1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the PPCISelLowering class.
12 //===----------------------------------------------------------------------===//
14 #include "PPCISelLowering.h"
15 #include "PPCMachineFunctionInfo.h"
16 #include "PPCPerfectShuffle.h"
17 #include "PPCPredicates.h"
18 #include "PPCTargetMachine.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/VectorExtras.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/PseudoSourceValue.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/CallingConv.h"
30 #include "llvm/Constants.h"
31 #include "llvm/Function.h"
32 #include "llvm/Intrinsics.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Target/TargetOptions.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/DerivedTypes.h"
41 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo
, EVT
&ValVT
, MVT
&LocVT
,
42 CCValAssign::LocInfo
&LocInfo
,
43 ISD::ArgFlagsTy
&ArgFlags
,
45 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo
, EVT
&ValVT
,
47 CCValAssign::LocInfo
&LocInfo
,
48 ISD::ArgFlagsTy
&ArgFlags
,
50 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo
, EVT
&ValVT
,
52 CCValAssign::LocInfo
&LocInfo
,
53 ISD::ArgFlagsTy
&ArgFlags
,
56 static cl::opt
<bool> EnablePPCPreinc("enable-ppc-preinc",
57 cl::desc("enable preincrement load/store generation on PPC (experimental)"),
60 static TargetLoweringObjectFile
*CreateTLOF(const PPCTargetMachine
&TM
) {
61 if (TM
.getSubtargetImpl()->isDarwin())
62 return new TargetLoweringObjectFileMachO();
64 return new TargetLoweringObjectFileELF();
67 PPCTargetLowering::PPCTargetLowering(PPCTargetMachine
&TM
)
68 : TargetLowering(TM
, CreateTLOF(TM
)), PPCSubTarget(*TM
.getSubtargetImpl()) {
72 // Use _setjmp/_longjmp instead of setjmp/longjmp.
73 setUseUnderscoreSetJmp(true);
74 setUseUnderscoreLongJmp(true);
76 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
77 // arguments are at least 4/8 bytes aligned.
78 setMinStackArgumentAlignment(TM
.getSubtarget
<PPCSubtarget
>().isPPC64() ? 8:4);
80 // Set up the register classes.
81 addRegisterClass(MVT::i32
, PPC::GPRCRegisterClass
);
82 addRegisterClass(MVT::f32
, PPC::F4RCRegisterClass
);
83 addRegisterClass(MVT::f64
, PPC::F8RCRegisterClass
);
85 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
86 setLoadExtAction(ISD::SEXTLOAD
, MVT::i1
, Promote
);
87 setLoadExtAction(ISD::SEXTLOAD
, MVT::i8
, Expand
);
89 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
91 // PowerPC has pre-inc load and store's.
92 setIndexedLoadAction(ISD::PRE_INC
, MVT::i1
, Legal
);
93 setIndexedLoadAction(ISD::PRE_INC
, MVT::i8
, Legal
);
94 setIndexedLoadAction(ISD::PRE_INC
, MVT::i16
, Legal
);
95 setIndexedLoadAction(ISD::PRE_INC
, MVT::i32
, Legal
);
96 setIndexedLoadAction(ISD::PRE_INC
, MVT::i64
, Legal
);
97 setIndexedStoreAction(ISD::PRE_INC
, MVT::i1
, Legal
);
98 setIndexedStoreAction(ISD::PRE_INC
, MVT::i8
, Legal
);
99 setIndexedStoreAction(ISD::PRE_INC
, MVT::i16
, Legal
);
100 setIndexedStoreAction(ISD::PRE_INC
, MVT::i32
, Legal
);
101 setIndexedStoreAction(ISD::PRE_INC
, MVT::i64
, Legal
);
103 // This is used in the ppcf128->int sequence. Note it has different semantics
104 // from FP_ROUND: that rounds to nearest, this rounds to zero.
105 setOperationAction(ISD::FP_ROUND_INREG
, MVT::ppcf128
, Custom
);
107 // PowerPC has no SREM/UREM instructions
108 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
109 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
110 setOperationAction(ISD::SREM
, MVT::i64
, Expand
);
111 setOperationAction(ISD::UREM
, MVT::i64
, Expand
);
113 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
114 setOperationAction(ISD::UMUL_LOHI
, MVT::i32
, Expand
);
115 setOperationAction(ISD::SMUL_LOHI
, MVT::i32
, Expand
);
116 setOperationAction(ISD::UMUL_LOHI
, MVT::i64
, Expand
);
117 setOperationAction(ISD::SMUL_LOHI
, MVT::i64
, Expand
);
118 setOperationAction(ISD::UDIVREM
, MVT::i32
, Expand
);
119 setOperationAction(ISD::SDIVREM
, MVT::i32
, Expand
);
120 setOperationAction(ISD::UDIVREM
, MVT::i64
, Expand
);
121 setOperationAction(ISD::SDIVREM
, MVT::i64
, Expand
);
123 // We don't support sin/cos/sqrt/fmod/pow
124 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
125 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
126 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
127 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
128 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
129 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
130 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
131 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
133 setOperationAction(ISD::FLT_ROUNDS_
, MVT::i32
, Custom
);
135 // If we're enabling GP optimizations, use hardware square root
136 if (!TM
.getSubtarget
<PPCSubtarget
>().hasFSQRT()) {
137 setOperationAction(ISD::FSQRT
, MVT::f64
, Expand
);
138 setOperationAction(ISD::FSQRT
, MVT::f32
, Expand
);
141 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
142 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Expand
);
144 // PowerPC does not have BSWAP, CTPOP or CTTZ
145 setOperationAction(ISD::BSWAP
, MVT::i32
, Expand
);
146 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
147 setOperationAction(ISD::CTTZ
, MVT::i32
, Expand
);
148 setOperationAction(ISD::BSWAP
, MVT::i64
, Expand
);
149 setOperationAction(ISD::CTPOP
, MVT::i64
, Expand
);
150 setOperationAction(ISD::CTTZ
, MVT::i64
, Expand
);
152 // PowerPC does not have ROTR
153 setOperationAction(ISD::ROTR
, MVT::i32
, Expand
);
154 setOperationAction(ISD::ROTR
, MVT::i64
, Expand
);
156 // PowerPC does not have Select
157 setOperationAction(ISD::SELECT
, MVT::i32
, Expand
);
158 setOperationAction(ISD::SELECT
, MVT::i64
, Expand
);
159 setOperationAction(ISD::SELECT
, MVT::f32
, Expand
);
160 setOperationAction(ISD::SELECT
, MVT::f64
, Expand
);
162 // PowerPC wants to turn select_cc of FP into fsel when possible.
163 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Custom
);
164 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Custom
);
166 // PowerPC wants to optimize integer setcc a bit
167 setOperationAction(ISD::SETCC
, MVT::i32
, Custom
);
169 // PowerPC does not have BRCOND which requires SetCC
170 setOperationAction(ISD::BRCOND
, MVT::Other
, Expand
);
172 setOperationAction(ISD::BR_JT
, MVT::Other
, Expand
);
174 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
175 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
177 // PowerPC does not have [U|S]INT_TO_FP
178 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Expand
);
179 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Expand
);
181 setOperationAction(ISD::BIT_CONVERT
, MVT::f32
, Expand
);
182 setOperationAction(ISD::BIT_CONVERT
, MVT::i32
, Expand
);
183 setOperationAction(ISD::BIT_CONVERT
, MVT::i64
, Expand
);
184 setOperationAction(ISD::BIT_CONVERT
, MVT::f64
, Expand
);
186 // We cannot sextinreg(i1). Expand to shifts.
187 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
189 setOperationAction(ISD::EXCEPTIONADDR
, MVT::i64
, Expand
);
190 setOperationAction(ISD::EHSELECTION
, MVT::i64
, Expand
);
191 setOperationAction(ISD::EXCEPTIONADDR
, MVT::i32
, Expand
);
192 setOperationAction(ISD::EHSELECTION
, MVT::i32
, Expand
);
195 // We want to legalize GlobalAddress and ConstantPool nodes into the
196 // appropriate instructions to materialize the address.
197 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
198 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
199 setOperationAction(ISD::BlockAddress
, MVT::i32
, Custom
);
200 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
201 setOperationAction(ISD::JumpTable
, MVT::i32
, Custom
);
202 setOperationAction(ISD::GlobalAddress
, MVT::i64
, Custom
);
203 setOperationAction(ISD::GlobalTLSAddress
, MVT::i64
, Custom
);
204 setOperationAction(ISD::BlockAddress
, MVT::i64
, Custom
);
205 setOperationAction(ISD::ConstantPool
, MVT::i64
, Custom
);
206 setOperationAction(ISD::JumpTable
, MVT::i64
, Custom
);
209 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
211 // TRAMPOLINE is custom lowered.
212 setOperationAction(ISD::TRAMPOLINE
, MVT::Other
, Custom
);
214 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
215 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
217 // VAARG is custom lowered with the 32-bit SVR4 ABI.
218 if ( TM
.getSubtarget
<PPCSubtarget
>().isSVR4ABI()
219 && !TM
.getSubtarget
<PPCSubtarget
>().isPPC64())
220 setOperationAction(ISD::VAARG
, MVT::Other
, Custom
);
222 setOperationAction(ISD::VAARG
, MVT::Other
, Expand
);
224 // Use the default implementation.
225 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
226 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
227 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
228 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Custom
);
229 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
230 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i64
, Custom
);
232 // We want to custom lower some of our intrinsics.
233 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
235 // Comparisons that require checking two conditions.
236 setCondCodeAction(ISD::SETULT
, MVT::f32
, Expand
);
237 setCondCodeAction(ISD::SETULT
, MVT::f64
, Expand
);
238 setCondCodeAction(ISD::SETUGT
, MVT::f32
, Expand
);
239 setCondCodeAction(ISD::SETUGT
, MVT::f64
, Expand
);
240 setCondCodeAction(ISD::SETUEQ
, MVT::f32
, Expand
);
241 setCondCodeAction(ISD::SETUEQ
, MVT::f64
, Expand
);
242 setCondCodeAction(ISD::SETOGE
, MVT::f32
, Expand
);
243 setCondCodeAction(ISD::SETOGE
, MVT::f64
, Expand
);
244 setCondCodeAction(ISD::SETOLE
, MVT::f32
, Expand
);
245 setCondCodeAction(ISD::SETOLE
, MVT::f64
, Expand
);
246 setCondCodeAction(ISD::SETONE
, MVT::f32
, Expand
);
247 setCondCodeAction(ISD::SETONE
, MVT::f64
, Expand
);
249 if (TM
.getSubtarget
<PPCSubtarget
>().has64BitSupport()) {
250 // They also have instructions for converting between i64 and fp.
251 setOperationAction(ISD::FP_TO_SINT
, MVT::i64
, Custom
);
252 setOperationAction(ISD::FP_TO_UINT
, MVT::i64
, Expand
);
253 setOperationAction(ISD::SINT_TO_FP
, MVT::i64
, Custom
);
254 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Expand
);
255 // This is just the low 32 bits of a (signed) fp->i64 conversion.
256 // We cannot do this with Promote because i64 is not a legal type.
257 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Custom
);
259 // FIXME: disable this lowered code. This generates 64-bit register values,
260 // and we don't model the fact that the top part is clobbered by calls. We
261 // need to flag these together so that the value isn't live across a call.
262 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
264 // PowerPC does not have FP_TO_UINT on 32-bit implementations.
265 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Expand
);
268 if (TM
.getSubtarget
<PPCSubtarget
>().use64BitRegs()) {
269 // 64-bit PowerPC implementations can support i64 types directly
270 addRegisterClass(MVT::i64
, PPC::G8RCRegisterClass
);
271 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
272 setOperationAction(ISD::BUILD_PAIR
, MVT::i64
, Expand
);
273 // 64-bit PowerPC wants to expand i128 shifts itself.
274 setOperationAction(ISD::SHL_PARTS
, MVT::i64
, Custom
);
275 setOperationAction(ISD::SRA_PARTS
, MVT::i64
, Custom
);
276 setOperationAction(ISD::SRL_PARTS
, MVT::i64
, Custom
);
278 // 32-bit PowerPC wants to expand i64 shifts itself.
279 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
280 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
281 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
284 if (TM
.getSubtarget
<PPCSubtarget
>().hasAltivec()) {
285 // First set operation action for all vector types to expand. Then we
286 // will selectively turn on ones that can be effectively codegen'd.
287 for (unsigned i
= (unsigned)MVT::FIRST_VECTOR_VALUETYPE
;
288 i
<= (unsigned)MVT::LAST_VECTOR_VALUETYPE
; ++i
) {
289 MVT::SimpleValueType VT
= (MVT::SimpleValueType
)i
;
291 // add/sub are legal for all supported vector VT's.
292 setOperationAction(ISD::ADD
, VT
, Legal
);
293 setOperationAction(ISD::SUB
, VT
, Legal
);
295 // We promote all shuffles to v16i8.
296 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Promote
);
297 AddPromotedToType (ISD::VECTOR_SHUFFLE
, VT
, MVT::v16i8
);
299 // We promote all non-typed operations to v4i32.
300 setOperationAction(ISD::AND
, VT
, Promote
);
301 AddPromotedToType (ISD::AND
, VT
, MVT::v4i32
);
302 setOperationAction(ISD::OR
, VT
, Promote
);
303 AddPromotedToType (ISD::OR
, VT
, MVT::v4i32
);
304 setOperationAction(ISD::XOR
, VT
, Promote
);
305 AddPromotedToType (ISD::XOR
, VT
, MVT::v4i32
);
306 setOperationAction(ISD::LOAD
, VT
, Promote
);
307 AddPromotedToType (ISD::LOAD
, VT
, MVT::v4i32
);
308 setOperationAction(ISD::SELECT
, VT
, Promote
);
309 AddPromotedToType (ISD::SELECT
, VT
, MVT::v4i32
);
310 setOperationAction(ISD::STORE
, VT
, Promote
);
311 AddPromotedToType (ISD::STORE
, VT
, MVT::v4i32
);
313 // No other operations are legal.
314 setOperationAction(ISD::MUL
, VT
, Expand
);
315 setOperationAction(ISD::SDIV
, VT
, Expand
);
316 setOperationAction(ISD::SREM
, VT
, Expand
);
317 setOperationAction(ISD::UDIV
, VT
, Expand
);
318 setOperationAction(ISD::UREM
, VT
, Expand
);
319 setOperationAction(ISD::FDIV
, VT
, Expand
);
320 setOperationAction(ISD::FNEG
, VT
, Expand
);
321 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Expand
);
322 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Expand
);
323 setOperationAction(ISD::BUILD_VECTOR
, VT
, Expand
);
324 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
325 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
326 setOperationAction(ISD::UDIVREM
, VT
, Expand
);
327 setOperationAction(ISD::SDIVREM
, VT
, Expand
);
328 setOperationAction(ISD::SCALAR_TO_VECTOR
, VT
, Expand
);
329 setOperationAction(ISD::FPOW
, VT
, Expand
);
330 setOperationAction(ISD::CTPOP
, VT
, Expand
);
331 setOperationAction(ISD::CTLZ
, VT
, Expand
);
332 setOperationAction(ISD::CTTZ
, VT
, Expand
);
335 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
336 // with merges, splats, etc.
337 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v16i8
, Custom
);
339 setOperationAction(ISD::AND
, MVT::v4i32
, Legal
);
340 setOperationAction(ISD::OR
, MVT::v4i32
, Legal
);
341 setOperationAction(ISD::XOR
, MVT::v4i32
, Legal
);
342 setOperationAction(ISD::LOAD
, MVT::v4i32
, Legal
);
343 setOperationAction(ISD::SELECT
, MVT::v4i32
, Expand
);
344 setOperationAction(ISD::STORE
, MVT::v4i32
, Legal
);
346 addRegisterClass(MVT::v4f32
, PPC::VRRCRegisterClass
);
347 addRegisterClass(MVT::v4i32
, PPC::VRRCRegisterClass
);
348 addRegisterClass(MVT::v8i16
, PPC::VRRCRegisterClass
);
349 addRegisterClass(MVT::v16i8
, PPC::VRRCRegisterClass
);
351 setOperationAction(ISD::MUL
, MVT::v4f32
, Legal
);
352 setOperationAction(ISD::MUL
, MVT::v4i32
, Custom
);
353 setOperationAction(ISD::MUL
, MVT::v8i16
, Custom
);
354 setOperationAction(ISD::MUL
, MVT::v16i8
, Custom
);
356 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v4f32
, Custom
);
357 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v4i32
, Custom
);
359 setOperationAction(ISD::BUILD_VECTOR
, MVT::v16i8
, Custom
);
360 setOperationAction(ISD::BUILD_VECTOR
, MVT::v8i16
, Custom
);
361 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4i32
, Custom
);
362 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4f32
, Custom
);
365 setShiftAmountType(MVT::i32
);
366 setBooleanContents(ZeroOrOneBooleanContent
);
368 if (TM
.getSubtarget
<PPCSubtarget
>().isPPC64()) {
369 setStackPointerRegisterToSaveRestore(PPC::X1
);
370 setExceptionPointerRegister(PPC::X3
);
371 setExceptionSelectorRegister(PPC::X4
);
373 setStackPointerRegisterToSaveRestore(PPC::R1
);
374 setExceptionPointerRegister(PPC::R3
);
375 setExceptionSelectorRegister(PPC::R4
);
378 // We have target-specific dag combine patterns for the following nodes:
379 setTargetDAGCombine(ISD::SINT_TO_FP
);
380 setTargetDAGCombine(ISD::STORE
);
381 setTargetDAGCombine(ISD::BR_CC
);
382 setTargetDAGCombine(ISD::BSWAP
);
384 // Darwin long double math library functions have $LDBL128 appended.
385 if (TM
.getSubtarget
<PPCSubtarget
>().isDarwin()) {
386 setLibcallName(RTLIB::COS_PPCF128
, "cosl$LDBL128");
387 setLibcallName(RTLIB::POW_PPCF128
, "powl$LDBL128");
388 setLibcallName(RTLIB::REM_PPCF128
, "fmodl$LDBL128");
389 setLibcallName(RTLIB::SIN_PPCF128
, "sinl$LDBL128");
390 setLibcallName(RTLIB::SQRT_PPCF128
, "sqrtl$LDBL128");
391 setLibcallName(RTLIB::LOG_PPCF128
, "logl$LDBL128");
392 setLibcallName(RTLIB::LOG2_PPCF128
, "log2l$LDBL128");
393 setLibcallName(RTLIB::LOG10_PPCF128
, "log10l$LDBL128");
394 setLibcallName(RTLIB::EXP_PPCF128
, "expl$LDBL128");
395 setLibcallName(RTLIB::EXP2_PPCF128
, "exp2l$LDBL128");
398 computeRegisterProperties();
401 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
402 /// function arguments in the caller parameter area.
403 unsigned PPCTargetLowering::getByValTypeAlignment(const Type
*Ty
) const {
404 const TargetMachine
&TM
= getTargetMachine();
405 // Darwin passes everything on 4 byte boundary.
406 if (TM
.getSubtarget
<PPCSubtarget
>().isDarwin())
412 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode
) const {
415 case PPCISD::FSEL
: return "PPCISD::FSEL";
416 case PPCISD::FCFID
: return "PPCISD::FCFID";
417 case PPCISD::FCTIDZ
: return "PPCISD::FCTIDZ";
418 case PPCISD::FCTIWZ
: return "PPCISD::FCTIWZ";
419 case PPCISD::STFIWX
: return "PPCISD::STFIWX";
420 case PPCISD::VMADDFP
: return "PPCISD::VMADDFP";
421 case PPCISD::VNMSUBFP
: return "PPCISD::VNMSUBFP";
422 case PPCISD::VPERM
: return "PPCISD::VPERM";
423 case PPCISD::Hi
: return "PPCISD::Hi";
424 case PPCISD::Lo
: return "PPCISD::Lo";
425 case PPCISD::TOC_ENTRY
: return "PPCISD::TOC_ENTRY";
426 case PPCISD::TOC_RESTORE
: return "PPCISD::TOC_RESTORE";
427 case PPCISD::LOAD
: return "PPCISD::LOAD";
428 case PPCISD::LOAD_TOC
: return "PPCISD::LOAD_TOC";
429 case PPCISD::DYNALLOC
: return "PPCISD::DYNALLOC";
430 case PPCISD::GlobalBaseReg
: return "PPCISD::GlobalBaseReg";
431 case PPCISD::SRL
: return "PPCISD::SRL";
432 case PPCISD::SRA
: return "PPCISD::SRA";
433 case PPCISD::SHL
: return "PPCISD::SHL";
434 case PPCISD::EXTSW_32
: return "PPCISD::EXTSW_32";
435 case PPCISD::STD_32
: return "PPCISD::STD_32";
436 case PPCISD::CALL_SVR4
: return "PPCISD::CALL_SVR4";
437 case PPCISD::CALL_Darwin
: return "PPCISD::CALL_Darwin";
438 case PPCISD::NOP
: return "PPCISD::NOP";
439 case PPCISD::MTCTR
: return "PPCISD::MTCTR";
440 case PPCISD::BCTRL_Darwin
: return "PPCISD::BCTRL_Darwin";
441 case PPCISD::BCTRL_SVR4
: return "PPCISD::BCTRL_SVR4";
442 case PPCISD::RET_FLAG
: return "PPCISD::RET_FLAG";
443 case PPCISD::MFCR
: return "PPCISD::MFCR";
444 case PPCISD::VCMP
: return "PPCISD::VCMP";
445 case PPCISD::VCMPo
: return "PPCISD::VCMPo";
446 case PPCISD::LBRX
: return "PPCISD::LBRX";
447 case PPCISD::STBRX
: return "PPCISD::STBRX";
448 case PPCISD::LARX
: return "PPCISD::LARX";
449 case PPCISD::STCX
: return "PPCISD::STCX";
450 case PPCISD::COND_BRANCH
: return "PPCISD::COND_BRANCH";
451 case PPCISD::MFFS
: return "PPCISD::MFFS";
452 case PPCISD::MTFSB0
: return "PPCISD::MTFSB0";
453 case PPCISD::MTFSB1
: return "PPCISD::MTFSB1";
454 case PPCISD::FADDRTZ
: return "PPCISD::FADDRTZ";
455 case PPCISD::MTFSF
: return "PPCISD::MTFSF";
456 case PPCISD::TC_RETURN
: return "PPCISD::TC_RETURN";
460 MVT::SimpleValueType
PPCTargetLowering::getSetCCResultType(EVT VT
) const {
464 /// getFunctionAlignment - Return the Log2 alignment of this function.
465 unsigned PPCTargetLowering::getFunctionAlignment(const Function
*F
) const {
466 if (getTargetMachine().getSubtarget
<PPCSubtarget
>().isDarwin())
467 return F
->hasFnAttr(Attribute::OptimizeForSize
) ? 2 : 4;
472 //===----------------------------------------------------------------------===//
473 // Node matching predicates, for use by the tblgen matching code.
474 //===----------------------------------------------------------------------===//
476 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
477 static bool isFloatingPointZero(SDValue Op
) {
478 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(Op
))
479 return CFP
->getValueAPF().isZero();
480 else if (ISD::isEXTLoad(Op
.getNode()) || ISD::isNON_EXTLoad(Op
.getNode())) {
481 // Maybe this has already been legalized into the constant pool?
482 if (ConstantPoolSDNode
*CP
= dyn_cast
<ConstantPoolSDNode
>(Op
.getOperand(1)))
483 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CP
->getConstVal()))
484 return CFP
->getValueAPF().isZero();
489 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
490 /// true if Op is undef or if it matches the specified value.
491 static bool isConstantOrUndef(int Op
, int Val
) {
492 return Op
< 0 || Op
== Val
;
495 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
496 /// VPKUHUM instruction.
497 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode
*N
, bool isUnary
) {
499 for (unsigned i
= 0; i
!= 16; ++i
)
500 if (!isConstantOrUndef(N
->getMaskElt(i
), i
*2+1))
503 for (unsigned i
= 0; i
!= 8; ++i
)
504 if (!isConstantOrUndef(N
->getMaskElt(i
), i
*2+1) ||
505 !isConstantOrUndef(N
->getMaskElt(i
+8), i
*2+1))
511 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
512 /// VPKUWUM instruction.
513 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode
*N
, bool isUnary
) {
515 for (unsigned i
= 0; i
!= 16; i
+= 2)
516 if (!isConstantOrUndef(N
->getMaskElt(i
), i
*2+2) ||
517 !isConstantOrUndef(N
->getMaskElt(i
+1), i
*2+3))
520 for (unsigned i
= 0; i
!= 8; i
+= 2)
521 if (!isConstantOrUndef(N
->getMaskElt(i
), i
*2+2) ||
522 !isConstantOrUndef(N
->getMaskElt(i
+1), i
*2+3) ||
523 !isConstantOrUndef(N
->getMaskElt(i
+8), i
*2+2) ||
524 !isConstantOrUndef(N
->getMaskElt(i
+9), i
*2+3))
530 /// isVMerge - Common function, used to match vmrg* shuffles.
532 static bool isVMerge(ShuffleVectorSDNode
*N
, unsigned UnitSize
,
533 unsigned LHSStart
, unsigned RHSStart
) {
534 assert(N
->getValueType(0) == MVT::v16i8
&&
535 "PPC only supports shuffles by bytes!");
536 assert((UnitSize
== 1 || UnitSize
== 2 || UnitSize
== 4) &&
537 "Unsupported merge size!");
539 for (unsigned i
= 0; i
!= 8/UnitSize
; ++i
) // Step over units
540 for (unsigned j
= 0; j
!= UnitSize
; ++j
) { // Step over bytes within unit
541 if (!isConstantOrUndef(N
->getMaskElt(i
*UnitSize
*2+j
),
542 LHSStart
+j
+i
*UnitSize
) ||
543 !isConstantOrUndef(N
->getMaskElt(i
*UnitSize
*2+UnitSize
+j
),
544 RHSStart
+j
+i
*UnitSize
))
550 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
551 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
552 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode
*N
, unsigned UnitSize
,
555 return isVMerge(N
, UnitSize
, 8, 24);
556 return isVMerge(N
, UnitSize
, 8, 8);
559 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
560 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
561 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode
*N
, unsigned UnitSize
,
564 return isVMerge(N
, UnitSize
, 0, 16);
565 return isVMerge(N
, UnitSize
, 0, 0);
569 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
570 /// amount, otherwise return -1.
571 int PPC::isVSLDOIShuffleMask(SDNode
*N
, bool isUnary
) {
572 assert(N
->getValueType(0) == MVT::v16i8
&&
573 "PPC only supports shuffles by bytes!");
575 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(N
);
577 // Find the first non-undef value in the shuffle mask.
579 for (i
= 0; i
!= 16 && SVOp
->getMaskElt(i
) < 0; ++i
)
582 if (i
== 16) return -1; // all undef.
584 // Otherwise, check to see if the rest of the elements are consecutively
585 // numbered from this value.
586 unsigned ShiftAmt
= SVOp
->getMaskElt(i
);
587 if (ShiftAmt
< i
) return -1;
591 // Check the rest of the elements to see if they are consecutive.
592 for (++i
; i
!= 16; ++i
)
593 if (!isConstantOrUndef(SVOp
->getMaskElt(i
), ShiftAmt
+i
))
596 // Check the rest of the elements to see if they are consecutive.
597 for (++i
; i
!= 16; ++i
)
598 if (!isConstantOrUndef(SVOp
->getMaskElt(i
), (ShiftAmt
+i
) & 15))
604 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
605 /// specifies a splat of a single element that is suitable for input to
606 /// VSPLTB/VSPLTH/VSPLTW.
607 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode
*N
, unsigned EltSize
) {
608 assert(N
->getValueType(0) == MVT::v16i8
&&
609 (EltSize
== 1 || EltSize
== 2 || EltSize
== 4));
611 // This is a splat operation if each element of the permute is the same, and
612 // if the value doesn't reference the second vector.
613 unsigned ElementBase
= N
->getMaskElt(0);
615 // FIXME: Handle UNDEF elements too!
616 if (ElementBase
>= 16)
619 // Check that the indices are consecutive, in the case of a multi-byte element
620 // splatted with a v16i8 mask.
621 for (unsigned i
= 1; i
!= EltSize
; ++i
)
622 if (N
->getMaskElt(i
) < 0 || N
->getMaskElt(i
) != (int)(i
+ElementBase
))
625 for (unsigned i
= EltSize
, e
= 16; i
!= e
; i
+= EltSize
) {
626 if (N
->getMaskElt(i
) < 0) continue;
627 for (unsigned j
= 0; j
!= EltSize
; ++j
)
628 if (N
->getMaskElt(i
+j
) != N
->getMaskElt(j
))
634 /// isAllNegativeZeroVector - Returns true if all elements of build_vector
636 bool PPC::isAllNegativeZeroVector(SDNode
*N
) {
637 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(N
);
639 APInt APVal
, APUndef
;
643 if (BV
->isConstantSplat(APVal
, APUndef
, BitSize
, HasAnyUndefs
, 32, true))
644 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(0)))
645 return CFP
->getValueAPF().isNegZero();
650 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
651 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
652 unsigned PPC::getVSPLTImmediate(SDNode
*N
, unsigned EltSize
) {
653 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(N
);
654 assert(isSplatShuffleMask(SVOp
, EltSize
));
655 return SVOp
->getMaskElt(0) / EltSize
;
658 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
659 /// by using a vspltis[bhw] instruction of the specified element size, return
660 /// the constant being splatted. The ByteSize field indicates the number of
661 /// bytes of each element [124] -> [bhw].
662 SDValue
PPC::get_VSPLTI_elt(SDNode
*N
, unsigned ByteSize
, SelectionDAG
&DAG
) {
665 // If ByteSize of the splat is bigger than the element size of the
666 // build_vector, then we have a case where we are checking for a splat where
667 // multiple elements of the buildvector are folded together into a single
668 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
669 unsigned EltSize
= 16/N
->getNumOperands();
670 if (EltSize
< ByteSize
) {
671 unsigned Multiple
= ByteSize
/EltSize
; // Number of BV entries per spltval.
672 SDValue UniquedVals
[4];
673 assert(Multiple
> 1 && Multiple
<= 4 && "How can this happen?");
675 // See if all of the elements in the buildvector agree across.
676 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
677 if (N
->getOperand(i
).getOpcode() == ISD::UNDEF
) continue;
678 // If the element isn't a constant, bail fully out.
679 if (!isa
<ConstantSDNode
>(N
->getOperand(i
))) return SDValue();
682 if (UniquedVals
[i
&(Multiple
-1)].getNode() == 0)
683 UniquedVals
[i
&(Multiple
-1)] = N
->getOperand(i
);
684 else if (UniquedVals
[i
&(Multiple
-1)] != N
->getOperand(i
))
685 return SDValue(); // no match.
688 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
689 // either constant or undef values that are identical for each chunk. See
690 // if these chunks can form into a larger vspltis*.
692 // Check to see if all of the leading entries are either 0 or -1. If
693 // neither, then this won't fit into the immediate field.
694 bool LeadingZero
= true;
695 bool LeadingOnes
= true;
696 for (unsigned i
= 0; i
!= Multiple
-1; ++i
) {
697 if (UniquedVals
[i
].getNode() == 0) continue; // Must have been undefs.
699 LeadingZero
&= cast
<ConstantSDNode
>(UniquedVals
[i
])->isNullValue();
700 LeadingOnes
&= cast
<ConstantSDNode
>(UniquedVals
[i
])->isAllOnesValue();
702 // Finally, check the least significant entry.
704 if (UniquedVals
[Multiple
-1].getNode() == 0)
705 return DAG
.getTargetConstant(0, MVT::i32
); // 0,0,0,undef
706 int Val
= cast
<ConstantSDNode
>(UniquedVals
[Multiple
-1])->getZExtValue();
708 return DAG
.getTargetConstant(Val
, MVT::i32
); // 0,0,0,4 -> vspltisw(4)
711 if (UniquedVals
[Multiple
-1].getNode() == 0)
712 return DAG
.getTargetConstant(~0U, MVT::i32
); // -1,-1,-1,undef
713 int Val
=cast
<ConstantSDNode
>(UniquedVals
[Multiple
-1])->getSExtValue();
714 if (Val
>= -16) // -1,-1,-1,-2 -> vspltisw(-2)
715 return DAG
.getTargetConstant(Val
, MVT::i32
);
721 // Check to see if this buildvec has a single non-undef value in its elements.
722 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
723 if (N
->getOperand(i
).getOpcode() == ISD::UNDEF
) continue;
724 if (OpVal
.getNode() == 0)
725 OpVal
= N
->getOperand(i
);
726 else if (OpVal
!= N
->getOperand(i
))
730 if (OpVal
.getNode() == 0) return SDValue(); // All UNDEF: use implicit def.
732 unsigned ValSizeInBytes
= EltSize
;
734 if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(OpVal
)) {
735 Value
= CN
->getZExtValue();
736 } else if (ConstantFPSDNode
*CN
= dyn_cast
<ConstantFPSDNode
>(OpVal
)) {
737 assert(CN
->getValueType(0) == MVT::f32
&& "Only one legal FP vector type!");
738 Value
= FloatToBits(CN
->getValueAPF().convertToFloat());
741 // If the splat value is larger than the element value, then we can never do
742 // this splat. The only case that we could fit the replicated bits into our
743 // immediate field for would be zero, and we prefer to use vxor for it.
744 if (ValSizeInBytes
< ByteSize
) return SDValue();
746 // If the element value is larger than the splat value, cut it in half and
747 // check to see if the two halves are equal. Continue doing this until we
748 // get to ByteSize. This allows us to handle 0x01010101 as 0x01.
749 while (ValSizeInBytes
> ByteSize
) {
750 ValSizeInBytes
>>= 1;
752 // If the top half equals the bottom half, we're still ok.
753 if (((Value
>> (ValSizeInBytes
*8)) & ((1 << (8*ValSizeInBytes
))-1)) !=
754 (Value
& ((1 << (8*ValSizeInBytes
))-1)))
758 // Properly sign extend the value.
759 int ShAmt
= (4-ByteSize
)*8;
760 int MaskVal
= ((int)Value
<< ShAmt
) >> ShAmt
;
762 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
763 if (MaskVal
== 0) return SDValue();
765 // Finally, if this value fits in a 5 bit sext field, return it
766 if (((MaskVal
<< (32-5)) >> (32-5)) == MaskVal
)
767 return DAG
.getTargetConstant(MaskVal
, MVT::i32
);
771 //===----------------------------------------------------------------------===//
772 // Addressing Mode Selection
773 //===----------------------------------------------------------------------===//
775 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
776 /// or 64-bit immediate, and if the value can be accurately represented as a
777 /// sign extension from a 16-bit value. If so, this returns true and the
779 static bool isIntS16Immediate(SDNode
*N
, short &Imm
) {
780 if (N
->getOpcode() != ISD::Constant
)
783 Imm
= (short)cast
<ConstantSDNode
>(N
)->getZExtValue();
784 if (N
->getValueType(0) == MVT::i32
)
785 return Imm
== (int32_t)cast
<ConstantSDNode
>(N
)->getZExtValue();
787 return Imm
== (int64_t)cast
<ConstantSDNode
>(N
)->getZExtValue();
789 static bool isIntS16Immediate(SDValue Op
, short &Imm
) {
790 return isIntS16Immediate(Op
.getNode(), Imm
);
794 /// SelectAddressRegReg - Given the specified addressed, check to see if it
795 /// can be represented as an indexed [r+r] operation. Returns false if it
796 /// can be more efficiently represented with [r+imm].
797 bool PPCTargetLowering::SelectAddressRegReg(SDValue N
, SDValue
&Base
,
799 SelectionDAG
&DAG
) const {
801 if (N
.getOpcode() == ISD::ADD
) {
802 if (isIntS16Immediate(N
.getOperand(1), imm
))
804 if (N
.getOperand(1).getOpcode() == PPCISD::Lo
)
807 Base
= N
.getOperand(0);
808 Index
= N
.getOperand(1);
810 } else if (N
.getOpcode() == ISD::OR
) {
811 if (isIntS16Immediate(N
.getOperand(1), imm
))
812 return false; // r+i can fold it if we can.
814 // If this is an or of disjoint bitfields, we can codegen this as an add
815 // (for better address arithmetic) if the LHS and RHS of the OR are provably
817 APInt LHSKnownZero
, LHSKnownOne
;
818 APInt RHSKnownZero
, RHSKnownOne
;
819 DAG
.ComputeMaskedBits(N
.getOperand(0),
820 APInt::getAllOnesValue(N
.getOperand(0)
821 .getValueSizeInBits()),
822 LHSKnownZero
, LHSKnownOne
);
824 if (LHSKnownZero
.getBoolValue()) {
825 DAG
.ComputeMaskedBits(N
.getOperand(1),
826 APInt::getAllOnesValue(N
.getOperand(1)
827 .getValueSizeInBits()),
828 RHSKnownZero
, RHSKnownOne
);
829 // If all of the bits are known zero on the LHS or RHS, the add won't
831 if (~(LHSKnownZero
| RHSKnownZero
) == 0) {
832 Base
= N
.getOperand(0);
833 Index
= N
.getOperand(1);
842 /// Returns true if the address N can be represented by a base register plus
843 /// a signed 16-bit displacement [r+imm], and if it is not better
844 /// represented as reg+reg.
845 bool PPCTargetLowering::SelectAddressRegImm(SDValue N
, SDValue
&Disp
,
847 SelectionDAG
&DAG
) const {
848 // FIXME dl should come from parent load or store, not from address
849 DebugLoc dl
= N
.getDebugLoc();
850 // If this can be more profitably realized as r+r, fail.
851 if (SelectAddressRegReg(N
, Disp
, Base
, DAG
))
854 if (N
.getOpcode() == ISD::ADD
) {
856 if (isIntS16Immediate(N
.getOperand(1), imm
)) {
857 Disp
= DAG
.getTargetConstant((int)imm
& 0xFFFF, MVT::i32
);
858 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(N
.getOperand(0))) {
859 Base
= DAG
.getTargetFrameIndex(FI
->getIndex(), N
.getValueType());
861 Base
= N
.getOperand(0);
863 return true; // [r+i]
864 } else if (N
.getOperand(1).getOpcode() == PPCISD::Lo
) {
865 // Match LOAD (ADD (X, Lo(G))).
866 assert(!cast
<ConstantSDNode
>(N
.getOperand(1).getOperand(1))->getZExtValue()
867 && "Cannot handle constant offsets yet!");
868 Disp
= N
.getOperand(1).getOperand(0); // The global address.
869 assert(Disp
.getOpcode() == ISD::TargetGlobalAddress
||
870 Disp
.getOpcode() == ISD::TargetConstantPool
||
871 Disp
.getOpcode() == ISD::TargetJumpTable
);
872 Base
= N
.getOperand(0);
873 return true; // [&g+r]
875 } else if (N
.getOpcode() == ISD::OR
) {
877 if (isIntS16Immediate(N
.getOperand(1), imm
)) {
878 // If this is an or of disjoint bitfields, we can codegen this as an add
879 // (for better address arithmetic) if the LHS and RHS of the OR are
880 // provably disjoint.
881 APInt LHSKnownZero
, LHSKnownOne
;
882 DAG
.ComputeMaskedBits(N
.getOperand(0),
883 APInt::getAllOnesValue(N
.getOperand(0)
884 .getValueSizeInBits()),
885 LHSKnownZero
, LHSKnownOne
);
887 if ((LHSKnownZero
.getZExtValue()|~(uint64_t)imm
) == ~0ULL) {
888 // If all of the bits are known zero on the LHS or RHS, the add won't
890 Base
= N
.getOperand(0);
891 Disp
= DAG
.getTargetConstant((int)imm
& 0xFFFF, MVT::i32
);
895 } else if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(N
)) {
896 // Loading from a constant address.
898 // If this address fits entirely in a 16-bit sext immediate field, codegen
901 if (isIntS16Immediate(CN
, Imm
)) {
902 Disp
= DAG
.getTargetConstant(Imm
, CN
->getValueType(0));
903 Base
= DAG
.getRegister(PPC::R0
, CN
->getValueType(0));
907 // Handle 32-bit sext immediates with LIS + addr mode.
908 if (CN
->getValueType(0) == MVT::i32
||
909 (int64_t)CN
->getZExtValue() == (int)CN
->getZExtValue()) {
910 int Addr
= (int)CN
->getZExtValue();
912 // Otherwise, break this down into an LIS + disp.
913 Disp
= DAG
.getTargetConstant((short)Addr
, MVT::i32
);
915 Base
= DAG
.getTargetConstant((Addr
- (signed short)Addr
) >> 16, MVT::i32
);
916 unsigned Opc
= CN
->getValueType(0) == MVT::i32
? PPC::LIS
: PPC::LIS8
;
917 Base
= SDValue(DAG
.getMachineNode(Opc
, dl
, CN
->getValueType(0), Base
), 0);
922 Disp
= DAG
.getTargetConstant(0, getPointerTy());
923 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(N
))
924 Base
= DAG
.getTargetFrameIndex(FI
->getIndex(), N
.getValueType());
927 return true; // [r+0]
930 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
931 /// represented as an indexed [r+r] operation.
932 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N
, SDValue
&Base
,
934 SelectionDAG
&DAG
) const {
935 // Check to see if we can easily represent this as an [r+r] address. This
936 // will fail if it thinks that the address is more profitably represented as
937 // reg+imm, e.g. where imm = 0.
938 if (SelectAddressRegReg(N
, Base
, Index
, DAG
))
941 // If the operand is an addition, always emit this as [r+r], since this is
942 // better (for code size, and execution, as the memop does the add for free)
943 // than emitting an explicit add.
944 if (N
.getOpcode() == ISD::ADD
) {
945 Base
= N
.getOperand(0);
946 Index
= N
.getOperand(1);
950 // Otherwise, do it the hard way, using R0 as the base register.
951 Base
= DAG
.getRegister(PPC::R0
, N
.getValueType());
956 /// SelectAddressRegImmShift - Returns true if the address N can be
957 /// represented by a base register plus a signed 14-bit displacement
958 /// [r+imm*4]. Suitable for use by STD and friends.
959 bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N
, SDValue
&Disp
,
961 SelectionDAG
&DAG
) const {
962 // FIXME dl should come from the parent load or store, not the address
963 DebugLoc dl
= N
.getDebugLoc();
964 // If this can be more profitably realized as r+r, fail.
965 if (SelectAddressRegReg(N
, Disp
, Base
, DAG
))
968 if (N
.getOpcode() == ISD::ADD
) {
970 if (isIntS16Immediate(N
.getOperand(1), imm
) && (imm
& 3) == 0) {
971 Disp
= DAG
.getTargetConstant(((int)imm
& 0xFFFF) >> 2, MVT::i32
);
972 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(N
.getOperand(0))) {
973 Base
= DAG
.getTargetFrameIndex(FI
->getIndex(), N
.getValueType());
975 Base
= N
.getOperand(0);
977 return true; // [r+i]
978 } else if (N
.getOperand(1).getOpcode() == PPCISD::Lo
) {
979 // Match LOAD (ADD (X, Lo(G))).
980 assert(!cast
<ConstantSDNode
>(N
.getOperand(1).getOperand(1))->getZExtValue()
981 && "Cannot handle constant offsets yet!");
982 Disp
= N
.getOperand(1).getOperand(0); // The global address.
983 assert(Disp
.getOpcode() == ISD::TargetGlobalAddress
||
984 Disp
.getOpcode() == ISD::TargetConstantPool
||
985 Disp
.getOpcode() == ISD::TargetJumpTable
);
986 Base
= N
.getOperand(0);
987 return true; // [&g+r]
989 } else if (N
.getOpcode() == ISD::OR
) {
991 if (isIntS16Immediate(N
.getOperand(1), imm
) && (imm
& 3) == 0) {
992 // If this is an or of disjoint bitfields, we can codegen this as an add
993 // (for better address arithmetic) if the LHS and RHS of the OR are
994 // provably disjoint.
995 APInt LHSKnownZero
, LHSKnownOne
;
996 DAG
.ComputeMaskedBits(N
.getOperand(0),
997 APInt::getAllOnesValue(N
.getOperand(0)
998 .getValueSizeInBits()),
999 LHSKnownZero
, LHSKnownOne
);
1000 if ((LHSKnownZero
.getZExtValue()|~(uint64_t)imm
) == ~0ULL) {
1001 // If all of the bits are known zero on the LHS or RHS, the add won't
1003 Base
= N
.getOperand(0);
1004 Disp
= DAG
.getTargetConstant(((int)imm
& 0xFFFF) >> 2, MVT::i32
);
1008 } else if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(N
)) {
1009 // Loading from a constant address. Verify low two bits are clear.
1010 if ((CN
->getZExtValue() & 3) == 0) {
1011 // If this address fits entirely in a 14-bit sext immediate field, codegen
1014 if (isIntS16Immediate(CN
, Imm
)) {
1015 Disp
= DAG
.getTargetConstant((unsigned short)Imm
>> 2, getPointerTy());
1016 Base
= DAG
.getRegister(PPC::R0
, CN
->getValueType(0));
1020 // Fold the low-part of 32-bit absolute addresses into addr mode.
1021 if (CN
->getValueType(0) == MVT::i32
||
1022 (int64_t)CN
->getZExtValue() == (int)CN
->getZExtValue()) {
1023 int Addr
= (int)CN
->getZExtValue();
1025 // Otherwise, break this down into an LIS + disp.
1026 Disp
= DAG
.getTargetConstant((short)Addr
>> 2, MVT::i32
);
1027 Base
= DAG
.getTargetConstant((Addr
-(signed short)Addr
) >> 16, MVT::i32
);
1028 unsigned Opc
= CN
->getValueType(0) == MVT::i32
? PPC::LIS
: PPC::LIS8
;
1029 Base
= SDValue(DAG
.getMachineNode(Opc
, dl
, CN
->getValueType(0), Base
),0);
1035 Disp
= DAG
.getTargetConstant(0, getPointerTy());
1036 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(N
))
1037 Base
= DAG
.getTargetFrameIndex(FI
->getIndex(), N
.getValueType());
1040 return true; // [r+0]
1044 /// getPreIndexedAddressParts - returns true by value, base pointer and
1045 /// offset pointer and addressing mode by reference if the node's address
1046 /// can be legally represented as pre-indexed load / store address.
1047 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode
*N
, SDValue
&Base
,
1049 ISD::MemIndexedMode
&AM
,
1050 SelectionDAG
&DAG
) const {
1051 // Disabled by default for now.
1052 if (!EnablePPCPreinc
) return false;
1056 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
1057 Ptr
= LD
->getBasePtr();
1058 VT
= LD
->getMemoryVT();
1060 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
1062 Ptr
= ST
->getBasePtr();
1063 VT
= ST
->getMemoryVT();
1067 // PowerPC doesn't have preinc load/store instructions for vectors.
1071 // TODO: Check reg+reg first.
1073 // LDU/STU use reg+imm*4, others use reg+imm.
1074 if (VT
!= MVT::i64
) {
1076 if (!SelectAddressRegImm(Ptr
, Offset
, Base
, DAG
))
1080 if (!SelectAddressRegImmShift(Ptr
, Offset
, Base
, DAG
))
1084 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
1085 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
1086 // sext i32 to i64 when addr mode is r+i.
1087 if (LD
->getValueType(0) == MVT::i64
&& LD
->getMemoryVT() == MVT::i32
&&
1088 LD
->getExtensionType() == ISD::SEXTLOAD
&&
1089 isa
<ConstantSDNode
>(Offset
))
1097 //===----------------------------------------------------------------------===//
1098 // LowerOperation implementation
1099 //===----------------------------------------------------------------------===//
1101 SDValue
PPCTargetLowering::LowerConstantPool(SDValue Op
,
1102 SelectionDAG
&DAG
) const {
1103 EVT PtrVT
= Op
.getValueType();
1104 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
1105 const Constant
*C
= CP
->getConstVal();
1106 SDValue CPI
= DAG
.getTargetConstantPool(C
, PtrVT
, CP
->getAlignment());
1107 SDValue Zero
= DAG
.getConstant(0, PtrVT
);
1108 // FIXME there isn't really any debug info here
1109 DebugLoc dl
= Op
.getDebugLoc();
1111 const TargetMachine
&TM
= DAG
.getTarget();
1113 SDValue Hi
= DAG
.getNode(PPCISD::Hi
, dl
, PtrVT
, CPI
, Zero
);
1114 SDValue Lo
= DAG
.getNode(PPCISD::Lo
, dl
, PtrVT
, CPI
, Zero
);
1116 // If this is a non-darwin platform, we don't support non-static relo models
1118 if (TM
.getRelocationModel() == Reloc::Static
||
1119 !TM
.getSubtarget
<PPCSubtarget
>().isDarwin()) {
1120 // Generate non-pic code that has direct accesses to the constant pool.
1121 // The address of the global is just (hi(&g)+lo(&g)).
1122 return DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Hi
, Lo
);
1125 if (TM
.getRelocationModel() == Reloc::PIC_
) {
1126 // With PIC, the first instruction is actually "GR+hi(&G)".
1127 Hi
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
,
1128 DAG
.getNode(PPCISD::GlobalBaseReg
,
1129 DebugLoc(), PtrVT
), Hi
);
1132 Lo
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Hi
, Lo
);
1136 SDValue
PPCTargetLowering::LowerJumpTable(SDValue Op
, SelectionDAG
&DAG
) const {
1137 EVT PtrVT
= Op
.getValueType();
1138 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Op
);
1139 SDValue JTI
= DAG
.getTargetJumpTable(JT
->getIndex(), PtrVT
);
1140 SDValue Zero
= DAG
.getConstant(0, PtrVT
);
1141 // FIXME there isn't really any debug loc here
1142 DebugLoc dl
= Op
.getDebugLoc();
1144 const TargetMachine
&TM
= DAG
.getTarget();
1146 SDValue Hi
= DAG
.getNode(PPCISD::Hi
, dl
, PtrVT
, JTI
, Zero
);
1147 SDValue Lo
= DAG
.getNode(PPCISD::Lo
, dl
, PtrVT
, JTI
, Zero
);
1149 // If this is a non-darwin platform, we don't support non-static relo models
1151 if (TM
.getRelocationModel() == Reloc::Static
||
1152 !TM
.getSubtarget
<PPCSubtarget
>().isDarwin()) {
1153 // Generate non-pic code that has direct accesses to the constant pool.
1154 // The address of the global is just (hi(&g)+lo(&g)).
1155 return DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Hi
, Lo
);
1158 if (TM
.getRelocationModel() == Reloc::PIC_
) {
1159 // With PIC, the first instruction is actually "GR+hi(&G)".
1160 Hi
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
,
1161 DAG
.getNode(PPCISD::GlobalBaseReg
,
1162 DebugLoc(), PtrVT
), Hi
);
1165 Lo
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Hi
, Lo
);
1169 SDValue
PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op
,
1170 SelectionDAG
&DAG
) const {
1171 llvm_unreachable("TLS not implemented for PPC.");
1172 return SDValue(); // Not reached
1175 SDValue
PPCTargetLowering::LowerBlockAddress(SDValue Op
,
1176 SelectionDAG
&DAG
) const {
1177 EVT PtrVT
= Op
.getValueType();
1178 DebugLoc DL
= Op
.getDebugLoc();
1180 const BlockAddress
*BA
= cast
<BlockAddressSDNode
>(Op
)->getBlockAddress();
1181 SDValue TgtBA
= DAG
.getBlockAddress(BA
, PtrVT
, /*isTarget=*/true);
1182 SDValue Zero
= DAG
.getConstant(0, PtrVT
);
1183 SDValue Hi
= DAG
.getNode(PPCISD::Hi
, DL
, PtrVT
, TgtBA
, Zero
);
1184 SDValue Lo
= DAG
.getNode(PPCISD::Lo
, DL
, PtrVT
, TgtBA
, Zero
);
1186 // If this is a non-darwin platform, we don't support non-static relo models
1188 const TargetMachine
&TM
= DAG
.getTarget();
1189 if (TM
.getRelocationModel() == Reloc::Static
||
1190 !TM
.getSubtarget
<PPCSubtarget
>().isDarwin()) {
1191 // Generate non-pic code that has direct accesses to globals.
1192 // The address of the global is just (hi(&g)+lo(&g)).
1193 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Hi
, Lo
);
1196 if (TM
.getRelocationModel() == Reloc::PIC_
) {
1197 // With PIC, the first instruction is actually "GR+hi(&G)".
1198 Hi
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
,
1199 DAG
.getNode(PPCISD::GlobalBaseReg
,
1200 DebugLoc(), PtrVT
), Hi
);
1203 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Hi
, Lo
);
1206 SDValue
PPCTargetLowering::LowerGlobalAddress(SDValue Op
,
1207 SelectionDAG
&DAG
) const {
1208 EVT PtrVT
= Op
.getValueType();
1209 GlobalAddressSDNode
*GSDN
= cast
<GlobalAddressSDNode
>(Op
);
1210 // FIXME there isn't really any debug info here
1211 DebugLoc dl
= GSDN
->getDebugLoc();
1212 const GlobalValue
*GV
= GSDN
->getGlobal();
1213 SDValue GA
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, GSDN
->getOffset());
1214 SDValue Zero
= DAG
.getConstant(0, PtrVT
);
1216 const TargetMachine
&TM
= DAG
.getTarget();
1218 // 64-bit SVR4 ABI code is always position-independent.
1219 // The actual address of the GlobalValue is stored in the TOC.
1220 if (PPCSubTarget
.isSVR4ABI() && PPCSubTarget
.isPPC64()) {
1221 return DAG
.getNode(PPCISD::TOC_ENTRY
, dl
, MVT::i64
, GA
,
1222 DAG
.getRegister(PPC::X2
, MVT::i64
));
1225 SDValue Hi
= DAG
.getNode(PPCISD::Hi
, dl
, PtrVT
, GA
, Zero
);
1226 SDValue Lo
= DAG
.getNode(PPCISD::Lo
, dl
, PtrVT
, GA
, Zero
);
1228 // If this is a non-darwin platform, we don't support non-static relo models
1230 if (TM
.getRelocationModel() == Reloc::Static
||
1231 !TM
.getSubtarget
<PPCSubtarget
>().isDarwin()) {
1232 // Generate non-pic code that has direct accesses to globals.
1233 // The address of the global is just (hi(&g)+lo(&g)).
1234 return DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Hi
, Lo
);
1237 if (TM
.getRelocationModel() == Reloc::PIC_
) {
1238 // With PIC, the first instruction is actually "GR+hi(&G)".
1239 Hi
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
,
1240 DAG
.getNode(PPCISD::GlobalBaseReg
,
1241 DebugLoc(), PtrVT
), Hi
);
1244 Lo
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Hi
, Lo
);
1246 if (!TM
.getSubtarget
<PPCSubtarget
>().hasLazyResolverStub(GV
, TM
))
1249 // If the global is weak or external, we have to go through the lazy
1251 return DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Lo
, MachinePointerInfo(),
1255 SDValue
PPCTargetLowering::LowerSETCC(SDValue Op
, SelectionDAG
&DAG
) const {
1256 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
1257 DebugLoc dl
= Op
.getDebugLoc();
1259 // If we're comparing for equality to zero, expose the fact that this is
1260 // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1261 // fold the new nodes.
1262 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1263 if (C
->isNullValue() && CC
== ISD::SETEQ
) {
1264 EVT VT
= Op
.getOperand(0).getValueType();
1265 SDValue Zext
= Op
.getOperand(0);
1266 if (VT
.bitsLT(MVT::i32
)) {
1268 Zext
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Op
.getOperand(0));
1270 unsigned Log2b
= Log2_32(VT
.getSizeInBits());
1271 SDValue Clz
= DAG
.getNode(ISD::CTLZ
, dl
, VT
, Zext
);
1272 SDValue Scc
= DAG
.getNode(ISD::SRL
, dl
, VT
, Clz
,
1273 DAG
.getConstant(Log2b
, MVT::i32
));
1274 return DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Scc
);
1276 // Leave comparisons against 0 and -1 alone for now, since they're usually
1277 // optimized. FIXME: revisit this when we can custom lower all setcc
1279 if (C
->isAllOnesValue() || C
->isNullValue())
1283 // If we have an integer seteq/setne, turn it into a compare against zero
1284 // by xor'ing the rhs with the lhs, which is faster than setting a
1285 // condition register, reading it back out, and masking the correct bit. The
1286 // normal approach here uses sub to do this instead of xor. Using xor exposes
1287 // the result to other bit-twiddling opportunities.
1288 EVT LHSVT
= Op
.getOperand(0).getValueType();
1289 if (LHSVT
.isInteger() && (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
1290 EVT VT
= Op
.getValueType();
1291 SDValue Sub
= DAG
.getNode(ISD::XOR
, dl
, LHSVT
, Op
.getOperand(0),
1293 return DAG
.getSetCC(dl
, VT
, Sub
, DAG
.getConstant(0, LHSVT
), CC
);
1298 SDValue
PPCTargetLowering::LowerVAARG(SDValue Op
, SelectionDAG
&DAG
,
1299 const PPCSubtarget
&Subtarget
) const {
1301 llvm_unreachable("VAARG not yet implemented for the SVR4 ABI!");
1302 return SDValue(); // Not reached
1305 SDValue
PPCTargetLowering::LowerTRAMPOLINE(SDValue Op
,
1306 SelectionDAG
&DAG
) const {
1307 SDValue Chain
= Op
.getOperand(0);
1308 SDValue Trmp
= Op
.getOperand(1); // trampoline
1309 SDValue FPtr
= Op
.getOperand(2); // nested function
1310 SDValue Nest
= Op
.getOperand(3); // 'nest' parameter value
1311 DebugLoc dl
= Op
.getDebugLoc();
1313 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
1314 bool isPPC64
= (PtrVT
== MVT::i64
);
1315 const Type
*IntPtrTy
=
1316 DAG
.getTargetLoweringInfo().getTargetData()->getIntPtrType(
1319 TargetLowering::ArgListTy Args
;
1320 TargetLowering::ArgListEntry Entry
;
1322 Entry
.Ty
= IntPtrTy
;
1323 Entry
.Node
= Trmp
; Args
.push_back(Entry
);
1325 // TrampSize == (isPPC64 ? 48 : 40);
1326 Entry
.Node
= DAG
.getConstant(isPPC64
? 48 : 40,
1327 isPPC64
? MVT::i64
: MVT::i32
);
1328 Args
.push_back(Entry
);
1330 Entry
.Node
= FPtr
; Args
.push_back(Entry
);
1331 Entry
.Node
= Nest
; Args
.push_back(Entry
);
1333 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1334 std::pair
<SDValue
, SDValue
> CallResult
=
1335 LowerCallTo(Chain
, Op
.getValueType().getTypeForEVT(*DAG
.getContext()),
1336 false, false, false, false, 0, CallingConv::C
, false,
1337 /*isReturnValueUsed=*/true,
1338 DAG
.getExternalSymbol("__trampoline_setup", PtrVT
),
1342 { CallResult
.first
, CallResult
.second
};
1344 return DAG
.getMergeValues(Ops
, 2, dl
);
1347 SDValue
PPCTargetLowering::LowerVASTART(SDValue Op
, SelectionDAG
&DAG
,
1348 const PPCSubtarget
&Subtarget
) const {
1349 MachineFunction
&MF
= DAG
.getMachineFunction();
1350 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
1352 DebugLoc dl
= Op
.getDebugLoc();
1354 if (Subtarget
.isDarwinABI() || Subtarget
.isPPC64()) {
1355 // vastart just stores the address of the VarArgsFrameIndex slot into the
1356 // memory location argument.
1357 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
1358 SDValue FR
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(), PtrVT
);
1359 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
1360 return DAG
.getStore(Op
.getOperand(0), dl
, FR
, Op
.getOperand(1),
1361 MachinePointerInfo(SV
),
1365 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1366 // We suppose the given va_list is already allocated.
1369 // char gpr; /* index into the array of 8 GPRs
1370 // * stored in the register save area
1371 // * gpr=0 corresponds to r3,
1372 // * gpr=1 to r4, etc.
1374 // char fpr; /* index into the array of 8 FPRs
1375 // * stored in the register save area
1376 // * fpr=0 corresponds to f1,
1377 // * fpr=1 to f2, etc.
1379 // char *overflow_arg_area;
1380 // /* location on stack that holds
1381 // * the next overflow argument
1383 // char *reg_save_area;
1384 // /* where r3:r10 and f1:f8 (if saved)
1390 SDValue ArgGPR
= DAG
.getConstant(FuncInfo
->getVarArgsNumGPR(), MVT::i32
);
1391 SDValue ArgFPR
= DAG
.getConstant(FuncInfo
->getVarArgsNumFPR(), MVT::i32
);
1394 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
1396 SDValue StackOffsetFI
= DAG
.getFrameIndex(FuncInfo
->getVarArgsStackOffset(),
1398 SDValue FR
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(),
1401 uint64_t FrameOffset
= PtrVT
.getSizeInBits()/8;
1402 SDValue ConstFrameOffset
= DAG
.getConstant(FrameOffset
, PtrVT
);
1404 uint64_t StackOffset
= PtrVT
.getSizeInBits()/8 - 1;
1405 SDValue ConstStackOffset
= DAG
.getConstant(StackOffset
, PtrVT
);
1407 uint64_t FPROffset
= 1;
1408 SDValue ConstFPROffset
= DAG
.getConstant(FPROffset
, PtrVT
);
1410 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
1412 // Store first byte : number of int regs
1413 SDValue firstStore
= DAG
.getTruncStore(Op
.getOperand(0), dl
, ArgGPR
,
1415 MachinePointerInfo(SV
),
1416 MVT::i8
, false, false, 0);
1417 uint64_t nextOffset
= FPROffset
;
1418 SDValue nextPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Op
.getOperand(1),
1421 // Store second byte : number of float regs
1422 SDValue secondStore
=
1423 DAG
.getTruncStore(firstStore
, dl
, ArgFPR
, nextPtr
,
1424 MachinePointerInfo(SV
, nextOffset
), MVT::i8
,
1426 nextOffset
+= StackOffset
;
1427 nextPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, nextPtr
, ConstStackOffset
);
1429 // Store second word : arguments given on stack
1430 SDValue thirdStore
=
1431 DAG
.getStore(secondStore
, dl
, StackOffsetFI
, nextPtr
,
1432 MachinePointerInfo(SV
, nextOffset
),
1434 nextOffset
+= FrameOffset
;
1435 nextPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, nextPtr
, ConstFrameOffset
);
1437 // Store third word : arguments given in registers
1438 return DAG
.getStore(thirdStore
, dl
, FR
, nextPtr
,
1439 MachinePointerInfo(SV
, nextOffset
),
1444 #include "PPCGenCallingConv.inc"
1446 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo
, EVT
&ValVT
, MVT
&LocVT
,
1447 CCValAssign::LocInfo
&LocInfo
,
1448 ISD::ArgFlagsTy
&ArgFlags
,
1453 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo
, EVT
&ValVT
,
1455 CCValAssign::LocInfo
&LocInfo
,
1456 ISD::ArgFlagsTy
&ArgFlags
,
1458 static const unsigned ArgRegs
[] = {
1459 PPC::R3
, PPC::R4
, PPC::R5
, PPC::R6
,
1460 PPC::R7
, PPC::R8
, PPC::R9
, PPC::R10
,
1462 const unsigned NumArgRegs
= array_lengthof(ArgRegs
);
1464 unsigned RegNum
= State
.getFirstUnallocated(ArgRegs
, NumArgRegs
);
1466 // Skip one register if the first unallocated register has an even register
1467 // number and there are still argument registers available which have not been
1468 // allocated yet. RegNum is actually an index into ArgRegs, which means we
1469 // need to skip a register if RegNum is odd.
1470 if (RegNum
!= NumArgRegs
&& RegNum
% 2 == 1) {
1471 State
.AllocateReg(ArgRegs
[RegNum
]);
1474 // Always return false here, as this function only makes sure that the first
1475 // unallocated register has an odd register number and does not actually
1476 // allocate a register for the current argument.
1480 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo
, EVT
&ValVT
,
1482 CCValAssign::LocInfo
&LocInfo
,
1483 ISD::ArgFlagsTy
&ArgFlags
,
1485 static const unsigned ArgRegs
[] = {
1486 PPC::F1
, PPC::F2
, PPC::F3
, PPC::F4
, PPC::F5
, PPC::F6
, PPC::F7
,
1490 const unsigned NumArgRegs
= array_lengthof(ArgRegs
);
1492 unsigned RegNum
= State
.getFirstUnallocated(ArgRegs
, NumArgRegs
);
1494 // If there is only one Floating-point register left we need to put both f64
1495 // values of a split ppc_fp128 value on the stack.
1496 if (RegNum
!= NumArgRegs
&& ArgRegs
[RegNum
] == PPC::F8
) {
1497 State
.AllocateReg(ArgRegs
[RegNum
]);
1500 // Always return false here, as this function only makes sure that the two f64
1501 // values a ppc_fp128 value is split into are both passed in registers or both
1502 // passed on the stack and does not actually allocate a register for the
1503 // current argument.
1507 /// GetFPR - Get the set of FP registers that should be allocated for arguments,
1509 static const unsigned *GetFPR() {
1510 static const unsigned FPR
[] = {
1511 PPC::F1
, PPC::F2
, PPC::F3
, PPC::F4
, PPC::F5
, PPC::F6
, PPC::F7
,
1512 PPC::F8
, PPC::F9
, PPC::F10
, PPC::F11
, PPC::F12
, PPC::F13
1518 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
1520 static unsigned CalculateStackSlotSize(EVT ArgVT
, ISD::ArgFlagsTy Flags
,
1521 unsigned PtrByteSize
) {
1522 unsigned ArgSize
= ArgVT
.getSizeInBits()/8;
1523 if (Flags
.isByVal())
1524 ArgSize
= Flags
.getByValSize();
1525 ArgSize
= ((ArgSize
+ PtrByteSize
- 1)/PtrByteSize
) * PtrByteSize
;
1531 PPCTargetLowering::LowerFormalArguments(SDValue Chain
,
1532 CallingConv::ID CallConv
, bool isVarArg
,
1533 const SmallVectorImpl
<ISD::InputArg
>
1535 DebugLoc dl
, SelectionDAG
&DAG
,
1536 SmallVectorImpl
<SDValue
> &InVals
)
1538 if (PPCSubTarget
.isSVR4ABI() && !PPCSubTarget
.isPPC64()) {
1539 return LowerFormalArguments_SVR4(Chain
, CallConv
, isVarArg
, Ins
,
1542 return LowerFormalArguments_Darwin(Chain
, CallConv
, isVarArg
, Ins
,
1548 PPCTargetLowering::LowerFormalArguments_SVR4(
1550 CallingConv::ID CallConv
, bool isVarArg
,
1551 const SmallVectorImpl
<ISD::InputArg
>
1553 DebugLoc dl
, SelectionDAG
&DAG
,
1554 SmallVectorImpl
<SDValue
> &InVals
) const {
1556 // 32-bit SVR4 ABI Stack Frame Layout:
1557 // +-----------------------------------+
1558 // +--> | Back chain |
1559 // | +-----------------------------------+
1560 // | | Floating-point register save area |
1561 // | +-----------------------------------+
1562 // | | General register save area |
1563 // | +-----------------------------------+
1564 // | | CR save word |
1565 // | +-----------------------------------+
1566 // | | VRSAVE save word |
1567 // | +-----------------------------------+
1568 // | | Alignment padding |
1569 // | +-----------------------------------+
1570 // | | Vector register save area |
1571 // | +-----------------------------------+
1572 // | | Local variable space |
1573 // | +-----------------------------------+
1574 // | | Parameter list area |
1575 // | +-----------------------------------+
1576 // | | LR save word |
1577 // | +-----------------------------------+
1578 // SP--> +--- | Back chain |
1579 // +-----------------------------------+
1582 // System V Application Binary Interface PowerPC Processor Supplement
1583 // AltiVec Technology Programming Interface Manual
1585 MachineFunction
&MF
= DAG
.getMachineFunction();
1586 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
1587 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
1589 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
1590 // Potential tail calls could cause overwriting of argument stack slots.
1591 bool isImmutable
= !(GuaranteedTailCallOpt
&& (CallConv
==CallingConv::Fast
));
1592 unsigned PtrByteSize
= 4;
1594 // Assign locations to all of the incoming arguments.
1595 SmallVector
<CCValAssign
, 16> ArgLocs
;
1596 CCState
CCInfo(CallConv
, isVarArg
, getTargetMachine(), ArgLocs
,
1599 // Reserve space for the linkage area on the stack.
1600 CCInfo
.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize
);
1602 CCInfo
.AnalyzeFormalArguments(Ins
, CC_PPC_SVR4
);
1604 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
1605 CCValAssign
&VA
= ArgLocs
[i
];
1607 // Arguments stored in registers.
1608 if (VA
.isRegLoc()) {
1609 TargetRegisterClass
*RC
;
1610 EVT ValVT
= VA
.getValVT();
1612 switch (ValVT
.getSimpleVT().SimpleTy
) {
1614 llvm_unreachable("ValVT not supported by formal arguments Lowering");
1616 RC
= PPC::GPRCRegisterClass
;
1619 RC
= PPC::F4RCRegisterClass
;
1622 RC
= PPC::F8RCRegisterClass
;
1628 RC
= PPC::VRRCRegisterClass
;
1632 // Transform the arguments stored in physical registers into virtual ones.
1633 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
1634 SDValue ArgValue
= DAG
.getCopyFromReg(Chain
, dl
, Reg
, ValVT
);
1636 InVals
.push_back(ArgValue
);
1638 // Argument stored in memory.
1639 assert(VA
.isMemLoc());
1641 unsigned ArgSize
= VA
.getLocVT().getSizeInBits() / 8;
1642 int FI
= MFI
->CreateFixedObject(ArgSize
, VA
.getLocMemOffset(),
1645 // Create load nodes to retrieve arguments from the stack.
1646 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
1647 InVals
.push_back(DAG
.getLoad(VA
.getValVT(), dl
, Chain
, FIN
,
1648 MachinePointerInfo(),
1653 // Assign locations to all of the incoming aggregate by value arguments.
1654 // Aggregates passed by value are stored in the local variable space of the
1655 // caller's stack frame, right above the parameter list area.
1656 SmallVector
<CCValAssign
, 16> ByValArgLocs
;
1657 CCState
CCByValInfo(CallConv
, isVarArg
, getTargetMachine(),
1658 ByValArgLocs
, *DAG
.getContext());
1660 // Reserve stack space for the allocations in CCInfo.
1661 CCByValInfo
.AllocateStack(CCInfo
.getNextStackOffset(), PtrByteSize
);
1663 CCByValInfo
.AnalyzeFormalArguments(Ins
, CC_PPC_SVR4_ByVal
);
1665 // Area that is at least reserved in the caller of this function.
1666 unsigned MinReservedArea
= CCByValInfo
.getNextStackOffset();
1668 // Set the size that is at least reserved in caller of this function. Tail
1669 // call optimized function's reserved stack space needs to be aligned so that
1670 // taking the difference between two stack areas will result in an aligned
1672 PPCFunctionInfo
*FI
= MF
.getInfo
<PPCFunctionInfo
>();
1675 std::max(MinReservedArea
,
1676 PPCFrameInfo::getMinCallFrameSize(false, false));
1678 unsigned TargetAlign
= DAG
.getMachineFunction().getTarget().getFrameInfo()->
1679 getStackAlignment();
1680 unsigned AlignMask
= TargetAlign
-1;
1681 MinReservedArea
= (MinReservedArea
+ AlignMask
) & ~AlignMask
;
1683 FI
->setMinReservedArea(MinReservedArea
);
1685 SmallVector
<SDValue
, 8> MemOps
;
1687 // If the function takes variable number of arguments, make a frame index for
1688 // the start of the first vararg value... for expansion of llvm.va_start.
1690 static const unsigned GPArgRegs
[] = {
1691 PPC::R3
, PPC::R4
, PPC::R5
, PPC::R6
,
1692 PPC::R7
, PPC::R8
, PPC::R9
, PPC::R10
,
1694 const unsigned NumGPArgRegs
= array_lengthof(GPArgRegs
);
1696 static const unsigned FPArgRegs
[] = {
1697 PPC::F1
, PPC::F2
, PPC::F3
, PPC::F4
, PPC::F5
, PPC::F6
, PPC::F7
,
1700 const unsigned NumFPArgRegs
= array_lengthof(FPArgRegs
);
1702 FuncInfo
->setVarArgsNumGPR(CCInfo
.getFirstUnallocated(GPArgRegs
,
1704 FuncInfo
->setVarArgsNumFPR(CCInfo
.getFirstUnallocated(FPArgRegs
,
1707 // Make room for NumGPArgRegs and NumFPArgRegs.
1708 int Depth
= NumGPArgRegs
* PtrVT
.getSizeInBits()/8 +
1709 NumFPArgRegs
* EVT(MVT::f64
).getSizeInBits()/8;
1711 FuncInfo
->setVarArgsStackOffset(
1712 MFI
->CreateFixedObject(PtrVT
.getSizeInBits()/8,
1713 CCInfo
.getNextStackOffset(), true));
1715 FuncInfo
->setVarArgsFrameIndex(MFI
->CreateStackObject(Depth
, 8, false));
1716 SDValue FIN
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(), PtrVT
);
1718 // The fixed integer arguments of a variadic function are stored to the
1719 // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
1720 // the result of va_next.
1721 for (unsigned GPRIndex
= 0; GPRIndex
!= NumGPArgRegs
; ++GPRIndex
) {
1722 // Get an existing live-in vreg, or add a new one.
1723 unsigned VReg
= MF
.getRegInfo().getLiveInVirtReg(GPArgRegs
[GPRIndex
]);
1725 VReg
= MF
.addLiveIn(GPArgRegs
[GPRIndex
], &PPC::GPRCRegClass
);
1727 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, PtrVT
);
1728 SDValue Store
= DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
1729 MachinePointerInfo(), false, false, 0);
1730 MemOps
.push_back(Store
);
1731 // Increment the address by four for the next argument to store
1732 SDValue PtrOff
= DAG
.getConstant(PtrVT
.getSizeInBits()/8, PtrVT
);
1733 FIN
= DAG
.getNode(ISD::ADD
, dl
, PtrOff
.getValueType(), FIN
, PtrOff
);
1736 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
1738 // The double arguments are stored to the VarArgsFrameIndex
1740 for (unsigned FPRIndex
= 0; FPRIndex
!= NumFPArgRegs
; ++FPRIndex
) {
1741 // Get an existing live-in vreg, or add a new one.
1742 unsigned VReg
= MF
.getRegInfo().getLiveInVirtReg(FPArgRegs
[FPRIndex
]);
1744 VReg
= MF
.addLiveIn(FPArgRegs
[FPRIndex
], &PPC::F8RCRegClass
);
1746 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::f64
);
1747 SDValue Store
= DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
1748 MachinePointerInfo(), false, false, 0);
1749 MemOps
.push_back(Store
);
1750 // Increment the address by eight for the next argument to store
1751 SDValue PtrOff
= DAG
.getConstant(EVT(MVT::f64
).getSizeInBits()/8,
1753 FIN
= DAG
.getNode(ISD::ADD
, dl
, PtrOff
.getValueType(), FIN
, PtrOff
);
1757 if (!MemOps
.empty())
1758 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
,
1759 MVT::Other
, &MemOps
[0], MemOps
.size());
1765 PPCTargetLowering::LowerFormalArguments_Darwin(
1767 CallingConv::ID CallConv
, bool isVarArg
,
1768 const SmallVectorImpl
<ISD::InputArg
>
1770 DebugLoc dl
, SelectionDAG
&DAG
,
1771 SmallVectorImpl
<SDValue
> &InVals
) const {
1772 // TODO: add description of PPC stack frame format, or at least some docs.
1774 MachineFunction
&MF
= DAG
.getMachineFunction();
1775 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
1776 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
1778 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
1779 bool isPPC64
= PtrVT
== MVT::i64
;
1780 // Potential tail calls could cause overwriting of argument stack slots.
1781 bool isImmutable
= !(GuaranteedTailCallOpt
&& (CallConv
==CallingConv::Fast
));
1782 unsigned PtrByteSize
= isPPC64
? 8 : 4;
1784 unsigned ArgOffset
= PPCFrameInfo::getLinkageSize(isPPC64
, true);
1785 // Area that is at least reserved in caller of this function.
1786 unsigned MinReservedArea
= ArgOffset
;
1788 static const unsigned GPR_32
[] = { // 32-bit registers.
1789 PPC::R3
, PPC::R4
, PPC::R5
, PPC::R6
,
1790 PPC::R7
, PPC::R8
, PPC::R9
, PPC::R10
,
1792 static const unsigned GPR_64
[] = { // 64-bit registers.
1793 PPC::X3
, PPC::X4
, PPC::X5
, PPC::X6
,
1794 PPC::X7
, PPC::X8
, PPC::X9
, PPC::X10
,
1797 static const unsigned *FPR
= GetFPR();
1799 static const unsigned VR
[] = {
1800 PPC::V2
, PPC::V3
, PPC::V4
, PPC::V5
, PPC::V6
, PPC::V7
, PPC::V8
,
1801 PPC::V9
, PPC::V10
, PPC::V11
, PPC::V12
, PPC::V13
1804 const unsigned Num_GPR_Regs
= array_lengthof(GPR_32
);
1805 const unsigned Num_FPR_Regs
= 13;
1806 const unsigned Num_VR_Regs
= array_lengthof( VR
);
1808 unsigned GPR_idx
= 0, FPR_idx
= 0, VR_idx
= 0;
1810 const unsigned *GPR
= isPPC64
? GPR_64
: GPR_32
;
1812 // In 32-bit non-varargs functions, the stack space for vectors is after the
1813 // stack space for non-vectors. We do not use this space unless we have
1814 // too many vectors to fit in registers, something that only occurs in
1815 // constructed examples:), but we have to walk the arglist to figure
1816 // that out...for the pathological case, compute VecArgOffset as the
1817 // start of the vector parameter area. Computing VecArgOffset is the
1818 // entire point of the following loop.
1819 unsigned VecArgOffset
= ArgOffset
;
1820 if (!isVarArg
&& !isPPC64
) {
1821 for (unsigned ArgNo
= 0, e
= Ins
.size(); ArgNo
!= e
;
1823 EVT ObjectVT
= Ins
[ArgNo
].VT
;
1824 unsigned ObjSize
= ObjectVT
.getSizeInBits()/8;
1825 ISD::ArgFlagsTy Flags
= Ins
[ArgNo
].Flags
;
1827 if (Flags
.isByVal()) {
1828 // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1829 ObjSize
= Flags
.getByValSize();
1831 ((ObjSize
+ PtrByteSize
- 1)/PtrByteSize
) * PtrByteSize
;
1832 VecArgOffset
+= ArgSize
;
1836 switch(ObjectVT
.getSimpleVT().SimpleTy
) {
1837 default: llvm_unreachable("Unhandled argument type!");
1840 VecArgOffset
+= isPPC64
? 8 : 4;
1842 case MVT::i64
: // PPC64
1850 // Nothing to do, we're only looking at Nonvector args here.
1855 // We've found where the vector parameter area in memory is. Skip the
1856 // first 12 parameters; these don't use that memory.
1857 VecArgOffset
= ((VecArgOffset
+15)/16)*16;
1858 VecArgOffset
+= 12*16;
1860 // Add DAG nodes to load the arguments or copy them out of registers. On
1861 // entry to a function on PPC, the arguments start after the linkage area,
1862 // although the first ones are often in registers.
1864 SmallVector
<SDValue
, 8> MemOps
;
1865 unsigned nAltivecParamsAtEnd
= 0;
1866 for (unsigned ArgNo
= 0, e
= Ins
.size(); ArgNo
!= e
; ++ArgNo
) {
1868 bool needsLoad
= false;
1869 EVT ObjectVT
= Ins
[ArgNo
].VT
;
1870 unsigned ObjSize
= ObjectVT
.getSizeInBits()/8;
1871 unsigned ArgSize
= ObjSize
;
1872 ISD::ArgFlagsTy Flags
= Ins
[ArgNo
].Flags
;
1874 unsigned CurArgOffset
= ArgOffset
;
1876 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1877 if (ObjectVT
==MVT::v4f32
|| ObjectVT
==MVT::v4i32
||
1878 ObjectVT
==MVT::v8i16
|| ObjectVT
==MVT::v16i8
) {
1879 if (isVarArg
|| isPPC64
) {
1880 MinReservedArea
= ((MinReservedArea
+15)/16)*16;
1881 MinReservedArea
+= CalculateStackSlotSize(ObjectVT
,
1884 } else nAltivecParamsAtEnd
++;
1886 // Calculate min reserved area.
1887 MinReservedArea
+= CalculateStackSlotSize(Ins
[ArgNo
].VT
,
1891 // FIXME the codegen can be much improved in some cases.
1892 // We do not have to keep everything in memory.
1893 if (Flags
.isByVal()) {
1894 // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1895 ObjSize
= Flags
.getByValSize();
1896 ArgSize
= ((ObjSize
+ PtrByteSize
- 1)/PtrByteSize
) * PtrByteSize
;
1897 // Objects of size 1 and 2 are right justified, everything else is
1898 // left justified. This means the memory address is adjusted forwards.
1899 if (ObjSize
==1 || ObjSize
==2) {
1900 CurArgOffset
= CurArgOffset
+ (4 - ObjSize
);
1902 // The value of the object is its address.
1903 int FI
= MFI
->CreateFixedObject(ObjSize
, CurArgOffset
, true);
1904 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
1905 InVals
.push_back(FIN
);
1906 if (ObjSize
==1 || ObjSize
==2) {
1907 if (GPR_idx
!= Num_GPR_Regs
) {
1908 unsigned VReg
= MF
.addLiveIn(GPR
[GPR_idx
], &PPC::GPRCRegClass
);
1909 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, PtrVT
);
1910 SDValue Store
= DAG
.getTruncStore(Val
.getValue(1), dl
, Val
, FIN
,
1911 MachinePointerInfo(),
1912 ObjSize
==1 ? MVT::i8
: MVT::i16
,
1914 MemOps
.push_back(Store
);
1918 ArgOffset
+= PtrByteSize
;
1922 for (unsigned j
= 0; j
< ArgSize
; j
+= PtrByteSize
) {
1923 // Store whatever pieces of the object are in registers
1924 // to memory. ArgVal will be address of the beginning of
1926 if (GPR_idx
!= Num_GPR_Regs
) {
1927 unsigned VReg
= MF
.addLiveIn(GPR
[GPR_idx
], &PPC::GPRCRegClass
);
1928 int FI
= MFI
->CreateFixedObject(PtrByteSize
, ArgOffset
, true);
1929 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
1930 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, PtrVT
);
1931 SDValue Store
= DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
1932 MachinePointerInfo(),
1934 MemOps
.push_back(Store
);
1936 ArgOffset
+= PtrByteSize
;
1938 ArgOffset
+= ArgSize
- (ArgOffset
-CurArgOffset
);
1945 switch (ObjectVT
.getSimpleVT().SimpleTy
) {
1946 default: llvm_unreachable("Unhandled argument type!");
1949 if (GPR_idx
!= Num_GPR_Regs
) {
1950 unsigned VReg
= MF
.addLiveIn(GPR
[GPR_idx
], &PPC::GPRCRegClass
);
1951 ArgVal
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::i32
);
1955 ArgSize
= PtrByteSize
;
1957 // All int arguments reserve stack space in the Darwin ABI.
1958 ArgOffset
+= PtrByteSize
;
1962 case MVT::i64
: // PPC64
1963 if (GPR_idx
!= Num_GPR_Regs
) {
1964 unsigned VReg
= MF
.addLiveIn(GPR
[GPR_idx
], &PPC::G8RCRegClass
);
1965 ArgVal
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::i64
);
1967 if (ObjectVT
== MVT::i32
) {
1968 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1969 // value to MVT::i64 and then truncate to the correct register size.
1971 ArgVal
= DAG
.getNode(ISD::AssertSext
, dl
, MVT::i64
, ArgVal
,
1972 DAG
.getValueType(ObjectVT
));
1973 else if (Flags
.isZExt())
1974 ArgVal
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i64
, ArgVal
,
1975 DAG
.getValueType(ObjectVT
));
1977 ArgVal
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, ArgVal
);
1983 ArgSize
= PtrByteSize
;
1985 // All int arguments reserve stack space in the Darwin ABI.
1991 // Every 4 bytes of argument space consumes one of the GPRs available for
1992 // argument passing.
1993 if (GPR_idx
!= Num_GPR_Regs
) {
1995 if (ObjSize
== 8 && GPR_idx
!= Num_GPR_Regs
&& !isPPC64
)
1998 if (FPR_idx
!= Num_FPR_Regs
) {
2001 if (ObjectVT
== MVT::f32
)
2002 VReg
= MF
.addLiveIn(FPR
[FPR_idx
], &PPC::F4RCRegClass
);
2004 VReg
= MF
.addLiveIn(FPR
[FPR_idx
], &PPC::F8RCRegClass
);
2006 ArgVal
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, ObjectVT
);
2012 // All FP arguments reserve stack space in the Darwin ABI.
2013 ArgOffset
+= isPPC64
? 8 : ObjSize
;
2019 // Note that vector arguments in registers don't reserve stack space,
2020 // except in varargs functions.
2021 if (VR_idx
!= Num_VR_Regs
) {
2022 unsigned VReg
= MF
.addLiveIn(VR
[VR_idx
], &PPC::VRRCRegClass
);
2023 ArgVal
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, ObjectVT
);
2025 while ((ArgOffset
% 16) != 0) {
2026 ArgOffset
+= PtrByteSize
;
2027 if (GPR_idx
!= Num_GPR_Regs
)
2031 GPR_idx
= std::min(GPR_idx
+4, Num_GPR_Regs
); // FIXME correct for ppc64?
2035 if (!isVarArg
&& !isPPC64
) {
2036 // Vectors go after all the nonvectors.
2037 CurArgOffset
= VecArgOffset
;
2040 // Vectors are aligned.
2041 ArgOffset
= ((ArgOffset
+15)/16)*16;
2042 CurArgOffset
= ArgOffset
;
2050 // We need to load the argument to a virtual register if we determined above
2051 // that we ran out of physical registers of the appropriate type.
2053 int FI
= MFI
->CreateFixedObject(ObjSize
,
2054 CurArgOffset
+ (ArgSize
- ObjSize
),
2056 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
2057 ArgVal
= DAG
.getLoad(ObjectVT
, dl
, Chain
, FIN
, MachinePointerInfo(),
2061 InVals
.push_back(ArgVal
);
2064 // Set the size that is at least reserved in caller of this function. Tail
2065 // call optimized function's reserved stack space needs to be aligned so that
2066 // taking the difference between two stack areas will result in an aligned
2068 PPCFunctionInfo
*FI
= MF
.getInfo
<PPCFunctionInfo
>();
2069 // Add the Altivec parameters at the end, if needed.
2070 if (nAltivecParamsAtEnd
) {
2071 MinReservedArea
= ((MinReservedArea
+15)/16)*16;
2072 MinReservedArea
+= 16*nAltivecParamsAtEnd
;
2075 std::max(MinReservedArea
,
2076 PPCFrameInfo::getMinCallFrameSize(isPPC64
, true));
2077 unsigned TargetAlign
= DAG
.getMachineFunction().getTarget().getFrameInfo()->
2078 getStackAlignment();
2079 unsigned AlignMask
= TargetAlign
-1;
2080 MinReservedArea
= (MinReservedArea
+ AlignMask
) & ~AlignMask
;
2081 FI
->setMinReservedArea(MinReservedArea
);
2083 // If the function takes variable number of arguments, make a frame index for
2084 // the start of the first vararg value... for expansion of llvm.va_start.
2086 int Depth
= ArgOffset
;
2088 FuncInfo
->setVarArgsFrameIndex(
2089 MFI
->CreateFixedObject(PtrVT
.getSizeInBits()/8,
2091 SDValue FIN
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(), PtrVT
);
2093 // If this function is vararg, store any remaining integer argument regs
2094 // to their spots on the stack so that they may be loaded by deferencing the
2095 // result of va_next.
2096 for (; GPR_idx
!= Num_GPR_Regs
; ++GPR_idx
) {
2100 VReg
= MF
.addLiveIn(GPR
[GPR_idx
], &PPC::G8RCRegClass
);
2102 VReg
= MF
.addLiveIn(GPR
[GPR_idx
], &PPC::GPRCRegClass
);
2104 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, PtrVT
);
2105 SDValue Store
= DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
2106 MachinePointerInfo(), false, false, 0);
2107 MemOps
.push_back(Store
);
2108 // Increment the address by four for the next argument to store
2109 SDValue PtrOff
= DAG
.getConstant(PtrVT
.getSizeInBits()/8, PtrVT
);
2110 FIN
= DAG
.getNode(ISD::ADD
, dl
, PtrOff
.getValueType(), FIN
, PtrOff
);
2114 if (!MemOps
.empty())
2115 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
,
2116 MVT::Other
, &MemOps
[0], MemOps
.size());
2121 /// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
2122 /// linkage area for the Darwin ABI.
2124 CalculateParameterAndLinkageAreaSize(SelectionDAG
&DAG
,
2128 const SmallVectorImpl
<ISD::OutputArg
>
2130 const SmallVectorImpl
<SDValue
> &OutVals
,
2131 unsigned &nAltivecParamsAtEnd
) {
2132 // Count how many bytes are to be pushed on the stack, including the linkage
2133 // area, and parameter passing area. We start with 24/48 bytes, which is
2134 // prereserved space for [SP][CR][LR][3 x unused].
2135 unsigned NumBytes
= PPCFrameInfo::getLinkageSize(isPPC64
, true);
2136 unsigned NumOps
= Outs
.size();
2137 unsigned PtrByteSize
= isPPC64
? 8 : 4;
2139 // Add up all the space actually used.
2140 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2141 // they all go in registers, but we must reserve stack space for them for
2142 // possible use by the caller. In varargs or 64-bit calls, parameters are
2143 // assigned stack space in order, with padding so Altivec parameters are
2145 nAltivecParamsAtEnd
= 0;
2146 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
2147 ISD::ArgFlagsTy Flags
= Outs
[i
].Flags
;
2148 EVT ArgVT
= Outs
[i
].VT
;
2149 // Varargs Altivec parameters are padded to a 16 byte boundary.
2150 if (ArgVT
==MVT::v4f32
|| ArgVT
==MVT::v4i32
||
2151 ArgVT
==MVT::v8i16
|| ArgVT
==MVT::v16i8
) {
2152 if (!isVarArg
&& !isPPC64
) {
2153 // Non-varargs Altivec parameters go after all the non-Altivec
2154 // parameters; handle those later so we know how much padding we need.
2155 nAltivecParamsAtEnd
++;
2158 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2159 NumBytes
= ((NumBytes
+15)/16)*16;
2161 NumBytes
+= CalculateStackSlotSize(ArgVT
, Flags
, PtrByteSize
);
2164 // Allow for Altivec parameters at the end, if needed.
2165 if (nAltivecParamsAtEnd
) {
2166 NumBytes
= ((NumBytes
+15)/16)*16;
2167 NumBytes
+= 16*nAltivecParamsAtEnd
;
2170 // The prolog code of the callee may store up to 8 GPR argument registers to
2171 // the stack, allowing va_start to index over them in memory if its varargs.
2172 // Because we cannot tell if this is needed on the caller side, we have to
2173 // conservatively assume that it is needed. As such, make sure we have at
2174 // least enough stack space for the caller to store the 8 GPRs.
2175 NumBytes
= std::max(NumBytes
,
2176 PPCFrameInfo::getMinCallFrameSize(isPPC64
, true));
2178 // Tail call needs the stack to be aligned.
2179 if (CC
==CallingConv::Fast
&& GuaranteedTailCallOpt
) {
2180 unsigned TargetAlign
= DAG
.getMachineFunction().getTarget().getFrameInfo()->
2181 getStackAlignment();
2182 unsigned AlignMask
= TargetAlign
-1;
2183 NumBytes
= (NumBytes
+ AlignMask
) & ~AlignMask
;
2189 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2190 /// adjusted to accomodate the arguments for the tailcall.
2191 static int CalculateTailCallSPDiff(SelectionDAG
& DAG
, bool isTailCall
,
2192 unsigned ParamSize
) {
2194 if (!isTailCall
) return 0;
2196 PPCFunctionInfo
*FI
= DAG
.getMachineFunction().getInfo
<PPCFunctionInfo
>();
2197 unsigned CallerMinReservedArea
= FI
->getMinReservedArea();
2198 int SPDiff
= (int)CallerMinReservedArea
- (int)ParamSize
;
2199 // Remember only if the new adjustement is bigger.
2200 if (SPDiff
< FI
->getTailCallSPDelta())
2201 FI
->setTailCallSPDelta(SPDiff
);
2206 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2207 /// for tail call optimization. Targets which want to do tail call
2208 /// optimization should implement this function.
2210 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee
,
2211 CallingConv::ID CalleeCC
,
2213 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
2214 SelectionDAG
& DAG
) const {
2215 if (!GuaranteedTailCallOpt
)
2218 // Variable argument functions are not supported.
2222 MachineFunction
&MF
= DAG
.getMachineFunction();
2223 CallingConv::ID CallerCC
= MF
.getFunction()->getCallingConv();
2224 if (CalleeCC
== CallingConv::Fast
&& CallerCC
== CalleeCC
) {
2225 // Functions containing by val parameters are not supported.
2226 for (unsigned i
= 0; i
!= Ins
.size(); i
++) {
2227 ISD::ArgFlagsTy Flags
= Ins
[i
].Flags
;
2228 if (Flags
.isByVal()) return false;
2231 // Non PIC/GOT tail calls are supported.
2232 if (getTargetMachine().getRelocationModel() != Reloc::PIC_
)
2235 // At the moment we can only do local tail calls (in same module, hidden
2236 // or protected) if we are generating PIC.
2237 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
2238 return G
->getGlobal()->hasHiddenVisibility()
2239 || G
->getGlobal()->hasProtectedVisibility();
2245 /// isCallCompatibleAddress - Return the immediate to use if the specified
2246 /// 32-bit value is representable in the immediate field of a BxA instruction.
2247 static SDNode
*isBLACompatibleAddress(SDValue Op
, SelectionDAG
&DAG
) {
2248 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
);
2251 int Addr
= C
->getZExtValue();
2252 if ((Addr
& 3) != 0 || // Low 2 bits are implicitly zero.
2253 (Addr
<< 6 >> 6) != Addr
)
2254 return 0; // Top 6 bits have to be sext of immediate.
2256 return DAG
.getConstant((int)C
->getZExtValue() >> 2,
2257 DAG
.getTargetLoweringInfo().getPointerTy()).getNode();
2262 struct TailCallArgumentInfo
{
2267 TailCallArgumentInfo() : FrameIdx(0) {}
2272 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2274 StoreTailCallArgumentsToStackSlot(SelectionDAG
&DAG
,
2276 const SmallVector
<TailCallArgumentInfo
, 8> &TailCallArgs
,
2277 SmallVector
<SDValue
, 8> &MemOpChains
,
2279 for (unsigned i
= 0, e
= TailCallArgs
.size(); i
!= e
; ++i
) {
2280 SDValue Arg
= TailCallArgs
[i
].Arg
;
2281 SDValue FIN
= TailCallArgs
[i
].FrameIdxOp
;
2282 int FI
= TailCallArgs
[i
].FrameIdx
;
2283 // Store relative to framepointer.
2284 MemOpChains
.push_back(DAG
.getStore(Chain
, dl
, Arg
, FIN
,
2285 MachinePointerInfo::getFixedStack(FI
),
2290 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2291 /// the appropriate stack slot for the tail call optimized function call.
2292 static SDValue
EmitTailCallStoreFPAndRetAddr(SelectionDAG
&DAG
,
2293 MachineFunction
&MF
,
2302 // Calculate the new stack slot for the return address.
2303 int SlotSize
= isPPC64
? 8 : 4;
2304 int NewRetAddrLoc
= SPDiff
+ PPCFrameInfo::getReturnSaveOffset(isPPC64
,
2306 int NewRetAddr
= MF
.getFrameInfo()->CreateFixedObject(SlotSize
,
2307 NewRetAddrLoc
, true);
2308 EVT VT
= isPPC64
? MVT::i64
: MVT::i32
;
2309 SDValue NewRetAddrFrIdx
= DAG
.getFrameIndex(NewRetAddr
, VT
);
2310 Chain
= DAG
.getStore(Chain
, dl
, OldRetAddr
, NewRetAddrFrIdx
,
2311 MachinePointerInfo::getFixedStack(NewRetAddr
),
2314 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2315 // slot as the FP is never overwritten.
2318 SPDiff
+ PPCFrameInfo::getFramePointerSaveOffset(isPPC64
, isDarwinABI
);
2319 int NewFPIdx
= MF
.getFrameInfo()->CreateFixedObject(SlotSize
, NewFPLoc
,
2321 SDValue NewFramePtrIdx
= DAG
.getFrameIndex(NewFPIdx
, VT
);
2322 Chain
= DAG
.getStore(Chain
, dl
, OldFP
, NewFramePtrIdx
,
2323 MachinePointerInfo::getFixedStack(NewFPIdx
),
2330 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2331 /// the position of the argument.
2333 CalculateTailCallArgDest(SelectionDAG
&DAG
, MachineFunction
&MF
, bool isPPC64
,
2334 SDValue Arg
, int SPDiff
, unsigned ArgOffset
,
2335 SmallVector
<TailCallArgumentInfo
, 8>& TailCallArguments
) {
2336 int Offset
= ArgOffset
+ SPDiff
;
2337 uint32_t OpSize
= (Arg
.getValueType().getSizeInBits()+7)/8;
2338 int FI
= MF
.getFrameInfo()->CreateFixedObject(OpSize
, Offset
, true);
2339 EVT VT
= isPPC64
? MVT::i64
: MVT::i32
;
2340 SDValue FIN
= DAG
.getFrameIndex(FI
, VT
);
2341 TailCallArgumentInfo Info
;
2343 Info
.FrameIdxOp
= FIN
;
2345 TailCallArguments
.push_back(Info
);
2348 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2349 /// stack slot. Returns the chain as result and the loaded frame pointers in
2350 /// LROpOut/FPOpout. Used when tail calling.
2351 SDValue
PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG
& DAG
,
2357 DebugLoc dl
) const {
2359 // Load the LR and FP stack slot for later adjusting.
2360 EVT VT
= PPCSubTarget
.isPPC64() ? MVT::i64
: MVT::i32
;
2361 LROpOut
= getReturnAddrFrameIndex(DAG
);
2362 LROpOut
= DAG
.getLoad(VT
, dl
, Chain
, LROpOut
, MachinePointerInfo(),
2364 Chain
= SDValue(LROpOut
.getNode(), 1);
2366 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
2367 // slot as the FP is never overwritten.
2369 FPOpOut
= getFramePointerFrameIndex(DAG
);
2370 FPOpOut
= DAG
.getLoad(VT
, dl
, Chain
, FPOpOut
, MachinePointerInfo(),
2372 Chain
= SDValue(FPOpOut
.getNode(), 1);
2378 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2379 /// by "Src" to address "Dst" of size "Size". Alignment information is
2380 /// specified by the specific parameter attribute. The copy will be passed as
2381 /// a byval function parameter.
2382 /// Sometimes what we are copying is the end of a larger object, the part that
2383 /// does not fit in registers.
2385 CreateCopyOfByValArgument(SDValue Src
, SDValue Dst
, SDValue Chain
,
2386 ISD::ArgFlagsTy Flags
, SelectionDAG
&DAG
,
2388 SDValue SizeNode
= DAG
.getConstant(Flags
.getByValSize(), MVT::i32
);
2389 return DAG
.getMemcpy(Chain
, dl
, Dst
, Src
, SizeNode
, Flags
.getByValAlign(),
2390 false, false, MachinePointerInfo(0),
2391 MachinePointerInfo(0));
2394 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2397 LowerMemOpCallTo(SelectionDAG
&DAG
, MachineFunction
&MF
, SDValue Chain
,
2398 SDValue Arg
, SDValue PtrOff
, int SPDiff
,
2399 unsigned ArgOffset
, bool isPPC64
, bool isTailCall
,
2400 bool isVector
, SmallVector
<SDValue
, 8> &MemOpChains
,
2401 SmallVector
<TailCallArgumentInfo
, 8> &TailCallArguments
,
2403 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
2408 StackPtr
= DAG
.getRegister(PPC::X1
, MVT::i64
);
2410 StackPtr
= DAG
.getRegister(PPC::R1
, MVT::i32
);
2411 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
,
2412 DAG
.getConstant(ArgOffset
, PtrVT
));
2414 MemOpChains
.push_back(DAG
.getStore(Chain
, dl
, Arg
, PtrOff
,
2415 MachinePointerInfo(), false, false, 0));
2416 // Calculate and remember argument location.
2417 } else CalculateTailCallArgDest(DAG
, MF
, isPPC64
, Arg
, SPDiff
, ArgOffset
,
2422 void PrepareTailCall(SelectionDAG
&DAG
, SDValue
&InFlag
, SDValue
&Chain
,
2423 DebugLoc dl
, bool isPPC64
, int SPDiff
, unsigned NumBytes
,
2424 SDValue LROp
, SDValue FPOp
, bool isDarwinABI
,
2425 SmallVector
<TailCallArgumentInfo
, 8> &TailCallArguments
) {
2426 MachineFunction
&MF
= DAG
.getMachineFunction();
2428 // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2429 // might overwrite each other in case of tail call optimization.
2430 SmallVector
<SDValue
, 8> MemOpChains2
;
2431 // Do not flag preceeding copytoreg stuff together with the following stuff.
2433 StoreTailCallArgumentsToStackSlot(DAG
, Chain
, TailCallArguments
,
2435 if (!MemOpChains2
.empty())
2436 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
2437 &MemOpChains2
[0], MemOpChains2
.size());
2439 // Store the return address to the appropriate stack slot.
2440 Chain
= EmitTailCallStoreFPAndRetAddr(DAG
, MF
, Chain
, LROp
, FPOp
, SPDiff
,
2441 isPPC64
, isDarwinABI
, dl
);
2443 // Emit callseq_end just before tailcall node.
2444 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, true),
2445 DAG
.getIntPtrConstant(0, true), InFlag
);
2446 InFlag
= Chain
.getValue(1);
2450 unsigned PrepareCall(SelectionDAG
&DAG
, SDValue
&Callee
, SDValue
&InFlag
,
2451 SDValue
&Chain
, DebugLoc dl
, int SPDiff
, bool isTailCall
,
2452 SmallVector
<std::pair
<unsigned, SDValue
>, 8> &RegsToPass
,
2453 SmallVector
<SDValue
, 8> &Ops
, std::vector
<EVT
> &NodeTys
,
2454 bool isPPC64
, bool isSVR4ABI
) {
2455 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
2456 NodeTys
.push_back(MVT::Other
); // Returns a chain
2457 NodeTys
.push_back(MVT::Flag
); // Returns a flag for retval copy to use.
2459 unsigned CallOpc
= isSVR4ABI
? PPCISD::CALL_SVR4
: PPCISD::CALL_Darwin
;
2461 bool needIndirectCall
= true;
2462 if (SDNode
*Dest
= isBLACompatibleAddress(Callee
, DAG
)) {
2463 // If this is an absolute destination address, use the munged value.
2464 Callee
= SDValue(Dest
, 0);
2465 needIndirectCall
= false;
2467 // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
2468 // Use indirect calls for ALL functions calls in JIT mode, since the
2469 // far-call stubs may be outside relocation limits for a BL instruction.
2470 if (!DAG
.getTarget().getSubtarget
<PPCSubtarget
>().isJITCodeModel()) {
2471 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2472 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2473 // node so that legalize doesn't hack it.
2474 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
2475 Callee
= DAG
.getTargetGlobalAddress(G
->getGlobal(), dl
,
2476 Callee
.getValueType());
2477 needIndirectCall
= false;
2480 if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
2481 Callee
= DAG
.getTargetExternalSymbol(S
->getSymbol(),
2482 Callee
.getValueType());
2483 needIndirectCall
= false;
2485 if (needIndirectCall
) {
2486 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
2487 // to do the call, we can't use PPCISD::CALL.
2488 SDValue MTCTROps
[] = {Chain
, Callee
, InFlag
};
2490 if (isSVR4ABI
&& isPPC64
) {
2491 // Function pointers in the 64-bit SVR4 ABI do not point to the function
2492 // entry point, but to the function descriptor (the function entry point
2493 // address is part of the function descriptor though).
2494 // The function descriptor is a three doubleword structure with the
2495 // following fields: function entry point, TOC base address and
2496 // environment pointer.
2497 // Thus for a call through a function pointer, the following actions need
2499 // 1. Save the TOC of the caller in the TOC save area of its stack
2500 // frame (this is done in LowerCall_Darwin()).
2501 // 2. Load the address of the function entry point from the function
2503 // 3. Load the TOC of the callee from the function descriptor into r2.
2504 // 4. Load the environment pointer from the function descriptor into
2506 // 5. Branch to the function entry point address.
2507 // 6. On return of the callee, the TOC of the caller needs to be
2508 // restored (this is done in FinishCall()).
2510 // All those operations are flagged together to ensure that no other
2511 // operations can be scheduled in between. E.g. without flagging the
2512 // operations together, a TOC access in the caller could be scheduled
2513 // between the load of the callee TOC and the branch to the callee, which
2514 // results in the TOC access going through the TOC of the callee instead
2515 // of going through the TOC of the caller, which leads to incorrect code.
2517 // Load the address of the function entry point from the function
2519 SDVTList VTs
= DAG
.getVTList(MVT::i64
, MVT::Other
, MVT::Flag
);
2520 SDValue LoadFuncPtr
= DAG
.getNode(PPCISD::LOAD
, dl
, VTs
, MTCTROps
,
2521 InFlag
.getNode() ? 3 : 2);
2522 Chain
= LoadFuncPtr
.getValue(1);
2523 InFlag
= LoadFuncPtr
.getValue(2);
2525 // Load environment pointer into r11.
2526 // Offset of the environment pointer within the function descriptor.
2527 SDValue PtrOff
= DAG
.getIntPtrConstant(16);
2529 SDValue AddPtr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Callee
, PtrOff
);
2530 SDValue LoadEnvPtr
= DAG
.getNode(PPCISD::LOAD
, dl
, VTs
, Chain
, AddPtr
,
2532 Chain
= LoadEnvPtr
.getValue(1);
2533 InFlag
= LoadEnvPtr
.getValue(2);
2535 SDValue EnvVal
= DAG
.getCopyToReg(Chain
, dl
, PPC::X11
, LoadEnvPtr
,
2537 Chain
= EnvVal
.getValue(0);
2538 InFlag
= EnvVal
.getValue(1);
2540 // Load TOC of the callee into r2. We are using a target-specific load
2541 // with r2 hard coded, because the result of a target-independent load
2542 // would never go directly into r2, since r2 is a reserved register (which
2543 // prevents the register allocator from allocating it), resulting in an
2544 // additional register being allocated and an unnecessary move instruction
2546 VTs
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
2547 SDValue LoadTOCPtr
= DAG
.getNode(PPCISD::LOAD_TOC
, dl
, VTs
, Chain
,
2549 Chain
= LoadTOCPtr
.getValue(0);
2550 InFlag
= LoadTOCPtr
.getValue(1);
2552 MTCTROps
[0] = Chain
;
2553 MTCTROps
[1] = LoadFuncPtr
;
2554 MTCTROps
[2] = InFlag
;
2557 Chain
= DAG
.getNode(PPCISD::MTCTR
, dl
, NodeTys
, MTCTROps
,
2558 2 + (InFlag
.getNode() != 0));
2559 InFlag
= Chain
.getValue(1);
2562 NodeTys
.push_back(MVT::Other
);
2563 NodeTys
.push_back(MVT::Flag
);
2564 Ops
.push_back(Chain
);
2565 CallOpc
= isSVR4ABI
? PPCISD::BCTRL_SVR4
: PPCISD::BCTRL_Darwin
;
2567 // Add CTR register as callee so a bctr can be emitted later.
2569 Ops
.push_back(DAG
.getRegister(PPC::CTR
, PtrVT
));
2572 // If this is a direct call, pass the chain and the callee.
2573 if (Callee
.getNode()) {
2574 Ops
.push_back(Chain
);
2575 Ops
.push_back(Callee
);
2577 // If this is a tail call add stack pointer delta.
2579 Ops
.push_back(DAG
.getConstant(SPDiff
, MVT::i32
));
2581 // Add argument registers to the end of the list so that they are known live
2583 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
2584 Ops
.push_back(DAG
.getRegister(RegsToPass
[i
].first
,
2585 RegsToPass
[i
].second
.getValueType()));
2591 PPCTargetLowering::LowerCallResult(SDValue Chain
, SDValue InFlag
,
2592 CallingConv::ID CallConv
, bool isVarArg
,
2593 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
2594 DebugLoc dl
, SelectionDAG
&DAG
,
2595 SmallVectorImpl
<SDValue
> &InVals
) const {
2597 SmallVector
<CCValAssign
, 16> RVLocs
;
2598 CCState
CCRetInfo(CallConv
, isVarArg
, getTargetMachine(),
2599 RVLocs
, *DAG
.getContext());
2600 CCRetInfo
.AnalyzeCallResult(Ins
, RetCC_PPC
);
2602 // Copy all of the result registers out of their specified physreg.
2603 for (unsigned i
= 0, e
= RVLocs
.size(); i
!= e
; ++i
) {
2604 CCValAssign
&VA
= RVLocs
[i
];
2605 EVT VT
= VA
.getValVT();
2606 assert(VA
.isRegLoc() && "Can only return in registers!");
2607 Chain
= DAG
.getCopyFromReg(Chain
, dl
,
2608 VA
.getLocReg(), VT
, InFlag
).getValue(1);
2609 InVals
.push_back(Chain
.getValue(0));
2610 InFlag
= Chain
.getValue(2);
2617 PPCTargetLowering::FinishCall(CallingConv::ID CallConv
, DebugLoc dl
,
2618 bool isTailCall
, bool isVarArg
,
2620 SmallVector
<std::pair
<unsigned, SDValue
>, 8>
2622 SDValue InFlag
, SDValue Chain
,
2624 int SPDiff
, unsigned NumBytes
,
2625 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
2626 SmallVectorImpl
<SDValue
> &InVals
) const {
2627 std::vector
<EVT
> NodeTys
;
2628 SmallVector
<SDValue
, 8> Ops
;
2629 unsigned CallOpc
= PrepareCall(DAG
, Callee
, InFlag
, Chain
, dl
, SPDiff
,
2630 isTailCall
, RegsToPass
, Ops
, NodeTys
,
2631 PPCSubTarget
.isPPC64(),
2632 PPCSubTarget
.isSVR4ABI());
2634 // When performing tail call optimization the callee pops its arguments off
2635 // the stack. Account for this here so these bytes can be pushed back on in
2636 // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2637 int BytesCalleePops
=
2638 (CallConv
==CallingConv::Fast
&& GuaranteedTailCallOpt
) ? NumBytes
: 0;
2640 if (InFlag
.getNode())
2641 Ops
.push_back(InFlag
);
2645 // If this is the first return lowered for this function, add the regs
2646 // to the liveout set for the function.
2647 if (DAG
.getMachineFunction().getRegInfo().liveout_empty()) {
2648 SmallVector
<CCValAssign
, 16> RVLocs
;
2649 CCState
CCInfo(CallConv
, isVarArg
, getTargetMachine(), RVLocs
,
2651 CCInfo
.AnalyzeCallResult(Ins
, RetCC_PPC
);
2652 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
)
2653 DAG
.getMachineFunction().getRegInfo().addLiveOut(RVLocs
[i
].getLocReg());
2656 assert(((Callee
.getOpcode() == ISD::Register
&&
2657 cast
<RegisterSDNode
>(Callee
)->getReg() == PPC::CTR
) ||
2658 Callee
.getOpcode() == ISD::TargetExternalSymbol
||
2659 Callee
.getOpcode() == ISD::TargetGlobalAddress
||
2660 isa
<ConstantSDNode
>(Callee
)) &&
2661 "Expecting an global address, external symbol, absolute value or register");
2663 return DAG
.getNode(PPCISD::TC_RETURN
, dl
, MVT::Other
, &Ops
[0], Ops
.size());
2666 Chain
= DAG
.getNode(CallOpc
, dl
, NodeTys
, &Ops
[0], Ops
.size());
2667 InFlag
= Chain
.getValue(1);
2669 // Add a NOP immediately after the branch instruction when using the 64-bit
2670 // SVR4 ABI. At link time, if caller and callee are in a different module and
2671 // thus have a different TOC, the call will be replaced with a call to a stub
2672 // function which saves the current TOC, loads the TOC of the callee and
2673 // branches to the callee. The NOP will be replaced with a load instruction
2674 // which restores the TOC of the caller from the TOC save slot of the current
2675 // stack frame. If caller and callee belong to the same module (and have the
2676 // same TOC), the NOP will remain unchanged.
2677 if (!isTailCall
&& PPCSubTarget
.isSVR4ABI()&& PPCSubTarget
.isPPC64()) {
2678 SDVTList VTs
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
2679 if (CallOpc
== PPCISD::BCTRL_SVR4
) {
2680 // This is a call through a function pointer.
2681 // Restore the caller TOC from the save area into R2.
2682 // See PrepareCall() for more information about calls through function
2683 // pointers in the 64-bit SVR4 ABI.
2684 // We are using a target-specific load with r2 hard coded, because the
2685 // result of a target-independent load would never go directly into r2,
2686 // since r2 is a reserved register (which prevents the register allocator
2687 // from allocating it), resulting in an additional register being
2688 // allocated and an unnecessary move instruction being generated.
2689 Chain
= DAG
.getNode(PPCISD::TOC_RESTORE
, dl
, VTs
, Chain
, InFlag
);
2690 InFlag
= Chain
.getValue(1);
2692 // Otherwise insert NOP.
2693 InFlag
= DAG
.getNode(PPCISD::NOP
, dl
, MVT::Flag
, InFlag
);
2697 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, true),
2698 DAG
.getIntPtrConstant(BytesCalleePops
, true),
2701 InFlag
= Chain
.getValue(1);
2703 return LowerCallResult(Chain
, InFlag
, CallConv
, isVarArg
,
2704 Ins
, dl
, DAG
, InVals
);
2708 PPCTargetLowering::LowerCall(SDValue Chain
, SDValue Callee
,
2709 CallingConv::ID CallConv
, bool isVarArg
,
2711 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2712 const SmallVectorImpl
<SDValue
> &OutVals
,
2713 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
2714 DebugLoc dl
, SelectionDAG
&DAG
,
2715 SmallVectorImpl
<SDValue
> &InVals
) const {
2717 isTailCall
= IsEligibleForTailCallOptimization(Callee
, CallConv
, isVarArg
,
2720 if (PPCSubTarget
.isSVR4ABI() && !PPCSubTarget
.isPPC64()) {
2721 return LowerCall_SVR4(Chain
, Callee
, CallConv
, isVarArg
,
2722 isTailCall
, Outs
, OutVals
, Ins
,
2725 return LowerCall_Darwin(Chain
, Callee
, CallConv
, isVarArg
,
2726 isTailCall
, Outs
, OutVals
, Ins
,
2732 PPCTargetLowering::LowerCall_SVR4(SDValue Chain
, SDValue Callee
,
2733 CallingConv::ID CallConv
, bool isVarArg
,
2735 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2736 const SmallVectorImpl
<SDValue
> &OutVals
,
2737 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
2738 DebugLoc dl
, SelectionDAG
&DAG
,
2739 SmallVectorImpl
<SDValue
> &InVals
) const {
2740 // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description
2741 // of the 32-bit SVR4 ABI stack frame layout.
2743 assert((CallConv
== CallingConv::C
||
2744 CallConv
== CallingConv::Fast
) && "Unknown calling convention!");
2746 unsigned PtrByteSize
= 4;
2748 MachineFunction
&MF
= DAG
.getMachineFunction();
2750 // Mark this function as potentially containing a function that contains a
2751 // tail call. As a consequence the frame pointer will be used for dynamicalloc
2752 // and restoring the callers stack pointer in this functions epilog. This is
2753 // done because by tail calling the called function might overwrite the value
2754 // in this function's (MF) stack pointer stack slot 0(SP).
2755 if (GuaranteedTailCallOpt
&& CallConv
==CallingConv::Fast
)
2756 MF
.getInfo
<PPCFunctionInfo
>()->setHasFastCall();
2758 // Count how many bytes are to be pushed on the stack, including the linkage
2759 // area, parameter list area and the part of the local variable space which
2760 // contains copies of aggregates which are passed by value.
2762 // Assign locations to all of the outgoing arguments.
2763 SmallVector
<CCValAssign
, 16> ArgLocs
;
2764 CCState
CCInfo(CallConv
, isVarArg
, getTargetMachine(),
2765 ArgLocs
, *DAG
.getContext());
2767 // Reserve space for the linkage area on the stack.
2768 CCInfo
.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize
);
2771 // Handle fixed and variable vector arguments differently.
2772 // Fixed vector arguments go into registers as long as registers are
2773 // available. Variable vector arguments always go into memory.
2774 unsigned NumArgs
= Outs
.size();
2776 for (unsigned i
= 0; i
!= NumArgs
; ++i
) {
2777 MVT ArgVT
= Outs
[i
].VT
;
2778 ISD::ArgFlagsTy ArgFlags
= Outs
[i
].Flags
;
2781 if (Outs
[i
].IsFixed
) {
2782 Result
= CC_PPC_SVR4(i
, ArgVT
, ArgVT
, CCValAssign::Full
, ArgFlags
,
2785 Result
= CC_PPC_SVR4_VarArg(i
, ArgVT
, ArgVT
, CCValAssign::Full
,
2791 errs() << "Call operand #" << i
<< " has unhandled type "
2792 << EVT(ArgVT
).getEVTString() << "\n";
2794 llvm_unreachable(0);
2798 // All arguments are treated the same.
2799 CCInfo
.AnalyzeCallOperands(Outs
, CC_PPC_SVR4
);
2802 // Assign locations to all of the outgoing aggregate by value arguments.
2803 SmallVector
<CCValAssign
, 16> ByValArgLocs
;
2804 CCState
CCByValInfo(CallConv
, isVarArg
, getTargetMachine(), ByValArgLocs
,
2807 // Reserve stack space for the allocations in CCInfo.
2808 CCByValInfo
.AllocateStack(CCInfo
.getNextStackOffset(), PtrByteSize
);
2810 CCByValInfo
.AnalyzeCallOperands(Outs
, CC_PPC_SVR4_ByVal
);
2812 // Size of the linkage area, parameter list area and the part of the local
2813 // space variable where copies of aggregates which are passed by value are
2815 unsigned NumBytes
= CCByValInfo
.getNextStackOffset();
2817 // Calculate by how many bytes the stack has to be adjusted in case of tail
2818 // call optimization.
2819 int SPDiff
= CalculateTailCallSPDiff(DAG
, isTailCall
, NumBytes
);
2821 // Adjust the stack pointer for the new arguments...
2822 // These operations are automatically eliminated by the prolog/epilog pass
2823 Chain
= DAG
.getCALLSEQ_START(Chain
, DAG
.getIntPtrConstant(NumBytes
, true));
2824 SDValue CallSeqStart
= Chain
;
2826 // Load the return address and frame pointer so it can be moved somewhere else
2829 Chain
= EmitTailCallLoadFPAndRetAddr(DAG
, SPDiff
, Chain
, LROp
, FPOp
, false,
2832 // Set up a copy of the stack pointer for use loading and storing any
2833 // arguments that may not fit in the registers available for argument
2835 SDValue StackPtr
= DAG
.getRegister(PPC::R1
, MVT::i32
);
2837 SmallVector
<std::pair
<unsigned, SDValue
>, 8> RegsToPass
;
2838 SmallVector
<TailCallArgumentInfo
, 8> TailCallArguments
;
2839 SmallVector
<SDValue
, 8> MemOpChains
;
2841 // Walk the register/memloc assignments, inserting copies/loads.
2842 for (unsigned i
= 0, j
= 0, e
= ArgLocs
.size();
2845 CCValAssign
&VA
= ArgLocs
[i
];
2846 SDValue Arg
= OutVals
[i
];
2847 ISD::ArgFlagsTy Flags
= Outs
[i
].Flags
;
2849 if (Flags
.isByVal()) {
2850 // Argument is an aggregate which is passed by value, thus we need to
2851 // create a copy of it in the local variable space of the current stack
2852 // frame (which is the stack frame of the caller) and pass the address of
2853 // this copy to the callee.
2854 assert((j
< ByValArgLocs
.size()) && "Index out of bounds!");
2855 CCValAssign
&ByValVA
= ByValArgLocs
[j
++];
2856 assert((VA
.getValNo() == ByValVA
.getValNo()) && "ValNo mismatch!");
2858 // Memory reserved in the local variable space of the callers stack frame.
2859 unsigned LocMemOffset
= ByValVA
.getLocMemOffset();
2861 SDValue PtrOff
= DAG
.getIntPtrConstant(LocMemOffset
);
2862 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), StackPtr
, PtrOff
);
2864 // Create a copy of the argument in the local area of the current
2866 SDValue MemcpyCall
=
2867 CreateCopyOfByValArgument(Arg
, PtrOff
,
2868 CallSeqStart
.getNode()->getOperand(0),
2871 // This must go outside the CALLSEQ_START..END.
2872 SDValue NewCallSeqStart
= DAG
.getCALLSEQ_START(MemcpyCall
,
2873 CallSeqStart
.getNode()->getOperand(1));
2874 DAG
.ReplaceAllUsesWith(CallSeqStart
.getNode(),
2875 NewCallSeqStart
.getNode());
2876 Chain
= CallSeqStart
= NewCallSeqStart
;
2878 // Pass the address of the aggregate copy on the stack either in a
2879 // physical register or in the parameter list area of the current stack
2880 // frame to the callee.
2884 if (VA
.isRegLoc()) {
2885 // Put argument in a physical register.
2886 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
2888 // Put argument in the parameter list area of the current stack frame.
2889 assert(VA
.isMemLoc());
2890 unsigned LocMemOffset
= VA
.getLocMemOffset();
2893 SDValue PtrOff
= DAG
.getIntPtrConstant(LocMemOffset
);
2894 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), StackPtr
, PtrOff
);
2896 MemOpChains
.push_back(DAG
.getStore(Chain
, dl
, Arg
, PtrOff
,
2897 MachinePointerInfo(),
2900 // Calculate and remember argument location.
2901 CalculateTailCallArgDest(DAG
, MF
, false, Arg
, SPDiff
, LocMemOffset
,
2907 if (!MemOpChains
.empty())
2908 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
2909 &MemOpChains
[0], MemOpChains
.size());
2911 // Build a sequence of copy-to-reg nodes chained together with token chain
2912 // and flag operands which copy the outgoing args into the appropriate regs.
2914 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
2915 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
2916 RegsToPass
[i
].second
, InFlag
);
2917 InFlag
= Chain
.getValue(1);
2920 // Set CR6 to true if this is a vararg call.
2922 SDValue
SetCR(DAG
.getMachineNode(PPC::CRSET
, dl
, MVT::i32
), 0);
2923 Chain
= DAG
.getCopyToReg(Chain
, dl
, PPC::CR1EQ
, SetCR
, InFlag
);
2924 InFlag
= Chain
.getValue(1);
2928 PrepareTailCall(DAG
, InFlag
, Chain
, dl
, false, SPDiff
, NumBytes
, LROp
, FPOp
,
2929 false, TailCallArguments
);
2932 return FinishCall(CallConv
, dl
, isTailCall
, isVarArg
, DAG
,
2933 RegsToPass
, InFlag
, Chain
, Callee
, SPDiff
, NumBytes
,
2938 PPCTargetLowering::LowerCall_Darwin(SDValue Chain
, SDValue Callee
,
2939 CallingConv::ID CallConv
, bool isVarArg
,
2941 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2942 const SmallVectorImpl
<SDValue
> &OutVals
,
2943 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
2944 DebugLoc dl
, SelectionDAG
&DAG
,
2945 SmallVectorImpl
<SDValue
> &InVals
) const {
2947 unsigned NumOps
= Outs
.size();
2949 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
2950 bool isPPC64
= PtrVT
== MVT::i64
;
2951 unsigned PtrByteSize
= isPPC64
? 8 : 4;
2953 MachineFunction
&MF
= DAG
.getMachineFunction();
2955 // Mark this function as potentially containing a function that contains a
2956 // tail call. As a consequence the frame pointer will be used for dynamicalloc
2957 // and restoring the callers stack pointer in this functions epilog. This is
2958 // done because by tail calling the called function might overwrite the value
2959 // in this function's (MF) stack pointer stack slot 0(SP).
2960 if (GuaranteedTailCallOpt
&& CallConv
==CallingConv::Fast
)
2961 MF
.getInfo
<PPCFunctionInfo
>()->setHasFastCall();
2963 unsigned nAltivecParamsAtEnd
= 0;
2965 // Count how many bytes are to be pushed on the stack, including the linkage
2966 // area, and parameter passing area. We start with 24/48 bytes, which is
2967 // prereserved space for [SP][CR][LR][3 x unused].
2969 CalculateParameterAndLinkageAreaSize(DAG
, isPPC64
, isVarArg
, CallConv
,
2971 nAltivecParamsAtEnd
);
2973 // Calculate by how many bytes the stack has to be adjusted in case of tail
2974 // call optimization.
2975 int SPDiff
= CalculateTailCallSPDiff(DAG
, isTailCall
, NumBytes
);
2977 // To protect arguments on the stack from being clobbered in a tail call,
2978 // force all the loads to happen before doing any other lowering.
2980 Chain
= DAG
.getStackArgumentTokenFactor(Chain
);
2982 // Adjust the stack pointer for the new arguments...
2983 // These operations are automatically eliminated by the prolog/epilog pass
2984 Chain
= DAG
.getCALLSEQ_START(Chain
, DAG
.getIntPtrConstant(NumBytes
, true));
2985 SDValue CallSeqStart
= Chain
;
2987 // Load the return address and frame pointer so it can be move somewhere else
2990 Chain
= EmitTailCallLoadFPAndRetAddr(DAG
, SPDiff
, Chain
, LROp
, FPOp
, true,
2993 // Set up a copy of the stack pointer for use loading and storing any
2994 // arguments that may not fit in the registers available for argument
2998 StackPtr
= DAG
.getRegister(PPC::X1
, MVT::i64
);
3000 StackPtr
= DAG
.getRegister(PPC::R1
, MVT::i32
);
3002 // Figure out which arguments are going to go in registers, and which in
3003 // memory. Also, if this is a vararg function, floating point operations
3004 // must be stored to our stack, and loaded into integer regs as well, if
3005 // any integer regs are available for argument passing.
3006 unsigned ArgOffset
= PPCFrameInfo::getLinkageSize(isPPC64
, true);
3007 unsigned GPR_idx
= 0, FPR_idx
= 0, VR_idx
= 0;
3009 static const unsigned GPR_32
[] = { // 32-bit registers.
3010 PPC::R3
, PPC::R4
, PPC::R5
, PPC::R6
,
3011 PPC::R7
, PPC::R8
, PPC::R9
, PPC::R10
,
3013 static const unsigned GPR_64
[] = { // 64-bit registers.
3014 PPC::X3
, PPC::X4
, PPC::X5
, PPC::X6
,
3015 PPC::X7
, PPC::X8
, PPC::X9
, PPC::X10
,
3017 static const unsigned *FPR
= GetFPR();
3019 static const unsigned VR
[] = {
3020 PPC::V2
, PPC::V3
, PPC::V4
, PPC::V5
, PPC::V6
, PPC::V7
, PPC::V8
,
3021 PPC::V9
, PPC::V10
, PPC::V11
, PPC::V12
, PPC::V13
3023 const unsigned NumGPRs
= array_lengthof(GPR_32
);
3024 const unsigned NumFPRs
= 13;
3025 const unsigned NumVRs
= array_lengthof(VR
);
3027 const unsigned *GPR
= isPPC64
? GPR_64
: GPR_32
;
3029 SmallVector
<std::pair
<unsigned, SDValue
>, 8> RegsToPass
;
3030 SmallVector
<TailCallArgumentInfo
, 8> TailCallArguments
;
3032 SmallVector
<SDValue
, 8> MemOpChains
;
3033 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
3034 SDValue Arg
= OutVals
[i
];
3035 ISD::ArgFlagsTy Flags
= Outs
[i
].Flags
;
3037 // PtrOff will be used to store the current argument to the stack if a
3038 // register cannot be found for it.
3041 PtrOff
= DAG
.getConstant(ArgOffset
, StackPtr
.getValueType());
3043 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
, PtrOff
);
3045 // On PPC64, promote integers to 64-bit values.
3046 if (isPPC64
&& Arg
.getValueType() == MVT::i32
) {
3047 // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3048 unsigned ExtOp
= Flags
.isSExt() ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
3049 Arg
= DAG
.getNode(ExtOp
, dl
, MVT::i64
, Arg
);
3052 // FIXME memcpy is used way more than necessary. Correctness first.
3053 if (Flags
.isByVal()) {
3054 unsigned Size
= Flags
.getByValSize();
3055 if (Size
==1 || Size
==2) {
3056 // Very small objects are passed right-justified.
3057 // Everything else is passed left-justified.
3058 EVT VT
= (Size
==1) ? MVT::i8
: MVT::i16
;
3059 if (GPR_idx
!= NumGPRs
) {
3060 SDValue Load
= DAG
.getExtLoad(ISD::EXTLOAD
, PtrVT
, dl
, Chain
, Arg
,
3061 MachinePointerInfo(), VT
,
3063 MemOpChains
.push_back(Load
.getValue(1));
3064 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Load
));
3066 ArgOffset
+= PtrByteSize
;
3068 SDValue Const
= DAG
.getConstant(4 - Size
, PtrOff
.getValueType());
3069 SDValue AddPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, PtrOff
, Const
);
3070 SDValue MemcpyCall
= CreateCopyOfByValArgument(Arg
, AddPtr
,
3071 CallSeqStart
.getNode()->getOperand(0),
3073 // This must go outside the CALLSEQ_START..END.
3074 SDValue NewCallSeqStart
= DAG
.getCALLSEQ_START(MemcpyCall
,
3075 CallSeqStart
.getNode()->getOperand(1));
3076 DAG
.ReplaceAllUsesWith(CallSeqStart
.getNode(),
3077 NewCallSeqStart
.getNode());
3078 Chain
= CallSeqStart
= NewCallSeqStart
;
3079 ArgOffset
+= PtrByteSize
;
3083 // Copy entire object into memory. There are cases where gcc-generated
3084 // code assumes it is there, even if it could be put entirely into
3085 // registers. (This is not what the doc says.)
3086 SDValue MemcpyCall
= CreateCopyOfByValArgument(Arg
, PtrOff
,
3087 CallSeqStart
.getNode()->getOperand(0),
3089 // This must go outside the CALLSEQ_START..END.
3090 SDValue NewCallSeqStart
= DAG
.getCALLSEQ_START(MemcpyCall
,
3091 CallSeqStart
.getNode()->getOperand(1));
3092 DAG
.ReplaceAllUsesWith(CallSeqStart
.getNode(), NewCallSeqStart
.getNode());
3093 Chain
= CallSeqStart
= NewCallSeqStart
;
3094 // And copy the pieces of it that fit into registers.
3095 for (unsigned j
=0; j
<Size
; j
+=PtrByteSize
) {
3096 SDValue Const
= DAG
.getConstant(j
, PtrOff
.getValueType());
3097 SDValue AddArg
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Arg
, Const
);
3098 if (GPR_idx
!= NumGPRs
) {
3099 SDValue Load
= DAG
.getLoad(PtrVT
, dl
, Chain
, AddArg
,
3100 MachinePointerInfo(),
3102 MemOpChains
.push_back(Load
.getValue(1));
3103 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Load
));
3104 ArgOffset
+= PtrByteSize
;
3106 ArgOffset
+= ((Size
- j
+ PtrByteSize
-1)/PtrByteSize
)*PtrByteSize
;
3113 switch (Arg
.getValueType().getSimpleVT().SimpleTy
) {
3114 default: llvm_unreachable("Unexpected ValueType for argument!");
3117 if (GPR_idx
!= NumGPRs
) {
3118 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Arg
));
3120 LowerMemOpCallTo(DAG
, MF
, Chain
, Arg
, PtrOff
, SPDiff
, ArgOffset
,
3121 isPPC64
, isTailCall
, false, MemOpChains
,
3122 TailCallArguments
, dl
);
3124 ArgOffset
+= PtrByteSize
;
3128 if (FPR_idx
!= NumFPRs
) {
3129 RegsToPass
.push_back(std::make_pair(FPR
[FPR_idx
++], Arg
));
3132 SDValue Store
= DAG
.getStore(Chain
, dl
, Arg
, PtrOff
,
3133 MachinePointerInfo(), false, false, 0);
3134 MemOpChains
.push_back(Store
);
3136 // Float varargs are always shadowed in available integer registers
3137 if (GPR_idx
!= NumGPRs
) {
3138 SDValue Load
= DAG
.getLoad(PtrVT
, dl
, Store
, PtrOff
,
3139 MachinePointerInfo(), false, false, 0);
3140 MemOpChains
.push_back(Load
.getValue(1));
3141 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Load
));
3143 if (GPR_idx
!= NumGPRs
&& Arg
.getValueType() == MVT::f64
&& !isPPC64
){
3144 SDValue ConstFour
= DAG
.getConstant(4, PtrOff
.getValueType());
3145 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, PtrOff
, ConstFour
);
3146 SDValue Load
= DAG
.getLoad(PtrVT
, dl
, Store
, PtrOff
,
3147 MachinePointerInfo(),
3149 MemOpChains
.push_back(Load
.getValue(1));
3150 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Load
));
3153 // If we have any FPRs remaining, we may also have GPRs remaining.
3154 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
3156 if (GPR_idx
!= NumGPRs
)
3158 if (GPR_idx
!= NumGPRs
&& Arg
.getValueType() == MVT::f64
&&
3159 !isPPC64
) // PPC64 has 64-bit GPR's obviously :)
3163 LowerMemOpCallTo(DAG
, MF
, Chain
, Arg
, PtrOff
, SPDiff
, ArgOffset
,
3164 isPPC64
, isTailCall
, false, MemOpChains
,
3165 TailCallArguments
, dl
);
3170 ArgOffset
+= Arg
.getValueType() == MVT::f32
? 4 : 8;
3177 // These go aligned on the stack, or in the corresponding R registers
3178 // when within range. The Darwin PPC ABI doc claims they also go in
3179 // V registers; in fact gcc does this only for arguments that are
3180 // prototyped, not for those that match the ... We do it for all
3181 // arguments, seems to work.
3182 while (ArgOffset
% 16 !=0) {
3183 ArgOffset
+= PtrByteSize
;
3184 if (GPR_idx
!= NumGPRs
)
3187 // We could elide this store in the case where the object fits
3188 // entirely in R registers. Maybe later.
3189 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
,
3190 DAG
.getConstant(ArgOffset
, PtrVT
));
3191 SDValue Store
= DAG
.getStore(Chain
, dl
, Arg
, PtrOff
,
3192 MachinePointerInfo(), false, false, 0);
3193 MemOpChains
.push_back(Store
);
3194 if (VR_idx
!= NumVRs
) {
3195 SDValue Load
= DAG
.getLoad(MVT::v4f32
, dl
, Store
, PtrOff
,
3196 MachinePointerInfo(),
3198 MemOpChains
.push_back(Load
.getValue(1));
3199 RegsToPass
.push_back(std::make_pair(VR
[VR_idx
++], Load
));
3202 for (unsigned i
=0; i
<16; i
+=PtrByteSize
) {
3203 if (GPR_idx
== NumGPRs
)
3205 SDValue Ix
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, PtrOff
,
3206 DAG
.getConstant(i
, PtrVT
));
3207 SDValue Load
= DAG
.getLoad(PtrVT
, dl
, Store
, Ix
, MachinePointerInfo(),
3209 MemOpChains
.push_back(Load
.getValue(1));
3210 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Load
));
3215 // Non-varargs Altivec params generally go in registers, but have
3216 // stack space allocated at the end.
3217 if (VR_idx
!= NumVRs
) {
3218 // Doesn't have GPR space allocated.
3219 RegsToPass
.push_back(std::make_pair(VR
[VR_idx
++], Arg
));
3220 } else if (nAltivecParamsAtEnd
==0) {
3221 // We are emitting Altivec params in order.
3222 LowerMemOpCallTo(DAG
, MF
, Chain
, Arg
, PtrOff
, SPDiff
, ArgOffset
,
3223 isPPC64
, isTailCall
, true, MemOpChains
,
3224 TailCallArguments
, dl
);
3230 // If all Altivec parameters fit in registers, as they usually do,
3231 // they get stack space following the non-Altivec parameters. We
3232 // don't track this here because nobody below needs it.
3233 // If there are more Altivec parameters than fit in registers emit
3235 if (!isVarArg
&& nAltivecParamsAtEnd
> NumVRs
) {
3237 // Offset is aligned; skip 1st 12 params which go in V registers.
3238 ArgOffset
= ((ArgOffset
+15)/16)*16;
3240 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
3241 SDValue Arg
= OutVals
[i
];
3242 EVT ArgType
= Outs
[i
].VT
;
3243 if (ArgType
==MVT::v4f32
|| ArgType
==MVT::v4i32
||
3244 ArgType
==MVT::v8i16
|| ArgType
==MVT::v16i8
) {
3247 // We are emitting Altivec params in order.
3248 LowerMemOpCallTo(DAG
, MF
, Chain
, Arg
, PtrOff
, SPDiff
, ArgOffset
,
3249 isPPC64
, isTailCall
, true, MemOpChains
,
3250 TailCallArguments
, dl
);
3257 if (!MemOpChains
.empty())
3258 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3259 &MemOpChains
[0], MemOpChains
.size());
3261 // Check if this is an indirect call (MTCTR/BCTRL).
3262 // See PrepareCall() for more information about calls through function
3263 // pointers in the 64-bit SVR4 ABI.
3264 if (!isTailCall
&& isPPC64
&& PPCSubTarget
.isSVR4ABI() &&
3265 !dyn_cast
<GlobalAddressSDNode
>(Callee
) &&
3266 !dyn_cast
<ExternalSymbolSDNode
>(Callee
) &&
3267 !isBLACompatibleAddress(Callee
, DAG
)) {
3268 // Load r2 into a virtual register and store it to the TOC save area.
3269 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, PPC::X2
, MVT::i64
);
3270 // TOC save area offset.
3271 SDValue PtrOff
= DAG
.getIntPtrConstant(40);
3272 SDValue AddPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
, PtrOff
);
3273 Chain
= DAG
.getStore(Val
.getValue(1), dl
, Val
, AddPtr
, MachinePointerInfo(),
3277 // On Darwin, R12 must contain the address of an indirect callee. This does
3278 // not mean the MTCTR instruction must use R12; it's easier to model this as
3279 // an extra parameter, so do that.
3281 !dyn_cast
<GlobalAddressSDNode
>(Callee
) &&
3282 !dyn_cast
<ExternalSymbolSDNode
>(Callee
) &&
3283 !isBLACompatibleAddress(Callee
, DAG
))
3284 RegsToPass
.push_back(std::make_pair((unsigned)(isPPC64
? PPC::X12
:
3285 PPC::R12
), Callee
));
3287 // Build a sequence of copy-to-reg nodes chained together with token chain
3288 // and flag operands which copy the outgoing args into the appropriate regs.
3290 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
3291 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
3292 RegsToPass
[i
].second
, InFlag
);
3293 InFlag
= Chain
.getValue(1);
3297 PrepareTailCall(DAG
, InFlag
, Chain
, dl
, isPPC64
, SPDiff
, NumBytes
, LROp
,
3298 FPOp
, true, TailCallArguments
);
3301 return FinishCall(CallConv
, dl
, isTailCall
, isVarArg
, DAG
,
3302 RegsToPass
, InFlag
, Chain
, Callee
, SPDiff
, NumBytes
,
3307 PPCTargetLowering::LowerReturn(SDValue Chain
,
3308 CallingConv::ID CallConv
, bool isVarArg
,
3309 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
3310 const SmallVectorImpl
<SDValue
> &OutVals
,
3311 DebugLoc dl
, SelectionDAG
&DAG
) const {
3313 SmallVector
<CCValAssign
, 16> RVLocs
;
3314 CCState
CCInfo(CallConv
, isVarArg
, getTargetMachine(),
3315 RVLocs
, *DAG
.getContext());
3316 CCInfo
.AnalyzeReturn(Outs
, RetCC_PPC
);
3318 // If this is the first return lowered for this function, add the regs to the
3319 // liveout set for the function.
3320 if (DAG
.getMachineFunction().getRegInfo().liveout_empty()) {
3321 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
)
3322 DAG
.getMachineFunction().getRegInfo().addLiveOut(RVLocs
[i
].getLocReg());
3327 // Copy the result values into the output registers.
3328 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
3329 CCValAssign
&VA
= RVLocs
[i
];
3330 assert(VA
.isRegLoc() && "Can only return in registers!");
3331 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
3333 Flag
= Chain
.getValue(1);
3337 return DAG
.getNode(PPCISD::RET_FLAG
, dl
, MVT::Other
, Chain
, Flag
);
3339 return DAG
.getNode(PPCISD::RET_FLAG
, dl
, MVT::Other
, Chain
);
3342 SDValue
PPCTargetLowering::LowerSTACKRESTORE(SDValue Op
, SelectionDAG
&DAG
,
3343 const PPCSubtarget
&Subtarget
) const {
3344 // When we pop the dynamic allocation we need to restore the SP link.
3345 DebugLoc dl
= Op
.getDebugLoc();
3347 // Get the corect type for pointers.
3348 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
3350 // Construct the stack pointer operand.
3351 bool isPPC64
= Subtarget
.isPPC64();
3352 unsigned SP
= isPPC64
? PPC::X1
: PPC::R1
;
3353 SDValue StackPtr
= DAG
.getRegister(SP
, PtrVT
);
3355 // Get the operands for the STACKRESTORE.
3356 SDValue Chain
= Op
.getOperand(0);
3357 SDValue SaveSP
= Op
.getOperand(1);
3359 // Load the old link SP.
3360 SDValue LoadLinkSP
= DAG
.getLoad(PtrVT
, dl
, Chain
, StackPtr
,
3361 MachinePointerInfo(),
3364 // Restore the stack pointer.
3365 Chain
= DAG
.getCopyToReg(LoadLinkSP
.getValue(1), dl
, SP
, SaveSP
);
3367 // Store the old link SP.
3368 return DAG
.getStore(Chain
, dl
, LoadLinkSP
, StackPtr
, MachinePointerInfo(),
3375 PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG
& DAG
) const {
3376 MachineFunction
&MF
= DAG
.getMachineFunction();
3377 bool isPPC64
= PPCSubTarget
.isPPC64();
3378 bool isDarwinABI
= PPCSubTarget
.isDarwinABI();
3379 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
3381 // Get current frame pointer save index. The users of this index will be
3382 // primarily DYNALLOC instructions.
3383 PPCFunctionInfo
*FI
= MF
.getInfo
<PPCFunctionInfo
>();
3384 int RASI
= FI
->getReturnAddrSaveIndex();
3386 // If the frame pointer save index hasn't been defined yet.
3388 // Find out what the fix offset of the frame pointer save area.
3389 int LROffset
= PPCFrameInfo::getReturnSaveOffset(isPPC64
, isDarwinABI
);
3390 // Allocate the frame index for frame pointer save area.
3391 RASI
= MF
.getFrameInfo()->CreateFixedObject(isPPC64
? 8 : 4, LROffset
, true);
3393 FI
->setReturnAddrSaveIndex(RASI
);
3395 return DAG
.getFrameIndex(RASI
, PtrVT
);
3399 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG
& DAG
) const {
3400 MachineFunction
&MF
= DAG
.getMachineFunction();
3401 bool isPPC64
= PPCSubTarget
.isPPC64();
3402 bool isDarwinABI
= PPCSubTarget
.isDarwinABI();
3403 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
3405 // Get current frame pointer save index. The users of this index will be
3406 // primarily DYNALLOC instructions.
3407 PPCFunctionInfo
*FI
= MF
.getInfo
<PPCFunctionInfo
>();
3408 int FPSI
= FI
->getFramePointerSaveIndex();
3410 // If the frame pointer save index hasn't been defined yet.
3412 // Find out what the fix offset of the frame pointer save area.
3413 int FPOffset
= PPCFrameInfo::getFramePointerSaveOffset(isPPC64
,
3416 // Allocate the frame index for frame pointer save area.
3417 FPSI
= MF
.getFrameInfo()->CreateFixedObject(isPPC64
? 8 : 4, FPOffset
, true);
3419 FI
->setFramePointerSaveIndex(FPSI
);
3421 return DAG
.getFrameIndex(FPSI
, PtrVT
);
3424 SDValue
PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
,
3426 const PPCSubtarget
&Subtarget
) const {
3428 SDValue Chain
= Op
.getOperand(0);
3429 SDValue Size
= Op
.getOperand(1);
3430 DebugLoc dl
= Op
.getDebugLoc();
3432 // Get the corect type for pointers.
3433 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
3435 SDValue NegSize
= DAG
.getNode(ISD::SUB
, dl
, PtrVT
,
3436 DAG
.getConstant(0, PtrVT
), Size
);
3437 // Construct a node for the frame pointer save index.
3438 SDValue FPSIdx
= getFramePointerFrameIndex(DAG
);
3439 // Build a DYNALLOC node.
3440 SDValue Ops
[3] = { Chain
, NegSize
, FPSIdx
};
3441 SDVTList VTs
= DAG
.getVTList(PtrVT
, MVT::Other
);
3442 return DAG
.getNode(PPCISD::DYNALLOC
, dl
, VTs
, Ops
, 3);
3445 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
3447 SDValue
PPCTargetLowering::LowerSELECT_CC(SDValue Op
, SelectionDAG
&DAG
) const {
3448 // Not FP? Not a fsel.
3449 if (!Op
.getOperand(0).getValueType().isFloatingPoint() ||
3450 !Op
.getOperand(2).getValueType().isFloatingPoint())
3453 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
3455 // Cannot handle SETEQ/SETNE.
3456 if (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
) return Op
;
3458 EVT ResVT
= Op
.getValueType();
3459 EVT CmpVT
= Op
.getOperand(0).getValueType();
3460 SDValue LHS
= Op
.getOperand(0), RHS
= Op
.getOperand(1);
3461 SDValue TV
= Op
.getOperand(2), FV
= Op
.getOperand(3);
3462 DebugLoc dl
= Op
.getDebugLoc();
3464 // If the RHS of the comparison is a 0.0, we don't need to do the
3465 // subtraction at all.
3466 if (isFloatingPointZero(RHS
))
3468 default: break; // SETUO etc aren't handled by fsel.
3471 std::swap(TV
, FV
); // fsel is natively setge, swap operands for setlt
3474 if (LHS
.getValueType() == MVT::f32
) // Comparison is always 64-bits
3475 LHS
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, LHS
);
3476 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
, LHS
, TV
, FV
);
3479 std::swap(TV
, FV
); // fsel is natively setge, swap operands for setlt
3482 if (LHS
.getValueType() == MVT::f32
) // Comparison is always 64-bits
3483 LHS
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, LHS
);
3484 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
,
3485 DAG
.getNode(ISD::FNEG
, dl
, MVT::f64
, LHS
), TV
, FV
);
3490 default: break; // SETUO etc aren't handled by fsel.
3493 Cmp
= DAG
.getNode(ISD::FSUB
, dl
, CmpVT
, LHS
, RHS
);
3494 if (Cmp
.getValueType() == MVT::f32
) // Comparison is always 64-bits
3495 Cmp
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Cmp
);
3496 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
, Cmp
, FV
, TV
);
3499 Cmp
= DAG
.getNode(ISD::FSUB
, dl
, CmpVT
, LHS
, RHS
);
3500 if (Cmp
.getValueType() == MVT::f32
) // Comparison is always 64-bits
3501 Cmp
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Cmp
);
3502 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
, Cmp
, TV
, FV
);
3505 Cmp
= DAG
.getNode(ISD::FSUB
, dl
, CmpVT
, RHS
, LHS
);
3506 if (Cmp
.getValueType() == MVT::f32
) // Comparison is always 64-bits
3507 Cmp
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Cmp
);
3508 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
, Cmp
, FV
, TV
);
3511 Cmp
= DAG
.getNode(ISD::FSUB
, dl
, CmpVT
, RHS
, LHS
);
3512 if (Cmp
.getValueType() == MVT::f32
) // Comparison is always 64-bits
3513 Cmp
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Cmp
);
3514 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
, Cmp
, TV
, FV
);
3519 // FIXME: Split this code up when LegalizeDAGTypes lands.
3520 SDValue
PPCTargetLowering::LowerFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
,
3521 DebugLoc dl
) const {
3522 assert(Op
.getOperand(0).getValueType().isFloatingPoint());
3523 SDValue Src
= Op
.getOperand(0);
3524 if (Src
.getValueType() == MVT::f32
)
3525 Src
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Src
);
3528 switch (Op
.getValueType().getSimpleVT().SimpleTy
) {
3529 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
3531 Tmp
= DAG
.getNode(Op
.getOpcode()==ISD::FP_TO_SINT
? PPCISD::FCTIWZ
:
3536 Tmp
= DAG
.getNode(PPCISD::FCTIDZ
, dl
, MVT::f64
, Src
);
3540 // Convert the FP value to an int value through memory.
3541 SDValue FIPtr
= DAG
.CreateStackTemporary(MVT::f64
);
3543 // Emit a store to the stack slot.
3544 SDValue Chain
= DAG
.getStore(DAG
.getEntryNode(), dl
, Tmp
, FIPtr
,
3545 MachinePointerInfo(), false, false, 0);
3547 // Result is a load from the stack slot. If loading 4 bytes, make sure to
3549 if (Op
.getValueType() == MVT::i32
)
3550 FIPtr
= DAG
.getNode(ISD::ADD
, dl
, FIPtr
.getValueType(), FIPtr
,
3551 DAG
.getConstant(4, FIPtr
.getValueType()));
3552 return DAG
.getLoad(Op
.getValueType(), dl
, Chain
, FIPtr
, MachinePointerInfo(),
3556 SDValue
PPCTargetLowering::LowerSINT_TO_FP(SDValue Op
,
3557 SelectionDAG
&DAG
) const {
3558 DebugLoc dl
= Op
.getDebugLoc();
3559 // Don't handle ppc_fp128 here; let it be lowered to a libcall.
3560 if (Op
.getValueType() != MVT::f32
&& Op
.getValueType() != MVT::f64
)
3563 if (Op
.getOperand(0).getValueType() == MVT::i64
) {
3564 SDValue Bits
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3565 MVT::f64
, Op
.getOperand(0));
3566 SDValue FP
= DAG
.getNode(PPCISD::FCFID
, dl
, MVT::f64
, Bits
);
3567 if (Op
.getValueType() == MVT::f32
)
3568 FP
= DAG
.getNode(ISD::FP_ROUND
, dl
,
3569 MVT::f32
, FP
, DAG
.getIntPtrConstant(0));
3573 assert(Op
.getOperand(0).getValueType() == MVT::i32
&&
3574 "Unhandled SINT_TO_FP type in custom expander!");
3575 // Since we only generate this in 64-bit mode, we can take advantage of
3576 // 64-bit registers. In particular, sign extend the input value into the
3577 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
3578 // then lfd it and fcfid it.
3579 MachineFunction
&MF
= DAG
.getMachineFunction();
3580 MachineFrameInfo
*FrameInfo
= MF
.getFrameInfo();
3581 int FrameIdx
= FrameInfo
->CreateStackObject(8, 8, false);
3582 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
3583 SDValue FIdx
= DAG
.getFrameIndex(FrameIdx
, PtrVT
);
3585 SDValue Ext64
= DAG
.getNode(PPCISD::EXTSW_32
, dl
, MVT::i32
,
3588 // STD the extended value into the stack slot.
3589 MachineMemOperand
*MMO
=
3590 MF
.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx
),
3591 MachineMemOperand::MOStore
, 8, 8);
3592 SDValue Ops
[] = { DAG
.getEntryNode(), Ext64
, FIdx
};
3594 DAG
.getMemIntrinsicNode(PPCISD::STD_32
, dl
, DAG
.getVTList(MVT::Other
),
3595 Ops
, 4, MVT::i64
, MMO
);
3596 // Load the value as a double.
3597 SDValue Ld
= DAG
.getLoad(MVT::f64
, dl
, Store
, FIdx
, MachinePointerInfo(),
3600 // FCFID it and return it.
3601 SDValue FP
= DAG
.getNode(PPCISD::FCFID
, dl
, MVT::f64
, Ld
);
3602 if (Op
.getValueType() == MVT::f32
)
3603 FP
= DAG
.getNode(ISD::FP_ROUND
, dl
, MVT::f32
, FP
, DAG
.getIntPtrConstant(0));
3607 SDValue
PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op
,
3608 SelectionDAG
&DAG
) const {
3609 DebugLoc dl
= Op
.getDebugLoc();
3611 The rounding mode is in bits 30:31 of FPSR, and has the following
3618 FLT_ROUNDS, on the other hand, expects the following:
3625 To perform the conversion, we do:
3626 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
3629 MachineFunction
&MF
= DAG
.getMachineFunction();
3630 EVT VT
= Op
.getValueType();
3631 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
3632 std::vector
<EVT
> NodeTys
;
3633 SDValue MFFSreg
, InFlag
;
3635 // Save FP Control Word to register
3636 NodeTys
.push_back(MVT::f64
); // return register
3637 NodeTys
.push_back(MVT::Flag
); // unused in this context
3638 SDValue Chain
= DAG
.getNode(PPCISD::MFFS
, dl
, NodeTys
, &InFlag
, 0);
3640 // Save FP register to stack slot
3641 int SSFI
= MF
.getFrameInfo()->CreateStackObject(8, 8, false);
3642 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, PtrVT
);
3643 SDValue Store
= DAG
.getStore(DAG
.getEntryNode(), dl
, Chain
,
3644 StackSlot
, MachinePointerInfo(), false, false,0);
3646 // Load FP Control Word from low 32 bits of stack slot.
3647 SDValue Four
= DAG
.getConstant(4, PtrVT
);
3648 SDValue Addr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackSlot
, Four
);
3649 SDValue CWD
= DAG
.getLoad(MVT::i32
, dl
, Store
, Addr
, MachinePointerInfo(),
3652 // Transform as necessary
3654 DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
3655 CWD
, DAG
.getConstant(3, MVT::i32
));
3657 DAG
.getNode(ISD::SRL
, dl
, MVT::i32
,
3658 DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
3659 DAG
.getNode(ISD::XOR
, dl
, MVT::i32
,
3660 CWD
, DAG
.getConstant(3, MVT::i32
)),
3661 DAG
.getConstant(3, MVT::i32
)),
3662 DAG
.getConstant(1, MVT::i32
));
3665 DAG
.getNode(ISD::XOR
, dl
, MVT::i32
, CWD1
, CWD2
);
3667 return DAG
.getNode((VT
.getSizeInBits() < 16 ?
3668 ISD::TRUNCATE
: ISD::ZERO_EXTEND
), dl
, VT
, RetVal
);
3671 SDValue
PPCTargetLowering::LowerSHL_PARTS(SDValue Op
, SelectionDAG
&DAG
) const {
3672 EVT VT
= Op
.getValueType();
3673 unsigned BitWidth
= VT
.getSizeInBits();
3674 DebugLoc dl
= Op
.getDebugLoc();
3675 assert(Op
.getNumOperands() == 3 &&
3676 VT
== Op
.getOperand(1).getValueType() &&
3679 // Expand into a bunch of logical ops. Note that these ops
3680 // depend on the PPC behavior for oversized shift amounts.
3681 SDValue Lo
= Op
.getOperand(0);
3682 SDValue Hi
= Op
.getOperand(1);
3683 SDValue Amt
= Op
.getOperand(2);
3684 EVT AmtVT
= Amt
.getValueType();
3686 SDValue Tmp1
= DAG
.getNode(ISD::SUB
, dl
, AmtVT
,
3687 DAG
.getConstant(BitWidth
, AmtVT
), Amt
);
3688 SDValue Tmp2
= DAG
.getNode(PPCISD::SHL
, dl
, VT
, Hi
, Amt
);
3689 SDValue Tmp3
= DAG
.getNode(PPCISD::SRL
, dl
, VT
, Lo
, Tmp1
);
3690 SDValue Tmp4
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp3
);
3691 SDValue Tmp5
= DAG
.getNode(ISD::ADD
, dl
, AmtVT
, Amt
,
3692 DAG
.getConstant(-BitWidth
, AmtVT
));
3693 SDValue Tmp6
= DAG
.getNode(PPCISD::SHL
, dl
, VT
, Lo
, Tmp5
);
3694 SDValue OutHi
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp6
);
3695 SDValue OutLo
= DAG
.getNode(PPCISD::SHL
, dl
, VT
, Lo
, Amt
);
3696 SDValue OutOps
[] = { OutLo
, OutHi
};
3697 return DAG
.getMergeValues(OutOps
, 2, dl
);
3700 SDValue
PPCTargetLowering::LowerSRL_PARTS(SDValue Op
, SelectionDAG
&DAG
) const {
3701 EVT VT
= Op
.getValueType();
3702 DebugLoc dl
= Op
.getDebugLoc();
3703 unsigned BitWidth
= VT
.getSizeInBits();
3704 assert(Op
.getNumOperands() == 3 &&
3705 VT
== Op
.getOperand(1).getValueType() &&
3708 // Expand into a bunch of logical ops. Note that these ops
3709 // depend on the PPC behavior for oversized shift amounts.
3710 SDValue Lo
= Op
.getOperand(0);
3711 SDValue Hi
= Op
.getOperand(1);
3712 SDValue Amt
= Op
.getOperand(2);
3713 EVT AmtVT
= Amt
.getValueType();
3715 SDValue Tmp1
= DAG
.getNode(ISD::SUB
, dl
, AmtVT
,
3716 DAG
.getConstant(BitWidth
, AmtVT
), Amt
);
3717 SDValue Tmp2
= DAG
.getNode(PPCISD::SRL
, dl
, VT
, Lo
, Amt
);
3718 SDValue Tmp3
= DAG
.getNode(PPCISD::SHL
, dl
, VT
, Hi
, Tmp1
);
3719 SDValue Tmp4
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp3
);
3720 SDValue Tmp5
= DAG
.getNode(ISD::ADD
, dl
, AmtVT
, Amt
,
3721 DAG
.getConstant(-BitWidth
, AmtVT
));
3722 SDValue Tmp6
= DAG
.getNode(PPCISD::SRL
, dl
, VT
, Hi
, Tmp5
);
3723 SDValue OutLo
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp6
);
3724 SDValue OutHi
= DAG
.getNode(PPCISD::SRL
, dl
, VT
, Hi
, Amt
);
3725 SDValue OutOps
[] = { OutLo
, OutHi
};
3726 return DAG
.getMergeValues(OutOps
, 2, dl
);
3729 SDValue
PPCTargetLowering::LowerSRA_PARTS(SDValue Op
, SelectionDAG
&DAG
) const {
3730 DebugLoc dl
= Op
.getDebugLoc();
3731 EVT VT
= Op
.getValueType();
3732 unsigned BitWidth
= VT
.getSizeInBits();
3733 assert(Op
.getNumOperands() == 3 &&
3734 VT
== Op
.getOperand(1).getValueType() &&
3737 // Expand into a bunch of logical ops, followed by a select_cc.
3738 SDValue Lo
= Op
.getOperand(0);
3739 SDValue Hi
= Op
.getOperand(1);
3740 SDValue Amt
= Op
.getOperand(2);
3741 EVT AmtVT
= Amt
.getValueType();
3743 SDValue Tmp1
= DAG
.getNode(ISD::SUB
, dl
, AmtVT
,
3744 DAG
.getConstant(BitWidth
, AmtVT
), Amt
);
3745 SDValue Tmp2
= DAG
.getNode(PPCISD::SRL
, dl
, VT
, Lo
, Amt
);
3746 SDValue Tmp3
= DAG
.getNode(PPCISD::SHL
, dl
, VT
, Hi
, Tmp1
);
3747 SDValue Tmp4
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp3
);
3748 SDValue Tmp5
= DAG
.getNode(ISD::ADD
, dl
, AmtVT
, Amt
,
3749 DAG
.getConstant(-BitWidth
, AmtVT
));
3750 SDValue Tmp6
= DAG
.getNode(PPCISD::SRA
, dl
, VT
, Hi
, Tmp5
);
3751 SDValue OutHi
= DAG
.getNode(PPCISD::SRA
, dl
, VT
, Hi
, Amt
);
3752 SDValue OutLo
= DAG
.getSelectCC(dl
, Tmp5
, DAG
.getConstant(0, AmtVT
),
3753 Tmp4
, Tmp6
, ISD::SETLE
);
3754 SDValue OutOps
[] = { OutLo
, OutHi
};
3755 return DAG
.getMergeValues(OutOps
, 2, dl
);
3758 //===----------------------------------------------------------------------===//
3759 // Vector related lowering.
3762 /// BuildSplatI - Build a canonical splati of Val with an element size of
3763 /// SplatSize. Cast the result to VT.
3764 static SDValue
BuildSplatI(int Val
, unsigned SplatSize
, EVT VT
,
3765 SelectionDAG
&DAG
, DebugLoc dl
) {
3766 assert(Val
>= -16 && Val
<= 15 && "vsplti is out of range!");
3768 static const EVT VTys
[] = { // canonical VT to use for each size.
3769 MVT::v16i8
, MVT::v8i16
, MVT::Other
, MVT::v4i32
3772 EVT ReqVT
= VT
!= MVT::Other
? VT
: VTys
[SplatSize
-1];
3774 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3778 EVT CanonicalVT
= VTys
[SplatSize
-1];
3780 // Build a canonical splat for this value.
3781 SDValue Elt
= DAG
.getConstant(Val
, MVT::i32
);
3782 SmallVector
<SDValue
, 8> Ops
;
3783 Ops
.assign(CanonicalVT
.getVectorNumElements(), Elt
);
3784 SDValue Res
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, CanonicalVT
,
3785 &Ops
[0], Ops
.size());
3786 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, ReqVT
, Res
);
3789 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3790 /// specified intrinsic ID.
3791 static SDValue
BuildIntrinsicOp(unsigned IID
, SDValue LHS
, SDValue RHS
,
3792 SelectionDAG
&DAG
, DebugLoc dl
,
3793 EVT DestVT
= MVT::Other
) {
3794 if (DestVT
== MVT::Other
) DestVT
= LHS
.getValueType();
3795 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, DestVT
,
3796 DAG
.getConstant(IID
, MVT::i32
), LHS
, RHS
);
3799 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3800 /// specified intrinsic ID.
3801 static SDValue
BuildIntrinsicOp(unsigned IID
, SDValue Op0
, SDValue Op1
,
3802 SDValue Op2
, SelectionDAG
&DAG
,
3803 DebugLoc dl
, EVT DestVT
= MVT::Other
) {
3804 if (DestVT
== MVT::Other
) DestVT
= Op0
.getValueType();
3805 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, DestVT
,
3806 DAG
.getConstant(IID
, MVT::i32
), Op0
, Op1
, Op2
);
3810 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3811 /// amount. The result has the specified value type.
3812 static SDValue
BuildVSLDOI(SDValue LHS
, SDValue RHS
, unsigned Amt
,
3813 EVT VT
, SelectionDAG
&DAG
, DebugLoc dl
) {
3814 // Force LHS/RHS to be the right type.
3815 LHS
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, LHS
);
3816 RHS
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, RHS
);
3819 for (unsigned i
= 0; i
!= 16; ++i
)
3821 SDValue T
= DAG
.getVectorShuffle(MVT::v16i8
, dl
, LHS
, RHS
, Ops
);
3822 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, T
);
3825 // If this is a case we can't handle, return null and let the default
3826 // expansion code take care of it. If we CAN select this case, and if it
3827 // selects to a single instruction, return Op. Otherwise, if we can codegen
3828 // this case more efficiently than a constant pool load, lower it to the
3829 // sequence of ops that should be used.
3830 SDValue
PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op
,
3831 SelectionDAG
&DAG
) const {
3832 DebugLoc dl
= Op
.getDebugLoc();
3833 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(Op
.getNode());
3834 assert(BVN
!= 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
3836 // Check if this is a splat of a constant value.
3837 APInt APSplatBits
, APSplatUndef
;
3838 unsigned SplatBitSize
;
3840 if (! BVN
->isConstantSplat(APSplatBits
, APSplatUndef
, SplatBitSize
,
3841 HasAnyUndefs
, 0, true) || SplatBitSize
> 32)
3844 unsigned SplatBits
= APSplatBits
.getZExtValue();
3845 unsigned SplatUndef
= APSplatUndef
.getZExtValue();
3846 unsigned SplatSize
= SplatBitSize
/ 8;
3848 // First, handle single instruction cases.
3851 if (SplatBits
== 0) {
3852 // Canonicalize all zero vectors to be v4i32.
3853 if (Op
.getValueType() != MVT::v4i32
|| HasAnyUndefs
) {
3854 SDValue Z
= DAG
.getConstant(0, MVT::i32
);
3855 Z
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v4i32
, Z
, Z
, Z
, Z
);
3856 Op
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(), Z
);
3861 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3862 int32_t SextVal
= (int32_t(SplatBits
<< (32-SplatBitSize
)) >>
3864 if (SextVal
>= -16 && SextVal
<= 15)
3865 return BuildSplatI(SextVal
, SplatSize
, Op
.getValueType(), DAG
, dl
);
3868 // Two instruction sequences.
3870 // If this value is in the range [-32,30] and is even, use:
3871 // tmp = VSPLTI[bhw], result = add tmp, tmp
3872 if (SextVal
>= -32 && SextVal
<= 30 && (SextVal
& 1) == 0) {
3873 SDValue Res
= BuildSplatI(SextVal
>> 1, SplatSize
, MVT::Other
, DAG
, dl
);
3874 Res
= DAG
.getNode(ISD::ADD
, dl
, Res
.getValueType(), Res
, Res
);
3875 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(), Res
);
3878 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
3879 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
3881 if (SplatSize
== 4 && SplatBits
== (0x7FFFFFFF&~SplatUndef
)) {
3882 // Make -1 and vspltisw -1:
3883 SDValue OnesV
= BuildSplatI(-1, 4, MVT::v4i32
, DAG
, dl
);
3885 // Make the VSLW intrinsic, computing 0x8000_0000.
3886 SDValue Res
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw
, OnesV
,
3889 // xor by OnesV to invert it.
3890 Res
= DAG
.getNode(ISD::XOR
, dl
, MVT::v4i32
, Res
, OnesV
);
3891 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(), Res
);
3894 // Check to see if this is a wide variety of vsplti*, binop self cases.
3895 static const signed char SplatCsts
[] = {
3896 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3897 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3900 for (unsigned idx
= 0; idx
< array_lengthof(SplatCsts
); ++idx
) {
3901 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3902 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
3903 int i
= SplatCsts
[idx
];
3905 // Figure out what shift amount will be used by altivec if shifted by i in
3907 unsigned TypeShiftAmt
= i
& (SplatBitSize
-1);
3909 // vsplti + shl self.
3910 if (SextVal
== (i
<< (int)TypeShiftAmt
)) {
3911 SDValue Res
= BuildSplatI(i
, SplatSize
, MVT::Other
, DAG
, dl
);
3912 static const unsigned IIDs
[] = { // Intrinsic to use for each size.
3913 Intrinsic::ppc_altivec_vslb
, Intrinsic::ppc_altivec_vslh
, 0,
3914 Intrinsic::ppc_altivec_vslw
3916 Res
= BuildIntrinsicOp(IIDs
[SplatSize
-1], Res
, Res
, DAG
, dl
);
3917 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(), Res
);
3920 // vsplti + srl self.
3921 if (SextVal
== (int)((unsigned)i
>> TypeShiftAmt
)) {
3922 SDValue Res
= BuildSplatI(i
, SplatSize
, MVT::Other
, DAG
, dl
);
3923 static const unsigned IIDs
[] = { // Intrinsic to use for each size.
3924 Intrinsic::ppc_altivec_vsrb
, Intrinsic::ppc_altivec_vsrh
, 0,
3925 Intrinsic::ppc_altivec_vsrw
3927 Res
= BuildIntrinsicOp(IIDs
[SplatSize
-1], Res
, Res
, DAG
, dl
);
3928 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(), Res
);
3931 // vsplti + sra self.
3932 if (SextVal
== (int)((unsigned)i
>> TypeShiftAmt
)) {
3933 SDValue Res
= BuildSplatI(i
, SplatSize
, MVT::Other
, DAG
, dl
);
3934 static const unsigned IIDs
[] = { // Intrinsic to use for each size.
3935 Intrinsic::ppc_altivec_vsrab
, Intrinsic::ppc_altivec_vsrah
, 0,
3936 Intrinsic::ppc_altivec_vsraw
3938 Res
= BuildIntrinsicOp(IIDs
[SplatSize
-1], Res
, Res
, DAG
, dl
);
3939 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(), Res
);
3942 // vsplti + rol self.
3943 if (SextVal
== (int)(((unsigned)i
<< TypeShiftAmt
) |
3944 ((unsigned)i
>> (SplatBitSize
-TypeShiftAmt
)))) {
3945 SDValue Res
= BuildSplatI(i
, SplatSize
, MVT::Other
, DAG
, dl
);
3946 static const unsigned IIDs
[] = { // Intrinsic to use for each size.
3947 Intrinsic::ppc_altivec_vrlb
, Intrinsic::ppc_altivec_vrlh
, 0,
3948 Intrinsic::ppc_altivec_vrlw
3950 Res
= BuildIntrinsicOp(IIDs
[SplatSize
-1], Res
, Res
, DAG
, dl
);
3951 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(), Res
);
3954 // t = vsplti c, result = vsldoi t, t, 1
3955 if (SextVal
== ((i
<< 8) | (i
< 0 ? 0xFF : 0))) {
3956 SDValue T
= BuildSplatI(i
, SplatSize
, MVT::v16i8
, DAG
, dl
);
3957 return BuildVSLDOI(T
, T
, 1, Op
.getValueType(), DAG
, dl
);
3959 // t = vsplti c, result = vsldoi t, t, 2
3960 if (SextVal
== ((i
<< 16) | (i
< 0 ? 0xFFFF : 0))) {
3961 SDValue T
= BuildSplatI(i
, SplatSize
, MVT::v16i8
, DAG
, dl
);
3962 return BuildVSLDOI(T
, T
, 2, Op
.getValueType(), DAG
, dl
);
3964 // t = vsplti c, result = vsldoi t, t, 3
3965 if (SextVal
== ((i
<< 24) | (i
< 0 ? 0xFFFFFF : 0))) {
3966 SDValue T
= BuildSplatI(i
, SplatSize
, MVT::v16i8
, DAG
, dl
);
3967 return BuildVSLDOI(T
, T
, 3, Op
.getValueType(), DAG
, dl
);
3971 // Three instruction sequences.
3973 // Odd, in range [17,31]: (vsplti C)-(vsplti -16).
3974 if (SextVal
>= 0 && SextVal
<= 31) {
3975 SDValue LHS
= BuildSplatI(SextVal
-16, SplatSize
, MVT::Other
, DAG
, dl
);
3976 SDValue RHS
= BuildSplatI(-16, SplatSize
, MVT::Other
, DAG
, dl
);
3977 LHS
= DAG
.getNode(ISD::SUB
, dl
, LHS
.getValueType(), LHS
, RHS
);
3978 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(), LHS
);
3980 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16).
3981 if (SextVal
>= -31 && SextVal
<= 0) {
3982 SDValue LHS
= BuildSplatI(SextVal
+16, SplatSize
, MVT::Other
, DAG
, dl
);
3983 SDValue RHS
= BuildSplatI(-16, SplatSize
, MVT::Other
, DAG
, dl
);
3984 LHS
= DAG
.getNode(ISD::ADD
, dl
, LHS
.getValueType(), LHS
, RHS
);
3985 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(), LHS
);
3991 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3992 /// the specified operations to build the shuffle.
3993 static SDValue
GeneratePerfectShuffle(unsigned PFEntry
, SDValue LHS
,
3994 SDValue RHS
, SelectionDAG
&DAG
,
3996 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
3997 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
3998 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
4001 OP_COPY
= 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4013 if (OpNum
== OP_COPY
) {
4014 if (LHSID
== (1*9+2)*9+3) return LHS
;
4015 assert(LHSID
== ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4019 SDValue OpLHS
, OpRHS
;
4020 OpLHS
= GeneratePerfectShuffle(PerfectShuffleTable
[LHSID
], LHS
, RHS
, DAG
, dl
);
4021 OpRHS
= GeneratePerfectShuffle(PerfectShuffleTable
[RHSID
], LHS
, RHS
, DAG
, dl
);
4025 default: llvm_unreachable("Unknown i32 permute!");
4027 ShufIdxs
[ 0] = 0; ShufIdxs
[ 1] = 1; ShufIdxs
[ 2] = 2; ShufIdxs
[ 3] = 3;
4028 ShufIdxs
[ 4] = 16; ShufIdxs
[ 5] = 17; ShufIdxs
[ 6] = 18; ShufIdxs
[ 7] = 19;
4029 ShufIdxs
[ 8] = 4; ShufIdxs
[ 9] = 5; ShufIdxs
[10] = 6; ShufIdxs
[11] = 7;
4030 ShufIdxs
[12] = 20; ShufIdxs
[13] = 21; ShufIdxs
[14] = 22; ShufIdxs
[15] = 23;
4033 ShufIdxs
[ 0] = 8; ShufIdxs
[ 1] = 9; ShufIdxs
[ 2] = 10; ShufIdxs
[ 3] = 11;
4034 ShufIdxs
[ 4] = 24; ShufIdxs
[ 5] = 25; ShufIdxs
[ 6] = 26; ShufIdxs
[ 7] = 27;
4035 ShufIdxs
[ 8] = 12; ShufIdxs
[ 9] = 13; ShufIdxs
[10] = 14; ShufIdxs
[11] = 15;
4036 ShufIdxs
[12] = 28; ShufIdxs
[13] = 29; ShufIdxs
[14] = 30; ShufIdxs
[15] = 31;
4039 for (unsigned i
= 0; i
!= 16; ++i
)
4040 ShufIdxs
[i
] = (i
&3)+0;
4043 for (unsigned i
= 0; i
!= 16; ++i
)
4044 ShufIdxs
[i
] = (i
&3)+4;
4047 for (unsigned i
= 0; i
!= 16; ++i
)
4048 ShufIdxs
[i
] = (i
&3)+8;
4051 for (unsigned i
= 0; i
!= 16; ++i
)
4052 ShufIdxs
[i
] = (i
&3)+12;
4055 return BuildVSLDOI(OpLHS
, OpRHS
, 4, OpLHS
.getValueType(), DAG
, dl
);
4057 return BuildVSLDOI(OpLHS
, OpRHS
, 8, OpLHS
.getValueType(), DAG
, dl
);
4059 return BuildVSLDOI(OpLHS
, OpRHS
, 12, OpLHS
.getValueType(), DAG
, dl
);
4061 EVT VT
= OpLHS
.getValueType();
4062 OpLHS
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, OpLHS
);
4063 OpRHS
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, OpRHS
);
4064 SDValue T
= DAG
.getVectorShuffle(MVT::v16i8
, dl
, OpLHS
, OpRHS
, ShufIdxs
);
4065 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, T
);
4068 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
4069 /// is a shuffle we can handle in a single instruction, return it. Otherwise,
4070 /// return the code it can be lowered into. Worst case, it can always be
4071 /// lowered into a vperm.
4072 SDValue
PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op
,
4073 SelectionDAG
&DAG
) const {
4074 DebugLoc dl
= Op
.getDebugLoc();
4075 SDValue V1
= Op
.getOperand(0);
4076 SDValue V2
= Op
.getOperand(1);
4077 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(Op
);
4078 EVT VT
= Op
.getValueType();
4080 // Cases that are handled by instructions that take permute immediates
4081 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
4082 // selected by the instruction selector.
4083 if (V2
.getOpcode() == ISD::UNDEF
) {
4084 if (PPC::isSplatShuffleMask(SVOp
, 1) ||
4085 PPC::isSplatShuffleMask(SVOp
, 2) ||
4086 PPC::isSplatShuffleMask(SVOp
, 4) ||
4087 PPC::isVPKUWUMShuffleMask(SVOp
, true) ||
4088 PPC::isVPKUHUMShuffleMask(SVOp
, true) ||
4089 PPC::isVSLDOIShuffleMask(SVOp
, true) != -1 ||
4090 PPC::isVMRGLShuffleMask(SVOp
, 1, true) ||
4091 PPC::isVMRGLShuffleMask(SVOp
, 2, true) ||
4092 PPC::isVMRGLShuffleMask(SVOp
, 4, true) ||
4093 PPC::isVMRGHShuffleMask(SVOp
, 1, true) ||
4094 PPC::isVMRGHShuffleMask(SVOp
, 2, true) ||
4095 PPC::isVMRGHShuffleMask(SVOp
, 4, true)) {
4100 // Altivec has a variety of "shuffle immediates" that take two vector inputs
4101 // and produce a fixed permutation. If any of these match, do not lower to
4103 if (PPC::isVPKUWUMShuffleMask(SVOp
, false) ||
4104 PPC::isVPKUHUMShuffleMask(SVOp
, false) ||
4105 PPC::isVSLDOIShuffleMask(SVOp
, false) != -1 ||
4106 PPC::isVMRGLShuffleMask(SVOp
, 1, false) ||
4107 PPC::isVMRGLShuffleMask(SVOp
, 2, false) ||
4108 PPC::isVMRGLShuffleMask(SVOp
, 4, false) ||
4109 PPC::isVMRGHShuffleMask(SVOp
, 1, false) ||
4110 PPC::isVMRGHShuffleMask(SVOp
, 2, false) ||
4111 PPC::isVMRGHShuffleMask(SVOp
, 4, false))
4114 // Check to see if this is a shuffle of 4-byte values. If so, we can use our
4115 // perfect shuffle table to emit an optimal matching sequence.
4116 SmallVector
<int, 16> PermMask
;
4117 SVOp
->getMask(PermMask
);
4119 unsigned PFIndexes
[4];
4120 bool isFourElementShuffle
= true;
4121 for (unsigned i
= 0; i
!= 4 && isFourElementShuffle
; ++i
) { // Element number
4122 unsigned EltNo
= 8; // Start out undef.
4123 for (unsigned j
= 0; j
!= 4; ++j
) { // Intra-element byte.
4124 if (PermMask
[i
*4+j
] < 0)
4125 continue; // Undef, ignore it.
4127 unsigned ByteSource
= PermMask
[i
*4+j
];
4128 if ((ByteSource
& 3) != j
) {
4129 isFourElementShuffle
= false;
4134 EltNo
= ByteSource
/4;
4135 } else if (EltNo
!= ByteSource
/4) {
4136 isFourElementShuffle
= false;
4140 PFIndexes
[i
] = EltNo
;
4143 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
4144 // perfect shuffle vector to determine if it is cost effective to do this as
4145 // discrete instructions, or whether we should use a vperm.
4146 if (isFourElementShuffle
) {
4147 // Compute the index in the perfect shuffle table.
4148 unsigned PFTableIndex
=
4149 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
4151 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
4152 unsigned Cost
= (PFEntry
>> 30);
4154 // Determining when to avoid vperm is tricky. Many things affect the cost
4155 // of vperm, particularly how many times the perm mask needs to be computed.
4156 // For example, if the perm mask can be hoisted out of a loop or is already
4157 // used (perhaps because there are multiple permutes with the same shuffle
4158 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
4159 // the loop requires an extra register.
4161 // As a compromise, we only emit discrete instructions if the shuffle can be
4162 // generated in 3 or fewer operations. When we have loop information
4163 // available, if this block is within a loop, we should avoid using vperm
4164 // for 3-operation perms and use a constant pool load instead.
4166 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
4169 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
4170 // vector that will get spilled to the constant pool.
4171 if (V2
.getOpcode() == ISD::UNDEF
) V2
= V1
;
4173 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
4174 // that it is in input element units, not in bytes. Convert now.
4175 EVT EltVT
= V1
.getValueType().getVectorElementType();
4176 unsigned BytesPerElement
= EltVT
.getSizeInBits()/8;
4178 SmallVector
<SDValue
, 16> ResultMask
;
4179 for (unsigned i
= 0, e
= VT
.getVectorNumElements(); i
!= e
; ++i
) {
4180 unsigned SrcElt
= PermMask
[i
] < 0 ? 0 : PermMask
[i
];
4182 for (unsigned j
= 0; j
!= BytesPerElement
; ++j
)
4183 ResultMask
.push_back(DAG
.getConstant(SrcElt
*BytesPerElement
+j
,
4187 SDValue VPermMask
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v16i8
,
4188 &ResultMask
[0], ResultMask
.size());
4189 return DAG
.getNode(PPCISD::VPERM
, dl
, V1
.getValueType(), V1
, V2
, VPermMask
);
4192 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
4193 /// altivec comparison. If it is, return true and fill in Opc/isDot with
4194 /// information about the intrinsic.
4195 static bool getAltivecCompareInfo(SDValue Intrin
, int &CompareOpc
,
4197 unsigned IntrinsicID
=
4198 cast
<ConstantSDNode
>(Intrin
.getOperand(0))->getZExtValue();
4201 switch (IntrinsicID
) {
4202 default: return false;
4203 // Comparison predicates.
4204 case Intrinsic::ppc_altivec_vcmpbfp_p
: CompareOpc
= 966; isDot
= 1; break;
4205 case Intrinsic::ppc_altivec_vcmpeqfp_p
: CompareOpc
= 198; isDot
= 1; break;
4206 case Intrinsic::ppc_altivec_vcmpequb_p
: CompareOpc
= 6; isDot
= 1; break;
4207 case Intrinsic::ppc_altivec_vcmpequh_p
: CompareOpc
= 70; isDot
= 1; break;
4208 case Intrinsic::ppc_altivec_vcmpequw_p
: CompareOpc
= 134; isDot
= 1; break;
4209 case Intrinsic::ppc_altivec_vcmpgefp_p
: CompareOpc
= 454; isDot
= 1; break;
4210 case Intrinsic::ppc_altivec_vcmpgtfp_p
: CompareOpc
= 710; isDot
= 1; break;
4211 case Intrinsic::ppc_altivec_vcmpgtsb_p
: CompareOpc
= 774; isDot
= 1; break;
4212 case Intrinsic::ppc_altivec_vcmpgtsh_p
: CompareOpc
= 838; isDot
= 1; break;
4213 case Intrinsic::ppc_altivec_vcmpgtsw_p
: CompareOpc
= 902; isDot
= 1; break;
4214 case Intrinsic::ppc_altivec_vcmpgtub_p
: CompareOpc
= 518; isDot
= 1; break;
4215 case Intrinsic::ppc_altivec_vcmpgtuh_p
: CompareOpc
= 582; isDot
= 1; break;
4216 case Intrinsic::ppc_altivec_vcmpgtuw_p
: CompareOpc
= 646; isDot
= 1; break;
4218 // Normal Comparisons.
4219 case Intrinsic::ppc_altivec_vcmpbfp
: CompareOpc
= 966; isDot
= 0; break;
4220 case Intrinsic::ppc_altivec_vcmpeqfp
: CompareOpc
= 198; isDot
= 0; break;
4221 case Intrinsic::ppc_altivec_vcmpequb
: CompareOpc
= 6; isDot
= 0; break;
4222 case Intrinsic::ppc_altivec_vcmpequh
: CompareOpc
= 70; isDot
= 0; break;
4223 case Intrinsic::ppc_altivec_vcmpequw
: CompareOpc
= 134; isDot
= 0; break;
4224 case Intrinsic::ppc_altivec_vcmpgefp
: CompareOpc
= 454; isDot
= 0; break;
4225 case Intrinsic::ppc_altivec_vcmpgtfp
: CompareOpc
= 710; isDot
= 0; break;
4226 case Intrinsic::ppc_altivec_vcmpgtsb
: CompareOpc
= 774; isDot
= 0; break;
4227 case Intrinsic::ppc_altivec_vcmpgtsh
: CompareOpc
= 838; isDot
= 0; break;
4228 case Intrinsic::ppc_altivec_vcmpgtsw
: CompareOpc
= 902; isDot
= 0; break;
4229 case Intrinsic::ppc_altivec_vcmpgtub
: CompareOpc
= 518; isDot
= 0; break;
4230 case Intrinsic::ppc_altivec_vcmpgtuh
: CompareOpc
= 582; isDot
= 0; break;
4231 case Intrinsic::ppc_altivec_vcmpgtuw
: CompareOpc
= 646; isDot
= 0; break;
4236 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
4237 /// lower, do it, otherwise return null.
4238 SDValue
PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op
,
4239 SelectionDAG
&DAG
) const {
4240 // If this is a lowered altivec predicate compare, CompareOpc is set to the
4241 // opcode number of the comparison.
4242 DebugLoc dl
= Op
.getDebugLoc();
4245 if (!getAltivecCompareInfo(Op
, CompareOpc
, isDot
))
4246 return SDValue(); // Don't custom lower most intrinsics.
4248 // If this is a non-dot comparison, make the VCMP node and we are done.
4250 SDValue Tmp
= DAG
.getNode(PPCISD::VCMP
, dl
, Op
.getOperand(2).getValueType(),
4251 Op
.getOperand(1), Op
.getOperand(2),
4252 DAG
.getConstant(CompareOpc
, MVT::i32
));
4253 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(), Tmp
);
4256 // Create the PPCISD altivec 'dot' comparison node.
4258 Op
.getOperand(2), // LHS
4259 Op
.getOperand(3), // RHS
4260 DAG
.getConstant(CompareOpc
, MVT::i32
)
4262 std::vector
<EVT
> VTs
;
4263 VTs
.push_back(Op
.getOperand(2).getValueType());
4264 VTs
.push_back(MVT::Flag
);
4265 SDValue CompNode
= DAG
.getNode(PPCISD::VCMPo
, dl
, VTs
, Ops
, 3);
4267 // Now that we have the comparison, emit a copy from the CR to a GPR.
4268 // This is flagged to the above dot comparison.
4269 SDValue Flags
= DAG
.getNode(PPCISD::MFCR
, dl
, MVT::i32
,
4270 DAG
.getRegister(PPC::CR6
, MVT::i32
),
4271 CompNode
.getValue(1));
4273 // Unpack the result based on how the target uses it.
4274 unsigned BitNo
; // Bit # of CR6.
4275 bool InvertBit
; // Invert result?
4276 switch (cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue()) {
4277 default: // Can't happen, don't crash on invalid number though.
4278 case 0: // Return the value of the EQ bit of CR6.
4279 BitNo
= 0; InvertBit
= false;
4281 case 1: // Return the inverted value of the EQ bit of CR6.
4282 BitNo
= 0; InvertBit
= true;
4284 case 2: // Return the value of the LT bit of CR6.
4285 BitNo
= 2; InvertBit
= false;
4287 case 3: // Return the inverted value of the LT bit of CR6.
4288 BitNo
= 2; InvertBit
= true;
4292 // Shift the bit into the low position.
4293 Flags
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, Flags
,
4294 DAG
.getConstant(8-(3-BitNo
), MVT::i32
));
4296 Flags
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Flags
,
4297 DAG
.getConstant(1, MVT::i32
));
4299 // If we are supposed to, toggle the bit.
4301 Flags
= DAG
.getNode(ISD::XOR
, dl
, MVT::i32
, Flags
,
4302 DAG
.getConstant(1, MVT::i32
));
4306 SDValue
PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op
,
4307 SelectionDAG
&DAG
) const {
4308 DebugLoc dl
= Op
.getDebugLoc();
4309 // Create a stack slot that is 16-byte aligned.
4310 MachineFrameInfo
*FrameInfo
= DAG
.getMachineFunction().getFrameInfo();
4311 int FrameIdx
= FrameInfo
->CreateStackObject(16, 16, false);
4312 EVT PtrVT
= getPointerTy();
4313 SDValue FIdx
= DAG
.getFrameIndex(FrameIdx
, PtrVT
);
4315 // Store the input value into Value#0 of the stack slot.
4316 SDValue Store
= DAG
.getStore(DAG
.getEntryNode(), dl
,
4317 Op
.getOperand(0), FIdx
, MachinePointerInfo(),
4320 return DAG
.getLoad(Op
.getValueType(), dl
, Store
, FIdx
, MachinePointerInfo(),
4324 SDValue
PPCTargetLowering::LowerMUL(SDValue Op
, SelectionDAG
&DAG
) const {
4325 DebugLoc dl
= Op
.getDebugLoc();
4326 if (Op
.getValueType() == MVT::v4i32
) {
4327 SDValue LHS
= Op
.getOperand(0), RHS
= Op
.getOperand(1);
4329 SDValue Zero
= BuildSplatI( 0, 1, MVT::v4i32
, DAG
, dl
);
4330 SDValue Neg16
= BuildSplatI(-16, 4, MVT::v4i32
, DAG
, dl
);//+16 as shift amt.
4332 SDValue RHSSwap
= // = vrlw RHS, 16
4333 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw
, RHS
, Neg16
, DAG
, dl
);
4335 // Shrinkify inputs to v8i16.
4336 LHS
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, LHS
);
4337 RHS
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, RHS
);
4338 RHSSwap
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, RHSSwap
);
4340 // Low parts multiplied together, generating 32-bit results (we ignore the
4342 SDValue LoProd
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh
,
4343 LHS
, RHS
, DAG
, dl
, MVT::v4i32
);
4345 SDValue HiProd
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm
,
4346 LHS
, RHSSwap
, Zero
, DAG
, dl
, MVT::v4i32
);
4347 // Shift the high parts up 16 bits.
4348 HiProd
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw
, HiProd
,
4350 return DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, LoProd
, HiProd
);
4351 } else if (Op
.getValueType() == MVT::v8i16
) {
4352 SDValue LHS
= Op
.getOperand(0), RHS
= Op
.getOperand(1);
4354 SDValue Zero
= BuildSplatI(0, 1, MVT::v8i16
, DAG
, dl
);
4356 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm
,
4357 LHS
, RHS
, Zero
, DAG
, dl
);
4358 } else if (Op
.getValueType() == MVT::v16i8
) {
4359 SDValue LHS
= Op
.getOperand(0), RHS
= Op
.getOperand(1);
4361 // Multiply the even 8-bit parts, producing 16-bit sums.
4362 SDValue EvenParts
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub
,
4363 LHS
, RHS
, DAG
, dl
, MVT::v8i16
);
4364 EvenParts
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, EvenParts
);
4366 // Multiply the odd 8-bit parts, producing 16-bit sums.
4367 SDValue OddParts
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub
,
4368 LHS
, RHS
, DAG
, dl
, MVT::v8i16
);
4369 OddParts
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, OddParts
);
4371 // Merge the results together.
4373 for (unsigned i
= 0; i
!= 8; ++i
) {
4375 Ops
[i
*2+1] = 2*i
+1+16;
4377 return DAG
.getVectorShuffle(MVT::v16i8
, dl
, EvenParts
, OddParts
, Ops
);
4379 llvm_unreachable("Unknown mul to lower!");
4383 /// LowerOperation - Provide custom lowering hooks for some operations.
4385 SDValue
PPCTargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const {
4386 switch (Op
.getOpcode()) {
4387 default: llvm_unreachable("Wasn't expecting to be able to lower this!");
4388 case ISD::ConstantPool
: return LowerConstantPool(Op
, DAG
);
4389 case ISD::BlockAddress
: return LowerBlockAddress(Op
, DAG
);
4390 case ISD::GlobalAddress
: return LowerGlobalAddress(Op
, DAG
);
4391 case ISD::GlobalTLSAddress
: return LowerGlobalTLSAddress(Op
, DAG
);
4392 case ISD::JumpTable
: return LowerJumpTable(Op
, DAG
);
4393 case ISD::SETCC
: return LowerSETCC(Op
, DAG
);
4394 case ISD::TRAMPOLINE
: return LowerTRAMPOLINE(Op
, DAG
);
4396 return LowerVASTART(Op
, DAG
, PPCSubTarget
);
4399 return LowerVAARG(Op
, DAG
, PPCSubTarget
);
4401 case ISD::STACKRESTORE
: return LowerSTACKRESTORE(Op
, DAG
, PPCSubTarget
);
4402 case ISD::DYNAMIC_STACKALLOC
:
4403 return LowerDYNAMIC_STACKALLOC(Op
, DAG
, PPCSubTarget
);
4405 case ISD::SELECT_CC
: return LowerSELECT_CC(Op
, DAG
);
4406 case ISD::FP_TO_UINT
:
4407 case ISD::FP_TO_SINT
: return LowerFP_TO_INT(Op
, DAG
,
4409 case ISD::SINT_TO_FP
: return LowerSINT_TO_FP(Op
, DAG
);
4410 case ISD::FLT_ROUNDS_
: return LowerFLT_ROUNDS_(Op
, DAG
);
4412 // Lower 64-bit shifts.
4413 case ISD::SHL_PARTS
: return LowerSHL_PARTS(Op
, DAG
);
4414 case ISD::SRL_PARTS
: return LowerSRL_PARTS(Op
, DAG
);
4415 case ISD::SRA_PARTS
: return LowerSRA_PARTS(Op
, DAG
);
4417 // Vector-related lowering.
4418 case ISD::BUILD_VECTOR
: return LowerBUILD_VECTOR(Op
, DAG
);
4419 case ISD::VECTOR_SHUFFLE
: return LowerVECTOR_SHUFFLE(Op
, DAG
);
4420 case ISD::INTRINSIC_WO_CHAIN
: return LowerINTRINSIC_WO_CHAIN(Op
, DAG
);
4421 case ISD::SCALAR_TO_VECTOR
: return LowerSCALAR_TO_VECTOR(Op
, DAG
);
4422 case ISD::MUL
: return LowerMUL(Op
, DAG
);
4424 // Frame & Return address.
4425 case ISD::RETURNADDR
: return LowerRETURNADDR(Op
, DAG
);
4426 case ISD::FRAMEADDR
: return LowerFRAMEADDR(Op
, DAG
);
4431 void PPCTargetLowering::ReplaceNodeResults(SDNode
*N
,
4432 SmallVectorImpl
<SDValue
>&Results
,
4433 SelectionDAG
&DAG
) const {
4434 DebugLoc dl
= N
->getDebugLoc();
4435 switch (N
->getOpcode()) {
4437 assert(false && "Do not know how to custom type legalize this operation!");
4439 case ISD::FP_ROUND_INREG
: {
4440 assert(N
->getValueType(0) == MVT::ppcf128
);
4441 assert(N
->getOperand(0).getValueType() == MVT::ppcf128
);
4442 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
,
4443 MVT::f64
, N
->getOperand(0),
4444 DAG
.getIntPtrConstant(0));
4445 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
,
4446 MVT::f64
, N
->getOperand(0),
4447 DAG
.getIntPtrConstant(1));
4449 // This sequence changes FPSCR to do round-to-zero, adds the two halves
4450 // of the long double, and puts FPSCR back the way it was. We do not
4451 // actually model FPSCR.
4452 std::vector
<EVT
> NodeTys
;
4453 SDValue Ops
[4], Result
, MFFSreg
, InFlag
, FPreg
;
4455 NodeTys
.push_back(MVT::f64
); // Return register
4456 NodeTys
.push_back(MVT::Flag
); // Returns a flag for later insns
4457 Result
= DAG
.getNode(PPCISD::MFFS
, dl
, NodeTys
, &InFlag
, 0);
4458 MFFSreg
= Result
.getValue(0);
4459 InFlag
= Result
.getValue(1);
4462 NodeTys
.push_back(MVT::Flag
); // Returns a flag
4463 Ops
[0] = DAG
.getConstant(31, MVT::i32
);
4465 Result
= DAG
.getNode(PPCISD::MTFSB1
, dl
, NodeTys
, Ops
, 2);
4466 InFlag
= Result
.getValue(0);
4469 NodeTys
.push_back(MVT::Flag
); // Returns a flag
4470 Ops
[0] = DAG
.getConstant(30, MVT::i32
);
4472 Result
= DAG
.getNode(PPCISD::MTFSB0
, dl
, NodeTys
, Ops
, 2);
4473 InFlag
= Result
.getValue(0);
4476 NodeTys
.push_back(MVT::f64
); // result of add
4477 NodeTys
.push_back(MVT::Flag
); // Returns a flag
4481 Result
= DAG
.getNode(PPCISD::FADDRTZ
, dl
, NodeTys
, Ops
, 3);
4482 FPreg
= Result
.getValue(0);
4483 InFlag
= Result
.getValue(1);
4486 NodeTys
.push_back(MVT::f64
);
4487 Ops
[0] = DAG
.getConstant(1, MVT::i32
);
4491 Result
= DAG
.getNode(PPCISD::MTFSF
, dl
, NodeTys
, Ops
, 4);
4492 FPreg
= Result
.getValue(0);
4494 // We know the low half is about to be thrown away, so just use something
4496 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::ppcf128
,
4500 case ISD::FP_TO_SINT
:
4501 Results
.push_back(LowerFP_TO_INT(SDValue(N
, 0), DAG
, dl
));
4507 //===----------------------------------------------------------------------===//
4508 // Other Lowering Code
4509 //===----------------------------------------------------------------------===//
4512 PPCTargetLowering::EmitAtomicBinary(MachineInstr
*MI
, MachineBasicBlock
*BB
,
4513 bool is64bit
, unsigned BinOpcode
) const {
4514 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4515 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
4517 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
4518 MachineFunction
*F
= BB
->getParent();
4519 MachineFunction::iterator It
= BB
;
4522 unsigned dest
= MI
->getOperand(0).getReg();
4523 unsigned ptrA
= MI
->getOperand(1).getReg();
4524 unsigned ptrB
= MI
->getOperand(2).getReg();
4525 unsigned incr
= MI
->getOperand(3).getReg();
4526 DebugLoc dl
= MI
->getDebugLoc();
4528 MachineBasicBlock
*loopMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4529 MachineBasicBlock
*exitMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4530 F
->insert(It
, loopMBB
);
4531 F
->insert(It
, exitMBB
);
4532 exitMBB
->splice(exitMBB
->begin(), BB
,
4533 llvm::next(MachineBasicBlock::iterator(MI
)),
4535 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
4537 MachineRegisterInfo
&RegInfo
= F
->getRegInfo();
4538 unsigned TmpReg
= (!BinOpcode
) ? incr
:
4539 RegInfo
.createVirtualRegister(
4540 is64bit
? (const TargetRegisterClass
*) &PPC::G8RCRegClass
:
4541 (const TargetRegisterClass
*) &PPC::GPRCRegClass
);
4545 // fallthrough --> loopMBB
4546 BB
->addSuccessor(loopMBB
);
4549 // l[wd]arx dest, ptr
4550 // add r0, dest, incr
4551 // st[wd]cx. r0, ptr
4553 // fallthrough --> exitMBB
4555 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::LDARX
: PPC::LWARX
), dest
)
4556 .addReg(ptrA
).addReg(ptrB
);
4558 BuildMI(BB
, dl
, TII
->get(BinOpcode
), TmpReg
).addReg(incr
).addReg(dest
);
4559 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::STDCX
: PPC::STWCX
))
4560 .addReg(TmpReg
).addReg(ptrA
).addReg(ptrB
);
4561 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
4562 .addImm(PPC::PRED_NE
).addReg(PPC::CR0
).addMBB(loopMBB
);
4563 BB
->addSuccessor(loopMBB
);
4564 BB
->addSuccessor(exitMBB
);
4573 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr
*MI
,
4574 MachineBasicBlock
*BB
,
4575 bool is8bit
, // operation
4576 unsigned BinOpcode
) const {
4577 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4578 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
4579 // In 64 bit mode we have to use 64 bits for addresses, even though the
4580 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address
4581 // registers without caring whether they're 32 or 64, but here we're
4582 // doing actual arithmetic on the addresses.
4583 bool is64bit
= PPCSubTarget
.isPPC64();
4585 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
4586 MachineFunction
*F
= BB
->getParent();
4587 MachineFunction::iterator It
= BB
;
4590 unsigned dest
= MI
->getOperand(0).getReg();
4591 unsigned ptrA
= MI
->getOperand(1).getReg();
4592 unsigned ptrB
= MI
->getOperand(2).getReg();
4593 unsigned incr
= MI
->getOperand(3).getReg();
4594 DebugLoc dl
= MI
->getDebugLoc();
4596 MachineBasicBlock
*loopMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4597 MachineBasicBlock
*exitMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4598 F
->insert(It
, loopMBB
);
4599 F
->insert(It
, exitMBB
);
4600 exitMBB
->splice(exitMBB
->begin(), BB
,
4601 llvm::next(MachineBasicBlock::iterator(MI
)),
4603 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
4605 MachineRegisterInfo
&RegInfo
= F
->getRegInfo();
4606 const TargetRegisterClass
*RC
=
4607 is64bit
? (const TargetRegisterClass
*) &PPC::G8RCRegClass
:
4608 (const TargetRegisterClass
*) &PPC::GPRCRegClass
;
4609 unsigned PtrReg
= RegInfo
.createVirtualRegister(RC
);
4610 unsigned Shift1Reg
= RegInfo
.createVirtualRegister(RC
);
4611 unsigned ShiftReg
= RegInfo
.createVirtualRegister(RC
);
4612 unsigned Incr2Reg
= RegInfo
.createVirtualRegister(RC
);
4613 unsigned MaskReg
= RegInfo
.createVirtualRegister(RC
);
4614 unsigned Mask2Reg
= RegInfo
.createVirtualRegister(RC
);
4615 unsigned Mask3Reg
= RegInfo
.createVirtualRegister(RC
);
4616 unsigned Tmp2Reg
= RegInfo
.createVirtualRegister(RC
);
4617 unsigned Tmp3Reg
= RegInfo
.createVirtualRegister(RC
);
4618 unsigned Tmp4Reg
= RegInfo
.createVirtualRegister(RC
);
4619 unsigned TmpDestReg
= RegInfo
.createVirtualRegister(RC
);
4621 unsigned TmpReg
= (!BinOpcode
) ? Incr2Reg
: RegInfo
.createVirtualRegister(RC
);
4625 // fallthrough --> loopMBB
4626 BB
->addSuccessor(loopMBB
);
4628 // The 4-byte load must be aligned, while a char or short may be
4629 // anywhere in the word. Hence all this nasty bookkeeping code.
4630 // add ptr1, ptrA, ptrB [copy if ptrA==0]
4631 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4632 // xori shift, shift1, 24 [16]
4633 // rlwinm ptr, ptr1, 0, 0, 29
4634 // slw incr2, incr, shift
4635 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4636 // slw mask, mask2, shift
4638 // lwarx tmpDest, ptr
4639 // add tmp, tmpDest, incr2
4640 // andc tmp2, tmpDest, mask
4641 // and tmp3, tmp, mask
4642 // or tmp4, tmp3, tmp2
4645 // fallthrough --> exitMBB
4646 // srw dest, tmpDest, shift
4648 if (ptrA
!=PPC::R0
) {
4649 Ptr1Reg
= RegInfo
.createVirtualRegister(RC
);
4650 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::ADD8
: PPC::ADD4
), Ptr1Reg
)
4651 .addReg(ptrA
).addReg(ptrB
);
4655 BuildMI(BB
, dl
, TII
->get(PPC::RLWINM
), Shift1Reg
).addReg(Ptr1Reg
)
4656 .addImm(3).addImm(27).addImm(is8bit
? 28 : 27);
4657 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::XORI8
: PPC::XORI
), ShiftReg
)
4658 .addReg(Shift1Reg
).addImm(is8bit
? 24 : 16);
4660 BuildMI(BB
, dl
, TII
->get(PPC::RLDICR
), PtrReg
)
4661 .addReg(Ptr1Reg
).addImm(0).addImm(61);
4663 BuildMI(BB
, dl
, TII
->get(PPC::RLWINM
), PtrReg
)
4664 .addReg(Ptr1Reg
).addImm(0).addImm(0).addImm(29);
4665 BuildMI(BB
, dl
, TII
->get(PPC::SLW
), Incr2Reg
)
4666 .addReg(incr
).addReg(ShiftReg
);
4668 BuildMI(BB
, dl
, TII
->get(PPC::LI
), Mask2Reg
).addImm(255);
4670 BuildMI(BB
, dl
, TII
->get(PPC::LI
), Mask3Reg
).addImm(0);
4671 BuildMI(BB
, dl
, TII
->get(PPC::ORI
),Mask2Reg
).addReg(Mask3Reg
).addImm(65535);
4673 BuildMI(BB
, dl
, TII
->get(PPC::SLW
), MaskReg
)
4674 .addReg(Mask2Reg
).addReg(ShiftReg
);
4677 BuildMI(BB
, dl
, TII
->get(PPC::LWARX
), TmpDestReg
)
4678 .addReg(PPC::R0
).addReg(PtrReg
);
4680 BuildMI(BB
, dl
, TII
->get(BinOpcode
), TmpReg
)
4681 .addReg(Incr2Reg
).addReg(TmpDestReg
);
4682 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::ANDC8
: PPC::ANDC
), Tmp2Reg
)
4683 .addReg(TmpDestReg
).addReg(MaskReg
);
4684 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::AND8
: PPC::AND
), Tmp3Reg
)
4685 .addReg(TmpReg
).addReg(MaskReg
);
4686 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::OR8
: PPC::OR
), Tmp4Reg
)
4687 .addReg(Tmp3Reg
).addReg(Tmp2Reg
);
4688 BuildMI(BB
, dl
, TII
->get(PPC::STWCX
))
4689 .addReg(Tmp4Reg
).addReg(PPC::R0
).addReg(PtrReg
);
4690 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
4691 .addImm(PPC::PRED_NE
).addReg(PPC::CR0
).addMBB(loopMBB
);
4692 BB
->addSuccessor(loopMBB
);
4693 BB
->addSuccessor(exitMBB
);
4698 BuildMI(BB
, dl
, TII
->get(PPC::SRW
), dest
).addReg(TmpDestReg
).addReg(ShiftReg
);
4703 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr
*MI
,
4704 MachineBasicBlock
*BB
) const {
4705 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
4707 // To "insert" these instructions we actually have to insert their
4708 // control-flow patterns.
4709 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
4710 MachineFunction::iterator It
= BB
;
4713 MachineFunction
*F
= BB
->getParent();
4715 if (MI
->getOpcode() == PPC::SELECT_CC_I4
||
4716 MI
->getOpcode() == PPC::SELECT_CC_I8
||
4717 MI
->getOpcode() == PPC::SELECT_CC_F4
||
4718 MI
->getOpcode() == PPC::SELECT_CC_F8
||
4719 MI
->getOpcode() == PPC::SELECT_CC_VRRC
) {
4721 // The incoming instruction knows the destination vreg to set, the
4722 // condition code register to branch on, the true/false values to
4723 // select between, and a branch opcode to use.
4728 // cmpTY ccX, r1, r2
4730 // fallthrough --> copy0MBB
4731 MachineBasicBlock
*thisMBB
= BB
;
4732 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4733 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4734 unsigned SelectPred
= MI
->getOperand(4).getImm();
4735 DebugLoc dl
= MI
->getDebugLoc();
4736 F
->insert(It
, copy0MBB
);
4737 F
->insert(It
, sinkMBB
);
4739 // Transfer the remainder of BB and its successor edges to sinkMBB.
4740 sinkMBB
->splice(sinkMBB
->begin(), BB
,
4741 llvm::next(MachineBasicBlock::iterator(MI
)),
4743 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
4745 // Next, add the true and fallthrough blocks as its successors.
4746 BB
->addSuccessor(copy0MBB
);
4747 BB
->addSuccessor(sinkMBB
);
4749 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
4750 .addImm(SelectPred
).addReg(MI
->getOperand(1).getReg()).addMBB(sinkMBB
);
4753 // %FalseValue = ...
4754 // # fallthrough to sinkMBB
4757 // Update machine-CFG edges
4758 BB
->addSuccessor(sinkMBB
);
4761 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4764 BuildMI(*BB
, BB
->begin(), dl
,
4765 TII
->get(PPC::PHI
), MI
->getOperand(0).getReg())
4766 .addReg(MI
->getOperand(3).getReg()).addMBB(copy0MBB
)
4767 .addReg(MI
->getOperand(2).getReg()).addMBB(thisMBB
);
4769 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8
)
4770 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, PPC::ADD4
);
4771 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16
)
4772 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, PPC::ADD4
);
4773 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32
)
4774 BB
= EmitAtomicBinary(MI
, BB
, false, PPC::ADD4
);
4775 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64
)
4776 BB
= EmitAtomicBinary(MI
, BB
, true, PPC::ADD8
);
4778 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_AND_I8
)
4779 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, PPC::AND
);
4780 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_AND_I16
)
4781 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, PPC::AND
);
4782 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_AND_I32
)
4783 BB
= EmitAtomicBinary(MI
, BB
, false, PPC::AND
);
4784 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_AND_I64
)
4785 BB
= EmitAtomicBinary(MI
, BB
, true, PPC::AND8
);
4787 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_OR_I8
)
4788 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, PPC::OR
);
4789 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_OR_I16
)
4790 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, PPC::OR
);
4791 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_OR_I32
)
4792 BB
= EmitAtomicBinary(MI
, BB
, false, PPC::OR
);
4793 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_OR_I64
)
4794 BB
= EmitAtomicBinary(MI
, BB
, true, PPC::OR8
);
4796 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8
)
4797 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, PPC::XOR
);
4798 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16
)
4799 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, PPC::XOR
);
4800 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32
)
4801 BB
= EmitAtomicBinary(MI
, BB
, false, PPC::XOR
);
4802 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64
)
4803 BB
= EmitAtomicBinary(MI
, BB
, true, PPC::XOR8
);
4805 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8
)
4806 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, PPC::ANDC
);
4807 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16
)
4808 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, PPC::ANDC
);
4809 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32
)
4810 BB
= EmitAtomicBinary(MI
, BB
, false, PPC::ANDC
);
4811 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64
)
4812 BB
= EmitAtomicBinary(MI
, BB
, true, PPC::ANDC8
);
4814 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8
)
4815 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, PPC::SUBF
);
4816 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16
)
4817 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, PPC::SUBF
);
4818 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32
)
4819 BB
= EmitAtomicBinary(MI
, BB
, false, PPC::SUBF
);
4820 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64
)
4821 BB
= EmitAtomicBinary(MI
, BB
, true, PPC::SUBF8
);
4823 else if (MI
->getOpcode() == PPC::ATOMIC_SWAP_I8
)
4824 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, 0);
4825 else if (MI
->getOpcode() == PPC::ATOMIC_SWAP_I16
)
4826 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, 0);
4827 else if (MI
->getOpcode() == PPC::ATOMIC_SWAP_I32
)
4828 BB
= EmitAtomicBinary(MI
, BB
, false, 0);
4829 else if (MI
->getOpcode() == PPC::ATOMIC_SWAP_I64
)
4830 BB
= EmitAtomicBinary(MI
, BB
, true, 0);
4832 else if (MI
->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32
||
4833 MI
->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64
) {
4834 bool is64bit
= MI
->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64
;
4836 unsigned dest
= MI
->getOperand(0).getReg();
4837 unsigned ptrA
= MI
->getOperand(1).getReg();
4838 unsigned ptrB
= MI
->getOperand(2).getReg();
4839 unsigned oldval
= MI
->getOperand(3).getReg();
4840 unsigned newval
= MI
->getOperand(4).getReg();
4841 DebugLoc dl
= MI
->getDebugLoc();
4843 MachineBasicBlock
*loop1MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4844 MachineBasicBlock
*loop2MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4845 MachineBasicBlock
*midMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4846 MachineBasicBlock
*exitMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4847 F
->insert(It
, loop1MBB
);
4848 F
->insert(It
, loop2MBB
);
4849 F
->insert(It
, midMBB
);
4850 F
->insert(It
, exitMBB
);
4851 exitMBB
->splice(exitMBB
->begin(), BB
,
4852 llvm::next(MachineBasicBlock::iterator(MI
)),
4854 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
4858 // fallthrough --> loopMBB
4859 BB
->addSuccessor(loop1MBB
);
4862 // l[wd]arx dest, ptr
4863 // cmp[wd] dest, oldval
4866 // st[wd]cx. newval, ptr
4870 // st[wd]cx. dest, ptr
4873 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::LDARX
: PPC::LWARX
), dest
)
4874 .addReg(ptrA
).addReg(ptrB
);
4875 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::CMPD
: PPC::CMPW
), PPC::CR0
)
4876 .addReg(oldval
).addReg(dest
);
4877 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
4878 .addImm(PPC::PRED_NE
).addReg(PPC::CR0
).addMBB(midMBB
);
4879 BB
->addSuccessor(loop2MBB
);
4880 BB
->addSuccessor(midMBB
);
4883 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::STDCX
: PPC::STWCX
))
4884 .addReg(newval
).addReg(ptrA
).addReg(ptrB
);
4885 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
4886 .addImm(PPC::PRED_NE
).addReg(PPC::CR0
).addMBB(loop1MBB
);
4887 BuildMI(BB
, dl
, TII
->get(PPC::B
)).addMBB(exitMBB
);
4888 BB
->addSuccessor(loop1MBB
);
4889 BB
->addSuccessor(exitMBB
);
4892 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::STDCX
: PPC::STWCX
))
4893 .addReg(dest
).addReg(ptrA
).addReg(ptrB
);
4894 BB
->addSuccessor(exitMBB
);
4899 } else if (MI
->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8
||
4900 MI
->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16
) {
4901 // We must use 64-bit registers for addresses when targeting 64-bit,
4902 // since we're actually doing arithmetic on them. Other registers
4904 bool is64bit
= PPCSubTarget
.isPPC64();
4905 bool is8bit
= MI
->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8
;
4907 unsigned dest
= MI
->getOperand(0).getReg();
4908 unsigned ptrA
= MI
->getOperand(1).getReg();
4909 unsigned ptrB
= MI
->getOperand(2).getReg();
4910 unsigned oldval
= MI
->getOperand(3).getReg();
4911 unsigned newval
= MI
->getOperand(4).getReg();
4912 DebugLoc dl
= MI
->getDebugLoc();
4914 MachineBasicBlock
*loop1MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4915 MachineBasicBlock
*loop2MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4916 MachineBasicBlock
*midMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4917 MachineBasicBlock
*exitMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4918 F
->insert(It
, loop1MBB
);
4919 F
->insert(It
, loop2MBB
);
4920 F
->insert(It
, midMBB
);
4921 F
->insert(It
, exitMBB
);
4922 exitMBB
->splice(exitMBB
->begin(), BB
,
4923 llvm::next(MachineBasicBlock::iterator(MI
)),
4925 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
4927 MachineRegisterInfo
&RegInfo
= F
->getRegInfo();
4928 const TargetRegisterClass
*RC
=
4929 is64bit
? (const TargetRegisterClass
*) &PPC::G8RCRegClass
:
4930 (const TargetRegisterClass
*) &PPC::GPRCRegClass
;
4931 unsigned PtrReg
= RegInfo
.createVirtualRegister(RC
);
4932 unsigned Shift1Reg
= RegInfo
.createVirtualRegister(RC
);
4933 unsigned ShiftReg
= RegInfo
.createVirtualRegister(RC
);
4934 unsigned NewVal2Reg
= RegInfo
.createVirtualRegister(RC
);
4935 unsigned NewVal3Reg
= RegInfo
.createVirtualRegister(RC
);
4936 unsigned OldVal2Reg
= RegInfo
.createVirtualRegister(RC
);
4937 unsigned OldVal3Reg
= RegInfo
.createVirtualRegister(RC
);
4938 unsigned MaskReg
= RegInfo
.createVirtualRegister(RC
);
4939 unsigned Mask2Reg
= RegInfo
.createVirtualRegister(RC
);
4940 unsigned Mask3Reg
= RegInfo
.createVirtualRegister(RC
);
4941 unsigned Tmp2Reg
= RegInfo
.createVirtualRegister(RC
);
4942 unsigned Tmp4Reg
= RegInfo
.createVirtualRegister(RC
);
4943 unsigned TmpDestReg
= RegInfo
.createVirtualRegister(RC
);
4945 unsigned TmpReg
= RegInfo
.createVirtualRegister(RC
);
4948 // fallthrough --> loopMBB
4949 BB
->addSuccessor(loop1MBB
);
4951 // The 4-byte load must be aligned, while a char or short may be
4952 // anywhere in the word. Hence all this nasty bookkeeping code.
4953 // add ptr1, ptrA, ptrB [copy if ptrA==0]
4954 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4955 // xori shift, shift1, 24 [16]
4956 // rlwinm ptr, ptr1, 0, 0, 29
4957 // slw newval2, newval, shift
4958 // slw oldval2, oldval,shift
4959 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4960 // slw mask, mask2, shift
4961 // and newval3, newval2, mask
4962 // and oldval3, oldval2, mask
4964 // lwarx tmpDest, ptr
4965 // and tmp, tmpDest, mask
4966 // cmpw tmp, oldval3
4969 // andc tmp2, tmpDest, mask
4970 // or tmp4, tmp2, newval3
4975 // stwcx. tmpDest, ptr
4977 // srw dest, tmpDest, shift
4978 if (ptrA
!=PPC::R0
) {
4979 Ptr1Reg
= RegInfo
.createVirtualRegister(RC
);
4980 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::ADD8
: PPC::ADD4
), Ptr1Reg
)
4981 .addReg(ptrA
).addReg(ptrB
);
4985 BuildMI(BB
, dl
, TII
->get(PPC::RLWINM
), Shift1Reg
).addReg(Ptr1Reg
)
4986 .addImm(3).addImm(27).addImm(is8bit
? 28 : 27);
4987 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::XORI8
: PPC::XORI
), ShiftReg
)
4988 .addReg(Shift1Reg
).addImm(is8bit
? 24 : 16);
4990 BuildMI(BB
, dl
, TII
->get(PPC::RLDICR
), PtrReg
)
4991 .addReg(Ptr1Reg
).addImm(0).addImm(61);
4993 BuildMI(BB
, dl
, TII
->get(PPC::RLWINM
), PtrReg
)
4994 .addReg(Ptr1Reg
).addImm(0).addImm(0).addImm(29);
4995 BuildMI(BB
, dl
, TII
->get(PPC::SLW
), NewVal2Reg
)
4996 .addReg(newval
).addReg(ShiftReg
);
4997 BuildMI(BB
, dl
, TII
->get(PPC::SLW
), OldVal2Reg
)
4998 .addReg(oldval
).addReg(ShiftReg
);
5000 BuildMI(BB
, dl
, TII
->get(PPC::LI
), Mask2Reg
).addImm(255);
5002 BuildMI(BB
, dl
, TII
->get(PPC::LI
), Mask3Reg
).addImm(0);
5003 BuildMI(BB
, dl
, TII
->get(PPC::ORI
), Mask2Reg
)
5004 .addReg(Mask3Reg
).addImm(65535);
5006 BuildMI(BB
, dl
, TII
->get(PPC::SLW
), MaskReg
)
5007 .addReg(Mask2Reg
).addReg(ShiftReg
);
5008 BuildMI(BB
, dl
, TII
->get(PPC::AND
), NewVal3Reg
)
5009 .addReg(NewVal2Reg
).addReg(MaskReg
);
5010 BuildMI(BB
, dl
, TII
->get(PPC::AND
), OldVal3Reg
)
5011 .addReg(OldVal2Reg
).addReg(MaskReg
);
5014 BuildMI(BB
, dl
, TII
->get(PPC::LWARX
), TmpDestReg
)
5015 .addReg(PPC::R0
).addReg(PtrReg
);
5016 BuildMI(BB
, dl
, TII
->get(PPC::AND
),TmpReg
)
5017 .addReg(TmpDestReg
).addReg(MaskReg
);
5018 BuildMI(BB
, dl
, TII
->get(PPC::CMPW
), PPC::CR0
)
5019 .addReg(TmpReg
).addReg(OldVal3Reg
);
5020 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
5021 .addImm(PPC::PRED_NE
).addReg(PPC::CR0
).addMBB(midMBB
);
5022 BB
->addSuccessor(loop2MBB
);
5023 BB
->addSuccessor(midMBB
);
5026 BuildMI(BB
, dl
, TII
->get(PPC::ANDC
),Tmp2Reg
)
5027 .addReg(TmpDestReg
).addReg(MaskReg
);
5028 BuildMI(BB
, dl
, TII
->get(PPC::OR
),Tmp4Reg
)
5029 .addReg(Tmp2Reg
).addReg(NewVal3Reg
);
5030 BuildMI(BB
, dl
, TII
->get(PPC::STWCX
)).addReg(Tmp4Reg
)
5031 .addReg(PPC::R0
).addReg(PtrReg
);
5032 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
5033 .addImm(PPC::PRED_NE
).addReg(PPC::CR0
).addMBB(loop1MBB
);
5034 BuildMI(BB
, dl
, TII
->get(PPC::B
)).addMBB(exitMBB
);
5035 BB
->addSuccessor(loop1MBB
);
5036 BB
->addSuccessor(exitMBB
);
5039 BuildMI(BB
, dl
, TII
->get(PPC::STWCX
)).addReg(TmpDestReg
)
5040 .addReg(PPC::R0
).addReg(PtrReg
);
5041 BB
->addSuccessor(exitMBB
);
5046 BuildMI(BB
, dl
, TII
->get(PPC::SRW
),dest
).addReg(TmpReg
).addReg(ShiftReg
);
5048 llvm_unreachable("Unexpected instr type to insert");
5051 MI
->eraseFromParent(); // The pseudo instruction is gone now.
5055 //===----------------------------------------------------------------------===//
5056 // Target Optimization Hooks
5057 //===----------------------------------------------------------------------===//
5059 SDValue
PPCTargetLowering::PerformDAGCombine(SDNode
*N
,
5060 DAGCombinerInfo
&DCI
) const {
5061 const TargetMachine
&TM
= getTargetMachine();
5062 SelectionDAG
&DAG
= DCI
.DAG
;
5063 DebugLoc dl
= N
->getDebugLoc();
5064 switch (N
->getOpcode()) {
5067 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(0))) {
5068 if (C
->isNullValue()) // 0 << V -> 0.
5069 return N
->getOperand(0);
5073 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(0))) {
5074 if (C
->isNullValue()) // 0 >>u V -> 0.
5075 return N
->getOperand(0);
5079 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(0))) {
5080 if (C
->isNullValue() || // 0 >>s V -> 0.
5081 C
->isAllOnesValue()) // -1 >>s V -> -1.
5082 return N
->getOperand(0);
5086 case ISD::SINT_TO_FP
:
5087 if (TM
.getSubtarget
<PPCSubtarget
>().has64BitSupport()) {
5088 if (N
->getOperand(0).getOpcode() == ISD::FP_TO_SINT
) {
5089 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
5090 // We allow the src/dst to be either f32/f64, but the intermediate
5091 // type must be i64.
5092 if (N
->getOperand(0).getValueType() == MVT::i64
&&
5093 N
->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128
) {
5094 SDValue Val
= N
->getOperand(0).getOperand(0);
5095 if (Val
.getValueType() == MVT::f32
) {
5096 Val
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Val
);
5097 DCI
.AddToWorklist(Val
.getNode());
5100 Val
= DAG
.getNode(PPCISD::FCTIDZ
, dl
, MVT::f64
, Val
);
5101 DCI
.AddToWorklist(Val
.getNode());
5102 Val
= DAG
.getNode(PPCISD::FCFID
, dl
, MVT::f64
, Val
);
5103 DCI
.AddToWorklist(Val
.getNode());
5104 if (N
->getValueType(0) == MVT::f32
) {
5105 Val
= DAG
.getNode(ISD::FP_ROUND
, dl
, MVT::f32
, Val
,
5106 DAG
.getIntPtrConstant(0));
5107 DCI
.AddToWorklist(Val
.getNode());
5110 } else if (N
->getOperand(0).getValueType() == MVT::i32
) {
5111 // If the intermediate type is i32, we can avoid the load/store here
5118 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
5119 if (TM
.getSubtarget
<PPCSubtarget
>().hasSTFIWX() &&
5120 !cast
<StoreSDNode
>(N
)->isTruncatingStore() &&
5121 N
->getOperand(1).getOpcode() == ISD::FP_TO_SINT
&&
5122 N
->getOperand(1).getValueType() == MVT::i32
&&
5123 N
->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128
) {
5124 SDValue Val
= N
->getOperand(1).getOperand(0);
5125 if (Val
.getValueType() == MVT::f32
) {
5126 Val
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Val
);
5127 DCI
.AddToWorklist(Val
.getNode());
5129 Val
= DAG
.getNode(PPCISD::FCTIWZ
, dl
, MVT::f64
, Val
);
5130 DCI
.AddToWorklist(Val
.getNode());
5132 Val
= DAG
.getNode(PPCISD::STFIWX
, dl
, MVT::Other
, N
->getOperand(0), Val
,
5133 N
->getOperand(2), N
->getOperand(3));
5134 DCI
.AddToWorklist(Val
.getNode());
5138 // Turn STORE (BSWAP) -> sthbrx/stwbrx.
5139 if (cast
<StoreSDNode
>(N
)->isUnindexed() &&
5140 N
->getOperand(1).getOpcode() == ISD::BSWAP
&&
5141 N
->getOperand(1).getNode()->hasOneUse() &&
5142 (N
->getOperand(1).getValueType() == MVT::i32
||
5143 N
->getOperand(1).getValueType() == MVT::i16
)) {
5144 SDValue BSwapOp
= N
->getOperand(1).getOperand(0);
5145 // Do an any-extend to 32-bits if this is a half-word input.
5146 if (BSwapOp
.getValueType() == MVT::i16
)
5147 BSwapOp
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, BSwapOp
);
5150 N
->getOperand(0), BSwapOp
, N
->getOperand(2),
5151 DAG
.getValueType(N
->getOperand(1).getValueType())
5154 DAG
.getMemIntrinsicNode(PPCISD::STBRX
, dl
, DAG
.getVTList(MVT::Other
),
5155 Ops
, array_lengthof(Ops
),
5156 cast
<StoreSDNode
>(N
)->getMemoryVT(),
5157 cast
<StoreSDNode
>(N
)->getMemOperand());
5161 // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
5162 if (ISD::isNON_EXTLoad(N
->getOperand(0).getNode()) &&
5163 N
->getOperand(0).hasOneUse() &&
5164 (N
->getValueType(0) == MVT::i32
|| N
->getValueType(0) == MVT::i16
)) {
5165 SDValue Load
= N
->getOperand(0);
5166 LoadSDNode
*LD
= cast
<LoadSDNode
>(Load
);
5167 // Create the byte-swapping load.
5169 LD
->getChain(), // Chain
5170 LD
->getBasePtr(), // Ptr
5171 DAG
.getValueType(N
->getValueType(0)) // VT
5174 DAG
.getMemIntrinsicNode(PPCISD::LBRX
, dl
,
5175 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
, 3,
5176 LD
->getMemoryVT(), LD
->getMemOperand());
5178 // If this is an i16 load, insert the truncate.
5179 SDValue ResVal
= BSLoad
;
5180 if (N
->getValueType(0) == MVT::i16
)
5181 ResVal
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i16
, BSLoad
);
5183 // First, combine the bswap away. This makes the value produced by the
5185 DCI
.CombineTo(N
, ResVal
);
5187 // Next, combine the load away, we give it a bogus result value but a real
5188 // chain result. The result value is dead because the bswap is dead.
5189 DCI
.CombineTo(Load
.getNode(), ResVal
, BSLoad
.getValue(1));
5191 // Return N so it doesn't get rechecked!
5192 return SDValue(N
, 0);
5196 case PPCISD::VCMP
: {
5197 // If a VCMPo node already exists with exactly the same operands as this
5198 // node, use its result instead of this node (VCMPo computes both a CR6 and
5199 // a normal output).
5201 if (!N
->getOperand(0).hasOneUse() &&
5202 !N
->getOperand(1).hasOneUse() &&
5203 !N
->getOperand(2).hasOneUse()) {
5205 // Scan all of the users of the LHS, looking for VCMPo's that match.
5206 SDNode
*VCMPoNode
= 0;
5208 SDNode
*LHSN
= N
->getOperand(0).getNode();
5209 for (SDNode::use_iterator UI
= LHSN
->use_begin(), E
= LHSN
->use_end();
5211 if (UI
->getOpcode() == PPCISD::VCMPo
&&
5212 UI
->getOperand(1) == N
->getOperand(1) &&
5213 UI
->getOperand(2) == N
->getOperand(2) &&
5214 UI
->getOperand(0) == N
->getOperand(0)) {
5219 // If there is no VCMPo node, or if the flag value has a single use, don't
5221 if (!VCMPoNode
|| VCMPoNode
->hasNUsesOfValue(0, 1))
5224 // Look at the (necessarily single) use of the flag value. If it has a
5225 // chain, this transformation is more complex. Note that multiple things
5226 // could use the value result, which we should ignore.
5227 SDNode
*FlagUser
= 0;
5228 for (SDNode::use_iterator UI
= VCMPoNode
->use_begin();
5229 FlagUser
== 0; ++UI
) {
5230 assert(UI
!= VCMPoNode
->use_end() && "Didn't find user!");
5232 for (unsigned i
= 0, e
= User
->getNumOperands(); i
!= e
; ++i
) {
5233 if (User
->getOperand(i
) == SDValue(VCMPoNode
, 1)) {
5240 // If the user is a MFCR instruction, we know this is safe. Otherwise we
5241 // give up for right now.
5242 if (FlagUser
->getOpcode() == PPCISD::MFCR
)
5243 return SDValue(VCMPoNode
, 0);
5248 // If this is a branch on an altivec predicate comparison, lower this so
5249 // that we don't have to do a MFCR: instead, branch directly on CR6. This
5250 // lowering is done pre-legalize, because the legalizer lowers the predicate
5251 // compare down to code that is difficult to reassemble.
5252 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N
->getOperand(1))->get();
5253 SDValue LHS
= N
->getOperand(2), RHS
= N
->getOperand(3);
5257 if (LHS
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
&&
5258 isa
<ConstantSDNode
>(RHS
) && (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
) &&
5259 getAltivecCompareInfo(LHS
, CompareOpc
, isDot
)) {
5260 assert(isDot
&& "Can't compare against a vector result!");
5262 // If this is a comparison against something other than 0/1, then we know
5263 // that the condition is never/always true.
5264 unsigned Val
= cast
<ConstantSDNode
>(RHS
)->getZExtValue();
5265 if (Val
!= 0 && Val
!= 1) {
5266 if (CC
== ISD::SETEQ
) // Cond never true, remove branch.
5267 return N
->getOperand(0);
5268 // Always !=, turn it into an unconditional branch.
5269 return DAG
.getNode(ISD::BR
, dl
, MVT::Other
,
5270 N
->getOperand(0), N
->getOperand(4));
5273 bool BranchOnWhenPredTrue
= (CC
== ISD::SETEQ
) ^ (Val
== 0);
5275 // Create the PPCISD altivec 'dot' comparison node.
5276 std::vector
<EVT
> VTs
;
5278 LHS
.getOperand(2), // LHS of compare
5279 LHS
.getOperand(3), // RHS of compare
5280 DAG
.getConstant(CompareOpc
, MVT::i32
)
5282 VTs
.push_back(LHS
.getOperand(2).getValueType());
5283 VTs
.push_back(MVT::Flag
);
5284 SDValue CompNode
= DAG
.getNode(PPCISD::VCMPo
, dl
, VTs
, Ops
, 3);
5286 // Unpack the result based on how the target uses it.
5287 PPC::Predicate CompOpc
;
5288 switch (cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue()) {
5289 default: // Can't happen, don't crash on invalid number though.
5290 case 0: // Branch on the value of the EQ bit of CR6.
5291 CompOpc
= BranchOnWhenPredTrue
? PPC::PRED_EQ
: PPC::PRED_NE
;
5293 case 1: // Branch on the inverted value of the EQ bit of CR6.
5294 CompOpc
= BranchOnWhenPredTrue
? PPC::PRED_NE
: PPC::PRED_EQ
;
5296 case 2: // Branch on the value of the LT bit of CR6.
5297 CompOpc
= BranchOnWhenPredTrue
? PPC::PRED_LT
: PPC::PRED_GE
;
5299 case 3: // Branch on the inverted value of the LT bit of CR6.
5300 CompOpc
= BranchOnWhenPredTrue
? PPC::PRED_GE
: PPC::PRED_LT
;
5304 return DAG
.getNode(PPCISD::COND_BRANCH
, dl
, MVT::Other
, N
->getOperand(0),
5305 DAG
.getConstant(CompOpc
, MVT::i32
),
5306 DAG
.getRegister(PPC::CR6
, MVT::i32
),
5307 N
->getOperand(4), CompNode
.getValue(1));
5316 //===----------------------------------------------------------------------===//
5317 // Inline Assembly Support
5318 //===----------------------------------------------------------------------===//
5320 void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op
,
5324 const SelectionDAG
&DAG
,
5325 unsigned Depth
) const {
5326 KnownZero
= KnownOne
= APInt(Mask
.getBitWidth(), 0);
5327 switch (Op
.getOpcode()) {
5329 case PPCISD::LBRX
: {
5330 // lhbrx is known to have the top bits cleared out.
5331 if (cast
<VTSDNode
>(Op
.getOperand(2))->getVT() == MVT::i16
)
5332 KnownZero
= 0xFFFF0000;
5335 case ISD::INTRINSIC_WO_CHAIN
: {
5336 switch (cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue()) {
5338 case Intrinsic::ppc_altivec_vcmpbfp_p
:
5339 case Intrinsic::ppc_altivec_vcmpeqfp_p
:
5340 case Intrinsic::ppc_altivec_vcmpequb_p
:
5341 case Intrinsic::ppc_altivec_vcmpequh_p
:
5342 case Intrinsic::ppc_altivec_vcmpequw_p
:
5343 case Intrinsic::ppc_altivec_vcmpgefp_p
:
5344 case Intrinsic::ppc_altivec_vcmpgtfp_p
:
5345 case Intrinsic::ppc_altivec_vcmpgtsb_p
:
5346 case Intrinsic::ppc_altivec_vcmpgtsh_p
:
5347 case Intrinsic::ppc_altivec_vcmpgtsw_p
:
5348 case Intrinsic::ppc_altivec_vcmpgtub_p
:
5349 case Intrinsic::ppc_altivec_vcmpgtuh_p
:
5350 case Intrinsic::ppc_altivec_vcmpgtuw_p
:
5351 KnownZero
= ~1U; // All bits but the low one are known to be zero.
5359 /// getConstraintType - Given a constraint, return the type of
5360 /// constraint it is for this target.
5361 PPCTargetLowering::ConstraintType
5362 PPCTargetLowering::getConstraintType(const std::string
&Constraint
) const {
5363 if (Constraint
.size() == 1) {
5364 switch (Constraint
[0]) {
5371 return C_RegisterClass
;
5374 return TargetLowering::getConstraintType(Constraint
);
5377 /// Examine constraint type and operand type and determine a weight value.
5378 /// This object must already have been set up with the operand type
5379 /// and the current alternative constraint selected.
5380 TargetLowering::ConstraintWeight
5381 PPCTargetLowering::getSingleConstraintMatchWeight(
5382 AsmOperandInfo
&info
, const char *constraint
) const {
5383 ConstraintWeight weight
= CW_Invalid
;
5384 Value
*CallOperandVal
= info
.CallOperandVal
;
5385 // If we don't have a value, we can't do a match,
5386 // but allow it at the lowest weight.
5387 if (CallOperandVal
== NULL
)
5389 const Type
*type
= CallOperandVal
->getType();
5390 // Look at the constraint type.
5391 switch (*constraint
) {
5393 weight
= TargetLowering::getSingleConstraintMatchWeight(info
, constraint
);
5396 if (type
->isIntegerTy())
5397 weight
= CW_Register
;
5400 if (type
->isFloatTy())
5401 weight
= CW_Register
;
5404 if (type
->isDoubleTy())
5405 weight
= CW_Register
;
5408 if (type
->isVectorTy())
5409 weight
= CW_Register
;
5412 weight
= CW_Register
;
5418 std::pair
<unsigned, const TargetRegisterClass
*>
5419 PPCTargetLowering::getRegForInlineAsmConstraint(const std::string
&Constraint
,
5421 if (Constraint
.size() == 1) {
5422 // GCC RS6000 Constraint Letters
5423 switch (Constraint
[0]) {
5426 if (VT
== MVT::i64
&& PPCSubTarget
.isPPC64())
5427 return std::make_pair(0U, PPC::G8RCRegisterClass
);
5428 return std::make_pair(0U, PPC::GPRCRegisterClass
);
5431 return std::make_pair(0U, PPC::F4RCRegisterClass
);
5432 else if (VT
== MVT::f64
)
5433 return std::make_pair(0U, PPC::F8RCRegisterClass
);
5436 return std::make_pair(0U, PPC::VRRCRegisterClass
);
5438 return std::make_pair(0U, PPC::CRRCRegisterClass
);
5442 return TargetLowering::getRegForInlineAsmConstraint(Constraint
, VT
);
5446 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5447 /// vector. If it is invalid, don't add anything to Ops.
5448 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op
, char Letter
,
5449 std::vector
<SDValue
>&Ops
,
5450 SelectionDAG
&DAG
) const {
5451 SDValue
Result(0,0);
5462 ConstantSDNode
*CST
= dyn_cast
<ConstantSDNode
>(Op
);
5463 if (!CST
) return; // Must be an immediate to match.
5464 unsigned Value
= CST
->getZExtValue();
5466 default: llvm_unreachable("Unknown constraint letter!");
5467 case 'I': // "I" is a signed 16-bit constant.
5468 if ((short)Value
== (int)Value
)
5469 Result
= DAG
.getTargetConstant(Value
, Op
.getValueType());
5471 case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
5472 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
5473 if ((short)Value
== 0)
5474 Result
= DAG
.getTargetConstant(Value
, Op
.getValueType());
5476 case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
5477 if ((Value
>> 16) == 0)
5478 Result
= DAG
.getTargetConstant(Value
, Op
.getValueType());
5480 case 'M': // "M" is a constant that is greater than 31.
5482 Result
= DAG
.getTargetConstant(Value
, Op
.getValueType());
5484 case 'N': // "N" is a positive constant that is an exact power of two.
5485 if ((int)Value
> 0 && isPowerOf2_32(Value
))
5486 Result
= DAG
.getTargetConstant(Value
, Op
.getValueType());
5488 case 'O': // "O" is the constant zero.
5490 Result
= DAG
.getTargetConstant(Value
, Op
.getValueType());
5492 case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
5493 if ((short)-Value
== (int)-Value
)
5494 Result
= DAG
.getTargetConstant(Value
, Op
.getValueType());
5501 if (Result
.getNode()) {
5502 Ops
.push_back(Result
);
5506 // Handle standard constraint letters.
5507 TargetLowering::LowerAsmOperandForConstraint(Op
, Letter
, Ops
, DAG
);
5510 // isLegalAddressingMode - Return true if the addressing mode represented
5511 // by AM is legal for this target, for a load/store of the specified type.
5512 bool PPCTargetLowering::isLegalAddressingMode(const AddrMode
&AM
,
5513 const Type
*Ty
) const {
5514 // FIXME: PPC does not allow r+i addressing modes for vectors!
5516 // PPC allows a sign-extended 16-bit immediate field.
5517 if (AM
.BaseOffs
<= -(1LL << 16) || AM
.BaseOffs
>= (1LL << 16)-1)
5520 // No global is ever allowed as a base.
5524 // PPC only support r+r,
5526 case 0: // "r+i" or just "i", depending on HasBaseReg.
5529 if (AM
.HasBaseReg
&& AM
.BaseOffs
) // "r+r+i" is not allowed.
5531 // Otherwise we have r+r or r+i.
5534 if (AM
.HasBaseReg
|| AM
.BaseOffs
) // 2*r+r or 2*r+i is not allowed.
5536 // Allow 2*r as r+r.
5539 // No other scales are supported.
5546 /// isLegalAddressImmediate - Return true if the integer value can be used
5547 /// as the offset of the target addressing mode for load / store of the
5549 bool PPCTargetLowering::isLegalAddressImmediate(int64_t V
,const Type
*Ty
) const{
5550 // PPC allows a sign-extended 16-bit immediate field.
5551 return (V
> -(1 << 16) && V
< (1 << 16)-1);
5554 bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue
* GV
) const {
5558 SDValue
PPCTargetLowering::LowerRETURNADDR(SDValue Op
,
5559 SelectionDAG
&DAG
) const {
5560 MachineFunction
&MF
= DAG
.getMachineFunction();
5561 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
5562 MFI
->setReturnAddressIsTaken(true);
5564 DebugLoc dl
= Op
.getDebugLoc();
5565 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5567 // Make sure the function does not optimize away the store of the RA to
5569 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
5570 FuncInfo
->setLRStoreRequired();
5571 bool isPPC64
= PPCSubTarget
.isPPC64();
5572 bool isDarwinABI
= PPCSubTarget
.isDarwinABI();
5575 SDValue FrameAddr
= LowerFRAMEADDR(Op
, DAG
);
5578 DAG
.getConstant(PPCFrameInfo::getReturnSaveOffset(isPPC64
, isDarwinABI
),
5579 isPPC64
? MVT::i64
: MVT::i32
);
5580 return DAG
.getLoad(getPointerTy(), dl
, DAG
.getEntryNode(),
5581 DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
5583 MachinePointerInfo(), false, false, 0);
5586 // Just load the return address off the stack.
5587 SDValue RetAddrFI
= getReturnAddrFrameIndex(DAG
);
5588 return DAG
.getLoad(getPointerTy(), dl
, DAG
.getEntryNode(),
5589 RetAddrFI
, MachinePointerInfo(), false, false, 0);
5592 SDValue
PPCTargetLowering::LowerFRAMEADDR(SDValue Op
,
5593 SelectionDAG
&DAG
) const {
5594 DebugLoc dl
= Op
.getDebugLoc();
5595 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5597 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
5598 bool isPPC64
= PtrVT
== MVT::i64
;
5600 MachineFunction
&MF
= DAG
.getMachineFunction();
5601 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
5602 MFI
->setFrameAddressIsTaken(true);
5603 bool is31
= (DisableFramePointerElim(MF
) || MFI
->hasVarSizedObjects()) &&
5604 MFI
->getStackSize() &&
5605 !MF
.getFunction()->hasFnAttr(Attribute::Naked
);
5606 unsigned FrameReg
= isPPC64
? (is31
? PPC::X31
: PPC::X1
) :
5607 (is31
? PPC::R31
: PPC::R1
);
5608 SDValue FrameAddr
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, FrameReg
,
5611 FrameAddr
= DAG
.getLoad(Op
.getValueType(), dl
, DAG
.getEntryNode(),
5612 FrameAddr
, MachinePointerInfo(), false, false, 0);
5617 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
5618 // The PowerPC target isn't yet aware of offsets.
5622 /// getOptimalMemOpType - Returns the target specific optimal type for load
5623 /// and store operations as a result of memset, memcpy, and memmove
5624 /// lowering. If DstAlign is zero that means it's safe to destination
5625 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
5626 /// means there isn't a need to check it against alignment requirement,
5627 /// probably because the source does not need to be loaded. If
5628 /// 'NonScalarIntSafe' is true, that means it's safe to return a
5629 /// non-scalar-integer type, e.g. empty string source, constant, or loaded
5630 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
5631 /// constant so it does not need to be loaded.
5632 /// It returns EVT::Other if the type should be determined using generic
5633 /// target-independent logic.
5634 EVT
PPCTargetLowering::getOptimalMemOpType(uint64_t Size
,
5635 unsigned DstAlign
, unsigned SrcAlign
,
5636 bool NonScalarIntSafe
,
5638 MachineFunction
&MF
) const {
5639 if (this->PPCSubTarget
.isPPC64()) {