Fixed some bugs.
[llvm/zpu.git] / lib / Target / PowerPC / PPCISelLowering.cpp
blob61ca491b248bd7e1eb140fc4e99eb9c1a81b4ceb
1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PPCISelLowering class.
12 //===----------------------------------------------------------------------===//
14 #include "PPCISelLowering.h"
15 #include "PPCMachineFunctionInfo.h"
16 #include "PPCPerfectShuffle.h"
17 #include "PPCPredicates.h"
18 #include "PPCTargetMachine.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/VectorExtras.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/PseudoSourceValue.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/CallingConv.h"
30 #include "llvm/Constants.h"
31 #include "llvm/Function.h"
32 #include "llvm/Intrinsics.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Target/TargetOptions.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/DerivedTypes.h"
39 using namespace llvm;
41 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, MVT &LocVT,
42 CCValAssign::LocInfo &LocInfo,
43 ISD::ArgFlagsTy &ArgFlags,
44 CCState &State);
45 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT,
46 MVT &LocVT,
47 CCValAssign::LocInfo &LocInfo,
48 ISD::ArgFlagsTy &ArgFlags,
49 CCState &State);
50 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT,
51 MVT &LocVT,
52 CCValAssign::LocInfo &LocInfo,
53 ISD::ArgFlagsTy &ArgFlags,
54 CCState &State);
56 static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
57 cl::desc("enable preincrement load/store generation on PPC (experimental)"),
58 cl::Hidden);
60 static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
61 if (TM.getSubtargetImpl()->isDarwin())
62 return new TargetLoweringObjectFileMachO();
64 return new TargetLoweringObjectFileELF();
67 PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
68 : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
70 setPow2DivIsCheap();
72 // Use _setjmp/_longjmp instead of setjmp/longjmp.
73 setUseUnderscoreSetJmp(true);
74 setUseUnderscoreLongJmp(true);
76 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
77 // arguments are at least 4/8 bytes aligned.
78 setMinStackArgumentAlignment(TM.getSubtarget<PPCSubtarget>().isPPC64() ? 8:4);
80 // Set up the register classes.
81 addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
82 addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
83 addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
85 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
86 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
87 setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
89 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
91 // PowerPC has pre-inc load and store's.
92 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
93 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
94 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
95 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
96 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
97 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
98 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
99 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
100 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
101 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
103 // This is used in the ppcf128->int sequence. Note it has different semantics
104 // from FP_ROUND: that rounds to nearest, this rounds to zero.
105 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
107 // PowerPC has no SREM/UREM instructions
108 setOperationAction(ISD::SREM, MVT::i32, Expand);
109 setOperationAction(ISD::UREM, MVT::i32, Expand);
110 setOperationAction(ISD::SREM, MVT::i64, Expand);
111 setOperationAction(ISD::UREM, MVT::i64, Expand);
113 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
114 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
115 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
116 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
117 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
118 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
119 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
120 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
121 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
123 // We don't support sin/cos/sqrt/fmod/pow
124 setOperationAction(ISD::FSIN , MVT::f64, Expand);
125 setOperationAction(ISD::FCOS , MVT::f64, Expand);
126 setOperationAction(ISD::FREM , MVT::f64, Expand);
127 setOperationAction(ISD::FPOW , MVT::f64, Expand);
128 setOperationAction(ISD::FSIN , MVT::f32, Expand);
129 setOperationAction(ISD::FCOS , MVT::f32, Expand);
130 setOperationAction(ISD::FREM , MVT::f32, Expand);
131 setOperationAction(ISD::FPOW , MVT::f32, Expand);
133 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
135 // If we're enabling GP optimizations, use hardware square root
136 if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
137 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
138 setOperationAction(ISD::FSQRT, MVT::f32, Expand);
141 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
142 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
144 // PowerPC does not have BSWAP, CTPOP or CTTZ
145 setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
146 setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
147 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
148 setOperationAction(ISD::BSWAP, MVT::i64 , Expand);
149 setOperationAction(ISD::CTPOP, MVT::i64 , Expand);
150 setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
152 // PowerPC does not have ROTR
153 setOperationAction(ISD::ROTR, MVT::i32 , Expand);
154 setOperationAction(ISD::ROTR, MVT::i64 , Expand);
156 // PowerPC does not have Select
157 setOperationAction(ISD::SELECT, MVT::i32, Expand);
158 setOperationAction(ISD::SELECT, MVT::i64, Expand);
159 setOperationAction(ISD::SELECT, MVT::f32, Expand);
160 setOperationAction(ISD::SELECT, MVT::f64, Expand);
162 // PowerPC wants to turn select_cc of FP into fsel when possible.
163 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
164 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
166 // PowerPC wants to optimize integer setcc a bit
167 setOperationAction(ISD::SETCC, MVT::i32, Custom);
169 // PowerPC does not have BRCOND which requires SetCC
170 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
172 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
174 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
175 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
177 // PowerPC does not have [U|S]INT_TO_FP
178 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
179 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
181 setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
182 setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
183 setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
184 setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
186 // We cannot sextinreg(i1). Expand to shifts.
187 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
189 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
190 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
191 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
192 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
195 // We want to legalize GlobalAddress and ConstantPool nodes into the
196 // appropriate instructions to materialize the address.
197 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
198 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
199 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
200 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
201 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
202 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
203 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
204 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
205 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
206 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
208 // TRAP is legal.
209 setOperationAction(ISD::TRAP, MVT::Other, Legal);
211 // TRAMPOLINE is custom lowered.
212 setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
214 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
215 setOperationAction(ISD::VASTART , MVT::Other, Custom);
217 // VAARG is custom lowered with the 32-bit SVR4 ABI.
218 if ( TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
219 && !TM.getSubtarget<PPCSubtarget>().isPPC64())
220 setOperationAction(ISD::VAARG, MVT::Other, Custom);
221 else
222 setOperationAction(ISD::VAARG, MVT::Other, Expand);
224 // Use the default implementation.
225 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
226 setOperationAction(ISD::VAEND , MVT::Other, Expand);
227 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
228 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom);
229 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
230 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom);
232 // We want to custom lower some of our intrinsics.
233 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
235 // Comparisons that require checking two conditions.
236 setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
237 setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
238 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
239 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
240 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
241 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
242 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
243 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
244 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
245 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
246 setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
247 setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
249 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
250 // They also have instructions for converting between i64 and fp.
251 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
252 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
253 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
254 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
255 // This is just the low 32 bits of a (signed) fp->i64 conversion.
256 // We cannot do this with Promote because i64 is not a legal type.
257 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
259 // FIXME: disable this lowered code. This generates 64-bit register values,
260 // and we don't model the fact that the top part is clobbered by calls. We
261 // need to flag these together so that the value isn't live across a call.
262 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
263 } else {
264 // PowerPC does not have FP_TO_UINT on 32-bit implementations.
265 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
268 if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
269 // 64-bit PowerPC implementations can support i64 types directly
270 addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
271 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
272 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
273 // 64-bit PowerPC wants to expand i128 shifts itself.
274 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
275 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
276 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
277 } else {
278 // 32-bit PowerPC wants to expand i64 shifts itself.
279 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
280 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
281 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
284 if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
285 // First set operation action for all vector types to expand. Then we
286 // will selectively turn on ones that can be effectively codegen'd.
287 for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
288 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
289 MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
291 // add/sub are legal for all supported vector VT's.
292 setOperationAction(ISD::ADD , VT, Legal);
293 setOperationAction(ISD::SUB , VT, Legal);
295 // We promote all shuffles to v16i8.
296 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
297 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
299 // We promote all non-typed operations to v4i32.
300 setOperationAction(ISD::AND , VT, Promote);
301 AddPromotedToType (ISD::AND , VT, MVT::v4i32);
302 setOperationAction(ISD::OR , VT, Promote);
303 AddPromotedToType (ISD::OR , VT, MVT::v4i32);
304 setOperationAction(ISD::XOR , VT, Promote);
305 AddPromotedToType (ISD::XOR , VT, MVT::v4i32);
306 setOperationAction(ISD::LOAD , VT, Promote);
307 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32);
308 setOperationAction(ISD::SELECT, VT, Promote);
309 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
310 setOperationAction(ISD::STORE, VT, Promote);
311 AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
313 // No other operations are legal.
314 setOperationAction(ISD::MUL , VT, Expand);
315 setOperationAction(ISD::SDIV, VT, Expand);
316 setOperationAction(ISD::SREM, VT, Expand);
317 setOperationAction(ISD::UDIV, VT, Expand);
318 setOperationAction(ISD::UREM, VT, Expand);
319 setOperationAction(ISD::FDIV, VT, Expand);
320 setOperationAction(ISD::FNEG, VT, Expand);
321 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
322 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
323 setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
324 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
325 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
326 setOperationAction(ISD::UDIVREM, VT, Expand);
327 setOperationAction(ISD::SDIVREM, VT, Expand);
328 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
329 setOperationAction(ISD::FPOW, VT, Expand);
330 setOperationAction(ISD::CTPOP, VT, Expand);
331 setOperationAction(ISD::CTLZ, VT, Expand);
332 setOperationAction(ISD::CTTZ, VT, Expand);
335 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
336 // with merges, splats, etc.
337 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
339 setOperationAction(ISD::AND , MVT::v4i32, Legal);
340 setOperationAction(ISD::OR , MVT::v4i32, Legal);
341 setOperationAction(ISD::XOR , MVT::v4i32, Legal);
342 setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
343 setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
344 setOperationAction(ISD::STORE , MVT::v4i32, Legal);
346 addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
347 addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
348 addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
349 addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
351 setOperationAction(ISD::MUL, MVT::v4f32, Legal);
352 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
353 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
354 setOperationAction(ISD::MUL, MVT::v16i8, Custom);
356 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
357 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
359 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
360 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
361 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
362 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
365 setShiftAmountType(MVT::i32);
366 setBooleanContents(ZeroOrOneBooleanContent);
368 if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
369 setStackPointerRegisterToSaveRestore(PPC::X1);
370 setExceptionPointerRegister(PPC::X3);
371 setExceptionSelectorRegister(PPC::X4);
372 } else {
373 setStackPointerRegisterToSaveRestore(PPC::R1);
374 setExceptionPointerRegister(PPC::R3);
375 setExceptionSelectorRegister(PPC::R4);
378 // We have target-specific dag combine patterns for the following nodes:
379 setTargetDAGCombine(ISD::SINT_TO_FP);
380 setTargetDAGCombine(ISD::STORE);
381 setTargetDAGCombine(ISD::BR_CC);
382 setTargetDAGCombine(ISD::BSWAP);
384 // Darwin long double math library functions have $LDBL128 appended.
385 if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
386 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
387 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
388 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
389 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
390 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
391 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
392 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
393 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
394 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
395 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
398 computeRegisterProperties();
401 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
402 /// function arguments in the caller parameter area.
403 unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
404 const TargetMachine &TM = getTargetMachine();
405 // Darwin passes everything on 4 byte boundary.
406 if (TM.getSubtarget<PPCSubtarget>().isDarwin())
407 return 4;
408 // FIXME SVR4 TBD
409 return 4;
412 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
413 switch (Opcode) {
414 default: return 0;
415 case PPCISD::FSEL: return "PPCISD::FSEL";
416 case PPCISD::FCFID: return "PPCISD::FCFID";
417 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
418 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
419 case PPCISD::STFIWX: return "PPCISD::STFIWX";
420 case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
421 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
422 case PPCISD::VPERM: return "PPCISD::VPERM";
423 case PPCISD::Hi: return "PPCISD::Hi";
424 case PPCISD::Lo: return "PPCISD::Lo";
425 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY";
426 case PPCISD::TOC_RESTORE: return "PPCISD::TOC_RESTORE";
427 case PPCISD::LOAD: return "PPCISD::LOAD";
428 case PPCISD::LOAD_TOC: return "PPCISD::LOAD_TOC";
429 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC";
430 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
431 case PPCISD::SRL: return "PPCISD::SRL";
432 case PPCISD::SRA: return "PPCISD::SRA";
433 case PPCISD::SHL: return "PPCISD::SHL";
434 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32";
435 case PPCISD::STD_32: return "PPCISD::STD_32";
436 case PPCISD::CALL_SVR4: return "PPCISD::CALL_SVR4";
437 case PPCISD::CALL_Darwin: return "PPCISD::CALL_Darwin";
438 case PPCISD::NOP: return "PPCISD::NOP";
439 case PPCISD::MTCTR: return "PPCISD::MTCTR";
440 case PPCISD::BCTRL_Darwin: return "PPCISD::BCTRL_Darwin";
441 case PPCISD::BCTRL_SVR4: return "PPCISD::BCTRL_SVR4";
442 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
443 case PPCISD::MFCR: return "PPCISD::MFCR";
444 case PPCISD::VCMP: return "PPCISD::VCMP";
445 case PPCISD::VCMPo: return "PPCISD::VCMPo";
446 case PPCISD::LBRX: return "PPCISD::LBRX";
447 case PPCISD::STBRX: return "PPCISD::STBRX";
448 case PPCISD::LARX: return "PPCISD::LARX";
449 case PPCISD::STCX: return "PPCISD::STCX";
450 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
451 case PPCISD::MFFS: return "PPCISD::MFFS";
452 case PPCISD::MTFSB0: return "PPCISD::MTFSB0";
453 case PPCISD::MTFSB1: return "PPCISD::MTFSB1";
454 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ";
455 case PPCISD::MTFSF: return "PPCISD::MTFSF";
456 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN";
460 MVT::SimpleValueType PPCTargetLowering::getSetCCResultType(EVT VT) const {
461 return MVT::i32;
464 /// getFunctionAlignment - Return the Log2 alignment of this function.
465 unsigned PPCTargetLowering::getFunctionAlignment(const Function *F) const {
466 if (getTargetMachine().getSubtarget<PPCSubtarget>().isDarwin())
467 return F->hasFnAttr(Attribute::OptimizeForSize) ? 2 : 4;
468 else
469 return 2;
472 //===----------------------------------------------------------------------===//
473 // Node matching predicates, for use by the tblgen matching code.
474 //===----------------------------------------------------------------------===//
476 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
477 static bool isFloatingPointZero(SDValue Op) {
478 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
479 return CFP->getValueAPF().isZero();
480 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
481 // Maybe this has already been legalized into the constant pool?
482 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
483 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
484 return CFP->getValueAPF().isZero();
486 return false;
489 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
490 /// true if Op is undef or if it matches the specified value.
491 static bool isConstantOrUndef(int Op, int Val) {
492 return Op < 0 || Op == Val;
495 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
496 /// VPKUHUM instruction.
497 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
498 if (!isUnary) {
499 for (unsigned i = 0; i != 16; ++i)
500 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
501 return false;
502 } else {
503 for (unsigned i = 0; i != 8; ++i)
504 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1) ||
505 !isConstantOrUndef(N->getMaskElt(i+8), i*2+1))
506 return false;
508 return true;
511 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
512 /// VPKUWUM instruction.
513 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
514 if (!isUnary) {
515 for (unsigned i = 0; i != 16; i += 2)
516 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) ||
517 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3))
518 return false;
519 } else {
520 for (unsigned i = 0; i != 8; i += 2)
521 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) ||
522 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3) ||
523 !isConstantOrUndef(N->getMaskElt(i+8), i*2+2) ||
524 !isConstantOrUndef(N->getMaskElt(i+9), i*2+3))
525 return false;
527 return true;
530 /// isVMerge - Common function, used to match vmrg* shuffles.
532 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
533 unsigned LHSStart, unsigned RHSStart) {
534 assert(N->getValueType(0) == MVT::v16i8 &&
535 "PPC only supports shuffles by bytes!");
536 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
537 "Unsupported merge size!");
539 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
540 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
541 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
542 LHSStart+j+i*UnitSize) ||
543 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
544 RHSStart+j+i*UnitSize))
545 return false;
547 return true;
550 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
551 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
552 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
553 bool isUnary) {
554 if (!isUnary)
555 return isVMerge(N, UnitSize, 8, 24);
556 return isVMerge(N, UnitSize, 8, 8);
559 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
560 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
561 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
562 bool isUnary) {
563 if (!isUnary)
564 return isVMerge(N, UnitSize, 0, 16);
565 return isVMerge(N, UnitSize, 0, 0);
569 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
570 /// amount, otherwise return -1.
571 int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
572 assert(N->getValueType(0) == MVT::v16i8 &&
573 "PPC only supports shuffles by bytes!");
575 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
577 // Find the first non-undef value in the shuffle mask.
578 unsigned i;
579 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
580 /*search*/;
582 if (i == 16) return -1; // all undef.
584 // Otherwise, check to see if the rest of the elements are consecutively
585 // numbered from this value.
586 unsigned ShiftAmt = SVOp->getMaskElt(i);
587 if (ShiftAmt < i) return -1;
588 ShiftAmt -= i;
590 if (!isUnary) {
591 // Check the rest of the elements to see if they are consecutive.
592 for (++i; i != 16; ++i)
593 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
594 return -1;
595 } else {
596 // Check the rest of the elements to see if they are consecutive.
597 for (++i; i != 16; ++i)
598 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
599 return -1;
601 return ShiftAmt;
604 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
605 /// specifies a splat of a single element that is suitable for input to
606 /// VSPLTB/VSPLTH/VSPLTW.
607 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
608 assert(N->getValueType(0) == MVT::v16i8 &&
609 (EltSize == 1 || EltSize == 2 || EltSize == 4));
611 // This is a splat operation if each element of the permute is the same, and
612 // if the value doesn't reference the second vector.
613 unsigned ElementBase = N->getMaskElt(0);
615 // FIXME: Handle UNDEF elements too!
616 if (ElementBase >= 16)
617 return false;
619 // Check that the indices are consecutive, in the case of a multi-byte element
620 // splatted with a v16i8 mask.
621 for (unsigned i = 1; i != EltSize; ++i)
622 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
623 return false;
625 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
626 if (N->getMaskElt(i) < 0) continue;
627 for (unsigned j = 0; j != EltSize; ++j)
628 if (N->getMaskElt(i+j) != N->getMaskElt(j))
629 return false;
631 return true;
634 /// isAllNegativeZeroVector - Returns true if all elements of build_vector
635 /// are -0.0.
636 bool PPC::isAllNegativeZeroVector(SDNode *N) {
637 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
639 APInt APVal, APUndef;
640 unsigned BitSize;
641 bool HasAnyUndefs;
643 if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
644 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
645 return CFP->getValueAPF().isNegZero();
647 return false;
650 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
651 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
652 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
653 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
654 assert(isSplatShuffleMask(SVOp, EltSize));
655 return SVOp->getMaskElt(0) / EltSize;
658 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
659 /// by using a vspltis[bhw] instruction of the specified element size, return
660 /// the constant being splatted. The ByteSize field indicates the number of
661 /// bytes of each element [124] -> [bhw].
662 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
663 SDValue OpVal(0, 0);
665 // If ByteSize of the splat is bigger than the element size of the
666 // build_vector, then we have a case where we are checking for a splat where
667 // multiple elements of the buildvector are folded together into a single
668 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
669 unsigned EltSize = 16/N->getNumOperands();
670 if (EltSize < ByteSize) {
671 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
672 SDValue UniquedVals[4];
673 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
675 // See if all of the elements in the buildvector agree across.
676 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
677 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
678 // If the element isn't a constant, bail fully out.
679 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
682 if (UniquedVals[i&(Multiple-1)].getNode() == 0)
683 UniquedVals[i&(Multiple-1)] = N->getOperand(i);
684 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
685 return SDValue(); // no match.
688 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
689 // either constant or undef values that are identical for each chunk. See
690 // if these chunks can form into a larger vspltis*.
692 // Check to see if all of the leading entries are either 0 or -1. If
693 // neither, then this won't fit into the immediate field.
694 bool LeadingZero = true;
695 bool LeadingOnes = true;
696 for (unsigned i = 0; i != Multiple-1; ++i) {
697 if (UniquedVals[i].getNode() == 0) continue; // Must have been undefs.
699 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
700 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
702 // Finally, check the least significant entry.
703 if (LeadingZero) {
704 if (UniquedVals[Multiple-1].getNode() == 0)
705 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
706 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
707 if (Val < 16)
708 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
710 if (LeadingOnes) {
711 if (UniquedVals[Multiple-1].getNode() == 0)
712 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
713 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
714 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
715 return DAG.getTargetConstant(Val, MVT::i32);
718 return SDValue();
721 // Check to see if this buildvec has a single non-undef value in its elements.
722 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
723 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
724 if (OpVal.getNode() == 0)
725 OpVal = N->getOperand(i);
726 else if (OpVal != N->getOperand(i))
727 return SDValue();
730 if (OpVal.getNode() == 0) return SDValue(); // All UNDEF: use implicit def.
732 unsigned ValSizeInBytes = EltSize;
733 uint64_t Value = 0;
734 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
735 Value = CN->getZExtValue();
736 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
737 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
738 Value = FloatToBits(CN->getValueAPF().convertToFloat());
741 // If the splat value is larger than the element value, then we can never do
742 // this splat. The only case that we could fit the replicated bits into our
743 // immediate field for would be zero, and we prefer to use vxor for it.
744 if (ValSizeInBytes < ByteSize) return SDValue();
746 // If the element value is larger than the splat value, cut it in half and
747 // check to see if the two halves are equal. Continue doing this until we
748 // get to ByteSize. This allows us to handle 0x01010101 as 0x01.
749 while (ValSizeInBytes > ByteSize) {
750 ValSizeInBytes >>= 1;
752 // If the top half equals the bottom half, we're still ok.
753 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
754 (Value & ((1 << (8*ValSizeInBytes))-1)))
755 return SDValue();
758 // Properly sign extend the value.
759 int ShAmt = (4-ByteSize)*8;
760 int MaskVal = ((int)Value << ShAmt) >> ShAmt;
762 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
763 if (MaskVal == 0) return SDValue();
765 // Finally, if this value fits in a 5 bit sext field, return it
766 if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
767 return DAG.getTargetConstant(MaskVal, MVT::i32);
768 return SDValue();
771 //===----------------------------------------------------------------------===//
772 // Addressing Mode Selection
773 //===----------------------------------------------------------------------===//
775 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
776 /// or 64-bit immediate, and if the value can be accurately represented as a
777 /// sign extension from a 16-bit value. If so, this returns true and the
778 /// immediate.
779 static bool isIntS16Immediate(SDNode *N, short &Imm) {
780 if (N->getOpcode() != ISD::Constant)
781 return false;
783 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
784 if (N->getValueType(0) == MVT::i32)
785 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
786 else
787 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
789 static bool isIntS16Immediate(SDValue Op, short &Imm) {
790 return isIntS16Immediate(Op.getNode(), Imm);
794 /// SelectAddressRegReg - Given the specified addressed, check to see if it
795 /// can be represented as an indexed [r+r] operation. Returns false if it
796 /// can be more efficiently represented with [r+imm].
797 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
798 SDValue &Index,
799 SelectionDAG &DAG) const {
800 short imm = 0;
801 if (N.getOpcode() == ISD::ADD) {
802 if (isIntS16Immediate(N.getOperand(1), imm))
803 return false; // r+i
804 if (N.getOperand(1).getOpcode() == PPCISD::Lo)
805 return false; // r+i
807 Base = N.getOperand(0);
808 Index = N.getOperand(1);
809 return true;
810 } else if (N.getOpcode() == ISD::OR) {
811 if (isIntS16Immediate(N.getOperand(1), imm))
812 return false; // r+i can fold it if we can.
814 // If this is an or of disjoint bitfields, we can codegen this as an add
815 // (for better address arithmetic) if the LHS and RHS of the OR are provably
816 // disjoint.
817 APInt LHSKnownZero, LHSKnownOne;
818 APInt RHSKnownZero, RHSKnownOne;
819 DAG.ComputeMaskedBits(N.getOperand(0),
820 APInt::getAllOnesValue(N.getOperand(0)
821 .getValueSizeInBits()),
822 LHSKnownZero, LHSKnownOne);
824 if (LHSKnownZero.getBoolValue()) {
825 DAG.ComputeMaskedBits(N.getOperand(1),
826 APInt::getAllOnesValue(N.getOperand(1)
827 .getValueSizeInBits()),
828 RHSKnownZero, RHSKnownOne);
829 // If all of the bits are known zero on the LHS or RHS, the add won't
830 // carry.
831 if (~(LHSKnownZero | RHSKnownZero) == 0) {
832 Base = N.getOperand(0);
833 Index = N.getOperand(1);
834 return true;
839 return false;
842 /// Returns true if the address N can be represented by a base register plus
843 /// a signed 16-bit displacement [r+imm], and if it is not better
844 /// represented as reg+reg.
845 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
846 SDValue &Base,
847 SelectionDAG &DAG) const {
848 // FIXME dl should come from parent load or store, not from address
849 DebugLoc dl = N.getDebugLoc();
850 // If this can be more profitably realized as r+r, fail.
851 if (SelectAddressRegReg(N, Disp, Base, DAG))
852 return false;
854 if (N.getOpcode() == ISD::ADD) {
855 short imm = 0;
856 if (isIntS16Immediate(N.getOperand(1), imm)) {
857 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
858 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
859 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
860 } else {
861 Base = N.getOperand(0);
863 return true; // [r+i]
864 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
865 // Match LOAD (ADD (X, Lo(G))).
866 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
867 && "Cannot handle constant offsets yet!");
868 Disp = N.getOperand(1).getOperand(0); // The global address.
869 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
870 Disp.getOpcode() == ISD::TargetConstantPool ||
871 Disp.getOpcode() == ISD::TargetJumpTable);
872 Base = N.getOperand(0);
873 return true; // [&g+r]
875 } else if (N.getOpcode() == ISD::OR) {
876 short imm = 0;
877 if (isIntS16Immediate(N.getOperand(1), imm)) {
878 // If this is an or of disjoint bitfields, we can codegen this as an add
879 // (for better address arithmetic) if the LHS and RHS of the OR are
880 // provably disjoint.
881 APInt LHSKnownZero, LHSKnownOne;
882 DAG.ComputeMaskedBits(N.getOperand(0),
883 APInt::getAllOnesValue(N.getOperand(0)
884 .getValueSizeInBits()),
885 LHSKnownZero, LHSKnownOne);
887 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
888 // If all of the bits are known zero on the LHS or RHS, the add won't
889 // carry.
890 Base = N.getOperand(0);
891 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
892 return true;
895 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
896 // Loading from a constant address.
898 // If this address fits entirely in a 16-bit sext immediate field, codegen
899 // this as "d, 0"
900 short Imm;
901 if (isIntS16Immediate(CN, Imm)) {
902 Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
903 Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
904 return true;
907 // Handle 32-bit sext immediates with LIS + addr mode.
908 if (CN->getValueType(0) == MVT::i32 ||
909 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
910 int Addr = (int)CN->getZExtValue();
912 // Otherwise, break this down into an LIS + disp.
913 Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
915 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
916 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
917 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
918 return true;
922 Disp = DAG.getTargetConstant(0, getPointerTy());
923 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
924 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
925 else
926 Base = N;
927 return true; // [r+0]
930 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
931 /// represented as an indexed [r+r] operation.
932 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
933 SDValue &Index,
934 SelectionDAG &DAG) const {
935 // Check to see if we can easily represent this as an [r+r] address. This
936 // will fail if it thinks that the address is more profitably represented as
937 // reg+imm, e.g. where imm = 0.
938 if (SelectAddressRegReg(N, Base, Index, DAG))
939 return true;
941 // If the operand is an addition, always emit this as [r+r], since this is
942 // better (for code size, and execution, as the memop does the add for free)
943 // than emitting an explicit add.
944 if (N.getOpcode() == ISD::ADD) {
945 Base = N.getOperand(0);
946 Index = N.getOperand(1);
947 return true;
950 // Otherwise, do it the hard way, using R0 as the base register.
951 Base = DAG.getRegister(PPC::R0, N.getValueType());
952 Index = N;
953 return true;
956 /// SelectAddressRegImmShift - Returns true if the address N can be
957 /// represented by a base register plus a signed 14-bit displacement
958 /// [r+imm*4]. Suitable for use by STD and friends.
959 bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
960 SDValue &Base,
961 SelectionDAG &DAG) const {
962 // FIXME dl should come from the parent load or store, not the address
963 DebugLoc dl = N.getDebugLoc();
964 // If this can be more profitably realized as r+r, fail.
965 if (SelectAddressRegReg(N, Disp, Base, DAG))
966 return false;
968 if (N.getOpcode() == ISD::ADD) {
969 short imm = 0;
970 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
971 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
972 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
973 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
974 } else {
975 Base = N.getOperand(0);
977 return true; // [r+i]
978 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
979 // Match LOAD (ADD (X, Lo(G))).
980 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
981 && "Cannot handle constant offsets yet!");
982 Disp = N.getOperand(1).getOperand(0); // The global address.
983 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
984 Disp.getOpcode() == ISD::TargetConstantPool ||
985 Disp.getOpcode() == ISD::TargetJumpTable);
986 Base = N.getOperand(0);
987 return true; // [&g+r]
989 } else if (N.getOpcode() == ISD::OR) {
990 short imm = 0;
991 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
992 // If this is an or of disjoint bitfields, we can codegen this as an add
993 // (for better address arithmetic) if the LHS and RHS of the OR are
994 // provably disjoint.
995 APInt LHSKnownZero, LHSKnownOne;
996 DAG.ComputeMaskedBits(N.getOperand(0),
997 APInt::getAllOnesValue(N.getOperand(0)
998 .getValueSizeInBits()),
999 LHSKnownZero, LHSKnownOne);
1000 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1001 // If all of the bits are known zero on the LHS or RHS, the add won't
1002 // carry.
1003 Base = N.getOperand(0);
1004 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1005 return true;
1008 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1009 // Loading from a constant address. Verify low two bits are clear.
1010 if ((CN->getZExtValue() & 3) == 0) {
1011 // If this address fits entirely in a 14-bit sext immediate field, codegen
1012 // this as "d, 0"
1013 short Imm;
1014 if (isIntS16Immediate(CN, Imm)) {
1015 Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1016 Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
1017 return true;
1020 // Fold the low-part of 32-bit absolute addresses into addr mode.
1021 if (CN->getValueType(0) == MVT::i32 ||
1022 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1023 int Addr = (int)CN->getZExtValue();
1025 // Otherwise, break this down into an LIS + disp.
1026 Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1027 Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1028 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1029 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
1030 return true;
1035 Disp = DAG.getTargetConstant(0, getPointerTy());
1036 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1037 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1038 else
1039 Base = N;
1040 return true; // [r+0]
1044 /// getPreIndexedAddressParts - returns true by value, base pointer and
1045 /// offset pointer and addressing mode by reference if the node's address
1046 /// can be legally represented as pre-indexed load / store address.
1047 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1048 SDValue &Offset,
1049 ISD::MemIndexedMode &AM,
1050 SelectionDAG &DAG) const {
1051 // Disabled by default for now.
1052 if (!EnablePPCPreinc) return false;
1054 SDValue Ptr;
1055 EVT VT;
1056 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1057 Ptr = LD->getBasePtr();
1058 VT = LD->getMemoryVT();
1060 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1061 ST = ST;
1062 Ptr = ST->getBasePtr();
1063 VT = ST->getMemoryVT();
1064 } else
1065 return false;
1067 // PowerPC doesn't have preinc load/store instructions for vectors.
1068 if (VT.isVector())
1069 return false;
1071 // TODO: Check reg+reg first.
1073 // LDU/STU use reg+imm*4, others use reg+imm.
1074 if (VT != MVT::i64) {
1075 // reg + imm
1076 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1077 return false;
1078 } else {
1079 // reg + imm * 4.
1080 if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1081 return false;
1084 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1085 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
1086 // sext i32 to i64 when addr mode is r+i.
1087 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1088 LD->getExtensionType() == ISD::SEXTLOAD &&
1089 isa<ConstantSDNode>(Offset))
1090 return false;
1093 AM = ISD::PRE_INC;
1094 return true;
1097 //===----------------------------------------------------------------------===//
1098 // LowerOperation implementation
1099 //===----------------------------------------------------------------------===//
1101 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1102 SelectionDAG &DAG) const {
1103 EVT PtrVT = Op.getValueType();
1104 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1105 const Constant *C = CP->getConstVal();
1106 SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1107 SDValue Zero = DAG.getConstant(0, PtrVT);
1108 // FIXME there isn't really any debug info here
1109 DebugLoc dl = Op.getDebugLoc();
1111 const TargetMachine &TM = DAG.getTarget();
1113 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, CPI, Zero);
1114 SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, CPI, Zero);
1116 // If this is a non-darwin platform, we don't support non-static relo models
1117 // yet.
1118 if (TM.getRelocationModel() == Reloc::Static ||
1119 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1120 // Generate non-pic code that has direct accesses to the constant pool.
1121 // The address of the global is just (hi(&g)+lo(&g)).
1122 return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1125 if (TM.getRelocationModel() == Reloc::PIC_) {
1126 // With PIC, the first instruction is actually "GR+hi(&G)".
1127 Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1128 DAG.getNode(PPCISD::GlobalBaseReg,
1129 DebugLoc(), PtrVT), Hi);
1132 Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1133 return Lo;
1136 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1137 EVT PtrVT = Op.getValueType();
1138 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1139 SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1140 SDValue Zero = DAG.getConstant(0, PtrVT);
1141 // FIXME there isn't really any debug loc here
1142 DebugLoc dl = Op.getDebugLoc();
1144 const TargetMachine &TM = DAG.getTarget();
1146 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, JTI, Zero);
1147 SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, JTI, Zero);
1149 // If this is a non-darwin platform, we don't support non-static relo models
1150 // yet.
1151 if (TM.getRelocationModel() == Reloc::Static ||
1152 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1153 // Generate non-pic code that has direct accesses to the constant pool.
1154 // The address of the global is just (hi(&g)+lo(&g)).
1155 return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1158 if (TM.getRelocationModel() == Reloc::PIC_) {
1159 // With PIC, the first instruction is actually "GR+hi(&G)".
1160 Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1161 DAG.getNode(PPCISD::GlobalBaseReg,
1162 DebugLoc(), PtrVT), Hi);
1165 Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1166 return Lo;
1169 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1170 SelectionDAG &DAG) const {
1171 llvm_unreachable("TLS not implemented for PPC.");
1172 return SDValue(); // Not reached
1175 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1176 SelectionDAG &DAG) const {
1177 EVT PtrVT = Op.getValueType();
1178 DebugLoc DL = Op.getDebugLoc();
1180 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1181 SDValue TgtBA = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true);
1182 SDValue Zero = DAG.getConstant(0, PtrVT);
1183 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, TgtBA, Zero);
1184 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, TgtBA, Zero);
1186 // If this is a non-darwin platform, we don't support non-static relo models
1187 // yet.
1188 const TargetMachine &TM = DAG.getTarget();
1189 if (TM.getRelocationModel() == Reloc::Static ||
1190 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1191 // Generate non-pic code that has direct accesses to globals.
1192 // The address of the global is just (hi(&g)+lo(&g)).
1193 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1196 if (TM.getRelocationModel() == Reloc::PIC_) {
1197 // With PIC, the first instruction is actually "GR+hi(&G)".
1198 Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1199 DAG.getNode(PPCISD::GlobalBaseReg,
1200 DebugLoc(), PtrVT), Hi);
1203 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1206 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1207 SelectionDAG &DAG) const {
1208 EVT PtrVT = Op.getValueType();
1209 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1210 // FIXME there isn't really any debug info here
1211 DebugLoc dl = GSDN->getDebugLoc();
1212 const GlobalValue *GV = GSDN->getGlobal();
1213 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, GSDN->getOffset());
1214 SDValue Zero = DAG.getConstant(0, PtrVT);
1216 const TargetMachine &TM = DAG.getTarget();
1218 // 64-bit SVR4 ABI code is always position-independent.
1219 // The actual address of the GlobalValue is stored in the TOC.
1220 if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1221 return DAG.getNode(PPCISD::TOC_ENTRY, dl, MVT::i64, GA,
1222 DAG.getRegister(PPC::X2, MVT::i64));
1225 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, GA, Zero);
1226 SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, GA, Zero);
1228 // If this is a non-darwin platform, we don't support non-static relo models
1229 // yet.
1230 if (TM.getRelocationModel() == Reloc::Static ||
1231 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1232 // Generate non-pic code that has direct accesses to globals.
1233 // The address of the global is just (hi(&g)+lo(&g)).
1234 return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1237 if (TM.getRelocationModel() == Reloc::PIC_) {
1238 // With PIC, the first instruction is actually "GR+hi(&G)".
1239 Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1240 DAG.getNode(PPCISD::GlobalBaseReg,
1241 DebugLoc(), PtrVT), Hi);
1244 Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1246 if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM))
1247 return Lo;
1249 // If the global is weak or external, we have to go through the lazy
1250 // resolution stub.
1251 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Lo, MachinePointerInfo(),
1252 false, false, 0);
1255 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1256 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1257 DebugLoc dl = Op.getDebugLoc();
1259 // If we're comparing for equality to zero, expose the fact that this is
1260 // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1261 // fold the new nodes.
1262 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1263 if (C->isNullValue() && CC == ISD::SETEQ) {
1264 EVT VT = Op.getOperand(0).getValueType();
1265 SDValue Zext = Op.getOperand(0);
1266 if (VT.bitsLT(MVT::i32)) {
1267 VT = MVT::i32;
1268 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1270 unsigned Log2b = Log2_32(VT.getSizeInBits());
1271 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1272 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1273 DAG.getConstant(Log2b, MVT::i32));
1274 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1276 // Leave comparisons against 0 and -1 alone for now, since they're usually
1277 // optimized. FIXME: revisit this when we can custom lower all setcc
1278 // optimizations.
1279 if (C->isAllOnesValue() || C->isNullValue())
1280 return SDValue();
1283 // If we have an integer seteq/setne, turn it into a compare against zero
1284 // by xor'ing the rhs with the lhs, which is faster than setting a
1285 // condition register, reading it back out, and masking the correct bit. The
1286 // normal approach here uses sub to do this instead of xor. Using xor exposes
1287 // the result to other bit-twiddling opportunities.
1288 EVT LHSVT = Op.getOperand(0).getValueType();
1289 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1290 EVT VT = Op.getValueType();
1291 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1292 Op.getOperand(1));
1293 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1295 return SDValue();
1298 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1299 const PPCSubtarget &Subtarget) const {
1301 llvm_unreachable("VAARG not yet implemented for the SVR4 ABI!");
1302 return SDValue(); // Not reached
1305 SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op,
1306 SelectionDAG &DAG) const {
1307 SDValue Chain = Op.getOperand(0);
1308 SDValue Trmp = Op.getOperand(1); // trampoline
1309 SDValue FPtr = Op.getOperand(2); // nested function
1310 SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1311 DebugLoc dl = Op.getDebugLoc();
1313 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1314 bool isPPC64 = (PtrVT == MVT::i64);
1315 const Type *IntPtrTy =
1316 DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType(
1317 *DAG.getContext());
1319 TargetLowering::ArgListTy Args;
1320 TargetLowering::ArgListEntry Entry;
1322 Entry.Ty = IntPtrTy;
1323 Entry.Node = Trmp; Args.push_back(Entry);
1325 // TrampSize == (isPPC64 ? 48 : 40);
1326 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1327 isPPC64 ? MVT::i64 : MVT::i32);
1328 Args.push_back(Entry);
1330 Entry.Node = FPtr; Args.push_back(Entry);
1331 Entry.Node = Nest; Args.push_back(Entry);
1333 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1334 std::pair<SDValue, SDValue> CallResult =
1335 LowerCallTo(Chain, Op.getValueType().getTypeForEVT(*DAG.getContext()),
1336 false, false, false, false, 0, CallingConv::C, false,
1337 /*isReturnValueUsed=*/true,
1338 DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1339 Args, DAG, dl);
1341 SDValue Ops[] =
1342 { CallResult.first, CallResult.second };
1344 return DAG.getMergeValues(Ops, 2, dl);
1347 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1348 const PPCSubtarget &Subtarget) const {
1349 MachineFunction &MF = DAG.getMachineFunction();
1350 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1352 DebugLoc dl = Op.getDebugLoc();
1354 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1355 // vastart just stores the address of the VarArgsFrameIndex slot into the
1356 // memory location argument.
1357 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1358 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1359 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1360 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
1361 MachinePointerInfo(SV),
1362 false, false, 0);
1365 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1366 // We suppose the given va_list is already allocated.
1368 // typedef struct {
1369 // char gpr; /* index into the array of 8 GPRs
1370 // * stored in the register save area
1371 // * gpr=0 corresponds to r3,
1372 // * gpr=1 to r4, etc.
1373 // */
1374 // char fpr; /* index into the array of 8 FPRs
1375 // * stored in the register save area
1376 // * fpr=0 corresponds to f1,
1377 // * fpr=1 to f2, etc.
1378 // */
1379 // char *overflow_arg_area;
1380 // /* location on stack that holds
1381 // * the next overflow argument
1382 // */
1383 // char *reg_save_area;
1384 // /* where r3:r10 and f1:f8 (if saved)
1385 // * are stored
1386 // */
1387 // } va_list[1];
1390 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
1391 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
1394 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1396 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
1397 PtrVT);
1398 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1399 PtrVT);
1401 uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1402 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1404 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1405 SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1407 uint64_t FPROffset = 1;
1408 SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1410 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1412 // Store first byte : number of int regs
1413 SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1414 Op.getOperand(1),
1415 MachinePointerInfo(SV),
1416 MVT::i8, false, false, 0);
1417 uint64_t nextOffset = FPROffset;
1418 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1419 ConstFPROffset);
1421 // Store second byte : number of float regs
1422 SDValue secondStore =
1423 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
1424 MachinePointerInfo(SV, nextOffset), MVT::i8,
1425 false, false, 0);
1426 nextOffset += StackOffset;
1427 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1429 // Store second word : arguments given on stack
1430 SDValue thirdStore =
1431 DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
1432 MachinePointerInfo(SV, nextOffset),
1433 false, false, 0);
1434 nextOffset += FrameOffset;
1435 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1437 // Store third word : arguments given in registers
1438 return DAG.getStore(thirdStore, dl, FR, nextPtr,
1439 MachinePointerInfo(SV, nextOffset),
1440 false, false, 0);
1444 #include "PPCGenCallingConv.inc"
1446 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, MVT &LocVT,
1447 CCValAssign::LocInfo &LocInfo,
1448 ISD::ArgFlagsTy &ArgFlags,
1449 CCState &State) {
1450 return true;
1453 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT,
1454 MVT &LocVT,
1455 CCValAssign::LocInfo &LocInfo,
1456 ISD::ArgFlagsTy &ArgFlags,
1457 CCState &State) {
1458 static const unsigned ArgRegs[] = {
1459 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1460 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1462 const unsigned NumArgRegs = array_lengthof(ArgRegs);
1464 unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1466 // Skip one register if the first unallocated register has an even register
1467 // number and there are still argument registers available which have not been
1468 // allocated yet. RegNum is actually an index into ArgRegs, which means we
1469 // need to skip a register if RegNum is odd.
1470 if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1471 State.AllocateReg(ArgRegs[RegNum]);
1474 // Always return false here, as this function only makes sure that the first
1475 // unallocated register has an odd register number and does not actually
1476 // allocate a register for the current argument.
1477 return false;
1480 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT,
1481 MVT &LocVT,
1482 CCValAssign::LocInfo &LocInfo,
1483 ISD::ArgFlagsTy &ArgFlags,
1484 CCState &State) {
1485 static const unsigned ArgRegs[] = {
1486 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1487 PPC::F8
1490 const unsigned NumArgRegs = array_lengthof(ArgRegs);
1492 unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1494 // If there is only one Floating-point register left we need to put both f64
1495 // values of a split ppc_fp128 value on the stack.
1496 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1497 State.AllocateReg(ArgRegs[RegNum]);
1500 // Always return false here, as this function only makes sure that the two f64
1501 // values a ppc_fp128 value is split into are both passed in registers or both
1502 // passed on the stack and does not actually allocate a register for the
1503 // current argument.
1504 return false;
1507 /// GetFPR - Get the set of FP registers that should be allocated for arguments,
1508 /// on Darwin.
1509 static const unsigned *GetFPR() {
1510 static const unsigned FPR[] = {
1511 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1512 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1515 return FPR;
1518 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
1519 /// the stack.
1520 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1521 unsigned PtrByteSize) {
1522 unsigned ArgSize = ArgVT.getSizeInBits()/8;
1523 if (Flags.isByVal())
1524 ArgSize = Flags.getByValSize();
1525 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1527 return ArgSize;
1530 SDValue
1531 PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1532 CallingConv::ID CallConv, bool isVarArg,
1533 const SmallVectorImpl<ISD::InputArg>
1534 &Ins,
1535 DebugLoc dl, SelectionDAG &DAG,
1536 SmallVectorImpl<SDValue> &InVals)
1537 const {
1538 if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
1539 return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins,
1540 dl, DAG, InVals);
1541 } else {
1542 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1543 dl, DAG, InVals);
1547 SDValue
1548 PPCTargetLowering::LowerFormalArguments_SVR4(
1549 SDValue Chain,
1550 CallingConv::ID CallConv, bool isVarArg,
1551 const SmallVectorImpl<ISD::InputArg>
1552 &Ins,
1553 DebugLoc dl, SelectionDAG &DAG,
1554 SmallVectorImpl<SDValue> &InVals) const {
1556 // 32-bit SVR4 ABI Stack Frame Layout:
1557 // +-----------------------------------+
1558 // +--> | Back chain |
1559 // | +-----------------------------------+
1560 // | | Floating-point register save area |
1561 // | +-----------------------------------+
1562 // | | General register save area |
1563 // | +-----------------------------------+
1564 // | | CR save word |
1565 // | +-----------------------------------+
1566 // | | VRSAVE save word |
1567 // | +-----------------------------------+
1568 // | | Alignment padding |
1569 // | +-----------------------------------+
1570 // | | Vector register save area |
1571 // | +-----------------------------------+
1572 // | | Local variable space |
1573 // | +-----------------------------------+
1574 // | | Parameter list area |
1575 // | +-----------------------------------+
1576 // | | LR save word |
1577 // | +-----------------------------------+
1578 // SP--> +--- | Back chain |
1579 // +-----------------------------------+
1581 // Specifications:
1582 // System V Application Binary Interface PowerPC Processor Supplement
1583 // AltiVec Technology Programming Interface Manual
1585 MachineFunction &MF = DAG.getMachineFunction();
1586 MachineFrameInfo *MFI = MF.getFrameInfo();
1587 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1589 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1590 // Potential tail calls could cause overwriting of argument stack slots.
1591 bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
1592 unsigned PtrByteSize = 4;
1594 // Assign locations to all of the incoming arguments.
1595 SmallVector<CCValAssign, 16> ArgLocs;
1596 CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1597 *DAG.getContext());
1599 // Reserve space for the linkage area on the stack.
1600 CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
1602 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
1604 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1605 CCValAssign &VA = ArgLocs[i];
1607 // Arguments stored in registers.
1608 if (VA.isRegLoc()) {
1609 TargetRegisterClass *RC;
1610 EVT ValVT = VA.getValVT();
1612 switch (ValVT.getSimpleVT().SimpleTy) {
1613 default:
1614 llvm_unreachable("ValVT not supported by formal arguments Lowering");
1615 case MVT::i32:
1616 RC = PPC::GPRCRegisterClass;
1617 break;
1618 case MVT::f32:
1619 RC = PPC::F4RCRegisterClass;
1620 break;
1621 case MVT::f64:
1622 RC = PPC::F8RCRegisterClass;
1623 break;
1624 case MVT::v16i8:
1625 case MVT::v8i16:
1626 case MVT::v4i32:
1627 case MVT::v4f32:
1628 RC = PPC::VRRCRegisterClass;
1629 break;
1632 // Transform the arguments stored in physical registers into virtual ones.
1633 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1634 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1636 InVals.push_back(ArgValue);
1637 } else {
1638 // Argument stored in memory.
1639 assert(VA.isMemLoc());
1641 unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1642 int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1643 isImmutable);
1645 // Create load nodes to retrieve arguments from the stack.
1646 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1647 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
1648 MachinePointerInfo(),
1649 false, false, 0));
1653 // Assign locations to all of the incoming aggregate by value arguments.
1654 // Aggregates passed by value are stored in the local variable space of the
1655 // caller's stack frame, right above the parameter list area.
1656 SmallVector<CCValAssign, 16> ByValArgLocs;
1657 CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(),
1658 ByValArgLocs, *DAG.getContext());
1660 // Reserve stack space for the allocations in CCInfo.
1661 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1663 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
1665 // Area that is at least reserved in the caller of this function.
1666 unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1668 // Set the size that is at least reserved in caller of this function. Tail
1669 // call optimized function's reserved stack space needs to be aligned so that
1670 // taking the difference between two stack areas will result in an aligned
1671 // stack.
1672 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1674 MinReservedArea =
1675 std::max(MinReservedArea,
1676 PPCFrameInfo::getMinCallFrameSize(false, false));
1678 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1679 getStackAlignment();
1680 unsigned AlignMask = TargetAlign-1;
1681 MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1683 FI->setMinReservedArea(MinReservedArea);
1685 SmallVector<SDValue, 8> MemOps;
1687 // If the function takes variable number of arguments, make a frame index for
1688 // the start of the first vararg value... for expansion of llvm.va_start.
1689 if (isVarArg) {
1690 static const unsigned GPArgRegs[] = {
1691 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1692 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1694 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
1696 static const unsigned FPArgRegs[] = {
1697 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1698 PPC::F8
1700 const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
1702 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
1703 NumGPArgRegs));
1704 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
1705 NumFPArgRegs));
1707 // Make room for NumGPArgRegs and NumFPArgRegs.
1708 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
1709 NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
1711 FuncInfo->setVarArgsStackOffset(
1712 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1713 CCInfo.getNextStackOffset(), true));
1715 FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
1716 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1718 // The fixed integer arguments of a variadic function are stored to the
1719 // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
1720 // the result of va_next.
1721 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
1722 // Get an existing live-in vreg, or add a new one.
1723 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
1724 if (!VReg)
1725 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
1727 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1728 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1729 MachinePointerInfo(), false, false, 0);
1730 MemOps.push_back(Store);
1731 // Increment the address by four for the next argument to store
1732 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1733 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1736 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
1737 // is set.
1738 // The double arguments are stored to the VarArgsFrameIndex
1739 // on the stack.
1740 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
1741 // Get an existing live-in vreg, or add a new one.
1742 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
1743 if (!VReg)
1744 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
1746 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
1747 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1748 MachinePointerInfo(), false, false, 0);
1749 MemOps.push_back(Store);
1750 // Increment the address by eight for the next argument to store
1751 SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1752 PtrVT);
1753 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1757 if (!MemOps.empty())
1758 Chain = DAG.getNode(ISD::TokenFactor, dl,
1759 MVT::Other, &MemOps[0], MemOps.size());
1761 return Chain;
1764 SDValue
1765 PPCTargetLowering::LowerFormalArguments_Darwin(
1766 SDValue Chain,
1767 CallingConv::ID CallConv, bool isVarArg,
1768 const SmallVectorImpl<ISD::InputArg>
1769 &Ins,
1770 DebugLoc dl, SelectionDAG &DAG,
1771 SmallVectorImpl<SDValue> &InVals) const {
1772 // TODO: add description of PPC stack frame format, or at least some docs.
1774 MachineFunction &MF = DAG.getMachineFunction();
1775 MachineFrameInfo *MFI = MF.getFrameInfo();
1776 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1778 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1779 bool isPPC64 = PtrVT == MVT::i64;
1780 // Potential tail calls could cause overwriting of argument stack slots.
1781 bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
1782 unsigned PtrByteSize = isPPC64 ? 8 : 4;
1784 unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
1785 // Area that is at least reserved in caller of this function.
1786 unsigned MinReservedArea = ArgOffset;
1788 static const unsigned GPR_32[] = { // 32-bit registers.
1789 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1790 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1792 static const unsigned GPR_64[] = { // 64-bit registers.
1793 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1794 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1797 static const unsigned *FPR = GetFPR();
1799 static const unsigned VR[] = {
1800 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1801 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1804 const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1805 const unsigned Num_FPR_Regs = 13;
1806 const unsigned Num_VR_Regs = array_lengthof( VR);
1808 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1810 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1812 // In 32-bit non-varargs functions, the stack space for vectors is after the
1813 // stack space for non-vectors. We do not use this space unless we have
1814 // too many vectors to fit in registers, something that only occurs in
1815 // constructed examples:), but we have to walk the arglist to figure
1816 // that out...for the pathological case, compute VecArgOffset as the
1817 // start of the vector parameter area. Computing VecArgOffset is the
1818 // entire point of the following loop.
1819 unsigned VecArgOffset = ArgOffset;
1820 if (!isVarArg && !isPPC64) {
1821 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
1822 ++ArgNo) {
1823 EVT ObjectVT = Ins[ArgNo].VT;
1824 unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1825 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1827 if (Flags.isByVal()) {
1828 // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1829 ObjSize = Flags.getByValSize();
1830 unsigned ArgSize =
1831 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1832 VecArgOffset += ArgSize;
1833 continue;
1836 switch(ObjectVT.getSimpleVT().SimpleTy) {
1837 default: llvm_unreachable("Unhandled argument type!");
1838 case MVT::i32:
1839 case MVT::f32:
1840 VecArgOffset += isPPC64 ? 8 : 4;
1841 break;
1842 case MVT::i64: // PPC64
1843 case MVT::f64:
1844 VecArgOffset += 8;
1845 break;
1846 case MVT::v4f32:
1847 case MVT::v4i32:
1848 case MVT::v8i16:
1849 case MVT::v16i8:
1850 // Nothing to do, we're only looking at Nonvector args here.
1851 break;
1855 // We've found where the vector parameter area in memory is. Skip the
1856 // first 12 parameters; these don't use that memory.
1857 VecArgOffset = ((VecArgOffset+15)/16)*16;
1858 VecArgOffset += 12*16;
1860 // Add DAG nodes to load the arguments or copy them out of registers. On
1861 // entry to a function on PPC, the arguments start after the linkage area,
1862 // although the first ones are often in registers.
1864 SmallVector<SDValue, 8> MemOps;
1865 unsigned nAltivecParamsAtEnd = 0;
1866 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
1867 SDValue ArgVal;
1868 bool needsLoad = false;
1869 EVT ObjectVT = Ins[ArgNo].VT;
1870 unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1871 unsigned ArgSize = ObjSize;
1872 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1874 unsigned CurArgOffset = ArgOffset;
1876 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1877 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1878 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1879 if (isVarArg || isPPC64) {
1880 MinReservedArea = ((MinReservedArea+15)/16)*16;
1881 MinReservedArea += CalculateStackSlotSize(ObjectVT,
1882 Flags,
1883 PtrByteSize);
1884 } else nAltivecParamsAtEnd++;
1885 } else
1886 // Calculate min reserved area.
1887 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
1888 Flags,
1889 PtrByteSize);
1891 // FIXME the codegen can be much improved in some cases.
1892 // We do not have to keep everything in memory.
1893 if (Flags.isByVal()) {
1894 // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1895 ObjSize = Flags.getByValSize();
1896 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1897 // Objects of size 1 and 2 are right justified, everything else is
1898 // left justified. This means the memory address is adjusted forwards.
1899 if (ObjSize==1 || ObjSize==2) {
1900 CurArgOffset = CurArgOffset + (4 - ObjSize);
1902 // The value of the object is its address.
1903 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
1904 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1905 InVals.push_back(FIN);
1906 if (ObjSize==1 || ObjSize==2) {
1907 if (GPR_idx != Num_GPR_Regs) {
1908 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1909 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1910 SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
1911 MachinePointerInfo(),
1912 ObjSize==1 ? MVT::i8 : MVT::i16,
1913 false, false, 0);
1914 MemOps.push_back(Store);
1915 ++GPR_idx;
1918 ArgOffset += PtrByteSize;
1920 continue;
1922 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1923 // Store whatever pieces of the object are in registers
1924 // to memory. ArgVal will be address of the beginning of
1925 // the object.
1926 if (GPR_idx != Num_GPR_Regs) {
1927 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1928 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
1929 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1930 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1931 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1932 MachinePointerInfo(),
1933 false, false, 0);
1934 MemOps.push_back(Store);
1935 ++GPR_idx;
1936 ArgOffset += PtrByteSize;
1937 } else {
1938 ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1939 break;
1942 continue;
1945 switch (ObjectVT.getSimpleVT().SimpleTy) {
1946 default: llvm_unreachable("Unhandled argument type!");
1947 case MVT::i32:
1948 if (!isPPC64) {
1949 if (GPR_idx != Num_GPR_Regs) {
1950 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1951 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1952 ++GPR_idx;
1953 } else {
1954 needsLoad = true;
1955 ArgSize = PtrByteSize;
1957 // All int arguments reserve stack space in the Darwin ABI.
1958 ArgOffset += PtrByteSize;
1959 break;
1961 // FALLTHROUGH
1962 case MVT::i64: // PPC64
1963 if (GPR_idx != Num_GPR_Regs) {
1964 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
1965 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1967 if (ObjectVT == MVT::i32) {
1968 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1969 // value to MVT::i64 and then truncate to the correct register size.
1970 if (Flags.isSExt())
1971 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
1972 DAG.getValueType(ObjectVT));
1973 else if (Flags.isZExt())
1974 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
1975 DAG.getValueType(ObjectVT));
1977 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
1980 ++GPR_idx;
1981 } else {
1982 needsLoad = true;
1983 ArgSize = PtrByteSize;
1985 // All int arguments reserve stack space in the Darwin ABI.
1986 ArgOffset += 8;
1987 break;
1989 case MVT::f32:
1990 case MVT::f64:
1991 // Every 4 bytes of argument space consumes one of the GPRs available for
1992 // argument passing.
1993 if (GPR_idx != Num_GPR_Regs) {
1994 ++GPR_idx;
1995 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1996 ++GPR_idx;
1998 if (FPR_idx != Num_FPR_Regs) {
1999 unsigned VReg;
2001 if (ObjectVT == MVT::f32)
2002 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2003 else
2004 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2006 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2007 ++FPR_idx;
2008 } else {
2009 needsLoad = true;
2012 // All FP arguments reserve stack space in the Darwin ABI.
2013 ArgOffset += isPPC64 ? 8 : ObjSize;
2014 break;
2015 case MVT::v4f32:
2016 case MVT::v4i32:
2017 case MVT::v8i16:
2018 case MVT::v16i8:
2019 // Note that vector arguments in registers don't reserve stack space,
2020 // except in varargs functions.
2021 if (VR_idx != Num_VR_Regs) {
2022 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2023 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2024 if (isVarArg) {
2025 while ((ArgOffset % 16) != 0) {
2026 ArgOffset += PtrByteSize;
2027 if (GPR_idx != Num_GPR_Regs)
2028 GPR_idx++;
2030 ArgOffset += 16;
2031 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2033 ++VR_idx;
2034 } else {
2035 if (!isVarArg && !isPPC64) {
2036 // Vectors go after all the nonvectors.
2037 CurArgOffset = VecArgOffset;
2038 VecArgOffset += 16;
2039 } else {
2040 // Vectors are aligned.
2041 ArgOffset = ((ArgOffset+15)/16)*16;
2042 CurArgOffset = ArgOffset;
2043 ArgOffset += 16;
2045 needsLoad = true;
2047 break;
2050 // We need to load the argument to a virtual register if we determined above
2051 // that we ran out of physical registers of the appropriate type.
2052 if (needsLoad) {
2053 int FI = MFI->CreateFixedObject(ObjSize,
2054 CurArgOffset + (ArgSize - ObjSize),
2055 isImmutable);
2056 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2057 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2058 false, false, 0);
2061 InVals.push_back(ArgVal);
2064 // Set the size that is at least reserved in caller of this function. Tail
2065 // call optimized function's reserved stack space needs to be aligned so that
2066 // taking the difference between two stack areas will result in an aligned
2067 // stack.
2068 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2069 // Add the Altivec parameters at the end, if needed.
2070 if (nAltivecParamsAtEnd) {
2071 MinReservedArea = ((MinReservedArea+15)/16)*16;
2072 MinReservedArea += 16*nAltivecParamsAtEnd;
2074 MinReservedArea =
2075 std::max(MinReservedArea,
2076 PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
2077 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
2078 getStackAlignment();
2079 unsigned AlignMask = TargetAlign-1;
2080 MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2081 FI->setMinReservedArea(MinReservedArea);
2083 // If the function takes variable number of arguments, make a frame index for
2084 // the start of the first vararg value... for expansion of llvm.va_start.
2085 if (isVarArg) {
2086 int Depth = ArgOffset;
2088 FuncInfo->setVarArgsFrameIndex(
2089 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2090 Depth, true));
2091 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2093 // If this function is vararg, store any remaining integer argument regs
2094 // to their spots on the stack so that they may be loaded by deferencing the
2095 // result of va_next.
2096 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2097 unsigned VReg;
2099 if (isPPC64)
2100 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2101 else
2102 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2104 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2105 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2106 MachinePointerInfo(), false, false, 0);
2107 MemOps.push_back(Store);
2108 // Increment the address by four for the next argument to store
2109 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2110 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2114 if (!MemOps.empty())
2115 Chain = DAG.getNode(ISD::TokenFactor, dl,
2116 MVT::Other, &MemOps[0], MemOps.size());
2118 return Chain;
2121 /// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
2122 /// linkage area for the Darwin ABI.
2123 static unsigned
2124 CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2125 bool isPPC64,
2126 bool isVarArg,
2127 unsigned CC,
2128 const SmallVectorImpl<ISD::OutputArg>
2129 &Outs,
2130 const SmallVectorImpl<SDValue> &OutVals,
2131 unsigned &nAltivecParamsAtEnd) {
2132 // Count how many bytes are to be pushed on the stack, including the linkage
2133 // area, and parameter passing area. We start with 24/48 bytes, which is
2134 // prereserved space for [SP][CR][LR][3 x unused].
2135 unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, true);
2136 unsigned NumOps = Outs.size();
2137 unsigned PtrByteSize = isPPC64 ? 8 : 4;
2139 // Add up all the space actually used.
2140 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2141 // they all go in registers, but we must reserve stack space for them for
2142 // possible use by the caller. In varargs or 64-bit calls, parameters are
2143 // assigned stack space in order, with padding so Altivec parameters are
2144 // 16-byte aligned.
2145 nAltivecParamsAtEnd = 0;
2146 for (unsigned i = 0; i != NumOps; ++i) {
2147 ISD::ArgFlagsTy Flags = Outs[i].Flags;
2148 EVT ArgVT = Outs[i].VT;
2149 // Varargs Altivec parameters are padded to a 16 byte boundary.
2150 if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2151 ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2152 if (!isVarArg && !isPPC64) {
2153 // Non-varargs Altivec parameters go after all the non-Altivec
2154 // parameters; handle those later so we know how much padding we need.
2155 nAltivecParamsAtEnd++;
2156 continue;
2158 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2159 NumBytes = ((NumBytes+15)/16)*16;
2161 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2164 // Allow for Altivec parameters at the end, if needed.
2165 if (nAltivecParamsAtEnd) {
2166 NumBytes = ((NumBytes+15)/16)*16;
2167 NumBytes += 16*nAltivecParamsAtEnd;
2170 // The prolog code of the callee may store up to 8 GPR argument registers to
2171 // the stack, allowing va_start to index over them in memory if its varargs.
2172 // Because we cannot tell if this is needed on the caller side, we have to
2173 // conservatively assume that it is needed. As such, make sure we have at
2174 // least enough stack space for the caller to store the 8 GPRs.
2175 NumBytes = std::max(NumBytes,
2176 PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
2178 // Tail call needs the stack to be aligned.
2179 if (CC==CallingConv::Fast && GuaranteedTailCallOpt) {
2180 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
2181 getStackAlignment();
2182 unsigned AlignMask = TargetAlign-1;
2183 NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2186 return NumBytes;
2189 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2190 /// adjusted to accomodate the arguments for the tailcall.
2191 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
2192 unsigned ParamSize) {
2194 if (!isTailCall) return 0;
2196 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2197 unsigned CallerMinReservedArea = FI->getMinReservedArea();
2198 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2199 // Remember only if the new adjustement is bigger.
2200 if (SPDiff < FI->getTailCallSPDelta())
2201 FI->setTailCallSPDelta(SPDiff);
2203 return SPDiff;
2206 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2207 /// for tail call optimization. Targets which want to do tail call
2208 /// optimization should implement this function.
2209 bool
2210 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2211 CallingConv::ID CalleeCC,
2212 bool isVarArg,
2213 const SmallVectorImpl<ISD::InputArg> &Ins,
2214 SelectionDAG& DAG) const {
2215 if (!GuaranteedTailCallOpt)
2216 return false;
2218 // Variable argument functions are not supported.
2219 if (isVarArg)
2220 return false;
2222 MachineFunction &MF = DAG.getMachineFunction();
2223 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2224 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2225 // Functions containing by val parameters are not supported.
2226 for (unsigned i = 0; i != Ins.size(); i++) {
2227 ISD::ArgFlagsTy Flags = Ins[i].Flags;
2228 if (Flags.isByVal()) return false;
2231 // Non PIC/GOT tail calls are supported.
2232 if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2233 return true;
2235 // At the moment we can only do local tail calls (in same module, hidden
2236 // or protected) if we are generating PIC.
2237 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2238 return G->getGlobal()->hasHiddenVisibility()
2239 || G->getGlobal()->hasProtectedVisibility();
2242 return false;
2245 /// isCallCompatibleAddress - Return the immediate to use if the specified
2246 /// 32-bit value is representable in the immediate field of a BxA instruction.
2247 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2248 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2249 if (!C) return 0;
2251 int Addr = C->getZExtValue();
2252 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
2253 (Addr << 6 >> 6) != Addr)
2254 return 0; // Top 6 bits have to be sext of immediate.
2256 return DAG.getConstant((int)C->getZExtValue() >> 2,
2257 DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2260 namespace {
2262 struct TailCallArgumentInfo {
2263 SDValue Arg;
2264 SDValue FrameIdxOp;
2265 int FrameIdx;
2267 TailCallArgumentInfo() : FrameIdx(0) {}
2272 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2273 static void
2274 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2275 SDValue Chain,
2276 const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2277 SmallVector<SDValue, 8> &MemOpChains,
2278 DebugLoc dl) {
2279 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2280 SDValue Arg = TailCallArgs[i].Arg;
2281 SDValue FIN = TailCallArgs[i].FrameIdxOp;
2282 int FI = TailCallArgs[i].FrameIdx;
2283 // Store relative to framepointer.
2284 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2285 MachinePointerInfo::getFixedStack(FI),
2286 false, false, 0));
2290 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2291 /// the appropriate stack slot for the tail call optimized function call.
2292 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2293 MachineFunction &MF,
2294 SDValue Chain,
2295 SDValue OldRetAddr,
2296 SDValue OldFP,
2297 int SPDiff,
2298 bool isPPC64,
2299 bool isDarwinABI,
2300 DebugLoc dl) {
2301 if (SPDiff) {
2302 // Calculate the new stack slot for the return address.
2303 int SlotSize = isPPC64 ? 8 : 4;
2304 int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64,
2305 isDarwinABI);
2306 int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2307 NewRetAddrLoc, true);
2308 EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2309 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2310 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2311 MachinePointerInfo::getFixedStack(NewRetAddr),
2312 false, false, 0);
2314 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2315 // slot as the FP is never overwritten.
2316 if (isDarwinABI) {
2317 int NewFPLoc =
2318 SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2319 int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
2320 true);
2321 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2322 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2323 MachinePointerInfo::getFixedStack(NewFPIdx),
2324 false, false, 0);
2327 return Chain;
2330 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2331 /// the position of the argument.
2332 static void
2333 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2334 SDValue Arg, int SPDiff, unsigned ArgOffset,
2335 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2336 int Offset = ArgOffset + SPDiff;
2337 uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2338 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2339 EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2340 SDValue FIN = DAG.getFrameIndex(FI, VT);
2341 TailCallArgumentInfo Info;
2342 Info.Arg = Arg;
2343 Info.FrameIdxOp = FIN;
2344 Info.FrameIdx = FI;
2345 TailCallArguments.push_back(Info);
2348 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2349 /// stack slot. Returns the chain as result and the loaded frame pointers in
2350 /// LROpOut/FPOpout. Used when tail calling.
2351 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2352 int SPDiff,
2353 SDValue Chain,
2354 SDValue &LROpOut,
2355 SDValue &FPOpOut,
2356 bool isDarwinABI,
2357 DebugLoc dl) const {
2358 if (SPDiff) {
2359 // Load the LR and FP stack slot for later adjusting.
2360 EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2361 LROpOut = getReturnAddrFrameIndex(DAG);
2362 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
2363 false, false, 0);
2364 Chain = SDValue(LROpOut.getNode(), 1);
2366 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
2367 // slot as the FP is never overwritten.
2368 if (isDarwinABI) {
2369 FPOpOut = getFramePointerFrameIndex(DAG);
2370 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
2371 false, false, 0);
2372 Chain = SDValue(FPOpOut.getNode(), 1);
2375 return Chain;
2378 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2379 /// by "Src" to address "Dst" of size "Size". Alignment information is
2380 /// specified by the specific parameter attribute. The copy will be passed as
2381 /// a byval function parameter.
2382 /// Sometimes what we are copying is the end of a larger object, the part that
2383 /// does not fit in registers.
2384 static SDValue
2385 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2386 ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2387 DebugLoc dl) {
2388 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2389 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2390 false, false, MachinePointerInfo(0),
2391 MachinePointerInfo(0));
2394 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2395 /// tail calls.
2396 static void
2397 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2398 SDValue Arg, SDValue PtrOff, int SPDiff,
2399 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2400 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2401 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments,
2402 DebugLoc dl) {
2403 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2404 if (!isTailCall) {
2405 if (isVector) {
2406 SDValue StackPtr;
2407 if (isPPC64)
2408 StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2409 else
2410 StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2411 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2412 DAG.getConstant(ArgOffset, PtrVT));
2414 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2415 MachinePointerInfo(), false, false, 0));
2416 // Calculate and remember argument location.
2417 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2418 TailCallArguments);
2421 static
2422 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
2423 DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
2424 SDValue LROp, SDValue FPOp, bool isDarwinABI,
2425 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
2426 MachineFunction &MF = DAG.getMachineFunction();
2428 // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2429 // might overwrite each other in case of tail call optimization.
2430 SmallVector<SDValue, 8> MemOpChains2;
2431 // Do not flag preceeding copytoreg stuff together with the following stuff.
2432 InFlag = SDValue();
2433 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2434 MemOpChains2, dl);
2435 if (!MemOpChains2.empty())
2436 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2437 &MemOpChains2[0], MemOpChains2.size());
2439 // Store the return address to the appropriate stack slot.
2440 Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2441 isPPC64, isDarwinABI, dl);
2443 // Emit callseq_end just before tailcall node.
2444 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2445 DAG.getIntPtrConstant(0, true), InFlag);
2446 InFlag = Chain.getValue(1);
2449 static
2450 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
2451 SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
2452 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
2453 SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
2454 bool isPPC64, bool isSVR4ABI) {
2455 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2456 NodeTys.push_back(MVT::Other); // Returns a chain
2457 NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
2459 unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
2461 bool needIndirectCall = true;
2462 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
2463 // If this is an absolute destination address, use the munged value.
2464 Callee = SDValue(Dest, 0);
2465 needIndirectCall = false;
2467 // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
2468 // Use indirect calls for ALL functions calls in JIT mode, since the
2469 // far-call stubs may be outside relocation limits for a BL instruction.
2470 if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
2471 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2472 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2473 // node so that legalize doesn't hack it.
2474 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2475 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
2476 Callee.getValueType());
2477 needIndirectCall = false;
2480 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2481 Callee = DAG.getTargetExternalSymbol(S->getSymbol(),
2482 Callee.getValueType());
2483 needIndirectCall = false;
2485 if (needIndirectCall) {
2486 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
2487 // to do the call, we can't use PPCISD::CALL.
2488 SDValue MTCTROps[] = {Chain, Callee, InFlag};
2490 if (isSVR4ABI && isPPC64) {
2491 // Function pointers in the 64-bit SVR4 ABI do not point to the function
2492 // entry point, but to the function descriptor (the function entry point
2493 // address is part of the function descriptor though).
2494 // The function descriptor is a three doubleword structure with the
2495 // following fields: function entry point, TOC base address and
2496 // environment pointer.
2497 // Thus for a call through a function pointer, the following actions need
2498 // to be performed:
2499 // 1. Save the TOC of the caller in the TOC save area of its stack
2500 // frame (this is done in LowerCall_Darwin()).
2501 // 2. Load the address of the function entry point from the function
2502 // descriptor.
2503 // 3. Load the TOC of the callee from the function descriptor into r2.
2504 // 4. Load the environment pointer from the function descriptor into
2505 // r11.
2506 // 5. Branch to the function entry point address.
2507 // 6. On return of the callee, the TOC of the caller needs to be
2508 // restored (this is done in FinishCall()).
2510 // All those operations are flagged together to ensure that no other
2511 // operations can be scheduled in between. E.g. without flagging the
2512 // operations together, a TOC access in the caller could be scheduled
2513 // between the load of the callee TOC and the branch to the callee, which
2514 // results in the TOC access going through the TOC of the callee instead
2515 // of going through the TOC of the caller, which leads to incorrect code.
2517 // Load the address of the function entry point from the function
2518 // descriptor.
2519 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Flag);
2520 SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
2521 InFlag.getNode() ? 3 : 2);
2522 Chain = LoadFuncPtr.getValue(1);
2523 InFlag = LoadFuncPtr.getValue(2);
2525 // Load environment pointer into r11.
2526 // Offset of the environment pointer within the function descriptor.
2527 SDValue PtrOff = DAG.getIntPtrConstant(16);
2529 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
2530 SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
2531 InFlag);
2532 Chain = LoadEnvPtr.getValue(1);
2533 InFlag = LoadEnvPtr.getValue(2);
2535 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
2536 InFlag);
2537 Chain = EnvVal.getValue(0);
2538 InFlag = EnvVal.getValue(1);
2540 // Load TOC of the callee into r2. We are using a target-specific load
2541 // with r2 hard coded, because the result of a target-independent load
2542 // would never go directly into r2, since r2 is a reserved register (which
2543 // prevents the register allocator from allocating it), resulting in an
2544 // additional register being allocated and an unnecessary move instruction
2545 // being generated.
2546 VTs = DAG.getVTList(MVT::Other, MVT::Flag);
2547 SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
2548 Callee, InFlag);
2549 Chain = LoadTOCPtr.getValue(0);
2550 InFlag = LoadTOCPtr.getValue(1);
2552 MTCTROps[0] = Chain;
2553 MTCTROps[1] = LoadFuncPtr;
2554 MTCTROps[2] = InFlag;
2557 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
2558 2 + (InFlag.getNode() != 0));
2559 InFlag = Chain.getValue(1);
2561 NodeTys.clear();
2562 NodeTys.push_back(MVT::Other);
2563 NodeTys.push_back(MVT::Flag);
2564 Ops.push_back(Chain);
2565 CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
2566 Callee.setNode(0);
2567 // Add CTR register as callee so a bctr can be emitted later.
2568 if (isTailCall)
2569 Ops.push_back(DAG.getRegister(PPC::CTR, PtrVT));
2572 // If this is a direct call, pass the chain and the callee.
2573 if (Callee.getNode()) {
2574 Ops.push_back(Chain);
2575 Ops.push_back(Callee);
2577 // If this is a tail call add stack pointer delta.
2578 if (isTailCall)
2579 Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2581 // Add argument registers to the end of the list so that they are known live
2582 // into the call.
2583 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2584 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2585 RegsToPass[i].second.getValueType()));
2587 return CallOpc;
2590 SDValue
2591 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2592 CallingConv::ID CallConv, bool isVarArg,
2593 const SmallVectorImpl<ISD::InputArg> &Ins,
2594 DebugLoc dl, SelectionDAG &DAG,
2595 SmallVectorImpl<SDValue> &InVals) const {
2597 SmallVector<CCValAssign, 16> RVLocs;
2598 CCState CCRetInfo(CallConv, isVarArg, getTargetMachine(),
2599 RVLocs, *DAG.getContext());
2600 CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2602 // Copy all of the result registers out of their specified physreg.
2603 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2604 CCValAssign &VA = RVLocs[i];
2605 EVT VT = VA.getValVT();
2606 assert(VA.isRegLoc() && "Can only return in registers!");
2607 Chain = DAG.getCopyFromReg(Chain, dl,
2608 VA.getLocReg(), VT, InFlag).getValue(1);
2609 InVals.push_back(Chain.getValue(0));
2610 InFlag = Chain.getValue(2);
2613 return Chain;
2616 SDValue
2617 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
2618 bool isTailCall, bool isVarArg,
2619 SelectionDAG &DAG,
2620 SmallVector<std::pair<unsigned, SDValue>, 8>
2621 &RegsToPass,
2622 SDValue InFlag, SDValue Chain,
2623 SDValue &Callee,
2624 int SPDiff, unsigned NumBytes,
2625 const SmallVectorImpl<ISD::InputArg> &Ins,
2626 SmallVectorImpl<SDValue> &InVals) const {
2627 std::vector<EVT> NodeTys;
2628 SmallVector<SDValue, 8> Ops;
2629 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
2630 isTailCall, RegsToPass, Ops, NodeTys,
2631 PPCSubTarget.isPPC64(),
2632 PPCSubTarget.isSVR4ABI());
2634 // When performing tail call optimization the callee pops its arguments off
2635 // the stack. Account for this here so these bytes can be pushed back on in
2636 // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2637 int BytesCalleePops =
2638 (CallConv==CallingConv::Fast && GuaranteedTailCallOpt) ? NumBytes : 0;
2640 if (InFlag.getNode())
2641 Ops.push_back(InFlag);
2643 // Emit tail call.
2644 if (isTailCall) {
2645 // If this is the first return lowered for this function, add the regs
2646 // to the liveout set for the function.
2647 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2648 SmallVector<CCValAssign, 16> RVLocs;
2649 CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2650 *DAG.getContext());
2651 CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2652 for (unsigned i = 0; i != RVLocs.size(); ++i)
2653 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2656 assert(((Callee.getOpcode() == ISD::Register &&
2657 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
2658 Callee.getOpcode() == ISD::TargetExternalSymbol ||
2659 Callee.getOpcode() == ISD::TargetGlobalAddress ||
2660 isa<ConstantSDNode>(Callee)) &&
2661 "Expecting an global address, external symbol, absolute value or register");
2663 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
2666 Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
2667 InFlag = Chain.getValue(1);
2669 // Add a NOP immediately after the branch instruction when using the 64-bit
2670 // SVR4 ABI. At link time, if caller and callee are in a different module and
2671 // thus have a different TOC, the call will be replaced with a call to a stub
2672 // function which saves the current TOC, loads the TOC of the callee and
2673 // branches to the callee. The NOP will be replaced with a load instruction
2674 // which restores the TOC of the caller from the TOC save slot of the current
2675 // stack frame. If caller and callee belong to the same module (and have the
2676 // same TOC), the NOP will remain unchanged.
2677 if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
2678 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Flag);
2679 if (CallOpc == PPCISD::BCTRL_SVR4) {
2680 // This is a call through a function pointer.
2681 // Restore the caller TOC from the save area into R2.
2682 // See PrepareCall() for more information about calls through function
2683 // pointers in the 64-bit SVR4 ABI.
2684 // We are using a target-specific load with r2 hard coded, because the
2685 // result of a target-independent load would never go directly into r2,
2686 // since r2 is a reserved register (which prevents the register allocator
2687 // from allocating it), resulting in an additional register being
2688 // allocated and an unnecessary move instruction being generated.
2689 Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
2690 InFlag = Chain.getValue(1);
2691 } else {
2692 // Otherwise insert NOP.
2693 InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Flag, InFlag);
2697 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2698 DAG.getIntPtrConstant(BytesCalleePops, true),
2699 InFlag);
2700 if (!Ins.empty())
2701 InFlag = Chain.getValue(1);
2703 return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2704 Ins, dl, DAG, InVals);
2707 SDValue
2708 PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2709 CallingConv::ID CallConv, bool isVarArg,
2710 bool &isTailCall,
2711 const SmallVectorImpl<ISD::OutputArg> &Outs,
2712 const SmallVectorImpl<SDValue> &OutVals,
2713 const SmallVectorImpl<ISD::InputArg> &Ins,
2714 DebugLoc dl, SelectionDAG &DAG,
2715 SmallVectorImpl<SDValue> &InVals) const {
2716 if (isTailCall)
2717 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
2718 Ins, DAG);
2720 if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
2721 return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg,
2722 isTailCall, Outs, OutVals, Ins,
2723 dl, DAG, InVals);
2724 } else {
2725 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
2726 isTailCall, Outs, OutVals, Ins,
2727 dl, DAG, InVals);
2731 SDValue
2732 PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee,
2733 CallingConv::ID CallConv, bool isVarArg,
2734 bool isTailCall,
2735 const SmallVectorImpl<ISD::OutputArg> &Outs,
2736 const SmallVectorImpl<SDValue> &OutVals,
2737 const SmallVectorImpl<ISD::InputArg> &Ins,
2738 DebugLoc dl, SelectionDAG &DAG,
2739 SmallVectorImpl<SDValue> &InVals) const {
2740 // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description
2741 // of the 32-bit SVR4 ABI stack frame layout.
2743 assert((CallConv == CallingConv::C ||
2744 CallConv == CallingConv::Fast) && "Unknown calling convention!");
2746 unsigned PtrByteSize = 4;
2748 MachineFunction &MF = DAG.getMachineFunction();
2750 // Mark this function as potentially containing a function that contains a
2751 // tail call. As a consequence the frame pointer will be used for dynamicalloc
2752 // and restoring the callers stack pointer in this functions epilog. This is
2753 // done because by tail calling the called function might overwrite the value
2754 // in this function's (MF) stack pointer stack slot 0(SP).
2755 if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
2756 MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2758 // Count how many bytes are to be pushed on the stack, including the linkage
2759 // area, parameter list area and the part of the local variable space which
2760 // contains copies of aggregates which are passed by value.
2762 // Assign locations to all of the outgoing arguments.
2763 SmallVector<CCValAssign, 16> ArgLocs;
2764 CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
2765 ArgLocs, *DAG.getContext());
2767 // Reserve space for the linkage area on the stack.
2768 CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
2770 if (isVarArg) {
2771 // Handle fixed and variable vector arguments differently.
2772 // Fixed vector arguments go into registers as long as registers are
2773 // available. Variable vector arguments always go into memory.
2774 unsigned NumArgs = Outs.size();
2776 for (unsigned i = 0; i != NumArgs; ++i) {
2777 MVT ArgVT = Outs[i].VT;
2778 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2779 bool Result;
2781 if (Outs[i].IsFixed) {
2782 Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
2783 CCInfo);
2784 } else {
2785 Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
2786 ArgFlags, CCInfo);
2789 if (Result) {
2790 #ifndef NDEBUG
2791 errs() << "Call operand #" << i << " has unhandled type "
2792 << EVT(ArgVT).getEVTString() << "\n";
2793 #endif
2794 llvm_unreachable(0);
2797 } else {
2798 // All arguments are treated the same.
2799 CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
2802 // Assign locations to all of the outgoing aggregate by value arguments.
2803 SmallVector<CCValAssign, 16> ByValArgLocs;
2804 CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(), ByValArgLocs,
2805 *DAG.getContext());
2807 // Reserve stack space for the allocations in CCInfo.
2808 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2810 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
2812 // Size of the linkage area, parameter list area and the part of the local
2813 // space variable where copies of aggregates which are passed by value are
2814 // stored.
2815 unsigned NumBytes = CCByValInfo.getNextStackOffset();
2817 // Calculate by how many bytes the stack has to be adjusted in case of tail
2818 // call optimization.
2819 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2821 // Adjust the stack pointer for the new arguments...
2822 // These operations are automatically eliminated by the prolog/epilog pass
2823 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2824 SDValue CallSeqStart = Chain;
2826 // Load the return address and frame pointer so it can be moved somewhere else
2827 // later.
2828 SDValue LROp, FPOp;
2829 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
2830 dl);
2832 // Set up a copy of the stack pointer for use loading and storing any
2833 // arguments that may not fit in the registers available for argument
2834 // passing.
2835 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2837 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2838 SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2839 SmallVector<SDValue, 8> MemOpChains;
2841 // Walk the register/memloc assignments, inserting copies/loads.
2842 for (unsigned i = 0, j = 0, e = ArgLocs.size();
2843 i != e;
2844 ++i) {
2845 CCValAssign &VA = ArgLocs[i];
2846 SDValue Arg = OutVals[i];
2847 ISD::ArgFlagsTy Flags = Outs[i].Flags;
2849 if (Flags.isByVal()) {
2850 // Argument is an aggregate which is passed by value, thus we need to
2851 // create a copy of it in the local variable space of the current stack
2852 // frame (which is the stack frame of the caller) and pass the address of
2853 // this copy to the callee.
2854 assert((j < ByValArgLocs.size()) && "Index out of bounds!");
2855 CCValAssign &ByValVA = ByValArgLocs[j++];
2856 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
2858 // Memory reserved in the local variable space of the callers stack frame.
2859 unsigned LocMemOffset = ByValVA.getLocMemOffset();
2861 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2862 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2864 // Create a copy of the argument in the local area of the current
2865 // stack frame.
2866 SDValue MemcpyCall =
2867 CreateCopyOfByValArgument(Arg, PtrOff,
2868 CallSeqStart.getNode()->getOperand(0),
2869 Flags, DAG, dl);
2871 // This must go outside the CALLSEQ_START..END.
2872 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2873 CallSeqStart.getNode()->getOperand(1));
2874 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2875 NewCallSeqStart.getNode());
2876 Chain = CallSeqStart = NewCallSeqStart;
2878 // Pass the address of the aggregate copy on the stack either in a
2879 // physical register or in the parameter list area of the current stack
2880 // frame to the callee.
2881 Arg = PtrOff;
2884 if (VA.isRegLoc()) {
2885 // Put argument in a physical register.
2886 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2887 } else {
2888 // Put argument in the parameter list area of the current stack frame.
2889 assert(VA.isMemLoc());
2890 unsigned LocMemOffset = VA.getLocMemOffset();
2892 if (!isTailCall) {
2893 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2894 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2896 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2897 MachinePointerInfo(),
2898 false, false, 0));
2899 } else {
2900 // Calculate and remember argument location.
2901 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
2902 TailCallArguments);
2907 if (!MemOpChains.empty())
2908 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2909 &MemOpChains[0], MemOpChains.size());
2911 // Build a sequence of copy-to-reg nodes chained together with token chain
2912 // and flag operands which copy the outgoing args into the appropriate regs.
2913 SDValue InFlag;
2914 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2915 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2916 RegsToPass[i].second, InFlag);
2917 InFlag = Chain.getValue(1);
2920 // Set CR6 to true if this is a vararg call.
2921 if (isVarArg) {
2922 SDValue SetCR(DAG.getMachineNode(PPC::CRSET, dl, MVT::i32), 0);
2923 Chain = DAG.getCopyToReg(Chain, dl, PPC::CR1EQ, SetCR, InFlag);
2924 InFlag = Chain.getValue(1);
2927 if (isTailCall) {
2928 PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
2929 false, TailCallArguments);
2932 return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
2933 RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
2934 Ins, InVals);
2937 SDValue
2938 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
2939 CallingConv::ID CallConv, bool isVarArg,
2940 bool isTailCall,
2941 const SmallVectorImpl<ISD::OutputArg> &Outs,
2942 const SmallVectorImpl<SDValue> &OutVals,
2943 const SmallVectorImpl<ISD::InputArg> &Ins,
2944 DebugLoc dl, SelectionDAG &DAG,
2945 SmallVectorImpl<SDValue> &InVals) const {
2947 unsigned NumOps = Outs.size();
2949 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2950 bool isPPC64 = PtrVT == MVT::i64;
2951 unsigned PtrByteSize = isPPC64 ? 8 : 4;
2953 MachineFunction &MF = DAG.getMachineFunction();
2955 // Mark this function as potentially containing a function that contains a
2956 // tail call. As a consequence the frame pointer will be used for dynamicalloc
2957 // and restoring the callers stack pointer in this functions epilog. This is
2958 // done because by tail calling the called function might overwrite the value
2959 // in this function's (MF) stack pointer stack slot 0(SP).
2960 if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
2961 MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2963 unsigned nAltivecParamsAtEnd = 0;
2965 // Count how many bytes are to be pushed on the stack, including the linkage
2966 // area, and parameter passing area. We start with 24/48 bytes, which is
2967 // prereserved space for [SP][CR][LR][3 x unused].
2968 unsigned NumBytes =
2969 CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
2970 Outs, OutVals,
2971 nAltivecParamsAtEnd);
2973 // Calculate by how many bytes the stack has to be adjusted in case of tail
2974 // call optimization.
2975 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2977 // To protect arguments on the stack from being clobbered in a tail call,
2978 // force all the loads to happen before doing any other lowering.
2979 if (isTailCall)
2980 Chain = DAG.getStackArgumentTokenFactor(Chain);
2982 // Adjust the stack pointer for the new arguments...
2983 // These operations are automatically eliminated by the prolog/epilog pass
2984 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2985 SDValue CallSeqStart = Chain;
2987 // Load the return address and frame pointer so it can be move somewhere else
2988 // later.
2989 SDValue LROp, FPOp;
2990 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
2991 dl);
2993 // Set up a copy of the stack pointer for use loading and storing any
2994 // arguments that may not fit in the registers available for argument
2995 // passing.
2996 SDValue StackPtr;
2997 if (isPPC64)
2998 StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2999 else
3000 StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3002 // Figure out which arguments are going to go in registers, and which in
3003 // memory. Also, if this is a vararg function, floating point operations
3004 // must be stored to our stack, and loaded into integer regs as well, if
3005 // any integer regs are available for argument passing.
3006 unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
3007 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3009 static const unsigned GPR_32[] = { // 32-bit registers.
3010 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3011 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3013 static const unsigned GPR_64[] = { // 64-bit registers.
3014 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3015 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3017 static const unsigned *FPR = GetFPR();
3019 static const unsigned VR[] = {
3020 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3021 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3023 const unsigned NumGPRs = array_lengthof(GPR_32);
3024 const unsigned NumFPRs = 13;
3025 const unsigned NumVRs = array_lengthof(VR);
3027 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
3029 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3030 SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3032 SmallVector<SDValue, 8> MemOpChains;
3033 for (unsigned i = 0; i != NumOps; ++i) {
3034 SDValue Arg = OutVals[i];
3035 ISD::ArgFlagsTy Flags = Outs[i].Flags;
3037 // PtrOff will be used to store the current argument to the stack if a
3038 // register cannot be found for it.
3039 SDValue PtrOff;
3041 PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
3043 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3045 // On PPC64, promote integers to 64-bit values.
3046 if (isPPC64 && Arg.getValueType() == MVT::i32) {
3047 // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3048 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3049 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
3052 // FIXME memcpy is used way more than necessary. Correctness first.
3053 if (Flags.isByVal()) {
3054 unsigned Size = Flags.getByValSize();
3055 if (Size==1 || Size==2) {
3056 // Very small objects are passed right-justified.
3057 // Everything else is passed left-justified.
3058 EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
3059 if (GPR_idx != NumGPRs) {
3060 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, PtrVT, dl, Chain, Arg,
3061 MachinePointerInfo(), VT,
3062 false, false, 0);
3063 MemOpChains.push_back(Load.getValue(1));
3064 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3066 ArgOffset += PtrByteSize;
3067 } else {
3068 SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
3069 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3070 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
3071 CallSeqStart.getNode()->getOperand(0),
3072 Flags, DAG, dl);
3073 // This must go outside the CALLSEQ_START..END.
3074 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3075 CallSeqStart.getNode()->getOperand(1));
3076 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3077 NewCallSeqStart.getNode());
3078 Chain = CallSeqStart = NewCallSeqStart;
3079 ArgOffset += PtrByteSize;
3081 continue;
3083 // Copy entire object into memory. There are cases where gcc-generated
3084 // code assumes it is there, even if it could be put entirely into
3085 // registers. (This is not what the doc says.)
3086 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3087 CallSeqStart.getNode()->getOperand(0),
3088 Flags, DAG, dl);
3089 // This must go outside the CALLSEQ_START..END.
3090 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3091 CallSeqStart.getNode()->getOperand(1));
3092 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
3093 Chain = CallSeqStart = NewCallSeqStart;
3094 // And copy the pieces of it that fit into registers.
3095 for (unsigned j=0; j<Size; j+=PtrByteSize) {
3096 SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
3097 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
3098 if (GPR_idx != NumGPRs) {
3099 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
3100 MachinePointerInfo(),
3101 false, false, 0);
3102 MemOpChains.push_back(Load.getValue(1));
3103 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3104 ArgOffset += PtrByteSize;
3105 } else {
3106 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
3107 break;
3110 continue;
3113 switch (Arg.getValueType().getSimpleVT().SimpleTy) {
3114 default: llvm_unreachable("Unexpected ValueType for argument!");
3115 case MVT::i32:
3116 case MVT::i64:
3117 if (GPR_idx != NumGPRs) {
3118 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
3119 } else {
3120 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3121 isPPC64, isTailCall, false, MemOpChains,
3122 TailCallArguments, dl);
3124 ArgOffset += PtrByteSize;
3125 break;
3126 case MVT::f32:
3127 case MVT::f64:
3128 if (FPR_idx != NumFPRs) {
3129 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
3131 if (isVarArg) {
3132 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3133 MachinePointerInfo(), false, false, 0);
3134 MemOpChains.push_back(Store);
3136 // Float varargs are always shadowed in available integer registers
3137 if (GPR_idx != NumGPRs) {
3138 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3139 MachinePointerInfo(), false, false, 0);
3140 MemOpChains.push_back(Load.getValue(1));
3141 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3143 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
3144 SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3145 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3146 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3147 MachinePointerInfo(),
3148 false, false, 0);
3149 MemOpChains.push_back(Load.getValue(1));
3150 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3152 } else {
3153 // If we have any FPRs remaining, we may also have GPRs remaining.
3154 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
3155 // GPRs.
3156 if (GPR_idx != NumGPRs)
3157 ++GPR_idx;
3158 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
3159 !isPPC64) // PPC64 has 64-bit GPR's obviously :)
3160 ++GPR_idx;
3162 } else {
3163 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3164 isPPC64, isTailCall, false, MemOpChains,
3165 TailCallArguments, dl);
3167 if (isPPC64)
3168 ArgOffset += 8;
3169 else
3170 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
3171 break;
3172 case MVT::v4f32:
3173 case MVT::v4i32:
3174 case MVT::v8i16:
3175 case MVT::v16i8:
3176 if (isVarArg) {
3177 // These go aligned on the stack, or in the corresponding R registers
3178 // when within range. The Darwin PPC ABI doc claims they also go in
3179 // V registers; in fact gcc does this only for arguments that are
3180 // prototyped, not for those that match the ... We do it for all
3181 // arguments, seems to work.
3182 while (ArgOffset % 16 !=0) {
3183 ArgOffset += PtrByteSize;
3184 if (GPR_idx != NumGPRs)
3185 GPR_idx++;
3187 // We could elide this store in the case where the object fits
3188 // entirely in R registers. Maybe later.
3189 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3190 DAG.getConstant(ArgOffset, PtrVT));
3191 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3192 MachinePointerInfo(), false, false, 0);
3193 MemOpChains.push_back(Store);
3194 if (VR_idx != NumVRs) {
3195 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
3196 MachinePointerInfo(),
3197 false, false, 0);
3198 MemOpChains.push_back(Load.getValue(1));
3199 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
3201 ArgOffset += 16;
3202 for (unsigned i=0; i<16; i+=PtrByteSize) {
3203 if (GPR_idx == NumGPRs)
3204 break;
3205 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
3206 DAG.getConstant(i, PtrVT));
3207 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
3208 false, false, 0);
3209 MemOpChains.push_back(Load.getValue(1));
3210 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3212 break;
3215 // Non-varargs Altivec params generally go in registers, but have
3216 // stack space allocated at the end.
3217 if (VR_idx != NumVRs) {
3218 // Doesn't have GPR space allocated.
3219 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
3220 } else if (nAltivecParamsAtEnd==0) {
3221 // We are emitting Altivec params in order.
3222 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3223 isPPC64, isTailCall, true, MemOpChains,
3224 TailCallArguments, dl);
3225 ArgOffset += 16;
3227 break;
3230 // If all Altivec parameters fit in registers, as they usually do,
3231 // they get stack space following the non-Altivec parameters. We
3232 // don't track this here because nobody below needs it.
3233 // If there are more Altivec parameters than fit in registers emit
3234 // the stores here.
3235 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
3236 unsigned j = 0;
3237 // Offset is aligned; skip 1st 12 params which go in V registers.
3238 ArgOffset = ((ArgOffset+15)/16)*16;
3239 ArgOffset += 12*16;
3240 for (unsigned i = 0; i != NumOps; ++i) {
3241 SDValue Arg = OutVals[i];
3242 EVT ArgType = Outs[i].VT;
3243 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
3244 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
3245 if (++j > NumVRs) {
3246 SDValue PtrOff;
3247 // We are emitting Altivec params in order.
3248 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3249 isPPC64, isTailCall, true, MemOpChains,
3250 TailCallArguments, dl);
3251 ArgOffset += 16;
3257 if (!MemOpChains.empty())
3258 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3259 &MemOpChains[0], MemOpChains.size());
3261 // Check if this is an indirect call (MTCTR/BCTRL).
3262 // See PrepareCall() for more information about calls through function
3263 // pointers in the 64-bit SVR4 ABI.
3264 if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() &&
3265 !dyn_cast<GlobalAddressSDNode>(Callee) &&
3266 !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3267 !isBLACompatibleAddress(Callee, DAG)) {
3268 // Load r2 into a virtual register and store it to the TOC save area.
3269 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
3270 // TOC save area offset.
3271 SDValue PtrOff = DAG.getIntPtrConstant(40);
3272 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3273 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
3274 false, false, 0);
3277 // On Darwin, R12 must contain the address of an indirect callee. This does
3278 // not mean the MTCTR instruction must use R12; it's easier to model this as
3279 // an extra parameter, so do that.
3280 if (!isTailCall &&
3281 !dyn_cast<GlobalAddressSDNode>(Callee) &&
3282 !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3283 !isBLACompatibleAddress(Callee, DAG))
3284 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
3285 PPC::R12), Callee));
3287 // Build a sequence of copy-to-reg nodes chained together with token chain
3288 // and flag operands which copy the outgoing args into the appropriate regs.
3289 SDValue InFlag;
3290 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3291 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3292 RegsToPass[i].second, InFlag);
3293 InFlag = Chain.getValue(1);
3296 if (isTailCall) {
3297 PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
3298 FPOp, true, TailCallArguments);
3301 return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3302 RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3303 Ins, InVals);
3306 SDValue
3307 PPCTargetLowering::LowerReturn(SDValue Chain,
3308 CallingConv::ID CallConv, bool isVarArg,
3309 const SmallVectorImpl<ISD::OutputArg> &Outs,
3310 const SmallVectorImpl<SDValue> &OutVals,
3311 DebugLoc dl, SelectionDAG &DAG) const {
3313 SmallVector<CCValAssign, 16> RVLocs;
3314 CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
3315 RVLocs, *DAG.getContext());
3316 CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
3318 // If this is the first return lowered for this function, add the regs to the
3319 // liveout set for the function.
3320 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3321 for (unsigned i = 0; i != RVLocs.size(); ++i)
3322 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3325 SDValue Flag;
3327 // Copy the result values into the output registers.
3328 for (unsigned i = 0; i != RVLocs.size(); ++i) {
3329 CCValAssign &VA = RVLocs[i];
3330 assert(VA.isRegLoc() && "Can only return in registers!");
3331 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3332 OutVals[i], Flag);
3333 Flag = Chain.getValue(1);
3336 if (Flag.getNode())
3337 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
3338 else
3339 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
3342 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
3343 const PPCSubtarget &Subtarget) const {
3344 // When we pop the dynamic allocation we need to restore the SP link.
3345 DebugLoc dl = Op.getDebugLoc();
3347 // Get the corect type for pointers.
3348 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3350 // Construct the stack pointer operand.
3351 bool isPPC64 = Subtarget.isPPC64();
3352 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
3353 SDValue StackPtr = DAG.getRegister(SP, PtrVT);
3355 // Get the operands for the STACKRESTORE.
3356 SDValue Chain = Op.getOperand(0);
3357 SDValue SaveSP = Op.getOperand(1);
3359 // Load the old link SP.
3360 SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
3361 MachinePointerInfo(),
3362 false, false, 0);
3364 // Restore the stack pointer.
3365 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
3367 // Store the old link SP.
3368 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
3369 false, false, 0);
3374 SDValue
3375 PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
3376 MachineFunction &MF = DAG.getMachineFunction();
3377 bool isPPC64 = PPCSubTarget.isPPC64();
3378 bool isDarwinABI = PPCSubTarget.isDarwinABI();
3379 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3381 // Get current frame pointer save index. The users of this index will be
3382 // primarily DYNALLOC instructions.
3383 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3384 int RASI = FI->getReturnAddrSaveIndex();
3386 // If the frame pointer save index hasn't been defined yet.
3387 if (!RASI) {
3388 // Find out what the fix offset of the frame pointer save area.
3389 int LROffset = PPCFrameInfo::getReturnSaveOffset(isPPC64, isDarwinABI);
3390 // Allocate the frame index for frame pointer save area.
3391 RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
3392 // Save the result.
3393 FI->setReturnAddrSaveIndex(RASI);
3395 return DAG.getFrameIndex(RASI, PtrVT);
3398 SDValue
3399 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
3400 MachineFunction &MF = DAG.getMachineFunction();
3401 bool isPPC64 = PPCSubTarget.isPPC64();
3402 bool isDarwinABI = PPCSubTarget.isDarwinABI();
3403 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3405 // Get current frame pointer save index. The users of this index will be
3406 // primarily DYNALLOC instructions.
3407 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3408 int FPSI = FI->getFramePointerSaveIndex();
3410 // If the frame pointer save index hasn't been defined yet.
3411 if (!FPSI) {
3412 // Find out what the fix offset of the frame pointer save area.
3413 int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(isPPC64,
3414 isDarwinABI);
3416 // Allocate the frame index for frame pointer save area.
3417 FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
3418 // Save the result.
3419 FI->setFramePointerSaveIndex(FPSI);
3421 return DAG.getFrameIndex(FPSI, PtrVT);
3424 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3425 SelectionDAG &DAG,
3426 const PPCSubtarget &Subtarget) const {
3427 // Get the inputs.
3428 SDValue Chain = Op.getOperand(0);
3429 SDValue Size = Op.getOperand(1);
3430 DebugLoc dl = Op.getDebugLoc();
3432 // Get the corect type for pointers.
3433 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3434 // Negate the size.
3435 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
3436 DAG.getConstant(0, PtrVT), Size);
3437 // Construct a node for the frame pointer save index.
3438 SDValue FPSIdx = getFramePointerFrameIndex(DAG);
3439 // Build a DYNALLOC node.
3440 SDValue Ops[3] = { Chain, NegSize, FPSIdx };
3441 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
3442 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
3445 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
3446 /// possible.
3447 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
3448 // Not FP? Not a fsel.
3449 if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
3450 !Op.getOperand(2).getValueType().isFloatingPoint())
3451 return Op;
3453 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3455 // Cannot handle SETEQ/SETNE.
3456 if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
3458 EVT ResVT = Op.getValueType();
3459 EVT CmpVT = Op.getOperand(0).getValueType();
3460 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3461 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3);
3462 DebugLoc dl = Op.getDebugLoc();
3464 // If the RHS of the comparison is a 0.0, we don't need to do the
3465 // subtraction at all.
3466 if (isFloatingPointZero(RHS))
3467 switch (CC) {
3468 default: break; // SETUO etc aren't handled by fsel.
3469 case ISD::SETULT:
3470 case ISD::SETLT:
3471 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
3472 case ISD::SETOGE:
3473 case ISD::SETGE:
3474 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
3475 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3476 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
3477 case ISD::SETUGT:
3478 case ISD::SETGT:
3479 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
3480 case ISD::SETOLE:
3481 case ISD::SETLE:
3482 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
3483 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3484 return DAG.getNode(PPCISD::FSEL, dl, ResVT,
3485 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
3488 SDValue Cmp;
3489 switch (CC) {
3490 default: break; // SETUO etc aren't handled by fsel.
3491 case ISD::SETULT:
3492 case ISD::SETLT:
3493 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3494 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
3495 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3496 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3497 case ISD::SETOGE:
3498 case ISD::SETGE:
3499 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3500 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
3501 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3502 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3503 case ISD::SETUGT:
3504 case ISD::SETGT:
3505 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3506 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
3507 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3508 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3509 case ISD::SETOLE:
3510 case ISD::SETLE:
3511 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3512 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
3513 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3514 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3516 return Op;
3519 // FIXME: Split this code up when LegalizeDAGTypes lands.
3520 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
3521 DebugLoc dl) const {
3522 assert(Op.getOperand(0).getValueType().isFloatingPoint());
3523 SDValue Src = Op.getOperand(0);
3524 if (Src.getValueType() == MVT::f32)
3525 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
3527 SDValue Tmp;
3528 switch (Op.getValueType().getSimpleVT().SimpleTy) {
3529 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
3530 case MVT::i32:
3531 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
3532 PPCISD::FCTIDZ,
3533 dl, MVT::f64, Src);
3534 break;
3535 case MVT::i64:
3536 Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
3537 break;
3540 // Convert the FP value to an int value through memory.
3541 SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
3543 // Emit a store to the stack slot.
3544 SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
3545 MachinePointerInfo(), false, false, 0);
3547 // Result is a load from the stack slot. If loading 4 bytes, make sure to
3548 // add in a bias.
3549 if (Op.getValueType() == MVT::i32)
3550 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
3551 DAG.getConstant(4, FIPtr.getValueType()));
3552 return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(),
3553 false, false, 0);
3556 SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op,
3557 SelectionDAG &DAG) const {
3558 DebugLoc dl = Op.getDebugLoc();
3559 // Don't handle ppc_fp128 here; let it be lowered to a libcall.
3560 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
3561 return SDValue();
3563 if (Op.getOperand(0).getValueType() == MVT::i64) {
3564 SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, dl,
3565 MVT::f64, Op.getOperand(0));
3566 SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
3567 if (Op.getValueType() == MVT::f32)
3568 FP = DAG.getNode(ISD::FP_ROUND, dl,
3569 MVT::f32, FP, DAG.getIntPtrConstant(0));
3570 return FP;
3573 assert(Op.getOperand(0).getValueType() == MVT::i32 &&
3574 "Unhandled SINT_TO_FP type in custom expander!");
3575 // Since we only generate this in 64-bit mode, we can take advantage of
3576 // 64-bit registers. In particular, sign extend the input value into the
3577 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
3578 // then lfd it and fcfid it.
3579 MachineFunction &MF = DAG.getMachineFunction();
3580 MachineFrameInfo *FrameInfo = MF.getFrameInfo();
3581 int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
3582 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3583 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3585 SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
3586 Op.getOperand(0));
3588 // STD the extended value into the stack slot.
3589 MachineMemOperand *MMO =
3590 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
3591 MachineMemOperand::MOStore, 8, 8);
3592 SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
3593 SDValue Store =
3594 DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
3595 Ops, 4, MVT::i64, MMO);
3596 // Load the value as a double.
3597 SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(),
3598 false, false, 0);
3600 // FCFID it and return it.
3601 SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
3602 if (Op.getValueType() == MVT::f32)
3603 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
3604 return FP;
3607 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3608 SelectionDAG &DAG) const {
3609 DebugLoc dl = Op.getDebugLoc();
3611 The rounding mode is in bits 30:31 of FPSR, and has the following
3612 settings:
3613 00 Round to nearest
3614 01 Round to 0
3615 10 Round to +inf
3616 11 Round to -inf
3618 FLT_ROUNDS, on the other hand, expects the following:
3619 -1 Undefined
3620 0 Round to 0
3621 1 Round to nearest
3622 2 Round to +inf
3623 3 Round to -inf
3625 To perform the conversion, we do:
3626 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
3629 MachineFunction &MF = DAG.getMachineFunction();
3630 EVT VT = Op.getValueType();
3631 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3632 std::vector<EVT> NodeTys;
3633 SDValue MFFSreg, InFlag;
3635 // Save FP Control Word to register
3636 NodeTys.push_back(MVT::f64); // return register
3637 NodeTys.push_back(MVT::Flag); // unused in this context
3638 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
3640 // Save FP register to stack slot
3641 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
3642 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
3643 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
3644 StackSlot, MachinePointerInfo(), false, false,0);
3646 // Load FP Control Word from low 32 bits of stack slot.
3647 SDValue Four = DAG.getConstant(4, PtrVT);
3648 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
3649 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
3650 false, false, 0);
3652 // Transform as necessary
3653 SDValue CWD1 =
3654 DAG.getNode(ISD::AND, dl, MVT::i32,
3655 CWD, DAG.getConstant(3, MVT::i32));
3656 SDValue CWD2 =
3657 DAG.getNode(ISD::SRL, dl, MVT::i32,
3658 DAG.getNode(ISD::AND, dl, MVT::i32,
3659 DAG.getNode(ISD::XOR, dl, MVT::i32,
3660 CWD, DAG.getConstant(3, MVT::i32)),
3661 DAG.getConstant(3, MVT::i32)),
3662 DAG.getConstant(1, MVT::i32));
3664 SDValue RetVal =
3665 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
3667 return DAG.getNode((VT.getSizeInBits() < 16 ?
3668 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
3671 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
3672 EVT VT = Op.getValueType();
3673 unsigned BitWidth = VT.getSizeInBits();
3674 DebugLoc dl = Op.getDebugLoc();
3675 assert(Op.getNumOperands() == 3 &&
3676 VT == Op.getOperand(1).getValueType() &&
3677 "Unexpected SHL!");
3679 // Expand into a bunch of logical ops. Note that these ops
3680 // depend on the PPC behavior for oversized shift amounts.
3681 SDValue Lo = Op.getOperand(0);
3682 SDValue Hi = Op.getOperand(1);
3683 SDValue Amt = Op.getOperand(2);
3684 EVT AmtVT = Amt.getValueType();
3686 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3687 DAG.getConstant(BitWidth, AmtVT), Amt);
3688 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
3689 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
3690 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
3691 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3692 DAG.getConstant(-BitWidth, AmtVT));
3693 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
3694 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3695 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
3696 SDValue OutOps[] = { OutLo, OutHi };
3697 return DAG.getMergeValues(OutOps, 2, dl);
3700 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
3701 EVT VT = Op.getValueType();
3702 DebugLoc dl = Op.getDebugLoc();
3703 unsigned BitWidth = VT.getSizeInBits();
3704 assert(Op.getNumOperands() == 3 &&
3705 VT == Op.getOperand(1).getValueType() &&
3706 "Unexpected SRL!");
3708 // Expand into a bunch of logical ops. Note that these ops
3709 // depend on the PPC behavior for oversized shift amounts.
3710 SDValue Lo = Op.getOperand(0);
3711 SDValue Hi = Op.getOperand(1);
3712 SDValue Amt = Op.getOperand(2);
3713 EVT AmtVT = Amt.getValueType();
3715 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3716 DAG.getConstant(BitWidth, AmtVT), Amt);
3717 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3718 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3719 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3720 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3721 DAG.getConstant(-BitWidth, AmtVT));
3722 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
3723 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3724 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
3725 SDValue OutOps[] = { OutLo, OutHi };
3726 return DAG.getMergeValues(OutOps, 2, dl);
3729 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
3730 DebugLoc dl = Op.getDebugLoc();
3731 EVT VT = Op.getValueType();
3732 unsigned BitWidth = VT.getSizeInBits();
3733 assert(Op.getNumOperands() == 3 &&
3734 VT == Op.getOperand(1).getValueType() &&
3735 "Unexpected SRA!");
3737 // Expand into a bunch of logical ops, followed by a select_cc.
3738 SDValue Lo = Op.getOperand(0);
3739 SDValue Hi = Op.getOperand(1);
3740 SDValue Amt = Op.getOperand(2);
3741 EVT AmtVT = Amt.getValueType();
3743 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3744 DAG.getConstant(BitWidth, AmtVT), Amt);
3745 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3746 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3747 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3748 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3749 DAG.getConstant(-BitWidth, AmtVT));
3750 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
3751 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
3752 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
3753 Tmp4, Tmp6, ISD::SETLE);
3754 SDValue OutOps[] = { OutLo, OutHi };
3755 return DAG.getMergeValues(OutOps, 2, dl);
3758 //===----------------------------------------------------------------------===//
3759 // Vector related lowering.
3762 /// BuildSplatI - Build a canonical splati of Val with an element size of
3763 /// SplatSize. Cast the result to VT.
3764 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
3765 SelectionDAG &DAG, DebugLoc dl) {
3766 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3768 static const EVT VTys[] = { // canonical VT to use for each size.
3769 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3772 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3774 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3775 if (Val == -1)
3776 SplatSize = 1;
3778 EVT CanonicalVT = VTys[SplatSize-1];
3780 // Build a canonical splat for this value.
3781 SDValue Elt = DAG.getConstant(Val, MVT::i32);
3782 SmallVector<SDValue, 8> Ops;
3783 Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3784 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
3785 &Ops[0], Ops.size());
3786 return DAG.getNode(ISD::BIT_CONVERT, dl, ReqVT, Res);
3789 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3790 /// specified intrinsic ID.
3791 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3792 SelectionDAG &DAG, DebugLoc dl,
3793 EVT DestVT = MVT::Other) {
3794 if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3795 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3796 DAG.getConstant(IID, MVT::i32), LHS, RHS);
3799 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3800 /// specified intrinsic ID.
3801 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3802 SDValue Op2, SelectionDAG &DAG,
3803 DebugLoc dl, EVT DestVT = MVT::Other) {
3804 if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3805 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3806 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3810 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3811 /// amount. The result has the specified value type.
3812 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3813 EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3814 // Force LHS/RHS to be the right type.
3815 LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, LHS);
3816 RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, RHS);
3818 int Ops[16];
3819 for (unsigned i = 0; i != 16; ++i)
3820 Ops[i] = i + Amt;
3821 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
3822 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
3825 // If this is a case we can't handle, return null and let the default
3826 // expansion code take care of it. If we CAN select this case, and if it
3827 // selects to a single instruction, return Op. Otherwise, if we can codegen
3828 // this case more efficiently than a constant pool load, lower it to the
3829 // sequence of ops that should be used.
3830 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
3831 SelectionDAG &DAG) const {
3832 DebugLoc dl = Op.getDebugLoc();
3833 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3834 assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
3836 // Check if this is a splat of a constant value.
3837 APInt APSplatBits, APSplatUndef;
3838 unsigned SplatBitSize;
3839 bool HasAnyUndefs;
3840 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
3841 HasAnyUndefs, 0, true) || SplatBitSize > 32)
3842 return SDValue();
3844 unsigned SplatBits = APSplatBits.getZExtValue();
3845 unsigned SplatUndef = APSplatUndef.getZExtValue();
3846 unsigned SplatSize = SplatBitSize / 8;
3848 // First, handle single instruction cases.
3850 // All zeros?
3851 if (SplatBits == 0) {
3852 // Canonicalize all zero vectors to be v4i32.
3853 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3854 SDValue Z = DAG.getConstant(0, MVT::i32);
3855 Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
3856 Op = DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Z);
3858 return Op;
3861 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3862 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
3863 (32-SplatBitSize));
3864 if (SextVal >= -16 && SextVal <= 15)
3865 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
3868 // Two instruction sequences.
3870 // If this value is in the range [-32,30] and is even, use:
3871 // tmp = VSPLTI[bhw], result = add tmp, tmp
3872 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3873 SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
3874 Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
3875 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3878 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
3879 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
3880 // for fneg/fabs.
3881 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3882 // Make -1 and vspltisw -1:
3883 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
3885 // Make the VSLW intrinsic, computing 0x8000_0000.
3886 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3887 OnesV, DAG, dl);
3889 // xor by OnesV to invert it.
3890 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
3891 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3894 // Check to see if this is a wide variety of vsplti*, binop self cases.
3895 static const signed char SplatCsts[] = {
3896 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3897 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3900 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3901 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3902 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
3903 int i = SplatCsts[idx];
3905 // Figure out what shift amount will be used by altivec if shifted by i in
3906 // this splat size.
3907 unsigned TypeShiftAmt = i & (SplatBitSize-1);
3909 // vsplti + shl self.
3910 if (SextVal == (i << (int)TypeShiftAmt)) {
3911 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3912 static const unsigned IIDs[] = { // Intrinsic to use for each size.
3913 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3914 Intrinsic::ppc_altivec_vslw
3916 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3917 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3920 // vsplti + srl self.
3921 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3922 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3923 static const unsigned IIDs[] = { // Intrinsic to use for each size.
3924 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3925 Intrinsic::ppc_altivec_vsrw
3927 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3928 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3931 // vsplti + sra self.
3932 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3933 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3934 static const unsigned IIDs[] = { // Intrinsic to use for each size.
3935 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3936 Intrinsic::ppc_altivec_vsraw
3938 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3939 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3942 // vsplti + rol self.
3943 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3944 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3945 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3946 static const unsigned IIDs[] = { // Intrinsic to use for each size.
3947 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3948 Intrinsic::ppc_altivec_vrlw
3950 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3951 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3954 // t = vsplti c, result = vsldoi t, t, 1
3955 if (SextVal == ((i << 8) | (i < 0 ? 0xFF : 0))) {
3956 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3957 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
3959 // t = vsplti c, result = vsldoi t, t, 2
3960 if (SextVal == ((i << 16) | (i < 0 ? 0xFFFF : 0))) {
3961 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3962 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
3964 // t = vsplti c, result = vsldoi t, t, 3
3965 if (SextVal == ((i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
3966 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3967 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
3971 // Three instruction sequences.
3973 // Odd, in range [17,31]: (vsplti C)-(vsplti -16).
3974 if (SextVal >= 0 && SextVal <= 31) {
3975 SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
3976 SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3977 LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
3978 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3980 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16).
3981 if (SextVal >= -31 && SextVal <= 0) {
3982 SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
3983 SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3984 LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
3985 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3988 return SDValue();
3991 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3992 /// the specified operations to build the shuffle.
3993 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3994 SDValue RHS, SelectionDAG &DAG,
3995 DebugLoc dl) {
3996 unsigned OpNum = (PFEntry >> 26) & 0x0F;
3997 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3998 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
4000 enum {
4001 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4002 OP_VMRGHW,
4003 OP_VMRGLW,
4004 OP_VSPLTISW0,
4005 OP_VSPLTISW1,
4006 OP_VSPLTISW2,
4007 OP_VSPLTISW3,
4008 OP_VSLDOI4,
4009 OP_VSLDOI8,
4010 OP_VSLDOI12
4013 if (OpNum == OP_COPY) {
4014 if (LHSID == (1*9+2)*9+3) return LHS;
4015 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4016 return RHS;
4019 SDValue OpLHS, OpRHS;
4020 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4021 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4023 int ShufIdxs[16];
4024 switch (OpNum) {
4025 default: llvm_unreachable("Unknown i32 permute!");
4026 case OP_VMRGHW:
4027 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
4028 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
4029 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
4030 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
4031 break;
4032 case OP_VMRGLW:
4033 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
4034 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
4035 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
4036 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
4037 break;
4038 case OP_VSPLTISW0:
4039 for (unsigned i = 0; i != 16; ++i)
4040 ShufIdxs[i] = (i&3)+0;
4041 break;
4042 case OP_VSPLTISW1:
4043 for (unsigned i = 0; i != 16; ++i)
4044 ShufIdxs[i] = (i&3)+4;
4045 break;
4046 case OP_VSPLTISW2:
4047 for (unsigned i = 0; i != 16; ++i)
4048 ShufIdxs[i] = (i&3)+8;
4049 break;
4050 case OP_VSPLTISW3:
4051 for (unsigned i = 0; i != 16; ++i)
4052 ShufIdxs[i] = (i&3)+12;
4053 break;
4054 case OP_VSLDOI4:
4055 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
4056 case OP_VSLDOI8:
4057 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
4058 case OP_VSLDOI12:
4059 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
4061 EVT VT = OpLHS.getValueType();
4062 OpLHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpLHS);
4063 OpRHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpRHS);
4064 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
4065 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
4068 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
4069 /// is a shuffle we can handle in a single instruction, return it. Otherwise,
4070 /// return the code it can be lowered into. Worst case, it can always be
4071 /// lowered into a vperm.
4072 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
4073 SelectionDAG &DAG) const {
4074 DebugLoc dl = Op.getDebugLoc();
4075 SDValue V1 = Op.getOperand(0);
4076 SDValue V2 = Op.getOperand(1);
4077 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4078 EVT VT = Op.getValueType();
4080 // Cases that are handled by instructions that take permute immediates
4081 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
4082 // selected by the instruction selector.
4083 if (V2.getOpcode() == ISD::UNDEF) {
4084 if (PPC::isSplatShuffleMask(SVOp, 1) ||
4085 PPC::isSplatShuffleMask(SVOp, 2) ||
4086 PPC::isSplatShuffleMask(SVOp, 4) ||
4087 PPC::isVPKUWUMShuffleMask(SVOp, true) ||
4088 PPC::isVPKUHUMShuffleMask(SVOp, true) ||
4089 PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
4090 PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
4091 PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
4092 PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
4093 PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
4094 PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
4095 PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
4096 return Op;
4100 // Altivec has a variety of "shuffle immediates" that take two vector inputs
4101 // and produce a fixed permutation. If any of these match, do not lower to
4102 // VPERM.
4103 if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
4104 PPC::isVPKUHUMShuffleMask(SVOp, false) ||
4105 PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
4106 PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
4107 PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
4108 PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
4109 PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
4110 PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
4111 PPC::isVMRGHShuffleMask(SVOp, 4, false))
4112 return Op;
4114 // Check to see if this is a shuffle of 4-byte values. If so, we can use our
4115 // perfect shuffle table to emit an optimal matching sequence.
4116 SmallVector<int, 16> PermMask;
4117 SVOp->getMask(PermMask);
4119 unsigned PFIndexes[4];
4120 bool isFourElementShuffle = true;
4121 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
4122 unsigned EltNo = 8; // Start out undef.
4123 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
4124 if (PermMask[i*4+j] < 0)
4125 continue; // Undef, ignore it.
4127 unsigned ByteSource = PermMask[i*4+j];
4128 if ((ByteSource & 3) != j) {
4129 isFourElementShuffle = false;
4130 break;
4133 if (EltNo == 8) {
4134 EltNo = ByteSource/4;
4135 } else if (EltNo != ByteSource/4) {
4136 isFourElementShuffle = false;
4137 break;
4140 PFIndexes[i] = EltNo;
4143 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
4144 // perfect shuffle vector to determine if it is cost effective to do this as
4145 // discrete instructions, or whether we should use a vperm.
4146 if (isFourElementShuffle) {
4147 // Compute the index in the perfect shuffle table.
4148 unsigned PFTableIndex =
4149 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4151 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4152 unsigned Cost = (PFEntry >> 30);
4154 // Determining when to avoid vperm is tricky. Many things affect the cost
4155 // of vperm, particularly how many times the perm mask needs to be computed.
4156 // For example, if the perm mask can be hoisted out of a loop or is already
4157 // used (perhaps because there are multiple permutes with the same shuffle
4158 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
4159 // the loop requires an extra register.
4161 // As a compromise, we only emit discrete instructions if the shuffle can be
4162 // generated in 3 or fewer operations. When we have loop information
4163 // available, if this block is within a loop, we should avoid using vperm
4164 // for 3-operation perms and use a constant pool load instead.
4165 if (Cost < 3)
4166 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4169 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
4170 // vector that will get spilled to the constant pool.
4171 if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
4173 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
4174 // that it is in input element units, not in bytes. Convert now.
4175 EVT EltVT = V1.getValueType().getVectorElementType();
4176 unsigned BytesPerElement = EltVT.getSizeInBits()/8;
4178 SmallVector<SDValue, 16> ResultMask;
4179 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4180 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
4182 for (unsigned j = 0; j != BytesPerElement; ++j)
4183 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
4184 MVT::i32));
4187 SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
4188 &ResultMask[0], ResultMask.size());
4189 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
4192 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
4193 /// altivec comparison. If it is, return true and fill in Opc/isDot with
4194 /// information about the intrinsic.
4195 static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
4196 bool &isDot) {
4197 unsigned IntrinsicID =
4198 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
4199 CompareOpc = -1;
4200 isDot = false;
4201 switch (IntrinsicID) {
4202 default: return false;
4203 // Comparison predicates.
4204 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
4205 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
4206 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
4207 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
4208 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
4209 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
4210 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
4211 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
4212 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
4213 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
4214 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
4215 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
4216 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
4218 // Normal Comparisons.
4219 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
4220 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
4221 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
4222 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
4223 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
4224 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
4225 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
4226 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
4227 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
4228 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
4229 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
4230 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
4231 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
4233 return true;
4236 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
4237 /// lower, do it, otherwise return null.
4238 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4239 SelectionDAG &DAG) const {
4240 // If this is a lowered altivec predicate compare, CompareOpc is set to the
4241 // opcode number of the comparison.
4242 DebugLoc dl = Op.getDebugLoc();
4243 int CompareOpc;
4244 bool isDot;
4245 if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
4246 return SDValue(); // Don't custom lower most intrinsics.
4248 // If this is a non-dot comparison, make the VCMP node and we are done.
4249 if (!isDot) {
4250 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
4251 Op.getOperand(1), Op.getOperand(2),
4252 DAG.getConstant(CompareOpc, MVT::i32));
4253 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Tmp);
4256 // Create the PPCISD altivec 'dot' comparison node.
4257 SDValue Ops[] = {
4258 Op.getOperand(2), // LHS
4259 Op.getOperand(3), // RHS
4260 DAG.getConstant(CompareOpc, MVT::i32)
4262 std::vector<EVT> VTs;
4263 VTs.push_back(Op.getOperand(2).getValueType());
4264 VTs.push_back(MVT::Flag);
4265 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
4267 // Now that we have the comparison, emit a copy from the CR to a GPR.
4268 // This is flagged to the above dot comparison.
4269 SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
4270 DAG.getRegister(PPC::CR6, MVT::i32),
4271 CompNode.getValue(1));
4273 // Unpack the result based on how the target uses it.
4274 unsigned BitNo; // Bit # of CR6.
4275 bool InvertBit; // Invert result?
4276 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
4277 default: // Can't happen, don't crash on invalid number though.
4278 case 0: // Return the value of the EQ bit of CR6.
4279 BitNo = 0; InvertBit = false;
4280 break;
4281 case 1: // Return the inverted value of the EQ bit of CR6.
4282 BitNo = 0; InvertBit = true;
4283 break;
4284 case 2: // Return the value of the LT bit of CR6.
4285 BitNo = 2; InvertBit = false;
4286 break;
4287 case 3: // Return the inverted value of the LT bit of CR6.
4288 BitNo = 2; InvertBit = true;
4289 break;
4292 // Shift the bit into the low position.
4293 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
4294 DAG.getConstant(8-(3-BitNo), MVT::i32));
4295 // Isolate the bit.
4296 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
4297 DAG.getConstant(1, MVT::i32));
4299 // If we are supposed to, toggle the bit.
4300 if (InvertBit)
4301 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
4302 DAG.getConstant(1, MVT::i32));
4303 return Flags;
4306 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
4307 SelectionDAG &DAG) const {
4308 DebugLoc dl = Op.getDebugLoc();
4309 // Create a stack slot that is 16-byte aligned.
4310 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
4311 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
4312 EVT PtrVT = getPointerTy();
4313 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4315 // Store the input value into Value#0 of the stack slot.
4316 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
4317 Op.getOperand(0), FIdx, MachinePointerInfo(),
4318 false, false, 0);
4319 // Load it out.
4320 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
4321 false, false, 0);
4324 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
4325 DebugLoc dl = Op.getDebugLoc();
4326 if (Op.getValueType() == MVT::v4i32) {
4327 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4329 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl);
4330 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
4332 SDValue RHSSwap = // = vrlw RHS, 16
4333 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
4335 // Shrinkify inputs to v8i16.
4336 LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, LHS);
4337 RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHS);
4338 RHSSwap = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHSSwap);
4340 // Low parts multiplied together, generating 32-bit results (we ignore the
4341 // top parts).
4342 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
4343 LHS, RHS, DAG, dl, MVT::v4i32);
4345 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
4346 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
4347 // Shift the high parts up 16 bits.
4348 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
4349 Neg16, DAG, dl);
4350 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
4351 } else if (Op.getValueType() == MVT::v8i16) {
4352 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4354 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
4356 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
4357 LHS, RHS, Zero, DAG, dl);
4358 } else if (Op.getValueType() == MVT::v16i8) {
4359 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4361 // Multiply the even 8-bit parts, producing 16-bit sums.
4362 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
4363 LHS, RHS, DAG, dl, MVT::v8i16);
4364 EvenParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, EvenParts);
4366 // Multiply the odd 8-bit parts, producing 16-bit sums.
4367 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
4368 LHS, RHS, DAG, dl, MVT::v8i16);
4369 OddParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OddParts);
4371 // Merge the results together.
4372 int Ops[16];
4373 for (unsigned i = 0; i != 8; ++i) {
4374 Ops[i*2 ] = 2*i+1;
4375 Ops[i*2+1] = 2*i+1+16;
4377 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
4378 } else {
4379 llvm_unreachable("Unknown mul to lower!");
4383 /// LowerOperation - Provide custom lowering hooks for some operations.
4385 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4386 switch (Op.getOpcode()) {
4387 default: llvm_unreachable("Wasn't expecting to be able to lower this!");
4388 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
4389 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
4390 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
4391 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
4392 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
4393 case ISD::SETCC: return LowerSETCC(Op, DAG);
4394 case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG);
4395 case ISD::VASTART:
4396 return LowerVASTART(Op, DAG, PPCSubTarget);
4398 case ISD::VAARG:
4399 return LowerVAARG(Op, DAG, PPCSubTarget);
4401 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
4402 case ISD::DYNAMIC_STACKALLOC:
4403 return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
4405 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
4406 case ISD::FP_TO_UINT:
4407 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG,
4408 Op.getDebugLoc());
4409 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
4410 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
4412 // Lower 64-bit shifts.
4413 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG);
4414 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG);
4415 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG);
4417 // Vector-related lowering.
4418 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
4419 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
4420 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4421 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
4422 case ISD::MUL: return LowerMUL(Op, DAG);
4424 // Frame & Return address.
4425 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4426 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
4428 return SDValue();
4431 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
4432 SmallVectorImpl<SDValue>&Results,
4433 SelectionDAG &DAG) const {
4434 DebugLoc dl = N->getDebugLoc();
4435 switch (N->getOpcode()) {
4436 default:
4437 assert(false && "Do not know how to custom type legalize this operation!");
4438 return;
4439 case ISD::FP_ROUND_INREG: {
4440 assert(N->getValueType(0) == MVT::ppcf128);
4441 assert(N->getOperand(0).getValueType() == MVT::ppcf128);
4442 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4443 MVT::f64, N->getOperand(0),
4444 DAG.getIntPtrConstant(0));
4445 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4446 MVT::f64, N->getOperand(0),
4447 DAG.getIntPtrConstant(1));
4449 // This sequence changes FPSCR to do round-to-zero, adds the two halves
4450 // of the long double, and puts FPSCR back the way it was. We do not
4451 // actually model FPSCR.
4452 std::vector<EVT> NodeTys;
4453 SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
4455 NodeTys.push_back(MVT::f64); // Return register
4456 NodeTys.push_back(MVT::Flag); // Returns a flag for later insns
4457 Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4458 MFFSreg = Result.getValue(0);
4459 InFlag = Result.getValue(1);
4461 NodeTys.clear();
4462 NodeTys.push_back(MVT::Flag); // Returns a flag
4463 Ops[0] = DAG.getConstant(31, MVT::i32);
4464 Ops[1] = InFlag;
4465 Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
4466 InFlag = Result.getValue(0);
4468 NodeTys.clear();
4469 NodeTys.push_back(MVT::Flag); // Returns a flag
4470 Ops[0] = DAG.getConstant(30, MVT::i32);
4471 Ops[1] = InFlag;
4472 Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
4473 InFlag = Result.getValue(0);
4475 NodeTys.clear();
4476 NodeTys.push_back(MVT::f64); // result of add
4477 NodeTys.push_back(MVT::Flag); // Returns a flag
4478 Ops[0] = Lo;
4479 Ops[1] = Hi;
4480 Ops[2] = InFlag;
4481 Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
4482 FPreg = Result.getValue(0);
4483 InFlag = Result.getValue(1);
4485 NodeTys.clear();
4486 NodeTys.push_back(MVT::f64);
4487 Ops[0] = DAG.getConstant(1, MVT::i32);
4488 Ops[1] = MFFSreg;
4489 Ops[2] = FPreg;
4490 Ops[3] = InFlag;
4491 Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
4492 FPreg = Result.getValue(0);
4494 // We know the low half is about to be thrown away, so just use something
4495 // convenient.
4496 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
4497 FPreg, FPreg));
4498 return;
4500 case ISD::FP_TO_SINT:
4501 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
4502 return;
4507 //===----------------------------------------------------------------------===//
4508 // Other Lowering Code
4509 //===----------------------------------------------------------------------===//
4511 MachineBasicBlock *
4512 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4513 bool is64bit, unsigned BinOpcode) const {
4514 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4515 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4517 const BasicBlock *LLVM_BB = BB->getBasicBlock();
4518 MachineFunction *F = BB->getParent();
4519 MachineFunction::iterator It = BB;
4520 ++It;
4522 unsigned dest = MI->getOperand(0).getReg();
4523 unsigned ptrA = MI->getOperand(1).getReg();
4524 unsigned ptrB = MI->getOperand(2).getReg();
4525 unsigned incr = MI->getOperand(3).getReg();
4526 DebugLoc dl = MI->getDebugLoc();
4528 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4529 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4530 F->insert(It, loopMBB);
4531 F->insert(It, exitMBB);
4532 exitMBB->splice(exitMBB->begin(), BB,
4533 llvm::next(MachineBasicBlock::iterator(MI)),
4534 BB->end());
4535 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4537 MachineRegisterInfo &RegInfo = F->getRegInfo();
4538 unsigned TmpReg = (!BinOpcode) ? incr :
4539 RegInfo.createVirtualRegister(
4540 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4541 (const TargetRegisterClass *) &PPC::GPRCRegClass);
4543 // thisMBB:
4544 // ...
4545 // fallthrough --> loopMBB
4546 BB->addSuccessor(loopMBB);
4548 // loopMBB:
4549 // l[wd]arx dest, ptr
4550 // add r0, dest, incr
4551 // st[wd]cx. r0, ptr
4552 // bne- loopMBB
4553 // fallthrough --> exitMBB
4554 BB = loopMBB;
4555 BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4556 .addReg(ptrA).addReg(ptrB);
4557 if (BinOpcode)
4558 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
4559 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4560 .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
4561 BuildMI(BB, dl, TII->get(PPC::BCC))
4562 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4563 BB->addSuccessor(loopMBB);
4564 BB->addSuccessor(exitMBB);
4566 // exitMBB:
4567 // ...
4568 BB = exitMBB;
4569 return BB;
4572 MachineBasicBlock *
4573 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
4574 MachineBasicBlock *BB,
4575 bool is8bit, // operation
4576 unsigned BinOpcode) const {
4577 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4578 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4579 // In 64 bit mode we have to use 64 bits for addresses, even though the
4580 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address
4581 // registers without caring whether they're 32 or 64, but here we're
4582 // doing actual arithmetic on the addresses.
4583 bool is64bit = PPCSubTarget.isPPC64();
4585 const BasicBlock *LLVM_BB = BB->getBasicBlock();
4586 MachineFunction *F = BB->getParent();
4587 MachineFunction::iterator It = BB;
4588 ++It;
4590 unsigned dest = MI->getOperand(0).getReg();
4591 unsigned ptrA = MI->getOperand(1).getReg();
4592 unsigned ptrB = MI->getOperand(2).getReg();
4593 unsigned incr = MI->getOperand(3).getReg();
4594 DebugLoc dl = MI->getDebugLoc();
4596 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4597 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4598 F->insert(It, loopMBB);
4599 F->insert(It, exitMBB);
4600 exitMBB->splice(exitMBB->begin(), BB,
4601 llvm::next(MachineBasicBlock::iterator(MI)),
4602 BB->end());
4603 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4605 MachineRegisterInfo &RegInfo = F->getRegInfo();
4606 const TargetRegisterClass *RC =
4607 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4608 (const TargetRegisterClass *) &PPC::GPRCRegClass;
4609 unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4610 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4611 unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4612 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
4613 unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4614 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4615 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4616 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4617 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
4618 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4619 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4620 unsigned Ptr1Reg;
4621 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
4623 // thisMBB:
4624 // ...
4625 // fallthrough --> loopMBB
4626 BB->addSuccessor(loopMBB);
4628 // The 4-byte load must be aligned, while a char or short may be
4629 // anywhere in the word. Hence all this nasty bookkeeping code.
4630 // add ptr1, ptrA, ptrB [copy if ptrA==0]
4631 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4632 // xori shift, shift1, 24 [16]
4633 // rlwinm ptr, ptr1, 0, 0, 29
4634 // slw incr2, incr, shift
4635 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4636 // slw mask, mask2, shift
4637 // loopMBB:
4638 // lwarx tmpDest, ptr
4639 // add tmp, tmpDest, incr2
4640 // andc tmp2, tmpDest, mask
4641 // and tmp3, tmp, mask
4642 // or tmp4, tmp3, tmp2
4643 // stwcx. tmp4, ptr
4644 // bne- loopMBB
4645 // fallthrough --> exitMBB
4646 // srw dest, tmpDest, shift
4648 if (ptrA!=PPC::R0) {
4649 Ptr1Reg = RegInfo.createVirtualRegister(RC);
4650 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4651 .addReg(ptrA).addReg(ptrB);
4652 } else {
4653 Ptr1Reg = ptrB;
4655 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4656 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4657 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4658 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4659 if (is64bit)
4660 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4661 .addReg(Ptr1Reg).addImm(0).addImm(61);
4662 else
4663 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4664 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4665 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
4666 .addReg(incr).addReg(ShiftReg);
4667 if (is8bit)
4668 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4669 else {
4670 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4671 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
4673 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4674 .addReg(Mask2Reg).addReg(ShiftReg);
4676 BB = loopMBB;
4677 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4678 .addReg(PPC::R0).addReg(PtrReg);
4679 if (BinOpcode)
4680 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
4681 .addReg(Incr2Reg).addReg(TmpDestReg);
4682 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4683 .addReg(TmpDestReg).addReg(MaskReg);
4684 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4685 .addReg(TmpReg).addReg(MaskReg);
4686 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4687 .addReg(Tmp3Reg).addReg(Tmp2Reg);
4688 BuildMI(BB, dl, TII->get(PPC::STWCX))
4689 .addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg);
4690 BuildMI(BB, dl, TII->get(PPC::BCC))
4691 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4692 BB->addSuccessor(loopMBB);
4693 BB->addSuccessor(exitMBB);
4695 // exitMBB:
4696 // ...
4697 BB = exitMBB;
4698 BuildMI(BB, dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg).addReg(ShiftReg);
4699 return BB;
4702 MachineBasicBlock *
4703 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4704 MachineBasicBlock *BB) const {
4705 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4707 // To "insert" these instructions we actually have to insert their
4708 // control-flow patterns.
4709 const BasicBlock *LLVM_BB = BB->getBasicBlock();
4710 MachineFunction::iterator It = BB;
4711 ++It;
4713 MachineFunction *F = BB->getParent();
4715 if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4716 MI->getOpcode() == PPC::SELECT_CC_I8 ||
4717 MI->getOpcode() == PPC::SELECT_CC_F4 ||
4718 MI->getOpcode() == PPC::SELECT_CC_F8 ||
4719 MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4721 // The incoming instruction knows the destination vreg to set, the
4722 // condition code register to branch on, the true/false values to
4723 // select between, and a branch opcode to use.
4725 // thisMBB:
4726 // ...
4727 // TrueVal = ...
4728 // cmpTY ccX, r1, r2
4729 // bCC copy1MBB
4730 // fallthrough --> copy0MBB
4731 MachineBasicBlock *thisMBB = BB;
4732 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4733 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4734 unsigned SelectPred = MI->getOperand(4).getImm();
4735 DebugLoc dl = MI->getDebugLoc();
4736 F->insert(It, copy0MBB);
4737 F->insert(It, sinkMBB);
4739 // Transfer the remainder of BB and its successor edges to sinkMBB.
4740 sinkMBB->splice(sinkMBB->begin(), BB,
4741 llvm::next(MachineBasicBlock::iterator(MI)),
4742 BB->end());
4743 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4745 // Next, add the true and fallthrough blocks as its successors.
4746 BB->addSuccessor(copy0MBB);
4747 BB->addSuccessor(sinkMBB);
4749 BuildMI(BB, dl, TII->get(PPC::BCC))
4750 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4752 // copy0MBB:
4753 // %FalseValue = ...
4754 // # fallthrough to sinkMBB
4755 BB = copy0MBB;
4757 // Update machine-CFG edges
4758 BB->addSuccessor(sinkMBB);
4760 // sinkMBB:
4761 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4762 // ...
4763 BB = sinkMBB;
4764 BuildMI(*BB, BB->begin(), dl,
4765 TII->get(PPC::PHI), MI->getOperand(0).getReg())
4766 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4767 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4769 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4770 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4771 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4772 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4773 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4774 BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4775 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4776 BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4778 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4779 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4780 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4781 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4782 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4783 BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4784 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4785 BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4787 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4788 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4789 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4790 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4791 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4792 BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4793 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4794 BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4796 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4797 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4798 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4799 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4800 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4801 BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4802 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4803 BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4805 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4806 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4807 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4808 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4809 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4810 BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4811 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4812 BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
4814 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4815 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4816 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4817 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4818 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4819 BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4820 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4821 BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4823 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
4824 BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
4825 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
4826 BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
4827 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
4828 BB = EmitAtomicBinary(MI, BB, false, 0);
4829 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
4830 BB = EmitAtomicBinary(MI, BB, true, 0);
4832 else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4833 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4834 bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4836 unsigned dest = MI->getOperand(0).getReg();
4837 unsigned ptrA = MI->getOperand(1).getReg();
4838 unsigned ptrB = MI->getOperand(2).getReg();
4839 unsigned oldval = MI->getOperand(3).getReg();
4840 unsigned newval = MI->getOperand(4).getReg();
4841 DebugLoc dl = MI->getDebugLoc();
4843 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4844 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4845 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4846 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4847 F->insert(It, loop1MBB);
4848 F->insert(It, loop2MBB);
4849 F->insert(It, midMBB);
4850 F->insert(It, exitMBB);
4851 exitMBB->splice(exitMBB->begin(), BB,
4852 llvm::next(MachineBasicBlock::iterator(MI)),
4853 BB->end());
4854 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4856 // thisMBB:
4857 // ...
4858 // fallthrough --> loopMBB
4859 BB->addSuccessor(loop1MBB);
4861 // loop1MBB:
4862 // l[wd]arx dest, ptr
4863 // cmp[wd] dest, oldval
4864 // bne- midMBB
4865 // loop2MBB:
4866 // st[wd]cx. newval, ptr
4867 // bne- loopMBB
4868 // b exitBB
4869 // midMBB:
4870 // st[wd]cx. dest, ptr
4871 // exitBB:
4872 BB = loop1MBB;
4873 BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4874 .addReg(ptrA).addReg(ptrB);
4875 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4876 .addReg(oldval).addReg(dest);
4877 BuildMI(BB, dl, TII->get(PPC::BCC))
4878 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4879 BB->addSuccessor(loop2MBB);
4880 BB->addSuccessor(midMBB);
4882 BB = loop2MBB;
4883 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4884 .addReg(newval).addReg(ptrA).addReg(ptrB);
4885 BuildMI(BB, dl, TII->get(PPC::BCC))
4886 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4887 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4888 BB->addSuccessor(loop1MBB);
4889 BB->addSuccessor(exitMBB);
4891 BB = midMBB;
4892 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4893 .addReg(dest).addReg(ptrA).addReg(ptrB);
4894 BB->addSuccessor(exitMBB);
4896 // exitMBB:
4897 // ...
4898 BB = exitMBB;
4899 } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
4900 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
4901 // We must use 64-bit registers for addresses when targeting 64-bit,
4902 // since we're actually doing arithmetic on them. Other registers
4903 // can be 32-bit.
4904 bool is64bit = PPCSubTarget.isPPC64();
4905 bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
4907 unsigned dest = MI->getOperand(0).getReg();
4908 unsigned ptrA = MI->getOperand(1).getReg();
4909 unsigned ptrB = MI->getOperand(2).getReg();
4910 unsigned oldval = MI->getOperand(3).getReg();
4911 unsigned newval = MI->getOperand(4).getReg();
4912 DebugLoc dl = MI->getDebugLoc();
4914 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4915 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4916 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4917 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4918 F->insert(It, loop1MBB);
4919 F->insert(It, loop2MBB);
4920 F->insert(It, midMBB);
4921 F->insert(It, exitMBB);
4922 exitMBB->splice(exitMBB->begin(), BB,
4923 llvm::next(MachineBasicBlock::iterator(MI)),
4924 BB->end());
4925 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4927 MachineRegisterInfo &RegInfo = F->getRegInfo();
4928 const TargetRegisterClass *RC =
4929 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4930 (const TargetRegisterClass *) &PPC::GPRCRegClass;
4931 unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4932 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4933 unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4934 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
4935 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
4936 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
4937 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
4938 unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4939 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4940 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4941 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4942 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4943 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4944 unsigned Ptr1Reg;
4945 unsigned TmpReg = RegInfo.createVirtualRegister(RC);
4946 // thisMBB:
4947 // ...
4948 // fallthrough --> loopMBB
4949 BB->addSuccessor(loop1MBB);
4951 // The 4-byte load must be aligned, while a char or short may be
4952 // anywhere in the word. Hence all this nasty bookkeeping code.
4953 // add ptr1, ptrA, ptrB [copy if ptrA==0]
4954 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4955 // xori shift, shift1, 24 [16]
4956 // rlwinm ptr, ptr1, 0, 0, 29
4957 // slw newval2, newval, shift
4958 // slw oldval2, oldval,shift
4959 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4960 // slw mask, mask2, shift
4961 // and newval3, newval2, mask
4962 // and oldval3, oldval2, mask
4963 // loop1MBB:
4964 // lwarx tmpDest, ptr
4965 // and tmp, tmpDest, mask
4966 // cmpw tmp, oldval3
4967 // bne- midMBB
4968 // loop2MBB:
4969 // andc tmp2, tmpDest, mask
4970 // or tmp4, tmp2, newval3
4971 // stwcx. tmp4, ptr
4972 // bne- loop1MBB
4973 // b exitBB
4974 // midMBB:
4975 // stwcx. tmpDest, ptr
4976 // exitBB:
4977 // srw dest, tmpDest, shift
4978 if (ptrA!=PPC::R0) {
4979 Ptr1Reg = RegInfo.createVirtualRegister(RC);
4980 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4981 .addReg(ptrA).addReg(ptrB);
4982 } else {
4983 Ptr1Reg = ptrB;
4985 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4986 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4987 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4988 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4989 if (is64bit)
4990 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4991 .addReg(Ptr1Reg).addImm(0).addImm(61);
4992 else
4993 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4994 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4995 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
4996 .addReg(newval).addReg(ShiftReg);
4997 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
4998 .addReg(oldval).addReg(ShiftReg);
4999 if (is8bit)
5000 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
5001 else {
5002 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
5003 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
5004 .addReg(Mask3Reg).addImm(65535);
5006 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
5007 .addReg(Mask2Reg).addReg(ShiftReg);
5008 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
5009 .addReg(NewVal2Reg).addReg(MaskReg);
5010 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
5011 .addReg(OldVal2Reg).addReg(MaskReg);
5013 BB = loop1MBB;
5014 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
5015 .addReg(PPC::R0).addReg(PtrReg);
5016 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
5017 .addReg(TmpDestReg).addReg(MaskReg);
5018 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
5019 .addReg(TmpReg).addReg(OldVal3Reg);
5020 BuildMI(BB, dl, TII->get(PPC::BCC))
5021 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
5022 BB->addSuccessor(loop2MBB);
5023 BB->addSuccessor(midMBB);
5025 BB = loop2MBB;
5026 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
5027 .addReg(TmpDestReg).addReg(MaskReg);
5028 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
5029 .addReg(Tmp2Reg).addReg(NewVal3Reg);
5030 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
5031 .addReg(PPC::R0).addReg(PtrReg);
5032 BuildMI(BB, dl, TII->get(PPC::BCC))
5033 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
5034 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
5035 BB->addSuccessor(loop1MBB);
5036 BB->addSuccessor(exitMBB);
5038 BB = midMBB;
5039 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
5040 .addReg(PPC::R0).addReg(PtrReg);
5041 BB->addSuccessor(exitMBB);
5043 // exitMBB:
5044 // ...
5045 BB = exitMBB;
5046 BuildMI(BB, dl, TII->get(PPC::SRW),dest).addReg(TmpReg).addReg(ShiftReg);
5047 } else {
5048 llvm_unreachable("Unexpected instr type to insert");
5051 MI->eraseFromParent(); // The pseudo instruction is gone now.
5052 return BB;
5055 //===----------------------------------------------------------------------===//
5056 // Target Optimization Hooks
5057 //===----------------------------------------------------------------------===//
5059 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
5060 DAGCombinerInfo &DCI) const {
5061 const TargetMachine &TM = getTargetMachine();
5062 SelectionDAG &DAG = DCI.DAG;
5063 DebugLoc dl = N->getDebugLoc();
5064 switch (N->getOpcode()) {
5065 default: break;
5066 case PPCISD::SHL:
5067 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5068 if (C->isNullValue()) // 0 << V -> 0.
5069 return N->getOperand(0);
5071 break;
5072 case PPCISD::SRL:
5073 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5074 if (C->isNullValue()) // 0 >>u V -> 0.
5075 return N->getOperand(0);
5077 break;
5078 case PPCISD::SRA:
5079 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5080 if (C->isNullValue() || // 0 >>s V -> 0.
5081 C->isAllOnesValue()) // -1 >>s V -> -1.
5082 return N->getOperand(0);
5084 break;
5086 case ISD::SINT_TO_FP:
5087 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
5088 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
5089 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
5090 // We allow the src/dst to be either f32/f64, but the intermediate
5091 // type must be i64.
5092 if (N->getOperand(0).getValueType() == MVT::i64 &&
5093 N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
5094 SDValue Val = N->getOperand(0).getOperand(0);
5095 if (Val.getValueType() == MVT::f32) {
5096 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5097 DCI.AddToWorklist(Val.getNode());
5100 Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
5101 DCI.AddToWorklist(Val.getNode());
5102 Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
5103 DCI.AddToWorklist(Val.getNode());
5104 if (N->getValueType(0) == MVT::f32) {
5105 Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
5106 DAG.getIntPtrConstant(0));
5107 DCI.AddToWorklist(Val.getNode());
5109 return Val;
5110 } else if (N->getOperand(0).getValueType() == MVT::i32) {
5111 // If the intermediate type is i32, we can avoid the load/store here
5112 // too.
5116 break;
5117 case ISD::STORE:
5118 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
5119 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
5120 !cast<StoreSDNode>(N)->isTruncatingStore() &&
5121 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
5122 N->getOperand(1).getValueType() == MVT::i32 &&
5123 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
5124 SDValue Val = N->getOperand(1).getOperand(0);
5125 if (Val.getValueType() == MVT::f32) {
5126 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5127 DCI.AddToWorklist(Val.getNode());
5129 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
5130 DCI.AddToWorklist(Val.getNode());
5132 Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
5133 N->getOperand(2), N->getOperand(3));
5134 DCI.AddToWorklist(Val.getNode());
5135 return Val;
5138 // Turn STORE (BSWAP) -> sthbrx/stwbrx.
5139 if (cast<StoreSDNode>(N)->isUnindexed() &&
5140 N->getOperand(1).getOpcode() == ISD::BSWAP &&
5141 N->getOperand(1).getNode()->hasOneUse() &&
5142 (N->getOperand(1).getValueType() == MVT::i32 ||
5143 N->getOperand(1).getValueType() == MVT::i16)) {
5144 SDValue BSwapOp = N->getOperand(1).getOperand(0);
5145 // Do an any-extend to 32-bits if this is a half-word input.
5146 if (BSwapOp.getValueType() == MVT::i16)
5147 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
5149 SDValue Ops[] = {
5150 N->getOperand(0), BSwapOp, N->getOperand(2),
5151 DAG.getValueType(N->getOperand(1).getValueType())
5153 return
5154 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
5155 Ops, array_lengthof(Ops),
5156 cast<StoreSDNode>(N)->getMemoryVT(),
5157 cast<StoreSDNode>(N)->getMemOperand());
5159 break;
5160 case ISD::BSWAP:
5161 // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
5162 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5163 N->getOperand(0).hasOneUse() &&
5164 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
5165 SDValue Load = N->getOperand(0);
5166 LoadSDNode *LD = cast<LoadSDNode>(Load);
5167 // Create the byte-swapping load.
5168 SDValue Ops[] = {
5169 LD->getChain(), // Chain
5170 LD->getBasePtr(), // Ptr
5171 DAG.getValueType(N->getValueType(0)) // VT
5173 SDValue BSLoad =
5174 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
5175 DAG.getVTList(MVT::i32, MVT::Other), Ops, 3,
5176 LD->getMemoryVT(), LD->getMemOperand());
5178 // If this is an i16 load, insert the truncate.
5179 SDValue ResVal = BSLoad;
5180 if (N->getValueType(0) == MVT::i16)
5181 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
5183 // First, combine the bswap away. This makes the value produced by the
5184 // load dead.
5185 DCI.CombineTo(N, ResVal);
5187 // Next, combine the load away, we give it a bogus result value but a real
5188 // chain result. The result value is dead because the bswap is dead.
5189 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5191 // Return N so it doesn't get rechecked!
5192 return SDValue(N, 0);
5195 break;
5196 case PPCISD::VCMP: {
5197 // If a VCMPo node already exists with exactly the same operands as this
5198 // node, use its result instead of this node (VCMPo computes both a CR6 and
5199 // a normal output).
5201 if (!N->getOperand(0).hasOneUse() &&
5202 !N->getOperand(1).hasOneUse() &&
5203 !N->getOperand(2).hasOneUse()) {
5205 // Scan all of the users of the LHS, looking for VCMPo's that match.
5206 SDNode *VCMPoNode = 0;
5208 SDNode *LHSN = N->getOperand(0).getNode();
5209 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
5210 UI != E; ++UI)
5211 if (UI->getOpcode() == PPCISD::VCMPo &&
5212 UI->getOperand(1) == N->getOperand(1) &&
5213 UI->getOperand(2) == N->getOperand(2) &&
5214 UI->getOperand(0) == N->getOperand(0)) {
5215 VCMPoNode = *UI;
5216 break;
5219 // If there is no VCMPo node, or if the flag value has a single use, don't
5220 // transform this.
5221 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
5222 break;
5224 // Look at the (necessarily single) use of the flag value. If it has a
5225 // chain, this transformation is more complex. Note that multiple things
5226 // could use the value result, which we should ignore.
5227 SDNode *FlagUser = 0;
5228 for (SDNode::use_iterator UI = VCMPoNode->use_begin();
5229 FlagUser == 0; ++UI) {
5230 assert(UI != VCMPoNode->use_end() && "Didn't find user!");
5231 SDNode *User = *UI;
5232 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
5233 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
5234 FlagUser = User;
5235 break;
5240 // If the user is a MFCR instruction, we know this is safe. Otherwise we
5241 // give up for right now.
5242 if (FlagUser->getOpcode() == PPCISD::MFCR)
5243 return SDValue(VCMPoNode, 0);
5245 break;
5247 case ISD::BR_CC: {
5248 // If this is a branch on an altivec predicate comparison, lower this so
5249 // that we don't have to do a MFCR: instead, branch directly on CR6. This
5250 // lowering is done pre-legalize, because the legalizer lowers the predicate
5251 // compare down to code that is difficult to reassemble.
5252 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5253 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
5254 int CompareOpc;
5255 bool isDot;
5257 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
5258 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
5259 getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
5260 assert(isDot && "Can't compare against a vector result!");
5262 // If this is a comparison against something other than 0/1, then we know
5263 // that the condition is never/always true.
5264 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
5265 if (Val != 0 && Val != 1) {
5266 if (CC == ISD::SETEQ) // Cond never true, remove branch.
5267 return N->getOperand(0);
5268 // Always !=, turn it into an unconditional branch.
5269 return DAG.getNode(ISD::BR, dl, MVT::Other,
5270 N->getOperand(0), N->getOperand(4));
5273 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
5275 // Create the PPCISD altivec 'dot' comparison node.
5276 std::vector<EVT> VTs;
5277 SDValue Ops[] = {
5278 LHS.getOperand(2), // LHS of compare
5279 LHS.getOperand(3), // RHS of compare
5280 DAG.getConstant(CompareOpc, MVT::i32)
5282 VTs.push_back(LHS.getOperand(2).getValueType());
5283 VTs.push_back(MVT::Flag);
5284 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5286 // Unpack the result based on how the target uses it.
5287 PPC::Predicate CompOpc;
5288 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
5289 default: // Can't happen, don't crash on invalid number though.
5290 case 0: // Branch on the value of the EQ bit of CR6.
5291 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
5292 break;
5293 case 1: // Branch on the inverted value of the EQ bit of CR6.
5294 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
5295 break;
5296 case 2: // Branch on the value of the LT bit of CR6.
5297 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
5298 break;
5299 case 3: // Branch on the inverted value of the LT bit of CR6.
5300 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
5301 break;
5304 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
5305 DAG.getConstant(CompOpc, MVT::i32),
5306 DAG.getRegister(PPC::CR6, MVT::i32),
5307 N->getOperand(4), CompNode.getValue(1));
5309 break;
5313 return SDValue();
5316 //===----------------------------------------------------------------------===//
5317 // Inline Assembly Support
5318 //===----------------------------------------------------------------------===//
5320 void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5321 const APInt &Mask,
5322 APInt &KnownZero,
5323 APInt &KnownOne,
5324 const SelectionDAG &DAG,
5325 unsigned Depth) const {
5326 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5327 switch (Op.getOpcode()) {
5328 default: break;
5329 case PPCISD::LBRX: {
5330 // lhbrx is known to have the top bits cleared out.
5331 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
5332 KnownZero = 0xFFFF0000;
5333 break;
5335 case ISD::INTRINSIC_WO_CHAIN: {
5336 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
5337 default: break;
5338 case Intrinsic::ppc_altivec_vcmpbfp_p:
5339 case Intrinsic::ppc_altivec_vcmpeqfp_p:
5340 case Intrinsic::ppc_altivec_vcmpequb_p:
5341 case Intrinsic::ppc_altivec_vcmpequh_p:
5342 case Intrinsic::ppc_altivec_vcmpequw_p:
5343 case Intrinsic::ppc_altivec_vcmpgefp_p:
5344 case Intrinsic::ppc_altivec_vcmpgtfp_p:
5345 case Intrinsic::ppc_altivec_vcmpgtsb_p:
5346 case Intrinsic::ppc_altivec_vcmpgtsh_p:
5347 case Intrinsic::ppc_altivec_vcmpgtsw_p:
5348 case Intrinsic::ppc_altivec_vcmpgtub_p:
5349 case Intrinsic::ppc_altivec_vcmpgtuh_p:
5350 case Intrinsic::ppc_altivec_vcmpgtuw_p:
5351 KnownZero = ~1U; // All bits but the low one are known to be zero.
5352 break;
5359 /// getConstraintType - Given a constraint, return the type of
5360 /// constraint it is for this target.
5361 PPCTargetLowering::ConstraintType
5362 PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
5363 if (Constraint.size() == 1) {
5364 switch (Constraint[0]) {
5365 default: break;
5366 case 'b':
5367 case 'r':
5368 case 'f':
5369 case 'v':
5370 case 'y':
5371 return C_RegisterClass;
5374 return TargetLowering::getConstraintType(Constraint);
5377 /// Examine constraint type and operand type and determine a weight value.
5378 /// This object must already have been set up with the operand type
5379 /// and the current alternative constraint selected.
5380 TargetLowering::ConstraintWeight
5381 PPCTargetLowering::getSingleConstraintMatchWeight(
5382 AsmOperandInfo &info, const char *constraint) const {
5383 ConstraintWeight weight = CW_Invalid;
5384 Value *CallOperandVal = info.CallOperandVal;
5385 // If we don't have a value, we can't do a match,
5386 // but allow it at the lowest weight.
5387 if (CallOperandVal == NULL)
5388 return CW_Default;
5389 const Type *type = CallOperandVal->getType();
5390 // Look at the constraint type.
5391 switch (*constraint) {
5392 default:
5393 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
5394 break;
5395 case 'b':
5396 if (type->isIntegerTy())
5397 weight = CW_Register;
5398 break;
5399 case 'f':
5400 if (type->isFloatTy())
5401 weight = CW_Register;
5402 break;
5403 case 'd':
5404 if (type->isDoubleTy())
5405 weight = CW_Register;
5406 break;
5407 case 'v':
5408 if (type->isVectorTy())
5409 weight = CW_Register;
5410 break;
5411 case 'y':
5412 weight = CW_Register;
5413 break;
5415 return weight;
5418 std::pair<unsigned, const TargetRegisterClass*>
5419 PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5420 EVT VT) const {
5421 if (Constraint.size() == 1) {
5422 // GCC RS6000 Constraint Letters
5423 switch (Constraint[0]) {
5424 case 'b': // R1-R31
5425 case 'r': // R0-R31
5426 if (VT == MVT::i64 && PPCSubTarget.isPPC64())
5427 return std::make_pair(0U, PPC::G8RCRegisterClass);
5428 return std::make_pair(0U, PPC::GPRCRegisterClass);
5429 case 'f':
5430 if (VT == MVT::f32)
5431 return std::make_pair(0U, PPC::F4RCRegisterClass);
5432 else if (VT == MVT::f64)
5433 return std::make_pair(0U, PPC::F8RCRegisterClass);
5434 break;
5435 case 'v':
5436 return std::make_pair(0U, PPC::VRRCRegisterClass);
5437 case 'y': // crrc
5438 return std::make_pair(0U, PPC::CRRCRegisterClass);
5442 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5446 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5447 /// vector. If it is invalid, don't add anything to Ops.
5448 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter,
5449 std::vector<SDValue>&Ops,
5450 SelectionDAG &DAG) const {
5451 SDValue Result(0,0);
5452 switch (Letter) {
5453 default: break;
5454 case 'I':
5455 case 'J':
5456 case 'K':
5457 case 'L':
5458 case 'M':
5459 case 'N':
5460 case 'O':
5461 case 'P': {
5462 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
5463 if (!CST) return; // Must be an immediate to match.
5464 unsigned Value = CST->getZExtValue();
5465 switch (Letter) {
5466 default: llvm_unreachable("Unknown constraint letter!");
5467 case 'I': // "I" is a signed 16-bit constant.
5468 if ((short)Value == (int)Value)
5469 Result = DAG.getTargetConstant(Value, Op.getValueType());
5470 break;
5471 case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
5472 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
5473 if ((short)Value == 0)
5474 Result = DAG.getTargetConstant(Value, Op.getValueType());
5475 break;
5476 case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
5477 if ((Value >> 16) == 0)
5478 Result = DAG.getTargetConstant(Value, Op.getValueType());
5479 break;
5480 case 'M': // "M" is a constant that is greater than 31.
5481 if (Value > 31)
5482 Result = DAG.getTargetConstant(Value, Op.getValueType());
5483 break;
5484 case 'N': // "N" is a positive constant that is an exact power of two.
5485 if ((int)Value > 0 && isPowerOf2_32(Value))
5486 Result = DAG.getTargetConstant(Value, Op.getValueType());
5487 break;
5488 case 'O': // "O" is the constant zero.
5489 if (Value == 0)
5490 Result = DAG.getTargetConstant(Value, Op.getValueType());
5491 break;
5492 case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
5493 if ((short)-Value == (int)-Value)
5494 Result = DAG.getTargetConstant(Value, Op.getValueType());
5495 break;
5497 break;
5501 if (Result.getNode()) {
5502 Ops.push_back(Result);
5503 return;
5506 // Handle standard constraint letters.
5507 TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
5510 // isLegalAddressingMode - Return true if the addressing mode represented
5511 // by AM is legal for this target, for a load/store of the specified type.
5512 bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5513 const Type *Ty) const {
5514 // FIXME: PPC does not allow r+i addressing modes for vectors!
5516 // PPC allows a sign-extended 16-bit immediate field.
5517 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
5518 return false;
5520 // No global is ever allowed as a base.
5521 if (AM.BaseGV)
5522 return false;
5524 // PPC only support r+r,
5525 switch (AM.Scale) {
5526 case 0: // "r+i" or just "i", depending on HasBaseReg.
5527 break;
5528 case 1:
5529 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
5530 return false;
5531 // Otherwise we have r+r or r+i.
5532 break;
5533 case 2:
5534 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
5535 return false;
5536 // Allow 2*r as r+r.
5537 break;
5538 default:
5539 // No other scales are supported.
5540 return false;
5543 return true;
5546 /// isLegalAddressImmediate - Return true if the integer value can be used
5547 /// as the offset of the target addressing mode for load / store of the
5548 /// given type.
5549 bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
5550 // PPC allows a sign-extended 16-bit immediate field.
5551 return (V > -(1 << 16) && V < (1 << 16)-1);
5554 bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
5555 return false;
5558 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
5559 SelectionDAG &DAG) const {
5560 MachineFunction &MF = DAG.getMachineFunction();
5561 MachineFrameInfo *MFI = MF.getFrameInfo();
5562 MFI->setReturnAddressIsTaken(true);
5564 DebugLoc dl = Op.getDebugLoc();
5565 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5567 // Make sure the function does not optimize away the store of the RA to
5568 // the stack.
5569 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
5570 FuncInfo->setLRStoreRequired();
5571 bool isPPC64 = PPCSubTarget.isPPC64();
5572 bool isDarwinABI = PPCSubTarget.isDarwinABI();
5574 if (Depth > 0) {
5575 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5576 SDValue Offset =
5578 DAG.getConstant(PPCFrameInfo::getReturnSaveOffset(isPPC64, isDarwinABI),
5579 isPPC64? MVT::i64 : MVT::i32);
5580 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
5581 DAG.getNode(ISD::ADD, dl, getPointerTy(),
5582 FrameAddr, Offset),
5583 MachinePointerInfo(), false, false, 0);
5586 // Just load the return address off the stack.
5587 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
5588 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
5589 RetAddrFI, MachinePointerInfo(), false, false, 0);
5592 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
5593 SelectionDAG &DAG) const {
5594 DebugLoc dl = Op.getDebugLoc();
5595 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5597 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5598 bool isPPC64 = PtrVT == MVT::i64;
5600 MachineFunction &MF = DAG.getMachineFunction();
5601 MachineFrameInfo *MFI = MF.getFrameInfo();
5602 MFI->setFrameAddressIsTaken(true);
5603 bool is31 = (DisableFramePointerElim(MF) || MFI->hasVarSizedObjects()) &&
5604 MFI->getStackSize() &&
5605 !MF.getFunction()->hasFnAttr(Attribute::Naked);
5606 unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) :
5607 (is31 ? PPC::R31 : PPC::R1);
5608 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
5609 PtrVT);
5610 while (Depth--)
5611 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
5612 FrameAddr, MachinePointerInfo(), false, false, 0);
5613 return FrameAddr;
5616 bool
5617 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5618 // The PowerPC target isn't yet aware of offsets.
5619 return false;
5622 /// getOptimalMemOpType - Returns the target specific optimal type for load
5623 /// and store operations as a result of memset, memcpy, and memmove
5624 /// lowering. If DstAlign is zero that means it's safe to destination
5625 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
5626 /// means there isn't a need to check it against alignment requirement,
5627 /// probably because the source does not need to be loaded. If
5628 /// 'NonScalarIntSafe' is true, that means it's safe to return a
5629 /// non-scalar-integer type, e.g. empty string source, constant, or loaded
5630 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
5631 /// constant so it does not need to be loaded.
5632 /// It returns EVT::Other if the type should be determined using generic
5633 /// target-independent logic.
5634 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
5635 unsigned DstAlign, unsigned SrcAlign,
5636 bool NonScalarIntSafe,
5637 bool MemcpyStrSrc,
5638 MachineFunction &MF) const {
5639 if (this->PPCSubTarget.isPPC64()) {
5640 return MVT::i64;
5641 } else {
5642 return MVT::i32;