1 //===- SPUOperands.td - Cell SPU Instruction Operands ------*- tablegen -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
9 // Cell SPU Instruction Operands:
10 //===----------------------------------------------------------------------===//
12 // TO_IMM32 - Convert an i8/i16 to i32.
13 def TO_IMM32 : SDNodeXForm<imm, [{
14 return getI32Imm(N->getZExtValue());
17 // TO_IMM16 - Convert an i8/i32 to i16.
18 def TO_IMM16 : SDNodeXForm<imm, [{
19 return CurDAG->getTargetConstant(N->getZExtValue(), MVT::i16);
23 def LO16 : SDNodeXForm<imm, [{
24 unsigned val = N->getZExtValue();
25 // Transformation function: get the low 16 bits.
26 return getI32Imm(val & 0xffff);
29 def LO16_vec : SDNodeXForm<scalar_to_vector, [{
32 // Transformation function: get the low 16 bit immediate from a build_vector
34 assert(N->getOpcode() == ISD::BUILD_VECTOR
35 && "LO16_vec got something other than a BUILD_VECTOR");
37 // Get first constant operand...
38 for (unsigned i = 0, e = N->getNumOperands();
39 OpVal.getNode() == 0 && i != e; ++i) {
40 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
41 if (OpVal.getNode() == 0)
42 OpVal = N->getOperand(i);
45 assert(OpVal.getNode() != 0 && "LO16_vec did not locate a <defined> node");
46 ConstantSDNode *CN = cast<ConstantSDNode>(OpVal);
47 return getI32Imm((unsigned)CN->getZExtValue() & 0xffff);
50 // Transform an immediate, returning the high 16 bits shifted down:
51 def HI16 : SDNodeXForm<imm, [{
52 return getI32Imm((unsigned)N->getZExtValue() >> 16);
55 // Transformation function: shift the high 16 bit immediate from a build_vector
56 // node into the low 16 bits, and return a 16-bit constant.
57 def HI16_vec : SDNodeXForm<scalar_to_vector, [{
60 assert(N->getOpcode() == ISD::BUILD_VECTOR
61 && "HI16_vec got something other than a BUILD_VECTOR");
63 // Get first constant operand...
64 for (unsigned i = 0, e = N->getNumOperands();
65 OpVal.getNode() == 0 && i != e; ++i) {
66 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
67 if (OpVal.getNode() == 0)
68 OpVal = N->getOperand(i);
71 assert(OpVal.getNode() != 0 && "HI16_vec did not locate a <defined> node");
72 ConstantSDNode *CN = cast<ConstantSDNode>(OpVal);
73 return getI32Imm((unsigned)CN->getZExtValue() >> 16);
76 // simm7 predicate - True if the immediate fits in an 7-bit signed
78 def simm7: PatLeaf<(imm), [{
79 int sextVal = int(N->getSExtValue());
80 return (sextVal >= -64 && sextVal <= 63);
83 // uimm7 predicate - True if the immediate fits in an 7-bit unsigned
85 def uimm7: PatLeaf<(imm), [{
86 return (N->getZExtValue() <= 0x7f);
89 // immSExt8 predicate - True if the immediate fits in an 8-bit sign extended
91 def immSExt8 : PatLeaf<(imm), [{
92 int Value = int(N->getSExtValue());
93 return (Value >= -(1 << 8) && Value <= (1 << 8) - 1);
96 // immU8: immediate, unsigned 8-bit quantity
97 def immU8 : PatLeaf<(imm), [{
98 return (N->getZExtValue() <= 0xff);
101 // i32ImmSExt10 predicate - True if the i32 immediate fits in a 10-bit sign
102 // extended field. Used by RI10Form instructions like 'ldq'.
103 def i32ImmSExt10 : PatLeaf<(imm), [{
104 return isI32IntS10Immediate(N);
107 // i32ImmUns10 predicate - True if the i32 immediate fits in a 10-bit unsigned
108 // field. Used by RI10Form instructions like 'ldq'.
109 def i32ImmUns10 : PatLeaf<(imm), [{
110 return isI32IntU10Immediate(N);
113 // i16ImmSExt10 predicate - True if the i16 immediate fits in a 10-bit sign
114 // extended field. Used by RI10Form instructions like 'ldq'.
115 def i16ImmSExt10 : PatLeaf<(imm), [{
116 return isI16IntS10Immediate(N);
119 // i16ImmUns10 predicate - True if the i16 immediate fits into a 10-bit unsigned
120 // value. Used by RI10Form instructions.
121 def i16ImmUns10 : PatLeaf<(imm), [{
122 return isI16IntU10Immediate(N);
125 def immSExt16 : PatLeaf<(imm), [{
126 // immSExt16 predicate - True if the immediate fits in a 16-bit sign extended
129 return isIntS16Immediate(N, Ignored);
132 def immZExt16 : PatLeaf<(imm), [{
133 // immZExt16 predicate - True if the immediate fits in a 16-bit zero extended
135 return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
138 def immU16 : PatLeaf<(imm), [{
139 // immU16 predicate- True if the immediate fits into a 16-bit unsigned field.
140 return (uint64_t)N->getZExtValue() == (N->getZExtValue() & 0xffff);
143 def imm18 : PatLeaf<(imm), [{
144 // imm18 predicate: True if the immediate fits into an 18-bit unsigned field.
145 int Value = (int) N->getZExtValue();
146 return ((Value & ((1 << 19) - 1)) == Value);
149 def lo16 : PatLeaf<(imm), [{
150 // lo16 predicate - returns true if the immediate has all zeros in the
151 // low order bits and is a 32-bit constant:
152 if (N->getValueType(0) == MVT::i32) {
153 uint32_t val = N->getZExtValue();
154 return ((val & 0x0000ffff) == val);
160 def hi16 : PatLeaf<(imm), [{
161 // hi16 predicate - returns true if the immediate has all zeros in the
162 // low order bits and is a 32-bit constant:
163 if (N->getValueType(0) == MVT::i32) {
164 uint32_t val = uint32_t(N->getZExtValue());
165 return ((val & 0xffff0000) == val);
166 } else if (N->getValueType(0) == MVT::i64) {
167 uint64_t val = N->getZExtValue();
168 return ((val & 0xffff0000ULL) == val);
174 def bitshift : PatLeaf<(imm), [{
175 // bitshift predicate - returns true if 0 < imm <= 7 for SHLQBII
176 // (shift left quadword by bits immediate)
177 int64_t Val = N->getZExtValue();
178 return (Val > 0 && Val <= 7);
181 //===----------------------------------------------------------------------===//
182 // Floating point operands:
183 //===----------------------------------------------------------------------===//
185 // Transform a float, returning the high 16 bits shifted down, as if
186 // the float was really an unsigned integer:
187 def HI16_f32 : SDNodeXForm<fpimm, [{
188 float fval = N->getValueAPF().convertToFloat();
189 return getI32Imm(FloatToBits(fval) >> 16);
192 // Transformation function on floats: get the low 16 bits as if the float was
193 // an unsigned integer.
194 def LO16_f32 : SDNodeXForm<fpimm, [{
195 float fval = N->getValueAPF().convertToFloat();
196 return getI32Imm(FloatToBits(fval) & 0xffff);
199 def FPimm_sext16 : SDNodeXForm<fpimm, [{
200 float fval = N->getValueAPF().convertToFloat();
201 return getI32Imm((int) ((FloatToBits(fval) << 16) >> 16));
204 def FPimm_u18 : SDNodeXForm<fpimm, [{
205 float fval = N->getValueAPF().convertToFloat();
206 return getI32Imm(FloatToBits(fval) & ((1 << 19) - 1));
209 def fpimmSExt16 : PatLeaf<(fpimm), [{
211 return isFPS16Immediate(N, Ignored);
214 // Does the SFP constant only have upp 16 bits set?
215 def hi16_f32 : PatLeaf<(fpimm), [{
216 if (N->getValueType(0) == MVT::f32) {
217 uint32_t val = FloatToBits(N->getValueAPF().convertToFloat());
218 return ((val & 0xffff0000) == val);
224 // Does the SFP constant fit into 18 bits?
225 def fpimm18 : PatLeaf<(fpimm), [{
226 if (N->getValueType(0) == MVT::f32) {
227 uint32_t Value = FloatToBits(N->getValueAPF().convertToFloat());
228 return ((Value & ((1 << 19) - 1)) == Value);
234 //===----------------------------------------------------------------------===//
235 // 64-bit operands (TODO):
236 //===----------------------------------------------------------------------===//
238 //===----------------------------------------------------------------------===//
239 // build_vector operands:
240 //===----------------------------------------------------------------------===//
242 // v16i8SExt8Imm_xform function: convert build_vector to 8-bit sign extended
243 // immediate constant load for v16i8 vectors. N.B.: The incoming constant has
244 // to be a 16-bit quantity with the upper and lower bytes equal (e.g., 0x2a2a).
245 def v16i8SExt8Imm_xform: SDNodeXForm<build_vector, [{
246 return SPU::get_vec_i8imm(N, *CurDAG, MVT::i8);
249 // v16i8SExt8Imm: Predicate test for 8-bit sign extended immediate constant
250 // load, works in conjunction with its transform function. N.B.: This relies the
251 // incoming constant being a 16-bit quantity, where the upper and lower bytes
252 // are EXACTLY the same (e.g., 0x2a2a)
253 def v16i8SExt8Imm: PatLeaf<(build_vector), [{
254 return SPU::get_vec_i8imm(N, *CurDAG, MVT::i8).getNode() != 0;
255 }], v16i8SExt8Imm_xform>;
257 // v16i8U8Imm_xform function: convert build_vector to unsigned 8-bit
258 // immediate constant load for v16i8 vectors. N.B.: The incoming constant has
259 // to be a 16-bit quantity with the upper and lower bytes equal (e.g., 0x2a2a).
260 def v16i8U8Imm_xform: SDNodeXForm<build_vector, [{
261 return SPU::get_vec_i8imm(N, *CurDAG, MVT::i8);
264 // v16i8U8Imm: Predicate test for unsigned 8-bit immediate constant
265 // load, works in conjunction with its transform function. N.B.: This relies the
266 // incoming constant being a 16-bit quantity, where the upper and lower bytes
267 // are EXACTLY the same (e.g., 0x2a2a)
268 def v16i8U8Imm: PatLeaf<(build_vector), [{
269 return SPU::get_vec_i8imm(N, *CurDAG, MVT::i8).getNode() != 0;
270 }], v16i8U8Imm_xform>;
272 // v8i16SExt8Imm_xform function: convert build_vector to 8-bit sign extended
273 // immediate constant load for v8i16 vectors.
274 def v8i16SExt8Imm_xform: SDNodeXForm<build_vector, [{
275 return SPU::get_vec_i8imm(N, *CurDAG, MVT::i16);
278 // v8i16SExt8Imm: Predicate test for 8-bit sign extended immediate constant
279 // load, works in conjunction with its transform function.
280 def v8i16SExt8Imm: PatLeaf<(build_vector), [{
281 return SPU::get_vec_i8imm(N, *CurDAG, MVT::i16).getNode() != 0;
282 }], v8i16SExt8Imm_xform>;
284 // v8i16SExt10Imm_xform function: convert build_vector to 16-bit sign extended
285 // immediate constant load for v8i16 vectors.
286 def v8i16SExt10Imm_xform: SDNodeXForm<build_vector, [{
287 return SPU::get_vec_i10imm(N, *CurDAG, MVT::i16);
290 // v8i16SExt10Imm: Predicate test for 16-bit sign extended immediate constant
291 // load, works in conjunction with its transform function.
292 def v8i16SExt10Imm: PatLeaf<(build_vector), [{
293 return SPU::get_vec_i10imm(N, *CurDAG, MVT::i16).getNode() != 0;
294 }], v8i16SExt10Imm_xform>;
296 // v8i16Uns10Imm_xform function: convert build_vector to 16-bit unsigned
297 // immediate constant load for v8i16 vectors.
298 def v8i16Uns10Imm_xform: SDNodeXForm<build_vector, [{
299 return SPU::get_vec_i10imm(N, *CurDAG, MVT::i16);
302 // v8i16Uns10Imm: Predicate test for 16-bit unsigned immediate constant
303 // load, works in conjunction with its transform function.
304 def v8i16Uns10Imm: PatLeaf<(build_vector), [{
305 return SPU::get_vec_i10imm(N, *CurDAG, MVT::i16).getNode() != 0;
306 }], v8i16Uns10Imm_xform>;
308 // v8i16SExt16Imm_xform function: convert build_vector to 16-bit sign extended
309 // immediate constant load for v8i16 vectors.
310 def v8i16Uns16Imm_xform: SDNodeXForm<build_vector, [{
311 return SPU::get_vec_i16imm(N, *CurDAG, MVT::i16);
314 // v8i16SExt16Imm: Predicate test for 16-bit sign extended immediate constant
315 // load, works in conjunction with its transform function.
316 def v8i16SExt16Imm: PatLeaf<(build_vector), [{
317 return SPU::get_vec_i16imm(N, *CurDAG, MVT::i16).getNode() != 0;
318 }], v8i16Uns16Imm_xform>;
320 // v4i32SExt10Imm_xform function: convert build_vector to 10-bit sign extended
321 // immediate constant load for v4i32 vectors.
322 def v4i32SExt10Imm_xform: SDNodeXForm<build_vector, [{
323 return SPU::get_vec_i10imm(N, *CurDAG, MVT::i32);
326 // v4i32SExt10Imm: Predicate test for 10-bit sign extended immediate constant
327 // load, works in conjunction with its transform function.
328 def v4i32SExt10Imm: PatLeaf<(build_vector), [{
329 return SPU::get_vec_i10imm(N, *CurDAG, MVT::i32).getNode() != 0;
330 }], v4i32SExt10Imm_xform>;
332 // v4i32Uns10Imm_xform function: convert build_vector to 10-bit unsigned
333 // immediate constant load for v4i32 vectors.
334 def v4i32Uns10Imm_xform: SDNodeXForm<build_vector, [{
335 return SPU::get_vec_i10imm(N, *CurDAG, MVT::i32);
338 // v4i32Uns10Imm: Predicate test for 10-bit unsigned immediate constant
339 // load, works in conjunction with its transform function.
340 def v4i32Uns10Imm: PatLeaf<(build_vector), [{
341 return SPU::get_vec_i10imm(N, *CurDAG, MVT::i32).getNode() != 0;
342 }], v4i32Uns10Imm_xform>;
344 // v4i32SExt16Imm_xform function: convert build_vector to 16-bit sign extended
345 // immediate constant load for v4i32 vectors.
346 def v4i32SExt16Imm_xform: SDNodeXForm<build_vector, [{
347 return SPU::get_vec_i16imm(N, *CurDAG, MVT::i32);
350 // v4i32SExt16Imm: Predicate test for 16-bit sign extended immediate constant
351 // load, works in conjunction with its transform function.
352 def v4i32SExt16Imm: PatLeaf<(build_vector), [{
353 return SPU::get_vec_i16imm(N, *CurDAG, MVT::i32).getNode() != 0;
354 }], v4i32SExt16Imm_xform>;
356 // v4i32Uns18Imm_xform function: convert build_vector to 18-bit unsigned
357 // immediate constant load for v4i32 vectors.
358 def v4i32Uns18Imm_xform: SDNodeXForm<build_vector, [{
359 return SPU::get_vec_u18imm(N, *CurDAG, MVT::i32);
362 // v4i32Uns18Imm: Predicate test for 18-bit unsigned immediate constant load,
363 // works in conjunction with its transform function.
364 def v4i32Uns18Imm: PatLeaf<(build_vector), [{
365 return SPU::get_vec_u18imm(N, *CurDAG, MVT::i32).getNode() != 0;
366 }], v4i32Uns18Imm_xform>;
368 // ILHUvec_get_imm xform function: convert build_vector to ILHUvec imm constant
370 def ILHUvec_get_imm: SDNodeXForm<build_vector, [{
371 return SPU::get_ILHUvec_imm(N, *CurDAG, MVT::i32);
374 /// immILHUvec: Predicate test for a ILHU constant vector.
375 def immILHUvec: PatLeaf<(build_vector), [{
376 return SPU::get_ILHUvec_imm(N, *CurDAG, MVT::i32).getNode() != 0;
377 }], ILHUvec_get_imm>;
379 // Catch-all for any other i32 vector constants
380 def v4i32_get_imm: SDNodeXForm<build_vector, [{
381 return SPU::get_v4i32_imm(N, *CurDAG);
384 def v4i32Imm: PatLeaf<(build_vector), [{
385 return SPU::get_v4i32_imm(N, *CurDAG).getNode() != 0;
388 // v2i64SExt10Imm_xform function: convert build_vector to 10-bit sign extended
389 // immediate constant load for v2i64 vectors.
390 def v2i64SExt10Imm_xform: SDNodeXForm<build_vector, [{
391 return SPU::get_vec_i10imm(N, *CurDAG, MVT::i64);
394 // v2i64SExt10Imm: Predicate test for 10-bit sign extended immediate constant
395 // load, works in conjunction with its transform function.
396 def v2i64SExt10Imm: PatLeaf<(build_vector), [{
397 return SPU::get_vec_i10imm(N, *CurDAG, MVT::i64).getNode() != 0;
398 }], v2i64SExt10Imm_xform>;
400 // v2i64SExt16Imm_xform function: convert build_vector to 16-bit sign extended
401 // immediate constant load for v2i64 vectors.
402 def v2i64SExt16Imm_xform: SDNodeXForm<build_vector, [{
403 return SPU::get_vec_i16imm(N, *CurDAG, MVT::i64);
406 // v2i64SExt16Imm: Predicate test for 16-bit sign extended immediate constant
407 // load, works in conjunction with its transform function.
408 def v2i64SExt16Imm: PatLeaf<(build_vector), [{
409 return SPU::get_vec_i16imm(N, *CurDAG, MVT::i64).getNode() != 0;
410 }], v2i64SExt16Imm_xform>;
412 // v2i64Uns18Imm_xform function: convert build_vector to 18-bit unsigned
413 // immediate constant load for v2i64 vectors.
414 def v2i64Uns18Imm_xform: SDNodeXForm<build_vector, [{
415 return SPU::get_vec_u18imm(N, *CurDAG, MVT::i64);
418 // v2i64Uns18Imm: Predicate test for 18-bit unsigned immediate constant load,
419 // works in conjunction with its transform function.
420 def v2i64Uns18Imm: PatLeaf<(build_vector), [{
421 return SPU::get_vec_u18imm(N, *CurDAG, MVT::i64).getNode() != 0;
422 }], v2i64Uns18Imm_xform>;
424 /// immILHUvec: Predicate test for a ILHU constant vector.
425 def immILHUvec_i64: PatLeaf<(build_vector), [{
426 return SPU::get_ILHUvec_imm(N, *CurDAG, MVT::i64).getNode() != 0;
427 }], ILHUvec_get_imm>;
429 // Catch-all for any other i32 vector constants
430 def v2i64_get_imm: SDNodeXForm<build_vector, [{
431 return SPU::get_v2i64_imm(N, *CurDAG);
434 def v2i64Imm: PatLeaf<(build_vector), [{
435 return SPU::get_v2i64_imm(N, *CurDAG).getNode() != 0;
438 //===----------------------------------------------------------------------===//
439 // Operand Definitions.
441 def s7imm: Operand<i8> {
442 let PrintMethod = "printS7ImmOperand";
445 def s7imm_i8: Operand<i8> {
446 let PrintMethod = "printS7ImmOperand";
449 def u7imm: Operand<i16> {
450 let PrintMethod = "printU7ImmOperand";
453 def u7imm_i8: Operand<i8> {
454 let PrintMethod = "printU7ImmOperand";
457 def u7imm_i32: Operand<i32> {
458 let PrintMethod = "printU7ImmOperand";
461 // Halfword, signed 10-bit constant
462 def s10imm : Operand<i16> {
463 let PrintMethod = "printS10ImmOperand";
466 def s10imm_i8: Operand<i8> {
467 let PrintMethod = "printS10ImmOperand";
470 def s10imm_i32: Operand<i32> {
471 let PrintMethod = "printS10ImmOperand";
474 def s10imm_i64: Operand<i64> {
475 let PrintMethod = "printS10ImmOperand";
478 // Unsigned 10-bit integers:
479 def u10imm: Operand<i16> {
480 let PrintMethod = "printU10ImmOperand";
483 def u10imm_i8: Operand<i8> {
484 let PrintMethod = "printU10ImmOperand";
487 def u10imm_i32: Operand<i32> {
488 let PrintMethod = "printU10ImmOperand";
491 def s16imm : Operand<i16> {
492 let PrintMethod = "printS16ImmOperand";
495 def s16imm_i8: Operand<i8> {
496 let PrintMethod = "printS16ImmOperand";
499 def s16imm_i32: Operand<i32> {
500 let PrintMethod = "printS16ImmOperand";
503 def s16imm_i64: Operand<i64> {
504 let PrintMethod = "printS16ImmOperand";
507 def s16imm_f32: Operand<f32> {
508 let PrintMethod = "printS16ImmOperand";
511 def s16imm_f64: Operand<f64> {
512 let PrintMethod = "printS16ImmOperand";
515 def u16imm_i64 : Operand<i64> {
516 let PrintMethod = "printU16ImmOperand";
519 def u16imm_i32 : Operand<i32> {
520 let PrintMethod = "printU16ImmOperand";
523 def u16imm : Operand<i16> {
524 let PrintMethod = "printU16ImmOperand";
527 def f16imm : Operand<f32> {
528 let PrintMethod = "printU16ImmOperand";
531 def s18imm : Operand<i32> {
532 let PrintMethod = "printS18ImmOperand";
535 def u18imm : Operand<i32> {
536 let PrintMethod = "printU18ImmOperand";
539 def u18imm_i64 : Operand<i64> {
540 let PrintMethod = "printU18ImmOperand";
543 def f18imm : Operand<f32> {
544 let PrintMethod = "printU18ImmOperand";
547 def f18imm_f64 : Operand<f64> {
548 let PrintMethod = "printU18ImmOperand";
551 // Negated 7-bit halfword rotate immediate operands
552 def rothNeg7imm : Operand<i32> {
553 let PrintMethod = "printROTHNeg7Imm";
556 def rothNeg7imm_i16 : Operand<i16> {
557 let PrintMethod = "printROTHNeg7Imm";
560 // Negated 7-bit word rotate immediate operands
561 def rotNeg7imm : Operand<i32> {
562 let PrintMethod = "printROTNeg7Imm";
565 def rotNeg7imm_i16 : Operand<i16> {
566 let PrintMethod = "printROTNeg7Imm";
569 def rotNeg7imm_i8 : Operand<i8> {
570 let PrintMethod = "printROTNeg7Imm";
573 def target : Operand<OtherVT> {
574 let PrintMethod = "printBranchOperand";
577 // Absolute address call target
578 def calltarget : Operand<iPTR> {
579 let PrintMethod = "printCallOperand";
580 let MIOperandInfo = (ops u18imm:$calldest);
583 // PC relative call target
584 def relcalltarget : Operand<iPTR> {
585 let PrintMethod = "printPCRelativeOperand";
586 let MIOperandInfo = (ops s16imm:$calldest);
590 def brtarget : Operand<OtherVT> {
591 let PrintMethod = "printPCRelativeOperand";
594 // Hint for branch target
595 def hbrtarget : Operand<OtherVT> {
596 let PrintMethod = "printHBROperand";
599 // Indirect call target
600 def indcalltarget : Operand<iPTR> {
601 let PrintMethod = "printCallOperand";
602 let MIOperandInfo = (ops ptr_rc:$calldest);
605 def symbolHi: Operand<i32> {
606 let PrintMethod = "printSymbolHi";
609 def symbolLo: Operand<i32> {
610 let PrintMethod = "printSymbolLo";
613 def symbolLSA: Operand<i32> {
614 let PrintMethod = "printSymbolLSA";
617 // Shuffle address memory operaand [s7imm(reg) d-format]
618 def shufaddr : Operand<iPTR> {
619 let PrintMethod = "printShufAddr";
620 let MIOperandInfo = (ops s7imm:$imm, ptr_rc:$reg);
623 // memory s10imm(reg) operand
624 def dformaddr : Operand<iPTR> {
625 let PrintMethod = "printDFormAddr";
626 let MIOperandInfo = (ops s10imm:$imm, ptr_rc:$reg);
629 // 256K local store address
630 // N.B.: The tblgen code generator expects to have two operands, an offset
631 // and a pointer. Of these, only the immediate is actually used.
632 def addr256k : Operand<iPTR> {
633 let PrintMethod = "printAddr256K";
634 let MIOperandInfo = (ops s16imm:$imm, ptr_rc:$reg);
637 // memory s18imm(reg) operand
638 def memri18 : Operand<iPTR> {
639 let PrintMethod = "printMemRegImmS18";
640 let MIOperandInfo = (ops s18imm:$imm, ptr_rc:$reg);
643 // memory register + register operand
644 def memrr : Operand<iPTR> {
645 let PrintMethod = "printMemRegReg";
646 let MIOperandInfo = (ops ptr_rc:$reg_a, ptr_rc:$reg_b);
649 // Define SPU-specific addressing modes: These come in three basic
652 // D-form : [r+I10] (10-bit signed offset + reg)
653 // X-form : [r+r] (reg+reg)
654 // A-form : abs (256K LSA offset)
655 // D-form(2): [r+I7] (7-bit signed offset + reg)
657 def dform_addr : ComplexPattern<iPTR, 2, "SelectDFormAddr",
659 def xform_addr : ComplexPattern<iPTR, 2, "SelectXFormAddr",
661 def aform_addr : ComplexPattern<iPTR, 2, "SelectAFormAddr",
663 def dform2_addr : ComplexPattern<iPTR, 2, "SelectDForm2Addr",