 void ARMConstantIslands::RemoveDeadCPEMI(MachineInstr
*CPEMI
) {
1332 MachineBasicBlock
*CPEBB
= CPEMI
->getParent();
1333 unsigned Size
= CPEMI
->getOperand(2).getImm();
1334 CPEMI
->eraseFromParent();
1335 BBSizes
[CPEBB
->getNumber()] -= Size
;
1336 // All succeeding offsets have the current size value added in, fix this.
1337 if (CPEBB
->empty()) {
1338 // In thumb1 mode, the size of island may be padded by two to compensate for
1339 // the alignment requirement. Then it will now be 2 when the block is
1340 // empty, so fix this.
1341 // All succeeding offsets have the current size value added in, fix this.
1342 if (BBSizes
[CPEBB
->getNumber()] != 0) {
1343 Size
+= BBSizes
[CPEBB
->getNumber()];
1344 BBSizes
[CPEBB
->getNumber()] = 0;
1347 AdjustBBOffsetsAfter(CPEBB
, -Size
);
1348 // An island has only one predecessor BB and one successor BB. Check if
1349 // this BB's predecessor jumps directly to this BB's successor. This
1350 // shouldn't happen currently.
1351 assert(!BBIsJumpedOver(CPEBB
) && "How did this happen?");
1352 // FIXME: remove the empty blocks after all the work is done?
1355 /// RemoveUnusedCPEntries - Remove constant pool entries whose refcounts
1357 bool ARMConstantIslands::RemoveUnusedCPEntries() {
1358 unsigned MadeChange
= false;
1359 for (unsigned i
= 0, e
= CPEntries
.size(); i
!= e
; ++i
) {
1360 std::vector
<CPEntry
> &CPEs
= CPEntries
[i
];
1361 for (unsigned j
= 0, ee
= CPEs
.size(); j
!= ee
; ++j
) {
1362 if (CPEs
[j
].RefCount
== 0 && CPEs
[j
].CPEMI
) {
1363 RemoveDeadCPEMI(CPEs
[j
].CPEMI
);
1364 CPEs
[j
].CPEMI
= NULL
;
1372 /// BBIsInRange - Returns true if the distance between specific MI and
1373 /// specific BB can fit in MI's displacement field.
1374 bool ARMConstantIslands::BBIsInRange(MachineInstr
*MI
,MachineBasicBlock
*DestBB
,
1376 unsigned PCAdj
= isThumb
? 4 : 8;
1377 unsigned BrOffset
= GetOffsetOf(MI
) + PCAdj
;
1378 unsigned DestOffset
= BBOffsets
[DestBB
->getNumber()];
1380 DEBUG(errs() << "Branch of destination BB#" << DestBB
->getNumber()
1381 << " from BB#" << MI
->getParent()->getNumber()
1382 << " max delta=" << MaxDisp
1383 << " from " << GetOffsetOf(MI
) << " to " << DestOffset
1384 << " offset " << int(DestOffset
-BrOffset
) << "\t" << *MI
);
1386 if (BrOffset
<= DestOffset
) {
1387 // Branch before the Dest.
1388 if (DestOffset
-BrOffset
<= MaxDisp
)
1391 if (BrOffset
-DestOffset
<= MaxDisp
)
1397 /// FixUpImmediateBr - Fix up an immediate branch whose destination is too far
1398 /// away to fit in its displacement field.
1399 bool ARMConstantIslands::FixUpImmediateBr(MachineFunction
&MF
, ImmBranch
&Br
) {
1400 MachineInstr
*MI
= Br
.MI
;
1401 MachineBasicBlock
*DestBB
= MI
->getOperand(0).getMBB();
1403 // Check to see if the DestBB is already in-range.
1404 if (BBIsInRange(MI
, DestBB
, Br
.MaxDisp
))
1408 return FixUpUnconditionalBr(MF
, Br
);
1409 return FixUpConditionalBr(MF
, Br
);
1412 /// FixUpUnconditionalBr - Fix up an unconditional branch whose destination is
1413 /// too far away to fit in its displacement field. If the LR register has been
1414 /// spilled in the epilogue, then we can use BL to implement a far jump.
1415 /// Otherwise, add an intermediate branch instruction to a branch.
1417 ARMConstantIslands::FixUpUnconditionalBr(MachineFunction
&MF
, ImmBranch
&Br
) {
1418 MachineInstr
*MI
= Br
.MI
;
1419 MachineBasicBlock
*MBB
= MI
->getParent();
1421 llvm_unreachable("FixUpUnconditionalBr is Thumb1 only!");
1423 // Use BL to implement far jump.
1424 Br
.MaxDisp
= (1 << 21) * 2;
1425 MI
->setDesc(TII
->get(ARM::tBfar
));
1426 BBSizes
[MBB
->getNumber()] += 2;
1427 AdjustBBOffsetsAfter(MBB
, 2);
1431 DEBUG(errs() << " Changed B to long jump " << *MI
);
1436 /// FixUpConditionalBr - Fix up a conditional branch whose destination is too
1437 /// far away to fit in its displacement field. It is converted to an inverse
1438 /// conditional branch + an unconditional branch to the destination.
1440 ARMConstantIslands::FixUpConditionalBr(MachineFunction
&MF
, ImmBranch
&Br
) {
1441 MachineInstr
*MI
= Br
.MI
;
1442 MachineBasicBlock
*DestBB
= MI
->getOperand(0).getMBB();
1444 // Add an unconditional branch to the destination and invert the branch
1445 // condition to jump over it:
1451 ARMCC::CondCodes CC
= (ARMCC::CondCodes
)MI
->getOperand(1).getImm();
1452 CC
= ARMCC::getOppositeCondition(CC
);
1453 unsigned CCReg
= MI
->getOperand(2).getReg();
1455 // If the branch is at the end of its MBB and that has a fall-through block,
1456 // direct the updated conditional branch to the fall-through block. Otherwise,
1457 // split the MBB before the next instruction.
1458 MachineBasicBlock
*MBB
= MI
->getParent();
1459 MachineInstr
*BMI
= &MBB
->back();
1460 bool NeedSplit
= (BMI
!= MI
) || !BBHasFallthrough(MBB
);
1464 if (llvm::next(MachineBasicBlock::iterator(MI
)) == prior(MBB
->end()) &&
1465 BMI
->getOpcode() == Br
.UncondBr
) {
1466 // Last MI in the BB is an unconditional branch. Can we simply invert the
1467 // condition and swap destinations:
1473 MachineBasicBlock
*NewDest
= BMI
->getOperand(0).getMBB();
1474 if (BBIsInRange(MI
, NewDest
, Br
.MaxDisp
)) {
1475 DEBUG(errs() << " Invert Bcc condition and swap its destination with "
1477 BMI
->getOperand(0).setMBB(DestBB
);
1478 MI
->getOperand(0).setMBB(NewDest
);
1479 MI
->getOperand(1).setImm(CC
);
1486 SplitBlockBeforeInstr(MI
);
1487 // No need for the branch to the next block. We're adding an unconditional
1488 // branch to the destination.
1489 int delta
= TII
->GetInstSizeInBytes(&MBB
->back());
1490 BBSizes
[MBB
->getNumber()] -= delta
;
1491 MachineBasicBlock
* SplitBB
= llvm::next(MachineFunction::iterator(MBB
));
1492 AdjustBBOffsetsAfter(SplitBB
, -delta
);
1493 MBB
->back().eraseFromParent();
1494 // BBOffsets[SplitBB] is wrong temporarily, fixed below
1496 MachineBasicBlock
*NextBB
= llvm::next(MachineFunction::iterator(MBB
));
1498 DEBUG(errs() << " Insert B to BB#" << DestBB
->getNumber()
1499 << " also invert condition and change dest. to BB#"
1500 << NextBB
->getNumber() << "\n");
1502 // Insert a new conditional branch and a new unconditional branch.
1503 // Also update the ImmBranch as well as adding a new entry for the new branch.
1504 BuildMI(MBB
, DebugLoc(), TII
->get(MI
->getOpcode()))
1505 .addMBB(NextBB
).addImm(CC
).addReg(CCReg
);
1506 Br
.MI
= &MBB
->back();
1507 BBSizes
[MBB
->getNumber()] += TII
->GetInstSizeInBytes(&MBB
->back());
1508 BuildMI(MBB
, DebugLoc(), TII
->get(Br
.UncondBr
)).addMBB(DestBB
);
1509 BBSizes
[MBB
->getNumber()] += TII
->GetInstSizeInBytes(&MBB
->back());
1510 unsigned MaxDisp
= getUnconditionalBrDisp(Br
.UncondBr
);
1511 ImmBranches
.push_back(ImmBranch(&MBB
->back(), MaxDisp
, false, Br
.UncondBr
));
1513 // Remove the old conditional branch. It may or may not still be in MBB.
1514 BBSizes
[MI
->getParent()->getNumber()] -= TII
->GetInstSizeInBytes(MI
);
1515 MI
->eraseFromParent();
1517 // The net size change is an addition of one unconditional branch.
1518 int delta
= TII
->GetInstSizeInBytes(&MBB
->back());
1519 AdjustBBOffsetsAfter(MBB
, delta
);
1523 /// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills
1524 /// LR / restores LR to pc. FIXME: This is done here because it's only possible
1525 /// to do this if tBfar is not used.
1526 bool ARMConstantIslands::UndoLRSpillRestore() {
1527 bool MadeChange
= false;
1528 for (unsigned i
= 0, e
= PushPopMIs
.size(); i
!= e
; ++i
) {
1529 MachineInstr
*MI
= PushPopMIs
[i
];
1530 // First two operands are predicates.
1531 if (MI
->getOpcode() == ARM::tPOP_RET
&&
1532 MI
->getOperand(2).getReg() == ARM::PC
&&
1533 MI
->getNumExplicitOperands() == 3) {
1534 BuildMI(MI
->getParent(), MI
->getDebugLoc(), TII
->get(ARM::tBX_RET
));
1535 MI
->eraseFromParent();
1542 bool ARMConstantIslands::OptimizeThumb2Instructions(MachineFunction
&MF
) {
1543 bool MadeChange
= false;
1545 // Shrink ADR and LDR from constantpool.
1546 for (unsigned i
= 0, e
= CPUsers
.size(); i
!= e
; ++i
) {
1547 CPUser
&U
= CPUsers
[i
];
1548 unsigned Opcode
= U
.MI
->getOpcode();
1549 unsigned NewOpc
= 0;
1554 case ARM::t2LEApcrel
:
1555 if (isARMLowRegister(U
.MI
->getOperand(0).getReg())) {
1556 NewOpc
= ARM::tLEApcrel
;
1562 if (isARMLowRegister(U
.MI
->getOperand(0).getReg())) {
1563 NewOpc
= ARM::tLDRpci
;
1573 unsigned UserOffset
= GetOffsetOf(U
.MI
) + 4;
1574 unsigned MaxOffs
= ((1 << Bits
) - 1) * Scale
;
1575 // FIXME: Check if offset is multiple of scale if scale is not 4.
1576 if (CPEIsInRange(U
.MI
, UserOffset
, U
.CPEMI
, MaxOffs
, false, true)) {
1577 U
.MI
->setDesc(TII
->get(NewOpc
));
1578 MachineBasicBlock
*MBB
= U
.MI
->getParent();
1579 BBSizes
[MBB
->getNumber()] -= 2;
1580 AdjustBBOffsetsAfter(MBB
, -2);
1586 MadeChange
|= OptimizeThumb2Branches(MF
);
1587 MadeChange
|= OptimizeThumb2JumpTables(MF
);
1591 bool ARMConstantIslands::OptimizeThumb2Branches(MachineFunction
&MF
) {
1592 bool MadeChange
= false;
1594 for (unsigned i
= 0, e
= ImmBranches
.size(); i
!= e
; ++i
) {
1595 ImmBranch
&Br
= ImmBranches
[i
];
1596 unsigned Opcode
= Br
.MI
->getOpcode();
1597 unsigned NewOpc
= 0;
1615 unsigned MaxOffs
= ((1 << (Bits
-1))-1) * Scale
;
1616 MachineBasicBlock
*DestBB
= Br
.MI
->getOperand(0).getMBB();
1617 if (BBIsInRange(Br
.MI
, DestBB
, MaxOffs
)) {
1618 Br
.MI
->setDesc(TII
->get(NewOpc
));
1619 MachineBasicBlock
*MBB
= Br
.MI
->getParent();
1620 BBSizes
[MBB
->getNumber()] -= 2;
1621 AdjustBBOffsetsAfter(MBB
, -2);
1627 Opcode
= Br
.MI
->getOpcode();
1628 if (Opcode
!= ARM::tBcc
)
1632 unsigned PredReg
= 0;
1633 ARMCC::CondCodes Pred
= llvm::getInstrPredicate(Br
.MI
, PredReg
);
1634 if (Pred
== ARMCC::EQ
)
1636 else if (Pred
== ARMCC::NE
)
1637 NewOpc
= ARM::tCBNZ
;
1640 MachineBasicBlock
*DestBB
= Br
.MI
->getOperand(0).getMBB();
1641 // Check if the distance is within 126. Subtract starting offset by 2
1642 // because the cmp will be eliminated.
1643 unsigned BrOffset
= GetOffsetOf(Br
.MI
) + 4 - 2;
1644 unsigned DestOffset
= BBOffsets
[DestBB
->getNumber()];
1645 if (BrOffset
< DestOffset
&& (DestOffset
- BrOffset
) <= 126) {
1646 MachineBasicBlock::iterator CmpMI
= Br
.MI
; --CmpMI
;
1647 if (CmpMI
->getOpcode() == ARM::tCMPzi8
) {
1648 unsigned Reg
= CmpMI
->getOperand(0).getReg();
1649 Pred
= llvm::getInstrPredicate(CmpMI
, PredReg
);
1650 if (Pred
== ARMCC::AL
&&
1651 CmpMI
->getOperand(1).getImm() == 0 &&
1652 isARMLowRegister(Reg
)) {
1653 MachineBasicBlock
*MBB
= Br
.MI
->getParent();
1654 MachineInstr
*NewBR
=
1655 BuildMI(*MBB
, CmpMI
, Br
.MI
->getDebugLoc(), TII
->get(NewOpc
))
1656 .addReg(Reg
).addMBB(DestBB
, Br
.MI
->getOperand(0).getTargetFlags());
1657 CmpMI
->eraseFromParent();
1658 Br
.MI
->eraseFromParent();
1660 BBSizes
[MBB
->getNumber()] -= 2;
1661 AdjustBBOffsetsAfter(MBB
, -2);
1672 /// OptimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
1673 /// jumptables when it's possible.
1674 bool ARMConstantIslands::OptimizeThumb2JumpTables(MachineFunction
&MF
) {
1675 bool MadeChange
= false;
1677 // FIXME: After the tables are shrunk, can we get rid some of the
1678 // constantpool tables?
1679 MachineJumpTableInfo
*MJTI
= MF
.getJumpTableInfo();
1680 if (MJTI
== 0) return false;
1682 const std::vector
<MachineJumpTableEntry
> &JT
= MJTI
->getJumpTables();
1683 for (unsigned i
= 0, e
= T2JumpTables
.size(); i
!= e
; ++i
) {
1684 MachineInstr
*MI
= T2JumpTables
[i
];
1685 const TargetInstrDesc
&TID
= MI
->getDesc();
1686 unsigned NumOps
= TID
.getNumOperands();
1687 unsigned JTOpIdx
= NumOps
- (TID
.isPredicable() ? 3 : 2);
1688 MachineOperand JTOP
= MI
->getOperand(JTOpIdx
);
1689 unsigned JTI
= JTOP
.getIndex();
1690 assert(JTI
< JT
.size());
1693 bool HalfWordOk
= true;
1694 unsigned JTOffset
= GetOffsetOf(MI
) + 4;
1695 const std::vector
<MachineBasicBlock
*> &JTBBs
= JT
[JTI
].MBBs
;
1696 for (unsigned j
= 0, ee
= JTBBs
.size(); j
!= ee
; ++j
) {
1697 MachineBasicBlock
*MBB
= JTBBs
[j
];
1698 unsigned DstOffset
= BBOffsets
[MBB
->getNumber()];
1699 // Negative offset is not ok. FIXME: We should change BB layout to make
1700 // sure all the branches are forward.
1701 if (ByteOk
&& (DstOffset
- JTOffset
) > ((1<<8)-1)*2)
1703 unsigned TBHLimit
= ((1<<16)-1)*2;
1704 if (HalfWordOk
&& (DstOffset
- JTOffset
) > TBHLimit
)
1706 if (!ByteOk
&& !HalfWordOk
)
1710 if (ByteOk
|| HalfWordOk
) {
1711 MachineBasicBlock
*MBB
= MI
->getParent();
1712 unsigned BaseReg
= MI
->getOperand(0).getReg();
1713 bool BaseRegKill
= MI
->getOperand(0).isKill();
1716 unsigned IdxReg
= MI
->getOperand(1).getReg();
1717 bool IdxRegKill
= MI
->getOperand(1).isKill();
1719 // Scan backwards to find the instruction that defines the base
1720 // register. Due to post-RA scheduling, we can't count on it
1721 // immediately preceding the branch instruction.
1722 MachineBasicBlock::iterator PrevI
= MI
;
1723 MachineBasicBlock::iterator B
= MBB
->begin();
1724 while (PrevI
!= B
&& !PrevI
->definesRegister(BaseReg
))
1727 // If for some reason we didn't find it, we can't do anything, so
1728 // just skip this one.
1729 if (!PrevI
->definesRegister(BaseReg
))
1732 MachineInstr
*AddrMI
= PrevI
;
1734 // Examine the instruction that calculates the jumptable entry address.
1735 // Make sure it only defines the base register and kills any uses
1736 // other than the index register.
1737 for (unsigned k
= 0, eee
= AddrMI
->getNumOperands(); k
!= eee
; ++k
) {
1738 const MachineOperand
&MO
= AddrMI
->getOperand(k
);
1739 if (!MO
.isReg() || !MO
.getReg())
1741 if (MO
.isDef() && MO
.getReg() != BaseReg
) {
1745 if (MO
.isUse() && !MO
.isKill() && MO
.getReg() != IdxReg
) {
1753 // Now scan back again to find the tLEApcrel or t2LEApcrelJT instruction
1754 // that gave us the initial base register definition.
1755 for (--PrevI
; PrevI
!= B
&& !PrevI
->definesRegister(BaseReg
); --PrevI
)
1758 // The instruction should be a tLEApcrel or t2LEApcrelJT; we want
1759 // to delete it as well.
1760 MachineInstr
*LeaMI
= PrevI
;
1761 if ((LeaMI
->getOpcode() != ARM::tLEApcrelJT
&&
1762 LeaMI
->getOpcode() != ARM::t2LEApcrelJT
) ||
1763 LeaMI
->getOperand(0).getReg() != BaseReg
)
1769 unsigned Opc
= ByteOk
? ARM::t2TBB
: ARM::t2TBH
;
1770 MachineInstr
*NewJTMI
= BuildMI(MBB
, MI
->getDebugLoc(), TII
->get(Opc
))
1771 .addReg(IdxReg
, getKillRegState(IdxRegKill
))
1772 .addJumpTableIndex(JTI
, JTOP
.getTargetFlags())
1773 .addImm(MI
->getOperand(JTOpIdx
+1).getImm());
1774 // FIXME: Insert an "ALIGN" instruction to ensure the next instruction
1775 // is 2-byte aligned. For now, asm printer will fix it up.
1776 unsigned NewSize
= TII
->GetInstSizeInBytes(NewJTMI
);
1777 unsigned OrigSize
= TII
->GetInstSizeInBytes(AddrMI
);
1778 OrigSize
+= TII
->GetInstSizeInBytes(LeaMI
);
1779 OrigSize
+= TII
->GetInstSizeInBytes(MI
);
1781 AddrMI
->eraseFromParent();
1782 LeaMI
->eraseFromParent();
1783 MI
->eraseFromParent();
1785 int delta
= OrigSize
- NewSize
;
1786 BBSizes
[MBB
->getNumber()] -= delta
;
1787 AdjustBBOffsetsAfter(MBB
, -delta
);
1797 /// ReorderThumb2JumpTables - Adjust the function's block layout to ensure that
1798 /// jump tables always branch forwards, since that's what tbb and tbh need.
1799 bool ARMConstantIslands::ReorderThumb2JumpTables(MachineFunction
&MF
) {
1800 bool MadeChange
= false;
1802 MachineJumpTableInfo
*MJTI
= MF
.getJumpTableInfo();
1803 if (MJTI
== 0) return false;
1805 const std::vector
<MachineJumpTableEntry
> &JT
= MJTI
->getJumpTables();
1806 for (unsigned i
= 0, e
= T2JumpTables
.size(); i
!= e
; ++i
) {
1807 MachineInstr
*MI
= T2JumpTables
[i
];
1808 const TargetInstrDesc
&TID
= MI
->getDesc();
1809 unsigned NumOps
= TID
.getNumOperands();
1810 unsigned JTOpIdx
= NumOps
- (TID
.isPredicable() ? 3 : 2);
1811 MachineOperand JTOP
= MI
->getOperand(JTOpIdx
);
1812 unsigned JTI
= JTOP
.getIndex();
1813 assert(JTI
< JT
.size());
1815 // We prefer if target blocks for the jump table come after the jump
1816 // instruction so we can use TB[BH]. Loop through the target blocks
1817 // and try to adjust them such that that's true.
1818 int JTNumber
= MI
->getParent()->getNumber();
1819 const std::vector
<MachineBasicBlock
*> &JTBBs
= JT
[JTI
].MBBs
;
1820 for (unsigned j
= 0, ee
= JTBBs
.size(); j
!= ee
; ++j
) {
1821 MachineBasicBlock
*MBB
= JTBBs
[j
];
1822 int DTNumber
= MBB
->getNumber();
1824 if (DTNumber
< JTNumber
) {
1825 // The destination precedes the switch. Try to move the block forward
1826 // so we have a positive offset.
1827 MachineBasicBlock
*NewBB
=
1828 AdjustJTTargetBlockForward(MBB
, MI
->getParent());
1830 MJTI
->ReplaceMBBInJumpTable(JTI
, JTBBs
[j
], NewBB
);
1839 MachineBasicBlock
*ARMConstantIslands::
1840 AdjustJTTargetBlockForward(MachineBasicBlock
*BB
, MachineBasicBlock
*JTBB
)
1842 MachineFunction
&MF
= *BB
->getParent();
1844 // If the destination block is terminated by an unconditional branch,
1845 // try to move it; otherwise, create a new block following the jump
1846 // table that branches back to the actual target. This is a very simple
1847 // heuristic. FIXME: We can definitely improve it.
1848 MachineBasicBlock
*TBB
= 0, *FBB
= 0;
1849 SmallVector
<MachineOperand
, 4> Cond
;
1850 SmallVector
<MachineOperand
, 4> CondPrior
;
1851 MachineFunction::iterator BBi
= BB
;
1852 MachineFunction::iterator OldPrior
= prior(BBi
);
1854 // If the block terminator isn't analyzable, don't try to move the block
1855 bool B
= TII
->AnalyzeBranch(*BB
, TBB
, FBB
, Cond
);
1857 // If the block ends in an unconditional branch, move it. The prior block
1858 // has to have an analyzable terminator for us to move this one. Be paranoid
1859 // and make sure we're not trying to move the entry block of the function.
1860 if (!B
&& Cond
.empty() && BB
!= MF
.begin() &&
1861 !TII
->AnalyzeBranch(*OldPrior
, TBB
, FBB
, CondPrior
)) {
1862 BB
->moveAfter(JTBB
);
1863 OldPrior
->updateTerminator();
1864 BB
->updateTerminator();
1865 // Update numbering to account for the block being moved.
1866 MF
.RenumberBlocks();
1871 // Create a new MBB for the code after the jump BB.
1872 MachineBasicBlock
*NewBB
=
1873 MF
.CreateMachineBasicBlock(JTBB
->getBasicBlock());
1874 MachineFunction::iterator MBBI
= JTBB
; ++MBBI
;
1875 MF
.insert(MBBI
, NewBB
);
1877 // Add an unconditional branch from NewBB to BB.
1878 // There doesn't seem to be meaningful DebugInfo available; this doesn't
1879 // correspond directly to anything in the source.
1880 assert (isThumb2
&& "Adjusting for TB[BH] but not in Thumb2?");
1881 BuildMI(NewBB
, DebugLoc(), TII
->get(ARM::t2B
)).addMBB(BB
);
1883 // Update internal data structures to account for the newly inserted MBB.
1884 MF
.RenumberBlocks(NewBB
);
1887 NewBB
->addSuccessor(BB
);
1888 JTBB
->removeSuccessor(BB
);
1889 JTBB
->addSuccessor(NewBB
);