Fixed some bugs.
[llvm/zpu.git] / lib / Target / X86 / X86FastISel.cpp
blob75f02177bf9591849bbdd55e45cf1afc28e5a31c
1 //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the X86-specific support for the FastISel class. Much
11 // of the target-specific code is generated by tablegen in the file
12 // X86GenFastISel.inc, which is #included here.
14 //===----------------------------------------------------------------------===//
16 #include "X86.h"
17 #include "X86InstrBuilder.h"
18 #include "X86RegisterInfo.h"
19 #include "X86Subtarget.h"
20 #include "X86TargetMachine.h"
21 #include "llvm/CallingConv.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/Instructions.h"
25 #include "llvm/IntrinsicInst.h"
26 #include "llvm/CodeGen/Analysis.h"
27 #include "llvm/CodeGen/FastISel.h"
28 #include "llvm/CodeGen/FunctionLoweringInfo.h"
29 #include "llvm/CodeGen/MachineConstantPool.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/Support/CallSite.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/GetElementPtrTypeIterator.h"
35 #include "llvm/Target/TargetOptions.h"
36 using namespace llvm;
38 namespace {
40 class X86FastISel : public FastISel {
41 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
42 /// make the right decision when generating code for different targets.
43 const X86Subtarget *Subtarget;
45 /// StackPtr - Register used as the stack pointer.
46 ///
47 unsigned StackPtr;
49 /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
50 /// floating point ops.
51 /// When SSE is available, use it for f32 operations.
52 /// When SSE2 is available, use it for f64 operations.
53 bool X86ScalarSSEf64;
54 bool X86ScalarSSEf32;
56 public:
57 explicit X86FastISel(FunctionLoweringInfo &funcInfo) : FastISel(funcInfo) {
58 Subtarget = &TM.getSubtarget<X86Subtarget>();
59 StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
60 X86ScalarSSEf64 = Subtarget->hasSSE2();
61 X86ScalarSSEf32 = Subtarget->hasSSE1();
64 virtual bool TargetSelectInstruction(const Instruction *I);
66 /// TryToFoldLoad - The specified machine instr operand is a vreg, and that
67 /// vreg is being provided by the specified load instruction. If possible,
68 /// try to fold the load as an operand to the instruction, returning true if
69 /// possible.
70 virtual bool TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
71 const LoadInst *LI);
73 #include "X86GenFastISel.inc"
75 private:
76 bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT);
78 bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, unsigned &RR);
80 bool X86FastEmitStore(EVT VT, const Value *Val,
81 const X86AddressMode &AM);
82 bool X86FastEmitStore(EVT VT, unsigned Val,
83 const X86AddressMode &AM);
85 bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
86 unsigned &ResultReg);
88 bool X86SelectAddress(const Value *V, X86AddressMode &AM);
89 bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
91 bool X86SelectLoad(const Instruction *I);
93 bool X86SelectStore(const Instruction *I);
95 bool X86SelectRet(const Instruction *I);
97 bool X86SelectCmp(const Instruction *I);
99 bool X86SelectZExt(const Instruction *I);
101 bool X86SelectBranch(const Instruction *I);
103 bool X86SelectShift(const Instruction *I);
105 bool X86SelectSelect(const Instruction *I);
107 bool X86SelectTrunc(const Instruction *I);
109 bool X86SelectFPExt(const Instruction *I);
110 bool X86SelectFPTrunc(const Instruction *I);
112 bool X86SelectExtractValue(const Instruction *I);
114 bool X86VisitIntrinsicCall(const IntrinsicInst &I);
115 bool X86SelectCall(const Instruction *I);
117 const X86InstrInfo *getInstrInfo() const {
118 return getTargetMachine()->getInstrInfo();
120 const X86TargetMachine *getTargetMachine() const {
121 return static_cast<const X86TargetMachine *>(&TM);
124 unsigned TargetMaterializeConstant(const Constant *C);
126 unsigned TargetMaterializeAlloca(const AllocaInst *C);
128 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
129 /// computed in an SSE register, not on the X87 floating point stack.
130 bool isScalarFPTypeInSSEReg(EVT VT) const {
131 return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
132 (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
135 bool isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1 = false);
138 } // end anonymous namespace.
140 bool X86FastISel::isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1) {
141 EVT evt = TLI.getValueType(Ty, /*HandleUnknown=*/true);
142 if (evt == MVT::Other || !evt.isSimple())
143 // Unhandled type. Halt "fast" selection and bail.
144 return false;
146 VT = evt.getSimpleVT();
147 // For now, require SSE/SSE2 for performing floating-point operations,
148 // since x87 requires additional work.
149 if (VT == MVT::f64 && !X86ScalarSSEf64)
150 return false;
151 if (VT == MVT::f32 && !X86ScalarSSEf32)
152 return false;
153 // Similarly, no f80 support yet.
154 if (VT == MVT::f80)
155 return false;
156 // We only handle legal types. For example, on x86-32 the instruction
157 // selector contains all of the 64-bit instructions from x86-64,
158 // under the assumption that i64 won't be used if the target doesn't
159 // support it.
160 return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
163 #include "X86GenCallingConv.inc"
165 /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
166 /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
167 /// Return true and the result register by reference if it is possible.
168 bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM,
169 unsigned &ResultReg) {
170 // Get opcode and regclass of the output for the given load instruction.
171 unsigned Opc = 0;
172 const TargetRegisterClass *RC = NULL;
173 switch (VT.getSimpleVT().SimpleTy) {
174 default: return false;
175 case MVT::i1:
176 case MVT::i8:
177 Opc = X86::MOV8rm;
178 RC = X86::GR8RegisterClass;
179 break;
180 case MVT::i16:
181 Opc = X86::MOV16rm;
182 RC = X86::GR16RegisterClass;
183 break;
184 case MVT::i32:
185 Opc = X86::MOV32rm;
186 RC = X86::GR32RegisterClass;
187 break;
188 case MVT::i64:
189 // Must be in x86-64 mode.
190 Opc = X86::MOV64rm;
191 RC = X86::GR64RegisterClass;
192 break;
193 case MVT::f32:
194 if (Subtarget->hasSSE1()) {
195 Opc = X86::MOVSSrm;
196 RC = X86::FR32RegisterClass;
197 } else {
198 Opc = X86::LD_Fp32m;
199 RC = X86::RFP32RegisterClass;
201 break;
202 case MVT::f64:
203 if (Subtarget->hasSSE2()) {
204 Opc = X86::MOVSDrm;
205 RC = X86::FR64RegisterClass;
206 } else {
207 Opc = X86::LD_Fp64m;
208 RC = X86::RFP64RegisterClass;
210 break;
211 case MVT::f80:
212 // No f80 support yet.
213 return false;
216 ResultReg = createResultReg(RC);
217 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
218 DL, TII.get(Opc), ResultReg), AM);
219 return true;
222 /// X86FastEmitStore - Emit a machine instruction to store a value Val of
223 /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
224 /// and a displacement offset, or a GlobalAddress,
225 /// i.e. V. Return true if it is possible.
226 bool
227 X86FastISel::X86FastEmitStore(EVT VT, unsigned Val,
228 const X86AddressMode &AM) {
229 // Get opcode and regclass of the output for the given store instruction.
230 unsigned Opc = 0;
231 switch (VT.getSimpleVT().SimpleTy) {
232 case MVT::f80: // No f80 support yet.
233 default: return false;
234 case MVT::i1: {
235 // Mask out all but lowest bit.
236 unsigned AndResult = createResultReg(X86::GR8RegisterClass);
237 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
238 TII.get(X86::AND8ri), AndResult).addReg(Val).addImm(1);
239 Val = AndResult;
241 // FALLTHROUGH, handling i1 as i8.
242 case MVT::i8: Opc = X86::MOV8mr; break;
243 case MVT::i16: Opc = X86::MOV16mr; break;
244 case MVT::i32: Opc = X86::MOV32mr; break;
245 case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode.
246 case MVT::f32:
247 Opc = Subtarget->hasSSE1() ? X86::MOVSSmr : X86::ST_Fp32m;
248 break;
249 case MVT::f64:
250 Opc = Subtarget->hasSSE2() ? X86::MOVSDmr : X86::ST_Fp64m;
251 break;
254 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
255 DL, TII.get(Opc)), AM).addReg(Val);
256 return true;
259 bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
260 const X86AddressMode &AM) {
261 // Handle 'null' like i32/i64 0.
262 if (isa<ConstantPointerNull>(Val))
263 Val = Constant::getNullValue(TD.getIntPtrType(Val->getContext()));
265 // If this is a store of a simple constant, fold the constant into the store.
266 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
267 unsigned Opc = 0;
268 bool Signed = true;
269 switch (VT.getSimpleVT().SimpleTy) {
270 default: break;
271 case MVT::i1: Signed = false; // FALLTHROUGH to handle as i8.
272 case MVT::i8: Opc = X86::MOV8mi; break;
273 case MVT::i16: Opc = X86::MOV16mi; break;
274 case MVT::i32: Opc = X86::MOV32mi; break;
275 case MVT::i64:
276 // Must be a 32-bit sign extended value.
277 if ((int)CI->getSExtValue() == CI->getSExtValue())
278 Opc = X86::MOV64mi32;
279 break;
282 if (Opc) {
283 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
284 DL, TII.get(Opc)), AM)
285 .addImm(Signed ? (uint64_t) CI->getSExtValue() :
286 CI->getZExtValue());
287 return true;
291 unsigned ValReg = getRegForValue(Val);
292 if (ValReg == 0)
293 return false;
295 return X86FastEmitStore(VT, ValReg, AM);
298 /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
299 /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
300 /// ISD::SIGN_EXTEND).
301 bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
302 unsigned Src, EVT SrcVT,
303 unsigned &ResultReg) {
304 unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
305 Src, /*TODO: Kill=*/false);
307 if (RR != 0) {
308 ResultReg = RR;
309 return true;
310 } else
311 return false;
314 /// X86SelectAddress - Attempt to fill in an address from the given value.
316 bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
317 const User *U = NULL;
318 unsigned Opcode = Instruction::UserOp1;
319 if (const Instruction *I = dyn_cast<Instruction>(V)) {
320 // Don't walk into other basic blocks; it's possible we haven't
321 // visited them yet, so the instructions may not yet be assigned
322 // virtual registers.
323 if (FuncInfo.MBBMap[I->getParent()] != FuncInfo.MBB)
324 return false;
326 Opcode = I->getOpcode();
327 U = I;
328 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
329 Opcode = C->getOpcode();
330 U = C;
333 if (const PointerType *Ty = dyn_cast<PointerType>(V->getType()))
334 if (Ty->getAddressSpace() > 255)
335 // Fast instruction selection doesn't support the special
336 // address spaces.
337 return false;
339 switch (Opcode) {
340 default: break;
341 case Instruction::BitCast:
342 // Look past bitcasts.
343 return X86SelectAddress(U->getOperand(0), AM);
345 case Instruction::IntToPtr:
346 // Look past no-op inttoptrs.
347 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
348 return X86SelectAddress(U->getOperand(0), AM);
349 break;
351 case Instruction::PtrToInt:
352 // Look past no-op ptrtoints.
353 if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
354 return X86SelectAddress(U->getOperand(0), AM);
355 break;
357 case Instruction::Alloca: {
358 // Do static allocas.
359 const AllocaInst *A = cast<AllocaInst>(V);
360 DenseMap<const AllocaInst*, int>::iterator SI =
361 FuncInfo.StaticAllocaMap.find(A);
362 if (SI != FuncInfo.StaticAllocaMap.end()) {
363 AM.BaseType = X86AddressMode::FrameIndexBase;
364 AM.Base.FrameIndex = SI->second;
365 return true;
367 break;
370 case Instruction::Add: {
371 // Adds of constants are common and easy enough.
372 if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
373 uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
374 // They have to fit in the 32-bit signed displacement field though.
375 if (isInt<32>(Disp)) {
376 AM.Disp = (uint32_t)Disp;
377 return X86SelectAddress(U->getOperand(0), AM);
380 break;
383 case Instruction::GetElementPtr: {
384 X86AddressMode SavedAM = AM;
386 // Pattern-match simple GEPs.
387 uint64_t Disp = (int32_t)AM.Disp;
388 unsigned IndexReg = AM.IndexReg;
389 unsigned Scale = AM.Scale;
390 gep_type_iterator GTI = gep_type_begin(U);
391 // Iterate through the indices, folding what we can. Constants can be
392 // folded, and one dynamic index can be handled, if the scale is supported.
393 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
394 i != e; ++i, ++GTI) {
395 const Value *Op = *i;
396 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
397 const StructLayout *SL = TD.getStructLayout(STy);
398 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
399 Disp += SL->getElementOffset(Idx);
400 } else {
401 uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
402 SmallVector<const Value *, 4> Worklist;
403 Worklist.push_back(Op);
404 do {
405 Op = Worklist.pop_back_val();
406 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
407 // Constant-offset addressing.
408 Disp += CI->getSExtValue() * S;
409 } else if (isa<AddOperator>(Op) &&
410 isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
411 // An add with a constant operand. Fold the constant.
412 ConstantInt *CI =
413 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
414 Disp += CI->getSExtValue() * S;
415 // Add the other operand back to the work list.
416 Worklist.push_back(cast<AddOperator>(Op)->getOperand(0));
417 } else if (IndexReg == 0 &&
418 (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
419 (S == 1 || S == 2 || S == 4 || S == 8)) {
420 // Scaled-index addressing.
421 Scale = S;
422 IndexReg = getRegForGEPIndex(Op).first;
423 if (IndexReg == 0)
424 return false;
425 } else
426 // Unsupported.
427 goto unsupported_gep;
428 } while (!Worklist.empty());
431 // Check for displacement overflow.
432 if (!isInt<32>(Disp))
433 break;
434 // Ok, the GEP indices were covered by constant-offset and scaled-index
435 // addressing. Update the address state and move on to examining the base.
436 AM.IndexReg = IndexReg;
437 AM.Scale = Scale;
438 AM.Disp = (uint32_t)Disp;
439 if (X86SelectAddress(U->getOperand(0), AM))
440 return true;
442 // If we couldn't merge the sub value into this addr mode, revert back to
443 // our address and just match the value instead of completely failing.
444 AM = SavedAM;
445 break;
446 unsupported_gep:
447 // Ok, the GEP indices weren't all covered.
448 break;
452 // Handle constant address.
453 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
454 // Can't handle alternate code models yet.
455 if (TM.getCodeModel() != CodeModel::Small)
456 return false;
458 // RIP-relative addresses can't have additional register operands.
459 if (Subtarget->isPICStyleRIPRel() &&
460 (AM.Base.Reg != 0 || AM.IndexReg != 0))
461 return false;
463 // Can't handle TLS yet.
464 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
465 if (GVar->isThreadLocal())
466 return false;
468 // Okay, we've committed to selecting this global. Set up the basic address.
469 AM.GV = GV;
471 // Allow the subtarget to classify the global.
472 unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
474 // If this reference is relative to the pic base, set it now.
475 if (isGlobalRelativeToPICBase(GVFlags)) {
476 // FIXME: How do we know Base.Reg is free??
477 AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
480 // Unless the ABI requires an extra load, return a direct reference to
481 // the global.
482 if (!isGlobalStubReference(GVFlags)) {
483 if (Subtarget->isPICStyleRIPRel()) {
484 // Use rip-relative addressing if we can. Above we verified that the
485 // base and index registers are unused.
486 assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
487 AM.Base.Reg = X86::RIP;
489 AM.GVOpFlags = GVFlags;
490 return true;
493 // Ok, we need to do a load from a stub. If we've already loaded from this
494 // stub, reuse the loaded pointer, otherwise emit the load now.
495 DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V);
496 unsigned LoadReg;
497 if (I != LocalValueMap.end() && I->second != 0) {
498 LoadReg = I->second;
499 } else {
500 // Issue load from stub.
501 unsigned Opc = 0;
502 const TargetRegisterClass *RC = NULL;
503 X86AddressMode StubAM;
504 StubAM.Base.Reg = AM.Base.Reg;
505 StubAM.GV = GV;
506 StubAM.GVOpFlags = GVFlags;
508 // Prepare for inserting code in the local-value area.
509 SavePoint SaveInsertPt = enterLocalValueArea();
511 if (TLI.getPointerTy() == MVT::i64) {
512 Opc = X86::MOV64rm;
513 RC = X86::GR64RegisterClass;
515 if (Subtarget->isPICStyleRIPRel())
516 StubAM.Base.Reg = X86::RIP;
517 } else {
518 Opc = X86::MOV32rm;
519 RC = X86::GR32RegisterClass;
522 LoadReg = createResultReg(RC);
523 MachineInstrBuilder LoadMI =
524 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), LoadReg);
525 addFullAddress(LoadMI, StubAM);
527 // Ok, back to normal mode.
528 leaveLocalValueArea(SaveInsertPt);
530 // Prevent loading GV stub multiple times in same MBB.
531 LocalValueMap[V] = LoadReg;
534 // Now construct the final address. Note that the Disp, Scale,
535 // and Index values may already be set here.
536 AM.Base.Reg = LoadReg;
537 AM.GV = 0;
538 return true;
541 // If all else fails, try to materialize the value in a register.
542 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
543 if (AM.Base.Reg == 0) {
544 AM.Base.Reg = getRegForValue(V);
545 return AM.Base.Reg != 0;
547 if (AM.IndexReg == 0) {
548 assert(AM.Scale == 1 && "Scale with no index!");
549 AM.IndexReg = getRegForValue(V);
550 return AM.IndexReg != 0;
554 return false;
557 /// X86SelectCallAddress - Attempt to fill in an address from the given value.
559 bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
560 const User *U = NULL;
561 unsigned Opcode = Instruction::UserOp1;
562 if (const Instruction *I = dyn_cast<Instruction>(V)) {
563 Opcode = I->getOpcode();
564 U = I;
565 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
566 Opcode = C->getOpcode();
567 U = C;
570 switch (Opcode) {
571 default: break;
572 case Instruction::BitCast:
573 // Look past bitcasts.
574 return X86SelectCallAddress(U->getOperand(0), AM);
576 case Instruction::IntToPtr:
577 // Look past no-op inttoptrs.
578 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
579 return X86SelectCallAddress(U->getOperand(0), AM);
580 break;
582 case Instruction::PtrToInt:
583 // Look past no-op ptrtoints.
584 if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
585 return X86SelectCallAddress(U->getOperand(0), AM);
586 break;
589 // Handle constant address.
590 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
591 // Can't handle alternate code models yet.
592 if (TM.getCodeModel() != CodeModel::Small)
593 return false;
595 // RIP-relative addresses can't have additional register operands.
596 if (Subtarget->isPICStyleRIPRel() &&
597 (AM.Base.Reg != 0 || AM.IndexReg != 0))
598 return false;
600 // Can't handle TLS or DLLImport.
601 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
602 if (GVar->isThreadLocal() || GVar->hasDLLImportLinkage())
603 return false;
605 // Okay, we've committed to selecting this global. Set up the basic address.
606 AM.GV = GV;
608 // No ABI requires an extra load for anything other than DLLImport, which
609 // we rejected above. Return a direct reference to the global.
610 if (Subtarget->isPICStyleRIPRel()) {
611 // Use rip-relative addressing if we can. Above we verified that the
612 // base and index registers are unused.
613 assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
614 AM.Base.Reg = X86::RIP;
615 } else if (Subtarget->isPICStyleStubPIC()) {
616 AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET;
617 } else if (Subtarget->isPICStyleGOT()) {
618 AM.GVOpFlags = X86II::MO_GOTOFF;
621 return true;
624 // If all else fails, try to materialize the value in a register.
625 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
626 if (AM.Base.Reg == 0) {
627 AM.Base.Reg = getRegForValue(V);
628 return AM.Base.Reg != 0;
630 if (AM.IndexReg == 0) {
631 assert(AM.Scale == 1 && "Scale with no index!");
632 AM.IndexReg = getRegForValue(V);
633 return AM.IndexReg != 0;
637 return false;
641 /// X86SelectStore - Select and emit code to implement store instructions.
642 bool X86FastISel::X86SelectStore(const Instruction *I) {
643 MVT VT;
644 if (!isTypeLegal(I->getOperand(0)->getType(), VT, /*AllowI1=*/true))
645 return false;
647 X86AddressMode AM;
648 if (!X86SelectAddress(I->getOperand(1), AM))
649 return false;
651 return X86FastEmitStore(VT, I->getOperand(0), AM);
654 /// X86SelectRet - Select and emit code to implement ret instructions.
655 bool X86FastISel::X86SelectRet(const Instruction *I) {
656 const ReturnInst *Ret = cast<ReturnInst>(I);
657 const Function &F = *I->getParent()->getParent();
659 if (!FuncInfo.CanLowerReturn)
660 return false;
662 CallingConv::ID CC = F.getCallingConv();
663 if (CC != CallingConv::C &&
664 CC != CallingConv::Fast &&
665 CC != CallingConv::X86_FastCall)
666 return false;
668 if (Subtarget->isTargetWin64())
669 return false;
671 // Don't handle popping bytes on return for now.
672 if (FuncInfo.MF->getInfo<X86MachineFunctionInfo>()
673 ->getBytesToPopOnReturn() != 0)
674 return 0;
676 // fastcc with -tailcallopt is intended to provide a guaranteed
677 // tail call optimization. Fastisel doesn't know how to do that.
678 if (CC == CallingConv::Fast && GuaranteedTailCallOpt)
679 return false;
681 // Let SDISel handle vararg functions.
682 if (F.isVarArg())
683 return false;
685 if (Ret->getNumOperands() > 0) {
686 SmallVector<ISD::OutputArg, 4> Outs;
687 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
688 Outs, TLI);
690 // Analyze operands of the call, assigning locations to each operand.
691 SmallVector<CCValAssign, 16> ValLocs;
692 CCState CCInfo(CC, F.isVarArg(), TM, ValLocs, I->getContext());
693 CCInfo.AnalyzeReturn(Outs, RetCC_X86);
695 const Value *RV = Ret->getOperand(0);
696 unsigned Reg = getRegForValue(RV);
697 if (Reg == 0)
698 return false;
700 // Only handle a single return value for now.
701 if (ValLocs.size() != 1)
702 return false;
704 CCValAssign &VA = ValLocs[0];
706 // Don't bother handling odd stuff for now.
707 if (VA.getLocInfo() != CCValAssign::Full)
708 return false;
709 // Only handle register returns for now.
710 if (!VA.isRegLoc())
711 return false;
712 // TODO: For now, don't try to handle cases where getLocInfo()
713 // says Full but the types don't match.
714 if (VA.getValVT() != TLI.getValueType(RV->getType()))
715 return false;
717 // The calling-convention tables for x87 returns don't tell
718 // the whole story.
719 if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
720 return false;
722 // Make the copy.
723 unsigned SrcReg = Reg + VA.getValNo();
724 unsigned DstReg = VA.getLocReg();
725 const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
726 // Avoid a cross-class copy. This is very unlikely.
727 if (!SrcRC->contains(DstReg))
728 return false;
729 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
730 DstReg).addReg(SrcReg);
732 // Mark the register as live out of the function.
733 MRI.addLiveOut(VA.getLocReg());
736 // Now emit the RET.
737 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::RET));
738 return true;
741 /// X86SelectLoad - Select and emit code to implement load instructions.
743 bool X86FastISel::X86SelectLoad(const Instruction *I) {
744 MVT VT;
745 if (!isTypeLegal(I->getType(), VT, /*AllowI1=*/true))
746 return false;
748 X86AddressMode AM;
749 if (!X86SelectAddress(I->getOperand(0), AM))
750 return false;
752 unsigned ResultReg = 0;
753 if (X86FastEmitLoad(VT, AM, ResultReg)) {
754 UpdateValueMap(I, ResultReg);
755 return true;
757 return false;
760 static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
761 switch (VT.getSimpleVT().SimpleTy) {
762 default: return 0;
763 case MVT::i8: return X86::CMP8rr;
764 case MVT::i16: return X86::CMP16rr;
765 case MVT::i32: return X86::CMP32rr;
766 case MVT::i64: return X86::CMP64rr;
767 case MVT::f32: return Subtarget->hasSSE1() ? X86::UCOMISSrr : 0;
768 case MVT::f64: return Subtarget->hasSSE2() ? X86::UCOMISDrr : 0;
772 /// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS
773 /// of the comparison, return an opcode that works for the compare (e.g.
774 /// CMP32ri) otherwise return 0.
775 static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
776 switch (VT.getSimpleVT().SimpleTy) {
777 // Otherwise, we can't fold the immediate into this comparison.
778 default: return 0;
779 case MVT::i8: return X86::CMP8ri;
780 case MVT::i16: return X86::CMP16ri;
781 case MVT::i32: return X86::CMP32ri;
782 case MVT::i64:
783 // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
784 // field.
785 if ((int)RHSC->getSExtValue() == RHSC->getSExtValue())
786 return X86::CMP64ri32;
787 return 0;
791 bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1,
792 EVT VT) {
793 unsigned Op0Reg = getRegForValue(Op0);
794 if (Op0Reg == 0) return false;
796 // Handle 'null' like i32/i64 0.
797 if (isa<ConstantPointerNull>(Op1))
798 Op1 = Constant::getNullValue(TD.getIntPtrType(Op0->getContext()));
800 // We have two options: compare with register or immediate. If the RHS of
801 // the compare is an immediate that we can fold into this compare, use
802 // CMPri, otherwise use CMPrr.
803 if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
804 if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
805 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareImmOpc))
806 .addReg(Op0Reg)
807 .addImm(Op1C->getSExtValue());
808 return true;
812 unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
813 if (CompareOpc == 0) return false;
815 unsigned Op1Reg = getRegForValue(Op1);
816 if (Op1Reg == 0) return false;
817 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareOpc))
818 .addReg(Op0Reg)
819 .addReg(Op1Reg);
821 return true;
824 bool X86FastISel::X86SelectCmp(const Instruction *I) {
825 const CmpInst *CI = cast<CmpInst>(I);
827 MVT VT;
828 if (!isTypeLegal(I->getOperand(0)->getType(), VT))
829 return false;
831 unsigned ResultReg = createResultReg(&X86::GR8RegClass);
832 unsigned SetCCOpc;
833 bool SwapArgs; // false -> compare Op0, Op1. true -> compare Op1, Op0.
834 switch (CI->getPredicate()) {
835 case CmpInst::FCMP_OEQ: {
836 if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
837 return false;
839 unsigned EReg = createResultReg(&X86::GR8RegClass);
840 unsigned NPReg = createResultReg(&X86::GR8RegClass);
841 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETEr), EReg);
842 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
843 TII.get(X86::SETNPr), NPReg);
844 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
845 TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg);
846 UpdateValueMap(I, ResultReg);
847 return true;
849 case CmpInst::FCMP_UNE: {
850 if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
851 return false;
853 unsigned NEReg = createResultReg(&X86::GR8RegClass);
854 unsigned PReg = createResultReg(&X86::GR8RegClass);
855 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
856 TII.get(X86::SETNEr), NEReg);
857 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
858 TII.get(X86::SETPr), PReg);
859 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
860 TII.get(X86::OR8rr), ResultReg)
861 .addReg(PReg).addReg(NEReg);
862 UpdateValueMap(I, ResultReg);
863 return true;
865 case CmpInst::FCMP_OGT: SwapArgs = false; SetCCOpc = X86::SETAr; break;
866 case CmpInst::FCMP_OGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
867 case CmpInst::FCMP_OLT: SwapArgs = true; SetCCOpc = X86::SETAr; break;
868 case CmpInst::FCMP_OLE: SwapArgs = true; SetCCOpc = X86::SETAEr; break;
869 case CmpInst::FCMP_ONE: SwapArgs = false; SetCCOpc = X86::SETNEr; break;
870 case CmpInst::FCMP_ORD: SwapArgs = false; SetCCOpc = X86::SETNPr; break;
871 case CmpInst::FCMP_UNO: SwapArgs = false; SetCCOpc = X86::SETPr; break;
872 case CmpInst::FCMP_UEQ: SwapArgs = false; SetCCOpc = X86::SETEr; break;
873 case CmpInst::FCMP_UGT: SwapArgs = true; SetCCOpc = X86::SETBr; break;
874 case CmpInst::FCMP_UGE: SwapArgs = true; SetCCOpc = X86::SETBEr; break;
875 case CmpInst::FCMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr; break;
876 case CmpInst::FCMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
878 case CmpInst::ICMP_EQ: SwapArgs = false; SetCCOpc = X86::SETEr; break;
879 case CmpInst::ICMP_NE: SwapArgs = false; SetCCOpc = X86::SETNEr; break;
880 case CmpInst::ICMP_UGT: SwapArgs = false; SetCCOpc = X86::SETAr; break;
881 case CmpInst::ICMP_UGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
882 case CmpInst::ICMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr; break;
883 case CmpInst::ICMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
884 case CmpInst::ICMP_SGT: SwapArgs = false; SetCCOpc = X86::SETGr; break;
885 case CmpInst::ICMP_SGE: SwapArgs = false; SetCCOpc = X86::SETGEr; break;
886 case CmpInst::ICMP_SLT: SwapArgs = false; SetCCOpc = X86::SETLr; break;
887 case CmpInst::ICMP_SLE: SwapArgs = false; SetCCOpc = X86::SETLEr; break;
888 default:
889 return false;
892 const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
893 if (SwapArgs)
894 std::swap(Op0, Op1);
896 // Emit a compare of Op0/Op1.
897 if (!X86FastEmitCompare(Op0, Op1, VT))
898 return false;
900 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(SetCCOpc), ResultReg);
901 UpdateValueMap(I, ResultReg);
902 return true;
905 bool X86FastISel::X86SelectZExt(const Instruction *I) {
906 // Handle zero-extension from i1 to i8, which is common.
907 if (I->getType()->isIntegerTy(8) &&
908 I->getOperand(0)->getType()->isIntegerTy(1)) {
909 unsigned ResultReg = getRegForValue(I->getOperand(0));
910 if (ResultReg == 0) return false;
911 // Set the high bits to zero.
912 ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
913 if (ResultReg == 0) return false;
914 UpdateValueMap(I, ResultReg);
915 return true;
918 return false;
922 bool X86FastISel::X86SelectBranch(const Instruction *I) {
923 // Unconditional branches are selected by tablegen-generated code.
924 // Handle a conditional branch.
925 const BranchInst *BI = cast<BranchInst>(I);
926 MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
927 MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
929 // Fold the common case of a conditional branch with a comparison
930 // in the same block (values defined on other blocks may not have
931 // initialized registers).
932 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
933 if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
934 EVT VT = TLI.getValueType(CI->getOperand(0)->getType());
936 // Try to take advantage of fallthrough opportunities.
937 CmpInst::Predicate Predicate = CI->getPredicate();
938 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
939 std::swap(TrueMBB, FalseMBB);
940 Predicate = CmpInst::getInversePredicate(Predicate);
943 bool SwapArgs; // false -> compare Op0, Op1. true -> compare Op1, Op0.
944 unsigned BranchOpc; // Opcode to jump on, e.g. "X86::JA"
946 switch (Predicate) {
947 case CmpInst::FCMP_OEQ:
948 std::swap(TrueMBB, FalseMBB);
949 Predicate = CmpInst::FCMP_UNE;
950 // FALL THROUGH
951 case CmpInst::FCMP_UNE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
952 case CmpInst::FCMP_OGT: SwapArgs = false; BranchOpc = X86::JA_4; break;
953 case CmpInst::FCMP_OGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
954 case CmpInst::FCMP_OLT: SwapArgs = true; BranchOpc = X86::JA_4; break;
955 case CmpInst::FCMP_OLE: SwapArgs = true; BranchOpc = X86::JAE_4; break;
956 case CmpInst::FCMP_ONE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
957 case CmpInst::FCMP_ORD: SwapArgs = false; BranchOpc = X86::JNP_4; break;
958 case CmpInst::FCMP_UNO: SwapArgs = false; BranchOpc = X86::JP_4; break;
959 case CmpInst::FCMP_UEQ: SwapArgs = false; BranchOpc = X86::JE_4; break;
960 case CmpInst::FCMP_UGT: SwapArgs = true; BranchOpc = X86::JB_4; break;
961 case CmpInst::FCMP_UGE: SwapArgs = true; BranchOpc = X86::JBE_4; break;
962 case CmpInst::FCMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4; break;
963 case CmpInst::FCMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
965 case CmpInst::ICMP_EQ: SwapArgs = false; BranchOpc = X86::JE_4; break;
966 case CmpInst::ICMP_NE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
967 case CmpInst::ICMP_UGT: SwapArgs = false; BranchOpc = X86::JA_4; break;
968 case CmpInst::ICMP_UGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
969 case CmpInst::ICMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4; break;
970 case CmpInst::ICMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
971 case CmpInst::ICMP_SGT: SwapArgs = false; BranchOpc = X86::JG_4; break;
972 case CmpInst::ICMP_SGE: SwapArgs = false; BranchOpc = X86::JGE_4; break;
973 case CmpInst::ICMP_SLT: SwapArgs = false; BranchOpc = X86::JL_4; break;
974 case CmpInst::ICMP_SLE: SwapArgs = false; BranchOpc = X86::JLE_4; break;
975 default:
976 return false;
979 const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
980 if (SwapArgs)
981 std::swap(Op0, Op1);
983 // Emit a compare of the LHS and RHS, setting the flags.
984 if (!X86FastEmitCompare(Op0, Op1, VT))
985 return false;
987 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BranchOpc))
988 .addMBB(TrueMBB);
990 if (Predicate == CmpInst::FCMP_UNE) {
991 // X86 requires a second branch to handle UNE (and OEQ,
992 // which is mapped to UNE above).
993 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JP_4))
994 .addMBB(TrueMBB);
997 FastEmitBranch(FalseMBB, DL);
998 FuncInfo.MBB->addSuccessor(TrueMBB);
999 return true;
1001 } else if (ExtractValueInst *EI =
1002 dyn_cast<ExtractValueInst>(BI->getCondition())) {
1003 // Check to see if the branch instruction is from an "arithmetic with
1004 // overflow" intrinsic. The main way these intrinsics are used is:
1006 // %t = call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %v1, i32 %v2)
1007 // %sum = extractvalue { i32, i1 } %t, 0
1008 // %obit = extractvalue { i32, i1 } %t, 1
1009 // br i1 %obit, label %overflow, label %normal
1011 // The %sum and %obit are converted in an ADD and a SETO/SETB before
1012 // reaching the branch. Therefore, we search backwards through the MBB
1013 // looking for the SETO/SETB instruction. If an instruction modifies the
1014 // EFLAGS register before we reach the SETO/SETB instruction, then we can't
1015 // convert the branch into a JO/JB instruction.
1016 if (const IntrinsicInst *CI =
1017 dyn_cast<IntrinsicInst>(EI->getAggregateOperand())){
1018 if (CI->getIntrinsicID() == Intrinsic::sadd_with_overflow ||
1019 CI->getIntrinsicID() == Intrinsic::uadd_with_overflow) {
1020 const MachineInstr *SetMI = 0;
1021 unsigned Reg = getRegForValue(EI);
1023 for (MachineBasicBlock::const_reverse_iterator
1024 RI = FuncInfo.MBB->rbegin(), RE = FuncInfo.MBB->rend();
1025 RI != RE; ++RI) {
1026 const MachineInstr &MI = *RI;
1028 if (MI.definesRegister(Reg)) {
1029 if (MI.isCopy()) {
1030 Reg = MI.getOperand(1).getReg();
1031 continue;
1034 SetMI = &MI;
1035 break;
1038 const TargetInstrDesc &TID = MI.getDesc();
1039 if (TID.hasUnmodeledSideEffects() ||
1040 TID.hasImplicitDefOfPhysReg(X86::EFLAGS))
1041 break;
1044 if (SetMI) {
1045 unsigned OpCode = SetMI->getOpcode();
1047 if (OpCode == X86::SETOr || OpCode == X86::SETBr) {
1048 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1049 TII.get(OpCode == X86::SETOr ? X86::JO_4 : X86::JB_4))
1050 .addMBB(TrueMBB);
1051 FastEmitBranch(FalseMBB, DL);
1052 FuncInfo.MBB->addSuccessor(TrueMBB);
1053 return true;
1060 // Otherwise do a clumsy setcc and re-test it.
1061 unsigned OpReg = getRegForValue(BI->getCondition());
1062 if (OpReg == 0) return false;
1064 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8rr))
1065 .addReg(OpReg).addReg(OpReg);
1066 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JNE_4))
1067 .addMBB(TrueMBB);
1068 FastEmitBranch(FalseMBB, DL);
1069 FuncInfo.MBB->addSuccessor(TrueMBB);
1070 return true;
1073 bool X86FastISel::X86SelectShift(const Instruction *I) {
1074 unsigned CReg = 0, OpReg = 0, OpImm = 0;
1075 const TargetRegisterClass *RC = NULL;
1076 if (I->getType()->isIntegerTy(8)) {
1077 CReg = X86::CL;
1078 RC = &X86::GR8RegClass;
1079 switch (I->getOpcode()) {
1080 case Instruction::LShr: OpReg = X86::SHR8rCL; OpImm = X86::SHR8ri; break;
1081 case Instruction::AShr: OpReg = X86::SAR8rCL; OpImm = X86::SAR8ri; break;
1082 case Instruction::Shl: OpReg = X86::SHL8rCL; OpImm = X86::SHL8ri; break;
1083 default: return false;
1085 } else if (I->getType()->isIntegerTy(16)) {
1086 CReg = X86::CX;
1087 RC = &X86::GR16RegClass;
1088 switch (I->getOpcode()) {
1089 case Instruction::LShr: OpReg = X86::SHR16rCL; OpImm = X86::SHR16ri; break;
1090 case Instruction::AShr: OpReg = X86::SAR16rCL; OpImm = X86::SAR16ri; break;
1091 case Instruction::Shl: OpReg = X86::SHL16rCL; OpImm = X86::SHL16ri; break;
1092 default: return false;
1094 } else if (I->getType()->isIntegerTy(32)) {
1095 CReg = X86::ECX;
1096 RC = &X86::GR32RegClass;
1097 switch (I->getOpcode()) {
1098 case Instruction::LShr: OpReg = X86::SHR32rCL; OpImm = X86::SHR32ri; break;
1099 case Instruction::AShr: OpReg = X86::SAR32rCL; OpImm = X86::SAR32ri; break;
1100 case Instruction::Shl: OpReg = X86::SHL32rCL; OpImm = X86::SHL32ri; break;
1101 default: return false;
1103 } else if (I->getType()->isIntegerTy(64)) {
1104 CReg = X86::RCX;
1105 RC = &X86::GR64RegClass;
1106 switch (I->getOpcode()) {
1107 case Instruction::LShr: OpReg = X86::SHR64rCL; OpImm = X86::SHR64ri; break;
1108 case Instruction::AShr: OpReg = X86::SAR64rCL; OpImm = X86::SAR64ri; break;
1109 case Instruction::Shl: OpReg = X86::SHL64rCL; OpImm = X86::SHL64ri; break;
1110 default: return false;
1112 } else {
1113 return false;
1116 MVT VT;
1117 if (!isTypeLegal(I->getType(), VT))
1118 return false;
1120 unsigned Op0Reg = getRegForValue(I->getOperand(0));
1121 if (Op0Reg == 0) return false;
1123 // Fold immediate in shl(x,3).
1124 if (const ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
1125 unsigned ResultReg = createResultReg(RC);
1126 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpImm),
1127 ResultReg).addReg(Op0Reg).addImm(CI->getZExtValue() & 0xff);
1128 UpdateValueMap(I, ResultReg);
1129 return true;
1132 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1133 if (Op1Reg == 0) return false;
1134 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1135 CReg).addReg(Op1Reg);
1137 // The shift instruction uses X86::CL. If we defined a super-register
1138 // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
1139 if (CReg != X86::CL)
1140 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1141 TII.get(TargetOpcode::KILL), X86::CL)
1142 .addReg(CReg, RegState::Kill);
1144 unsigned ResultReg = createResultReg(RC);
1145 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpReg), ResultReg)
1146 .addReg(Op0Reg);
1147 UpdateValueMap(I, ResultReg);
1148 return true;
1151 bool X86FastISel::X86SelectSelect(const Instruction *I) {
1152 MVT VT;
1153 if (!isTypeLegal(I->getType(), VT))
1154 return false;
1156 // We only use cmov here, if we don't have a cmov instruction bail.
1157 if (!Subtarget->hasCMov()) return false;
1159 unsigned Opc = 0;
1160 const TargetRegisterClass *RC = NULL;
1161 if (VT == MVT::i16) {
1162 Opc = X86::CMOVE16rr;
1163 RC = &X86::GR16RegClass;
1164 } else if (VT == MVT::i32) {
1165 Opc = X86::CMOVE32rr;
1166 RC = &X86::GR32RegClass;
1167 } else if (VT == MVT::i64) {
1168 Opc = X86::CMOVE64rr;
1169 RC = &X86::GR64RegClass;
1170 } else {
1171 return false;
1174 unsigned Op0Reg = getRegForValue(I->getOperand(0));
1175 if (Op0Reg == 0) return false;
1176 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1177 if (Op1Reg == 0) return false;
1178 unsigned Op2Reg = getRegForValue(I->getOperand(2));
1179 if (Op2Reg == 0) return false;
1181 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8rr))
1182 .addReg(Op0Reg).addReg(Op0Reg);
1183 unsigned ResultReg = createResultReg(RC);
1184 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
1185 .addReg(Op1Reg).addReg(Op2Reg);
1186 UpdateValueMap(I, ResultReg);
1187 return true;
1190 bool X86FastISel::X86SelectFPExt(const Instruction *I) {
1191 // fpext from float to double.
1192 if (Subtarget->hasSSE2() &&
1193 I->getType()->isDoubleTy()) {
1194 const Value *V = I->getOperand(0);
1195 if (V->getType()->isFloatTy()) {
1196 unsigned OpReg = getRegForValue(V);
1197 if (OpReg == 0) return false;
1198 unsigned ResultReg = createResultReg(X86::FR64RegisterClass);
1199 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1200 TII.get(X86::CVTSS2SDrr), ResultReg)
1201 .addReg(OpReg);
1202 UpdateValueMap(I, ResultReg);
1203 return true;
1207 return false;
1210 bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
1211 if (Subtarget->hasSSE2()) {
1212 if (I->getType()->isFloatTy()) {
1213 const Value *V = I->getOperand(0);
1214 if (V->getType()->isDoubleTy()) {
1215 unsigned OpReg = getRegForValue(V);
1216 if (OpReg == 0) return false;
1217 unsigned ResultReg = createResultReg(X86::FR32RegisterClass);
1218 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1219 TII.get(X86::CVTSD2SSrr), ResultReg)
1220 .addReg(OpReg);
1221 UpdateValueMap(I, ResultReg);
1222 return true;
1227 return false;
1230 bool X86FastISel::X86SelectTrunc(const Instruction *I) {
1231 if (Subtarget->is64Bit())
1232 // All other cases should be handled by the tblgen generated code.
1233 return false;
1234 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1235 EVT DstVT = TLI.getValueType(I->getType());
1237 // This code only handles truncation to byte right now.
1238 if (DstVT != MVT::i8 && DstVT != MVT::i1)
1239 // All other cases should be handled by the tblgen generated code.
1240 return false;
1241 if (SrcVT != MVT::i16 && SrcVT != MVT::i32)
1242 // All other cases should be handled by the tblgen generated code.
1243 return false;
1245 unsigned InputReg = getRegForValue(I->getOperand(0));
1246 if (!InputReg)
1247 // Unhandled operand. Halt "fast" selection and bail.
1248 return false;
1250 // First issue a copy to GR16_ABCD or GR32_ABCD.
1251 const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16)
1252 ? X86::GR16_ABCDRegisterClass : X86::GR32_ABCDRegisterClass;
1253 unsigned CopyReg = createResultReg(CopyRC);
1254 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1255 CopyReg).addReg(InputReg);
1257 // Then issue an extract_subreg.
1258 unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8,
1259 CopyReg, /*Kill=*/true,
1260 X86::sub_8bit);
1261 if (!ResultReg)
1262 return false;
1264 UpdateValueMap(I, ResultReg);
1265 return true;
1268 bool X86FastISel::X86SelectExtractValue(const Instruction *I) {
1269 const ExtractValueInst *EI = cast<ExtractValueInst>(I);
1270 const Value *Agg = EI->getAggregateOperand();
1272 if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(Agg)) {
1273 switch (CI->getIntrinsicID()) {
1274 default: break;
1275 case Intrinsic::sadd_with_overflow:
1276 case Intrinsic::uadd_with_overflow: {
1277 // Cheat a little. We know that the registers for "add" and "seto" are
1278 // allocated sequentially. However, we only keep track of the register
1279 // for "add" in the value map. Use extractvalue's index to get the
1280 // correct register for "seto".
1281 unsigned OpReg = getRegForValue(Agg);
1282 if (OpReg == 0)
1283 return false;
1284 UpdateValueMap(I, OpReg + *EI->idx_begin());
1285 return true;
1290 return false;
1293 bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) {
1294 // FIXME: Handle more intrinsics.
1295 switch (I.getIntrinsicID()) {
1296 default: return false;
1297 case Intrinsic::stackprotector: {
1298 // Emit code inline code to store the stack guard onto the stack.
1299 EVT PtrTy = TLI.getPointerTy();
1301 const Value *Op1 = I.getArgOperand(0); // The guard's value.
1302 const AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
1304 // Grab the frame index.
1305 X86AddressMode AM;
1306 if (!X86SelectAddress(Slot, AM)) return false;
1308 if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
1310 return true;
1312 case Intrinsic::objectsize: {
1313 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
1314 const Type *Ty = I.getCalledFunction()->getReturnType();
1316 assert(CI && "Non-constant type in Intrinsic::objectsize?");
1318 MVT VT;
1319 if (!isTypeLegal(Ty, VT))
1320 return false;
1322 unsigned OpC = 0;
1323 if (VT == MVT::i32)
1324 OpC = X86::MOV32ri;
1325 else if (VT == MVT::i64)
1326 OpC = X86::MOV64ri;
1327 else
1328 return false;
1330 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1331 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpC), ResultReg).
1332 addImm(CI->isZero() ? -1ULL : 0);
1333 UpdateValueMap(&I, ResultReg);
1334 return true;
1336 case Intrinsic::dbg_declare: {
1337 const DbgDeclareInst *DI = cast<DbgDeclareInst>(&I);
1338 X86AddressMode AM;
1339 assert(DI->getAddress() && "Null address should be checked earlier!");
1340 if (!X86SelectAddress(DI->getAddress(), AM))
1341 return false;
1342 const TargetInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1343 // FIXME may need to add RegState::Debug to any registers produced,
1344 // although ESP/EBP should be the only ones at the moment.
1345 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II), AM).
1346 addImm(0).addMetadata(DI->getVariable());
1347 return true;
1349 case Intrinsic::trap: {
1350 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TRAP));
1351 return true;
1353 case Intrinsic::sadd_with_overflow:
1354 case Intrinsic::uadd_with_overflow: {
1355 // Replace "add with overflow" intrinsics with an "add" instruction followed
1356 // by a seto/setc instruction. Later on, when the "extractvalue"
1357 // instructions are encountered, we use the fact that two registers were
1358 // created sequentially to get the correct registers for the "sum" and the
1359 // "overflow bit".
1360 const Function *Callee = I.getCalledFunction();
1361 const Type *RetTy =
1362 cast<StructType>(Callee->getReturnType())->getTypeAtIndex(unsigned(0));
1364 MVT VT;
1365 if (!isTypeLegal(RetTy, VT))
1366 return false;
1368 const Value *Op1 = I.getArgOperand(0);
1369 const Value *Op2 = I.getArgOperand(1);
1370 unsigned Reg1 = getRegForValue(Op1);
1371 unsigned Reg2 = getRegForValue(Op2);
1373 if (Reg1 == 0 || Reg2 == 0)
1374 // FIXME: Handle values *not* in registers.
1375 return false;
1377 unsigned OpC = 0;
1378 if (VT == MVT::i32)
1379 OpC = X86::ADD32rr;
1380 else if (VT == MVT::i64)
1381 OpC = X86::ADD64rr;
1382 else
1383 return false;
1385 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1386 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpC), ResultReg)
1387 .addReg(Reg1).addReg(Reg2);
1388 unsigned DestReg1 = UpdateValueMap(&I, ResultReg);
1390 // If the add with overflow is an intra-block value then we just want to
1391 // create temporaries for it like normal. If it is a cross-block value then
1392 // UpdateValueMap will return the cross-block register used. Since we
1393 // *really* want the value to be live in the register pair known by
1394 // UpdateValueMap, we have to use DestReg1+1 as the destination register in
1395 // the cross block case. In the non-cross-block case, we should just make
1396 // another register for the value.
1397 if (DestReg1 != ResultReg)
1398 ResultReg = DestReg1+1;
1399 else
1400 ResultReg = createResultReg(TLI.getRegClassFor(MVT::i8));
1402 unsigned Opc = X86::SETBr;
1403 if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow)
1404 Opc = X86::SETOr;
1405 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg);
1406 return true;
1411 bool X86FastISel::X86SelectCall(const Instruction *I) {
1412 const CallInst *CI = cast<CallInst>(I);
1413 const Value *Callee = CI->getCalledValue();
1415 // Can't handle inline asm yet.
1416 if (isa<InlineAsm>(Callee))
1417 return false;
1419 // Handle intrinsic calls.
1420 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI))
1421 return X86VisitIntrinsicCall(*II);
1423 // Handle only C and fastcc calling conventions for now.
1424 ImmutableCallSite CS(CI);
1425 CallingConv::ID CC = CS.getCallingConv();
1426 if (CC != CallingConv::C &&
1427 CC != CallingConv::Fast &&
1428 CC != CallingConv::X86_FastCall)
1429 return false;
1431 // fastcc with -tailcallopt is intended to provide a guaranteed
1432 // tail call optimization. Fastisel doesn't know how to do that.
1433 if (CC == CallingConv::Fast && GuaranteedTailCallOpt)
1434 return false;
1436 // Let SDISel handle vararg functions.
1437 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1438 const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1439 if (FTy->isVarArg())
1440 return false;
1442 // Fast-isel doesn't know about callee-pop yet.
1443 if (Subtarget->IsCalleePop(FTy->isVarArg(), CC))
1444 return false;
1446 // Handle *simple* calls for now.
1447 const Type *RetTy = CS.getType();
1448 MVT RetVT;
1449 if (RetTy->isVoidTy())
1450 RetVT = MVT::isVoid;
1451 else if (!isTypeLegal(RetTy, RetVT, true))
1452 return false;
1454 // Materialize callee address in a register. FIXME: GV address can be
1455 // handled with a CALLpcrel32 instead.
1456 X86AddressMode CalleeAM;
1457 if (!X86SelectCallAddress(Callee, CalleeAM))
1458 return false;
1459 unsigned CalleeOp = 0;
1460 const GlobalValue *GV = 0;
1461 if (CalleeAM.GV != 0) {
1462 GV = CalleeAM.GV;
1463 } else if (CalleeAM.Base.Reg != 0) {
1464 CalleeOp = CalleeAM.Base.Reg;
1465 } else
1466 return false;
1468 // Allow calls which produce i1 results.
1469 bool AndToI1 = false;
1470 if (RetVT == MVT::i1) {
1471 RetVT = MVT::i8;
1472 AndToI1 = true;
1475 // Deal with call operands first.
1476 SmallVector<const Value *, 8> ArgVals;
1477 SmallVector<unsigned, 8> Args;
1478 SmallVector<MVT, 8> ArgVTs;
1479 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1480 Args.reserve(CS.arg_size());
1481 ArgVals.reserve(CS.arg_size());
1482 ArgVTs.reserve(CS.arg_size());
1483 ArgFlags.reserve(CS.arg_size());
1484 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1485 i != e; ++i) {
1486 unsigned Arg = getRegForValue(*i);
1487 if (Arg == 0)
1488 return false;
1489 ISD::ArgFlagsTy Flags;
1490 unsigned AttrInd = i - CS.arg_begin() + 1;
1491 if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1492 Flags.setSExt();
1493 if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1494 Flags.setZExt();
1496 // FIXME: Only handle *easy* calls for now.
1497 if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1498 CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1499 CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1500 CS.paramHasAttr(AttrInd, Attribute::ByVal))
1501 return false;
1503 const Type *ArgTy = (*i)->getType();
1504 MVT ArgVT;
1505 if (!isTypeLegal(ArgTy, ArgVT))
1506 return false;
1507 unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1508 Flags.setOrigAlign(OriginalAlignment);
1510 Args.push_back(Arg);
1511 ArgVals.push_back(*i);
1512 ArgVTs.push_back(ArgVT);
1513 ArgFlags.push_back(Flags);
1516 // Analyze operands of the call, assigning locations to each operand.
1517 SmallVector<CCValAssign, 16> ArgLocs;
1518 CCState CCInfo(CC, false, TM, ArgLocs, I->getParent()->getContext());
1520 // Allocate shadow area for Win64
1521 if (Subtarget->isTargetWin64()) {
1522 CCInfo.AllocateStack(32, 8);
1525 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_X86);
1527 // Get a count of how many bytes are to be pushed on the stack.
1528 unsigned NumBytes = CCInfo.getNextStackOffset();
1530 // Issue CALLSEQ_START
1531 unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode();
1532 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackDown))
1533 .addImm(NumBytes);
1535 // Process argument: walk the register/memloc assignments, inserting
1536 // copies / loads.
1537 SmallVector<unsigned, 4> RegArgs;
1538 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1539 CCValAssign &VA = ArgLocs[i];
1540 unsigned Arg = Args[VA.getValNo()];
1541 EVT ArgVT = ArgVTs[VA.getValNo()];
1543 // Promote the value if needed.
1544 switch (VA.getLocInfo()) {
1545 default: llvm_unreachable("Unknown loc info!");
1546 case CCValAssign::Full: break;
1547 case CCValAssign::SExt: {
1548 bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1549 Arg, ArgVT, Arg);
1550 assert(Emitted && "Failed to emit a sext!"); Emitted=Emitted;
1551 Emitted = true;
1552 ArgVT = VA.getLocVT();
1553 break;
1555 case CCValAssign::ZExt: {
1556 bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1557 Arg, ArgVT, Arg);
1558 assert(Emitted && "Failed to emit a zext!"); Emitted=Emitted;
1559 Emitted = true;
1560 ArgVT = VA.getLocVT();
1561 break;
1563 case CCValAssign::AExt: {
1564 // We don't handle MMX parameters yet.
1565 if (VA.getLocVT().isVector() && VA.getLocVT().getSizeInBits() == 128)
1566 return false;
1567 bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
1568 Arg, ArgVT, Arg);
1569 if (!Emitted)
1570 Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1571 Arg, ArgVT, Arg);
1572 if (!Emitted)
1573 Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1574 Arg, ArgVT, Arg);
1576 assert(Emitted && "Failed to emit a aext!"); Emitted=Emitted;
1577 ArgVT = VA.getLocVT();
1578 break;
1580 case CCValAssign::BCvt: {
1581 unsigned BC = FastEmit_r(ArgVT.getSimpleVT(), VA.getLocVT(),
1582 ISD::BIT_CONVERT, Arg, /*TODO: Kill=*/false);
1583 assert(BC != 0 && "Failed to emit a bitcast!");
1584 Arg = BC;
1585 ArgVT = VA.getLocVT();
1586 break;
1590 if (VA.isRegLoc()) {
1591 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1592 VA.getLocReg()).addReg(Arg);
1593 RegArgs.push_back(VA.getLocReg());
1594 } else {
1595 unsigned LocMemOffset = VA.getLocMemOffset();
1596 X86AddressMode AM;
1597 AM.Base.Reg = StackPtr;
1598 AM.Disp = LocMemOffset;
1599 const Value *ArgVal = ArgVals[VA.getValNo()];
1601 // If this is a really simple value, emit this with the Value* version of
1602 // X86FastEmitStore. If it isn't simple, we don't want to do this, as it
1603 // can cause us to reevaluate the argument.
1604 if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal))
1605 X86FastEmitStore(ArgVT, ArgVal, AM);
1606 else
1607 X86FastEmitStore(ArgVT, Arg, AM);
1611 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1612 // GOT pointer.
1613 if (Subtarget->isPICStyleGOT()) {
1614 unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
1615 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1616 X86::EBX).addReg(Base);
1619 // Issue the call.
1620 MachineInstrBuilder MIB;
1621 if (CalleeOp) {
1622 // Register-indirect call.
1623 unsigned CallOpc;
1624 if (Subtarget->isTargetWin64())
1625 CallOpc = X86::WINCALL64r;
1626 else if (Subtarget->is64Bit())
1627 CallOpc = X86::CALL64r;
1628 else
1629 CallOpc = X86::CALL32r;
1630 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
1631 .addReg(CalleeOp);
1633 } else {
1634 // Direct call.
1635 assert(GV && "Not a direct call");
1636 unsigned CallOpc;
1637 if (Subtarget->isTargetWin64())
1638 CallOpc = X86::WINCALL64pcrel32;
1639 else if (Subtarget->is64Bit())
1640 CallOpc = X86::CALL64pcrel32;
1641 else
1642 CallOpc = X86::CALLpcrel32;
1644 // See if we need any target-specific flags on the GV operand.
1645 unsigned char OpFlags = 0;
1647 // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
1648 // external symbols most go through the PLT in PIC mode. If the symbol
1649 // has hidden or protected visibility, or if it is static or local, then
1650 // we don't need to use the PLT - we can directly call it.
1651 if (Subtarget->isTargetELF() &&
1652 TM.getRelocationModel() == Reloc::PIC_ &&
1653 GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
1654 OpFlags = X86II::MO_PLT;
1655 } else if (Subtarget->isPICStyleStubAny() &&
1656 (GV->isDeclaration() || GV->isWeakForLinker()) &&
1657 Subtarget->getDarwinVers() < 9) {
1658 // PC-relative references to external symbols should go through $stub,
1659 // unless we're building with the leopard linker or later, which
1660 // automatically synthesizes these stubs.
1661 OpFlags = X86II::MO_DARWIN_STUB;
1665 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
1666 .addGlobalAddress(GV, 0, OpFlags);
1669 // Add an implicit use GOT pointer in EBX.
1670 if (Subtarget->isPICStyleGOT())
1671 MIB.addReg(X86::EBX);
1673 // Add implicit physical register uses to the call.
1674 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1675 MIB.addReg(RegArgs[i]);
1677 // Issue CALLSEQ_END
1678 unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode();
1679 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackUp))
1680 .addImm(NumBytes).addImm(0);
1682 // Now handle call return value (if any).
1683 SmallVector<unsigned, 4> UsedRegs;
1684 if (RetVT != MVT::isVoid) {
1685 SmallVector<CCValAssign, 16> RVLocs;
1686 CCState CCInfo(CC, false, TM, RVLocs, I->getParent()->getContext());
1687 CCInfo.AnalyzeCallResult(RetVT, RetCC_X86);
1689 // Copy all of the result registers out of their specified physreg.
1690 assert(RVLocs.size() == 1 && "Can't handle multi-value calls!");
1691 EVT CopyVT = RVLocs[0].getValVT();
1692 TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1694 // If this is a call to a function that returns an fp value on the x87 fp
1695 // stack, but where we prefer to use the value in xmm registers, copy it
1696 // out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1697 if ((RVLocs[0].getLocReg() == X86::ST0 ||
1698 RVLocs[0].getLocReg() == X86::ST1) &&
1699 isScalarFPTypeInSSEReg(RVLocs[0].getValVT())) {
1700 CopyVT = MVT::f80;
1701 DstRC = X86::RFP80RegisterClass;
1704 unsigned ResultReg = createResultReg(DstRC);
1705 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1706 ResultReg).addReg(RVLocs[0].getLocReg());
1707 UsedRegs.push_back(RVLocs[0].getLocReg());
1709 if (CopyVT != RVLocs[0].getValVT()) {
1710 // Round the F80 the right size, which also moves to the appropriate xmm
1711 // register. This is accomplished by storing the F80 value in memory and
1712 // then loading it back. Ewww...
1713 EVT ResVT = RVLocs[0].getValVT();
1714 unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
1715 unsigned MemSize = ResVT.getSizeInBits()/8;
1716 int FI = MFI.CreateStackObject(MemSize, MemSize, false);
1717 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1718 TII.get(Opc)), FI)
1719 .addReg(ResultReg);
1720 DstRC = ResVT == MVT::f32
1721 ? X86::FR32RegisterClass : X86::FR64RegisterClass;
1722 Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
1723 ResultReg = createResultReg(DstRC);
1724 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1725 TII.get(Opc), ResultReg), FI);
1728 if (AndToI1) {
1729 // Mask out all but lowest bit for some call which produces an i1.
1730 unsigned AndResult = createResultReg(X86::GR8RegisterClass);
1731 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1732 TII.get(X86::AND8ri), AndResult).addReg(ResultReg).addImm(1);
1733 ResultReg = AndResult;
1736 UpdateValueMap(I, ResultReg);
1739 // Set all unused physreg defs as dead.
1740 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1742 return true;
1746 bool
1747 X86FastISel::TargetSelectInstruction(const Instruction *I) {
1748 switch (I->getOpcode()) {
1749 default: break;
1750 case Instruction::Load:
1751 return X86SelectLoad(I);
1752 case Instruction::Store:
1753 return X86SelectStore(I);
1754 case Instruction::Ret:
1755 return X86SelectRet(I);
1756 case Instruction::ICmp:
1757 case Instruction::FCmp:
1758 return X86SelectCmp(I);
1759 case Instruction::ZExt:
1760 return X86SelectZExt(I);
1761 case Instruction::Br:
1762 return X86SelectBranch(I);
1763 case Instruction::Call:
1764 return X86SelectCall(I);
1765 case Instruction::LShr:
1766 case Instruction::AShr:
1767 case Instruction::Shl:
1768 return X86SelectShift(I);
1769 case Instruction::Select:
1770 return X86SelectSelect(I);
1771 case Instruction::Trunc:
1772 return X86SelectTrunc(I);
1773 case Instruction::FPExt:
1774 return X86SelectFPExt(I);
1775 case Instruction::FPTrunc:
1776 return X86SelectFPTrunc(I);
1777 case Instruction::ExtractValue:
1778 return X86SelectExtractValue(I);
1779 case Instruction::IntToPtr: // Deliberate fall-through.
1780 case Instruction::PtrToInt: {
1781 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1782 EVT DstVT = TLI.getValueType(I->getType());
1783 if (DstVT.bitsGT(SrcVT))
1784 return X86SelectZExt(I);
1785 if (DstVT.bitsLT(SrcVT))
1786 return X86SelectTrunc(I);
1787 unsigned Reg = getRegForValue(I->getOperand(0));
1788 if (Reg == 0) return false;
1789 UpdateValueMap(I, Reg);
1790 return true;
1794 return false;
1797 unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) {
1798 MVT VT;
1799 if (!isTypeLegal(C->getType(), VT))
1800 return false;
1802 // Get opcode and regclass of the output for the given load instruction.
1803 unsigned Opc = 0;
1804 const TargetRegisterClass *RC = NULL;
1805 switch (VT.SimpleTy) {
1806 default: return false;
1807 case MVT::i8:
1808 Opc = X86::MOV8rm;
1809 RC = X86::GR8RegisterClass;
1810 break;
1811 case MVT::i16:
1812 Opc = X86::MOV16rm;
1813 RC = X86::GR16RegisterClass;
1814 break;
1815 case MVT::i32:
1816 Opc = X86::MOV32rm;
1817 RC = X86::GR32RegisterClass;
1818 break;
1819 case MVT::i64:
1820 // Must be in x86-64 mode.
1821 Opc = X86::MOV64rm;
1822 RC = X86::GR64RegisterClass;
1823 break;
1824 case MVT::f32:
1825 if (Subtarget->hasSSE1()) {
1826 Opc = X86::MOVSSrm;
1827 RC = X86::FR32RegisterClass;
1828 } else {
1829 Opc = X86::LD_Fp32m;
1830 RC = X86::RFP32RegisterClass;
1832 break;
1833 case MVT::f64:
1834 if (Subtarget->hasSSE2()) {
1835 Opc = X86::MOVSDrm;
1836 RC = X86::FR64RegisterClass;
1837 } else {
1838 Opc = X86::LD_Fp64m;
1839 RC = X86::RFP64RegisterClass;
1841 break;
1842 case MVT::f80:
1843 // No f80 support yet.
1844 return false;
1847 // Materialize addresses with LEA instructions.
1848 if (isa<GlobalValue>(C)) {
1849 X86AddressMode AM;
1850 if (X86SelectAddress(C, AM)) {
1851 if (TLI.getPointerTy() == MVT::i32)
1852 Opc = X86::LEA32r;
1853 else
1854 Opc = X86::LEA64r;
1855 unsigned ResultReg = createResultReg(RC);
1856 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1857 TII.get(Opc), ResultReg), AM);
1858 return ResultReg;
1860 return 0;
1863 // MachineConstantPool wants an explicit alignment.
1864 unsigned Align = TD.getPrefTypeAlignment(C->getType());
1865 if (Align == 0) {
1866 // Alignment of vector types. FIXME!
1867 Align = TD.getTypeAllocSize(C->getType());
1870 // x86-32 PIC requires a PIC base register for constant pools.
1871 unsigned PICBase = 0;
1872 unsigned char OpFlag = 0;
1873 if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic
1874 OpFlag = X86II::MO_PIC_BASE_OFFSET;
1875 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
1876 } else if (Subtarget->isPICStyleGOT()) {
1877 OpFlag = X86II::MO_GOTOFF;
1878 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
1879 } else if (Subtarget->isPICStyleRIPRel() &&
1880 TM.getCodeModel() == CodeModel::Small) {
1881 PICBase = X86::RIP;
1884 // Create the load from the constant pool.
1885 unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align);
1886 unsigned ResultReg = createResultReg(RC);
1887 addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1888 TII.get(Opc), ResultReg),
1889 MCPOffset, PICBase, OpFlag);
1891 return ResultReg;
1894 unsigned X86FastISel::TargetMaterializeAlloca(const AllocaInst *C) {
1895 // Fail on dynamic allocas. At this point, getRegForValue has already
1896 // checked its CSE maps, so if we're here trying to handle a dynamic
1897 // alloca, we're not going to succeed. X86SelectAddress has a
1898 // check for dynamic allocas, because it's called directly from
1899 // various places, but TargetMaterializeAlloca also needs a check
1900 // in order to avoid recursion between getRegForValue,
1901 // X86SelectAddrss, and TargetMaterializeAlloca.
1902 if (!FuncInfo.StaticAllocaMap.count(C))
1903 return 0;
1905 X86AddressMode AM;
1906 if (!X86SelectAddress(C, AM))
1907 return 0;
1908 unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
1909 TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
1910 unsigned ResultReg = createResultReg(RC);
1911 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1912 TII.get(Opc), ResultReg), AM);
1913 return ResultReg;
1916 /// TryToFoldLoad - The specified machine instr operand is a vreg, and that
1917 /// vreg is being provided by the specified load instruction. If possible,
1918 /// try to fold the load as an operand to the instruction, returning true if
1919 /// possible.
1920 bool X86FastISel::TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
1921 const LoadInst *LI) {
1922 X86AddressMode AM;
1923 if (!X86SelectAddress(LI->getOperand(0), AM))
1924 return false;
1926 X86InstrInfo &XII = (X86InstrInfo&)TII;
1928 unsigned Size = TD.getTypeAllocSize(LI->getType());
1929 unsigned Alignment = LI->getAlignment();
1931 SmallVector<MachineOperand, 8> AddrOps;
1932 AM.getFullAddress(AddrOps);
1934 MachineInstr *Result =
1935 XII.foldMemoryOperandImpl(*FuncInfo.MF, MI, OpNo, AddrOps, Size, Alignment);
1936 if (Result == 0) return false;
1938 MI->getParent()->insert(MI, Result);
1939 MI->eraseFromParent();
1940 return true;
1944 namespace llvm {
1945 llvm::FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo) {
1946 return new X86FastISel(funcInfo);