Fixed some bugs.
[llvm/zpu.git] / lib / Target / ARM / Disassembler / ARMDisassembler.cpp
blobabdcf8161a37c8a95c04505700ed7c27595895c8
1 //===- ARMDisassembler.cpp - Disassembler for ARM/Thumb ISA -----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is part of the ARM Disassembler.
11 // It contains code to implement the public interfaces of ARMDisassembler and
12 // ThumbDisassembler, both of which are instances of MCDisassembler.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "arm-disassembler"
18 #include "ARMDisassembler.h"
19 #include "ARMDisassemblerCore.h"
21 #include "llvm/MC/EDInstInfo.h"
22 #include "llvm/MC/MCInst.h"
23 #include "llvm/Target/TargetRegistry.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/MemoryObject.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
29 //#define DEBUG(X) do { X; } while (0)
31 /// ARMGenDecoderTables.inc - ARMDecoderTables.inc is tblgen'ed from
32 /// ARMDecoderEmitter.cpp TableGen backend. It contains:
33 ///
34 /// o Mappings from opcode to ARM/Thumb instruction format
35 ///
36 /// o static uint16_t decodeInstruction(uint32_t insn) - the decoding function
37 /// for an ARM instruction.
38 ///
39 /// o static uint16_t decodeThumbInstruction(field_t insn) - the decoding
40 /// function for a Thumb instruction.
41 ///
42 #include "ARMGenDecoderTables.inc"
44 #include "ARMGenEDInfo.inc"
46 using namespace llvm;
48 /// showBitVector - Use the raw_ostream to log a diagnostic message describing
49 /// the inidividual bits of the instruction.
50 ///
51 static inline void showBitVector(raw_ostream &os, const uint32_t &insn) {
52 // Split the bit position markers into more than one lines to fit 80 columns.
53 os << " 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11"
54 << " 10 9 8 7 6 5 4 3 2 1 0 \n";
55 os << "---------------------------------------------------------------"
56 << "----------------------------------\n";
57 os << '|';
58 for (unsigned i = 32; i != 0; --i) {
59 if (insn >> (i - 1) & 0x01)
60 os << " 1";
61 else
62 os << " 0";
63 os << (i%4 == 1 ? '|' : ':');
65 os << '\n';
66 // Split the bit position markers into more than one lines to fit 80 columns.
67 os << "---------------------------------------------------------------"
68 << "----------------------------------\n";
69 os << '\n';
72 /// decodeARMInstruction is a decorator function which tries special cases of
73 /// instruction matching before calling the auto-generated decoder function.
74 static unsigned decodeARMInstruction(uint32_t &insn) {
75 if (slice(insn, 31, 28) == 15)
76 goto AutoGenedDecoder;
78 // Special case processing, if any, goes here....
80 // LLVM combines the offset mode of A8.6.197 & A8.6.198 into STRB.
81 // The insufficient encoding information of the combined instruction confuses
82 // the decoder wrt BFC/BFI. Therefore, we try to recover here.
83 // For BFC, Inst{27-21} = 0b0111110 & Inst{6-0} = 0b0011111.
84 // For BFI, Inst{27-21} = 0b0111110 & Inst{6-4} = 0b001 & Inst{3-0} =! 0b1111.
85 if (slice(insn, 27, 21) == 0x3e && slice(insn, 6, 4) == 1) {
86 if (slice(insn, 3, 0) == 15)
87 return ARM::BFC;
88 else
89 return ARM::BFI;
92 // Ditto for STRBT, which is a super-instruction for A8.6.199 Encodings
93 // A1 & A2.
94 // As a result, the decoder fails to deocode USAT properly.
95 if (slice(insn, 27, 21) == 0x37 && slice(insn, 5, 4) == 1)
96 return ARM::USAT;
98 // Ditto for ADDSrs, which is a super-instruction for A8.6.7 & A8.6.8.
99 // As a result, the decoder fails to decode UMULL properly.
100 if (slice(insn, 27, 21) == 0x04 && slice(insn, 7, 4) == 9) {
101 return ARM::UMULL;
104 // Ditto for STR_PRE, which is a super-instruction for A8.6.194 & A8.6.195.
105 // As a result, the decoder fails to decode SBFX properly.
106 if (slice(insn, 27, 21) == 0x3d && slice(insn, 6, 4) == 5)
107 return ARM::SBFX;
109 // And STRB_PRE, which is a super-instruction for A8.6.197 & A8.6.198.
110 // As a result, the decoder fails to decode UBFX properly.
111 if (slice(insn, 27, 21) == 0x3f && slice(insn, 6, 4) == 5)
112 return ARM::UBFX;
114 // Ditto for STRT, which is a super-instruction for A8.6.210 Encoding A1 & A2.
115 // As a result, the decoder fails to deocode SSAT properly.
116 if (slice(insn, 27, 21) == 0x35 && slice(insn, 5, 4) == 1)
117 return ARM::SSAT;
119 // Ditto for RSCrs, which is a super-instruction for A8.6.146 & A8.6.147.
120 // As a result, the decoder fails to decode STRHT/LDRHT/LDRSHT/LDRSBT.
121 if (slice(insn, 27, 24) == 0) {
122 switch (slice(insn, 21, 20)) {
123 case 2:
124 switch (slice(insn, 7, 4)) {
125 case 11:
126 return ARM::STRHT;
127 default:
128 break; // fallthrough
130 break;
131 case 3:
132 switch (slice(insn, 7, 4)) {
133 case 11:
134 return ARM::LDRHT;
135 case 13:
136 return ARM::LDRSBT;
137 case 15:
138 return ARM::LDRSHT;
139 default:
140 break; // fallthrough
142 break;
143 default:
144 break; // fallthrough
148 // Ditto for SBCrs, which is a super-instruction for A8.6.152 & A8.6.153.
149 // As a result, the decoder fails to decode STRH_Post/LDRD_POST/STRD_POST
150 // properly.
151 if (slice(insn, 27, 25) == 0 && slice(insn, 20, 20) == 0) {
152 unsigned PW = slice(insn, 24, 24) << 1 | slice(insn, 21, 21);
153 switch (slice(insn, 7, 4)) {
154 case 11:
155 switch (PW) {
156 case 2: // Offset
157 return ARM::STRH;
158 case 3: // Pre-indexed
159 return ARM::STRH_PRE;
160 case 0: // Post-indexed
161 return ARM::STRH_POST;
162 default:
163 break; // fallthrough
165 break;
166 case 13:
167 switch (PW) {
168 case 2: // Offset
169 return ARM::LDRD;
170 case 3: // Pre-indexed
171 return ARM::LDRD_PRE;
172 case 0: // Post-indexed
173 return ARM::LDRD_POST;
174 default:
175 break; // fallthrough
177 break;
178 case 15:
179 switch (PW) {
180 case 2: // Offset
181 return ARM::STRD;
182 case 3: // Pre-indexed
183 return ARM::STRD_PRE;
184 case 0: // Post-indexed
185 return ARM::STRD_POST;
186 default:
187 break; // fallthrough
189 break;
190 default:
191 break; // fallthrough
195 // Ditto for SBCSSrs, which is a super-instruction for A8.6.152 & A8.6.153.
196 // As a result, the decoder fails to decode LDRH_POST/LDRSB_POST/LDRSH_POST
197 // properly.
198 if (slice(insn, 27, 25) == 0 && slice(insn, 20, 20) == 1) {
199 unsigned PW = slice(insn, 24, 24) << 1 | slice(insn, 21, 21);
200 switch (slice(insn, 7, 4)) {
201 case 11:
202 switch (PW) {
203 case 2: // Offset
204 return ARM::LDRH;
205 case 3: // Pre-indexed
206 return ARM::LDRH_PRE;
207 case 0: // Post-indexed
208 return ARM::LDRH_POST;
209 default:
210 break; // fallthrough
212 break;
213 case 13:
214 switch (PW) {
215 case 2: // Offset
216 return ARM::LDRSB;
217 case 3: // Pre-indexed
218 return ARM::LDRSB_PRE;
219 case 0: // Post-indexed
220 return ARM::LDRSB_POST;
221 default:
222 break; // fallthrough
224 break;
225 case 15:
226 switch (PW) {
227 case 2: // Offset
228 return ARM::LDRSH;
229 case 3: // Pre-indexed
230 return ARM::LDRSH_PRE;
231 case 0: // Post-indexed
232 return ARM::LDRSH_POST;
233 default:
234 break; // fallthrough
236 break;
237 default:
238 break; // fallthrough
242 AutoGenedDecoder:
243 // Calling the auto-generated decoder function.
244 return decodeInstruction(insn);
247 // Helper function for special case handling of LDR (literal) and friends.
248 // See, for example, A6.3.7 Load word: Table A6-18 Load word.
249 // See A8.6.57 T3, T4 & A8.6.60 T2 and friends for why we morphed the opcode
250 // before returning it.
251 static unsigned T2Morph2LoadLiteral(unsigned Opcode) {
252 switch (Opcode) {
253 default:
254 return Opcode; // Return unmorphed opcode.
256 case ARM::t2LDRDi8:
257 return ARM::t2LDRDpci;
259 case ARM::t2LDR_POST: case ARM::t2LDR_PRE:
260 case ARM::t2LDRi12: case ARM::t2LDRi8:
261 case ARM::t2LDRs: case ARM::t2LDRT:
262 return ARM::t2LDRpci;
264 case ARM::t2LDRB_POST: case ARM::t2LDRB_PRE:
265 case ARM::t2LDRBi12: case ARM::t2LDRBi8:
266 case ARM::t2LDRBs: case ARM::t2LDRBT:
267 return ARM::t2LDRBpci;
269 case ARM::t2LDRH_POST: case ARM::t2LDRH_PRE:
270 case ARM::t2LDRHi12: case ARM::t2LDRHi8:
271 case ARM::t2LDRHs: case ARM::t2LDRHT:
272 return ARM::t2LDRHpci;
274 case ARM::t2LDRSB_POST: case ARM::t2LDRSB_PRE:
275 case ARM::t2LDRSBi12: case ARM::t2LDRSBi8:
276 case ARM::t2LDRSBs: case ARM::t2LDRSBT:
277 return ARM::t2LDRSBpci;
279 case ARM::t2LDRSH_POST: case ARM::t2LDRSH_PRE:
280 case ARM::t2LDRSHi12: case ARM::t2LDRSHi8:
281 case ARM::t2LDRSHs: case ARM::t2LDRSHT:
282 return ARM::t2LDRSHpci;
286 /// decodeThumbSideEffect is a decorator function which can potentially twiddle
287 /// the instruction or morph the returned opcode under Thumb2.
289 /// First it checks whether the insn is a NEON or VFP instr; if true, bit
290 /// twiddling could be performed on insn to turn it into an ARM NEON/VFP
291 /// equivalent instruction and decodeInstruction is called with the transformed
292 /// insn.
294 /// Next, there is special handling for Load byte/halfword/word instruction by
295 /// checking whether Rn=0b1111 and call T2Morph2LoadLiteral() on the decoded
296 /// Thumb2 instruction. See comments below for further details.
298 /// Finally, one last check is made to see whether the insn is a NEON/VFP and
299 /// decodeInstruction(insn) is invoked on the original insn.
301 /// Otherwise, decodeThumbInstruction is called with the original insn.
302 static unsigned decodeThumbSideEffect(bool IsThumb2, unsigned &insn) {
303 if (IsThumb2) {
304 uint16_t op1 = slice(insn, 28, 27);
305 uint16_t op2 = slice(insn, 26, 20);
307 // A6.3 32-bit Thumb instruction encoding
308 // Table A6-9 32-bit Thumb instruction encoding
310 // The coprocessor instructions of interest are transformed to their ARM
311 // equivalents.
313 // --------- Transform Begin Marker ---------
314 if ((op1 == 1 || op1 == 3) && slice(op2, 6, 4) == 7) {
315 // A7.4 Advanced SIMD data-processing instructions
316 // U bit of Thumb corresponds to Inst{24} of ARM.
317 uint16_t U = slice(op1, 1, 1);
319 // Inst{28-24} of ARM = {1,0,0,1,U};
320 uint16_t bits28_24 = 9 << 1 | U;
321 DEBUG(showBitVector(errs(), insn));
322 setSlice(insn, 28, 24, bits28_24);
323 return decodeInstruction(insn);
326 if (op1 == 3 && slice(op2, 6, 4) == 1 && slice(op2, 0, 0) == 0) {
327 // A7.7 Advanced SIMD element or structure load/store instructions
328 // Inst{27-24} of Thumb = 0b1001
329 // Inst{27-24} of ARM = 0b0100
330 DEBUG(showBitVector(errs(), insn));
331 setSlice(insn, 27, 24, 4);
332 return decodeInstruction(insn);
334 // --------- Transform End Marker ---------
336 // See, for example, A6.3.7 Load word: Table A6-18 Load word.
337 // See A8.6.57 T3, T4 & A8.6.60 T2 and friends for why we morphed the opcode
338 // before returning it to our caller.
339 if (op1 == 3 && slice(op2, 6, 5) == 0 && slice(op2, 0, 0) == 1
340 && slice(insn, 19, 16) == 15)
341 return T2Morph2LoadLiteral(decodeThumbInstruction(insn));
343 // One last check for NEON/VFP instructions.
344 if ((op1 == 1 || op1 == 3) && slice(op2, 6, 6) == 1)
345 return decodeInstruction(insn);
347 // Fall through.
350 return decodeThumbInstruction(insn);
353 static inline bool Thumb2PreloadOpcodeNoPCI(unsigned Opcode) {
354 switch (Opcode) {
355 default:
356 return false;
357 case ARM::t2PLDi12: case ARM::t2PLDi8:
358 case ARM::t2PLDs:
359 case ARM::t2PLDWi12: case ARM::t2PLDWi8:
360 case ARM::t2PLDWs:
361 case ARM::t2PLIi12: case ARM::t2PLIi8:
362 case ARM::t2PLIs:
363 return true;
367 static inline unsigned T2Morph2Preload2PCI(unsigned Opcode) {
368 switch (Opcode) {
369 default:
370 return 0;
371 case ARM::t2PLDi12: case ARM::t2PLDi8:
372 case ARM::t2PLDs:
373 return ARM::t2PLDpci;
374 case ARM::t2PLDWi12: case ARM::t2PLDWi8:
375 case ARM::t2PLDWs:
376 return ARM::t2PLDWpci;
377 case ARM::t2PLIi12: case ARM::t2PLIi8:
378 case ARM::t2PLIs:
379 return ARM::t2PLIpci;
384 // Public interface for the disassembler
387 bool ARMDisassembler::getInstruction(MCInst &MI,
388 uint64_t &Size,
389 const MemoryObject &Region,
390 uint64_t Address,
391 raw_ostream &os) const {
392 // The machine instruction.
393 uint32_t insn;
394 uint8_t bytes[4];
396 // We want to read exactly 4 bytes of data.
397 if (Region.readBytes(Address, 4, (uint8_t*)bytes, NULL) == -1)
398 return false;
400 // Encoded as a small-endian 32-bit word in the stream.
401 insn = (bytes[3] << 24) |
402 (bytes[2] << 16) |
403 (bytes[1] << 8) |
404 (bytes[0] << 0);
406 unsigned Opcode = decodeARMInstruction(insn);
407 ARMFormat Format = ARMFormats[Opcode];
408 Size = 4;
410 DEBUG({
411 errs() << "Opcode=" << Opcode << " Name=" << ARMUtils::OpcodeName(Opcode)
412 << " Format=" << stringForARMFormat(Format) << '(' << (int)Format
413 << ")\n";
414 showBitVector(errs(), insn);
417 ARMBasicMCBuilder *Builder = CreateMCBuilder(Opcode, Format);
418 if (!Builder)
419 return false;
421 if (!Builder->Build(MI, insn))
422 return false;
424 delete Builder;
426 return true;
429 bool ThumbDisassembler::getInstruction(MCInst &MI,
430 uint64_t &Size,
431 const MemoryObject &Region,
432 uint64_t Address,
433 raw_ostream &os) const {
434 // The Thumb instruction stream is a sequence of halhwords.
436 // This represents the first halfword as well as the machine instruction
437 // passed to decodeThumbInstruction(). For 16-bit Thumb instruction, the top
438 // halfword of insn is 0x00 0x00; otherwise, the first halfword is moved to
439 // the top half followed by the second halfword.
440 unsigned insn = 0;
441 // Possible second halfword.
442 uint16_t insn1 = 0;
444 // A6.1 Thumb instruction set encoding
446 // If bits [15:11] of the halfword being decoded take any of the following
447 // values, the halfword is the first halfword of a 32-bit instruction:
448 // o 0b11101
449 // o 0b11110
450 // o 0b11111.
452 // Otherwise, the halfword is a 16-bit instruction.
454 // Read 2 bytes of data first.
455 uint8_t bytes[2];
456 if (Region.readBytes(Address, 2, (uint8_t*)bytes, NULL) == -1)
457 return false;
459 // Encoded as a small-endian 16-bit halfword in the stream.
460 insn = (bytes[1] << 8) | bytes[0];
461 unsigned bits15_11 = slice(insn, 15, 11);
462 bool IsThumb2 = false;
464 // 32-bit instructions if the bits [15:11] of the halfword matches
465 // { 0b11101 /* 0x1D */, 0b11110 /* 0x1E */, ob11111 /* 0x1F */ }.
466 if (bits15_11 == 0x1D || bits15_11 == 0x1E || bits15_11 == 0x1F) {
467 IsThumb2 = true;
468 if (Region.readBytes(Address + 2, 2, (uint8_t*)bytes, NULL) == -1)
469 return false;
470 // Encoded as a small-endian 16-bit halfword in the stream.
471 insn1 = (bytes[1] << 8) | bytes[0];
472 insn = (insn << 16 | insn1);
475 // The insn could potentially be bit-twiddled in order to be decoded as an ARM
476 // NEON/VFP opcode. In such case, the modified insn is later disassembled as
477 // an ARM NEON/VFP instruction.
479 // This is a short term solution for lack of encoding bits specified for the
480 // Thumb2 NEON/VFP instructions. The long term solution could be adding some
481 // infrastructure to have each instruction support more than one encodings.
482 // Which encoding is used would be based on which subtarget the compiler/
483 // disassembler is working with at the time. This would allow the sharing of
484 // the NEON patterns between ARM and Thumb2, as well as potential greater
485 // sharing between the regular ARM instructions and the 32-bit wide Thumb2
486 // instructions as well.
487 unsigned Opcode = decodeThumbSideEffect(IsThumb2, insn);
489 // A8.6.117/119/120/121.
490 // PLD/PLDW/PLI instructions with Rn==15 is transformed to the pci variant.
491 if (Thumb2PreloadOpcodeNoPCI(Opcode) && slice(insn, 19, 16) == 15)
492 Opcode = T2Morph2Preload2PCI(Opcode);
494 ARMFormat Format = ARMFormats[Opcode];
495 Size = IsThumb2 ? 4 : 2;
497 DEBUG({
498 errs() << "Opcode=" << Opcode << " Name=" << ARMUtils::OpcodeName(Opcode)
499 << " Format=" << stringForARMFormat(Format) << '(' << (int)Format
500 << ")\n";
501 showBitVector(errs(), insn);
504 ARMBasicMCBuilder *Builder = CreateMCBuilder(Opcode, Format);
505 if (!Builder)
506 return false;
508 Builder->SetSession(const_cast<Session *>(&SO));
510 if (!Builder->Build(MI, insn))
511 return false;
513 delete Builder;
515 return true;
518 // A8.6.50
519 // Valid return values are {1, 2, 3, 4}, with 0 signifying an error condition.
520 static unsigned short CountITSize(unsigned ITMask) {
521 // First count the trailing zeros of the IT mask.
522 unsigned TZ = CountTrailingZeros_32(ITMask);
523 if (TZ > 3) {
524 DEBUG(errs() << "Encoding error: IT Mask '0000'");
525 return 0;
527 return (4 - TZ);
530 /// Init ITState. Note that at least one bit is always 1 in mask.
531 bool Session::InitIT(unsigned short bits7_0) {
532 ITCounter = CountITSize(slice(bits7_0, 3, 0));
533 if (ITCounter == 0)
534 return false;
536 // A8.6.50 IT
537 unsigned short FirstCond = slice(bits7_0, 7, 4);
538 if (FirstCond == 0xF) {
539 DEBUG(errs() << "Encoding error: IT FirstCond '1111'");
540 return false;
542 if (FirstCond == 0xE && ITCounter != 1) {
543 DEBUG(errs() << "Encoding error: IT FirstCond '1110' && Mask != '1000'");
544 return false;
547 ITState = bits7_0;
549 return true;
552 /// Update ITState if necessary.
553 void Session::UpdateIT() {
554 assert(ITCounter);
555 --ITCounter;
556 if (ITCounter == 0)
557 ITState = 0;
558 else {
559 unsigned short NewITState4_0 = slice(ITState, 4, 0) << 1;
560 setSlice(ITState, 4, 0, NewITState4_0);
564 static MCDisassembler *createARMDisassembler(const Target &T) {
565 return new ARMDisassembler;
568 static MCDisassembler *createThumbDisassembler(const Target &T) {
569 return new ThumbDisassembler;
572 extern "C" void LLVMInitializeARMDisassembler() {
573 // Register the disassembler.
574 TargetRegistry::RegisterMCDisassembler(TheARMTarget,
575 createARMDisassembler);
576 TargetRegistry::RegisterMCDisassembler(TheThumbTarget,
577 createThumbDisassembler);
580 EDInstInfo *ARMDisassembler::getEDInfo() const {
581 return instInfoARM;
584 EDInstInfo *ThumbDisassembler::getEDInfo() const {
585 return instInfoARM;