1 //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
13 //===----------------------------------------------------------------------===//
15 #ifndef X86ISELLOWERING_H
16 #define X86ISELLOWERING_H
18 #include "X86Subtarget.h"
19 #include "X86RegisterInfo.h"
20 #include "X86MachineFunctionInfo.h"
21 #include "llvm/Target/TargetLowering.h"
22 #include "llvm/Target/TargetOptions.h"
23 #include "llvm/CodeGen/FastISel.h"
24 #include "llvm/CodeGen/SelectionDAG.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
29 // X86 Specific DAG Nodes
31 // Start the numbering where the builtin ops leave off.
32 FIRST_NUMBER
= ISD::BUILTIN_OP_END
,
34 /// BSF - Bit scan forward.
35 /// BSR - Bit scan reverse.
39 /// SHLD, SHRD - Double shift instructions. These correspond to
40 /// X86::SHLDxx and X86::SHRDxx instructions.
44 /// FAND - Bitwise logical AND of floating point values. This corresponds
45 /// to X86::ANDPS or X86::ANDPD.
48 /// FOR - Bitwise logical OR of floating point values. This corresponds
49 /// to X86::ORPS or X86::ORPD.
52 /// FXOR - Bitwise logical XOR of floating point values. This corresponds
53 /// to X86::XORPS or X86::XORPD.
56 /// FSRL - Bitwise logical right shift of floating point values. These
57 /// corresponds to X86::PSRLDQ.
60 /// CALL - These operations represent an abstract X86 call
61 /// instruction, which includes a bunch of information. In particular the
62 /// operands of these node are:
64 /// #0 - The incoming token chain
66 /// #2 - The number of arg bytes the caller pushes on the stack.
67 /// #3 - The number of arg bytes the callee pops off the stack.
68 /// #4 - The value to pass in AL/AX/EAX (optional)
69 /// #5 - The value to pass in DL/DX/EDX (optional)
71 /// The result values of these nodes are:
73 /// #0 - The outgoing token chain
74 /// #1 - The first register result value (optional)
75 /// #2 - The second register result value (optional)
79 /// RDTSC_DAG - This operation implements the lowering for
83 /// X86 compare and logical compare instructions.
86 /// X86 bit-test instructions.
89 /// X86 SetCC. Operand 0 is condition code, and operand 1 is the flag
90 /// operand produced by a CMP instruction.
93 // Same as SETCC except it's materialized with a sbb and the value is all
94 // one's or all zero's.
97 /// X86 conditional moves. Operand 0 and operand 1 are the two values
98 /// to select from. Operand 2 is the condition code, and operand 3 is the
99 /// flag operand produced by a CMP or TEST instruction. It also writes a
103 /// X86 conditional branches. Operand 0 is the chain operand, operand 1
104 /// is the block to branch if condition is true, operand 2 is the
105 /// condition code, and operand 3 is the flag operand produced by a CMP
106 /// or TEST instruction.
109 /// Return with a flag operand. Operand 0 is the chain operand, operand
110 /// 1 is the number of bytes of stack to pop.
113 /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
116 /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
119 /// GlobalBaseReg - On Darwin, this node represents the result of the popl
120 /// at function entry, used for PIC code.
123 /// Wrapper - A wrapper node for TargetConstantPool,
124 /// TargetExternalSymbol, and TargetGlobalAddress.
127 /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
128 /// relative displacements.
131 /// MOVQ2DQ - Copies a 64-bit value from an MMX vector to the low word
132 /// of an XMM vector, with the high word zero filled.
135 /// MOVDQ2Q - Copies a 64-bit value from the low word of an XMM vector
136 /// to an MMX vector. If you think this is too close to the previous
137 /// mnemonic, so do I; blame Intel.
140 /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
141 /// i32, corresponds to X86::PEXTRB.
144 /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
145 /// i32, corresponds to X86::PEXTRW.
148 /// INSERTPS - Insert any element of a 4 x float vector into any element
149 /// of a destination 4 x floatvector.
152 /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
153 /// corresponds to X86::PINSRB.
156 /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
157 /// corresponds to X86::PINSRW.
160 /// PSHUFB - Shuffle 16 8-bit values within a vector.
163 /// FMAX, FMIN - Floating point max and min.
167 /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
168 /// approximation. Note that these typically require refinement
169 /// in order to obtain suitable precision.
172 // TLSADDR - Thread Local Storage.
175 // TLSCALL - Thread Local Storage. When calling to an OS provided
176 // thunk at the address from an earlier relocation.
179 // EH_RETURN - Exception Handling helpers.
182 /// TC_RETURN - Tail call return.
184 /// operand #1 callee (register or absolute)
185 /// operand #2 stack adjustment
186 /// operand #3 optional in flag
189 // VZEXT_MOVL - Vector move low and zero extend.
192 // VSHL, VSRL - Vector logical left / right shift.
195 // CMPPD, CMPPS - Vector double/float comparison.
196 // CMPPD, CMPPS - Vector double/float comparison.
199 // PCMP* - Vector integer comparisons.
200 PCMPEQB
, PCMPEQW
, PCMPEQD
, PCMPEQQ
,
201 PCMPGTB
, PCMPGTW
, PCMPGTD
, PCMPGTQ
,
203 // ADD, SUB, SMUL, UMUL, etc. - Arithmetic operations with FLAGS results.
204 ADD
, SUB
, SMUL
, UMUL
,
205 INC
, DEC
, OR
, XOR
, AND
,
207 // MUL_IMM - X86 specific multiply by immediate.
210 // PTEST - Vector bitwise comparisons
213 // TESTP - Vector packed fp sign bitwise comparisons
216 // Several flavors of instructions with vector shuffle behaviors.
251 // VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack,
252 // according to %al. An operator is needed so that this can be expanded
253 // with control flow.
254 VASTART_SAVE_XMM_REGS
,
256 // WIN_ALLOCA - Windows's _chkstk call to do stack probing.
259 // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG,
260 // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG -
261 // Atomic 64-bit binary operations.
262 ATOMADD64_DAG
= ISD::FIRST_TARGET_MEMORY_OPCODE
,
276 // LCMPXCHG_DAG, LCMPXCHG8_DAG - Compare and swap.
280 // VZEXT_LOAD - Load, scalar_to_vector, and zero extend.
283 // FNSTCW16m - Store FP control world into i16 memory.
286 /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
287 /// integer destination in memory and a FP reg source. This corresponds
288 /// to the X86::FIST*m instructions and the rounding mode change stuff. It
289 /// has two inputs (token chain and address) and two outputs (int value
290 /// and token chain).
295 /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
296 /// integer source in memory and FP reg result. This corresponds to the
297 /// X86::FILD*m instructions. It has three inputs (token chain, address,
298 /// and source type) and two outputs (FP value and token chain). FILD_FLAG
299 /// also produces a flag).
303 /// FLD - This instruction implements an extending load to FP stack slots.
304 /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
305 /// operand, ptr to load from, and a ValueType node indicating the type
309 /// FST - This instruction implements a truncating store to FP stack
310 /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
311 /// chain operand, value to store, address, and a ValueType to store it
315 /// VAARG_64 - This instruction grabs the address of the next argument
316 /// from a va_list. (reads and modifies the va_list in memory)
319 // WARNING: Do not add anything in the end unless you want the node to
320 // have memop! In fact, starting from ATOMADD64_DAG all opcodes will be
321 // thought as target memory ops!
325 /// Define some predicates that are used for node matching.
327 /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
328 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
329 bool isPSHUFDMask(ShuffleVectorSDNode
*N
);
331 /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
332 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
333 bool isPSHUFHWMask(ShuffleVectorSDNode
*N
);
335 /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
336 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
337 bool isPSHUFLWMask(ShuffleVectorSDNode
*N
);
339 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
340 /// specifies a shuffle of elements that is suitable for input to SHUFP*.
341 bool isSHUFPMask(ShuffleVectorSDNode
*N
);
343 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
344 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
345 bool isMOVHLPSMask(ShuffleVectorSDNode
*N
);
347 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
348 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
350 bool isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode
*N
);
352 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
353 /// specifies a shuffle of elements that is suitable for MOVLP{S|D}.
354 bool isMOVLPMask(ShuffleVectorSDNode
*N
);
356 /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
357 /// specifies a shuffle of elements that is suitable for MOVHP{S|D}.
358 /// as well as MOVLHPS.
359 bool isMOVLHPSMask(ShuffleVectorSDNode
*N
);
361 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
362 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
363 bool isUNPCKLMask(ShuffleVectorSDNode
*N
, bool V2IsSplat
= false);
365 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
366 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
367 bool isUNPCKHMask(ShuffleVectorSDNode
*N
, bool V2IsSplat
= false);
369 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
370 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
372 bool isUNPCKL_v_undef_Mask(ShuffleVectorSDNode
*N
);
374 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
375 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
377 bool isUNPCKH_v_undef_Mask(ShuffleVectorSDNode
*N
);
379 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
380 /// specifies a shuffle of elements that is suitable for input to MOVSS,
381 /// MOVSD, and MOVD, i.e. setting the lowest element.
382 bool isMOVLMask(ShuffleVectorSDNode
*N
);
384 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
385 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
386 bool isMOVSHDUPMask(ShuffleVectorSDNode
*N
);
388 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
389 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
390 bool isMOVSLDUPMask(ShuffleVectorSDNode
*N
);
392 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
393 /// specifies a shuffle of elements that is suitable for input to MOVDDUP.
394 bool isMOVDDUPMask(ShuffleVectorSDNode
*N
);
396 /// isPALIGNRMask - Return true if the specified VECTOR_SHUFFLE operand
397 /// specifies a shuffle of elements that is suitable for input to PALIGNR.
398 bool isPALIGNRMask(ShuffleVectorSDNode
*N
);
400 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
401 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
403 unsigned getShuffleSHUFImmediate(SDNode
*N
);
405 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
406 /// the specified VECTOR_SHUFFLE mask with PSHUFHW instruction.
407 unsigned getShufflePSHUFHWImmediate(SDNode
*N
);
409 /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
410 /// the specified VECTOR_SHUFFLE mask with PSHUFLW instruction.
411 unsigned getShufflePSHUFLWImmediate(SDNode
*N
);
413 /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
414 /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
415 unsigned getShufflePALIGNRImmediate(SDNode
*N
);
417 /// isZeroNode - Returns true if Elt is a constant zero or a floating point
419 bool isZeroNode(SDValue Elt
);
421 /// isOffsetSuitableForCodeModel - Returns true of the given offset can be
422 /// fit into displacement field of the instruction.
423 bool isOffsetSuitableForCodeModel(int64_t Offset
, CodeModel::Model M
,
424 bool hasSymbolicDisplacement
= true);
427 //===--------------------------------------------------------------------===//
428 // X86TargetLowering - X86 Implementation of the TargetLowering interface
429 class X86TargetLowering
: public TargetLowering
{
431 explicit X86TargetLowering(X86TargetMachine
&TM
);
433 /// getPICBaseSymbol - Return the X86-32 PIC base.
434 MCSymbol
*getPICBaseSymbol(const MachineFunction
*MF
, MCContext
&Ctx
) const;
436 virtual unsigned getJumpTableEncoding() const;
438 virtual const MCExpr
*
439 LowerCustomJumpTableEntry(const MachineJumpTableInfo
*MJTI
,
440 const MachineBasicBlock
*MBB
, unsigned uid
,
441 MCContext
&Ctx
) const;
443 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
445 virtual SDValue
getPICJumpTableRelocBase(SDValue Table
,
446 SelectionDAG
&DAG
) const;
447 virtual const MCExpr
*
448 getPICJumpTableRelocBaseExpr(const MachineFunction
*MF
,
449 unsigned JTI
, MCContext
&Ctx
) const;
451 /// getStackPtrReg - Return the stack pointer register we are using: either
453 unsigned getStackPtrReg() const { return X86StackPtr
; }
455 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
456 /// function arguments in the caller parameter area. For X86, aggregates
457 /// that contains are placed at 16-byte boundaries while the rest are at
458 /// 4-byte boundaries.
459 virtual unsigned getByValTypeAlignment(const Type
*Ty
) const;
461 /// getOptimalMemOpType - Returns the target specific optimal type for load
462 /// and store operations as a result of memset, memcpy, and memmove
463 /// lowering. If DstAlign is zero that means it's safe to destination
464 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
465 /// means there isn't a need to check it against alignment requirement,
466 /// probably because the source does not need to be loaded. If
467 /// 'NonScalarIntSafe' is true, that means it's safe to return a
468 /// non-scalar-integer type, e.g. empty string source, constant, or loaded
469 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
470 /// constant so it does not need to be loaded.
471 /// It returns EVT::Other if the type should be determined using generic
472 /// target-independent logic.
474 getOptimalMemOpType(uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
,
475 bool NonScalarIntSafe
, bool MemcpyStrSrc
,
476 MachineFunction
&MF
) const;
478 /// allowsUnalignedMemoryAccesses - Returns true if the target allows
479 /// unaligned memory accesses. of the specified type.
480 virtual bool allowsUnalignedMemoryAccesses(EVT VT
) const {
484 /// LowerOperation - Provide custom lowering hooks for some operations.
486 virtual SDValue
LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const;
488 /// ReplaceNodeResults - Replace the results of node with an illegal result
489 /// type with new values built out of custom code.
491 virtual void ReplaceNodeResults(SDNode
*N
, SmallVectorImpl
<SDValue
>&Results
,
492 SelectionDAG
&DAG
) const;
495 virtual SDValue
PerformDAGCombine(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
497 /// isTypeDesirableForOp - Return true if the target has native support for
498 /// the specified value type and it is 'desirable' to use the type for the
499 /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
500 /// instruction encodings are longer and some i16 instructions are slow.
501 virtual bool isTypeDesirableForOp(unsigned Opc
, EVT VT
) const;
503 /// isTypeDesirable - Return true if the target has native support for the
504 /// specified value type and it is 'desirable' to use the type. e.g. On x86
505 /// i16 is legal, but undesirable since i16 instruction encodings are longer
506 /// and some i16 instructions are slow.
507 virtual bool IsDesirableToPromoteOp(SDValue Op
, EVT
&PVT
) const;
509 virtual MachineBasicBlock
*
510 EmitInstrWithCustomInserter(MachineInstr
*MI
,
511 MachineBasicBlock
*MBB
) const;
514 /// getTargetNodeName - This method returns the name of a target specific
516 virtual const char *getTargetNodeName(unsigned Opcode
) const;
518 /// getSetCCResultType - Return the ISD::SETCC ValueType
519 virtual MVT::SimpleValueType
getSetCCResultType(EVT VT
) const;
521 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
522 /// in Mask are known to be either zero or one and return them in the
523 /// KnownZero/KnownOne bitsets.
524 virtual void computeMaskedBitsForTargetNode(const SDValue Op
,
528 const SelectionDAG
&DAG
,
529 unsigned Depth
= 0) const;
531 // ComputeNumSignBitsForTargetNode - Determine the number of bits in the
532 // operation that are sign bits.
533 virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op
,
534 unsigned Depth
) const;
537 isGAPlusOffset(SDNode
*N
, const GlobalValue
* &GA
, int64_t &Offset
) const;
539 SDValue
getReturnAddressFrameIndex(SelectionDAG
&DAG
) const;
541 virtual bool ExpandInlineAsm(CallInst
*CI
) const;
543 ConstraintType
getConstraintType(const std::string
&Constraint
) const;
545 /// Examine constraint string and operand type and determine a weight value.
546 /// The operand object must already have been set up with the operand type.
547 virtual ConstraintWeight
getSingleConstraintMatchWeight(
548 AsmOperandInfo
&info
, const char *constraint
) const;
550 std::vector
<unsigned>
551 getRegClassForInlineAsmConstraint(const std::string
&Constraint
,
554 virtual const char *LowerXConstraint(EVT ConstraintVT
) const;
556 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
557 /// vector. If it is invalid, don't add anything to Ops. If hasMemory is
558 /// true it means one of the asm constraint of the inline asm instruction
559 /// being processed is 'm'.
560 virtual void LowerAsmOperandForConstraint(SDValue Op
,
561 char ConstraintLetter
,
562 std::vector
<SDValue
> &Ops
,
563 SelectionDAG
&DAG
) const;
565 /// getRegForInlineAsmConstraint - Given a physical register constraint
566 /// (e.g. {edx}), return the register number and the register class for the
567 /// register. This should only be used for C_Register constraints. On
568 /// error, this returns a register number of 0.
569 std::pair
<unsigned, const TargetRegisterClass
*>
570 getRegForInlineAsmConstraint(const std::string
&Constraint
,
573 /// isLegalAddressingMode - Return true if the addressing mode represented
574 /// by AM is legal for this target, for a load/store of the specified type.
575 virtual bool isLegalAddressingMode(const AddrMode
&AM
, const Type
*Ty
)const;
577 /// isTruncateFree - Return true if it's free to truncate a value of
578 /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
579 /// register EAX to i16 by referencing its sub-register AX.
580 virtual bool isTruncateFree(const Type
*Ty1
, const Type
*Ty2
) const;
581 virtual bool isTruncateFree(EVT VT1
, EVT VT2
) const;
583 /// isZExtFree - Return true if any actual instruction that defines a
584 /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
585 /// register. This does not necessarily include registers defined in
586 /// unknown ways, such as incoming arguments, or copies from unknown
587 /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
588 /// does not necessarily apply to truncate instructions. e.g. on x86-64,
589 /// all instructions that define 32-bit values implicit zero-extend the
590 /// result out to 64 bits.
591 virtual bool isZExtFree(const Type
*Ty1
, const Type
*Ty2
) const;
592 virtual bool isZExtFree(EVT VT1
, EVT VT2
) const;
594 /// isNarrowingProfitable - Return true if it's profitable to narrow
595 /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
596 /// from i32 to i8 but not from i32 to i16.
597 virtual bool isNarrowingProfitable(EVT VT1
, EVT VT2
) const;
599 /// isFPImmLegal - Returns true if the target can instruction select the
600 /// specified FP immediate natively. If false, the legalizer will
601 /// materialize the FP immediate as a load from a constant pool.
602 virtual bool isFPImmLegal(const APFloat
&Imm
, EVT VT
) const;
604 /// isShuffleMaskLegal - Targets can use this to indicate that they only
605 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
606 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
607 /// values are assumed to be legal.
608 virtual bool isShuffleMaskLegal(const SmallVectorImpl
<int> &Mask
,
611 /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
612 /// used by Targets can use this to indicate if there is a suitable
613 /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
615 virtual bool isVectorClearMaskLegal(const SmallVectorImpl
<int> &Mask
,
618 /// ShouldShrinkFPConstant - If true, then instruction selection should
619 /// seek to shrink the FP constant of the specified type to a smaller type
620 /// in order to save space and / or reduce runtime.
621 virtual bool ShouldShrinkFPConstant(EVT VT
) const {
622 // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
623 // expensive than a straight movsd. On the other hand, it's important to
624 // shrink long double fp constant since fldt is very slow.
625 return !X86ScalarSSEf64
|| VT
== MVT::f80
;
628 const X86Subtarget
* getSubtarget() const {
632 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
633 /// computed in an SSE register, not on the X87 floating point stack.
634 bool isScalarFPTypeInSSEReg(EVT VT
) const {
635 return (VT
== MVT::f64
&& X86ScalarSSEf64
) || // f64 is when SSE2
636 (VT
== MVT::f32
&& X86ScalarSSEf32
); // f32 is when SSE1
639 /// createFastISel - This method returns a target specific FastISel object,
640 /// or null if the target does not support "fast" ISel.
641 virtual FastISel
*createFastISel(FunctionLoweringInfo
&funcInfo
) const;
643 /// getFunctionAlignment - Return the Log2 alignment of this function.
644 virtual unsigned getFunctionAlignment(const Function
*F
) const;
646 unsigned getRegPressureLimit(const TargetRegisterClass
*RC
,
647 MachineFunction
&MF
) const;
649 /// getStackCookieLocation - Return true if the target stores stack
650 /// protector cookies at a fixed offset in some non-standard address
651 /// space, and populates the address space and offset as
653 virtual bool getStackCookieLocation(unsigned &AddressSpace
, unsigned &Offset
) const;
656 std::pair
<const TargetRegisterClass
*, uint8_t>
657 findRepresentativeClass(EVT VT
) const;
660 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
661 /// make the right decision when generating code for different targets.
662 const X86Subtarget
*Subtarget
;
663 const X86RegisterInfo
*RegInfo
;
664 const TargetData
*TD
;
666 /// X86StackPtr - X86 physical register used as stack ptr.
667 unsigned X86StackPtr
;
669 /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
670 /// floating point ops.
671 /// When SSE is available, use it for f32 operations.
672 /// When SSE2 is available, use it for f64 operations.
673 bool X86ScalarSSEf32
;
674 bool X86ScalarSSEf64
;
676 /// LegalFPImmediates - A list of legal fp immediates.
677 std::vector
<APFloat
> LegalFPImmediates
;
679 /// addLegalFPImmediate - Indicate that this x86 target can instruction
680 /// select the specified FP immediate natively.
681 void addLegalFPImmediate(const APFloat
& Imm
) {
682 LegalFPImmediates
.push_back(Imm
);
685 SDValue
LowerCallResult(SDValue Chain
, SDValue InFlag
,
686 CallingConv::ID CallConv
, bool isVarArg
,
687 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
688 DebugLoc dl
, SelectionDAG
&DAG
,
689 SmallVectorImpl
<SDValue
> &InVals
) const;
690 SDValue
LowerMemArgument(SDValue Chain
,
691 CallingConv::ID CallConv
,
692 const SmallVectorImpl
<ISD::InputArg
> &ArgInfo
,
693 DebugLoc dl
, SelectionDAG
&DAG
,
694 const CCValAssign
&VA
, MachineFrameInfo
*MFI
,
696 SDValue
LowerMemOpCallTo(SDValue Chain
, SDValue StackPtr
, SDValue Arg
,
697 DebugLoc dl
, SelectionDAG
&DAG
,
698 const CCValAssign
&VA
,
699 ISD::ArgFlagsTy Flags
) const;
701 // Call lowering helpers.
703 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
704 /// for tail call optimization. Targets which want to do tail call
705 /// optimization should implement this function.
706 bool IsEligibleForTailCallOptimization(SDValue Callee
,
707 CallingConv::ID CalleeCC
,
709 bool isCalleeStructRet
,
710 bool isCallerStructRet
,
711 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
712 const SmallVectorImpl
<SDValue
> &OutVals
,
713 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
714 SelectionDAG
& DAG
) const;
715 bool IsCalleePop(bool isVarArg
, CallingConv::ID CallConv
) const;
716 SDValue
EmitTailCallLoadRetAddr(SelectionDAG
&DAG
, SDValue
&OutRetAddr
,
717 SDValue Chain
, bool IsTailCall
, bool Is64Bit
,
718 int FPDiff
, DebugLoc dl
) const;
720 unsigned GetAlignedArgumentStackSize(unsigned StackSize
,
721 SelectionDAG
&DAG
) const;
723 std::pair
<SDValue
,SDValue
> FP_TO_INTHelper(SDValue Op
, SelectionDAG
&DAG
,
724 bool isSigned
) const;
726 SDValue
LowerAsSplatVectorLoad(SDValue SrcOp
, EVT VT
, DebugLoc dl
,
727 SelectionDAG
&DAG
) const;
728 SDValue
LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
) const;
729 SDValue
LowerCONCAT_VECTORS(SDValue Op
, SelectionDAG
&DAG
) const;
730 SDValue
LowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
) const;
731 SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) const;
732 SDValue
LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op
, SelectionDAG
&DAG
) const;
733 SDValue
LowerINSERT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) const;
734 SDValue
LowerINSERT_VECTOR_ELT_SSE4(SDValue Op
, SelectionDAG
&DAG
) const;
735 SDValue
LowerSCALAR_TO_VECTOR(SDValue Op
, SelectionDAG
&DAG
) const;
736 SDValue
LowerConstantPool(SDValue Op
, SelectionDAG
&DAG
) const;
737 SDValue
LowerBlockAddress(SDValue Op
, SelectionDAG
&DAG
) const;
738 SDValue
LowerGlobalAddress(const GlobalValue
*GV
, DebugLoc dl
,
739 int64_t Offset
, SelectionDAG
&DAG
) const;
740 SDValue
LowerGlobalAddress(SDValue Op
, SelectionDAG
&DAG
) const;
741 SDValue
LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const;
742 SDValue
LowerExternalSymbol(SDValue Op
, SelectionDAG
&DAG
) const;
743 SDValue
LowerShift(SDValue Op
, SelectionDAG
&DAG
) const;
744 SDValue
BuildFILD(SDValue Op
, EVT SrcVT
, SDValue Chain
, SDValue StackSlot
,
745 SelectionDAG
&DAG
) const;
746 SDValue
LowerBIT_CONVERT(SDValue op
, SelectionDAG
&DAG
) const;
747 SDValue
LowerSINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) const;
748 SDValue
LowerUINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) const;
749 SDValue
LowerUINT_TO_FP_i64(SDValue Op
, SelectionDAG
&DAG
) const;
750 SDValue
LowerUINT_TO_FP_i32(SDValue Op
, SelectionDAG
&DAG
) const;
751 SDValue
LowerFP_TO_SINT(SDValue Op
, SelectionDAG
&DAG
) const;
752 SDValue
LowerFP_TO_UINT(SDValue Op
, SelectionDAG
&DAG
) const;
753 SDValue
LowerFABS(SDValue Op
, SelectionDAG
&DAG
) const;
754 SDValue
LowerFNEG(SDValue Op
, SelectionDAG
&DAG
) const;
755 SDValue
LowerFCOPYSIGN(SDValue Op
, SelectionDAG
&DAG
) const;
756 SDValue
LowerToBT(SDValue And
, ISD::CondCode CC
,
757 DebugLoc dl
, SelectionDAG
&DAG
) const;
758 SDValue
LowerSETCC(SDValue Op
, SelectionDAG
&DAG
) const;
759 SDValue
LowerVSETCC(SDValue Op
, SelectionDAG
&DAG
) const;
760 SDValue
LowerSELECT(SDValue Op
, SelectionDAG
&DAG
) const;
761 SDValue
LowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) const;
762 SDValue
LowerMEMSET(SDValue Op
, SelectionDAG
&DAG
) const;
763 SDValue
LowerJumpTable(SDValue Op
, SelectionDAG
&DAG
) const;
764 SDValue
LowerDYNAMIC_STACKALLOC(SDValue Op
, SelectionDAG
&DAG
) const;
765 SDValue
LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) const;
766 SDValue
LowerVAARG(SDValue Op
, SelectionDAG
&DAG
) const;
767 SDValue
LowerVACOPY(SDValue Op
, SelectionDAG
&DAG
) const;
768 SDValue
LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
) const;
769 SDValue
LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const;
770 SDValue
LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const;
771 SDValue
LowerFRAME_TO_ARGS_OFFSET(SDValue Op
, SelectionDAG
&DAG
) const;
772 SDValue
LowerEH_RETURN(SDValue Op
, SelectionDAG
&DAG
) const;
773 SDValue
LowerTRAMPOLINE(SDValue Op
, SelectionDAG
&DAG
) const;
774 SDValue
LowerFLT_ROUNDS_(SDValue Op
, SelectionDAG
&DAG
) const;
775 SDValue
LowerCTLZ(SDValue Op
, SelectionDAG
&DAG
) const;
776 SDValue
LowerCTTZ(SDValue Op
, SelectionDAG
&DAG
) const;
777 SDValue
LowerMUL_V2I64(SDValue Op
, SelectionDAG
&DAG
) const;
778 SDValue
LowerSHL(SDValue Op
, SelectionDAG
&DAG
) const;
779 SDValue
LowerXALUO(SDValue Op
, SelectionDAG
&DAG
) const;
781 SDValue
LowerCMP_SWAP(SDValue Op
, SelectionDAG
&DAG
) const;
782 SDValue
LowerLOAD_SUB(SDValue Op
, SelectionDAG
&DAG
) const;
783 SDValue
LowerREADCYCLECOUNTER(SDValue Op
, SelectionDAG
&DAG
) const;
784 SDValue
LowerMEMBARRIER(SDValue Op
, SelectionDAG
&DAG
) const;
786 // Utility functions to help LowerVECTOR_SHUFFLE
787 SDValue
LowerVECTOR_SHUFFLEv8i16(SDValue Op
, SelectionDAG
&DAG
) const;
790 LowerFormalArguments(SDValue Chain
,
791 CallingConv::ID CallConv
, bool isVarArg
,
792 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
793 DebugLoc dl
, SelectionDAG
&DAG
,
794 SmallVectorImpl
<SDValue
> &InVals
) const;
796 LowerCall(SDValue Chain
, SDValue Callee
,
797 CallingConv::ID CallConv
, bool isVarArg
, bool &isTailCall
,
798 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
799 const SmallVectorImpl
<SDValue
> &OutVals
,
800 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
801 DebugLoc dl
, SelectionDAG
&DAG
,
802 SmallVectorImpl
<SDValue
> &InVals
) const;
805 LowerReturn(SDValue Chain
,
806 CallingConv::ID CallConv
, bool isVarArg
,
807 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
808 const SmallVectorImpl
<SDValue
> &OutVals
,
809 DebugLoc dl
, SelectionDAG
&DAG
) const;
812 CanLowerReturn(CallingConv::ID CallConv
, bool isVarArg
,
813 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
814 LLVMContext
&Context
) const;
816 void ReplaceATOMIC_BINARY_64(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
817 SelectionDAG
&DAG
, unsigned NewOp
) const;
819 /// Utility function to emit string processing sse4.2 instructions
820 /// that return in xmm0.
821 /// This takes the instruction to expand, the associated machine basic
822 /// block, the number of args, and whether or not the second arg is
823 /// in memory or not.
824 MachineBasicBlock
*EmitPCMP(MachineInstr
*BInstr
, MachineBasicBlock
*BB
,
825 unsigned argNum
, bool inMem
) const;
827 /// Utility function to emit atomic bitwise operations (and, or, xor).
828 /// It takes the bitwise instruction to expand, the associated machine basic
829 /// block, and the associated X86 opcodes for reg/reg and reg/imm.
830 MachineBasicBlock
*EmitAtomicBitwiseWithCustomInserter(
831 MachineInstr
*BInstr
,
832 MachineBasicBlock
*BB
,
839 TargetRegisterClass
*RC
,
840 bool invSrc
= false) const;
842 MachineBasicBlock
*EmitAtomicBit6432WithCustomInserter(
843 MachineInstr
*BInstr
,
844 MachineBasicBlock
*BB
,
849 bool invSrc
= false) const;
851 /// Utility function to emit atomic min and max. It takes the min/max
852 /// instruction to expand, the associated basic block, and the associated
853 /// cmov opcode for moving the min or max value.
854 MachineBasicBlock
*EmitAtomicMinMaxWithCustomInserter(MachineInstr
*BInstr
,
855 MachineBasicBlock
*BB
,
856 unsigned cmovOpc
) const;
858 // Utility function to emit the low-level va_arg code for X86-64.
859 MachineBasicBlock
*EmitVAARG64WithCustomInserter(
861 MachineBasicBlock
*MBB
) const;
863 /// Utility function to emit the xmm reg save portion of va_start.
864 MachineBasicBlock
*EmitVAStartSaveXMMRegsWithCustomInserter(
865 MachineInstr
*BInstr
,
866 MachineBasicBlock
*BB
) const;
868 MachineBasicBlock
*EmitLoweredSelect(MachineInstr
*I
,
869 MachineBasicBlock
*BB
) const;
871 MachineBasicBlock
*EmitLoweredWinAlloca(MachineInstr
*MI
,
872 MachineBasicBlock
*BB
) const;
874 MachineBasicBlock
*EmitLoweredTLSCall(MachineInstr
*MI
,
875 MachineBasicBlock
*BB
) const;
877 /// Emit nodes that will be selected as "test Op0,Op0", or something
878 /// equivalent, for use with the given x86 condition code.
879 SDValue
EmitTest(SDValue Op0
, unsigned X86CC
, SelectionDAG
&DAG
) const;
881 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
882 /// equivalent, for use with the given x86 condition code.
883 SDValue
EmitCmp(SDValue Op0
, SDValue Op1
, unsigned X86CC
,
884 SelectionDAG
&DAG
) const;
888 FastISel
*createFastISel(FunctionLoweringInfo
&funcInfo
);
892 #endif // X86ISELLOWERING_H