1 //==- SPUInstrInfo.td - Describe the Cell SPU Instructions -*- tablegen -*-==//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
9 // Cell SPU Instructions:
10 //===----------------------------------------------------------------------===//
12 //===----------------------------------------------------------------------===//
13 // TODO Items (not urgent today, but would be nice, low priority)
15 // ANDBI, ORBI: SPU constructs a 4-byte constant for these instructions by
16 // concatenating the byte argument b as "bbbb". Could recognize this bit pattern
17 // in 16-bit and 32-bit constants and reduce instruction count.
18 //===----------------------------------------------------------------------===//
20 //===----------------------------------------------------------------------===//
21 // Pseudo instructions:
22 //===----------------------------------------------------------------------===//
24 let hasCtrlDep = 1, Defs = [R1], Uses = [R1] in {
25 def ADJCALLSTACKDOWN : Pseudo<(outs), (ins u16imm_i32:$amt),
26 "${:comment} ADJCALLSTACKDOWN",
27 [(callseq_start timm:$amt)]>;
28 def ADJCALLSTACKUP : Pseudo<(outs), (ins u16imm_i32:$amt),
29 "${:comment} ADJCALLSTACKUP",
30 [(callseq_end timm:$amt)]>;
33 //===----------------------------------------------------------------------===//
35 // NB: The ordering is actually important, since the instruction selection
36 // will try each of the instructions in sequence, i.e., the D-form first with
37 // the 10-bit displacement, then the A-form with the 16 bit displacement, and
38 // finally the X-form with the register-register.
39 //===----------------------------------------------------------------------===//
41 let canFoldAsLoad = 1 in {
42 class LoadDFormVec<ValueType vectype>
43 : RI10Form<0b00101100, (outs VECREG:$rT), (ins dformaddr:$src),
46 [(set (vectype VECREG:$rT), (load dform_addr:$src))]>
49 class LoadDForm<RegisterClass rclass>
50 : RI10Form<0b00101100, (outs rclass:$rT), (ins dformaddr:$src),
53 [(set rclass:$rT, (load dform_addr:$src))]>
58 def v16i8: LoadDFormVec<v16i8>;
59 def v8i16: LoadDFormVec<v8i16>;
60 def v4i32: LoadDFormVec<v4i32>;
61 def v2i64: LoadDFormVec<v2i64>;
62 def v4f32: LoadDFormVec<v4f32>;
63 def v2f64: LoadDFormVec<v2f64>;
65 def r128: LoadDForm<GPRC>;
66 def r64: LoadDForm<R64C>;
67 def r32: LoadDForm<R32C>;
68 def f32: LoadDForm<R32FP>;
69 def f64: LoadDForm<R64FP>;
70 def r16: LoadDForm<R16C>;
71 def r8: LoadDForm<R8C>;
74 class LoadAFormVec<ValueType vectype>
75 : RI16Form<0b100001100, (outs VECREG:$rT), (ins addr256k:$src),
78 [(set (vectype VECREG:$rT), (load aform_addr:$src))]>
81 class LoadAForm<RegisterClass rclass>
82 : RI16Form<0b100001100, (outs rclass:$rT), (ins addr256k:$src),
85 [(set rclass:$rT, (load aform_addr:$src))]>
90 def v16i8: LoadAFormVec<v16i8>;
91 def v8i16: LoadAFormVec<v8i16>;
92 def v4i32: LoadAFormVec<v4i32>;
93 def v2i64: LoadAFormVec<v2i64>;
94 def v4f32: LoadAFormVec<v4f32>;
95 def v2f64: LoadAFormVec<v2f64>;
97 def r128: LoadAForm<GPRC>;
98 def r64: LoadAForm<R64C>;
99 def r32: LoadAForm<R32C>;
100 def f32: LoadAForm<R32FP>;
101 def f64: LoadAForm<R64FP>;
102 def r16: LoadAForm<R16C>;
103 def r8: LoadAForm<R8C>;
106 class LoadXFormVec<ValueType vectype>
107 : RRForm<0b00100011100, (outs VECREG:$rT), (ins memrr:$src),
110 [(set (vectype VECREG:$rT), (load xform_addr:$src))]>
113 class LoadXForm<RegisterClass rclass>
114 : RRForm<0b00100011100, (outs rclass:$rT), (ins memrr:$src),
117 [(set rclass:$rT, (load xform_addr:$src))]>
120 multiclass LoadXForms
122 def v16i8: LoadXFormVec<v16i8>;
123 def v8i16: LoadXFormVec<v8i16>;
124 def v4i32: LoadXFormVec<v4i32>;
125 def v2i64: LoadXFormVec<v2i64>;
126 def v4f32: LoadXFormVec<v4f32>;
127 def v2f64: LoadXFormVec<v2f64>;
129 def r128: LoadXForm<GPRC>;
130 def r64: LoadXForm<R64C>;
131 def r32: LoadXForm<R32C>;
132 def f32: LoadXForm<R32FP>;
133 def f64: LoadXForm<R64FP>;
134 def r16: LoadXForm<R16C>;
135 def r8: LoadXForm<R8C>;
138 defm LQA : LoadAForms;
139 defm LQD : LoadDForms;
140 defm LQX : LoadXForms;
142 /* Load quadword, PC relative: Not much use at this point in time.
143 Might be of use later for relocatable code. It's effectively the
144 same as LQA, but uses PC-relative addressing.
145 def LQR : RI16Form<0b111001100, (outs VECREG:$rT), (ins s16imm:$disp),
146 "lqr\t$rT, $disp", LoadStore,
147 [(set VECREG:$rT, (load iaddr:$disp))]>;
151 //===----------------------------------------------------------------------===//
153 //===----------------------------------------------------------------------===//
154 class StoreDFormVec<ValueType vectype>
155 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, dformaddr:$src),
158 [(store (vectype VECREG:$rT), dform_addr:$src)]>
161 class StoreDForm<RegisterClass rclass>
162 : RI10Form<0b00100100, (outs), (ins rclass:$rT, dformaddr:$src),
165 [(store rclass:$rT, dform_addr:$src)]>
168 multiclass StoreDForms
170 def v16i8: StoreDFormVec<v16i8>;
171 def v8i16: StoreDFormVec<v8i16>;
172 def v4i32: StoreDFormVec<v4i32>;
173 def v2i64: StoreDFormVec<v2i64>;
174 def v4f32: StoreDFormVec<v4f32>;
175 def v2f64: StoreDFormVec<v2f64>;
177 def r128: StoreDForm<GPRC>;
178 def r64: StoreDForm<R64C>;
179 def r32: StoreDForm<R32C>;
180 def f32: StoreDForm<R32FP>;
181 def f64: StoreDForm<R64FP>;
182 def r16: StoreDForm<R16C>;
183 def r8: StoreDForm<R8C>;
186 class StoreAFormVec<ValueType vectype>
187 : RI16Form<0b0010010, (outs), (ins VECREG:$rT, addr256k:$src),
190 [(store (vectype VECREG:$rT), aform_addr:$src)]>;
192 class StoreAForm<RegisterClass rclass>
193 : RI16Form<0b001001, (outs), (ins rclass:$rT, addr256k:$src),
196 [(store rclass:$rT, aform_addr:$src)]>;
198 multiclass StoreAForms
200 def v16i8: StoreAFormVec<v16i8>;
201 def v8i16: StoreAFormVec<v8i16>;
202 def v4i32: StoreAFormVec<v4i32>;
203 def v2i64: StoreAFormVec<v2i64>;
204 def v4f32: StoreAFormVec<v4f32>;
205 def v2f64: StoreAFormVec<v2f64>;
207 def r128: StoreAForm<GPRC>;
208 def r64: StoreAForm<R64C>;
209 def r32: StoreAForm<R32C>;
210 def f32: StoreAForm<R32FP>;
211 def f64: StoreAForm<R64FP>;
212 def r16: StoreAForm<R16C>;
213 def r8: StoreAForm<R8C>;
216 class StoreXFormVec<ValueType vectype>
217 : RRForm<0b00100100, (outs), (ins VECREG:$rT, memrr:$src),
220 [(store (vectype VECREG:$rT), xform_addr:$src)]>
223 class StoreXForm<RegisterClass rclass>
224 : RRForm<0b00100100, (outs), (ins rclass:$rT, memrr:$src),
227 [(store rclass:$rT, xform_addr:$src)]>
230 multiclass StoreXForms
232 def v16i8: StoreXFormVec<v16i8>;
233 def v8i16: StoreXFormVec<v8i16>;
234 def v4i32: StoreXFormVec<v4i32>;
235 def v2i64: StoreXFormVec<v2i64>;
236 def v4f32: StoreXFormVec<v4f32>;
237 def v2f64: StoreXFormVec<v2f64>;
239 def r128: StoreXForm<GPRC>;
240 def r64: StoreXForm<R64C>;
241 def r32: StoreXForm<R32C>;
242 def f32: StoreXForm<R32FP>;
243 def f64: StoreXForm<R64FP>;
244 def r16: StoreXForm<R16C>;
245 def r8: StoreXForm<R8C>;
248 defm STQD : StoreDForms;
249 defm STQA : StoreAForms;
250 defm STQX : StoreXForms;
252 /* Store quadword, PC relative: Not much use at this point in time. Might
253 be useful for relocatable code.
254 def STQR : RI16Form<0b111000100, (outs), (ins VECREG:$rT, s16imm:$disp),
255 "stqr\t$rT, $disp", LoadStore,
256 [(store VECREG:$rT, iaddr:$disp)]>;
259 //===----------------------------------------------------------------------===//
260 // Generate Controls for Insertion:
261 //===----------------------------------------------------------------------===//
263 def CBD: RI7Form<0b10101111100, (outs VECREG:$rT), (ins shufaddr:$src),
264 "cbd\t$rT, $src", ShuffleOp,
265 [(set (v16i8 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
267 def CBX: RRForm<0b00101011100, (outs VECREG:$rT), (ins memrr:$src),
268 "cbx\t$rT, $src", ShuffleOp,
269 [(set (v16i8 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
271 def CHD: RI7Form<0b10101111100, (outs VECREG:$rT), (ins shufaddr:$src),
272 "chd\t$rT, $src", ShuffleOp,
273 [(set (v8i16 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
275 def CHX: RRForm<0b10101011100, (outs VECREG:$rT), (ins memrr:$src),
276 "chx\t$rT, $src", ShuffleOp,
277 [(set (v8i16 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
279 def CWD: RI7Form<0b01101111100, (outs VECREG:$rT), (ins shufaddr:$src),
280 "cwd\t$rT, $src", ShuffleOp,
281 [(set (v4i32 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
283 def CWX: RRForm<0b01101011100, (outs VECREG:$rT), (ins memrr:$src),
284 "cwx\t$rT, $src", ShuffleOp,
285 [(set (v4i32 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
287 def CWDf32: RI7Form<0b01101111100, (outs VECREG:$rT), (ins shufaddr:$src),
288 "cwd\t$rT, $src", ShuffleOp,
289 [(set (v4f32 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
291 def CWXf32: RRForm<0b01101011100, (outs VECREG:$rT), (ins memrr:$src),
292 "cwx\t$rT, $src", ShuffleOp,
293 [(set (v4f32 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
295 def CDD: RI7Form<0b11101111100, (outs VECREG:$rT), (ins shufaddr:$src),
296 "cdd\t$rT, $src", ShuffleOp,
297 [(set (v2i64 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
299 def CDX: RRForm<0b11101011100, (outs VECREG:$rT), (ins memrr:$src),
300 "cdx\t$rT, $src", ShuffleOp,
301 [(set (v2i64 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
303 def CDDf64: RI7Form<0b11101111100, (outs VECREG:$rT), (ins shufaddr:$src),
304 "cdd\t$rT, $src", ShuffleOp,
305 [(set (v2f64 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
307 def CDXf64: RRForm<0b11101011100, (outs VECREG:$rT), (ins memrr:$src),
308 "cdx\t$rT, $src", ShuffleOp,
309 [(set (v2f64 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
311 //===----------------------------------------------------------------------===//
312 // Constant formation:
313 //===----------------------------------------------------------------------===//
316 RI16Form<0b110000010, (outs VECREG:$rT), (ins s16imm:$val),
317 "ilh\t$rT, $val", ImmLoad,
318 [(set (v8i16 VECREG:$rT), (v8i16 v8i16SExt16Imm:$val))]>;
321 RI16Form<0b110000010, (outs R16C:$rT), (ins s16imm:$val),
322 "ilh\t$rT, $val", ImmLoad,
323 [(set R16C:$rT, immSExt16:$val)]>;
325 // Cell SPU doesn't have a native 8-bit immediate load, but ILH works ("with
326 // the right constant")
328 RI16Form<0b110000010, (outs R8C:$rT), (ins s16imm_i8:$val),
329 "ilh\t$rT, $val", ImmLoad,
330 [(set R8C:$rT, immSExt8:$val)]>;
332 // IL does sign extension!
334 class ILInst<dag OOL, dag IOL, list<dag> pattern>:
335 RI16Form<0b100000010, OOL, IOL, "il\t$rT, $val",
338 class ILVecInst<ValueType vectype, Operand immtype, PatLeaf xform>:
339 ILInst<(outs VECREG:$rT), (ins immtype:$val),
340 [(set (vectype VECREG:$rT), (vectype xform:$val))]>;
342 class ILRegInst<RegisterClass rclass, Operand immtype, PatLeaf xform>:
343 ILInst<(outs rclass:$rT), (ins immtype:$val),
344 [(set rclass:$rT, xform:$val)]>;
346 multiclass ImmediateLoad
348 def v2i64: ILVecInst<v2i64, s16imm_i64, v2i64SExt16Imm>;
349 def v4i32: ILVecInst<v4i32, s16imm_i32, v4i32SExt16Imm>;
351 // TODO: Need v2f64, v4f32
353 def r64: ILRegInst<R64C, s16imm_i64, immSExt16>;
354 def r32: ILRegInst<R32C, s16imm_i32, immSExt16>;
355 def f32: ILRegInst<R32FP, s16imm_f32, fpimmSExt16>;
356 def f64: ILRegInst<R64FP, s16imm_f64, fpimmSExt16>;
359 defm IL : ImmediateLoad;
361 class ILHUInst<dag OOL, dag IOL, list<dag> pattern>:
362 RI16Form<0b010000010, OOL, IOL, "ilhu\t$rT, $val",
365 class ILHUVecInst<ValueType vectype, Operand immtype, PatLeaf xform>:
366 ILHUInst<(outs VECREG:$rT), (ins immtype:$val),
367 [(set (vectype VECREG:$rT), (vectype xform:$val))]>;
369 class ILHURegInst<RegisterClass rclass, Operand immtype, PatLeaf xform>:
370 ILHUInst<(outs rclass:$rT), (ins immtype:$val),
371 [(set rclass:$rT, xform:$val)]>;
373 multiclass ImmLoadHalfwordUpper
375 def v2i64: ILHUVecInst<v2i64, u16imm_i64, immILHUvec_i64>;
376 def v4i32: ILHUVecInst<v4i32, u16imm_i32, immILHUvec>;
378 def r64: ILHURegInst<R64C, u16imm_i64, hi16>;
379 def r32: ILHURegInst<R32C, u16imm_i32, hi16>;
381 // Loads the high portion of an address
382 def hi: ILHURegInst<R32C, symbolHi, hi16>;
384 // Used in custom lowering constant SFP loads:
385 def f32: ILHURegInst<R32FP, f16imm, hi16_f32>;
388 defm ILHU : ImmLoadHalfwordUpper;
390 // Immediate load address (can also be used to load 18-bit unsigned constants,
391 // see the zext 16->32 pattern)
393 class ILAInst<dag OOL, dag IOL, list<dag> pattern>:
394 RI18Form<0b1000010, OOL, IOL, "ila\t$rT, $val",
397 class ILAVecInst<ValueType vectype, Operand immtype, PatLeaf xform>:
398 ILAInst<(outs VECREG:$rT), (ins immtype:$val),
399 [(set (vectype VECREG:$rT), (vectype xform:$val))]>;
401 class ILARegInst<RegisterClass rclass, Operand immtype, PatLeaf xform>:
402 ILAInst<(outs rclass:$rT), (ins immtype:$val),
403 [(set rclass:$rT, xform:$val)]>;
405 multiclass ImmLoadAddress
407 def v2i64: ILAVecInst<v2i64, u18imm, v2i64Uns18Imm>;
408 def v4i32: ILAVecInst<v4i32, u18imm, v4i32Uns18Imm>;
410 def r64: ILARegInst<R64C, u18imm_i64, imm18>;
411 def r32: ILARegInst<R32C, u18imm, imm18>;
412 def f32: ILARegInst<R32FP, f18imm, fpimm18>;
413 def f64: ILARegInst<R64FP, f18imm_f64, fpimm18>;
415 def hi: ILARegInst<R32C, symbolHi, imm18>;
416 def lo: ILARegInst<R32C, symbolLo, imm18>;
418 def lsa: ILAInst<(outs R32C:$rT), (ins symbolLSA:$val),
422 defm ILA : ImmLoadAddress;
424 // Immediate OR, Halfword Lower: The "other" part of loading large constants
425 // into 32-bit registers. See the anonymous pattern Pat<(i32 imm:$imm), ...>
426 // Note that these are really two operand instructions, but they're encoded
427 // as three operands with the first two arguments tied-to each other.
429 class IOHLInst<dag OOL, dag IOL, list<dag> pattern>:
430 RI16Form<0b100000110, OOL, IOL, "iohl\t$rT, $val",
432 RegConstraint<"$rS = $rT">,
435 class IOHLVecInst<ValueType vectype, Operand immtype /* , PatLeaf xform */>:
436 IOHLInst<(outs VECREG:$rT), (ins VECREG:$rS, immtype:$val),
439 class IOHLRegInst<RegisterClass rclass, Operand immtype /* , PatLeaf xform */>:
440 IOHLInst<(outs rclass:$rT), (ins rclass:$rS, immtype:$val),
443 multiclass ImmOrHalfwordLower
445 def v2i64: IOHLVecInst<v2i64, u16imm_i64>;
446 def v4i32: IOHLVecInst<v4i32, u16imm_i32>;
448 def r32: IOHLRegInst<R32C, i32imm>;
449 def f32: IOHLRegInst<R32FP, f32imm>;
451 def lo: IOHLRegInst<R32C, symbolLo>;
454 defm IOHL: ImmOrHalfwordLower;
456 // Form select mask for bytes using immediate, used in conjunction with the
459 class FSMBIVec<ValueType vectype>:
460 RI16Form<0b101001100, (outs VECREG:$rT), (ins u16imm:$val),
463 [(set (vectype VECREG:$rT), (SPUselmask (i16 immU16:$val)))]>;
465 multiclass FormSelectMaskBytesImm
467 def v16i8: FSMBIVec<v16i8>;
468 def v8i16: FSMBIVec<v8i16>;
469 def v4i32: FSMBIVec<v4i32>;
470 def v2i64: FSMBIVec<v2i64>;
473 defm FSMBI : FormSelectMaskBytesImm;
475 // fsmb: Form select mask for bytes. N.B. Input operand, $rA, is 16-bits
476 class FSMBInst<dag OOL, dag IOL, list<dag> pattern>:
477 RRForm_1<0b01101101100, OOL, IOL, "fsmb\t$rT, $rA", SelectOp,
480 class FSMBRegInst<RegisterClass rclass, ValueType vectype>:
481 FSMBInst<(outs VECREG:$rT), (ins rclass:$rA),
482 [(set (vectype VECREG:$rT), (SPUselmask rclass:$rA))]>;
484 class FSMBVecInst<ValueType vectype>:
485 FSMBInst<(outs VECREG:$rT), (ins VECREG:$rA),
486 [(set (vectype VECREG:$rT),
487 (SPUselmask (vectype VECREG:$rA)))]>;
489 multiclass FormSelectMaskBits {
490 def v16i8_r16: FSMBRegInst<R16C, v16i8>;
491 def v16i8: FSMBVecInst<v16i8>;
494 defm FSMB: FormSelectMaskBits;
496 // fsmh: Form select mask for halfwords. N.B., Input operand, $rA, is
497 // only 8-bits wide (even though it's input as 16-bits here)
499 class FSMHInst<dag OOL, dag IOL, list<dag> pattern>:
500 RRForm_1<0b10101101100, OOL, IOL, "fsmh\t$rT, $rA", SelectOp,
503 class FSMHRegInst<RegisterClass rclass, ValueType vectype>:
504 FSMHInst<(outs VECREG:$rT), (ins rclass:$rA),
505 [(set (vectype VECREG:$rT), (SPUselmask rclass:$rA))]>;
507 class FSMHVecInst<ValueType vectype>:
508 FSMHInst<(outs VECREG:$rT), (ins VECREG:$rA),
509 [(set (vectype VECREG:$rT),
510 (SPUselmask (vectype VECREG:$rA)))]>;
512 multiclass FormSelectMaskHalfword {
513 def v8i16_r16: FSMHRegInst<R16C, v8i16>;
514 def v8i16: FSMHVecInst<v8i16>;
517 defm FSMH: FormSelectMaskHalfword;
519 // fsm: Form select mask for words. Like the other fsm* instructions,
520 // only the lower 4 bits of $rA are significant.
522 class FSMInst<dag OOL, dag IOL, list<dag> pattern>:
523 RRForm_1<0b00101101100, OOL, IOL, "fsm\t$rT, $rA", SelectOp,
526 class FSMRegInst<ValueType vectype, RegisterClass rclass>:
527 FSMInst<(outs VECREG:$rT), (ins rclass:$rA),
528 [(set (vectype VECREG:$rT), (SPUselmask rclass:$rA))]>;
530 class FSMVecInst<ValueType vectype>:
531 FSMInst<(outs VECREG:$rT), (ins VECREG:$rA),
532 [(set (vectype VECREG:$rT), (SPUselmask (vectype VECREG:$rA)))]>;
534 multiclass FormSelectMaskWord {
535 def v4i32: FSMVecInst<v4i32>;
537 def r32 : FSMRegInst<v4i32, R32C>;
538 def r16 : FSMRegInst<v4i32, R16C>;
541 defm FSM : FormSelectMaskWord;
543 // Special case when used for i64 math operations
544 multiclass FormSelectMaskWord64 {
545 def r32 : FSMRegInst<v2i64, R32C>;
546 def r16 : FSMRegInst<v2i64, R16C>;
549 defm FSM64 : FormSelectMaskWord64;
551 //===----------------------------------------------------------------------===//
552 // Integer and Logical Operations:
553 //===----------------------------------------------------------------------===//
556 RRForm<0b00010011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
557 "ah\t$rT, $rA, $rB", IntegerOp,
558 [(set (v8i16 VECREG:$rT), (int_spu_si_ah VECREG:$rA, VECREG:$rB))]>;
560 def : Pat<(add (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)),
561 (AHv8i16 VECREG:$rA, VECREG:$rB)>;
564 RRForm<0b00010011000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
565 "ah\t$rT, $rA, $rB", IntegerOp,
566 [(set R16C:$rT, (add R16C:$rA, R16C:$rB))]>;
569 RI10Form<0b10111000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
570 "ahi\t$rT, $rA, $val", IntegerOp,
571 [(set (v8i16 VECREG:$rT), (add (v8i16 VECREG:$rA),
572 v8i16SExt10Imm:$val))]>;
575 RI10Form<0b10111000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
576 "ahi\t$rT, $rA, $val", IntegerOp,
577 [(set R16C:$rT, (add R16C:$rA, i16ImmSExt10:$val))]>;
579 // v4i32, i32 add instruction:
581 class AInst<dag OOL, dag IOL, list<dag> pattern>:
582 RRForm<0b00000011000, OOL, IOL,
583 "a\t$rT, $rA, $rB", IntegerOp,
586 class AVecInst<ValueType vectype>:
587 AInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
588 [(set (vectype VECREG:$rT), (add (vectype VECREG:$rA),
589 (vectype VECREG:$rB)))]>;
591 class ARegInst<RegisterClass rclass>:
592 AInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
593 [(set rclass:$rT, (add rclass:$rA, rclass:$rB))]>;
595 multiclass AddInstruction {
596 def v4i32: AVecInst<v4i32>;
597 def v16i8: AVecInst<v16i8>;
598 def r32: ARegInst<R32C>;
601 defm A : AddInstruction;
603 class AIInst<dag OOL, dag IOL, list<dag> pattern>:
604 RI10Form<0b00111000, OOL, IOL,
605 "ai\t$rT, $rA, $val", IntegerOp,
608 class AIVecInst<ValueType vectype, PatLeaf immpred>:
609 AIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
610 [(set (vectype VECREG:$rT), (add (vectype VECREG:$rA), immpred:$val))]>;
612 class AIFPVecInst<ValueType vectype, PatLeaf immpred>:
613 AIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
616 class AIRegInst<RegisterClass rclass, PatLeaf immpred>:
617 AIInst<(outs rclass:$rT), (ins rclass:$rA, s10imm_i32:$val),
618 [(set rclass:$rT, (add rclass:$rA, immpred:$val))]>;
620 // This is used to add epsilons to floating point numbers in the f32 fdiv code:
621 class AIFPInst<RegisterClass rclass, PatLeaf immpred>:
622 AIInst<(outs rclass:$rT), (ins rclass:$rA, s10imm_i32:$val),
625 multiclass AddImmediate {
626 def v4i32: AIVecInst<v4i32, v4i32SExt10Imm>;
628 def r32: AIRegInst<R32C, i32ImmSExt10>;
630 def v4f32: AIFPVecInst<v4f32, v4i32SExt10Imm>;
631 def f32: AIFPInst<R32FP, i32ImmSExt10>;
634 defm AI : AddImmediate;
637 RRForm<0b00010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
638 "sfh\t$rT, $rA, $rB", IntegerOp,
639 [(set (v8i16 VECREG:$rT), (sub (v8i16 VECREG:$rA),
640 (v8i16 VECREG:$rB)))]>;
643 RRForm<0b00010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
644 "sfh\t$rT, $rA, $rB", IntegerOp,
645 [(set R16C:$rT, (sub R16C:$rB, R16C:$rA))]>;
648 RI10Form<0b10110000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
649 "sfhi\t$rT, $rA, $val", IntegerOp,
650 [(set (v8i16 VECREG:$rT), (sub v8i16SExt10Imm:$val,
651 (v8i16 VECREG:$rA)))]>;
653 def SFHIr16 : RI10Form<0b10110000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
654 "sfhi\t$rT, $rA, $val", IntegerOp,
655 [(set R16C:$rT, (sub i16ImmSExt10:$val, R16C:$rA))]>;
657 def SFvec : RRForm<0b00000010000, (outs VECREG:$rT),
658 (ins VECREG:$rA, VECREG:$rB),
659 "sf\t$rT, $rA, $rB", IntegerOp,
660 [(set (v4i32 VECREG:$rT), (sub (v4i32 VECREG:$rB), (v4i32 VECREG:$rA)))]>;
663 def SFr32 : RRForm<0b00000010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
664 "sf\t$rT, $rA, $rB", IntegerOp,
665 [(set R32C:$rT, (sub R32C:$rB, R32C:$rA))]>;
668 RI10Form<0b00110000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
669 "sfi\t$rT, $rA, $val", IntegerOp,
670 [(set (v4i32 VECREG:$rT), (sub v4i32SExt10Imm:$val,
671 (v4i32 VECREG:$rA)))]>;
673 def SFIr32 : RI10Form<0b00110000, (outs R32C:$rT),
674 (ins R32C:$rA, s10imm_i32:$val),
675 "sfi\t$rT, $rA, $val", IntegerOp,
676 [(set R32C:$rT, (sub i32ImmSExt10:$val, R32C:$rA))]>;
678 // ADDX: only available in vector form, doesn't match a pattern.
679 class ADDXInst<dag OOL, dag IOL, list<dag> pattern>:
680 RRForm<0b00000010110, OOL, IOL,
681 "addx\t$rT, $rA, $rB",
684 class ADDXVecInst<ValueType vectype>:
685 ADDXInst<(outs VECREG:$rT),
686 (ins VECREG:$rA, VECREG:$rB, VECREG:$rCarry),
688 RegConstraint<"$rCarry = $rT">,
691 class ADDXRegInst<RegisterClass rclass>:
692 ADDXInst<(outs rclass:$rT),
693 (ins rclass:$rA, rclass:$rB, rclass:$rCarry),
695 RegConstraint<"$rCarry = $rT">,
698 multiclass AddExtended {
699 def v2i64 : ADDXVecInst<v2i64>;
700 def v4i32 : ADDXVecInst<v4i32>;
701 def r64 : ADDXRegInst<R64C>;
702 def r32 : ADDXRegInst<R32C>;
705 defm ADDX : AddExtended;
707 // CG: Generate carry for add
708 class CGInst<dag OOL, dag IOL, list<dag> pattern>:
709 RRForm<0b01000011000, OOL, IOL,
713 class CGVecInst<ValueType vectype>:
714 CGInst<(outs VECREG:$rT),
715 (ins VECREG:$rA, VECREG:$rB),
718 class CGRegInst<RegisterClass rclass>:
719 CGInst<(outs rclass:$rT),
720 (ins rclass:$rA, rclass:$rB),
723 multiclass CarryGenerate {
724 def v2i64 : CGVecInst<v2i64>;
725 def v4i32 : CGVecInst<v4i32>;
726 def r64 : CGRegInst<R64C>;
727 def r32 : CGRegInst<R32C>;
730 defm CG : CarryGenerate;
732 // SFX: Subract from, extended. This is used in conjunction with BG to subtract
733 // with carry (borrow, in this case)
734 class SFXInst<dag OOL, dag IOL, list<dag> pattern>:
735 RRForm<0b10000010110, OOL, IOL,
736 "sfx\t$rT, $rA, $rB",
739 class SFXVecInst<ValueType vectype>:
740 SFXInst<(outs VECREG:$rT),
741 (ins VECREG:$rA, VECREG:$rB, VECREG:$rCarry),
743 RegConstraint<"$rCarry = $rT">,
746 class SFXRegInst<RegisterClass rclass>:
747 SFXInst<(outs rclass:$rT),
748 (ins rclass:$rA, rclass:$rB, rclass:$rCarry),
750 RegConstraint<"$rCarry = $rT">,
753 multiclass SubtractExtended {
754 def v2i64 : SFXVecInst<v2i64>;
755 def v4i32 : SFXVecInst<v4i32>;
756 def r64 : SFXRegInst<R64C>;
757 def r32 : SFXRegInst<R32C>;
760 defm SFX : SubtractExtended;
762 // BG: only available in vector form, doesn't match a pattern.
763 class BGInst<dag OOL, dag IOL, list<dag> pattern>:
764 RRForm<0b01000010000, OOL, IOL,
768 class BGVecInst<ValueType vectype>:
769 BGInst<(outs VECREG:$rT),
770 (ins VECREG:$rA, VECREG:$rB),
773 class BGRegInst<RegisterClass rclass>:
774 BGInst<(outs rclass:$rT),
775 (ins rclass:$rA, rclass:$rB),
778 multiclass BorrowGenerate {
779 def v4i32 : BGVecInst<v4i32>;
780 def v2i64 : BGVecInst<v2i64>;
781 def r64 : BGRegInst<R64C>;
782 def r32 : BGRegInst<R32C>;
785 defm BG : BorrowGenerate;
787 // BGX: Borrow generate, extended.
789 RRForm<0b11000010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB,
791 "bgx\t$rT, $rA, $rB", IntegerOp,
793 RegConstraint<"$rCarry = $rT">,
796 // Halfword multiply variants:
797 // N.B: These can be used to build up larger quantities (16x16 -> 32)
800 RRForm<0b00100011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
801 "mpy\t$rT, $rA, $rB", IntegerMulDiv,
805 RRForm<0b00100011110, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
806 "mpy\t$rT, $rA, $rB", IntegerMulDiv,
807 [(set R16C:$rT, (mul R16C:$rA, R16C:$rB))]>;
809 // Unsigned 16-bit multiply:
811 class MPYUInst<dag OOL, dag IOL, list<dag> pattern>:
812 RRForm<0b00110011110, OOL, IOL,
813 "mpyu\t$rT, $rA, $rB", IntegerMulDiv,
817 MPYUInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
821 MPYUInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB),
822 [(set R32C:$rT, (mul (zext R16C:$rA), (zext R16C:$rB)))]>;
825 MPYUInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
828 // mpyi: multiply 16 x s10imm -> 32 result.
830 class MPYIInst<dag OOL, dag IOL, list<dag> pattern>:
831 RI10Form<0b00101110, OOL, IOL,
832 "mpyi\t$rT, $rA, $val", IntegerMulDiv,
836 MPYIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
837 [(set (v8i16 VECREG:$rT),
838 (mul (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>;
841 MPYIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
842 [(set R16C:$rT, (mul R16C:$rA, i16ImmSExt10:$val))]>;
844 // mpyui: same issues as other multiplies, plus, this doesn't match a
845 // pattern... but may be used during target DAG selection or lowering
847 class MPYUIInst<dag OOL, dag IOL, list<dag> pattern>:
848 RI10Form<0b10101110, OOL, IOL,
849 "mpyui\t$rT, $rA, $val", IntegerMulDiv,
853 MPYUIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
857 MPYUIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
860 // mpya: 16 x 16 + 16 -> 32 bit result
861 class MPYAInst<dag OOL, dag IOL, list<dag> pattern>:
862 RRRForm<0b0011, OOL, IOL,
863 "mpya\t$rT, $rA, $rB, $rC", IntegerMulDiv,
867 MPYAInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
868 [(set (v4i32 VECREG:$rT),
869 (add (v4i32 (bitconvert (mul (v8i16 VECREG:$rA),
870 (v8i16 VECREG:$rB)))),
871 (v4i32 VECREG:$rC)))]>;
874 MPYAInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB, R32C:$rC),
875 [(set R32C:$rT, (add (sext (mul R16C:$rA, R16C:$rB)),
879 MPYAInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB, R32C:$rC),
880 [(set R32C:$rT, (add (mul (sext R16C:$rA), (sext R16C:$rB)),
883 def MPYAr32_sextinreg:
884 MPYAInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB, R32C:$rC),
885 [(set R32C:$rT, (add (mul (sext_inreg R32C:$rA, i16),
886 (sext_inreg R32C:$rB, i16)),
889 // mpyh: multiply high, used to synthesize 32-bit multiplies
890 class MPYHInst<dag OOL, dag IOL, list<dag> pattern>:
891 RRForm<0b10100011110, OOL, IOL,
892 "mpyh\t$rT, $rA, $rB", IntegerMulDiv,
896 MPYHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
900 MPYHInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
903 // mpys: multiply high and shift right (returns the top half of
904 // a 16-bit multiply, sign extended to 32 bits.)
906 class MPYSInst<dag OOL, dag IOL>:
907 RRForm<0b11100011110, OOL, IOL,
908 "mpys\t$rT, $rA, $rB", IntegerMulDiv,
912 MPYSInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
915 MPYSInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB)>;
917 // mpyhh: multiply high-high (returns the 32-bit result from multiplying
918 // the top 16 bits of the $rA, $rB)
920 class MPYHHInst<dag OOL, dag IOL>:
921 RRForm<0b01100011110, OOL, IOL,
922 "mpyhh\t$rT, $rA, $rB", IntegerMulDiv,
926 MPYHHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
929 MPYHHInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>;
931 // mpyhha: Multiply high-high, add to $rT:
933 class MPYHHAInst<dag OOL, dag IOL>:
934 RRForm<0b01100010110, OOL, IOL,
935 "mpyhha\t$rT, $rA, $rB", IntegerMulDiv,
939 MPYHHAInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
942 MPYHHAInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>;
944 // mpyhhu: Multiply high-high, unsigned, e.g.:
946 // +-------+-------+ +-------+-------+ +---------+
947 // | a0 . a1 | x | b0 . b1 | = | a0 x b0 |
948 // +-------+-------+ +-------+-------+ +---------+
950 // where a0, b0 are the upper 16 bits of the 32-bit word
952 class MPYHHUInst<dag OOL, dag IOL>:
953 RRForm<0b01110011110, OOL, IOL,
954 "mpyhhu\t$rT, $rA, $rB", IntegerMulDiv,
958 MPYHHUInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
961 MPYHHUInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>;
963 // mpyhhau: Multiply high-high, unsigned
965 class MPYHHAUInst<dag OOL, dag IOL>:
966 RRForm<0b01110010110, OOL, IOL,
967 "mpyhhau\t$rT, $rA, $rB", IntegerMulDiv,
971 MPYHHAUInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
974 MPYHHAUInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>;
976 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
977 // clz: Count leading zeroes
978 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
979 class CLZInst<dag OOL, dag IOL, list<dag> pattern>:
980 RRForm_1<0b10100101010, OOL, IOL, "clz\t$rT, $rA",
983 class CLZRegInst<RegisterClass rclass>:
984 CLZInst<(outs rclass:$rT), (ins rclass:$rA),
985 [(set rclass:$rT, (ctlz rclass:$rA))]>;
987 class CLZVecInst<ValueType vectype>:
988 CLZInst<(outs VECREG:$rT), (ins VECREG:$rA),
989 [(set (vectype VECREG:$rT), (ctlz (vectype VECREG:$rA)))]>;
991 multiclass CountLeadingZeroes {
992 def v4i32 : CLZVecInst<v4i32>;
993 def r32 : CLZRegInst<R32C>;
996 defm CLZ : CountLeadingZeroes;
998 // cntb: Count ones in bytes (aka "population count")
1000 // NOTE: This instruction is really a vector instruction, but the custom
1001 // lowering code uses it in unorthodox ways to support CTPOP for other
1005 RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA),
1006 "cntb\t$rT, $rA", IntegerOp,
1007 [(set (v16i8 VECREG:$rT), (SPUcntb (v16i8 VECREG:$rA)))]>;
1010 RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA),
1011 "cntb\t$rT, $rA", IntegerOp,
1012 [(set (v8i16 VECREG:$rT), (SPUcntb (v8i16 VECREG:$rA)))]>;
1015 RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA),
1016 "cntb\t$rT, $rA", IntegerOp,
1017 [(set (v4i32 VECREG:$rT), (SPUcntb (v4i32 VECREG:$rA)))]>;
1019 // gbb: Gather the low order bits from each byte in $rA into a single 16-bit
1020 // quantity stored into $rT's slot 0, upper 16 bits are zeroed, as are
1023 // Note: This instruction "pairs" with the fsmb instruction for all of the
1024 // various types defined here.
1026 // Note 2: The "VecInst" and "RegInst" forms refer to the result being either
1027 // a vector or register.
1029 class GBBInst<dag OOL, dag IOL, list<dag> pattern>:
1030 RRForm_1<0b01001101100, OOL, IOL, "gbb\t$rT, $rA", GatherOp, pattern>;
1032 class GBBRegInst<RegisterClass rclass, ValueType vectype>:
1033 GBBInst<(outs rclass:$rT), (ins VECREG:$rA),
1034 [/* no pattern */]>;
1036 class GBBVecInst<ValueType vectype>:
1037 GBBInst<(outs VECREG:$rT), (ins VECREG:$rA),
1038 [/* no pattern */]>;
1040 multiclass GatherBitsFromBytes {
1041 def v16i8_r32: GBBRegInst<R32C, v16i8>;
1042 def v16i8_r16: GBBRegInst<R16C, v16i8>;
1043 def v16i8: GBBVecInst<v16i8>;
1046 defm GBB: GatherBitsFromBytes;
1048 // gbh: Gather all low order bits from each halfword in $rA into a single
1049 // 8-bit quantity stored in $rT's slot 0, with the upper bits of $rT set to 0
1050 // and slots 1-3 also set to 0.
1052 // See notes for GBBInst, above.
1054 class GBHInst<dag OOL, dag IOL, list<dag> pattern>:
1055 RRForm_1<0b10001101100, OOL, IOL, "gbh\t$rT, $rA", GatherOp,
1058 class GBHRegInst<RegisterClass rclass, ValueType vectype>:
1059 GBHInst<(outs rclass:$rT), (ins VECREG:$rA),
1060 [/* no pattern */]>;
1062 class GBHVecInst<ValueType vectype>:
1063 GBHInst<(outs VECREG:$rT), (ins VECREG:$rA),
1064 [/* no pattern */]>;
1066 multiclass GatherBitsHalfword {
1067 def v8i16_r32: GBHRegInst<R32C, v8i16>;
1068 def v8i16_r16: GBHRegInst<R16C, v8i16>;
1069 def v8i16: GBHVecInst<v8i16>;
1072 defm GBH: GatherBitsHalfword;
1074 // gb: Gather all low order bits from each word in $rA into a single
1075 // 4-bit quantity stored in $rT's slot 0, upper bits in $rT set to 0,
1076 // as well as slots 1-3.
1078 // See notes for gbb, above.
1080 class GBInst<dag OOL, dag IOL, list<dag> pattern>:
1081 RRForm_1<0b00001101100, OOL, IOL, "gb\t$rT, $rA", GatherOp,
1084 class GBRegInst<RegisterClass rclass, ValueType vectype>:
1085 GBInst<(outs rclass:$rT), (ins VECREG:$rA),
1086 [/* no pattern */]>;
1088 class GBVecInst<ValueType vectype>:
1089 GBInst<(outs VECREG:$rT), (ins VECREG:$rA),
1090 [/* no pattern */]>;
1092 multiclass GatherBitsWord {
1093 def v4i32_r32: GBRegInst<R32C, v4i32>;
1094 def v4i32_r16: GBRegInst<R16C, v4i32>;
1095 def v4i32: GBVecInst<v4i32>;
1098 defm GB: GatherBitsWord;
1100 // avgb: average bytes
1102 RRForm<0b11001011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1103 "avgb\t$rT, $rA, $rB", ByteOp,
1106 // absdb: absolute difference of bytes
1108 RRForm<0b11001010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1109 "absdb\t$rT, $rA, $rB", ByteOp,
1112 // sumb: sum bytes into halfwords
1114 RRForm<0b11001010010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1115 "sumb\t$rT, $rA, $rB", ByteOp,
1118 // Sign extension operations:
1119 class XSBHInst<dag OOL, dag IOL, list<dag> pattern>:
1120 RRForm_1<0b01101101010, OOL, IOL,
1121 "xsbh\t$rDst, $rSrc",
1122 IntegerOp, pattern>;
1124 class XSBHInRegInst<RegisterClass rclass, list<dag> pattern>:
1125 XSBHInst<(outs rclass:$rDst), (ins rclass:$rSrc),
1128 multiclass ExtendByteHalfword {
1129 def v16i8: XSBHInst<(outs VECREG:$rDst), (ins VECREG:$rSrc),
1131 /*(set (v8i16 VECREG:$rDst), (sext (v8i16 VECREG:$rSrc)))*/]>;
1132 def r8: XSBHInst<(outs R16C:$rDst), (ins R8C:$rSrc),
1133 [(set R16C:$rDst, (sext R8C:$rSrc))]>;
1134 def r16: XSBHInRegInst<R16C,
1135 [(set R16C:$rDst, (sext_inreg R16C:$rSrc, i8))]>;
1137 // 32-bit form for XSBH: used to sign extend 8-bit quantities to 16-bit
1138 // quantities to 32-bit quantities via a 32-bit register (see the sext 8->32
1139 // pattern below). Intentionally doesn't match a pattern because we want the
1140 // sext 8->32 pattern to do the work for us, namely because we need the extra
1142 def r32: XSBHInRegInst<R32C, [/* no pattern */]>;
1144 // Same as the 32-bit version, but for i64
1145 def r64: XSBHInRegInst<R64C, [/* no pattern */]>;
1148 defm XSBH : ExtendByteHalfword;
1150 // Sign extend halfwords to words:
1152 class XSHWInst<dag OOL, dag IOL, list<dag> pattern>:
1153 RRForm_1<0b01101101010, OOL, IOL, "xshw\t$rDest, $rSrc",
1154 IntegerOp, pattern>;
1156 class XSHWVecInst<ValueType in_vectype, ValueType out_vectype>:
1157 XSHWInst<(outs VECREG:$rDest), (ins VECREG:$rSrc),
1158 [(set (out_vectype VECREG:$rDest),
1159 (sext (in_vectype VECREG:$rSrc)))]>;
1161 class XSHWInRegInst<RegisterClass rclass, list<dag> pattern>:
1162 XSHWInst<(outs rclass:$rDest), (ins rclass:$rSrc),
1165 class XSHWRegInst<RegisterClass rclass>:
1166 XSHWInst<(outs rclass:$rDest), (ins R16C:$rSrc),
1167 [(set rclass:$rDest, (sext R16C:$rSrc))]>;
1169 multiclass ExtendHalfwordWord {
1170 def v4i32: XSHWVecInst<v4i32, v8i16>;
1172 def r16: XSHWRegInst<R32C>;
1174 def r32: XSHWInRegInst<R32C,
1175 [(set R32C:$rDest, (sext_inreg R32C:$rSrc, i16))]>;
1176 def r64: XSHWInRegInst<R64C, [/* no pattern */]>;
1179 defm XSHW : ExtendHalfwordWord;
1181 // Sign-extend words to doublewords (32->64 bits)
1183 class XSWDInst<dag OOL, dag IOL, list<dag> pattern>:
1184 RRForm_1<0b01100101010, OOL, IOL, "xswd\t$rDst, $rSrc",
1185 IntegerOp, pattern>;
1187 class XSWDVecInst<ValueType in_vectype, ValueType out_vectype>:
1188 XSWDInst<(outs VECREG:$rDst), (ins VECREG:$rSrc),
1189 [/*(set (out_vectype VECREG:$rDst),
1190 (sext (out_vectype VECREG:$rSrc)))*/]>;
1192 class XSWDRegInst<RegisterClass in_rclass, RegisterClass out_rclass>:
1193 XSWDInst<(outs out_rclass:$rDst), (ins in_rclass:$rSrc),
1194 [(set out_rclass:$rDst, (sext in_rclass:$rSrc))]>;
1196 multiclass ExtendWordToDoubleWord {
1197 def v2i64: XSWDVecInst<v4i32, v2i64>;
1198 def r64: XSWDRegInst<R32C, R64C>;
1200 def r64_inreg: XSWDInst<(outs R64C:$rDst), (ins R64C:$rSrc),
1201 [(set R64C:$rDst, (sext_inreg R64C:$rSrc, i32))]>;
1204 defm XSWD : ExtendWordToDoubleWord;
1208 class ANDInst<dag OOL, dag IOL, list<dag> pattern> :
1209 RRForm<0b10000011000, OOL, IOL, "and\t$rT, $rA, $rB",
1210 IntegerOp, pattern>;
1212 class ANDVecInst<ValueType vectype>:
1213 ANDInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1214 [(set (vectype VECREG:$rT), (and (vectype VECREG:$rA),
1215 (vectype VECREG:$rB)))]>;
1217 class ANDRegInst<RegisterClass rclass>:
1218 ANDInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
1219 [(set rclass:$rT, (and rclass:$rA, rclass:$rB))]>;
1221 multiclass BitwiseAnd
1223 def v16i8: ANDVecInst<v16i8>;
1224 def v8i16: ANDVecInst<v8i16>;
1225 def v4i32: ANDVecInst<v4i32>;
1226 def v2i64: ANDVecInst<v2i64>;
1228 def r128: ANDRegInst<GPRC>;
1229 def r64: ANDRegInst<R64C>;
1230 def r32: ANDRegInst<R32C>;
1231 def r16: ANDRegInst<R16C>;
1232 def r8: ANDRegInst<R8C>;
1234 //===---------------------------------------------
1235 // Special instructions to perform the fabs instruction
1236 def fabs32: ANDInst<(outs R32FP:$rT), (ins R32FP:$rA, R32C:$rB),
1237 [/* Intentionally does not match a pattern */]>;
1239 def fabs64: ANDInst<(outs R64FP:$rT), (ins R64FP:$rA, R64C:$rB),
1240 [/* Intentionally does not match a pattern */]>;
1242 def fabsvec: ANDInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1243 [/* Intentionally does not match a pattern */]>;
1245 //===---------------------------------------------
1247 // Hacked form of AND to zero-extend 16-bit quantities to 32-bit
1248 // quantities -- see 16->32 zext pattern.
1250 // This pattern is somewhat artificial, since it might match some
1251 // compiler generated pattern but it is unlikely to do so.
1253 def i16i32: ANDInst<(outs R32C:$rT), (ins R16C:$rA, R32C:$rB),
1254 [(set R32C:$rT, (and (zext R16C:$rA), R32C:$rB))]>;
1257 defm AND : BitwiseAnd;
1260 def vnot_cell_conv : PatFrag<(ops node:$in),
1261 (xor node:$in, (bitconvert (v4i32 immAllOnesV)))>;
1263 // N.B.: vnot_cell_conv is one of those special target selection pattern
1265 // in which we expect there to be a bit_convert on the constant. Bear in mind
1266 // that llvm translates "not <reg>" to "xor <reg>, -1" (or in this case, a
1267 // constant -1 vector.)
1269 class ANDCInst<dag OOL, dag IOL, list<dag> pattern>:
1270 RRForm<0b10000011010, OOL, IOL, "andc\t$rT, $rA, $rB",
1271 IntegerOp, pattern>;
1273 class ANDCVecInst<ValueType vectype, PatFrag vnot_frag = vnot>:
1274 ANDCInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1275 [(set (vectype VECREG:$rT),
1276 (and (vectype VECREG:$rA),
1277 (vnot_frag (vectype VECREG:$rB))))]>;
1279 class ANDCRegInst<RegisterClass rclass>:
1280 ANDCInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
1281 [(set rclass:$rT, (and rclass:$rA, (not rclass:$rB)))]>;
1283 multiclass AndComplement
1285 def v16i8: ANDCVecInst<v16i8>;
1286 def v8i16: ANDCVecInst<v8i16>;
1287 def v4i32: ANDCVecInst<v4i32>;
1288 def v2i64: ANDCVecInst<v2i64>;
1290 def r128: ANDCRegInst<GPRC>;
1291 def r64: ANDCRegInst<R64C>;
1292 def r32: ANDCRegInst<R32C>;
1293 def r16: ANDCRegInst<R16C>;
1294 def r8: ANDCRegInst<R8C>;
1296 // Sometimes, the xor pattern has a bitcast constant:
1297 def v16i8_conv: ANDCVecInst<v16i8, vnot_cell_conv>;
1300 defm ANDC : AndComplement;
1302 class ANDBIInst<dag OOL, dag IOL, list<dag> pattern>:
1303 RI10Form<0b01101000, OOL, IOL, "andbi\t$rT, $rA, $val",
1306 multiclass AndByteImm
1308 def v16i8: ANDBIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
1309 [(set (v16i8 VECREG:$rT),
1310 (and (v16i8 VECREG:$rA),
1311 (v16i8 v16i8U8Imm:$val)))]>;
1313 def r8: ANDBIInst<(outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val),
1314 [(set R8C:$rT, (and R8C:$rA, immU8:$val))]>;
1317 defm ANDBI : AndByteImm;
1319 class ANDHIInst<dag OOL, dag IOL, list<dag> pattern> :
1320 RI10Form<0b10101000, OOL, IOL, "andhi\t$rT, $rA, $val",
1323 multiclass AndHalfwordImm
1325 def v8i16: ANDHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
1326 [(set (v8i16 VECREG:$rT),
1327 (and (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>;
1329 def r16: ANDHIInst<(outs R16C:$rT), (ins R16C:$rA, u10imm:$val),
1330 [(set R16C:$rT, (and R16C:$rA, i16ImmUns10:$val))]>;
1332 // Zero-extend i8 to i16:
1333 def i8i16: ANDHIInst<(outs R16C:$rT), (ins R8C:$rA, u10imm:$val),
1334 [(set R16C:$rT, (and (zext R8C:$rA), i16ImmUns10:$val))]>;
1337 defm ANDHI : AndHalfwordImm;
1339 class ANDIInst<dag OOL, dag IOL, list<dag> pattern> :
1340 RI10Form<0b00101000, OOL, IOL, "andi\t$rT, $rA, $val",
1341 IntegerOp, pattern>;
1343 multiclass AndWordImm
1345 def v4i32: ANDIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
1346 [(set (v4i32 VECREG:$rT),
1347 (and (v4i32 VECREG:$rA), v4i32SExt10Imm:$val))]>;
1349 def r32: ANDIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
1350 [(set R32C:$rT, (and R32C:$rA, i32ImmSExt10:$val))]>;
1352 // Hacked form of ANDI to zero-extend i8 quantities to i32. See the zext 8->32
1354 def i8i32: ANDIInst<(outs R32C:$rT), (ins R8C:$rA, s10imm_i32:$val),
1356 (and (zext R8C:$rA), i32ImmSExt10:$val))]>;
1358 // Hacked form of ANDI to zero-extend i16 quantities to i32. See the
1359 // zext 16->32 pattern below.
1361 // Note that this pattern is somewhat artificial, since it might match
1362 // something the compiler generates but is unlikely to occur in practice.
1363 def i16i32: ANDIInst<(outs R32C:$rT), (ins R16C:$rA, s10imm_i32:$val),
1365 (and (zext R16C:$rA), i32ImmSExt10:$val))]>;
1368 defm ANDI : AndWordImm;
1370 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
1371 // Bitwise OR group:
1372 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
1374 // Bitwise "or" (N.B.: These are also register-register copy instructions...)
1375 class ORInst<dag OOL, dag IOL, list<dag> pattern>:
1376 RRForm<0b10000010000, OOL, IOL, "or\t$rT, $rA, $rB",
1377 IntegerOp, pattern>;
1379 class ORVecInst<ValueType vectype>:
1380 ORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1381 [(set (vectype VECREG:$rT), (or (vectype VECREG:$rA),
1382 (vectype VECREG:$rB)))]>;
1384 class ORRegInst<RegisterClass rclass>:
1385 ORInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
1386 [(set rclass:$rT, (or rclass:$rA, rclass:$rB))]>;
1389 multiclass BitwiseOr
1391 def v16i8: ORVecInst<v16i8>;
1392 def v8i16: ORVecInst<v8i16>;
1393 def v4i32: ORVecInst<v4i32>;
1394 def v2i64: ORVecInst<v2i64>;
1396 def v4f32: ORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1397 [(set (v4f32 VECREG:$rT),
1398 (v4f32 (bitconvert (or (v4i32 VECREG:$rA),
1399 (v4i32 VECREG:$rB)))))]>;
1401 def v2f64: ORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1402 [(set (v2f64 VECREG:$rT),
1403 (v2f64 (bitconvert (or (v2i64 VECREG:$rA),
1404 (v2i64 VECREG:$rB)))))]>;
1406 def r128: ORRegInst<GPRC>;
1407 def r64: ORRegInst<R64C>;
1408 def r32: ORRegInst<R32C>;
1409 def r16: ORRegInst<R16C>;
1410 def r8: ORRegInst<R8C>;
1412 // OR instructions used to copy f32 and f64 registers.
1413 def f32: ORInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
1414 [/* no pattern */]>;
1416 def f64: ORInst<(outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
1417 [/* no pattern */]>;
1420 defm OR : BitwiseOr;
1422 //===----------------------------------------------------------------------===//
1423 // SPU::PREFSLOT2VEC and VEC2PREFSLOT re-interpretations of registers
1424 //===----------------------------------------------------------------------===//
1425 def : Pat<(v16i8 (SPUprefslot2vec R8C:$rA)),
1426 (COPY_TO_REGCLASS R8C:$rA, VECREG)>;
1428 def : Pat<(v8i16 (SPUprefslot2vec R16C:$rA)),
1429 (COPY_TO_REGCLASS R16C:$rA, VECREG)>;
1431 def : Pat<(v4i32 (SPUprefslot2vec R32C:$rA)),
1432 (COPY_TO_REGCLASS R32C:$rA, VECREG)>;
1434 def : Pat<(v2i64 (SPUprefslot2vec R64C:$rA)),
1435 (COPY_TO_REGCLASS R64C:$rA, VECREG)>;
1437 def : Pat<(v4f32 (SPUprefslot2vec R32FP:$rA)),
1438 (COPY_TO_REGCLASS R32FP:$rA, VECREG)>;
1440 def : Pat<(v2f64 (SPUprefslot2vec R64FP:$rA)),
1441 (COPY_TO_REGCLASS R64FP:$rA, VECREG)>;
1443 def : Pat<(i8 (SPUvec2prefslot (v16i8 VECREG:$rA))),
1444 (COPY_TO_REGCLASS (v16i8 VECREG:$rA), R8C)>;
1446 def : Pat<(i16 (SPUvec2prefslot (v8i16 VECREG:$rA))),
1447 (COPY_TO_REGCLASS (v8i16 VECREG:$rA), R16C)>;
1449 def : Pat<(i32 (SPUvec2prefslot (v4i32 VECREG:$rA))),
1450 (COPY_TO_REGCLASS (v4i32 VECREG:$rA), R32C)>;
1452 def : Pat<(i64 (SPUvec2prefslot (v2i64 VECREG:$rA))),
1453 (COPY_TO_REGCLASS (v2i64 VECREG:$rA), R64C)>;
1455 def : Pat<(f32 (SPUvec2prefslot (v4f32 VECREG:$rA))),
1456 (COPY_TO_REGCLASS (v4f32 VECREG:$rA), R32FP)>;
1458 def : Pat<(f64 (SPUvec2prefslot (v2f64 VECREG:$rA))),
1459 (COPY_TO_REGCLASS (v2f64 VECREG:$rA), R64FP)>;
1461 // Load Register: This is an assembler alias for a bitwise OR of a register
1462 // against itself. It's here because it brings some clarity to assembly
1465 let hasCtrlDep = 1 in {
1466 class LRInst<dag OOL, dag IOL>
1467 : SPUInstr<OOL, IOL, "lr\t$rT, $rA", IntegerOp> {
1471 let Pattern = [/*no pattern*/];
1473 let Inst{0-10} = 0b10000010000; /* It's an OR operation */
1474 let Inst{11-17} = RA;
1475 let Inst{18-24} = RA;
1476 let Inst{25-31} = RT;
1479 class LRVecInst<ValueType vectype>:
1480 LRInst<(outs VECREG:$rT), (ins VECREG:$rA)>;
1482 class LRRegInst<RegisterClass rclass>:
1483 LRInst<(outs rclass:$rT), (ins rclass:$rA)>;
1485 multiclass LoadRegister {
1486 def v2i64: LRVecInst<v2i64>;
1487 def v2f64: LRVecInst<v2f64>;
1488 def v4i32: LRVecInst<v4i32>;
1489 def v4f32: LRVecInst<v4f32>;
1490 def v8i16: LRVecInst<v8i16>;
1491 def v16i8: LRVecInst<v16i8>;
1493 def r128: LRRegInst<GPRC>;
1494 def r64: LRRegInst<R64C>;
1495 def f64: LRRegInst<R64FP>;
1496 def r32: LRRegInst<R32C>;
1497 def f32: LRRegInst<R32FP>;
1498 def r16: LRRegInst<R16C>;
1499 def r8: LRRegInst<R8C>;
1502 defm LR: LoadRegister;
1505 // ORC: Bitwise "or" with complement (c = a | ~b)
1507 class ORCInst<dag OOL, dag IOL, list<dag> pattern>:
1508 RRForm<0b10010010000, OOL, IOL, "orc\t$rT, $rA, $rB",
1509 IntegerOp, pattern>;
1511 class ORCVecInst<ValueType vectype>:
1512 ORCInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1513 [(set (vectype VECREG:$rT), (or (vectype VECREG:$rA),
1514 (vnot (vectype VECREG:$rB))))]>;
1516 class ORCRegInst<RegisterClass rclass>:
1517 ORCInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
1518 [(set rclass:$rT, (or rclass:$rA, (not rclass:$rB)))]>;
1520 multiclass BitwiseOrComplement
1522 def v16i8: ORCVecInst<v16i8>;
1523 def v8i16: ORCVecInst<v8i16>;
1524 def v4i32: ORCVecInst<v4i32>;
1525 def v2i64: ORCVecInst<v2i64>;
1527 def r128: ORCRegInst<GPRC>;
1528 def r64: ORCRegInst<R64C>;
1529 def r32: ORCRegInst<R32C>;
1530 def r16: ORCRegInst<R16C>;
1531 def r8: ORCRegInst<R8C>;
1534 defm ORC : BitwiseOrComplement;
1536 // OR byte immediate
1537 class ORBIInst<dag OOL, dag IOL, list<dag> pattern>:
1538 RI10Form<0b01100000, OOL, IOL, "orbi\t$rT, $rA, $val",
1539 IntegerOp, pattern>;
1541 class ORBIVecInst<ValueType vectype, PatLeaf immpred>:
1542 ORBIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
1543 [(set (v16i8 VECREG:$rT), (or (vectype VECREG:$rA),
1544 (vectype immpred:$val)))]>;
1546 multiclass BitwiseOrByteImm
1548 def v16i8: ORBIVecInst<v16i8, v16i8U8Imm>;
1550 def r8: ORBIInst<(outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val),
1551 [(set R8C:$rT, (or R8C:$rA, immU8:$val))]>;
1554 defm ORBI : BitwiseOrByteImm;
1556 // OR halfword immediate
1557 class ORHIInst<dag OOL, dag IOL, list<dag> pattern>:
1558 RI10Form<0b10100000, OOL, IOL, "orhi\t$rT, $rA, $val",
1559 IntegerOp, pattern>;
1561 class ORHIVecInst<ValueType vectype, PatLeaf immpred>:
1562 ORHIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
1563 [(set (vectype VECREG:$rT), (or (vectype VECREG:$rA),
1566 multiclass BitwiseOrHalfwordImm
1568 def v8i16: ORHIVecInst<v8i16, v8i16Uns10Imm>;
1570 def r16: ORHIInst<(outs R16C:$rT), (ins R16C:$rA, u10imm:$val),
1571 [(set R16C:$rT, (or R16C:$rA, i16ImmUns10:$val))]>;
1573 // Specialized ORHI form used to promote 8-bit registers to 16-bit
1574 def i8i16: ORHIInst<(outs R16C:$rT), (ins R8C:$rA, s10imm:$val),
1575 [(set R16C:$rT, (or (anyext R8C:$rA),
1576 i16ImmSExt10:$val))]>;
1579 defm ORHI : BitwiseOrHalfwordImm;
1581 class ORIInst<dag OOL, dag IOL, list<dag> pattern>:
1582 RI10Form<0b00100000, OOL, IOL, "ori\t$rT, $rA, $val",
1583 IntegerOp, pattern>;
1585 class ORIVecInst<ValueType vectype, PatLeaf immpred>:
1586 ORIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
1587 [(set (vectype VECREG:$rT), (or (vectype VECREG:$rA),
1590 // Bitwise "or" with immediate
1591 multiclass BitwiseOrImm
1593 def v4i32: ORIVecInst<v4i32, v4i32Uns10Imm>;
1595 def r32: ORIInst<(outs R32C:$rT), (ins R32C:$rA, u10imm_i32:$val),
1596 [(set R32C:$rT, (or R32C:$rA, i32ImmUns10:$val))]>;
1598 // i16i32: hacked version of the ori instruction to extend 16-bit quantities
1599 // to 32-bit quantities. used exclusively to match "anyext" conversions (vide
1600 // infra "anyext 16->32" pattern.)
1601 def i16i32: ORIInst<(outs R32C:$rT), (ins R16C:$rA, s10imm_i32:$val),
1602 [(set R32C:$rT, (or (anyext R16C:$rA),
1603 i32ImmSExt10:$val))]>;
1605 // i8i32: Hacked version of the ORI instruction to extend 16-bit quantities
1606 // to 32-bit quantities. Used exclusively to match "anyext" conversions (vide
1607 // infra "anyext 16->32" pattern.)
1608 def i8i32: ORIInst<(outs R32C:$rT), (ins R8C:$rA, s10imm_i32:$val),
1609 [(set R32C:$rT, (or (anyext R8C:$rA),
1610 i32ImmSExt10:$val))]>;
1613 defm ORI : BitwiseOrImm;
1615 // ORX: "or" across the vector: or's $rA's word slots leaving the result in
1616 // $rT[0], slots 1-3 are zeroed.
1618 // FIXME: Needs to match an intrinsic pattern.
1620 RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1621 "orx\t$rT, $rA, $rB", IntegerOp,
1626 class XORInst<dag OOL, dag IOL, list<dag> pattern> :
1627 RRForm<0b10010010000, OOL, IOL, "xor\t$rT, $rA, $rB",
1628 IntegerOp, pattern>;
1630 class XORVecInst<ValueType vectype>:
1631 XORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1632 [(set (vectype VECREG:$rT), (xor (vectype VECREG:$rA),
1633 (vectype VECREG:$rB)))]>;
1635 class XORRegInst<RegisterClass rclass>:
1636 XORInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
1637 [(set rclass:$rT, (xor rclass:$rA, rclass:$rB))]>;
1639 multiclass BitwiseExclusiveOr
1641 def v16i8: XORVecInst<v16i8>;
1642 def v8i16: XORVecInst<v8i16>;
1643 def v4i32: XORVecInst<v4i32>;
1644 def v2i64: XORVecInst<v2i64>;
1646 def r128: XORRegInst<GPRC>;
1647 def r64: XORRegInst<R64C>;
1648 def r32: XORRegInst<R32C>;
1649 def r16: XORRegInst<R16C>;
1650 def r8: XORRegInst<R8C>;
1652 // XOR instructions used to negate f32 and f64 quantities.
1654 def fneg32: XORInst<(outs R32FP:$rT), (ins R32FP:$rA, R32C:$rB),
1655 [/* no pattern */]>;
1657 def fneg64: XORInst<(outs R64FP:$rT), (ins R64FP:$rA, R64C:$rB),
1658 [/* no pattern */]>;
1660 def fnegvec: XORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1661 [/* no pattern, see fneg{32,64} */]>;
1664 defm XOR : BitwiseExclusiveOr;
1666 //==----------------------------------------------------------
1668 class XORBIInst<dag OOL, dag IOL, list<dag> pattern>:
1669 RI10Form<0b01100000, OOL, IOL, "xorbi\t$rT, $rA, $val",
1670 IntegerOp, pattern>;
1672 multiclass XorByteImm
1675 XORBIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
1676 [(set (v16i8 VECREG:$rT), (xor (v16i8 VECREG:$rA), v16i8U8Imm:$val))]>;
1679 XORBIInst<(outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val),
1680 [(set R8C:$rT, (xor R8C:$rA, immU8:$val))]>;
1683 defm XORBI : XorByteImm;
1686 RI10Form<0b10100000, (outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
1687 "xorhi\t$rT, $rA, $val", IntegerOp,
1688 [(set (v8i16 VECREG:$rT), (xor (v8i16 VECREG:$rA),
1689 v8i16SExt10Imm:$val))]>;
1692 RI10Form<0b10100000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
1693 "xorhi\t$rT, $rA, $val", IntegerOp,
1694 [(set R16C:$rT, (xor R16C:$rA, i16ImmSExt10:$val))]>;
1697 RI10Form<0b00100000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm_i32:$val),
1698 "xori\t$rT, $rA, $val", IntegerOp,
1699 [(set (v4i32 VECREG:$rT), (xor (v4i32 VECREG:$rA),
1700 v4i32SExt10Imm:$val))]>;
1703 RI10Form<0b00100000, (outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
1704 "xori\t$rT, $rA, $val", IntegerOp,
1705 [(set R32C:$rT, (xor R32C:$rA, i32ImmSExt10:$val))]>;
1709 class NANDInst<dag OOL, dag IOL, list<dag> pattern>:
1710 RRForm<0b10010011000, OOL, IOL, "nand\t$rT, $rA, $rB",
1711 IntegerOp, pattern>;
1713 class NANDVecInst<ValueType vectype>:
1714 NANDInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1715 [(set (vectype VECREG:$rT), (vnot (and (vectype VECREG:$rA),
1716 (vectype VECREG:$rB))))]>;
1717 class NANDRegInst<RegisterClass rclass>:
1718 NANDInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
1719 [(set rclass:$rT, (not (and rclass:$rA, rclass:$rB)))]>;
1721 multiclass BitwiseNand
1723 def v16i8: NANDVecInst<v16i8>;
1724 def v8i16: NANDVecInst<v8i16>;
1725 def v4i32: NANDVecInst<v4i32>;
1726 def v2i64: NANDVecInst<v2i64>;
1728 def r128: NANDRegInst<GPRC>;
1729 def r64: NANDRegInst<R64C>;
1730 def r32: NANDRegInst<R32C>;
1731 def r16: NANDRegInst<R16C>;
1732 def r8: NANDRegInst<R8C>;
1735 defm NAND : BitwiseNand;
1739 class NORInst<dag OOL, dag IOL, list<dag> pattern>:
1740 RRForm<0b10010010000, OOL, IOL, "nor\t$rT, $rA, $rB",
1741 IntegerOp, pattern>;
1743 class NORVecInst<ValueType vectype>:
1744 NORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1745 [(set (vectype VECREG:$rT), (vnot (or (vectype VECREG:$rA),
1746 (vectype VECREG:$rB))))]>;
1747 class NORRegInst<RegisterClass rclass>:
1748 NORInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
1749 [(set rclass:$rT, (not (or rclass:$rA, rclass:$rB)))]>;
1751 multiclass BitwiseNor
1753 def v16i8: NORVecInst<v16i8>;
1754 def v8i16: NORVecInst<v8i16>;
1755 def v4i32: NORVecInst<v4i32>;
1756 def v2i64: NORVecInst<v2i64>;
1758 def r128: NORRegInst<GPRC>;
1759 def r64: NORRegInst<R64C>;
1760 def r32: NORRegInst<R32C>;
1761 def r16: NORRegInst<R16C>;
1762 def r8: NORRegInst<R8C>;
1765 defm NOR : BitwiseNor;
1768 class SELBInst<dag OOL, dag IOL, list<dag> pattern>:
1769 RRRForm<0b1000, OOL, IOL, "selb\t$rT, $rA, $rB, $rC",
1770 IntegerOp, pattern>;
1772 class SELBVecInst<ValueType vectype, PatFrag vnot_frag = vnot>:
1773 SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
1774 [(set (vectype VECREG:$rT),
1775 (or (and (vectype VECREG:$rC), (vectype VECREG:$rB)),
1776 (and (vnot_frag (vectype VECREG:$rC)),
1777 (vectype VECREG:$rA))))]>;
1779 class SELBVecVCondInst<ValueType vectype>:
1780 SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
1781 [(set (vectype VECREG:$rT),
1782 (select (vectype VECREG:$rC),
1783 (vectype VECREG:$rB),
1784 (vectype VECREG:$rA)))]>;
1786 class SELBVecCondInst<ValueType vectype>:
1787 SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, R32C:$rC),
1788 [(set (vectype VECREG:$rT),
1790 (vectype VECREG:$rB),
1791 (vectype VECREG:$rA)))]>;
1793 class SELBRegInst<RegisterClass rclass>:
1794 SELBInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB, rclass:$rC),
1796 (or (and rclass:$rB, rclass:$rC),
1797 (and rclass:$rA, (not rclass:$rC))))]>;
1799 class SELBRegCondInst<RegisterClass rcond, RegisterClass rclass>:
1800 SELBInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB, rcond:$rC),
1802 (select rcond:$rC, rclass:$rB, rclass:$rA))]>;
1804 multiclass SelectBits
1806 def v16i8: SELBVecInst<v16i8>;
1807 def v8i16: SELBVecInst<v8i16>;
1808 def v4i32: SELBVecInst<v4i32>;
1809 def v2i64: SELBVecInst<v2i64, vnot_cell_conv>;
1811 def r128: SELBRegInst<GPRC>;
1812 def r64: SELBRegInst<R64C>;
1813 def r32: SELBRegInst<R32C>;
1814 def r16: SELBRegInst<R16C>;
1815 def r8: SELBRegInst<R8C>;
1817 def v16i8_cond: SELBVecCondInst<v16i8>;
1818 def v8i16_cond: SELBVecCondInst<v8i16>;
1819 def v4i32_cond: SELBVecCondInst<v4i32>;
1820 def v2i64_cond: SELBVecCondInst<v2i64>;
1822 def v16i8_vcond: SELBVecCondInst<v16i8>;
1823 def v8i16_vcond: SELBVecCondInst<v8i16>;
1824 def v4i32_vcond: SELBVecCondInst<v4i32>;
1825 def v2i64_vcond: SELBVecCondInst<v2i64>;
1828 SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
1829 [(set (v4f32 VECREG:$rT),
1830 (select (v4i32 VECREG:$rC),
1832 (v4f32 VECREG:$rA)))]>;
1834 // SELBr64_cond is defined in SPU64InstrInfo.td
1835 def r32_cond: SELBRegCondInst<R32C, R32C>;
1836 def f32_cond: SELBRegCondInst<R32C, R32FP>;
1837 def r16_cond: SELBRegCondInst<R16C, R16C>;
1838 def r8_cond: SELBRegCondInst<R8C, R8C>;
1841 defm SELB : SelectBits;
1843 class SPUselbPatVec<ValueType vectype, SPUInstr inst>:
1844 Pat<(SPUselb (vectype VECREG:$rA), (vectype VECREG:$rB), (vectype VECREG:$rC)),
1845 (inst VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
1847 def : SPUselbPatVec<v16i8, SELBv16i8>;
1848 def : SPUselbPatVec<v8i16, SELBv8i16>;
1849 def : SPUselbPatVec<v4i32, SELBv4i32>;
1850 def : SPUselbPatVec<v2i64, SELBv2i64>;
1852 class SPUselbPatReg<RegisterClass rclass, SPUInstr inst>:
1853 Pat<(SPUselb rclass:$rA, rclass:$rB, rclass:$rC),
1854 (inst rclass:$rA, rclass:$rB, rclass:$rC)>;
1856 def : SPUselbPatReg<R8C, SELBr8>;
1857 def : SPUselbPatReg<R16C, SELBr16>;
1858 def : SPUselbPatReg<R32C, SELBr32>;
1859 def : SPUselbPatReg<R64C, SELBr64>;
1861 // EQV: Equivalence (1 for each same bit, otherwise 0)
1863 // Note: There are a lot of ways to match this bit operator and these patterns
1864 // attempt to be as exhaustive as possible.
1866 class EQVInst<dag OOL, dag IOL, list<dag> pattern>:
1867 RRForm<0b10010010000, OOL, IOL, "eqv\t$rT, $rA, $rB",
1868 IntegerOp, pattern>;
1870 class EQVVecInst<ValueType vectype>:
1871 EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1872 [(set (vectype VECREG:$rT),
1873 (or (and (vectype VECREG:$rA), (vectype VECREG:$rB)),
1874 (and (vnot (vectype VECREG:$rA)),
1875 (vnot (vectype VECREG:$rB)))))]>;
1877 class EQVRegInst<RegisterClass rclass>:
1878 EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
1879 [(set rclass:$rT, (or (and rclass:$rA, rclass:$rB),
1880 (and (not rclass:$rA), (not rclass:$rB))))]>;
1882 class EQVVecPattern1<ValueType vectype>:
1883 EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1884 [(set (vectype VECREG:$rT),
1885 (xor (vectype VECREG:$rA), (vnot (vectype VECREG:$rB))))]>;
1887 class EQVRegPattern1<RegisterClass rclass>:
1888 EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
1889 [(set rclass:$rT, (xor rclass:$rA, (not rclass:$rB)))]>;
1891 class EQVVecPattern2<ValueType vectype>:
1892 EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1893 [(set (vectype VECREG:$rT),
1894 (or (and (vectype VECREG:$rA), (vectype VECREG:$rB)),
1895 (vnot (or (vectype VECREG:$rA), (vectype VECREG:$rB)))))]>;
1897 class EQVRegPattern2<RegisterClass rclass>:
1898 EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
1900 (or (and rclass:$rA, rclass:$rB),
1901 (not (or rclass:$rA, rclass:$rB))))]>;
1903 class EQVVecPattern3<ValueType vectype>:
1904 EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1905 [(set (vectype VECREG:$rT),
1906 (not (xor (vectype VECREG:$rA), (vectype VECREG:$rB))))]>;
1908 class EQVRegPattern3<RegisterClass rclass>:
1909 EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
1910 [(set rclass:$rT, (not (xor rclass:$rA, rclass:$rB)))]>;
1912 multiclass BitEquivalence
1914 def v16i8: EQVVecInst<v16i8>;
1915 def v8i16: EQVVecInst<v8i16>;
1916 def v4i32: EQVVecInst<v4i32>;
1917 def v2i64: EQVVecInst<v2i64>;
1919 def v16i8_1: EQVVecPattern1<v16i8>;
1920 def v8i16_1: EQVVecPattern1<v8i16>;
1921 def v4i32_1: EQVVecPattern1<v4i32>;
1922 def v2i64_1: EQVVecPattern1<v2i64>;
1924 def v16i8_2: EQVVecPattern2<v16i8>;
1925 def v8i16_2: EQVVecPattern2<v8i16>;
1926 def v4i32_2: EQVVecPattern2<v4i32>;
1927 def v2i64_2: EQVVecPattern2<v2i64>;
1929 def v16i8_3: EQVVecPattern3<v16i8>;
1930 def v8i16_3: EQVVecPattern3<v8i16>;
1931 def v4i32_3: EQVVecPattern3<v4i32>;
1932 def v2i64_3: EQVVecPattern3<v2i64>;
1934 def r128: EQVRegInst<GPRC>;
1935 def r64: EQVRegInst<R64C>;
1936 def r32: EQVRegInst<R32C>;
1937 def r16: EQVRegInst<R16C>;
1938 def r8: EQVRegInst<R8C>;
1940 def r128_1: EQVRegPattern1<GPRC>;
1941 def r64_1: EQVRegPattern1<R64C>;
1942 def r32_1: EQVRegPattern1<R32C>;
1943 def r16_1: EQVRegPattern1<R16C>;
1944 def r8_1: EQVRegPattern1<R8C>;
1946 def r128_2: EQVRegPattern2<GPRC>;
1947 def r64_2: EQVRegPattern2<R64C>;
1948 def r32_2: EQVRegPattern2<R32C>;
1949 def r16_2: EQVRegPattern2<R16C>;
1950 def r8_2: EQVRegPattern2<R8C>;
1952 def r128_3: EQVRegPattern3<GPRC>;
1953 def r64_3: EQVRegPattern3<R64C>;
1954 def r32_3: EQVRegPattern3<R32C>;
1955 def r16_3: EQVRegPattern3<R16C>;
1956 def r8_3: EQVRegPattern3<R8C>;
1959 defm EQV: BitEquivalence;
1961 //===----------------------------------------------------------------------===//
1962 // Vector shuffle...
1963 //===----------------------------------------------------------------------===//
1964 // SPUshuffle is generated in LowerVECTOR_SHUFFLE and gets replaced with SHUFB.
1965 // See the SPUshuffle SDNode operand above, which sets up the DAG pattern
1966 // matcher to emit something when the LowerVECTOR_SHUFFLE generates a node with
1967 // the SPUISD::SHUFB opcode.
1968 //===----------------------------------------------------------------------===//
1970 class SHUFBInst<dag OOL, dag IOL, list<dag> pattern>:
1971 RRRForm<0b1000, OOL, IOL, "shufb\t$rT, $rA, $rB, $rC",
1972 IntegerOp, pattern>;
1974 class SHUFBVecInst<ValueType resultvec, ValueType maskvec>:
1975 SHUFBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
1976 [(set (resultvec VECREG:$rT),
1977 (SPUshuffle (resultvec VECREG:$rA),
1978 (resultvec VECREG:$rB),
1979 (maskvec VECREG:$rC)))]>;
1981 class SHUFBGPRCInst:
1982 SHUFBInst<(outs VECREG:$rT), (ins GPRC:$rA, GPRC:$rB, VECREG:$rC),
1983 [/* no pattern */]>;
1985 multiclass ShuffleBytes
1987 def v16i8 : SHUFBVecInst<v16i8, v16i8>;
1988 def v16i8_m32 : SHUFBVecInst<v16i8, v4i32>;
1989 def v8i16 : SHUFBVecInst<v8i16, v16i8>;
1990 def v8i16_m32 : SHUFBVecInst<v8i16, v4i32>;
1991 def v4i32 : SHUFBVecInst<v4i32, v16i8>;
1992 def v4i32_m32 : SHUFBVecInst<v4i32, v4i32>;
1993 def v2i64 : SHUFBVecInst<v2i64, v16i8>;
1994 def v2i64_m32 : SHUFBVecInst<v2i64, v4i32>;
1996 def v4f32 : SHUFBVecInst<v4f32, v16i8>;
1997 def v4f32_m32 : SHUFBVecInst<v4f32, v4i32>;
1999 def v2f64 : SHUFBVecInst<v2f64, v16i8>;
2000 def v2f64_m32 : SHUFBVecInst<v2f64, v4i32>;
2002 def gprc : SHUFBGPRCInst;
2005 defm SHUFB : ShuffleBytes;
2007 //===----------------------------------------------------------------------===//
2008 // Shift and rotate group:
2009 //===----------------------------------------------------------------------===//
2011 class SHLHInst<dag OOL, dag IOL, list<dag> pattern>:
2012 RRForm<0b11111010000, OOL, IOL, "shlh\t$rT, $rA, $rB",
2013 RotateShift, pattern>;
2015 class SHLHVecInst<ValueType vectype>:
2016 SHLHInst<(outs VECREG:$rT), (ins VECREG:$rA, R16C:$rB),
2017 [(set (vectype VECREG:$rT),
2018 (SPUvec_shl (vectype VECREG:$rA), R16C:$rB))]>;
2020 multiclass ShiftLeftHalfword
2022 def v8i16: SHLHVecInst<v8i16>;
2023 def r16: SHLHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
2024 [(set R16C:$rT, (shl R16C:$rA, R16C:$rB))]>;
2025 def r16_r32: SHLHInst<(outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
2026 [(set R16C:$rT, (shl R16C:$rA, R32C:$rB))]>;
2029 defm SHLH : ShiftLeftHalfword;
2031 //===----------------------------------------------------------------------===//
2033 class SHLHIInst<dag OOL, dag IOL, list<dag> pattern>:
2034 RI7Form<0b11111010000, OOL, IOL, "shlhi\t$rT, $rA, $val",
2035 RotateShift, pattern>;
2037 class SHLHIVecInst<ValueType vectype>:
2038 SHLHIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
2039 [(set (vectype VECREG:$rT),
2040 (SPUvec_shl (vectype VECREG:$rA), (i16 uimm7:$val)))]>;
2042 multiclass ShiftLeftHalfwordImm
2044 def v8i16: SHLHIVecInst<v8i16>;
2045 def r16: SHLHIInst<(outs R16C:$rT), (ins R16C:$rA, u7imm:$val),
2046 [(set R16C:$rT, (shl R16C:$rA, (i16 uimm7:$val)))]>;
2049 defm SHLHI : ShiftLeftHalfwordImm;
2051 def : Pat<(SPUvec_shl (v8i16 VECREG:$rA), (i32 uimm7:$val)),
2052 (SHLHIv8i16 VECREG:$rA, (TO_IMM16 uimm7:$val))>;
2054 def : Pat<(shl R16C:$rA, (i32 uimm7:$val)),
2055 (SHLHIr16 R16C:$rA, (TO_IMM16 uimm7:$val))>;
2057 //===----------------------------------------------------------------------===//
2059 class SHLInst<dag OOL, dag IOL, list<dag> pattern>:
2060 RRForm<0b11111010000, OOL, IOL, "shl\t$rT, $rA, $rB",
2061 RotateShift, pattern>;
2063 multiclass ShiftLeftWord
2066 SHLInst<(outs VECREG:$rT), (ins VECREG:$rA, R16C:$rB),
2067 [(set (v4i32 VECREG:$rT),
2068 (SPUvec_shl (v4i32 VECREG:$rA), R16C:$rB))]>;
2070 SHLInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
2071 [(set R32C:$rT, (shl R32C:$rA, R32C:$rB))]>;
2074 defm SHL: ShiftLeftWord;
2076 //===----------------------------------------------------------------------===//
2078 class SHLIInst<dag OOL, dag IOL, list<dag> pattern>:
2079 RI7Form<0b11111010000, OOL, IOL, "shli\t$rT, $rA, $val",
2080 RotateShift, pattern>;
2082 multiclass ShiftLeftWordImm
2085 SHLIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val),
2086 [(set (v4i32 VECREG:$rT),
2087 (SPUvec_shl (v4i32 VECREG:$rA), (i32 uimm7:$val)))]>;
2090 SHLIInst<(outs R32C:$rT), (ins R32C:$rA, u7imm_i32:$val),
2091 [(set R32C:$rT, (shl R32C:$rA, (i32 uimm7:$val)))]>;
2094 defm SHLI : ShiftLeftWordImm;
2096 //===----------------------------------------------------------------------===//
2097 // SHLQBI vec form: Note that this will shift the entire vector (the 128-bit
2098 // register) to the left. Vector form is here to ensure type correctness.
2100 // The shift count is in the lowest 3 bits (29-31) of $rB, so only a bit shift
2101 // of 7 bits is actually possible.
2103 // Note also that SHLQBI/SHLQBII are used in conjunction with SHLQBY/SHLQBYI
2104 // to shift i64 and i128. SHLQBI is the residual left over after shifting by
2105 // bytes with SHLQBY.
2107 class SHLQBIInst<dag OOL, dag IOL, list<dag> pattern>:
2108 RRForm<0b11011011100, OOL, IOL, "shlqbi\t$rT, $rA, $rB",
2109 RotateShift, pattern>;
2111 class SHLQBIVecInst<ValueType vectype>:
2112 SHLQBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
2113 [(set (vectype VECREG:$rT),
2114 (SPUshlquad_l_bits (vectype VECREG:$rA), R32C:$rB))]>;
2116 class SHLQBIRegInst<RegisterClass rclass>:
2117 SHLQBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
2118 [/* no pattern */]>;
2120 multiclass ShiftLeftQuadByBits
2122 def v16i8: SHLQBIVecInst<v16i8>;
2123 def v8i16: SHLQBIVecInst<v8i16>;
2124 def v4i32: SHLQBIVecInst<v4i32>;
2125 def v4f32: SHLQBIVecInst<v4f32>;
2126 def v2i64: SHLQBIVecInst<v2i64>;
2127 def v2f64: SHLQBIVecInst<v2f64>;
2129 def r128: SHLQBIRegInst<GPRC>;
2132 defm SHLQBI : ShiftLeftQuadByBits;
2134 // See note above on SHLQBI. In this case, the predicate actually does then
2135 // enforcement, whereas with SHLQBI, we have to "take it on faith."
2136 class SHLQBIIInst<dag OOL, dag IOL, list<dag> pattern>:
2137 RI7Form<0b11011111100, OOL, IOL, "shlqbii\t$rT, $rA, $val",
2138 RotateShift, pattern>;
2140 class SHLQBIIVecInst<ValueType vectype>:
2141 SHLQBIIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val),
2142 [(set (vectype VECREG:$rT),
2143 (SPUshlquad_l_bits (vectype VECREG:$rA), (i32 bitshift:$val)))]>;
2145 multiclass ShiftLeftQuadByBitsImm
2147 def v16i8 : SHLQBIIVecInst<v16i8>;
2148 def v8i16 : SHLQBIIVecInst<v8i16>;
2149 def v4i32 : SHLQBIIVecInst<v4i32>;
2150 def v4f32 : SHLQBIIVecInst<v4f32>;
2151 def v2i64 : SHLQBIIVecInst<v2i64>;
2152 def v2f64 : SHLQBIIVecInst<v2f64>;
2155 defm SHLQBII : ShiftLeftQuadByBitsImm;
2157 // SHLQBY, SHLQBYI vector forms: Shift the entire vector to the left by bytes,
2158 // not by bits. See notes above on SHLQBI.
2160 class SHLQBYInst<dag OOL, dag IOL, list<dag> pattern>:
2161 RI7Form<0b11111011100, OOL, IOL, "shlqby\t$rT, $rA, $rB",
2162 RotateShift, pattern>;
2164 class SHLQBYVecInst<ValueType vectype>:
2165 SHLQBYInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
2166 [(set (vectype VECREG:$rT),
2167 (SPUshlquad_l_bytes (vectype VECREG:$rA), R32C:$rB))]>;
2169 multiclass ShiftLeftQuadBytes
2171 def v16i8: SHLQBYVecInst<v16i8>;
2172 def v8i16: SHLQBYVecInst<v8i16>;
2173 def v4i32: SHLQBYVecInst<v4i32>;
2174 def v4f32: SHLQBYVecInst<v4f32>;
2175 def v2i64: SHLQBYVecInst<v2i64>;
2176 def v2f64: SHLQBYVecInst<v2f64>;
2177 def r128: SHLQBYInst<(outs GPRC:$rT), (ins GPRC:$rA, R32C:$rB),
2178 [(set GPRC:$rT, (SPUshlquad_l_bytes GPRC:$rA, R32C:$rB))]>;
2181 defm SHLQBY: ShiftLeftQuadBytes;
2183 class SHLQBYIInst<dag OOL, dag IOL, list<dag> pattern>:
2184 RI7Form<0b11111111100, OOL, IOL, "shlqbyi\t$rT, $rA, $val",
2185 RotateShift, pattern>;
2187 class SHLQBYIVecInst<ValueType vectype>:
2188 SHLQBYIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val),
2189 [(set (vectype VECREG:$rT),
2190 (SPUshlquad_l_bytes (vectype VECREG:$rA), (i32 uimm7:$val)))]>;
2192 multiclass ShiftLeftQuadBytesImm
2194 def v16i8: SHLQBYIVecInst<v16i8>;
2195 def v8i16: SHLQBYIVecInst<v8i16>;
2196 def v4i32: SHLQBYIVecInst<v4i32>;
2197 def v4f32: SHLQBYIVecInst<v4f32>;
2198 def v2i64: SHLQBYIVecInst<v2i64>;
2199 def v2f64: SHLQBYIVecInst<v2f64>;
2200 def r128: SHLQBYIInst<(outs GPRC:$rT), (ins GPRC:$rA, u7imm_i32:$val),
2202 (SPUshlquad_l_bytes GPRC:$rA, (i32 uimm7:$val)))]>;
2205 defm SHLQBYI : ShiftLeftQuadBytesImm;
2207 class SHLQBYBIInst<dag OOL, dag IOL, list<dag> pattern>:
2208 RRForm<0b00111001111, OOL, IOL, "shlqbybi\t$rT, $rA, $rB",
2209 RotateShift, pattern>;
2211 class SHLQBYBIVecInst<ValueType vectype>:
2212 SHLQBYBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
2213 [/* no pattern */]>;
2215 class SHLQBYBIRegInst<RegisterClass rclass>:
2216 SHLQBYBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
2217 [/* no pattern */]>;
2219 multiclass ShiftLeftQuadBytesBitCount
2221 def v16i8: SHLQBYBIVecInst<v16i8>;
2222 def v8i16: SHLQBYBIVecInst<v8i16>;
2223 def v4i32: SHLQBYBIVecInst<v4i32>;
2224 def v4f32: SHLQBYBIVecInst<v4f32>;
2225 def v2i64: SHLQBYBIVecInst<v2i64>;
2226 def v2f64: SHLQBYBIVecInst<v2f64>;
2228 def r128: SHLQBYBIRegInst<GPRC>;
2231 defm SHLQBYBI : ShiftLeftQuadBytesBitCount;
2233 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2235 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2236 class ROTHInst<dag OOL, dag IOL, list<dag> pattern>:
2237 RRForm<0b00111010000, OOL, IOL, "roth\t$rT, $rA, $rB",
2238 RotateShift, pattern>;
2240 class ROTHVecInst<ValueType vectype>:
2241 ROTHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
2242 [(set (vectype VECREG:$rT),
2243 (SPUvec_rotl VECREG:$rA, (v8i16 VECREG:$rB)))]>;
2245 class ROTHRegInst<RegisterClass rclass>:
2246 ROTHInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
2247 [(set rclass:$rT, (rotl rclass:$rA, rclass:$rB))]>;
2249 multiclass RotateLeftHalfword
2251 def v8i16: ROTHVecInst<v8i16>;
2252 def r16: ROTHRegInst<R16C>;
2255 defm ROTH: RotateLeftHalfword;
2257 def ROTHr16_r32: ROTHInst<(outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
2258 [(set R16C:$rT, (rotl R16C:$rA, R32C:$rB))]>;
2260 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2261 // Rotate halfword, immediate:
2262 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2263 class ROTHIInst<dag OOL, dag IOL, list<dag> pattern>:
2264 RI7Form<0b00111110000, OOL, IOL, "rothi\t$rT, $rA, $val",
2265 RotateShift, pattern>;
2267 class ROTHIVecInst<ValueType vectype>:
2268 ROTHIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
2269 [(set (vectype VECREG:$rT),
2270 (SPUvec_rotl VECREG:$rA, (i16 uimm7:$val)))]>;
2272 multiclass RotateLeftHalfwordImm
2274 def v8i16: ROTHIVecInst<v8i16>;
2275 def r16: ROTHIInst<(outs R16C:$rT), (ins R16C:$rA, u7imm:$val),
2276 [(set R16C:$rT, (rotl R16C:$rA, (i16 uimm7:$val)))]>;
2277 def r16_r32: ROTHIInst<(outs R16C:$rT), (ins R16C:$rA, u7imm_i32:$val),
2278 [(set R16C:$rT, (rotl R16C:$rA, (i32 uimm7:$val)))]>;
2281 defm ROTHI: RotateLeftHalfwordImm;
2283 def : Pat<(SPUvec_rotl (v8i16 VECREG:$rA), (i32 uimm7:$val)),
2284 (ROTHIv8i16 VECREG:$rA, (TO_IMM16 imm:$val))>;
2286 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2288 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2290 class ROTInst<dag OOL, dag IOL, list<dag> pattern>:
2291 RRForm<0b00011010000, OOL, IOL, "rot\t$rT, $rA, $rB",
2292 RotateShift, pattern>;
2294 class ROTVecInst<ValueType vectype>:
2295 ROTInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
2296 [(set (vectype VECREG:$rT),
2297 (SPUvec_rotl (vectype VECREG:$rA), R32C:$rB))]>;
2299 class ROTRegInst<RegisterClass rclass>:
2300 ROTInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
2302 (rotl rclass:$rA, R32C:$rB))]>;
2304 multiclass RotateLeftWord
2306 def v4i32: ROTVecInst<v4i32>;
2307 def r32: ROTRegInst<R32C>;
2310 defm ROT: RotateLeftWord;
2312 // The rotate amount is in the same bits whether we've got an 8-bit, 16-bit or
2314 def ROTr32_r16_anyext:
2315 ROTInst<(outs R32C:$rT), (ins R32C:$rA, R16C:$rB),
2316 [(set R32C:$rT, (rotl R32C:$rA, (i32 (anyext R16C:$rB))))]>;
2318 def : Pat<(rotl R32C:$rA, (i32 (zext R16C:$rB))),
2319 (ROTr32_r16_anyext R32C:$rA, R16C:$rB)>;
2321 def : Pat<(rotl R32C:$rA, (i32 (sext R16C:$rB))),
2322 (ROTr32_r16_anyext R32C:$rA, R16C:$rB)>;
2324 def ROTr32_r8_anyext:
2325 ROTInst<(outs R32C:$rT), (ins R32C:$rA, R8C:$rB),
2326 [(set R32C:$rT, (rotl R32C:$rA, (i32 (anyext R8C:$rB))))]>;
2328 def : Pat<(rotl R32C:$rA, (i32 (zext R8C:$rB))),
2329 (ROTr32_r8_anyext R32C:$rA, R8C:$rB)>;
2331 def : Pat<(rotl R32C:$rA, (i32 (sext R8C:$rB))),
2332 (ROTr32_r8_anyext R32C:$rA, R8C:$rB)>;
2334 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2335 // Rotate word, immediate
2336 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2338 class ROTIInst<dag OOL, dag IOL, list<dag> pattern>:
2339 RI7Form<0b00011110000, OOL, IOL, "roti\t$rT, $rA, $val",
2340 RotateShift, pattern>;
2342 class ROTIVecInst<ValueType vectype, Operand optype, ValueType inttype, PatLeaf pred>:
2343 ROTIInst<(outs VECREG:$rT), (ins VECREG:$rA, optype:$val),
2344 [(set (vectype VECREG:$rT),
2345 (SPUvec_rotl (vectype VECREG:$rA), (inttype pred:$val)))]>;
2347 class ROTIRegInst<RegisterClass rclass, Operand optype, ValueType inttype, PatLeaf pred>:
2348 ROTIInst<(outs rclass:$rT), (ins rclass:$rA, optype:$val),
2349 [(set rclass:$rT, (rotl rclass:$rA, (inttype pred:$val)))]>;
2351 multiclass RotateLeftWordImm
2353 def v4i32: ROTIVecInst<v4i32, u7imm_i32, i32, uimm7>;
2354 def v4i32_i16: ROTIVecInst<v4i32, u7imm, i16, uimm7>;
2355 def v4i32_i8: ROTIVecInst<v4i32, u7imm_i8, i8, uimm7>;
2357 def r32: ROTIRegInst<R32C, u7imm_i32, i32, uimm7>;
2358 def r32_i16: ROTIRegInst<R32C, u7imm, i16, uimm7>;
2359 def r32_i8: ROTIRegInst<R32C, u7imm_i8, i8, uimm7>;
2362 defm ROTI : RotateLeftWordImm;
2364 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2365 // Rotate quad by byte (count)
2366 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2368 class ROTQBYInst<dag OOL, dag IOL, list<dag> pattern>:
2369 RRForm<0b00111011100, OOL, IOL, "rotqby\t$rT, $rA, $rB",
2370 RotateShift, pattern>;
2372 class ROTQBYVecInst<ValueType vectype>:
2373 ROTQBYInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
2374 [(set (vectype VECREG:$rT),
2375 (SPUrotbytes_left (vectype VECREG:$rA), R32C:$rB))]>;
2377 multiclass RotateQuadLeftByBytes
2379 def v16i8: ROTQBYVecInst<v16i8>;
2380 def v8i16: ROTQBYVecInst<v8i16>;
2381 def v4i32: ROTQBYVecInst<v4i32>;
2382 def v4f32: ROTQBYVecInst<v4f32>;
2383 def v2i64: ROTQBYVecInst<v2i64>;
2384 def v2f64: ROTQBYVecInst<v2f64>;
2387 defm ROTQBY: RotateQuadLeftByBytes;
2389 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2390 // Rotate quad by byte (count), immediate
2391 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2393 class ROTQBYIInst<dag OOL, dag IOL, list<dag> pattern>:
2394 RI7Form<0b00111111100, OOL, IOL, "rotqbyi\t$rT, $rA, $val",
2395 RotateShift, pattern>;
2397 class ROTQBYIVecInst<ValueType vectype>:
2398 ROTQBYIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
2399 [(set (vectype VECREG:$rT),
2400 (SPUrotbytes_left (vectype VECREG:$rA), (i16 uimm7:$val)))]>;
2402 multiclass RotateQuadByBytesImm
2404 def v16i8: ROTQBYIVecInst<v16i8>;
2405 def v8i16: ROTQBYIVecInst<v8i16>;
2406 def v4i32: ROTQBYIVecInst<v4i32>;
2407 def v4f32: ROTQBYIVecInst<v4f32>;
2408 def v2i64: ROTQBYIVecInst<v2i64>;
2409 def vfi64: ROTQBYIVecInst<v2f64>;
2412 defm ROTQBYI: RotateQuadByBytesImm;
2414 // See ROTQBY note above.
2415 class ROTQBYBIInst<dag OOL, dag IOL, list<dag> pattern>:
2416 RI7Form<0b00110011100, OOL, IOL,
2417 "rotqbybi\t$rT, $rA, $shift",
2418 RotateShift, pattern>;
2420 class ROTQBYBIVecInst<ValueType vectype, RegisterClass rclass>:
2421 ROTQBYBIInst<(outs VECREG:$rT), (ins VECREG:$rA, rclass:$shift),
2422 [(set (vectype VECREG:$rT),
2423 (SPUrotbytes_left_bits (vectype VECREG:$rA), rclass:$shift))]>;
2425 multiclass RotateQuadByBytesByBitshift {
2426 def v16i8_r32: ROTQBYBIVecInst<v16i8, R32C>;
2427 def v8i16_r32: ROTQBYBIVecInst<v8i16, R32C>;
2428 def v4i32_r32: ROTQBYBIVecInst<v4i32, R32C>;
2429 def v2i64_r32: ROTQBYBIVecInst<v2i64, R32C>;
2432 defm ROTQBYBI : RotateQuadByBytesByBitshift;
2434 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2435 // See ROTQBY note above.
2437 // Assume that the user of this instruction knows to shift the rotate count
2439 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2441 class ROTQBIInst<dag OOL, dag IOL, list<dag> pattern>:
2442 RRForm<0b00011011100, OOL, IOL, "rotqbi\t$rT, $rA, $rB",
2443 RotateShift, pattern>;
2445 class ROTQBIVecInst<ValueType vectype>:
2446 ROTQBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
2447 [/* no pattern yet */]>;
2449 class ROTQBIRegInst<RegisterClass rclass>:
2450 ROTQBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
2451 [/* no pattern yet */]>;
2453 multiclass RotateQuadByBitCount
2455 def v16i8: ROTQBIVecInst<v16i8>;
2456 def v8i16: ROTQBIVecInst<v8i16>;
2457 def v4i32: ROTQBIVecInst<v4i32>;
2458 def v2i64: ROTQBIVecInst<v2i64>;
2460 def r128: ROTQBIRegInst<GPRC>;
2461 def r64: ROTQBIRegInst<R64C>;
2464 defm ROTQBI: RotateQuadByBitCount;
2466 class ROTQBIIInst<dag OOL, dag IOL, list<dag> pattern>:
2467 RI7Form<0b00011111100, OOL, IOL, "rotqbii\t$rT, $rA, $val",
2468 RotateShift, pattern>;
2470 class ROTQBIIVecInst<ValueType vectype, Operand optype, ValueType inttype,
2472 ROTQBIIInst<(outs VECREG:$rT), (ins VECREG:$rA, optype:$val),
2473 [/* no pattern yet */]>;
2475 class ROTQBIIRegInst<RegisterClass rclass, Operand optype, ValueType inttype,
2477 ROTQBIIInst<(outs rclass:$rT), (ins rclass:$rA, optype:$val),
2478 [/* no pattern yet */]>;
2480 multiclass RotateQuadByBitCountImm
2482 def v16i8: ROTQBIIVecInst<v16i8, u7imm_i32, i32, uimm7>;
2483 def v8i16: ROTQBIIVecInst<v8i16, u7imm_i32, i32, uimm7>;
2484 def v4i32: ROTQBIIVecInst<v4i32, u7imm_i32, i32, uimm7>;
2485 def v2i64: ROTQBIIVecInst<v2i64, u7imm_i32, i32, uimm7>;
2487 def r128: ROTQBIIRegInst<GPRC, u7imm_i32, i32, uimm7>;
2488 def r64: ROTQBIIRegInst<R64C, u7imm_i32, i32, uimm7>;
2491 defm ROTQBII : RotateQuadByBitCountImm;
2493 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2494 // ROTHM v8i16 form:
2495 // NOTE(1): No vector rotate is generated by the C/C++ frontend (today),
2496 // so this only matches a synthetically generated/lowered code
2498 // NOTE(2): $rB must be negated before the right rotate!
2499 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2501 class ROTHMInst<dag OOL, dag IOL, list<dag> pattern>:
2502 RRForm<0b10111010000, OOL, IOL, "rothm\t$rT, $rA, $rB",
2503 RotateShift, pattern>;
2506 ROTHMInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
2507 [/* see patterns below - $rB must be negated */]>;
2509 def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), R32C:$rB),
2510 (ROTHMv8i16 VECREG:$rA, (SFIr32 R32C:$rB, 0))>;
2512 def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), R16C:$rB),
2513 (ROTHMv8i16 VECREG:$rA,
2514 (SFIr32 (XSHWr16 R16C:$rB), 0))>;
2516 def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), R8C:$rB),
2517 (ROTHMv8i16 VECREG:$rA,
2518 (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB) ), 0))>;
2520 // ROTHM r16 form: Rotate 16-bit quantity to right, zero fill at the left
2521 // Note: This instruction doesn't match a pattern because rB must be negated
2522 // for the instruction to work. Thus, the pattern below the instruction!
2525 ROTHMInst<(outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
2526 [/* see patterns below - $rB must be negated! */]>;
2528 def : Pat<(srl R16C:$rA, R32C:$rB),
2529 (ROTHMr16 R16C:$rA, (SFIr32 R32C:$rB, 0))>;
2531 def : Pat<(srl R16C:$rA, R16C:$rB),
2533 (SFIr32 (XSHWr16 R16C:$rB), 0))>;
2535 def : Pat<(srl R16C:$rA, R8C:$rB),
2537 (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB) ), 0))>;
2539 // ROTHMI v8i16 form: See the comment for ROTHM v8i16. The difference here is
2540 // that the immediate can be complemented, so that the user doesn't have to
2543 class ROTHMIInst<dag OOL, dag IOL, list<dag> pattern>:
2544 RI7Form<0b10111110000, OOL, IOL, "rothmi\t$rT, $rA, $val",
2545 RotateShift, pattern>;
2548 ROTHMIInst<(outs VECREG:$rT), (ins VECREG:$rA, rothNeg7imm:$val),
2549 [/* no pattern */]>;
2551 def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), (i32 imm:$val)),
2552 (ROTHMIv8i16 VECREG:$rA, imm:$val)>;
2554 def: Pat<(SPUvec_srl (v8i16 VECREG:$rA), (i16 imm:$val)),
2555 (ROTHMIv8i16 VECREG:$rA, (TO_IMM32 imm:$val))>;
2557 def: Pat<(SPUvec_srl (v8i16 VECREG:$rA), (i8 imm:$val)),
2558 (ROTHMIv8i16 VECREG:$rA, (TO_IMM32 imm:$val))>;
2561 ROTHMIInst<(outs R16C:$rT), (ins R16C:$rA, rothNeg7imm:$val),
2562 [/* no pattern */]>;
2564 def: Pat<(srl R16C:$rA, (i32 uimm7:$val)),
2565 (ROTHMIr16 R16C:$rA, uimm7:$val)>;
2567 def: Pat<(srl R16C:$rA, (i16 uimm7:$val)),
2568 (ROTHMIr16 R16C:$rA, (TO_IMM32 uimm7:$val))>;
2570 def: Pat<(srl R16C:$rA, (i8 uimm7:$val)),
2571 (ROTHMIr16 R16C:$rA, (TO_IMM32 uimm7:$val))>;
2573 // ROTM v4i32 form: See the ROTHM v8i16 comments.
2574 class ROTMInst<dag OOL, dag IOL, list<dag> pattern>:
2575 RRForm<0b10011010000, OOL, IOL, "rotm\t$rT, $rA, $rB",
2576 RotateShift, pattern>;
2579 ROTMInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
2580 [/* see patterns below - $rB must be negated */]>;
2582 def : Pat<(SPUvec_srl (v4i32 VECREG:$rA), R32C:$rB),
2583 (ROTMv4i32 VECREG:$rA, (SFIr32 R32C:$rB, 0))>;
2585 def : Pat<(SPUvec_srl (v4i32 VECREG:$rA), R16C:$rB),
2586 (ROTMv4i32 VECREG:$rA,
2587 (SFIr32 (XSHWr16 R16C:$rB), 0))>;
2589 def : Pat<(SPUvec_srl (v4i32 VECREG:$rA), R8C:$rB),
2590 (ROTMv4i32 VECREG:$rA,
2591 (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;
2594 ROTMInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
2595 [/* see patterns below - $rB must be negated */]>;
2597 def : Pat<(srl R32C:$rA, R32C:$rB),
2598 (ROTMr32 R32C:$rA, (SFIr32 R32C:$rB, 0))>;
2600 def : Pat<(srl R32C:$rA, R16C:$rB),
2602 (SFIr32 (XSHWr16 R16C:$rB), 0))>;
2604 def : Pat<(srl R32C:$rA, R8C:$rB),
2606 (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;
2608 // ROTMI v4i32 form: See the comment for ROTHM v8i16.
2610 RI7Form<0b10011110000, (outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val),
2611 "rotmi\t$rT, $rA, $val", RotateShift,
2612 [(set (v4i32 VECREG:$rT),
2613 (SPUvec_srl VECREG:$rA, (i32 uimm7:$val)))]>;
2615 def : Pat<(SPUvec_srl (v4i32 VECREG:$rA), (i16 uimm7:$val)),
2616 (ROTMIv4i32 VECREG:$rA, (TO_IMM32 uimm7:$val))>;
2618 def : Pat<(SPUvec_srl (v4i32 VECREG:$rA), (i8 uimm7:$val)),
2619 (ROTMIv4i32 VECREG:$rA, (TO_IMM32 uimm7:$val))>;
2621 // ROTMI r32 form: know how to complement the immediate value.
2623 RI7Form<0b10011110000, (outs R32C:$rT), (ins R32C:$rA, rotNeg7imm:$val),
2624 "rotmi\t$rT, $rA, $val", RotateShift,
2625 [(set R32C:$rT, (srl R32C:$rA, (i32 uimm7:$val)))]>;
2627 def : Pat<(srl R32C:$rA, (i16 imm:$val)),
2628 (ROTMIr32 R32C:$rA, (TO_IMM32 uimm7:$val))>;
2630 def : Pat<(srl R32C:$rA, (i8 imm:$val)),
2631 (ROTMIr32 R32C:$rA, (TO_IMM32 uimm7:$val))>;
2633 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2634 // ROTQMBY: This is a vector form merely so that when used in an
2635 // instruction pattern, type checking will succeed. This instruction assumes
2636 // that the user knew to negate $rB.
2637 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2639 class ROTQMBYInst<dag OOL, dag IOL, list<dag> pattern>:
2640 RRForm<0b10111011100, OOL, IOL, "rotqmby\t$rT, $rA, $rB",
2641 RotateShift, pattern>;
2643 class ROTQMBYVecInst<ValueType vectype>:
2644 ROTQMBYInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
2645 [/* no pattern, $rB must be negated */]>;
2647 class ROTQMBYRegInst<RegisterClass rclass>:
2648 ROTQMBYInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
2649 [/* no pattern */]>;
2651 multiclass RotateQuadBytes
2653 def v16i8: ROTQMBYVecInst<v16i8>;
2654 def v8i16: ROTQMBYVecInst<v8i16>;
2655 def v4i32: ROTQMBYVecInst<v4i32>;
2656 def v2i64: ROTQMBYVecInst<v2i64>;
2658 def r128: ROTQMBYRegInst<GPRC>;
2659 def r64: ROTQMBYRegInst<R64C>;
2662 defm ROTQMBY : RotateQuadBytes;
2664 class ROTQMBYIInst<dag OOL, dag IOL, list<dag> pattern>:
2665 RI7Form<0b10111111100, OOL, IOL, "rotqmbyi\t$rT, $rA, $val",
2666 RotateShift, pattern>;
2668 class ROTQMBYIVecInst<ValueType vectype>:
2669 ROTQMBYIInst<(outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val),
2670 [/* no pattern */]>;
2672 class ROTQMBYIRegInst<RegisterClass rclass, Operand optype, ValueType inttype,
2674 ROTQMBYIInst<(outs rclass:$rT), (ins rclass:$rA, optype:$val),
2675 [/* no pattern */]>;
2677 // 128-bit zero extension form:
2678 class ROTQMBYIZExtInst<RegisterClass rclass, Operand optype, PatLeaf pred>:
2679 ROTQMBYIInst<(outs GPRC:$rT), (ins rclass:$rA, optype:$val),
2680 [/* no pattern */]>;
2682 multiclass RotateQuadBytesImm
2684 def v16i8: ROTQMBYIVecInst<v16i8>;
2685 def v8i16: ROTQMBYIVecInst<v8i16>;
2686 def v4i32: ROTQMBYIVecInst<v4i32>;
2687 def v2i64: ROTQMBYIVecInst<v2i64>;
2689 def r128: ROTQMBYIRegInst<GPRC, rotNeg7imm, i32, uimm7>;
2690 def r64: ROTQMBYIRegInst<R64C, rotNeg7imm, i32, uimm7>;
2692 def r128_zext_r8: ROTQMBYIZExtInst<R8C, rotNeg7imm, uimm7>;
2693 def r128_zext_r16: ROTQMBYIZExtInst<R16C, rotNeg7imm, uimm7>;
2694 def r128_zext_r32: ROTQMBYIZExtInst<R32C, rotNeg7imm, uimm7>;
2695 def r128_zext_r64: ROTQMBYIZExtInst<R64C, rotNeg7imm, uimm7>;
2698 defm ROTQMBYI : RotateQuadBytesImm;
2700 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2701 // Rotate right and mask by bit count
2702 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2704 class ROTQMBYBIInst<dag OOL, dag IOL, list<dag> pattern>:
2705 RRForm<0b10110011100, OOL, IOL, "rotqmbybi\t$rT, $rA, $rB",
2706 RotateShift, pattern>;
2708 class ROTQMBYBIVecInst<ValueType vectype>:
2709 ROTQMBYBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
2710 [/* no pattern, */]>;
2712 multiclass RotateMaskQuadByBitCount
2714 def v16i8: ROTQMBYBIVecInst<v16i8>;
2715 def v8i16: ROTQMBYBIVecInst<v8i16>;
2716 def v4i32: ROTQMBYBIVecInst<v4i32>;
2717 def v2i64: ROTQMBYBIVecInst<v2i64>;
2720 defm ROTQMBYBI: RotateMaskQuadByBitCount;
2722 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2723 // Rotate quad and mask by bits
2724 // Note that the rotate amount has to be negated
2725 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2727 class ROTQMBIInst<dag OOL, dag IOL, list<dag> pattern>:
2728 RRForm<0b10011011100, OOL, IOL, "rotqmbi\t$rT, $rA, $rB",
2729 RotateShift, pattern>;
2731 class ROTQMBIVecInst<ValueType vectype>:
2732 ROTQMBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
2733 [/* no pattern */]>;
2735 class ROTQMBIRegInst<RegisterClass rclass>:
2736 ROTQMBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
2737 [/* no pattern */]>;
2739 multiclass RotateMaskQuadByBits
2741 def v16i8: ROTQMBIVecInst<v16i8>;
2742 def v8i16: ROTQMBIVecInst<v8i16>;
2743 def v4i32: ROTQMBIVecInst<v4i32>;
2744 def v2i64: ROTQMBIVecInst<v2i64>;
2746 def r128: ROTQMBIRegInst<GPRC>;
2747 def r64: ROTQMBIRegInst<R64C>;
2750 defm ROTQMBI: RotateMaskQuadByBits;
2752 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2753 // Rotate quad and mask by bits, immediate
2754 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2756 class ROTQMBIIInst<dag OOL, dag IOL, list<dag> pattern>:
2757 RI7Form<0b10011111100, OOL, IOL, "rotqmbii\t$rT, $rA, $val",
2758 RotateShift, pattern>;
2760 class ROTQMBIIVecInst<ValueType vectype>:
2761 ROTQMBIIInst<(outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val),
2762 [/* no pattern */]>;
2764 class ROTQMBIIRegInst<RegisterClass rclass>:
2765 ROTQMBIIInst<(outs rclass:$rT), (ins rclass:$rA, rotNeg7imm:$val),
2766 [/* no pattern */]>;
2768 multiclass RotateMaskQuadByBitsImm
2770 def v16i8: ROTQMBIIVecInst<v16i8>;
2771 def v8i16: ROTQMBIIVecInst<v8i16>;
2772 def v4i32: ROTQMBIIVecInst<v4i32>;
2773 def v2i64: ROTQMBIIVecInst<v2i64>;
2775 def r128: ROTQMBIIRegInst<GPRC>;
2776 def r64: ROTQMBIIRegInst<R64C>;
2779 defm ROTQMBII: RotateMaskQuadByBitsImm;
2781 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2782 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2785 RRForm<0b01111010000, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
2786 "rotmah\t$rT, $rA, $rB", RotateShift,
2787 [/* see patterns below - $rB must be negated */]>;
2789 def : Pat<(SPUvec_sra (v8i16 VECREG:$rA), R32C:$rB),
2790 (ROTMAHv8i16 VECREG:$rA, (SFIr32 R32C:$rB, 0))>;
2792 def : Pat<(SPUvec_sra (v8i16 VECREG:$rA), R16C:$rB),
2793 (ROTMAHv8i16 VECREG:$rA,
2794 (SFIr32 (XSHWr16 R16C:$rB), 0))>;
2796 def : Pat<(SPUvec_sra (v8i16 VECREG:$rA), R8C:$rB),
2797 (ROTMAHv8i16 VECREG:$rA,
2798 (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;
2801 RRForm<0b01111010000, (outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
2802 "rotmah\t$rT, $rA, $rB", RotateShift,
2803 [/* see patterns below - $rB must be negated */]>;
2805 def : Pat<(sra R16C:$rA, R32C:$rB),
2806 (ROTMAHr16 R16C:$rA, (SFIr32 R32C:$rB, 0))>;
2808 def : Pat<(sra R16C:$rA, R16C:$rB),
2809 (ROTMAHr16 R16C:$rA,
2810 (SFIr32 (XSHWr16 R16C:$rB), 0))>;
2812 def : Pat<(sra R16C:$rA, R8C:$rB),
2813 (ROTMAHr16 R16C:$rA,
2814 (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;
2817 RRForm<0b01111110000, (outs VECREG:$rT), (ins VECREG:$rA, rothNeg7imm:$val),
2818 "rotmahi\t$rT, $rA, $val", RotateShift,
2819 [(set (v8i16 VECREG:$rT),
2820 (SPUvec_sra (v8i16 VECREG:$rA), (i32 uimm7:$val)))]>;
2822 def : Pat<(SPUvec_sra (v8i16 VECREG:$rA), (i16 uimm7:$val)),
2823 (ROTMAHIv8i16 (v8i16 VECREG:$rA), (TO_IMM32 uimm7:$val))>;
2825 def : Pat<(SPUvec_sra (v8i16 VECREG:$rA), (i8 uimm7:$val)),
2826 (ROTMAHIv8i16 (v8i16 VECREG:$rA), (TO_IMM32 uimm7:$val))>;
2829 RRForm<0b01111110000, (outs R16C:$rT), (ins R16C:$rA, rothNeg7imm_i16:$val),
2830 "rotmahi\t$rT, $rA, $val", RotateShift,
2831 [(set R16C:$rT, (sra R16C:$rA, (i16 uimm7:$val)))]>;
2833 def : Pat<(sra R16C:$rA, (i32 imm:$val)),
2834 (ROTMAHIr16 R16C:$rA, (TO_IMM32 uimm7:$val))>;
2836 def : Pat<(sra R16C:$rA, (i8 imm:$val)),
2837 (ROTMAHIr16 R16C:$rA, (TO_IMM32 uimm7:$val))>;
2840 RRForm<0b01011010000, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
2841 "rotma\t$rT, $rA, $rB", RotateShift,
2842 [/* see patterns below - $rB must be negated */]>;
2844 def : Pat<(SPUvec_sra (v4i32 VECREG:$rA), R32C:$rB),
2845 (ROTMAv4i32 VECREG:$rA, (SFIr32 R32C:$rB, 0))>;
2847 def : Pat<(SPUvec_sra (v4i32 VECREG:$rA), R16C:$rB),
2848 (ROTMAv4i32 VECREG:$rA,
2849 (SFIr32 (XSHWr16 R16C:$rB), 0))>;
2851 def : Pat<(SPUvec_sra (v4i32 VECREG:$rA), R8C:$rB),
2852 (ROTMAv4i32 VECREG:$rA,
2853 (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;
2856 RRForm<0b01011010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
2857 "rotma\t$rT, $rA, $rB", RotateShift,
2858 [/* see patterns below - $rB must be negated */]>;
2860 def : Pat<(sra R32C:$rA, R32C:$rB),
2861 (ROTMAr32 R32C:$rA, (SFIr32 R32C:$rB, 0))>;
2863 def : Pat<(sra R32C:$rA, R16C:$rB),
2865 (SFIr32 (XSHWr16 R16C:$rB), 0))>;
2867 def : Pat<(sra R32C:$rA, R8C:$rB),
2869 (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;
2871 class ROTMAIInst<dag OOL, dag IOL, list<dag> pattern>:
2872 RRForm<0b01011110000, OOL, IOL,
2873 "rotmai\t$rT, $rA, $val",
2874 RotateShift, pattern>;
2876 class ROTMAIVecInst<ValueType vectype, Operand intop, ValueType inttype>:
2877 ROTMAIInst<(outs VECREG:$rT), (ins VECREG:$rA, intop:$val),
2878 [(set (vectype VECREG:$rT),
2879 (SPUvec_sra VECREG:$rA, (inttype uimm7:$val)))]>;
2881 class ROTMAIRegInst<RegisterClass rclass, Operand intop, ValueType inttype>:
2882 ROTMAIInst<(outs rclass:$rT), (ins rclass:$rA, intop:$val),
2883 [(set rclass:$rT, (sra rclass:$rA, (inttype uimm7:$val)))]>;
2885 multiclass RotateMaskAlgebraicImm {
2886 def v2i64_i32 : ROTMAIVecInst<v2i64, rotNeg7imm, i32>;
2887 def v4i32_i32 : ROTMAIVecInst<v4i32, rotNeg7imm, i32>;
2888 def r64_i32 : ROTMAIRegInst<R64C, rotNeg7imm, i32>;
2889 def r32_i32 : ROTMAIRegInst<R32C, rotNeg7imm, i32>;
2892 defm ROTMAI : RotateMaskAlgebraicImm;
2894 //===----------------------------------------------------------------------===//
2895 // Branch and conditionals:
2896 //===----------------------------------------------------------------------===//
2898 let isTerminator = 1, isBarrier = 1 in {
2899 // Halt If Equal (r32 preferred slot only, no vector form)
2901 RRForm_3<0b00011011110, (outs), (ins R32C:$rA, R32C:$rB),
2902 "heq\t$rA, $rB", BranchResolv,
2903 [/* no pattern to match */]>;
2906 RI10Form_2<0b11111110, (outs), (ins R32C:$rA, s10imm:$val),
2907 "heqi\t$rA, $val", BranchResolv,
2908 [/* no pattern to match */]>;
2910 // HGT/HGTI: These instructions use signed arithmetic for the comparison,
2911 // contrasting with HLGT/HLGTI, which use unsigned comparison:
2913 RRForm_3<0b00011010010, (outs), (ins R32C:$rA, R32C:$rB),
2914 "hgt\t$rA, $rB", BranchResolv,
2915 [/* no pattern to match */]>;
2918 RI10Form_2<0b11110010, (outs), (ins R32C:$rA, s10imm:$val),
2919 "hgti\t$rA, $val", BranchResolv,
2920 [/* no pattern to match */]>;
2923 RRForm_3<0b00011011010, (outs), (ins R32C:$rA, R32C:$rB),
2924 "hlgt\t$rA, $rB", BranchResolv,
2925 [/* no pattern to match */]>;
2928 RI10Form_2<0b11111010, (outs), (ins R32C:$rA, s10imm:$val),
2929 "hlgti\t$rA, $val", BranchResolv,
2930 [/* no pattern to match */]>;
2933 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2934 // Comparison operators for i8, i16 and i32:
2935 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2937 class CEQBInst<dag OOL, dag IOL, list<dag> pattern> :
2938 RRForm<0b00001011110, OOL, IOL, "ceqb\t$rT, $rA, $rB",
2941 multiclass CmpEqualByte
2944 CEQBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
2945 [(set (v16i8 VECREG:$rT), (seteq (v8i16 VECREG:$rA),
2946 (v8i16 VECREG:$rB)))]>;
2949 CEQBInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB),
2950 [(set R8C:$rT, (seteq R8C:$rA, R8C:$rB))]>;
2953 class CEQBIInst<dag OOL, dag IOL, list<dag> pattern> :
2954 RI10Form<0b01111110, OOL, IOL, "ceqbi\t$rT, $rA, $val",
2957 multiclass CmpEqualByteImm
2960 CEQBIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm_i8:$val),
2961 [(set (v16i8 VECREG:$rT), (seteq (v16i8 VECREG:$rA),
2962 v16i8SExt8Imm:$val))]>;
2964 CEQBIInst<(outs R8C:$rT), (ins R8C:$rA, s10imm_i8:$val),
2965 [(set R8C:$rT, (seteq R8C:$rA, immSExt8:$val))]>;
2968 class CEQHInst<dag OOL, dag IOL, list<dag> pattern> :
2969 RRForm<0b00010011110, OOL, IOL, "ceqh\t$rT, $rA, $rB",
2972 multiclass CmpEqualHalfword
2974 def v8i16 : CEQHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
2975 [(set (v8i16 VECREG:$rT), (seteq (v8i16 VECREG:$rA),
2976 (v8i16 VECREG:$rB)))]>;
2978 def r16 : CEQHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
2979 [(set R16C:$rT, (seteq R16C:$rA, R16C:$rB))]>;
2982 class CEQHIInst<dag OOL, dag IOL, list<dag> pattern> :
2983 RI10Form<0b10111110, OOL, IOL, "ceqhi\t$rT, $rA, $val",
2986 multiclass CmpEqualHalfwordImm
2988 def v8i16 : CEQHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
2989 [(set (v8i16 VECREG:$rT),
2990 (seteq (v8i16 VECREG:$rA),
2991 (v8i16 v8i16SExt10Imm:$val)))]>;
2992 def r16 : CEQHIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
2993 [(set R16C:$rT, (seteq R16C:$rA, i16ImmSExt10:$val))]>;
2996 class CEQInst<dag OOL, dag IOL, list<dag> pattern> :
2997 RRForm<0b00000011110, OOL, IOL, "ceq\t$rT, $rA, $rB",
3000 multiclass CmpEqualWord
3002 def v4i32 : CEQInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
3003 [(set (v4i32 VECREG:$rT),
3004 (seteq (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
3006 def r32 : CEQInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
3007 [(set R32C:$rT, (seteq R32C:$rA, R32C:$rB))]>;
3010 class CEQIInst<dag OOL, dag IOL, list<dag> pattern> :
3011 RI10Form<0b00111110, OOL, IOL, "ceqi\t$rT, $rA, $val",
3014 multiclass CmpEqualWordImm
3016 def v4i32 : CEQIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
3017 [(set (v4i32 VECREG:$rT),
3018 (seteq (v4i32 VECREG:$rA),
3019 (v4i32 v4i32SExt16Imm:$val)))]>;
3021 def r32: CEQIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
3022 [(set R32C:$rT, (seteq R32C:$rA, i32ImmSExt10:$val))]>;
3025 class CGTBInst<dag OOL, dag IOL, list<dag> pattern> :
3026 RRForm<0b00001010010, OOL, IOL, "cgtb\t$rT, $rA, $rB",
3029 multiclass CmpGtrByte
3032 CGTBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
3033 [(set (v16i8 VECREG:$rT), (setgt (v8i16 VECREG:$rA),
3034 (v8i16 VECREG:$rB)))]>;
3037 CGTBInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB),
3038 [(set R8C:$rT, (setgt R8C:$rA, R8C:$rB))]>;
3041 class CGTBIInst<dag OOL, dag IOL, list<dag> pattern> :
3042 RI10Form<0b01110010, OOL, IOL, "cgtbi\t$rT, $rA, $val",
3045 multiclass CmpGtrByteImm
3048 CGTBIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm_i8:$val),
3049 [(set (v16i8 VECREG:$rT), (setgt (v16i8 VECREG:$rA),
3050 v16i8SExt8Imm:$val))]>;
3052 CGTBIInst<(outs R8C:$rT), (ins R8C:$rA, s10imm_i8:$val),
3053 [(set R8C:$rT, (setgt R8C:$rA, immSExt8:$val))]>;
3056 class CGTHInst<dag OOL, dag IOL, list<dag> pattern> :
3057 RRForm<0b00010010010, OOL, IOL, "cgth\t$rT, $rA, $rB",
3060 multiclass CmpGtrHalfword
3062 def v8i16 : CGTHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
3063 [(set (v8i16 VECREG:$rT), (setgt (v8i16 VECREG:$rA),
3064 (v8i16 VECREG:$rB)))]>;
3066 def r16 : CGTHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
3067 [(set R16C:$rT, (setgt R16C:$rA, R16C:$rB))]>;
3070 class CGTHIInst<dag OOL, dag IOL, list<dag> pattern> :
3071 RI10Form<0b10110010, OOL, IOL, "cgthi\t$rT, $rA, $val",
3074 multiclass CmpGtrHalfwordImm
3076 def v8i16 : CGTHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
3077 [(set (v8i16 VECREG:$rT),
3078 (setgt (v8i16 VECREG:$rA),
3079 (v8i16 v8i16SExt10Imm:$val)))]>;
3080 def r16 : CGTHIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
3081 [(set R16C:$rT, (setgt R16C:$rA, i16ImmSExt10:$val))]>;
3084 class CGTInst<dag OOL, dag IOL, list<dag> pattern> :
3085 RRForm<0b00000010010, OOL, IOL, "cgt\t$rT, $rA, $rB",
3088 multiclass CmpGtrWord
3090 def v4i32 : CGTInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
3091 [(set (v4i32 VECREG:$rT),
3092 (setgt (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
3094 def r32 : CGTInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
3095 [(set R32C:$rT, (setgt R32C:$rA, R32C:$rB))]>;
3098 class CGTIInst<dag OOL, dag IOL, list<dag> pattern> :
3099 RI10Form<0b00110010, OOL, IOL, "cgti\t$rT, $rA, $val",
3102 multiclass CmpGtrWordImm
3104 def v4i32 : CGTIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
3105 [(set (v4i32 VECREG:$rT),
3106 (setgt (v4i32 VECREG:$rA),
3107 (v4i32 v4i32SExt16Imm:$val)))]>;
3109 def r32: CGTIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
3110 [(set R32C:$rT, (setgt R32C:$rA, i32ImmSExt10:$val))]>;
3112 // CGTIv4f32, CGTIf32: These are used in the f32 fdiv instruction sequence:
3113 def v4f32: CGTIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
3114 [(set (v4i32 VECREG:$rT),
3115 (setgt (v4i32 (bitconvert (v4f32 VECREG:$rA))),
3116 (v4i32 v4i32SExt16Imm:$val)))]>;
3118 def f32: CGTIInst<(outs R32C:$rT), (ins R32FP:$rA, s10imm_i32:$val),
3119 [/* no pattern */]>;
3122 class CLGTBInst<dag OOL, dag IOL, list<dag> pattern> :
3123 RRForm<0b00001011010, OOL, IOL, "clgtb\t$rT, $rA, $rB",
3126 multiclass CmpLGtrByte
3129 CLGTBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
3130 [(set (v16i8 VECREG:$rT), (setugt (v8i16 VECREG:$rA),
3131 (v8i16 VECREG:$rB)))]>;
3134 CLGTBInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB),
3135 [(set R8C:$rT, (setugt R8C:$rA, R8C:$rB))]>;
3138 class CLGTBIInst<dag OOL, dag IOL, list<dag> pattern> :
3139 RI10Form<0b01111010, OOL, IOL, "clgtbi\t$rT, $rA, $val",
3142 multiclass CmpLGtrByteImm
3145 CLGTBIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm_i8:$val),
3146 [(set (v16i8 VECREG:$rT), (setugt (v16i8 VECREG:$rA),
3147 v16i8SExt8Imm:$val))]>;
3149 CLGTBIInst<(outs R8C:$rT), (ins R8C:$rA, s10imm_i8:$val),
3150 [(set R8C:$rT, (setugt R8C:$rA, immSExt8:$val))]>;
3153 class CLGTHInst<dag OOL, dag IOL, list<dag> pattern> :
3154 RRForm<0b00010011010, OOL, IOL, "clgth\t$rT, $rA, $rB",
3157 multiclass CmpLGtrHalfword
3159 def v8i16 : CLGTHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
3160 [(set (v8i16 VECREG:$rT), (setugt (v8i16 VECREG:$rA),
3161 (v8i16 VECREG:$rB)))]>;
3163 def r16 : CLGTHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
3164 [(set R16C:$rT, (setugt R16C:$rA, R16C:$rB))]>;
3167 class CLGTHIInst<dag OOL, dag IOL, list<dag> pattern> :
3168 RI10Form<0b10111010, OOL, IOL, "clgthi\t$rT, $rA, $val",
3171 multiclass CmpLGtrHalfwordImm
3173 def v8i16 : CLGTHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
3174 [(set (v8i16 VECREG:$rT),
3175 (setugt (v8i16 VECREG:$rA),
3176 (v8i16 v8i16SExt10Imm:$val)))]>;
3177 def r16 : CLGTHIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
3178 [(set R16C:$rT, (setugt R16C:$rA, i16ImmSExt10:$val))]>;
3181 class CLGTInst<dag OOL, dag IOL, list<dag> pattern> :
3182 RRForm<0b00000011010, OOL, IOL, "clgt\t$rT, $rA, $rB",
3185 multiclass CmpLGtrWord
3187 def v4i32 : CLGTInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
3188 [(set (v4i32 VECREG:$rT),
3189 (setugt (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
3191 def r32 : CLGTInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
3192 [(set R32C:$rT, (setugt R32C:$rA, R32C:$rB))]>;
3195 class CLGTIInst<dag OOL, dag IOL, list<dag> pattern> :
3196 RI10Form<0b00111010, OOL, IOL, "clgti\t$rT, $rA, $val",
3199 multiclass CmpLGtrWordImm
3201 def v4i32 : CLGTIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
3202 [(set (v4i32 VECREG:$rT),
3203 (setugt (v4i32 VECREG:$rA),
3204 (v4i32 v4i32SExt16Imm:$val)))]>;
3206 def r32: CLGTIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
3207 [(set R32C:$rT, (setugt R32C:$rA, i32ImmSExt10:$val))]>;
3210 defm CEQB : CmpEqualByte;
3211 defm CEQBI : CmpEqualByteImm;
3212 defm CEQH : CmpEqualHalfword;
3213 defm CEQHI : CmpEqualHalfwordImm;
3214 defm CEQ : CmpEqualWord;
3215 defm CEQI : CmpEqualWordImm;
3216 defm CGTB : CmpGtrByte;
3217 defm CGTBI : CmpGtrByteImm;
3218 defm CGTH : CmpGtrHalfword;
3219 defm CGTHI : CmpGtrHalfwordImm;
3220 defm CGT : CmpGtrWord;
3221 defm CGTI : CmpGtrWordImm;
3222 defm CLGTB : CmpLGtrByte;
3223 defm CLGTBI : CmpLGtrByteImm;
3224 defm CLGTH : CmpLGtrHalfword;
3225 defm CLGTHI : CmpLGtrHalfwordImm;
3226 defm CLGT : CmpLGtrWord;
3227 defm CLGTI : CmpLGtrWordImm;
3229 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
3230 // For SETCC primitives not supported above (setlt, setle, setge, etc.)
3231 // define a pattern to generate the right code, as a binary operator
3232 // (in a manner of speaking.)
3235 // 1. This only matches the setcc set of conditionals. Special pattern
3236 // matching is used for select conditionals.
3238 // 2. The "DAG" versions of these classes is almost exclusively used for
3239 // i64 comparisons. See the tblgen fundamentals documentation for what
3240 // ".ResultInstrs[0]" means; see TargetSelectionDAG.td and the Pattern
3241 // class for where ResultInstrs originates.
3242 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
3244 class SETCCNegCondReg<PatFrag cond, RegisterClass rclass, ValueType inttype,
3245 SPUInstr xorinst, SPUInstr cmpare>:
3246 Pat<(cond rclass:$rA, rclass:$rB),
3247 (xorinst (cmpare rclass:$rA, rclass:$rB), (inttype -1))>;
3249 class SETCCNegCondImm<PatFrag cond, RegisterClass rclass, ValueType inttype,
3250 PatLeaf immpred, SPUInstr xorinst, SPUInstr cmpare>:
3251 Pat<(cond rclass:$rA, (inttype immpred:$imm)),
3252 (xorinst (cmpare rclass:$rA, (inttype immpred:$imm)), (inttype -1))>;
3254 def : SETCCNegCondReg<setne, R8C, i8, XORBIr8, CEQBr8>;
3255 def : SETCCNegCondImm<setne, R8C, i8, immSExt8, XORBIr8, CEQBIr8>;
3257 def : SETCCNegCondReg<setne, R16C, i16, XORHIr16, CEQHr16>;
3258 def : SETCCNegCondImm<setne, R16C, i16, i16ImmSExt10, XORHIr16, CEQHIr16>;
3260 def : SETCCNegCondReg<setne, R32C, i32, XORIr32, CEQr32>;
3261 def : SETCCNegCondImm<setne, R32C, i32, i32ImmSExt10, XORIr32, CEQIr32>;
3263 class SETCCBinOpReg<PatFrag cond, RegisterClass rclass,
3264 SPUInstr binop, SPUInstr cmpOp1, SPUInstr cmpOp2>:
3265 Pat<(cond rclass:$rA, rclass:$rB),
3266 (binop (cmpOp1 rclass:$rA, rclass:$rB),
3267 (cmpOp2 rclass:$rA, rclass:$rB))>;
3269 class SETCCBinOpImm<PatFrag cond, RegisterClass rclass, PatLeaf immpred,
3271 SPUInstr binop, SPUInstr cmpOp1, SPUInstr cmpOp2>:
3272 Pat<(cond rclass:$rA, (immtype immpred:$imm)),
3273 (binop (cmpOp1 rclass:$rA, (immtype immpred:$imm)),
3274 (cmpOp2 rclass:$rA, (immtype immpred:$imm)))>;
3276 def : SETCCBinOpReg<setge, R8C, ORr8, CGTBr8, CEQBr8>;
3277 def : SETCCBinOpImm<setge, R8C, immSExt8, i8, ORr8, CGTBIr8, CEQBIr8>;
3278 def : SETCCBinOpReg<setlt, R8C, NORr8, CGTBr8, CEQBr8>;
3279 def : SETCCBinOpImm<setlt, R8C, immSExt8, i8, NORr8, CGTBIr8, CEQBIr8>;
3280 def : Pat<(setle R8C:$rA, R8C:$rB),
3281 (XORBIr8 (CGTBr8 R8C:$rA, R8C:$rB), 0xff)>;
3282 def : Pat<(setle R8C:$rA, immU8:$imm),
3283 (XORBIr8 (CGTBIr8 R8C:$rA, immU8:$imm), 0xff)>;
3285 def : SETCCBinOpReg<setge, R16C, ORr16, CGTHr16, CEQHr16>;
3286 def : SETCCBinOpImm<setge, R16C, i16ImmSExt10, i16,
3287 ORr16, CGTHIr16, CEQHIr16>;
3288 def : SETCCBinOpReg<setlt, R16C, NORr16, CGTHr16, CEQHr16>;
3289 def : SETCCBinOpImm<setlt, R16C, i16ImmSExt10, i16, NORr16, CGTHIr16, CEQHIr16>;
3290 def : Pat<(setle R16C:$rA, R16C:$rB),
3291 (XORHIr16 (CGTHr16 R16C:$rA, R16C:$rB), 0xffff)>;
3292 def : Pat<(setle R16C:$rA, i16ImmSExt10:$imm),
3293 (XORHIr16 (CGTHIr16 R16C:$rA, i16ImmSExt10:$imm), 0xffff)>;
3295 def : SETCCBinOpReg<setge, R32C, ORr32, CGTr32, CEQr32>;
3296 def : SETCCBinOpImm<setge, R32C, i32ImmSExt10, i32,
3297 ORr32, CGTIr32, CEQIr32>;
3298 def : SETCCBinOpReg<setlt, R32C, NORr32, CGTr32, CEQr32>;
3299 def : SETCCBinOpImm<setlt, R32C, i32ImmSExt10, i32, NORr32, CGTIr32, CEQIr32>;
3300 def : Pat<(setle R32C:$rA, R32C:$rB),
3301 (XORIr32 (CGTr32 R32C:$rA, R32C:$rB), 0xffffffff)>;
3302 def : Pat<(setle R32C:$rA, i32ImmSExt10:$imm),
3303 (XORIr32 (CGTIr32 R32C:$rA, i32ImmSExt10:$imm), 0xffffffff)>;
3305 def : SETCCBinOpReg<setuge, R8C, ORr8, CLGTBr8, CEQBr8>;
3306 def : SETCCBinOpImm<setuge, R8C, immSExt8, i8, ORr8, CLGTBIr8, CEQBIr8>;
3307 def : SETCCBinOpReg<setult, R8C, NORr8, CLGTBr8, CEQBr8>;
3308 def : SETCCBinOpImm<setult, R8C, immSExt8, i8, NORr8, CLGTBIr8, CEQBIr8>;
3309 def : Pat<(setule R8C:$rA, R8C:$rB),
3310 (XORBIr8 (CLGTBr8 R8C:$rA, R8C:$rB), 0xff)>;
3311 def : Pat<(setule R8C:$rA, immU8:$imm),
3312 (XORBIr8 (CLGTBIr8 R8C:$rA, immU8:$imm), 0xff)>;
3314 def : SETCCBinOpReg<setuge, R16C, ORr16, CLGTHr16, CEQHr16>;
3315 def : SETCCBinOpImm<setuge, R16C, i16ImmSExt10, i16,
3316 ORr16, CLGTHIr16, CEQHIr16>;
3317 def : SETCCBinOpReg<setult, R16C, NORr16, CLGTHr16, CEQHr16>;
3318 def : SETCCBinOpImm<setult, R16C, i16ImmSExt10, i16, NORr16,
3319 CLGTHIr16, CEQHIr16>;
3320 def : Pat<(setule R16C:$rA, R16C:$rB),
3321 (XORHIr16 (CLGTHr16 R16C:$rA, R16C:$rB), 0xffff)>;
3322 def : Pat<(setule R16C:$rA, i16ImmSExt10:$imm),
3323 (XORHIr16 (CLGTHIr16 R16C:$rA, i16ImmSExt10:$imm), 0xffff)>;
3325 def : SETCCBinOpReg<setuge, R32C, ORr32, CLGTr32, CEQr32>;
3326 def : SETCCBinOpImm<setuge, R32C, i32ImmSExt10, i32,
3327 ORr32, CLGTIr32, CEQIr32>;
3328 def : SETCCBinOpReg<setult, R32C, NORr32, CLGTr32, CEQr32>;
3329 def : SETCCBinOpImm<setult, R32C, i32ImmSExt10, i32, NORr32, CLGTIr32, CEQIr32>;
3330 def : Pat<(setule R32C:$rA, R32C:$rB),
3331 (XORIr32 (CLGTr32 R32C:$rA, R32C:$rB), 0xffffffff)>;
3332 def : Pat<(setule R32C:$rA, i32ImmSExt10:$imm),
3333 (XORIr32 (CLGTIr32 R32C:$rA, i32ImmSExt10:$imm), 0xffffffff)>;
3335 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
3336 // select conditional patterns:
3337 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
3339 class SELECTNegCondReg<PatFrag cond, RegisterClass rclass, ValueType inttype,
3340 SPUInstr selinstr, SPUInstr cmpare>:
3341 Pat<(select (inttype (cond rclass:$rA, rclass:$rB)),
3342 rclass:$rTrue, rclass:$rFalse),
3343 (selinstr rclass:$rTrue, rclass:$rFalse,
3344 (cmpare rclass:$rA, rclass:$rB))>;
3346 class SELECTNegCondImm<PatFrag cond, RegisterClass rclass, ValueType inttype,
3347 PatLeaf immpred, SPUInstr selinstr, SPUInstr cmpare>:
3348 Pat<(select (inttype (cond rclass:$rA, immpred:$imm)),
3349 rclass:$rTrue, rclass:$rFalse),
3350 (selinstr rclass:$rTrue, rclass:$rFalse,
3351 (cmpare rclass:$rA, immpred:$imm))>;
3353 def : SELECTNegCondReg<setne, R8C, i8, SELBr8, CEQBr8>;
3354 def : SELECTNegCondImm<setne, R8C, i8, immSExt8, SELBr8, CEQBIr8>;
3355 def : SELECTNegCondReg<setle, R8C, i8, SELBr8, CGTBr8>;
3356 def : SELECTNegCondImm<setle, R8C, i8, immSExt8, SELBr8, CGTBr8>;
3357 def : SELECTNegCondReg<setule, R8C, i8, SELBr8, CLGTBr8>;
3358 def : SELECTNegCondImm<setule, R8C, i8, immU8, SELBr8, CLGTBIr8>;
3360 def : SELECTNegCondReg<setne, R16C, i16, SELBr16, CEQHr16>;
3361 def : SELECTNegCondImm<setne, R16C, i16, i16ImmSExt10, SELBr16, CEQHIr16>;
3362 def : SELECTNegCondReg<setle, R16C, i16, SELBr16, CGTHr16>;
3363 def : SELECTNegCondImm<setle, R16C, i16, i16ImmSExt10, SELBr16, CGTHIr16>;
3364 def : SELECTNegCondReg<setule, R16C, i16, SELBr16, CLGTHr16>;
3365 def : SELECTNegCondImm<setule, R16C, i16, i16ImmSExt10, SELBr16, CLGTHIr16>;
3367 def : SELECTNegCondReg<setne, R32C, i32, SELBr32, CEQr32>;
3368 def : SELECTNegCondImm<setne, R32C, i32, i32ImmSExt10, SELBr32, CEQIr32>;
3369 def : SELECTNegCondReg<setle, R32C, i32, SELBr32, CGTr32>;
3370 def : SELECTNegCondImm<setle, R32C, i32, i32ImmSExt10, SELBr32, CGTIr32>;
3371 def : SELECTNegCondReg<setule, R32C, i32, SELBr32, CLGTr32>;
3372 def : SELECTNegCondImm<setule, R32C, i32, i32ImmSExt10, SELBr32, CLGTIr32>;
3374 class SELECTBinOpReg<PatFrag cond, RegisterClass rclass, ValueType inttype,
3375 SPUInstr selinstr, SPUInstr binop, SPUInstr cmpOp1,
3377 Pat<(select (inttype (cond rclass:$rA, rclass:$rB)),
3378 rclass:$rTrue, rclass:$rFalse),
3379 (selinstr rclass:$rFalse, rclass:$rTrue,
3380 (binop (cmpOp1 rclass:$rA, rclass:$rB),
3381 (cmpOp2 rclass:$rA, rclass:$rB)))>;
3383 class SELECTBinOpImm<PatFrag cond, RegisterClass rclass, PatLeaf immpred,
3385 SPUInstr selinstr, SPUInstr binop, SPUInstr cmpOp1,
3387 Pat<(select (inttype (cond rclass:$rA, (inttype immpred:$imm))),
3388 rclass:$rTrue, rclass:$rFalse),
3389 (selinstr rclass:$rFalse, rclass:$rTrue,
3390 (binop (cmpOp1 rclass:$rA, (inttype immpred:$imm)),
3391 (cmpOp2 rclass:$rA, (inttype immpred:$imm))))>;
3393 def : SELECTBinOpReg<setge, R8C, i8, SELBr8, ORr8, CGTBr8, CEQBr8>;
3394 def : SELECTBinOpImm<setge, R8C, immSExt8, i8,
3395 SELBr8, ORr8, CGTBIr8, CEQBIr8>;
3397 def : SELECTBinOpReg<setge, R16C, i16, SELBr16, ORr16, CGTHr16, CEQHr16>;
3398 def : SELECTBinOpImm<setge, R16C, i16ImmSExt10, i16,
3399 SELBr16, ORr16, CGTHIr16, CEQHIr16>;
3401 def : SELECTBinOpReg<setge, R32C, i32, SELBr32, ORr32, CGTr32, CEQr32>;
3402 def : SELECTBinOpImm<setge, R32C, i32ImmSExt10, i32,
3403 SELBr32, ORr32, CGTIr32, CEQIr32>;
3405 def : SELECTBinOpReg<setuge, R8C, i8, SELBr8, ORr8, CLGTBr8, CEQBr8>;
3406 def : SELECTBinOpImm<setuge, R8C, immSExt8, i8,
3407 SELBr8, ORr8, CLGTBIr8, CEQBIr8>;
3409 def : SELECTBinOpReg<setuge, R16C, i16, SELBr16, ORr16, CLGTHr16, CEQHr16>;
3410 def : SELECTBinOpImm<setuge, R16C, i16ImmUns10, i16,
3411 SELBr16, ORr16, CLGTHIr16, CEQHIr16>;
3413 def : SELECTBinOpReg<setuge, R32C, i32, SELBr32, ORr32, CLGTr32, CEQr32>;
3414 def : SELECTBinOpImm<setuge, R32C, i32ImmUns10, i32,
3415 SELBr32, ORr32, CLGTIr32, CEQIr32>;
3417 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
3420 // All calls clobber the non-callee-saved registers:
3421 Defs = [R0, R1, R2, R3, R4, R5, R6, R7, R8, R9,
3422 R10,R11,R12,R13,R14,R15,R16,R17,R18,R19,
3423 R20,R21,R22,R23,R24,R25,R26,R27,R28,R29,
3424 R30,R31,R32,R33,R34,R35,R36,R37,R38,R39,
3425 R40,R41,R42,R43,R44,R45,R46,R47,R48,R49,
3426 R50,R51,R52,R53,R54,R55,R56,R57,R58,R59,
3427 R60,R61,R62,R63,R64,R65,R66,R67,R68,R69,
3428 R70,R71,R72,R73,R74,R75,R76,R77,R78,R79],
3429 // All of these instructions use $lr (aka $0)
3431 // Branch relative and set link: Used if we actually know that the target
3432 // is within [-32768, 32767] bytes of the target
3434 BranchSetLink<0b011001100, (outs), (ins relcalltarget:$func, variable_ops),
3435 "brsl\t$$lr, $func",
3436 [(SPUcall (SPUpcrel tglobaladdr:$func, 0))]>;
3438 // Branch absolute and set link: Used if we actually know that the target
3439 // is an absolute address
3441 BranchSetLink<0b011001100, (outs), (ins calltarget:$func, variable_ops),
3442 "brasl\t$$lr, $func",
3443 [(SPUcall (SPUaform tglobaladdr:$func, 0))]>;
3445 // Branch indirect and set link if external data. These instructions are not
3446 // actually generated, matched by an intrinsic:
3447 def BISLED_00: BISLEDForm<0b11, "bisled\t$$lr, $func", [/* empty pattern */]>;
3448 def BISLED_E0: BISLEDForm<0b10, "bisled\t$$lr, $func", [/* empty pattern */]>;
3449 def BISLED_0D: BISLEDForm<0b01, "bisled\t$$lr, $func", [/* empty pattern */]>;
3450 def BISLED_ED: BISLEDForm<0b00, "bisled\t$$lr, $func", [/* empty pattern */]>;
3452 // Branch indirect and set link. This is the "X-form" address version of a
3455 BIForm<0b10010101100, "bisl\t$$lr, $func", [(SPUcall R32C:$func)]>;
3458 // Support calls to external symbols:
3459 def : Pat<(SPUcall (SPUpcrel texternalsym:$func, 0)),
3460 (BRSL texternalsym:$func)>;
3462 def : Pat<(SPUcall (SPUaform texternalsym:$func, 0)),
3463 (BRASL texternalsym:$func)>;
3465 // Unconditional branches:
3466 let isBranch = 1, isTerminator = 1, hasCtrlDep = 1 in {
3467 let isBarrier = 1 in {
3469 UncondBranch<0b001001100, (outs), (ins brtarget:$dest),
3473 // Unconditional, absolute address branch
3475 UncondBranch<0b001100000, (outs), (ins brtarget:$dest),
3477 [/* no pattern */]>;
3481 BIForm<0b00010101100, "bi\t$func", [(brind R32C:$func)]>;
3484 // Conditional branches:
3485 class BRNZInst<dag IOL, list<dag> pattern>:
3486 RI16Form<0b010000100, (outs), IOL, "brnz\t$rCond,$dest",
3487 BranchResolv, pattern>;
3489 class BRNZRegInst<RegisterClass rclass>:
3490 BRNZInst<(ins rclass:$rCond, brtarget:$dest),
3491 [(brcond rclass:$rCond, bb:$dest)]>;
3493 class BRNZVecInst<ValueType vectype>:
3494 BRNZInst<(ins VECREG:$rCond, brtarget:$dest),
3495 [(brcond (vectype VECREG:$rCond), bb:$dest)]>;
3497 multiclass BranchNotZero {
3498 def v4i32 : BRNZVecInst<v4i32>;
3499 def r32 : BRNZRegInst<R32C>;
3502 defm BRNZ : BranchNotZero;
3504 class BRZInst<dag IOL, list<dag> pattern>:
3505 RI16Form<0b000000100, (outs), IOL, "brz\t$rT,$dest",
3506 BranchResolv, pattern>;
3508 class BRZRegInst<RegisterClass rclass>:
3509 BRZInst<(ins rclass:$rT, brtarget:$dest), [/* no pattern */]>;
3511 class BRZVecInst<ValueType vectype>:
3512 BRZInst<(ins VECREG:$rT, brtarget:$dest), [/* no pattern */]>;
3514 multiclass BranchZero {
3515 def v4i32: BRZVecInst<v4i32>;
3516 def r32: BRZRegInst<R32C>;
3519 defm BRZ: BranchZero;
3521 // Note: LLVM doesn't do branch conditional, indirect. Otherwise these would
3524 class BINZInst<dag IOL, list<dag> pattern>:
3525 BICondForm<0b10010100100, (outs), IOL, "binz\t$rA, $dest", pattern>;
3527 class BINZRegInst<RegisterClass rclass>:
3528 BINZInst<(ins rclass:$rA, brtarget:$dest),
3529 [(brcond rclass:$rA, R32C:$dest)]>;
3531 class BINZVecInst<ValueType vectype>:
3532 BINZInst<(ins VECREG:$rA, R32C:$dest),
3533 [(brcond (vectype VECREG:$rA), R32C:$dest)]>;
3535 multiclass BranchNotZeroIndirect {
3536 def v4i32: BINZVecInst<v4i32>;
3537 def r32: BINZRegInst<R32C>;
3540 defm BINZ: BranchNotZeroIndirect;
3542 class BIZInst<dag IOL, list<dag> pattern>:
3543 BICondForm<0b00010100100, (outs), IOL, "biz\t$rA, $func", pattern>;
3545 class BIZRegInst<RegisterClass rclass>:
3546 BIZInst<(ins rclass:$rA, R32C:$func), [/* no pattern */]>;
3548 class BIZVecInst<ValueType vectype>:
3549 BIZInst<(ins VECREG:$rA, R32C:$func), [/* no pattern */]>;
3551 multiclass BranchZeroIndirect {
3552 def v4i32: BIZVecInst<v4i32>;
3553 def r32: BIZRegInst<R32C>;
3556 defm BIZ: BranchZeroIndirect;
3559 class BRHNZInst<dag IOL, list<dag> pattern>:
3560 RI16Form<0b011000100, (outs), IOL, "brhnz\t$rCond,$dest", BranchResolv,
3563 class BRHNZRegInst<RegisterClass rclass>:
3564 BRHNZInst<(ins rclass:$rCond, brtarget:$dest),
3565 [(brcond rclass:$rCond, bb:$dest)]>;
3567 class BRHNZVecInst<ValueType vectype>:
3568 BRHNZInst<(ins VECREG:$rCond, brtarget:$dest), [/* no pattern */]>;
3570 multiclass BranchNotZeroHalfword {
3571 def v8i16: BRHNZVecInst<v8i16>;
3572 def r16: BRHNZRegInst<R16C>;
3575 defm BRHNZ: BranchNotZeroHalfword;
3577 class BRHZInst<dag IOL, list<dag> pattern>:
3578 RI16Form<0b001000100, (outs), IOL, "brhz\t$rT,$dest", BranchResolv,
3581 class BRHZRegInst<RegisterClass rclass>:
3582 BRHZInst<(ins rclass:$rT, brtarget:$dest), [/* no pattern */]>;
3584 class BRHZVecInst<ValueType vectype>:
3585 BRHZInst<(ins VECREG:$rT, brtarget:$dest), [/* no pattern */]>;
3587 multiclass BranchZeroHalfword {
3588 def v8i16: BRHZVecInst<v8i16>;
3589 def r16: BRHZRegInst<R16C>;
3592 defm BRHZ: BranchZeroHalfword;
3595 //===----------------------------------------------------------------------===//
3596 // setcc and brcond patterns:
3597 //===----------------------------------------------------------------------===//
3599 def : Pat<(brcond (i16 (seteq R16C:$rA, 0)), bb:$dest),
3600 (BRHZr16 R16C:$rA, bb:$dest)>;
3601 def : Pat<(brcond (i16 (setne R16C:$rA, 0)), bb:$dest),
3602 (BRHNZr16 R16C:$rA, bb:$dest)>;
3604 def : Pat<(brcond (i32 (seteq R32C:$rA, 0)), bb:$dest),
3605 (BRZr32 R32C:$rA, bb:$dest)>;
3606 def : Pat<(brcond (i32 (setne R32C:$rA, 0)), bb:$dest),
3607 (BRNZr32 R32C:$rA, bb:$dest)>;
3609 multiclass BranchCondEQ<PatFrag cond, SPUInstr brinst16, SPUInstr brinst32>
3611 def r16imm: Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
3612 (brinst16 (CEQHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>;
3614 def r16 : Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
3615 (brinst16 (CEQHr16 R16C:$rA, R16:$rB), bb:$dest)>;
3617 def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
3618 (brinst32 (CEQIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>;
3620 def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
3621 (brinst32 (CEQr32 R32C:$rA, R32C:$rB), bb:$dest)>;
3624 defm BRCONDeq : BranchCondEQ<seteq, BRHNZr16, BRNZr32>;
3625 defm BRCONDne : BranchCondEQ<setne, BRHZr16, BRZr32>;
3627 multiclass BranchCondLGT<PatFrag cond, SPUInstr brinst16, SPUInstr brinst32>
3629 def r16imm : Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
3630 (brinst16 (CLGTHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>;
3632 def r16 : Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
3633 (brinst16 (CLGTHr16 R16C:$rA, R16:$rB), bb:$dest)>;
3635 def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
3636 (brinst32 (CLGTIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>;
3638 def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
3639 (brinst32 (CLGTr32 R32C:$rA, R32C:$rB), bb:$dest)>;
3642 defm BRCONDugt : BranchCondLGT<setugt, BRHNZr16, BRNZr32>;
3643 defm BRCONDule : BranchCondLGT<setule, BRHZr16, BRZr32>;
3645 multiclass BranchCondLGTEQ<PatFrag cond, SPUInstr orinst16, SPUInstr brinst16,
3646 SPUInstr orinst32, SPUInstr brinst32>
3648 def r16imm: Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
3649 (brinst16 (orinst16 (CLGTHIr16 R16C:$rA, i16ImmSExt10:$val),
3650 (CEQHIr16 R16C:$rA, i16ImmSExt10:$val)),
3653 def r16: Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
3654 (brinst16 (orinst16 (CLGTHr16 R16C:$rA, R16:$rB),
3655 (CEQHr16 R16C:$rA, R16:$rB)),
3658 def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
3659 (brinst32 (orinst32 (CLGTIr32 R32C:$rA, i32ImmSExt10:$val),
3660 (CEQIr32 R32C:$rA, i32ImmSExt10:$val)),
3663 def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
3664 (brinst32 (orinst32 (CLGTr32 R32C:$rA, R32C:$rB),
3665 (CEQr32 R32C:$rA, R32C:$rB)),
3669 defm BRCONDuge : BranchCondLGTEQ<setuge, ORr16, BRHNZr16, ORr32, BRNZr32>;
3670 defm BRCONDult : BranchCondLGTEQ<setult, ORr16, BRHZr16, ORr32, BRZr32>;
3672 multiclass BranchCondGT<PatFrag cond, SPUInstr brinst16, SPUInstr brinst32>
3674 def r16imm : Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
3675 (brinst16 (CGTHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>;
3677 def r16 : Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
3678 (brinst16 (CGTHr16 R16C:$rA, R16:$rB), bb:$dest)>;
3680 def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
3681 (brinst32 (CGTIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>;
3683 def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
3684 (brinst32 (CGTr32 R32C:$rA, R32C:$rB), bb:$dest)>;
3687 defm BRCONDgt : BranchCondGT<setgt, BRHNZr16, BRNZr32>;
3688 defm BRCONDle : BranchCondGT<setle, BRHZr16, BRZr32>;
3690 multiclass BranchCondGTEQ<PatFrag cond, SPUInstr orinst16, SPUInstr brinst16,
3691 SPUInstr orinst32, SPUInstr brinst32>
3693 def r16imm: Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
3694 (brinst16 (orinst16 (CGTHIr16 R16C:$rA, i16ImmSExt10:$val),
3695 (CEQHIr16 R16C:$rA, i16ImmSExt10:$val)),
3698 def r16: Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
3699 (brinst16 (orinst16 (CGTHr16 R16C:$rA, R16:$rB),
3700 (CEQHr16 R16C:$rA, R16:$rB)),
3703 def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
3704 (brinst32 (orinst32 (CGTIr32 R32C:$rA, i32ImmSExt10:$val),
3705 (CEQIr32 R32C:$rA, i32ImmSExt10:$val)),
3708 def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
3709 (brinst32 (orinst32 (CGTr32 R32C:$rA, R32C:$rB),
3710 (CEQr32 R32C:$rA, R32C:$rB)),
3714 defm BRCONDge : BranchCondGTEQ<setge, ORr16, BRHNZr16, ORr32, BRNZr32>;
3715 defm BRCONDlt : BranchCondGTEQ<setlt, ORr16, BRHZr16, ORr32, BRZr32>;
3717 let isTerminator = 1, isBarrier = 1 in {
3718 let isReturn = 1 in {
3720 RETForm<"bi\t$$lr", [(retflag)]>;
3724 //===----------------------------------------------------------------------===//
3725 // Single precision floating point instructions
3726 //===----------------------------------------------------------------------===//
3728 class FAInst<dag OOL, dag IOL, list<dag> pattern>:
3729 RRForm<0b01011000100, OOL, IOL, "fa\t$rT, $rA, $rB",
3732 class FAVecInst<ValueType vectype>:
3733 FAInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
3734 [(set (vectype VECREG:$rT),
3735 (fadd (vectype VECREG:$rA), (vectype VECREG:$rB)))]>;
3739 def v4f32: FAVecInst<v4f32>;
3740 def f32: FAInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
3741 [(set R32FP:$rT, (fadd R32FP:$rA, R32FP:$rB))]>;
3746 class FSInst<dag OOL, dag IOL, list<dag> pattern>:
3747 RRForm<0b01011000100, OOL, IOL, "fs\t$rT, $rA, $rB",
3750 class FSVecInst<ValueType vectype>:
3751 FSInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
3752 [(set (vectype VECREG:$rT),
3753 (fsub (vectype VECREG:$rA), (vectype VECREG:$rB)))]>;
3757 def v4f32: FSVecInst<v4f32>;
3758 def f32: FSInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
3759 [(set R32FP:$rT, (fsub R32FP:$rA, R32FP:$rB))]>;
3764 class FMInst<dag OOL, dag IOL, list<dag> pattern>:
3765 RRForm<0b01100011010, OOL, IOL,
3766 "fm\t$rT, $rA, $rB", SPrecFP,
3769 class FMVecInst<ValueType type>:
3770 FMInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
3771 [(set (type VECREG:$rT),
3772 (fmul (type VECREG:$rA), (type VECREG:$rB)))]>;
3776 def v4f32: FMVecInst<v4f32>;
3777 def f32: FMInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
3778 [(set R32FP:$rT, (fmul R32FP:$rA, R32FP:$rB))]>;
3783 // Floating point multiply and add
3784 // e.g. d = c + (a * b)
3786 RRRForm<0b0111, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
3787 "fma\t$rT, $rA, $rB, $rC", SPrecFP,
3788 [(set (v4f32 VECREG:$rT),
3789 (fadd (v4f32 VECREG:$rC),
3790 (fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB))))]>;
3793 RRRForm<0b0111, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC),
3794 "fma\t$rT, $rA, $rB, $rC", SPrecFP,
3795 [(set R32FP:$rT, (fadd R32FP:$rC, (fmul R32FP:$rA, R32FP:$rB)))]>;
3797 // FP multiply and subtract
3798 // Subtracts value in rC from product
3801 RRRForm<0b0111, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
3802 "fms\t$rT, $rA, $rB, $rC", SPrecFP,
3803 [(set (v4f32 VECREG:$rT),
3804 (fsub (fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB)),
3805 (v4f32 VECREG:$rC)))]>;
3808 RRRForm<0b0111, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC),
3809 "fms\t$rT, $rA, $rB, $rC", SPrecFP,
3811 (fsub (fmul R32FP:$rA, R32FP:$rB), R32FP:$rC))]>;
3813 // Floating Negative Mulitply and Subtract
3814 // Subtracts product from value in rC
3815 // res = fneg(fms a b c)
3818 // NOTE: subtraction order
3822 RRRForm<0b1101, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC),
3823 "fnms\t$rT, $rA, $rB, $rC", SPrecFP,
3824 [(set R32FP:$rT, (fsub R32FP:$rC, (fmul R32FP:$rA, R32FP:$rB)))]>;
3827 RRRForm<0b1101, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
3828 "fnms\t$rT, $rA, $rB, $rC", SPrecFP,
3829 [(set (v4f32 VECREG:$rT),
3830 (fsub (v4f32 VECREG:$rC),
3831 (fmul (v4f32 VECREG:$rA),
3832 (v4f32 VECREG:$rB))))]>;
3837 // Floating point reciprocal estimate
3839 class FRESTInst<dag OOL, dag IOL>:
3840 RRForm_1<0b00110111000, OOL, IOL,
3841 "frest\t$rT, $rA", SPrecFP,
3842 [/* no pattern */]>;
3845 FRESTInst<(outs VECREG:$rT), (ins VECREG:$rA)>;
3848 FRESTInst<(outs R32FP:$rT), (ins R32FP:$rA)>;
3850 // Floating point interpolate (used in conjunction with reciprocal estimate)
3852 RRForm<0b00101011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
3853 "fi\t$rT, $rA, $rB", SPrecFP,
3854 [/* no pattern */]>;
3857 RRForm<0b00101011110, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
3858 "fi\t$rT, $rA, $rB", SPrecFP,
3859 [/* no pattern */]>;
3861 //--------------------------------------------------------------------------
3862 // Basic single precision floating point comparisons:
3864 // Note: There is no support on SPU for single precision NaN. Consequently,
3865 // ordered and unordered comparisons are the same.
3866 //--------------------------------------------------------------------------
3869 RRForm<0b01000011110, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
3870 "fceq\t$rT, $rA, $rB", SPrecFP,
3871 [(set R32C:$rT, (setueq R32FP:$rA, R32FP:$rB))]>;
3873 def : Pat<(setoeq R32FP:$rA, R32FP:$rB),
3874 (FCEQf32 R32FP:$rA, R32FP:$rB)>;
3877 RRForm<0b01010011110, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
3878 "fcmeq\t$rT, $rA, $rB", SPrecFP,
3879 [(set R32C:$rT, (setueq (fabs R32FP:$rA), (fabs R32FP:$rB)))]>;
3881 def : Pat<(setoeq (fabs R32FP:$rA), (fabs R32FP:$rB)),
3882 (FCMEQf32 R32FP:$rA, R32FP:$rB)>;
3885 RRForm<0b01000011010, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
3886 "fcgt\t$rT, $rA, $rB", SPrecFP,
3887 [(set R32C:$rT, (setugt R32FP:$rA, R32FP:$rB))]>;
3889 def : Pat<(setugt R32FP:$rA, R32FP:$rB),
3890 (FCGTf32 R32FP:$rA, R32FP:$rB)>;
3893 RRForm<0b01010011010, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
3894 "fcmgt\t$rT, $rA, $rB", SPrecFP,
3895 [(set R32C:$rT, (setugt (fabs R32FP:$rA), (fabs R32FP:$rB)))]>;
3897 def : Pat<(setugt (fabs R32FP:$rA), (fabs R32FP:$rB)),
3898 (FCMGTf32 R32FP:$rA, R32FP:$rB)>;
3900 //--------------------------------------------------------------------------
3901 // Single precision floating point comparisons and SETCC equivalents:
3902 //--------------------------------------------------------------------------
3904 def : SETCCNegCondReg<setune, R32FP, i32, XORIr32, FCEQf32>;
3905 def : SETCCNegCondReg<setone, R32FP, i32, XORIr32, FCEQf32>;
3907 def : SETCCBinOpReg<setuge, R32FP, ORr32, FCGTf32, FCEQf32>;
3908 def : SETCCBinOpReg<setoge, R32FP, ORr32, FCGTf32, FCEQf32>;
3910 def : SETCCBinOpReg<setult, R32FP, NORr32, FCGTf32, FCEQf32>;
3911 def : SETCCBinOpReg<setolt, R32FP, NORr32, FCGTf32, FCEQf32>;
3913 def : Pat<(setule R32FP:$rA, R32FP:$rB),
3914 (XORIr32 (FCGTf32 R32FP:$rA, R32FP:$rB), 0xffffffff)>;
3915 def : Pat<(setole R32FP:$rA, R32FP:$rB),
3916 (XORIr32 (FCGTf32 R32FP:$rA, R32FP:$rB), 0xffffffff)>;
3918 // FP Status and Control Register Write
3919 // Why isn't rT a don't care in the ISA?
3920 // Should we create a special RRForm_3 for this guy and zero out the rT?
3922 RRForm_1<0b01011101110, (outs R32FP:$rT), (ins R32FP:$rA),
3923 "fscrwr\t$rA", SPrecFP,
3924 [/* This instruction requires an intrinsic. Note: rT is unused. */]>;
3926 // FP Status and Control Register Read
3928 RRForm_2<0b01011101110, (outs R32FP:$rT), (ins),
3929 "fscrrd\t$rT", SPrecFP,
3930 [/* This instruction requires an intrinsic */]>;
3932 // llvm instruction space
3933 // How do these map onto cell instructions?
3935 // frest rC rB # c = 1/b (both lines)
3937 // fm rD rA rC # d = a * 1/b
3938 // fnms rB rD rB rA # b = - (d * b - a) --should == 0 in a perfect world
3939 // fma rB rB rC rD # b = b * c + d
3940 // = -(d *b -a) * c + d
3941 // = a * c - c ( a *b *c - a)
3946 // These llvm instructions will actually map to library calls.
3947 // All that's needed, then, is to check that the appropriate library is
3948 // imported and do a brsl to the proper function name.
3949 // frem # fmod(x, y): x - (x/y) * y
3950 // (Note: fmod(double, double), fmodf(float,float)
3954 // Unimplemented SPU instruction space
3955 // floating reciprocal absolute square root estimate (frsqest)
3957 // The following are probably just intrinsics
3958 // status and control register write
3959 // status and control register read
3961 //--------------------------------------
3962 // Floating Point Conversions
3963 // Signed conversions:
3965 CVTIntFPForm<0b0101101110, (outs VECREG:$rT), (ins VECREG:$rA),
3966 "csflt\t$rT, $rA, 0", SPrecFP,
3967 [(set (v4f32 VECREG:$rT), (sint_to_fp (v4i32 VECREG:$rA)))]>;
3969 // Convert signed integer to floating point
3971 CVTIntFPForm<0b0101101110, (outs R32FP:$rT), (ins R32C:$rA),
3972 "csflt\t$rT, $rA, 0", SPrecFP,
3973 [(set R32FP:$rT, (sint_to_fp R32C:$rA))]>;
3975 // Convert unsigned into to float
3977 CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA),
3978 "cuflt\t$rT, $rA, 0", SPrecFP,
3979 [(set (v4f32 VECREG:$rT), (uint_to_fp (v4i32 VECREG:$rA)))]>;
3982 CVTIntFPForm<0b1101101110, (outs R32FP:$rT), (ins R32C:$rA),
3983 "cuflt\t$rT, $rA, 0", SPrecFP,
3984 [(set R32FP:$rT, (uint_to_fp R32C:$rA))]>;
3986 // Convert float to unsigned int
3987 // Assume that scale = 0
3990 CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA),
3991 "cfltu\t$rT, $rA, 0", SPrecFP,
3992 [(set (v4i32 VECREG:$rT), (fp_to_uint (v4f32 VECREG:$rA)))]>;
3995 CVTIntFPForm<0b1101101110, (outs R32C:$rT), (ins R32FP:$rA),
3996 "cfltu\t$rT, $rA, 0", SPrecFP,
3997 [(set R32C:$rT, (fp_to_uint R32FP:$rA))]>;
3999 // Convert float to signed int
4000 // Assume that scale = 0
4003 CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA),
4004 "cflts\t$rT, $rA, 0", SPrecFP,
4005 [(set (v4i32 VECREG:$rT), (fp_to_sint (v4f32 VECREG:$rA)))]>;
4008 CVTIntFPForm<0b1101101110, (outs R32C:$rT), (ins R32FP:$rA),
4009 "cflts\t$rT, $rA, 0", SPrecFP,
4010 [(set R32C:$rT, (fp_to_sint R32FP:$rA))]>;
4012 //===----------------------------------------------------------------------==//
4013 // Single<->Double precision conversions
4014 //===----------------------------------------------------------------------==//
4016 // NOTE: We use "vec" name suffix here to avoid confusion (e.g. input is a
4017 // v4f32, output is v2f64--which goes in the name?)
4019 // Floating point extend single to double
4020 // NOTE: Not sure if passing in v4f32 to FESDvec is correct since it
4021 // operates on two double-word slots (i.e. 1st and 3rd fp numbers
4024 RRForm_1<0b00011101110, (outs VECREG:$rT), (ins VECREG:$rA),
4025 "fesd\t$rT, $rA", SPrecFP,
4026 [/*(set (v2f64 VECREG:$rT), (fextend (v4f32 VECREG:$rA)))*/]>;
4029 RRForm_1<0b00011101110, (outs R64FP:$rT), (ins R32FP:$rA),
4030 "fesd\t$rT, $rA", SPrecFP,
4031 [(set R64FP:$rT, (fextend R32FP:$rA))]>;
4033 // Floating point round double to single
4035 // RRForm_1<0b10011101110, (outs VECREG:$rT), (ins VECREG:$rA),
4036 // "frds\t$rT, $rA,", SPrecFP,
4037 // [(set (v4f32 R32FP:$rT), (fround (v2f64 R64FP:$rA)))]>;
4040 RRForm_1<0b10011101110, (outs R32FP:$rT), (ins R64FP:$rA),
4041 "frds\t$rT, $rA", SPrecFP,
4042 [(set R32FP:$rT, (fround R64FP:$rA))]>;
4044 //ToDo include anyextend?
4046 //===----------------------------------------------------------------------==//
4047 // Double precision floating point instructions
4048 //===----------------------------------------------------------------------==//
4050 RRForm<0b00110011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
4051 "dfa\t$rT, $rA, $rB", DPrecFP,
4052 [(set R64FP:$rT, (fadd R64FP:$rA, R64FP:$rB))]>;
4055 RRForm<0b00110011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
4056 "dfa\t$rT, $rA, $rB", DPrecFP,
4057 [(set (v2f64 VECREG:$rT), (fadd (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>;
4060 RRForm<0b10100011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
4061 "dfs\t$rT, $rA, $rB", DPrecFP,
4062 [(set R64FP:$rT, (fsub R64FP:$rA, R64FP:$rB))]>;
4065 RRForm<0b10100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
4066 "dfs\t$rT, $rA, $rB", DPrecFP,
4067 [(set (v2f64 VECREG:$rT),
4068 (fsub (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>;
4071 RRForm<0b01100011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
4072 "dfm\t$rT, $rA, $rB", DPrecFP,
4073 [(set R64FP:$rT, (fmul R64FP:$rA, R64FP:$rB))]>;
4076 RRForm<0b00100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
4077 "dfm\t$rT, $rA, $rB", DPrecFP,
4078 [(set (v2f64 VECREG:$rT),
4079 (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>;
4082 RRForm<0b00111010110, (outs R64FP:$rT),
4083 (ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
4084 "dfma\t$rT, $rA, $rB", DPrecFP,
4085 [(set R64FP:$rT, (fadd R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB)))]>,
4086 RegConstraint<"$rC = $rT">,
4090 RRForm<0b00111010110, (outs VECREG:$rT),
4091 (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
4092 "dfma\t$rT, $rA, $rB", DPrecFP,
4093 [(set (v2f64 VECREG:$rT),
4094 (fadd (v2f64 VECREG:$rC),
4095 (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB))))]>,
4096 RegConstraint<"$rC = $rT">,
4100 RRForm<0b10111010110, (outs R64FP:$rT),
4101 (ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
4102 "dfms\t$rT, $rA, $rB", DPrecFP,
4103 [(set R64FP:$rT, (fsub (fmul R64FP:$rA, R64FP:$rB), R64FP:$rC))]>,
4104 RegConstraint<"$rC = $rT">,
4108 RRForm<0b10111010110, (outs VECREG:$rT),
4109 (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
4110 "dfms\t$rT, $rA, $rB", DPrecFP,
4111 [(set (v2f64 VECREG:$rT),
4112 (fsub (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)),
4113 (v2f64 VECREG:$rC)))]>;
4115 // DFNMS: - (a * b - c)
4116 // - (a * b) + c => c - (a * b)
4118 class DFNMSInst<dag OOL, dag IOL, list<dag> pattern>:
4119 RRForm<0b01111010110, OOL, IOL, "dfnms\t$rT, $rA, $rB",
4121 RegConstraint<"$rC = $rT">,
4124 class DFNMSVecInst<list<dag> pattern>:
4125 DFNMSInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
4128 class DFNMSRegInst<list<dag> pattern>:
4129 DFNMSInst<(outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
4132 multiclass DFMultiplySubtract
4134 def v2f64 : DFNMSVecInst<[(set (v2f64 VECREG:$rT),
4135 (fsub (v2f64 VECREG:$rC),
4136 (fmul (v2f64 VECREG:$rA),
4137 (v2f64 VECREG:$rB))))]>;
4139 def f64 : DFNMSRegInst<[(set R64FP:$rT,
4141 (fmul R64FP:$rA, R64FP:$rB)))]>;
4144 defm DFNMS : DFMultiplySubtract;
4149 RRForm<0b11111010110, (outs R64FP:$rT),
4150 (ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
4151 "dfnma\t$rT, $rA, $rB", DPrecFP,
4152 [(set R64FP:$rT, (fneg (fadd R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB))))]>,
4153 RegConstraint<"$rC = $rT">,
4157 RRForm<0b11111010110, (outs VECREG:$rT),
4158 (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
4159 "dfnma\t$rT, $rA, $rB", DPrecFP,
4160 [(set (v2f64 VECREG:$rT),
4161 (fneg (fadd (v2f64 VECREG:$rC),
4162 (fmul (v2f64 VECREG:$rA),
4163 (v2f64 VECREG:$rB)))))]>,
4164 RegConstraint<"$rC = $rT">,
4167 //===----------------------------------------------------------------------==//
4168 // Floating point negation and absolute value
4169 //===----------------------------------------------------------------------==//
4171 def : Pat<(fneg (v4f32 VECREG:$rA)),
4172 (XORfnegvec (v4f32 VECREG:$rA),
4173 (v4f32 (ILHUv4i32 0x8000)))>;
4175 def : Pat<(fneg R32FP:$rA),
4176 (XORfneg32 R32FP:$rA, (ILHUr32 0x8000))>;
4178 // Floating point absolute value
4179 // Note: f64 fabs is custom-selected.
4181 def : Pat<(fabs R32FP:$rA),
4182 (ANDfabs32 R32FP:$rA, (IOHLr32 (ILHUr32 0x7fff), 0xffff))>;
4184 def : Pat<(fabs (v4f32 VECREG:$rA)),
4185 (ANDfabsvec (v4f32 VECREG:$rA),
4186 (IOHLv4i32 (ILHUv4i32 0x7fff), 0xffff))>;
4188 //===----------------------------------------------------------------------===//
4189 // Hint for branch instructions:
4190 //===----------------------------------------------------------------------===//
4192 /* def HBR : SPUInstr<(outs), (ins), "hbr\t" */
4194 //===----------------------------------------------------------------------===//
4195 // Execution, Load NOP (execute NOPs belong in even pipeline, load NOPs belong
4196 // in the odd pipeline)
4197 //===----------------------------------------------------------------------===//
4199 def ENOP : SPUInstr<(outs), (ins), "enop", ExecNOP> {
4202 let Inst{0-10} = 0b10000000010;
4203 let Inst{11-17} = 0;
4204 let Inst{18-24} = 0;
4205 let Inst{25-31} = 0;
4208 def LNOP : SPUInstr<(outs), (ins), "lnop", LoadNOP> {
4211 let Inst{0-10} = 0b10000000000;
4212 let Inst{11-17} = 0;
4213 let Inst{18-24} = 0;
4214 let Inst{25-31} = 0;
4217 //===----------------------------------------------------------------------===//
4218 // Bit conversions (type conversions between vector/packed types)
4219 // NOTE: Promotions are handled using the XS* instructions.
4220 //===----------------------------------------------------------------------===//
4221 def : Pat<(v16i8 (bitconvert (v8i16 VECREG:$src))), (v16i8 VECREG:$src)>;
4222 def : Pat<(v16i8 (bitconvert (v4i32 VECREG:$src))), (v16i8 VECREG:$src)>;
4223 def : Pat<(v16i8 (bitconvert (v2i64 VECREG:$src))), (v16i8 VECREG:$src)>;
4224 def : Pat<(v16i8 (bitconvert (v4f32 VECREG:$src))), (v16i8 VECREG:$src)>;
4225 def : Pat<(v16i8 (bitconvert (v2f64 VECREG:$src))), (v16i8 VECREG:$src)>;
4227 def : Pat<(v8i16 (bitconvert (v16i8 VECREG:$src))), (v8i16 VECREG:$src)>;
4228 def : Pat<(v8i16 (bitconvert (v4i32 VECREG:$src))), (v8i16 VECREG:$src)>;
4229 def : Pat<(v8i16 (bitconvert (v2i64 VECREG:$src))), (v8i16 VECREG:$src)>;
4230 def : Pat<(v8i16 (bitconvert (v4f32 VECREG:$src))), (v8i16 VECREG:$src)>;
4231 def : Pat<(v8i16 (bitconvert (v2f64 VECREG:$src))), (v8i16 VECREG:$src)>;
4233 def : Pat<(v4i32 (bitconvert (v16i8 VECREG:$src))), (v4i32 VECREG:$src)>;
4234 def : Pat<(v4i32 (bitconvert (v8i16 VECREG:$src))), (v4i32 VECREG:$src)>;
4235 def : Pat<(v4i32 (bitconvert (v2i64 VECREG:$src))), (v4i32 VECREG:$src)>;
4236 def : Pat<(v4i32 (bitconvert (v4f32 VECREG:$src))), (v4i32 VECREG:$src)>;
4237 def : Pat<(v4i32 (bitconvert (v2f64 VECREG:$src))), (v4i32 VECREG:$src)>;
4239 def : Pat<(v2i64 (bitconvert (v16i8 VECREG:$src))), (v2i64 VECREG:$src)>;
4240 def : Pat<(v2i64 (bitconvert (v8i16 VECREG:$src))), (v2i64 VECREG:$src)>;
4241 def : Pat<(v2i64 (bitconvert (v4i32 VECREG:$src))), (v2i64 VECREG:$src)>;
4242 def : Pat<(v2i64 (bitconvert (v4f32 VECREG:$src))), (v2i64 VECREG:$src)>;
4243 def : Pat<(v2i64 (bitconvert (v2f64 VECREG:$src))), (v2i64 VECREG:$src)>;
4245 def : Pat<(v4f32 (bitconvert (v16i8 VECREG:$src))), (v4f32 VECREG:$src)>;
4246 def : Pat<(v4f32 (bitconvert (v8i16 VECREG:$src))), (v4f32 VECREG:$src)>;
4247 def : Pat<(v4f32 (bitconvert (v2i64 VECREG:$src))), (v4f32 VECREG:$src)>;
4248 def : Pat<(v4f32 (bitconvert (v4i32 VECREG:$src))), (v4f32 VECREG:$src)>;
4249 def : Pat<(v4f32 (bitconvert (v2f64 VECREG:$src))), (v4f32 VECREG:$src)>;
4251 def : Pat<(v2f64 (bitconvert (v16i8 VECREG:$src))), (v2f64 VECREG:$src)>;
4252 def : Pat<(v2f64 (bitconvert (v8i16 VECREG:$src))), (v2f64 VECREG:$src)>;
4253 def : Pat<(v2f64 (bitconvert (v4i32 VECREG:$src))), (v2f64 VECREG:$src)>;
4254 def : Pat<(v2f64 (bitconvert (v2i64 VECREG:$src))), (v2f64 VECREG:$src)>;
4255 def : Pat<(v2f64 (bitconvert (v4f32 VECREG:$src))), (v2f64 VECREG:$src)>;
4257 def : Pat<(i128 (bitconvert (v16i8 VECREG:$src))),
4258 (COPY_TO_REGCLASS VECREG:$src, GPRC)>;
4259 def : Pat<(i128 (bitconvert (v8i16 VECREG:$src))),
4260 (COPY_TO_REGCLASS VECREG:$src, GPRC)>;
4261 def : Pat<(i128 (bitconvert (v4i32 VECREG:$src))),
4262 (COPY_TO_REGCLASS VECREG:$src, GPRC)>;
4263 def : Pat<(i128 (bitconvert (v2i64 VECREG:$src))),
4264 (COPY_TO_REGCLASS VECREG:$src, GPRC)>;
4265 def : Pat<(i128 (bitconvert (v4f32 VECREG:$src))),
4266 (COPY_TO_REGCLASS VECREG:$src, GPRC)>;
4267 def : Pat<(i128 (bitconvert (v2f64 VECREG:$src))),
4268 (COPY_TO_REGCLASS VECREG:$src, GPRC)>;
4270 def : Pat<(v16i8 (bitconvert (i128 GPRC:$src))),
4271 (v16i8 (COPY_TO_REGCLASS GPRC:$src, VECREG))>;
4272 def : Pat<(v8i16 (bitconvert (i128 GPRC:$src))),
4273 (v8i16 (COPY_TO_REGCLASS GPRC:$src, VECREG))>;
4274 def : Pat<(v4i32 (bitconvert (i128 GPRC:$src))),
4275 (v4i32 (COPY_TO_REGCLASS GPRC:$src, VECREG))>;
4276 def : Pat<(v2i64 (bitconvert (i128 GPRC:$src))),
4277 (v2i64 (COPY_TO_REGCLASS GPRC:$src, VECREG))>;
4278 def : Pat<(v4f32 (bitconvert (i128 GPRC:$src))),
4279 (v4f32 (COPY_TO_REGCLASS GPRC:$src, VECREG))>;
4280 def : Pat<(v2f64 (bitconvert (i128 GPRC:$src))),
4281 (v2f64 (COPY_TO_REGCLASS GPRC:$src, VECREG))>;
4283 def : Pat<(i32 (bitconvert R32FP:$rA)),
4284 (COPY_TO_REGCLASS R32FP:$rA, R32C)>;
4286 def : Pat<(f32 (bitconvert R32C:$rA)),
4287 (COPY_TO_REGCLASS R32C:$rA, R32FP)>;
4289 def : Pat<(i64 (bitconvert R64FP:$rA)),
4290 (COPY_TO_REGCLASS R64FP:$rA, R64C)>;
4292 def : Pat<(f64 (bitconvert R64C:$rA)),
4293 (COPY_TO_REGCLASS R64C:$rA, R64FP)>;
4296 //===----------------------------------------------------------------------===//
4297 // Instruction patterns:
4298 //===----------------------------------------------------------------------===//
4300 // General 32-bit constants:
4301 def : Pat<(i32 imm:$imm),
4302 (IOHLr32 (ILHUr32 (HI16 imm:$imm)), (LO16 imm:$imm))>;
4304 // Single precision float constants:
4305 def : Pat<(f32 fpimm:$imm),
4306 (IOHLf32 (ILHUf32 (HI16_f32 fpimm:$imm)), (LO16_f32 fpimm:$imm))>;
4308 // General constant 32-bit vectors
4309 def : Pat<(v4i32 v4i32Imm:$imm),
4310 (IOHLv4i32 (v4i32 (ILHUv4i32 (HI16_vec v4i32Imm:$imm))),
4311 (LO16_vec v4i32Imm:$imm))>;
4314 def : Pat<(i8 imm:$imm),
4317 //===----------------------------------------------------------------------===//
4318 // Zero/Any/Sign extensions
4319 //===----------------------------------------------------------------------===//
4321 // sext 8->32: Sign extend bytes to words
4322 def : Pat<(sext_inreg R32C:$rSrc, i8),
4323 (XSHWr32 (XSBHr32 R32C:$rSrc))>;
4325 def : Pat<(i32 (sext R8C:$rSrc)),
4326 (XSHWr16 (XSBHr8 R8C:$rSrc))>;
4328 // sext 8->64: Sign extend bytes to double word
4329 def : Pat<(sext_inreg R64C:$rSrc, i8),
4330 (XSWDr64_inreg (XSHWr64 (XSBHr64 R64C:$rSrc)))>;
4332 def : Pat<(i64 (sext R8C:$rSrc)),
4333 (XSWDr64 (XSHWr16 (XSBHr8 R8C:$rSrc)))>;
4335 // zext 8->16: Zero extend bytes to halfwords
4336 def : Pat<(i16 (zext R8C:$rSrc)),
4337 (ANDHIi8i16 R8C:$rSrc, 0xff)>;
4339 // zext 8->32: Zero extend bytes to words
4340 def : Pat<(i32 (zext R8C:$rSrc)),
4341 (ANDIi8i32 R8C:$rSrc, 0xff)>;
4343 // zext 8->64: Zero extend bytes to double words
4344 def : Pat<(i64 (zext R8C:$rSrc)),
4345 (COPY_TO_REGCLASS (SELBv4i32 (ROTQMBYv4i32
4347 (ANDIi8i32 R8C:$rSrc,0xff), VECREG),
4350 (FSMBIv4i32 0x0f0f)), R64C)>;
4352 // anyext 8->16: Extend 8->16 bits, irrespective of sign, preserves high bits
4353 def : Pat<(i16 (anyext R8C:$rSrc)),
4354 (ORHIi8i16 R8C:$rSrc, 0)>;
4356 // anyext 8->32: Extend 8->32 bits, irrespective of sign, preserves high bits
4357 def : Pat<(i32 (anyext R8C:$rSrc)),
4358 (COPY_TO_REGCLASS R8C:$rSrc, R32C)>;
4360 // sext 16->64: Sign extend halfword to double word
4361 def : Pat<(sext_inreg R64C:$rSrc, i16),
4362 (XSWDr64_inreg (XSHWr64 R64C:$rSrc))>;
4364 def : Pat<(sext R16C:$rSrc),
4365 (XSWDr64 (XSHWr16 R16C:$rSrc))>;
4367 // zext 16->32: Zero extend halfwords to words
4368 def : Pat<(i32 (zext R16C:$rSrc)),
4369 (ANDi16i32 R16C:$rSrc, (ILAr32 0xffff))>;
4371 def : Pat<(i32 (zext (and R16C:$rSrc, 0xf))),
4372 (ANDIi16i32 R16C:$rSrc, 0xf)>;
4374 def : Pat<(i32 (zext (and R16C:$rSrc, 0xff))),
4375 (ANDIi16i32 R16C:$rSrc, 0xff)>;
4377 def : Pat<(i32 (zext (and R16C:$rSrc, 0xfff))),
4378 (ANDIi16i32 R16C:$rSrc, 0xfff)>;
4380 // anyext 16->32: Extend 16->32 bits, irrespective of sign
4381 def : Pat<(i32 (anyext R16C:$rSrc)),
4382 (COPY_TO_REGCLASS R16C:$rSrc, R32C)>;
4384 //===----------------------------------------------------------------------===//
4386 // These truncates are for the SPU's supported types (i8, i16, i32). i64 and
4387 // above are custom lowered.
4388 //===----------------------------------------------------------------------===//
4390 def : Pat<(i8 (trunc GPRC:$src)),
4392 (SHUFBgprc GPRC:$src, GPRC:$src,
4393 (IOHLv4i32 (ILHUv4i32 0x0f0f), 0x0f0f)), R8C)>;
4395 def : Pat<(i8 (trunc R64C:$src)),
4398 (COPY_TO_REGCLASS R64C:$src, VECREG),
4399 (COPY_TO_REGCLASS R64C:$src, VECREG),
4400 (IOHLv4i32 (ILHUv4i32 0x0707), 0x0707)), R8C)>;
4402 def : Pat<(i8 (trunc R32C:$src)),
4405 (COPY_TO_REGCLASS R32C:$src, VECREG),
4406 (COPY_TO_REGCLASS R32C:$src, VECREG),
4407 (IOHLv4i32 (ILHUv4i32 0x0303), 0x0303)), R8C)>;
4409 def : Pat<(i8 (trunc R16C:$src)),
4412 (COPY_TO_REGCLASS R16C:$src, VECREG),
4413 (COPY_TO_REGCLASS R16C:$src, VECREG),
4414 (IOHLv4i32 (ILHUv4i32 0x0303), 0x0303)), R8C)>;
4416 def : Pat<(i16 (trunc GPRC:$src)),
4418 (SHUFBgprc GPRC:$src, GPRC:$src,
4419 (IOHLv4i32 (ILHUv4i32 0x0e0f), 0x0e0f)), R16C)>;
4421 def : Pat<(i16 (trunc R64C:$src)),
4424 (COPY_TO_REGCLASS R64C:$src, VECREG),
4425 (COPY_TO_REGCLASS R64C:$src, VECREG),
4426 (IOHLv4i32 (ILHUv4i32 0x0607), 0x0607)), R16C)>;
4428 def : Pat<(i16 (trunc R32C:$src)),
4431 (COPY_TO_REGCLASS R32C:$src, VECREG),
4432 (COPY_TO_REGCLASS R32C:$src, VECREG),
4433 (IOHLv4i32 (ILHUv4i32 0x0203), 0x0203)), R16C)>;
4435 def : Pat<(i32 (trunc GPRC:$src)),
4437 (SHUFBgprc GPRC:$src, GPRC:$src,
4438 (IOHLv4i32 (ILHUv4i32 0x0c0d), 0x0e0f)), R32C)>;
4440 def : Pat<(i32 (trunc R64C:$src)),
4443 (COPY_TO_REGCLASS R64C:$src, VECREG),
4444 (COPY_TO_REGCLASS R64C:$src, VECREG),
4445 (IOHLv4i32 (ILHUv4i32 0x0405), 0x0607)), R32C)>;
4447 //===----------------------------------------------------------------------===//
4448 // Address generation: SPU, like PPC, has to split addresses into high and
4449 // low parts in order to load them into a register.
4450 //===----------------------------------------------------------------------===//
4452 def : Pat<(SPUaform tglobaladdr:$in, 0), (ILAlsa tglobaladdr:$in)>;
4453 def : Pat<(SPUaform texternalsym:$in, 0), (ILAlsa texternalsym:$in)>;
4454 def : Pat<(SPUaform tjumptable:$in, 0), (ILAlsa tjumptable:$in)>;
4455 def : Pat<(SPUaform tconstpool:$in, 0), (ILAlsa tconstpool:$in)>;
4457 def : Pat<(SPUindirect (SPUhi tglobaladdr:$in, 0),
4458 (SPUlo tglobaladdr:$in, 0)),
4459 (IOHLlo (ILHUhi tglobaladdr:$in), tglobaladdr:$in)>;
4461 def : Pat<(SPUindirect (SPUhi texternalsym:$in, 0),
4462 (SPUlo texternalsym:$in, 0)),
4463 (IOHLlo (ILHUhi texternalsym:$in), texternalsym:$in)>;
4465 def : Pat<(SPUindirect (SPUhi tjumptable:$in, 0),
4466 (SPUlo tjumptable:$in, 0)),
4467 (IOHLlo (ILHUhi tjumptable:$in), tjumptable:$in)>;
4469 def : Pat<(SPUindirect (SPUhi tconstpool:$in, 0),
4470 (SPUlo tconstpool:$in, 0)),
4471 (IOHLlo (ILHUhi tconstpool:$in), tconstpool:$in)>;
4473 def : Pat<(add (SPUhi tglobaladdr:$in, 0), (SPUlo tglobaladdr:$in, 0)),
4474 (IOHLlo (ILHUhi tglobaladdr:$in), tglobaladdr:$in)>;
4476 def : Pat<(add (SPUhi texternalsym:$in, 0), (SPUlo texternalsym:$in, 0)),
4477 (IOHLlo (ILHUhi texternalsym:$in), texternalsym:$in)>;
4479 def : Pat<(add (SPUhi tjumptable:$in, 0), (SPUlo tjumptable:$in, 0)),
4480 (IOHLlo (ILHUhi tjumptable:$in), tjumptable:$in)>;
4482 def : Pat<(add (SPUhi tconstpool:$in, 0), (SPUlo tconstpool:$in, 0)),
4483 (IOHLlo (ILHUhi tconstpool:$in), tconstpool:$in)>;
4486 include "CellSDKIntrinsics.td"
4487 // Various math operator instruction sequences
4488 include "SPUMathInstr.td"
4489 // 64-bit "instructions"/support
4490 include "SPU64InstrInfo.td"
4491 // 128-bit "instructions"/support
4492 include "SPU128InstrInfo.td"