1 //===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the X86 implementation of the TargetInstrInfo class.
12 //===----------------------------------------------------------------------===//
14 #include "X86InstrInfo.h"
16 #include "X86GenInstrInfo.inc"
17 #include "X86InstrBuilder.h"
18 #include "X86MachineFunctionInfo.h"
19 #include "X86Subtarget.h"
20 #include "X86TargetMachine.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/LiveVariables.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/MC/MCInst.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetOptions.h"
36 #include "llvm/MC/MCAsmInfo.h"
42 NoFusing("disable-spill-fusing",
43 cl::desc("Disable fusing of spill code into instructions"));
45 PrintFailedFusing("print-failed-fuse-candidates",
46 cl::desc("Print instructions that the allocator wants to"
47 " fuse, but the X86 backend currently can't"),
50 ReMatPICStubLoad("remat-pic-stub-load",
51 cl::desc("Re-materialize load from stub in PIC mode"),
52 cl::init(false), cl::Hidden
);
54 X86InstrInfo::X86InstrInfo(X86TargetMachine
&tm
)
55 : TargetInstrInfoImpl(X86Insts
, array_lengthof(X86Insts
)),
56 TM(tm
), RI(tm
, *this) {
58 TB_NOT_REVERSABLE
= 1U << 31,
59 TB_FLAGS
= TB_NOT_REVERSABLE
62 static const unsigned OpTbl2Addr
[][2] = {
63 { X86::ADC32ri
, X86::ADC32mi
},
64 { X86::ADC32ri8
, X86::ADC32mi8
},
65 { X86::ADC32rr
, X86::ADC32mr
},
66 { X86::ADC64ri32
, X86::ADC64mi32
},
67 { X86::ADC64ri8
, X86::ADC64mi8
},
68 { X86::ADC64rr
, X86::ADC64mr
},
69 { X86::ADD16ri
, X86::ADD16mi
},
70 { X86::ADD16ri8
, X86::ADD16mi8
},
71 { X86::ADD16ri_DB
, X86::ADD16mi
| TB_NOT_REVERSABLE
},
72 { X86::ADD16ri8_DB
, X86::ADD16mi8
| TB_NOT_REVERSABLE
},
73 { X86::ADD16rr
, X86::ADD16mr
},
74 { X86::ADD16rr_DB
, X86::ADD16mr
| TB_NOT_REVERSABLE
},
75 { X86::ADD32ri
, X86::ADD32mi
},
76 { X86::ADD32ri8
, X86::ADD32mi8
},
77 { X86::ADD32ri_DB
, X86::ADD32mi
| TB_NOT_REVERSABLE
},
78 { X86::ADD32ri8_DB
, X86::ADD32mi8
| TB_NOT_REVERSABLE
},
79 { X86::ADD32rr
, X86::ADD32mr
},
80 { X86::ADD32rr_DB
, X86::ADD32mr
| TB_NOT_REVERSABLE
},
81 { X86::ADD64ri32
, X86::ADD64mi32
},
82 { X86::ADD64ri8
, X86::ADD64mi8
},
83 { X86::ADD64ri32_DB
,X86::ADD64mi32
| TB_NOT_REVERSABLE
},
84 { X86::ADD64ri8_DB
, X86::ADD64mi8
| TB_NOT_REVERSABLE
},
85 { X86::ADD64rr
, X86::ADD64mr
},
86 { X86::ADD64rr_DB
, X86::ADD64mr
| TB_NOT_REVERSABLE
},
87 { X86::ADD8ri
, X86::ADD8mi
},
88 { X86::ADD8rr
, X86::ADD8mr
},
89 { X86::AND16ri
, X86::AND16mi
},
90 { X86::AND16ri8
, X86::AND16mi8
},
91 { X86::AND16rr
, X86::AND16mr
},
92 { X86::AND32ri
, X86::AND32mi
},
93 { X86::AND32ri8
, X86::AND32mi8
},
94 { X86::AND32rr
, X86::AND32mr
},
95 { X86::AND64ri32
, X86::AND64mi32
},
96 { X86::AND64ri8
, X86::AND64mi8
},
97 { X86::AND64rr
, X86::AND64mr
},
98 { X86::AND8ri
, X86::AND8mi
},
99 { X86::AND8rr
, X86::AND8mr
},
100 { X86::DEC16r
, X86::DEC16m
},
101 { X86::DEC32r
, X86::DEC32m
},
102 { X86::DEC64_16r
, X86::DEC64_16m
},
103 { X86::DEC64_32r
, X86::DEC64_32m
},
104 { X86::DEC64r
, X86::DEC64m
},
105 { X86::DEC8r
, X86::DEC8m
},
106 { X86::INC16r
, X86::INC16m
},
107 { X86::INC32r
, X86::INC32m
},
108 { X86::INC64_16r
, X86::INC64_16m
},
109 { X86::INC64_32r
, X86::INC64_32m
},
110 { X86::INC64r
, X86::INC64m
},
111 { X86::INC8r
, X86::INC8m
},
112 { X86::NEG16r
, X86::NEG16m
},
113 { X86::NEG32r
, X86::NEG32m
},
114 { X86::NEG64r
, X86::NEG64m
},
115 { X86::NEG8r
, X86::NEG8m
},
116 { X86::NOT16r
, X86::NOT16m
},
117 { X86::NOT32r
, X86::NOT32m
},
118 { X86::NOT64r
, X86::NOT64m
},
119 { X86::NOT8r
, X86::NOT8m
},
120 { X86::OR16ri
, X86::OR16mi
},
121 { X86::OR16ri8
, X86::OR16mi8
},
122 { X86::OR16rr
, X86::OR16mr
},
123 { X86::OR32ri
, X86::OR32mi
},
124 { X86::OR32ri8
, X86::OR32mi8
},
125 { X86::OR32rr
, X86::OR32mr
},
126 { X86::OR64ri32
, X86::OR64mi32
},
127 { X86::OR64ri8
, X86::OR64mi8
},
128 { X86::OR64rr
, X86::OR64mr
},
129 { X86::OR8ri
, X86::OR8mi
},
130 { X86::OR8rr
, X86::OR8mr
},
131 { X86::ROL16r1
, X86::ROL16m1
},
132 { X86::ROL16rCL
, X86::ROL16mCL
},
133 { X86::ROL16ri
, X86::ROL16mi
},
134 { X86::ROL32r1
, X86::ROL32m1
},
135 { X86::ROL32rCL
, X86::ROL32mCL
},
136 { X86::ROL32ri
, X86::ROL32mi
},
137 { X86::ROL64r1
, X86::ROL64m1
},
138 { X86::ROL64rCL
, X86::ROL64mCL
},
139 { X86::ROL64ri
, X86::ROL64mi
},
140 { X86::ROL8r1
, X86::ROL8m1
},
141 { X86::ROL8rCL
, X86::ROL8mCL
},
142 { X86::ROL8ri
, X86::ROL8mi
},
143 { X86::ROR16r1
, X86::ROR16m1
},
144 { X86::ROR16rCL
, X86::ROR16mCL
},
145 { X86::ROR16ri
, X86::ROR16mi
},
146 { X86::ROR32r1
, X86::ROR32m1
},
147 { X86::ROR32rCL
, X86::ROR32mCL
},
148 { X86::ROR32ri
, X86::ROR32mi
},
149 { X86::ROR64r1
, X86::ROR64m1
},
150 { X86::ROR64rCL
, X86::ROR64mCL
},
151 { X86::ROR64ri
, X86::ROR64mi
},
152 { X86::ROR8r1
, X86::ROR8m1
},
153 { X86::ROR8rCL
, X86::ROR8mCL
},
154 { X86::ROR8ri
, X86::ROR8mi
},
155 { X86::SAR16r1
, X86::SAR16m1
},
156 { X86::SAR16rCL
, X86::SAR16mCL
},
157 { X86::SAR16ri
, X86::SAR16mi
},
158 { X86::SAR32r1
, X86::SAR32m1
},
159 { X86::SAR32rCL
, X86::SAR32mCL
},
160 { X86::SAR32ri
, X86::SAR32mi
},
161 { X86::SAR64r1
, X86::SAR64m1
},
162 { X86::SAR64rCL
, X86::SAR64mCL
},
163 { X86::SAR64ri
, X86::SAR64mi
},
164 { X86::SAR8r1
, X86::SAR8m1
},
165 { X86::SAR8rCL
, X86::SAR8mCL
},
166 { X86::SAR8ri
, X86::SAR8mi
},
167 { X86::SBB32ri
, X86::SBB32mi
},
168 { X86::SBB32ri8
, X86::SBB32mi8
},
169 { X86::SBB32rr
, X86::SBB32mr
},
170 { X86::SBB64ri32
, X86::SBB64mi32
},
171 { X86::SBB64ri8
, X86::SBB64mi8
},
172 { X86::SBB64rr
, X86::SBB64mr
},
173 { X86::SHL16rCL
, X86::SHL16mCL
},
174 { X86::SHL16ri
, X86::SHL16mi
},
175 { X86::SHL32rCL
, X86::SHL32mCL
},
176 { X86::SHL32ri
, X86::SHL32mi
},
177 { X86::SHL64rCL
, X86::SHL64mCL
},
178 { X86::SHL64ri
, X86::SHL64mi
},
179 { X86::SHL8rCL
, X86::SHL8mCL
},
180 { X86::SHL8ri
, X86::SHL8mi
},
181 { X86::SHLD16rrCL
, X86::SHLD16mrCL
},
182 { X86::SHLD16rri8
, X86::SHLD16mri8
},
183 { X86::SHLD32rrCL
, X86::SHLD32mrCL
},
184 { X86::SHLD32rri8
, X86::SHLD32mri8
},
185 { X86::SHLD64rrCL
, X86::SHLD64mrCL
},
186 { X86::SHLD64rri8
, X86::SHLD64mri8
},
187 { X86::SHR16r1
, X86::SHR16m1
},
188 { X86::SHR16rCL
, X86::SHR16mCL
},
189 { X86::SHR16ri
, X86::SHR16mi
},
190 { X86::SHR32r1
, X86::SHR32m1
},
191 { X86::SHR32rCL
, X86::SHR32mCL
},
192 { X86::SHR32ri
, X86::SHR32mi
},
193 { X86::SHR64r1
, X86::SHR64m1
},
194 { X86::SHR64rCL
, X86::SHR64mCL
},
195 { X86::SHR64ri
, X86::SHR64mi
},
196 { X86::SHR8r1
, X86::SHR8m1
},
197 { X86::SHR8rCL
, X86::SHR8mCL
},
198 { X86::SHR8ri
, X86::SHR8mi
},
199 { X86::SHRD16rrCL
, X86::SHRD16mrCL
},
200 { X86::SHRD16rri8
, X86::SHRD16mri8
},
201 { X86::SHRD32rrCL
, X86::SHRD32mrCL
},
202 { X86::SHRD32rri8
, X86::SHRD32mri8
},
203 { X86::SHRD64rrCL
, X86::SHRD64mrCL
},
204 { X86::SHRD64rri8
, X86::SHRD64mri8
},
205 { X86::SUB16ri
, X86::SUB16mi
},
206 { X86::SUB16ri8
, X86::SUB16mi8
},
207 { X86::SUB16rr
, X86::SUB16mr
},
208 { X86::SUB32ri
, X86::SUB32mi
},
209 { X86::SUB32ri8
, X86::SUB32mi8
},
210 { X86::SUB32rr
, X86::SUB32mr
},
211 { X86::SUB64ri32
, X86::SUB64mi32
},
212 { X86::SUB64ri8
, X86::SUB64mi8
},
213 { X86::SUB64rr
, X86::SUB64mr
},
214 { X86::SUB8ri
, X86::SUB8mi
},
215 { X86::SUB8rr
, X86::SUB8mr
},
216 { X86::XOR16ri
, X86::XOR16mi
},
217 { X86::XOR16ri8
, X86::XOR16mi8
},
218 { X86::XOR16rr
, X86::XOR16mr
},
219 { X86::XOR32ri
, X86::XOR32mi
},
220 { X86::XOR32ri8
, X86::XOR32mi8
},
221 { X86::XOR32rr
, X86::XOR32mr
},
222 { X86::XOR64ri32
, X86::XOR64mi32
},
223 { X86::XOR64ri8
, X86::XOR64mi8
},
224 { X86::XOR64rr
, X86::XOR64mr
},
225 { X86::XOR8ri
, X86::XOR8mi
},
226 { X86::XOR8rr
, X86::XOR8mr
}
229 for (unsigned i
= 0, e
= array_lengthof(OpTbl2Addr
); i
!= e
; ++i
) {
230 unsigned RegOp
= OpTbl2Addr
[i
][0];
231 unsigned MemOp
= OpTbl2Addr
[i
][1] & ~TB_FLAGS
;
232 assert(!RegOp2MemOpTable2Addr
.count(RegOp
) && "Duplicated entries?");
233 RegOp2MemOpTable2Addr
[RegOp
] = std::make_pair(MemOp
, 0U);
235 // If this is not a reversable operation (because there is a many->one)
236 // mapping, don't insert the reverse of the operation into MemOp2RegOpTable.
237 if (OpTbl2Addr
[i
][1] & TB_NOT_REVERSABLE
)
240 // Index 0, folded load and store, no alignment requirement.
241 unsigned AuxInfo
= 0 | (1 << 4) | (1 << 5);
243 assert(!MemOp2RegOpTable
.count(MemOp
) &&
244 "Duplicated entries in unfolding maps?");
245 MemOp2RegOpTable
[MemOp
] = std::make_pair(RegOp
, AuxInfo
);
248 // If the third value is 1, then it's folding either a load or a store.
249 static const unsigned OpTbl0
[][4] = {
250 { X86::BT16ri8
, X86::BT16mi8
, 1, 0 },
251 { X86::BT32ri8
, X86::BT32mi8
, 1, 0 },
252 { X86::BT64ri8
, X86::BT64mi8
, 1, 0 },
253 { X86::CALL32r
, X86::CALL32m
, 1, 0 },
254 { X86::CALL64r
, X86::CALL64m
, 1, 0 },
255 { X86::WINCALL64r
, X86::WINCALL64m
, 1, 0 },
256 { X86::CMP16ri
, X86::CMP16mi
, 1, 0 },
257 { X86::CMP16ri8
, X86::CMP16mi8
, 1, 0 },
258 { X86::CMP16rr
, X86::CMP16mr
, 1, 0 },
259 { X86::CMP32ri
, X86::CMP32mi
, 1, 0 },
260 { X86::CMP32ri8
, X86::CMP32mi8
, 1, 0 },
261 { X86::CMP32rr
, X86::CMP32mr
, 1, 0 },
262 { X86::CMP64ri32
, X86::CMP64mi32
, 1, 0 },
263 { X86::CMP64ri8
, X86::CMP64mi8
, 1, 0 },
264 { X86::CMP64rr
, X86::CMP64mr
, 1, 0 },
265 { X86::CMP8ri
, X86::CMP8mi
, 1, 0 },
266 { X86::CMP8rr
, X86::CMP8mr
, 1, 0 },
267 { X86::DIV16r
, X86::DIV16m
, 1, 0 },
268 { X86::DIV32r
, X86::DIV32m
, 1, 0 },
269 { X86::DIV64r
, X86::DIV64m
, 1, 0 },
270 { X86::DIV8r
, X86::DIV8m
, 1, 0 },
271 { X86::EXTRACTPSrr
, X86::EXTRACTPSmr
, 0, 16 },
272 { X86::FsMOVAPDrr
, X86::MOVSDmr
| TB_NOT_REVERSABLE
, 0, 0 },
273 { X86::FsMOVAPSrr
, X86::MOVSSmr
| TB_NOT_REVERSABLE
, 0, 0 },
274 { X86::IDIV16r
, X86::IDIV16m
, 1, 0 },
275 { X86::IDIV32r
, X86::IDIV32m
, 1, 0 },
276 { X86::IDIV64r
, X86::IDIV64m
, 1, 0 },
277 { X86::IDIV8r
, X86::IDIV8m
, 1, 0 },
278 { X86::IMUL16r
, X86::IMUL16m
, 1, 0 },
279 { X86::IMUL32r
, X86::IMUL32m
, 1, 0 },
280 { X86::IMUL64r
, X86::IMUL64m
, 1, 0 },
281 { X86::IMUL8r
, X86::IMUL8m
, 1, 0 },
282 { X86::JMP32r
, X86::JMP32m
, 1, 0 },
283 { X86::JMP64r
, X86::JMP64m
, 1, 0 },
284 { X86::MOV16ri
, X86::MOV16mi
, 0, 0 },
285 { X86::MOV16rr
, X86::MOV16mr
, 0, 0 },
286 { X86::MOV32ri
, X86::MOV32mi
, 0, 0 },
287 { X86::MOV32rr
, X86::MOV32mr
, 0, 0 },
288 { X86::MOV64ri32
, X86::MOV64mi32
, 0, 0 },
289 { X86::MOV64rr
, X86::MOV64mr
, 0, 0 },
290 { X86::MOV8ri
, X86::MOV8mi
, 0, 0 },
291 { X86::MOV8rr
, X86::MOV8mr
, 0, 0 },
292 { X86::MOV8rr_NOREX
, X86::MOV8mr_NOREX
, 0, 0 },
293 { X86::MOVAPDrr
, X86::MOVAPDmr
, 0, 16 },
294 { X86::MOVAPSrr
, X86::MOVAPSmr
, 0, 16 },
295 { X86::MOVDQArr
, X86::MOVDQAmr
, 0, 16 },
296 { X86::MOVPDI2DIrr
, X86::MOVPDI2DImr
, 0, 0 },
297 { X86::MOVPQIto64rr
,X86::MOVPQI2QImr
, 0, 0 },
298 { X86::MOVSDto64rr
, X86::MOVSDto64mr
, 0, 0 },
299 { X86::MOVSS2DIrr
, X86::MOVSS2DImr
, 0, 0 },
300 { X86::MOVUPDrr
, X86::MOVUPDmr
, 0, 0 },
301 { X86::MOVUPSrr
, X86::MOVUPSmr
, 0, 0 },
302 { X86::MUL16r
, X86::MUL16m
, 1, 0 },
303 { X86::MUL32r
, X86::MUL32m
, 1, 0 },
304 { X86::MUL64r
, X86::MUL64m
, 1, 0 },
305 { X86::MUL8r
, X86::MUL8m
, 1, 0 },
306 { X86::SETAEr
, X86::SETAEm
, 0, 0 },
307 { X86::SETAr
, X86::SETAm
, 0, 0 },
308 { X86::SETBEr
, X86::SETBEm
, 0, 0 },
309 { X86::SETBr
, X86::SETBm
, 0, 0 },
310 { X86::SETEr
, X86::SETEm
, 0, 0 },
311 { X86::SETGEr
, X86::SETGEm
, 0, 0 },
312 { X86::SETGr
, X86::SETGm
, 0, 0 },
313 { X86::SETLEr
, X86::SETLEm
, 0, 0 },
314 { X86::SETLr
, X86::SETLm
, 0, 0 },
315 { X86::SETNEr
, X86::SETNEm
, 0, 0 },
316 { X86::SETNOr
, X86::SETNOm
, 0, 0 },
317 { X86::SETNPr
, X86::SETNPm
, 0, 0 },
318 { X86::SETNSr
, X86::SETNSm
, 0, 0 },
319 { X86::SETOr
, X86::SETOm
, 0, 0 },
320 { X86::SETPr
, X86::SETPm
, 0, 0 },
321 { X86::SETSr
, X86::SETSm
, 0, 0 },
322 { X86::TAILJMPr
, X86::TAILJMPm
, 1, 0 },
323 { X86::TAILJMPr64
, X86::TAILJMPm64
, 1, 0 },
324 { X86::TEST16ri
, X86::TEST16mi
, 1, 0 },
325 { X86::TEST32ri
, X86::TEST32mi
, 1, 0 },
326 { X86::TEST64ri32
, X86::TEST64mi32
, 1, 0 },
327 { X86::TEST8ri
, X86::TEST8mi
, 1, 0 }
330 for (unsigned i
= 0, e
= array_lengthof(OpTbl0
); i
!= e
; ++i
) {
331 unsigned RegOp
= OpTbl0
[i
][0];
332 unsigned MemOp
= OpTbl0
[i
][1] & ~TB_FLAGS
;
333 unsigned FoldedLoad
= OpTbl0
[i
][2];
334 unsigned Align
= OpTbl0
[i
][3];
335 assert(!RegOp2MemOpTable0
.count(RegOp
) && "Duplicated entries?");
336 RegOp2MemOpTable0
[RegOp
] = std::make_pair(MemOp
, Align
);
338 // If this is not a reversable operation (because there is a many->one)
339 // mapping, don't insert the reverse of the operation into MemOp2RegOpTable.
340 if (OpTbl0
[i
][1] & TB_NOT_REVERSABLE
)
343 // Index 0, folded load or store.
344 unsigned AuxInfo
= 0 | (FoldedLoad
<< 4) | ((FoldedLoad
^1) << 5);
345 assert(!MemOp2RegOpTable
.count(MemOp
) && "Duplicated entries?");
346 MemOp2RegOpTable
[MemOp
] = std::make_pair(RegOp
, AuxInfo
);
349 static const unsigned OpTbl1
[][3] = {
350 { X86::CMP16rr
, X86::CMP16rm
, 0 },
351 { X86::CMP32rr
, X86::CMP32rm
, 0 },
352 { X86::CMP64rr
, X86::CMP64rm
, 0 },
353 { X86::CMP8rr
, X86::CMP8rm
, 0 },
354 { X86::CVTSD2SSrr
, X86::CVTSD2SSrm
, 0 },
355 { X86::CVTSI2SD64rr
, X86::CVTSI2SD64rm
, 0 },
356 { X86::CVTSI2SDrr
, X86::CVTSI2SDrm
, 0 },
357 { X86::CVTSI2SS64rr
, X86::CVTSI2SS64rm
, 0 },
358 { X86::CVTSI2SSrr
, X86::CVTSI2SSrm
, 0 },
359 { X86::CVTSS2SDrr
, X86::CVTSS2SDrm
, 0 },
360 { X86::CVTTSD2SI64rr
, X86::CVTTSD2SI64rm
, 0 },
361 { X86::CVTTSD2SIrr
, X86::CVTTSD2SIrm
, 0 },
362 { X86::CVTTSS2SI64rr
, X86::CVTTSS2SI64rm
, 0 },
363 { X86::CVTTSS2SIrr
, X86::CVTTSS2SIrm
, 0 },
364 { X86::FsMOVAPDrr
, X86::MOVSDrm
| TB_NOT_REVERSABLE
, 0 },
365 { X86::FsMOVAPSrr
, X86::MOVSSrm
| TB_NOT_REVERSABLE
, 0 },
366 { X86::IMUL16rri
, X86::IMUL16rmi
, 0 },
367 { X86::IMUL16rri8
, X86::IMUL16rmi8
, 0 },
368 { X86::IMUL32rri
, X86::IMUL32rmi
, 0 },
369 { X86::IMUL32rri8
, X86::IMUL32rmi8
, 0 },
370 { X86::IMUL64rri32
, X86::IMUL64rmi32
, 0 },
371 { X86::IMUL64rri8
, X86::IMUL64rmi8
, 0 },
372 { X86::Int_CMPSDrr
, X86::Int_CMPSDrm
, 0 },
373 { X86::Int_CMPSSrr
, X86::Int_CMPSSrm
, 0 },
374 { X86::Int_COMISDrr
, X86::Int_COMISDrm
, 0 },
375 { X86::Int_COMISSrr
, X86::Int_COMISSrm
, 0 },
376 { X86::Int_CVTDQ2PDrr
, X86::Int_CVTDQ2PDrm
, 16 },
377 { X86::Int_CVTDQ2PSrr
, X86::Int_CVTDQ2PSrm
, 16 },
378 { X86::Int_CVTPD2DQrr
, X86::Int_CVTPD2DQrm
, 16 },
379 { X86::Int_CVTPD2PSrr
, X86::Int_CVTPD2PSrm
, 16 },
380 { X86::Int_CVTPS2DQrr
, X86::Int_CVTPS2DQrm
, 16 },
381 { X86::Int_CVTPS2PDrr
, X86::Int_CVTPS2PDrm
, 0 },
382 { X86::CVTSD2SI64rr
, X86::CVTSD2SI64rm
, 0 },
383 { X86::CVTSD2SIrr
, X86::CVTSD2SIrm
, 0 },
384 { X86::Int_CVTSD2SSrr
, X86::Int_CVTSD2SSrm
, 0 },
385 { X86::Int_CVTSI2SD64rr
,X86::Int_CVTSI2SD64rm
, 0 },
386 { X86::Int_CVTSI2SDrr
, X86::Int_CVTSI2SDrm
, 0 },
387 { X86::Int_CVTSI2SS64rr
,X86::Int_CVTSI2SS64rm
, 0 },
388 { X86::Int_CVTSI2SSrr
, X86::Int_CVTSI2SSrm
, 0 },
389 { X86::Int_CVTSS2SDrr
, X86::Int_CVTSS2SDrm
, 0 },
390 { X86::Int_CVTSS2SI64rr
,X86::Int_CVTSS2SI64rm
, 0 },
391 { X86::Int_CVTSS2SIrr
, X86::Int_CVTSS2SIrm
, 0 },
392 { X86::CVTTPD2DQrr
, X86::CVTTPD2DQrm
, 16 },
393 { X86::CVTTPS2DQrr
, X86::CVTTPS2DQrm
, 16 },
394 { X86::Int_CVTTSD2SI64rr
,X86::Int_CVTTSD2SI64rm
, 0 },
395 { X86::Int_CVTTSD2SIrr
, X86::Int_CVTTSD2SIrm
, 0 },
396 { X86::Int_CVTTSS2SI64rr
,X86::Int_CVTTSS2SI64rm
, 0 },
397 { X86::Int_CVTTSS2SIrr
, X86::Int_CVTTSS2SIrm
, 0 },
398 { X86::Int_UCOMISDrr
, X86::Int_UCOMISDrm
, 0 },
399 { X86::Int_UCOMISSrr
, X86::Int_UCOMISSrm
, 0 },
400 { X86::MOV16rr
, X86::MOV16rm
, 0 },
401 { X86::MOV32rr
, X86::MOV32rm
, 0 },
402 { X86::MOV64rr
, X86::MOV64rm
, 0 },
403 { X86::MOV64toPQIrr
, X86::MOVQI2PQIrm
, 0 },
404 { X86::MOV64toSDrr
, X86::MOV64toSDrm
, 0 },
405 { X86::MOV8rr
, X86::MOV8rm
, 0 },
406 { X86::MOVAPDrr
, X86::MOVAPDrm
, 16 },
407 { X86::MOVAPSrr
, X86::MOVAPSrm
, 16 },
408 { X86::MOVDDUPrr
, X86::MOVDDUPrm
, 0 },
409 { X86::MOVDI2PDIrr
, X86::MOVDI2PDIrm
, 0 },
410 { X86::MOVDI2SSrr
, X86::MOVDI2SSrm
, 0 },
411 { X86::MOVDQArr
, X86::MOVDQArm
, 16 },
412 { X86::MOVSHDUPrr
, X86::MOVSHDUPrm
, 16 },
413 { X86::MOVSLDUPrr
, X86::MOVSLDUPrm
, 16 },
414 { X86::MOVSX16rr8
, X86::MOVSX16rm8
, 0 },
415 { X86::MOVSX32rr16
, X86::MOVSX32rm16
, 0 },
416 { X86::MOVSX32rr8
, X86::MOVSX32rm8
, 0 },
417 { X86::MOVSX64rr16
, X86::MOVSX64rm16
, 0 },
418 { X86::MOVSX64rr32
, X86::MOVSX64rm32
, 0 },
419 { X86::MOVSX64rr8
, X86::MOVSX64rm8
, 0 },
420 { X86::MOVUPDrr
, X86::MOVUPDrm
, 16 },
421 { X86::MOVUPSrr
, X86::MOVUPSrm
, 0 },
422 { X86::MOVZDI2PDIrr
, X86::MOVZDI2PDIrm
, 0 },
423 { X86::MOVZQI2PQIrr
, X86::MOVZQI2PQIrm
, 0 },
424 { X86::MOVZPQILo2PQIrr
, X86::MOVZPQILo2PQIrm
, 16 },
425 { X86::MOVZX16rr8
, X86::MOVZX16rm8
, 0 },
426 { X86::MOVZX32rr16
, X86::MOVZX32rm16
, 0 },
427 { X86::MOVZX32_NOREXrr8
, X86::MOVZX32_NOREXrm8
, 0 },
428 { X86::MOVZX32rr8
, X86::MOVZX32rm8
, 0 },
429 { X86::MOVZX64rr16
, X86::MOVZX64rm16
, 0 },
430 { X86::MOVZX64rr32
, X86::MOVZX64rm32
, 0 },
431 { X86::MOVZX64rr8
, X86::MOVZX64rm8
, 0 },
432 { X86::PSHUFDri
, X86::PSHUFDmi
, 16 },
433 { X86::PSHUFHWri
, X86::PSHUFHWmi
, 16 },
434 { X86::PSHUFLWri
, X86::PSHUFLWmi
, 16 },
435 { X86::RCPPSr
, X86::RCPPSm
, 16 },
436 { X86::RCPPSr_Int
, X86::RCPPSm_Int
, 16 },
437 { X86::RSQRTPSr
, X86::RSQRTPSm
, 16 },
438 { X86::RSQRTPSr_Int
, X86::RSQRTPSm_Int
, 16 },
439 { X86::RSQRTSSr
, X86::RSQRTSSm
, 0 },
440 { X86::RSQRTSSr_Int
, X86::RSQRTSSm_Int
, 0 },
441 { X86::SQRTPDr
, X86::SQRTPDm
, 16 },
442 { X86::SQRTPDr_Int
, X86::SQRTPDm_Int
, 16 },
443 { X86::SQRTPSr
, X86::SQRTPSm
, 16 },
444 { X86::SQRTPSr_Int
, X86::SQRTPSm_Int
, 16 },
445 { X86::SQRTSDr
, X86::SQRTSDm
, 0 },
446 { X86::SQRTSDr_Int
, X86::SQRTSDm_Int
, 0 },
447 { X86::SQRTSSr
, X86::SQRTSSm
, 0 },
448 { X86::SQRTSSr_Int
, X86::SQRTSSm_Int
, 0 },
449 { X86::TEST16rr
, X86::TEST16rm
, 0 },
450 { X86::TEST32rr
, X86::TEST32rm
, 0 },
451 { X86::TEST64rr
, X86::TEST64rm
, 0 },
452 { X86::TEST8rr
, X86::TEST8rm
, 0 },
453 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
454 { X86::UCOMISDrr
, X86::UCOMISDrm
, 0 },
455 { X86::UCOMISSrr
, X86::UCOMISSrm
, 0 }
458 for (unsigned i
= 0, e
= array_lengthof(OpTbl1
); i
!= e
; ++i
) {
459 unsigned RegOp
= OpTbl1
[i
][0];
460 unsigned MemOp
= OpTbl1
[i
][1] & ~TB_FLAGS
;
461 unsigned Align
= OpTbl1
[i
][2];
462 assert(!RegOp2MemOpTable1
.count(RegOp
) && "Duplicate entries");
463 RegOp2MemOpTable1
[RegOp
] = std::make_pair(MemOp
, Align
);
465 // If this is not a reversable operation (because there is a many->one)
466 // mapping, don't insert the reverse of the operation into MemOp2RegOpTable.
467 if (OpTbl1
[i
][1] & TB_NOT_REVERSABLE
)
470 // Index 1, folded load
471 unsigned AuxInfo
= 1 | (1 << 4);
472 assert(!MemOp2RegOpTable
.count(MemOp
) && "Duplicate entries");
473 MemOp2RegOpTable
[MemOp
] = std::make_pair(RegOp
, AuxInfo
);
476 static const unsigned OpTbl2
[][3] = {
477 { X86::ADC32rr
, X86::ADC32rm
, 0 },
478 { X86::ADC64rr
, X86::ADC64rm
, 0 },
479 { X86::ADD16rr
, X86::ADD16rm
, 0 },
480 { X86::ADD16rr_DB
, X86::ADD16rm
| TB_NOT_REVERSABLE
, 0 },
481 { X86::ADD32rr
, X86::ADD32rm
, 0 },
482 { X86::ADD32rr_DB
, X86::ADD32rm
| TB_NOT_REVERSABLE
, 0 },
483 { X86::ADD64rr
, X86::ADD64rm
, 0 },
484 { X86::ADD64rr_DB
, X86::ADD64rm
| TB_NOT_REVERSABLE
, 0 },
485 { X86::ADD8rr
, X86::ADD8rm
, 0 },
486 { X86::ADDPDrr
, X86::ADDPDrm
, 16 },
487 { X86::ADDPSrr
, X86::ADDPSrm
, 16 },
488 { X86::ADDSDrr
, X86::ADDSDrm
, 0 },
489 { X86::ADDSSrr
, X86::ADDSSrm
, 0 },
490 { X86::ADDSUBPDrr
, X86::ADDSUBPDrm
, 16 },
491 { X86::ADDSUBPSrr
, X86::ADDSUBPSrm
, 16 },
492 { X86::AND16rr
, X86::AND16rm
, 0 },
493 { X86::AND32rr
, X86::AND32rm
, 0 },
494 { X86::AND64rr
, X86::AND64rm
, 0 },
495 { X86::AND8rr
, X86::AND8rm
, 0 },
496 { X86::ANDNPDrr
, X86::ANDNPDrm
, 16 },
497 { X86::ANDNPSrr
, X86::ANDNPSrm
, 16 },
498 { X86::ANDPDrr
, X86::ANDPDrm
, 16 },
499 { X86::ANDPSrr
, X86::ANDPSrm
, 16 },
500 { X86::CMOVA16rr
, X86::CMOVA16rm
, 0 },
501 { X86::CMOVA32rr
, X86::CMOVA32rm
, 0 },
502 { X86::CMOVA64rr
, X86::CMOVA64rm
, 0 },
503 { X86::CMOVAE16rr
, X86::CMOVAE16rm
, 0 },
504 { X86::CMOVAE32rr
, X86::CMOVAE32rm
, 0 },
505 { X86::CMOVAE64rr
, X86::CMOVAE64rm
, 0 },
506 { X86::CMOVB16rr
, X86::CMOVB16rm
, 0 },
507 { X86::CMOVB32rr
, X86::CMOVB32rm
, 0 },
508 { X86::CMOVB64rr
, X86::CMOVB64rm
, 0 },
509 { X86::CMOVBE16rr
, X86::CMOVBE16rm
, 0 },
510 { X86::CMOVBE32rr
, X86::CMOVBE32rm
, 0 },
511 { X86::CMOVBE64rr
, X86::CMOVBE64rm
, 0 },
512 { X86::CMOVE16rr
, X86::CMOVE16rm
, 0 },
513 { X86::CMOVE32rr
, X86::CMOVE32rm
, 0 },
514 { X86::CMOVE64rr
, X86::CMOVE64rm
, 0 },
515 { X86::CMOVG16rr
, X86::CMOVG16rm
, 0 },
516 { X86::CMOVG32rr
, X86::CMOVG32rm
, 0 },
517 { X86::CMOVG64rr
, X86::CMOVG64rm
, 0 },
518 { X86::CMOVGE16rr
, X86::CMOVGE16rm
, 0 },
519 { X86::CMOVGE32rr
, X86::CMOVGE32rm
, 0 },
520 { X86::CMOVGE64rr
, X86::CMOVGE64rm
, 0 },
521 { X86::CMOVL16rr
, X86::CMOVL16rm
, 0 },
522 { X86::CMOVL32rr
, X86::CMOVL32rm
, 0 },
523 { X86::CMOVL64rr
, X86::CMOVL64rm
, 0 },
524 { X86::CMOVLE16rr
, X86::CMOVLE16rm
, 0 },
525 { X86::CMOVLE32rr
, X86::CMOVLE32rm
, 0 },
526 { X86::CMOVLE64rr
, X86::CMOVLE64rm
, 0 },
527 { X86::CMOVNE16rr
, X86::CMOVNE16rm
, 0 },
528 { X86::CMOVNE32rr
, X86::CMOVNE32rm
, 0 },
529 { X86::CMOVNE64rr
, X86::CMOVNE64rm
, 0 },
530 { X86::CMOVNO16rr
, X86::CMOVNO16rm
, 0 },
531 { X86::CMOVNO32rr
, X86::CMOVNO32rm
, 0 },
532 { X86::CMOVNO64rr
, X86::CMOVNO64rm
, 0 },
533 { X86::CMOVNP16rr
, X86::CMOVNP16rm
, 0 },
534 { X86::CMOVNP32rr
, X86::CMOVNP32rm
, 0 },
535 { X86::CMOVNP64rr
, X86::CMOVNP64rm
, 0 },
536 { X86::CMOVNS16rr
, X86::CMOVNS16rm
, 0 },
537 { X86::CMOVNS32rr
, X86::CMOVNS32rm
, 0 },
538 { X86::CMOVNS64rr
, X86::CMOVNS64rm
, 0 },
539 { X86::CMOVO16rr
, X86::CMOVO16rm
, 0 },
540 { X86::CMOVO32rr
, X86::CMOVO32rm
, 0 },
541 { X86::CMOVO64rr
, X86::CMOVO64rm
, 0 },
542 { X86::CMOVP16rr
, X86::CMOVP16rm
, 0 },
543 { X86::CMOVP32rr
, X86::CMOVP32rm
, 0 },
544 { X86::CMOVP64rr
, X86::CMOVP64rm
, 0 },
545 { X86::CMOVS16rr
, X86::CMOVS16rm
, 0 },
546 { X86::CMOVS32rr
, X86::CMOVS32rm
, 0 },
547 { X86::CMOVS64rr
, X86::CMOVS64rm
, 0 },
548 { X86::CMPPDrri
, X86::CMPPDrmi
, 16 },
549 { X86::CMPPSrri
, X86::CMPPSrmi
, 16 },
550 { X86::CMPSDrr
, X86::CMPSDrm
, 0 },
551 { X86::CMPSSrr
, X86::CMPSSrm
, 0 },
552 { X86::DIVPDrr
, X86::DIVPDrm
, 16 },
553 { X86::DIVPSrr
, X86::DIVPSrm
, 16 },
554 { X86::DIVSDrr
, X86::DIVSDrm
, 0 },
555 { X86::DIVSSrr
, X86::DIVSSrm
, 0 },
556 { X86::FsANDNPDrr
, X86::FsANDNPDrm
, 16 },
557 { X86::FsANDNPSrr
, X86::FsANDNPSrm
, 16 },
558 { X86::FsANDPDrr
, X86::FsANDPDrm
, 16 },
559 { X86::FsANDPSrr
, X86::FsANDPSrm
, 16 },
560 { X86::FsORPDrr
, X86::FsORPDrm
, 16 },
561 { X86::FsORPSrr
, X86::FsORPSrm
, 16 },
562 { X86::FsXORPDrr
, X86::FsXORPDrm
, 16 },
563 { X86::FsXORPSrr
, X86::FsXORPSrm
, 16 },
564 { X86::HADDPDrr
, X86::HADDPDrm
, 16 },
565 { X86::HADDPSrr
, X86::HADDPSrm
, 16 },
566 { X86::HSUBPDrr
, X86::HSUBPDrm
, 16 },
567 { X86::HSUBPSrr
, X86::HSUBPSrm
, 16 },
568 { X86::IMUL16rr
, X86::IMUL16rm
, 0 },
569 { X86::IMUL32rr
, X86::IMUL32rm
, 0 },
570 { X86::IMUL64rr
, X86::IMUL64rm
, 0 },
571 { X86::MAXPDrr
, X86::MAXPDrm
, 16 },
572 { X86::MAXPDrr_Int
, X86::MAXPDrm_Int
, 16 },
573 { X86::MAXPSrr
, X86::MAXPSrm
, 16 },
574 { X86::MAXPSrr_Int
, X86::MAXPSrm_Int
, 16 },
575 { X86::MAXSDrr
, X86::MAXSDrm
, 0 },
576 { X86::MAXSDrr_Int
, X86::MAXSDrm_Int
, 0 },
577 { X86::MAXSSrr
, X86::MAXSSrm
, 0 },
578 { X86::MAXSSrr_Int
, X86::MAXSSrm_Int
, 0 },
579 { X86::MINPDrr
, X86::MINPDrm
, 16 },
580 { X86::MINPDrr_Int
, X86::MINPDrm_Int
, 16 },
581 { X86::MINPSrr
, X86::MINPSrm
, 16 },
582 { X86::MINPSrr_Int
, X86::MINPSrm_Int
, 16 },
583 { X86::MINSDrr
, X86::MINSDrm
, 0 },
584 { X86::MINSDrr_Int
, X86::MINSDrm_Int
, 0 },
585 { X86::MINSSrr
, X86::MINSSrm
, 0 },
586 { X86::MINSSrr_Int
, X86::MINSSrm_Int
, 0 },
587 { X86::MULPDrr
, X86::MULPDrm
, 16 },
588 { X86::MULPSrr
, X86::MULPSrm
, 16 },
589 { X86::MULSDrr
, X86::MULSDrm
, 0 },
590 { X86::MULSSrr
, X86::MULSSrm
, 0 },
591 { X86::OR16rr
, X86::OR16rm
, 0 },
592 { X86::OR32rr
, X86::OR32rm
, 0 },
593 { X86::OR64rr
, X86::OR64rm
, 0 },
594 { X86::OR8rr
, X86::OR8rm
, 0 },
595 { X86::ORPDrr
, X86::ORPDrm
, 16 },
596 { X86::ORPSrr
, X86::ORPSrm
, 16 },
597 { X86::PACKSSDWrr
, X86::PACKSSDWrm
, 16 },
598 { X86::PACKSSWBrr
, X86::PACKSSWBrm
, 16 },
599 { X86::PACKUSWBrr
, X86::PACKUSWBrm
, 16 },
600 { X86::PADDBrr
, X86::PADDBrm
, 16 },
601 { X86::PADDDrr
, X86::PADDDrm
, 16 },
602 { X86::PADDQrr
, X86::PADDQrm
, 16 },
603 { X86::PADDSBrr
, X86::PADDSBrm
, 16 },
604 { X86::PADDSWrr
, X86::PADDSWrm
, 16 },
605 { X86::PADDWrr
, X86::PADDWrm
, 16 },
606 { X86::PANDNrr
, X86::PANDNrm
, 16 },
607 { X86::PANDrr
, X86::PANDrm
, 16 },
608 { X86::PAVGBrr
, X86::PAVGBrm
, 16 },
609 { X86::PAVGWrr
, X86::PAVGWrm
, 16 },
610 { X86::PCMPEQBrr
, X86::PCMPEQBrm
, 16 },
611 { X86::PCMPEQDrr
, X86::PCMPEQDrm
, 16 },
612 { X86::PCMPEQWrr
, X86::PCMPEQWrm
, 16 },
613 { X86::PCMPGTBrr
, X86::PCMPGTBrm
, 16 },
614 { X86::PCMPGTDrr
, X86::PCMPGTDrm
, 16 },
615 { X86::PCMPGTWrr
, X86::PCMPGTWrm
, 16 },
616 { X86::PINSRWrri
, X86::PINSRWrmi
, 16 },
617 { X86::PMADDWDrr
, X86::PMADDWDrm
, 16 },
618 { X86::PMAXSWrr
, X86::PMAXSWrm
, 16 },
619 { X86::PMAXUBrr
, X86::PMAXUBrm
, 16 },
620 { X86::PMINSWrr
, X86::PMINSWrm
, 16 },
621 { X86::PMINUBrr
, X86::PMINUBrm
, 16 },
622 { X86::PMULDQrr
, X86::PMULDQrm
, 16 },
623 { X86::PMULHUWrr
, X86::PMULHUWrm
, 16 },
624 { X86::PMULHWrr
, X86::PMULHWrm
, 16 },
625 { X86::PMULLDrr
, X86::PMULLDrm
, 16 },
626 { X86::PMULLWrr
, X86::PMULLWrm
, 16 },
627 { X86::PMULUDQrr
, X86::PMULUDQrm
, 16 },
628 { X86::PORrr
, X86::PORrm
, 16 },
629 { X86::PSADBWrr
, X86::PSADBWrm
, 16 },
630 { X86::PSLLDrr
, X86::PSLLDrm
, 16 },
631 { X86::PSLLQrr
, X86::PSLLQrm
, 16 },
632 { X86::PSLLWrr
, X86::PSLLWrm
, 16 },
633 { X86::PSRADrr
, X86::PSRADrm
, 16 },
634 { X86::PSRAWrr
, X86::PSRAWrm
, 16 },
635 { X86::PSRLDrr
, X86::PSRLDrm
, 16 },
636 { X86::PSRLQrr
, X86::PSRLQrm
, 16 },
637 { X86::PSRLWrr
, X86::PSRLWrm
, 16 },
638 { X86::PSUBBrr
, X86::PSUBBrm
, 16 },
639 { X86::PSUBDrr
, X86::PSUBDrm
, 16 },
640 { X86::PSUBSBrr
, X86::PSUBSBrm
, 16 },
641 { X86::PSUBSWrr
, X86::PSUBSWrm
, 16 },
642 { X86::PSUBWrr
, X86::PSUBWrm
, 16 },
643 { X86::PUNPCKHBWrr
, X86::PUNPCKHBWrm
, 16 },
644 { X86::PUNPCKHDQrr
, X86::PUNPCKHDQrm
, 16 },
645 { X86::PUNPCKHQDQrr
, X86::PUNPCKHQDQrm
, 16 },
646 { X86::PUNPCKHWDrr
, X86::PUNPCKHWDrm
, 16 },
647 { X86::PUNPCKLBWrr
, X86::PUNPCKLBWrm
, 16 },
648 { X86::PUNPCKLDQrr
, X86::PUNPCKLDQrm
, 16 },
649 { X86::PUNPCKLQDQrr
, X86::PUNPCKLQDQrm
, 16 },
650 { X86::PUNPCKLWDrr
, X86::PUNPCKLWDrm
, 16 },
651 { X86::PXORrr
, X86::PXORrm
, 16 },
652 { X86::SBB32rr
, X86::SBB32rm
, 0 },
653 { X86::SBB64rr
, X86::SBB64rm
, 0 },
654 { X86::SHUFPDrri
, X86::SHUFPDrmi
, 16 },
655 { X86::SHUFPSrri
, X86::SHUFPSrmi
, 16 },
656 { X86::SUB16rr
, X86::SUB16rm
, 0 },
657 { X86::SUB32rr
, X86::SUB32rm
, 0 },
658 { X86::SUB64rr
, X86::SUB64rm
, 0 },
659 { X86::SUB8rr
, X86::SUB8rm
, 0 },
660 { X86::SUBPDrr
, X86::SUBPDrm
, 16 },
661 { X86::SUBPSrr
, X86::SUBPSrm
, 16 },
662 { X86::SUBSDrr
, X86::SUBSDrm
, 0 },
663 { X86::SUBSSrr
, X86::SUBSSrm
, 0 },
664 // FIXME: TEST*rr -> swapped operand of TEST*mr.
665 { X86::UNPCKHPDrr
, X86::UNPCKHPDrm
, 16 },
666 { X86::UNPCKHPSrr
, X86::UNPCKHPSrm
, 16 },
667 { X86::UNPCKLPDrr
, X86::UNPCKLPDrm
, 16 },
668 { X86::UNPCKLPSrr
, X86::UNPCKLPSrm
, 16 },
669 { X86::XOR16rr
, X86::XOR16rm
, 0 },
670 { X86::XOR32rr
, X86::XOR32rm
, 0 },
671 { X86::XOR64rr
, X86::XOR64rm
, 0 },
672 { X86::XOR8rr
, X86::XOR8rm
, 0 },
673 { X86::XORPDrr
, X86::XORPDrm
, 16 },
674 { X86::XORPSrr
, X86::XORPSrm
, 16 }
677 for (unsigned i
= 0, e
= array_lengthof(OpTbl2
); i
!= e
; ++i
) {
678 unsigned RegOp
= OpTbl2
[i
][0];
679 unsigned MemOp
= OpTbl2
[i
][1] & ~TB_FLAGS
;
680 unsigned Align
= OpTbl2
[i
][2];
682 assert(!RegOp2MemOpTable2
.count(RegOp
) && "Duplicate entry!");
683 RegOp2MemOpTable2
[RegOp
] = std::make_pair(MemOp
, Align
);
685 // If this is not a reversable operation (because there is a many->one)
686 // mapping, don't insert the reverse of the operation into MemOp2RegOpTable.
687 if (OpTbl2
[i
][1] & TB_NOT_REVERSABLE
)
690 // Index 2, folded load
691 unsigned AuxInfo
= 2 | (1 << 4);
692 assert(!MemOp2RegOpTable
.count(MemOp
) &&
693 "Duplicated entries in unfolding maps?");
694 MemOp2RegOpTable
[MemOp
] = std::make_pair(RegOp
, AuxInfo
);
699 X86InstrInfo::isCoalescableExtInstr(const MachineInstr
&MI
,
700 unsigned &SrcReg
, unsigned &DstReg
,
701 unsigned &SubIdx
) const {
702 switch (MI
.getOpcode()) {
704 case X86::MOVSX16rr8
:
705 case X86::MOVZX16rr8
:
706 case X86::MOVSX32rr8
:
707 case X86::MOVZX32rr8
:
708 case X86::MOVSX64rr8
:
709 case X86::MOVZX64rr8
:
710 if (!TM
.getSubtarget
<X86Subtarget
>().is64Bit())
711 // It's not always legal to reference the low 8-bit of the larger
712 // register in 32-bit mode.
714 case X86::MOVSX32rr16
:
715 case X86::MOVZX32rr16
:
716 case X86::MOVSX64rr16
:
717 case X86::MOVZX64rr16
:
718 case X86::MOVSX64rr32
:
719 case X86::MOVZX64rr32
: {
720 if (MI
.getOperand(0).getSubReg() || MI
.getOperand(1).getSubReg())
723 SrcReg
= MI
.getOperand(1).getReg();
724 DstReg
= MI
.getOperand(0).getReg();
725 switch (MI
.getOpcode()) {
729 case X86::MOVSX16rr8
:
730 case X86::MOVZX16rr8
:
731 case X86::MOVSX32rr8
:
732 case X86::MOVZX32rr8
:
733 case X86::MOVSX64rr8
:
734 case X86::MOVZX64rr8
:
735 SubIdx
= X86::sub_8bit
;
737 case X86::MOVSX32rr16
:
738 case X86::MOVZX32rr16
:
739 case X86::MOVSX64rr16
:
740 case X86::MOVZX64rr16
:
741 SubIdx
= X86::sub_16bit
;
743 case X86::MOVSX64rr32
:
744 case X86::MOVZX64rr32
:
745 SubIdx
= X86::sub_32bit
;
754 /// isFrameOperand - Return true and the FrameIndex if the specified
755 /// operand and follow operands form a reference to the stack frame.
756 bool X86InstrInfo::isFrameOperand(const MachineInstr
*MI
, unsigned int Op
,
757 int &FrameIndex
) const {
758 if (MI
->getOperand(Op
).isFI() && MI
->getOperand(Op
+1).isImm() &&
759 MI
->getOperand(Op
+2).isReg() && MI
->getOperand(Op
+3).isImm() &&
760 MI
->getOperand(Op
+1).getImm() == 1 &&
761 MI
->getOperand(Op
+2).getReg() == 0 &&
762 MI
->getOperand(Op
+3).getImm() == 0) {
763 FrameIndex
= MI
->getOperand(Op
).getIndex();
769 static bool isFrameLoadOpcode(int Opcode
) {
782 case X86::MMX_MOVD64rm
:
783 case X86::MMX_MOVQ64rm
:
790 static bool isFrameStoreOpcode(int Opcode
) {
803 case X86::MMX_MOVD64mr
:
804 case X86::MMX_MOVQ64mr
:
805 case X86::MMX_MOVNTQmr
:
811 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr
*MI
,
812 int &FrameIndex
) const {
813 if (isFrameLoadOpcode(MI
->getOpcode()))
814 if (MI
->getOperand(0).getSubReg() == 0 && isFrameOperand(MI
, 1, FrameIndex
))
815 return MI
->getOperand(0).getReg();
819 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr
*MI
,
820 int &FrameIndex
) const {
821 if (isFrameLoadOpcode(MI
->getOpcode())) {
823 if ((Reg
= isLoadFromStackSlot(MI
, FrameIndex
)))
825 // Check for post-frame index elimination operations
826 const MachineMemOperand
*Dummy
;
827 return hasLoadFromStackSlot(MI
, Dummy
, FrameIndex
);
832 bool X86InstrInfo::hasLoadFromStackSlot(const MachineInstr
*MI
,
833 const MachineMemOperand
*&MMO
,
834 int &FrameIndex
) const {
835 for (MachineInstr::mmo_iterator o
= MI
->memoperands_begin(),
836 oe
= MI
->memoperands_end();
839 if ((*o
)->isLoad() && (*o
)->getValue())
840 if (const FixedStackPseudoSourceValue
*Value
=
841 dyn_cast
<const FixedStackPseudoSourceValue
>((*o
)->getValue())) {
842 FrameIndex
= Value
->getFrameIndex();
850 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr
*MI
,
851 int &FrameIndex
) const {
852 if (isFrameStoreOpcode(MI
->getOpcode()))
853 if (MI
->getOperand(X86::AddrNumOperands
).getSubReg() == 0 &&
854 isFrameOperand(MI
, 0, FrameIndex
))
855 return MI
->getOperand(X86::AddrNumOperands
).getReg();
859 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr
*MI
,
860 int &FrameIndex
) const {
861 if (isFrameStoreOpcode(MI
->getOpcode())) {
863 if ((Reg
= isStoreToStackSlot(MI
, FrameIndex
)))
865 // Check for post-frame index elimination operations
866 const MachineMemOperand
*Dummy
;
867 return hasStoreToStackSlot(MI
, Dummy
, FrameIndex
);
872 bool X86InstrInfo::hasStoreToStackSlot(const MachineInstr
*MI
,
873 const MachineMemOperand
*&MMO
,
874 int &FrameIndex
) const {
875 for (MachineInstr::mmo_iterator o
= MI
->memoperands_begin(),
876 oe
= MI
->memoperands_end();
879 if ((*o
)->isStore() && (*o
)->getValue())
880 if (const FixedStackPseudoSourceValue
*Value
=
881 dyn_cast
<const FixedStackPseudoSourceValue
>((*o
)->getValue())) {
882 FrameIndex
= Value
->getFrameIndex();
890 /// regIsPICBase - Return true if register is PIC base (i.e.g defined by
892 static bool regIsPICBase(unsigned BaseReg
, const MachineRegisterInfo
&MRI
) {
893 bool isPICBase
= false;
894 for (MachineRegisterInfo::def_iterator I
= MRI
.def_begin(BaseReg
),
895 E
= MRI
.def_end(); I
!= E
; ++I
) {
896 MachineInstr
*DefMI
= I
.getOperand().getParent();
897 if (DefMI
->getOpcode() != X86::MOVPC32r
)
899 assert(!isPICBase
&& "More than one PIC base?");
906 X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr
*MI
,
907 AliasAnalysis
*AA
) const {
908 switch (MI
->getOpcode()) {
919 case X86::MOVUPSrm_Int
:
922 case X86::MMX_MOVD64rm
:
923 case X86::MMX_MOVQ64rm
:
924 case X86::FsMOVAPSrm
:
925 case X86::FsMOVAPDrm
: {
926 // Loads from constant pools are trivially rematerializable.
927 if (MI
->getOperand(1).isReg() &&
928 MI
->getOperand(2).isImm() &&
929 MI
->getOperand(3).isReg() && MI
->getOperand(3).getReg() == 0 &&
930 MI
->isInvariantLoad(AA
)) {
931 unsigned BaseReg
= MI
->getOperand(1).getReg();
932 if (BaseReg
== 0 || BaseReg
== X86::RIP
)
934 // Allow re-materialization of PIC load.
935 if (!ReMatPICStubLoad
&& MI
->getOperand(4).isGlobal())
937 const MachineFunction
&MF
= *MI
->getParent()->getParent();
938 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
939 bool isPICBase
= false;
940 for (MachineRegisterInfo::def_iterator I
= MRI
.def_begin(BaseReg
),
941 E
= MRI
.def_end(); I
!= E
; ++I
) {
942 MachineInstr
*DefMI
= I
.getOperand().getParent();
943 if (DefMI
->getOpcode() != X86::MOVPC32r
)
945 assert(!isPICBase
&& "More than one PIC base?");
955 if (MI
->getOperand(2).isImm() &&
956 MI
->getOperand(3).isReg() && MI
->getOperand(3).getReg() == 0 &&
957 !MI
->getOperand(4).isReg()) {
958 // lea fi#, lea GV, etc. are all rematerializable.
959 if (!MI
->getOperand(1).isReg())
961 unsigned BaseReg
= MI
->getOperand(1).getReg();
964 // Allow re-materialization of lea PICBase + x.
965 const MachineFunction
&MF
= *MI
->getParent()->getParent();
966 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
967 return regIsPICBase(BaseReg
, MRI
);
973 // All other instructions marked M_REMATERIALIZABLE are always trivially
978 /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
979 /// would clobber the EFLAGS condition register. Note the result may be
980 /// conservative. If it cannot definitely determine the safety after visiting
981 /// a few instructions in each direction it assumes it's not safe.
982 static bool isSafeToClobberEFLAGS(MachineBasicBlock
&MBB
,
983 MachineBasicBlock::iterator I
) {
984 MachineBasicBlock::iterator E
= MBB
.end();
986 // It's always safe to clobber EFLAGS at the end of a block.
990 // For compile time consideration, if we are not able to determine the
991 // safety after visiting 4 instructions in each direction, we will assume
993 MachineBasicBlock::iterator Iter
= I
;
994 for (unsigned i
= 0; i
< 4; ++i
) {
995 bool SeenDef
= false;
996 for (unsigned j
= 0, e
= Iter
->getNumOperands(); j
!= e
; ++j
) {
997 MachineOperand
&MO
= Iter
->getOperand(j
);
1000 if (MO
.getReg() == X86::EFLAGS
) {
1008 // This instruction defines EFLAGS, no need to look any further.
1011 // Skip over DBG_VALUE.
1012 while (Iter
!= E
&& Iter
->isDebugValue())
1015 // If we make it to the end of the block, it's safe to clobber EFLAGS.
1020 MachineBasicBlock::iterator B
= MBB
.begin();
1022 for (unsigned i
= 0; i
< 4; ++i
) {
1023 // If we make it to the beginning of the block, it's safe to clobber
1024 // EFLAGS iff EFLAGS is not live-in.
1026 return !MBB
.isLiveIn(X86::EFLAGS
);
1029 // Skip over DBG_VALUE.
1030 while (Iter
!= B
&& Iter
->isDebugValue())
1033 bool SawKill
= false;
1034 for (unsigned j
= 0, e
= Iter
->getNumOperands(); j
!= e
; ++j
) {
1035 MachineOperand
&MO
= Iter
->getOperand(j
);
1036 if (MO
.isReg() && MO
.getReg() == X86::EFLAGS
) {
1037 if (MO
.isDef()) return MO
.isDead();
1038 if (MO
.isKill()) SawKill
= true;
1043 // This instruction kills EFLAGS and doesn't redefine it, so
1044 // there's no need to look further.
1048 // Conservative answer.
1052 void X86InstrInfo::reMaterialize(MachineBasicBlock
&MBB
,
1053 MachineBasicBlock::iterator I
,
1054 unsigned DestReg
, unsigned SubIdx
,
1055 const MachineInstr
*Orig
,
1056 const TargetRegisterInfo
&TRI
) const {
1057 DebugLoc DL
= Orig
->getDebugLoc();
1059 // MOV32r0 etc. are implemented with xor which clobbers condition code.
1060 // Re-materialize them as movri instructions to avoid side effects.
1062 unsigned Opc
= Orig
->getOpcode();
1068 case X86::MOV64r0
: {
1069 if (!isSafeToClobberEFLAGS(MBB
, I
)) {
1072 case X86::MOV8r0
: Opc
= X86::MOV8ri
; break;
1073 case X86::MOV16r0
: Opc
= X86::MOV16ri
; break;
1074 case X86::MOV32r0
: Opc
= X86::MOV32ri
; break;
1075 case X86::MOV64r0
: Opc
= X86::MOV64ri64i32
; break;
1084 MachineInstr
*MI
= MBB
.getParent()->CloneMachineInstr(Orig
);
1087 BuildMI(MBB
, I
, DL
, get(Opc
)).addOperand(Orig
->getOperand(0)).addImm(0);
1090 MachineInstr
*NewMI
= prior(I
);
1091 NewMI
->substituteRegister(Orig
->getOperand(0).getReg(), DestReg
, SubIdx
, TRI
);
1094 /// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
1095 /// is not marked dead.
1096 static bool hasLiveCondCodeDef(MachineInstr
*MI
) {
1097 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
1098 MachineOperand
&MO
= MI
->getOperand(i
);
1099 if (MO
.isReg() && MO
.isDef() &&
1100 MO
.getReg() == X86::EFLAGS
&& !MO
.isDead()) {
1107 /// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
1108 /// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
1109 /// to a 32-bit superregister and then truncating back down to a 16-bit
1112 X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc
,
1113 MachineFunction::iterator
&MFI
,
1114 MachineBasicBlock::iterator
&MBBI
,
1115 LiveVariables
*LV
) const {
1116 MachineInstr
*MI
= MBBI
;
1117 unsigned Dest
= MI
->getOperand(0).getReg();
1118 unsigned Src
= MI
->getOperand(1).getReg();
1119 bool isDead
= MI
->getOperand(0).isDead();
1120 bool isKill
= MI
->getOperand(1).isKill();
1122 unsigned Opc
= TM
.getSubtarget
<X86Subtarget
>().is64Bit()
1123 ? X86::LEA64_32r
: X86::LEA32r
;
1124 MachineRegisterInfo
&RegInfo
= MFI
->getParent()->getRegInfo();
1125 unsigned leaInReg
= RegInfo
.createVirtualRegister(&X86::GR32_NOSPRegClass
);
1126 unsigned leaOutReg
= RegInfo
.createVirtualRegister(&X86::GR32RegClass
);
1128 // Build and insert into an implicit UNDEF value. This is OK because
1129 // well be shifting and then extracting the lower 16-bits.
1130 // This has the potential to cause partial register stall. e.g.
1131 // movw (%rbp,%rcx,2), %dx
1132 // leal -65(%rdx), %esi
1133 // But testing has shown this *does* help performance in 64-bit mode (at
1134 // least on modern x86 machines).
1135 BuildMI(*MFI
, MBBI
, MI
->getDebugLoc(), get(X86::IMPLICIT_DEF
), leaInReg
);
1136 MachineInstr
*InsMI
=
1137 BuildMI(*MFI
, MBBI
, MI
->getDebugLoc(), get(TargetOpcode::COPY
))
1138 .addReg(leaInReg
, RegState::Define
, X86::sub_16bit
)
1139 .addReg(Src
, getKillRegState(isKill
));
1141 MachineInstrBuilder MIB
= BuildMI(*MFI
, MBBI
, MI
->getDebugLoc(),
1142 get(Opc
), leaOutReg
);
1145 llvm_unreachable(0);
1147 case X86::SHL16ri
: {
1148 unsigned ShAmt
= MI
->getOperand(2).getImm();
1149 MIB
.addReg(0).addImm(1 << ShAmt
)
1150 .addReg(leaInReg
, RegState::Kill
).addImm(0).addReg(0);
1154 case X86::INC64_16r
:
1155 addRegOffset(MIB
, leaInReg
, true, 1);
1158 case X86::DEC64_16r
:
1159 addRegOffset(MIB
, leaInReg
, true, -1);
1163 case X86::ADD16ri_DB
:
1164 case X86::ADD16ri8_DB
:
1165 addRegOffset(MIB
, leaInReg
, true, MI
->getOperand(2).getImm());
1168 case X86::ADD16rr_DB
: {
1169 unsigned Src2
= MI
->getOperand(2).getReg();
1170 bool isKill2
= MI
->getOperand(2).isKill();
1171 unsigned leaInReg2
= 0;
1172 MachineInstr
*InsMI2
= 0;
1174 // ADD16rr %reg1028<kill>, %reg1028
1175 // just a single insert_subreg.
1176 addRegReg(MIB
, leaInReg
, true, leaInReg
, false);
1178 leaInReg2
= RegInfo
.createVirtualRegister(&X86::GR32_NOSPRegClass
);
1179 // Build and insert into an implicit UNDEF value. This is OK because
1180 // well be shifting and then extracting the lower 16-bits.
1181 BuildMI(*MFI
, MIB
, MI
->getDebugLoc(), get(X86::IMPLICIT_DEF
), leaInReg2
);
1183 BuildMI(*MFI
, MIB
, MI
->getDebugLoc(), get(TargetOpcode::COPY
))
1184 .addReg(leaInReg2
, RegState::Define
, X86::sub_16bit
)
1185 .addReg(Src2
, getKillRegState(isKill2
));
1186 addRegReg(MIB
, leaInReg
, true, leaInReg2
, true);
1188 if (LV
&& isKill2
&& InsMI2
)
1189 LV
->replaceKillInstruction(Src2
, MI
, InsMI2
);
1194 MachineInstr
*NewMI
= MIB
;
1195 MachineInstr
*ExtMI
=
1196 BuildMI(*MFI
, MBBI
, MI
->getDebugLoc(), get(TargetOpcode::COPY
))
1197 .addReg(Dest
, RegState::Define
| getDeadRegState(isDead
))
1198 .addReg(leaOutReg
, RegState::Kill
, X86::sub_16bit
);
1201 // Update live variables
1202 LV
->getVarInfo(leaInReg
).Kills
.push_back(NewMI
);
1203 LV
->getVarInfo(leaOutReg
).Kills
.push_back(ExtMI
);
1205 LV
->replaceKillInstruction(Src
, MI
, InsMI
);
1207 LV
->replaceKillInstruction(Dest
, MI
, ExtMI
);
1213 /// convertToThreeAddress - This method must be implemented by targets that
1214 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
1215 /// may be able to convert a two-address instruction into a true
1216 /// three-address instruction on demand. This allows the X86 target (for
1217 /// example) to convert ADD and SHL instructions into LEA instructions if they
1218 /// would require register copies due to two-addressness.
1220 /// This method returns a null pointer if the transformation cannot be
1221 /// performed, otherwise it returns the new instruction.
1224 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator
&MFI
,
1225 MachineBasicBlock::iterator
&MBBI
,
1226 LiveVariables
*LV
) const {
1227 MachineInstr
*MI
= MBBI
;
1228 MachineFunction
&MF
= *MI
->getParent()->getParent();
1229 // All instructions input are two-addr instructions. Get the known operands.
1230 unsigned Dest
= MI
->getOperand(0).getReg();
1231 unsigned Src
= MI
->getOperand(1).getReg();
1232 bool isDead
= MI
->getOperand(0).isDead();
1233 bool isKill
= MI
->getOperand(1).isKill();
1235 MachineInstr
*NewMI
= NULL
;
1236 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
1237 // we have better subtarget support, enable the 16-bit LEA generation here.
1238 // 16-bit LEA is also slow on Core2.
1239 bool DisableLEA16
= true;
1240 bool is64Bit
= TM
.getSubtarget
<X86Subtarget
>().is64Bit();
1242 unsigned MIOpc
= MI
->getOpcode();
1244 case X86::SHUFPSrri
: {
1245 assert(MI
->getNumOperands() == 4 && "Unknown shufps instruction!");
1246 if (!TM
.getSubtarget
<X86Subtarget
>().hasSSE2()) return 0;
1248 unsigned B
= MI
->getOperand(1).getReg();
1249 unsigned C
= MI
->getOperand(2).getReg();
1250 if (B
!= C
) return 0;
1251 unsigned A
= MI
->getOperand(0).getReg();
1252 unsigned M
= MI
->getOperand(3).getImm();
1253 NewMI
= BuildMI(MF
, MI
->getDebugLoc(), get(X86::PSHUFDri
))
1254 .addReg(A
, RegState::Define
| getDeadRegState(isDead
))
1255 .addReg(B
, getKillRegState(isKill
)).addImm(M
);
1258 case X86::SHL64ri
: {
1259 assert(MI
->getNumOperands() >= 3 && "Unknown shift instruction!");
1260 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1261 // the flags produced by a shift yet, so this is safe.
1262 unsigned ShAmt
= MI
->getOperand(2).getImm();
1263 if (ShAmt
== 0 || ShAmt
>= 4) return 0;
1265 // LEA can't handle RSP.
1266 if (TargetRegisterInfo::isVirtualRegister(Src
) &&
1267 !MF
.getRegInfo().constrainRegClass(Src
, &X86::GR64_NOSPRegClass
))
1270 NewMI
= BuildMI(MF
, MI
->getDebugLoc(), get(X86::LEA64r
))
1271 .addReg(Dest
, RegState::Define
| getDeadRegState(isDead
))
1272 .addReg(0).addImm(1 << ShAmt
)
1273 .addReg(Src
, getKillRegState(isKill
))
1274 .addImm(0).addReg(0);
1277 case X86::SHL32ri
: {
1278 assert(MI
->getNumOperands() >= 3 && "Unknown shift instruction!");
1279 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1280 // the flags produced by a shift yet, so this is safe.
1281 unsigned ShAmt
= MI
->getOperand(2).getImm();
1282 if (ShAmt
== 0 || ShAmt
>= 4) return 0;
1284 // LEA can't handle ESP.
1285 if (TargetRegisterInfo::isVirtualRegister(Src
) &&
1286 !MF
.getRegInfo().constrainRegClass(Src
, &X86::GR32_NOSPRegClass
))
1289 unsigned Opc
= is64Bit
? X86::LEA64_32r
: X86::LEA32r
;
1290 NewMI
= BuildMI(MF
, MI
->getDebugLoc(), get(Opc
))
1291 .addReg(Dest
, RegState::Define
| getDeadRegState(isDead
))
1292 .addReg(0).addImm(1 << ShAmt
)
1293 .addReg(Src
, getKillRegState(isKill
)).addImm(0).addReg(0);
1296 case X86::SHL16ri
: {
1297 assert(MI
->getNumOperands() >= 3 && "Unknown shift instruction!");
1298 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1299 // the flags produced by a shift yet, so this is safe.
1300 unsigned ShAmt
= MI
->getOperand(2).getImm();
1301 if (ShAmt
== 0 || ShAmt
>= 4) return 0;
1304 return is64Bit
? convertToThreeAddressWithLEA(MIOpc
, MFI
, MBBI
, LV
) : 0;
1305 NewMI
= BuildMI(MF
, MI
->getDebugLoc(), get(X86::LEA16r
))
1306 .addReg(Dest
, RegState::Define
| getDeadRegState(isDead
))
1307 .addReg(0).addImm(1 << ShAmt
)
1308 .addReg(Src
, getKillRegState(isKill
))
1309 .addImm(0).addReg(0);
1313 // The following opcodes also sets the condition code register(s). Only
1314 // convert them to equivalent lea if the condition code register def's
1316 if (hasLiveCondCodeDef(MI
))
1323 case X86::INC64_32r
: {
1324 assert(MI
->getNumOperands() >= 2 && "Unknown inc instruction!");
1325 unsigned Opc
= MIOpc
== X86::INC64r
? X86::LEA64r
1326 : (is64Bit
? X86::LEA64_32r
: X86::LEA32r
);
1328 // LEA can't handle RSP.
1329 if (TargetRegisterInfo::isVirtualRegister(Src
) &&
1330 !MF
.getRegInfo().constrainRegClass(Src
,
1331 MIOpc
== X86::INC64r
? X86::GR64_NOSPRegisterClass
:
1332 X86::GR32_NOSPRegisterClass
))
1335 NewMI
= addRegOffset(BuildMI(MF
, MI
->getDebugLoc(), get(Opc
))
1336 .addReg(Dest
, RegState::Define
|
1337 getDeadRegState(isDead
)),
1342 case X86::INC64_16r
:
1344 return is64Bit
? convertToThreeAddressWithLEA(MIOpc
, MFI
, MBBI
, LV
) : 0;
1345 assert(MI
->getNumOperands() >= 2 && "Unknown inc instruction!");
1346 NewMI
= addRegOffset(BuildMI(MF
, MI
->getDebugLoc(), get(X86::LEA16r
))
1347 .addReg(Dest
, RegState::Define
|
1348 getDeadRegState(isDead
)),
1353 case X86::DEC64_32r
: {
1354 assert(MI
->getNumOperands() >= 2 && "Unknown dec instruction!");
1355 unsigned Opc
= MIOpc
== X86::DEC64r
? X86::LEA64r
1356 : (is64Bit
? X86::LEA64_32r
: X86::LEA32r
);
1357 // LEA can't handle RSP.
1358 if (TargetRegisterInfo::isVirtualRegister(Src
) &&
1359 !MF
.getRegInfo().constrainRegClass(Src
,
1360 MIOpc
== X86::DEC64r
? X86::GR64_NOSPRegisterClass
:
1361 X86::GR32_NOSPRegisterClass
))
1364 NewMI
= addRegOffset(BuildMI(MF
, MI
->getDebugLoc(), get(Opc
))
1365 .addReg(Dest
, RegState::Define
|
1366 getDeadRegState(isDead
)),
1371 case X86::DEC64_16r
:
1373 return is64Bit
? convertToThreeAddressWithLEA(MIOpc
, MFI
, MBBI
, LV
) : 0;
1374 assert(MI
->getNumOperands() >= 2 && "Unknown dec instruction!");
1375 NewMI
= addRegOffset(BuildMI(MF
, MI
->getDebugLoc(), get(X86::LEA16r
))
1376 .addReg(Dest
, RegState::Define
|
1377 getDeadRegState(isDead
)),
1381 case X86::ADD64rr_DB
:
1383 case X86::ADD32rr_DB
: {
1384 assert(MI
->getNumOperands() >= 3 && "Unknown add instruction!");
1386 TargetRegisterClass
*RC
;
1387 if (MIOpc
== X86::ADD64rr
|| MIOpc
== X86::ADD64rr_DB
) {
1389 RC
= X86::GR64_NOSPRegisterClass
;
1391 Opc
= is64Bit
? X86::LEA64_32r
: X86::LEA32r
;
1392 RC
= X86::GR32_NOSPRegisterClass
;
1396 unsigned Src2
= MI
->getOperand(2).getReg();
1397 bool isKill2
= MI
->getOperand(2).isKill();
1399 // LEA can't handle RSP.
1400 if (TargetRegisterInfo::isVirtualRegister(Src2
) &&
1401 !MF
.getRegInfo().constrainRegClass(Src2
, RC
))
1404 NewMI
= addRegReg(BuildMI(MF
, MI
->getDebugLoc(), get(Opc
))
1405 .addReg(Dest
, RegState::Define
|
1406 getDeadRegState(isDead
)),
1407 Src
, isKill
, Src2
, isKill2
);
1409 LV
->replaceKillInstruction(Src2
, MI
, NewMI
);
1413 case X86::ADD16rr_DB
: {
1415 return is64Bit
? convertToThreeAddressWithLEA(MIOpc
, MFI
, MBBI
, LV
) : 0;
1416 assert(MI
->getNumOperands() >= 3 && "Unknown add instruction!");
1417 unsigned Src2
= MI
->getOperand(2).getReg();
1418 bool isKill2
= MI
->getOperand(2).isKill();
1419 NewMI
= addRegReg(BuildMI(MF
, MI
->getDebugLoc(), get(X86::LEA16r
))
1420 .addReg(Dest
, RegState::Define
|
1421 getDeadRegState(isDead
)),
1422 Src
, isKill
, Src2
, isKill2
);
1424 LV
->replaceKillInstruction(Src2
, MI
, NewMI
);
1427 case X86::ADD64ri32
:
1429 case X86::ADD64ri32_DB
:
1430 case X86::ADD64ri8_DB
:
1431 assert(MI
->getNumOperands() >= 3 && "Unknown add instruction!");
1432 NewMI
= addRegOffset(BuildMI(MF
, MI
->getDebugLoc(), get(X86::LEA64r
))
1433 .addReg(Dest
, RegState::Define
|
1434 getDeadRegState(isDead
)),
1435 Src
, isKill
, MI
->getOperand(2).getImm());
1439 case X86::ADD32ri_DB
:
1440 case X86::ADD32ri8_DB
: {
1441 assert(MI
->getNumOperands() >= 3 && "Unknown add instruction!");
1442 unsigned Opc
= is64Bit
? X86::LEA64_32r
: X86::LEA32r
;
1443 NewMI
= addRegOffset(BuildMI(MF
, MI
->getDebugLoc(), get(Opc
))
1444 .addReg(Dest
, RegState::Define
|
1445 getDeadRegState(isDead
)),
1446 Src
, isKill
, MI
->getOperand(2).getImm());
1451 case X86::ADD16ri_DB
:
1452 case X86::ADD16ri8_DB
:
1454 return is64Bit
? convertToThreeAddressWithLEA(MIOpc
, MFI
, MBBI
, LV
) : 0;
1455 assert(MI
->getNumOperands() >= 3 && "Unknown add instruction!");
1456 NewMI
= addRegOffset(BuildMI(MF
, MI
->getDebugLoc(), get(X86::LEA16r
))
1457 .addReg(Dest
, RegState::Define
|
1458 getDeadRegState(isDead
)),
1459 Src
, isKill
, MI
->getOperand(2).getImm());
1465 if (!NewMI
) return 0;
1467 if (LV
) { // Update live variables
1469 LV
->replaceKillInstruction(Src
, MI
, NewMI
);
1471 LV
->replaceKillInstruction(Dest
, MI
, NewMI
);
1474 MFI
->insert(MBBI
, NewMI
); // Insert the new inst
1478 /// commuteInstruction - We have a few instructions that must be hacked on to
1482 X86InstrInfo::commuteInstruction(MachineInstr
*MI
, bool NewMI
) const {
1483 switch (MI
->getOpcode()) {
1484 case X86::SHRD16rri8
: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1485 case X86::SHLD16rri8
: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1486 case X86::SHRD32rri8
: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1487 case X86::SHLD32rri8
: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1488 case X86::SHRD64rri8
: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1489 case X86::SHLD64rri8
:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1492 switch (MI
->getOpcode()) {
1493 default: llvm_unreachable("Unreachable!");
1494 case X86::SHRD16rri8
: Size
= 16; Opc
= X86::SHLD16rri8
; break;
1495 case X86::SHLD16rri8
: Size
= 16; Opc
= X86::SHRD16rri8
; break;
1496 case X86::SHRD32rri8
: Size
= 32; Opc
= X86::SHLD32rri8
; break;
1497 case X86::SHLD32rri8
: Size
= 32; Opc
= X86::SHRD32rri8
; break;
1498 case X86::SHRD64rri8
: Size
= 64; Opc
= X86::SHLD64rri8
; break;
1499 case X86::SHLD64rri8
: Size
= 64; Opc
= X86::SHRD64rri8
; break;
1501 unsigned Amt
= MI
->getOperand(3).getImm();
1503 MachineFunction
&MF
= *MI
->getParent()->getParent();
1504 MI
= MF
.CloneMachineInstr(MI
);
1507 MI
->setDesc(get(Opc
));
1508 MI
->getOperand(3).setImm(Size
-Amt
);
1509 return TargetInstrInfoImpl::commuteInstruction(MI
, NewMI
);
1511 case X86::CMOVB16rr
:
1512 case X86::CMOVB32rr
:
1513 case X86::CMOVB64rr
:
1514 case X86::CMOVAE16rr
:
1515 case X86::CMOVAE32rr
:
1516 case X86::CMOVAE64rr
:
1517 case X86::CMOVE16rr
:
1518 case X86::CMOVE32rr
:
1519 case X86::CMOVE64rr
:
1520 case X86::CMOVNE16rr
:
1521 case X86::CMOVNE32rr
:
1522 case X86::CMOVNE64rr
:
1523 case X86::CMOVBE16rr
:
1524 case X86::CMOVBE32rr
:
1525 case X86::CMOVBE64rr
:
1526 case X86::CMOVA16rr
:
1527 case X86::CMOVA32rr
:
1528 case X86::CMOVA64rr
:
1529 case X86::CMOVL16rr
:
1530 case X86::CMOVL32rr
:
1531 case X86::CMOVL64rr
:
1532 case X86::CMOVGE16rr
:
1533 case X86::CMOVGE32rr
:
1534 case X86::CMOVGE64rr
:
1535 case X86::CMOVLE16rr
:
1536 case X86::CMOVLE32rr
:
1537 case X86::CMOVLE64rr
:
1538 case X86::CMOVG16rr
:
1539 case X86::CMOVG32rr
:
1540 case X86::CMOVG64rr
:
1541 case X86::CMOVS16rr
:
1542 case X86::CMOVS32rr
:
1543 case X86::CMOVS64rr
:
1544 case X86::CMOVNS16rr
:
1545 case X86::CMOVNS32rr
:
1546 case X86::CMOVNS64rr
:
1547 case X86::CMOVP16rr
:
1548 case X86::CMOVP32rr
:
1549 case X86::CMOVP64rr
:
1550 case X86::CMOVNP16rr
:
1551 case X86::CMOVNP32rr
:
1552 case X86::CMOVNP64rr
:
1553 case X86::CMOVO16rr
:
1554 case X86::CMOVO32rr
:
1555 case X86::CMOVO64rr
:
1556 case X86::CMOVNO16rr
:
1557 case X86::CMOVNO32rr
:
1558 case X86::CMOVNO64rr
: {
1560 switch (MI
->getOpcode()) {
1562 case X86::CMOVB16rr
: Opc
= X86::CMOVAE16rr
; break;
1563 case X86::CMOVB32rr
: Opc
= X86::CMOVAE32rr
; break;
1564 case X86::CMOVB64rr
: Opc
= X86::CMOVAE64rr
; break;
1565 case X86::CMOVAE16rr
: Opc
= X86::CMOVB16rr
; break;
1566 case X86::CMOVAE32rr
: Opc
= X86::CMOVB32rr
; break;
1567 case X86::CMOVAE64rr
: Opc
= X86::CMOVB64rr
; break;
1568 case X86::CMOVE16rr
: Opc
= X86::CMOVNE16rr
; break;
1569 case X86::CMOVE32rr
: Opc
= X86::CMOVNE32rr
; break;
1570 case X86::CMOVE64rr
: Opc
= X86::CMOVNE64rr
; break;
1571 case X86::CMOVNE16rr
: Opc
= X86::CMOVE16rr
; break;
1572 case X86::CMOVNE32rr
: Opc
= X86::CMOVE32rr
; break;
1573 case X86::CMOVNE64rr
: Opc
= X86::CMOVE64rr
; break;
1574 case X86::CMOVBE16rr
: Opc
= X86::CMOVA16rr
; break;
1575 case X86::CMOVBE32rr
: Opc
= X86::CMOVA32rr
; break;
1576 case X86::CMOVBE64rr
: Opc
= X86::CMOVA64rr
; break;
1577 case X86::CMOVA16rr
: Opc
= X86::CMOVBE16rr
; break;
1578 case X86::CMOVA32rr
: Opc
= X86::CMOVBE32rr
; break;
1579 case X86::CMOVA64rr
: Opc
= X86::CMOVBE64rr
; break;
1580 case X86::CMOVL16rr
: Opc
= X86::CMOVGE16rr
; break;
1581 case X86::CMOVL32rr
: Opc
= X86::CMOVGE32rr
; break;
1582 case X86::CMOVL64rr
: Opc
= X86::CMOVGE64rr
; break;
1583 case X86::CMOVGE16rr
: Opc
= X86::CMOVL16rr
; break;
1584 case X86::CMOVGE32rr
: Opc
= X86::CMOVL32rr
; break;
1585 case X86::CMOVGE64rr
: Opc
= X86::CMOVL64rr
; break;
1586 case X86::CMOVLE16rr
: Opc
= X86::CMOVG16rr
; break;
1587 case X86::CMOVLE32rr
: Opc
= X86::CMOVG32rr
; break;
1588 case X86::CMOVLE64rr
: Opc
= X86::CMOVG64rr
; break;
1589 case X86::CMOVG16rr
: Opc
= X86::CMOVLE16rr
; break;
1590 case X86::CMOVG32rr
: Opc
= X86::CMOVLE32rr
; break;
1591 case X86::CMOVG64rr
: Opc
= X86::CMOVLE64rr
; break;
1592 case X86::CMOVS16rr
: Opc
= X86::CMOVNS16rr
; break;
1593 case X86::CMOVS32rr
: Opc
= X86::CMOVNS32rr
; break;
1594 case X86::CMOVS64rr
: Opc
= X86::CMOVNS64rr
; break;
1595 case X86::CMOVNS16rr
: Opc
= X86::CMOVS16rr
; break;
1596 case X86::CMOVNS32rr
: Opc
= X86::CMOVS32rr
; break;
1597 case X86::CMOVNS64rr
: Opc
= X86::CMOVS64rr
; break;
1598 case X86::CMOVP16rr
: Opc
= X86::CMOVNP16rr
; break;
1599 case X86::CMOVP32rr
: Opc
= X86::CMOVNP32rr
; break;
1600 case X86::CMOVP64rr
: Opc
= X86::CMOVNP64rr
; break;
1601 case X86::CMOVNP16rr
: Opc
= X86::CMOVP16rr
; break;
1602 case X86::CMOVNP32rr
: Opc
= X86::CMOVP32rr
; break;
1603 case X86::CMOVNP64rr
: Opc
= X86::CMOVP64rr
; break;
1604 case X86::CMOVO16rr
: Opc
= X86::CMOVNO16rr
; break;
1605 case X86::CMOVO32rr
: Opc
= X86::CMOVNO32rr
; break;
1606 case X86::CMOVO64rr
: Opc
= X86::CMOVNO64rr
; break;
1607 case X86::CMOVNO16rr
: Opc
= X86::CMOVO16rr
; break;
1608 case X86::CMOVNO32rr
: Opc
= X86::CMOVO32rr
; break;
1609 case X86::CMOVNO64rr
: Opc
= X86::CMOVO64rr
; break;
1612 MachineFunction
&MF
= *MI
->getParent()->getParent();
1613 MI
= MF
.CloneMachineInstr(MI
);
1616 MI
->setDesc(get(Opc
));
1617 // Fallthrough intended.
1620 return TargetInstrInfoImpl::commuteInstruction(MI
, NewMI
);
1624 static X86::CondCode
GetCondFromBranchOpc(unsigned BrOpc
) {
1626 default: return X86::COND_INVALID
;
1627 case X86::JE_4
: return X86::COND_E
;
1628 case X86::JNE_4
: return X86::COND_NE
;
1629 case X86::JL_4
: return X86::COND_L
;
1630 case X86::JLE_4
: return X86::COND_LE
;
1631 case X86::JG_4
: return X86::COND_G
;
1632 case X86::JGE_4
: return X86::COND_GE
;
1633 case X86::JB_4
: return X86::COND_B
;
1634 case X86::JBE_4
: return X86::COND_BE
;
1635 case X86::JA_4
: return X86::COND_A
;
1636 case X86::JAE_4
: return X86::COND_AE
;
1637 case X86::JS_4
: return X86::COND_S
;
1638 case X86::JNS_4
: return X86::COND_NS
;
1639 case X86::JP_4
: return X86::COND_P
;
1640 case X86::JNP_4
: return X86::COND_NP
;
1641 case X86::JO_4
: return X86::COND_O
;
1642 case X86::JNO_4
: return X86::COND_NO
;
1646 unsigned X86::GetCondBranchFromCond(X86::CondCode CC
) {
1648 default: llvm_unreachable("Illegal condition code!");
1649 case X86::COND_E
: return X86::JE_4
;
1650 case X86::COND_NE
: return X86::JNE_4
;
1651 case X86::COND_L
: return X86::JL_4
;
1652 case X86::COND_LE
: return X86::JLE_4
;
1653 case X86::COND_G
: return X86::JG_4
;
1654 case X86::COND_GE
: return X86::JGE_4
;
1655 case X86::COND_B
: return X86::JB_4
;
1656 case X86::COND_BE
: return X86::JBE_4
;
1657 case X86::COND_A
: return X86::JA_4
;
1658 case X86::COND_AE
: return X86::JAE_4
;
1659 case X86::COND_S
: return X86::JS_4
;
1660 case X86::COND_NS
: return X86::JNS_4
;
1661 case X86::COND_P
: return X86::JP_4
;
1662 case X86::COND_NP
: return X86::JNP_4
;
1663 case X86::COND_O
: return X86::JO_4
;
1664 case X86::COND_NO
: return X86::JNO_4
;
1668 /// GetOppositeBranchCondition - Return the inverse of the specified condition,
1669 /// e.g. turning COND_E to COND_NE.
1670 X86::CondCode
X86::GetOppositeBranchCondition(X86::CondCode CC
) {
1672 default: llvm_unreachable("Illegal condition code!");
1673 case X86::COND_E
: return X86::COND_NE
;
1674 case X86::COND_NE
: return X86::COND_E
;
1675 case X86::COND_L
: return X86::COND_GE
;
1676 case X86::COND_LE
: return X86::COND_G
;
1677 case X86::COND_G
: return X86::COND_LE
;
1678 case X86::COND_GE
: return X86::COND_L
;
1679 case X86::COND_B
: return X86::COND_AE
;
1680 case X86::COND_BE
: return X86::COND_A
;
1681 case X86::COND_A
: return X86::COND_BE
;
1682 case X86::COND_AE
: return X86::COND_B
;
1683 case X86::COND_S
: return X86::COND_NS
;
1684 case X86::COND_NS
: return X86::COND_S
;
1685 case X86::COND_P
: return X86::COND_NP
;
1686 case X86::COND_NP
: return X86::COND_P
;
1687 case X86::COND_O
: return X86::COND_NO
;
1688 case X86::COND_NO
: return X86::COND_O
;
1692 bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr
*MI
) const {
1693 const TargetInstrDesc
&TID
= MI
->getDesc();
1694 if (!TID
.isTerminator()) return false;
1696 // Conditional branch is a special case.
1697 if (TID
.isBranch() && !TID
.isBarrier())
1699 if (!TID
.isPredicable())
1701 return !isPredicated(MI
);
1704 bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock
&MBB
,
1705 MachineBasicBlock
*&TBB
,
1706 MachineBasicBlock
*&FBB
,
1707 SmallVectorImpl
<MachineOperand
> &Cond
,
1708 bool AllowModify
) const {
1709 // Start from the bottom of the block and work up, examining the
1710 // terminator instructions.
1711 MachineBasicBlock::iterator I
= MBB
.end();
1712 MachineBasicBlock::iterator UnCondBrIter
= MBB
.end();
1713 while (I
!= MBB
.begin()) {
1715 if (I
->isDebugValue())
1718 // Working from the bottom, when we see a non-terminator instruction, we're
1720 if (!isUnpredicatedTerminator(I
))
1723 // A terminator that isn't a branch can't easily be handled by this
1725 if (!I
->getDesc().isBranch())
1728 // Handle unconditional branches.
1729 if (I
->getOpcode() == X86::JMP_4
) {
1733 TBB
= I
->getOperand(0).getMBB();
1737 // If the block has any instructions after a JMP, delete them.
1738 while (llvm::next(I
) != MBB
.end())
1739 llvm::next(I
)->eraseFromParent();
1744 // Delete the JMP if it's equivalent to a fall-through.
1745 if (MBB
.isLayoutSuccessor(I
->getOperand(0).getMBB())) {
1747 I
->eraseFromParent();
1749 UnCondBrIter
= MBB
.end();
1753 // TBB is used to indicate the unconditional destination.
1754 TBB
= I
->getOperand(0).getMBB();
1758 // Handle conditional branches.
1759 X86::CondCode BranchCode
= GetCondFromBranchOpc(I
->getOpcode());
1760 if (BranchCode
== X86::COND_INVALID
)
1761 return true; // Can't handle indirect branch.
1763 // Working from the bottom, handle the first conditional branch.
1765 MachineBasicBlock
*TargetBB
= I
->getOperand(0).getMBB();
1766 if (AllowModify
&& UnCondBrIter
!= MBB
.end() &&
1767 MBB
.isLayoutSuccessor(TargetBB
)) {
1768 // If we can modify the code and it ends in something like:
1776 // Then we can change this to:
1783 // Which is a bit more efficient.
1784 // We conditionally jump to the fall-through block.
1785 BranchCode
= GetOppositeBranchCondition(BranchCode
);
1786 unsigned JNCC
= GetCondBranchFromCond(BranchCode
);
1787 MachineBasicBlock::iterator OldInst
= I
;
1789 BuildMI(MBB
, UnCondBrIter
, MBB
.findDebugLoc(I
), get(JNCC
))
1790 .addMBB(UnCondBrIter
->getOperand(0).getMBB());
1791 BuildMI(MBB
, UnCondBrIter
, MBB
.findDebugLoc(I
), get(X86::JMP_4
))
1793 MBB
.addSuccessor(TargetBB
);
1795 OldInst
->eraseFromParent();
1796 UnCondBrIter
->eraseFromParent();
1798 // Restart the analysis.
1799 UnCondBrIter
= MBB
.end();
1805 TBB
= I
->getOperand(0).getMBB();
1806 Cond
.push_back(MachineOperand::CreateImm(BranchCode
));
1810 // Handle subsequent conditional branches. Only handle the case where all
1811 // conditional branches branch to the same destination and their condition
1812 // opcodes fit one of the special multi-branch idioms.
1813 assert(Cond
.size() == 1);
1816 // Only handle the case where all conditional branches branch to the same
1818 if (TBB
!= I
->getOperand(0).getMBB())
1821 // If the conditions are the same, we can leave them alone.
1822 X86::CondCode OldBranchCode
= (X86::CondCode
)Cond
[0].getImm();
1823 if (OldBranchCode
== BranchCode
)
1826 // If they differ, see if they fit one of the known patterns. Theoretically,
1827 // we could handle more patterns here, but we shouldn't expect to see them
1828 // if instruction selection has done a reasonable job.
1829 if ((OldBranchCode
== X86::COND_NP
&&
1830 BranchCode
== X86::COND_E
) ||
1831 (OldBranchCode
== X86::COND_E
&&
1832 BranchCode
== X86::COND_NP
))
1833 BranchCode
= X86::COND_NP_OR_E
;
1834 else if ((OldBranchCode
== X86::COND_P
&&
1835 BranchCode
== X86::COND_NE
) ||
1836 (OldBranchCode
== X86::COND_NE
&&
1837 BranchCode
== X86::COND_P
))
1838 BranchCode
= X86::COND_NE_OR_P
;
1842 // Update the MachineOperand.
1843 Cond
[0].setImm(BranchCode
);
1849 unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock
&MBB
) const {
1850 MachineBasicBlock::iterator I
= MBB
.end();
1853 while (I
!= MBB
.begin()) {
1855 if (I
->isDebugValue())
1857 if (I
->getOpcode() != X86::JMP_4
&&
1858 GetCondFromBranchOpc(I
->getOpcode()) == X86::COND_INVALID
)
1860 // Remove the branch.
1861 I
->eraseFromParent();
1870 X86InstrInfo::InsertBranch(MachineBasicBlock
&MBB
, MachineBasicBlock
*TBB
,
1871 MachineBasicBlock
*FBB
,
1872 const SmallVectorImpl
<MachineOperand
> &Cond
,
1873 DebugLoc DL
) const {
1874 // Shouldn't be a fall through.
1875 assert(TBB
&& "InsertBranch must not be told to insert a fallthrough");
1876 assert((Cond
.size() == 1 || Cond
.size() == 0) &&
1877 "X86 branch conditions have one component!");
1880 // Unconditional branch?
1881 assert(!FBB
&& "Unconditional branch with multiple successors!");
1882 BuildMI(&MBB
, DL
, get(X86::JMP_4
)).addMBB(TBB
);
1886 // Conditional branch.
1888 X86::CondCode CC
= (X86::CondCode
)Cond
[0].getImm();
1890 case X86::COND_NP_OR_E
:
1891 // Synthesize NP_OR_E with two branches.
1892 BuildMI(&MBB
, DL
, get(X86::JNP_4
)).addMBB(TBB
);
1894 BuildMI(&MBB
, DL
, get(X86::JE_4
)).addMBB(TBB
);
1897 case X86::COND_NE_OR_P
:
1898 // Synthesize NE_OR_P with two branches.
1899 BuildMI(&MBB
, DL
, get(X86::JNE_4
)).addMBB(TBB
);
1901 BuildMI(&MBB
, DL
, get(X86::JP_4
)).addMBB(TBB
);
1905 unsigned Opc
= GetCondBranchFromCond(CC
);
1906 BuildMI(&MBB
, DL
, get(Opc
)).addMBB(TBB
);
1911 // Two-way Conditional branch. Insert the second branch.
1912 BuildMI(&MBB
, DL
, get(X86::JMP_4
)).addMBB(FBB
);
1918 /// isHReg - Test if the given register is a physical h register.
1919 static bool isHReg(unsigned Reg
) {
1920 return X86::GR8_ABCD_HRegClass
.contains(Reg
);
1923 // Try and copy between VR128/VR64 and GR64 registers.
1924 static unsigned CopyToFromAsymmetricReg(unsigned DestReg
, unsigned SrcReg
) {
1925 // SrcReg(VR128) -> DestReg(GR64)
1926 // SrcReg(VR64) -> DestReg(GR64)
1927 // SrcReg(GR64) -> DestReg(VR128)
1928 // SrcReg(GR64) -> DestReg(VR64)
1930 if (X86::GR64RegClass
.contains(DestReg
)) {
1931 if (X86::VR128RegClass
.contains(SrcReg
)) {
1932 // Copy from a VR128 register to a GR64 register.
1933 return X86::MOVPQIto64rr
;
1934 } else if (X86::VR64RegClass
.contains(SrcReg
)) {
1935 // Copy from a VR64 register to a GR64 register.
1936 return X86::MOVSDto64rr
;
1938 } else if (X86::GR64RegClass
.contains(SrcReg
)) {
1939 // Copy from a GR64 register to a VR128 register.
1940 if (X86::VR128RegClass
.contains(DestReg
))
1941 return X86::MOV64toPQIrr
;
1942 // Copy from a GR64 register to a VR64 register.
1943 else if (X86::VR64RegClass
.contains(DestReg
))
1944 return X86::MOV64toSDrr
;
1950 void X86InstrInfo::copyPhysReg(MachineBasicBlock
&MBB
,
1951 MachineBasicBlock::iterator MI
, DebugLoc DL
,
1952 unsigned DestReg
, unsigned SrcReg
,
1953 bool KillSrc
) const {
1954 // First deal with the normal symmetric copies.
1956 if (X86::GR64RegClass
.contains(DestReg
, SrcReg
))
1958 else if (X86::GR32RegClass
.contains(DestReg
, SrcReg
))
1960 else if (X86::GR16RegClass
.contains(DestReg
, SrcReg
))
1962 else if (X86::GR8RegClass
.contains(DestReg
, SrcReg
)) {
1963 // Copying to or from a physical H register on x86-64 requires a NOREX
1964 // move. Otherwise use a normal move.
1965 if ((isHReg(DestReg
) || isHReg(SrcReg
)) &&
1966 TM
.getSubtarget
<X86Subtarget
>().is64Bit())
1967 Opc
= X86::MOV8rr_NOREX
;
1970 } else if (X86::VR128RegClass
.contains(DestReg
, SrcReg
))
1971 Opc
= X86::MOVAPSrr
;
1972 else if (X86::VR64RegClass
.contains(DestReg
, SrcReg
))
1973 Opc
= X86::MMX_MOVQ64rr
;
1975 Opc
= CopyToFromAsymmetricReg(DestReg
, SrcReg
);
1978 BuildMI(MBB
, MI
, DL
, get(Opc
), DestReg
)
1979 .addReg(SrcReg
, getKillRegState(KillSrc
));
1983 // Moving EFLAGS to / from another register requires a push and a pop.
1984 if (SrcReg
== X86::EFLAGS
) {
1985 if (X86::GR64RegClass
.contains(DestReg
)) {
1986 BuildMI(MBB
, MI
, DL
, get(X86::PUSHF64
));
1987 BuildMI(MBB
, MI
, DL
, get(X86::POP64r
), DestReg
);
1989 } else if (X86::GR32RegClass
.contains(DestReg
)) {
1990 BuildMI(MBB
, MI
, DL
, get(X86::PUSHF32
));
1991 BuildMI(MBB
, MI
, DL
, get(X86::POP32r
), DestReg
);
1995 if (DestReg
== X86::EFLAGS
) {
1996 if (X86::GR64RegClass
.contains(SrcReg
)) {
1997 BuildMI(MBB
, MI
, DL
, get(X86::PUSH64r
))
1998 .addReg(SrcReg
, getKillRegState(KillSrc
));
1999 BuildMI(MBB
, MI
, DL
, get(X86::POPF64
));
2001 } else if (X86::GR32RegClass
.contains(SrcReg
)) {
2002 BuildMI(MBB
, MI
, DL
, get(X86::PUSH32r
))
2003 .addReg(SrcReg
, getKillRegState(KillSrc
));
2004 BuildMI(MBB
, MI
, DL
, get(X86::POPF32
));
2009 DEBUG(dbgs() << "Cannot copy " << RI
.getName(SrcReg
)
2010 << " to " << RI
.getName(DestReg
) << '\n');
2011 llvm_unreachable("Cannot emit physreg copy instruction");
2014 static unsigned getLoadStoreRegOpcode(unsigned Reg
,
2015 const TargetRegisterClass
*RC
,
2016 bool isStackAligned
,
2017 const TargetMachine
&TM
,
2019 switch (RC
->getID()) {
2021 llvm_unreachable("Unknown regclass");
2022 case X86::GR64RegClassID
:
2023 case X86::GR64_ABCDRegClassID
:
2024 case X86::GR64_NOREXRegClassID
:
2025 case X86::GR64_NOREX_NOSPRegClassID
:
2026 case X86::GR64_NOSPRegClassID
:
2027 case X86::GR64_TCRegClassID
:
2028 return load
? X86::MOV64rm
: X86::MOV64mr
;
2029 case X86::GR32RegClassID
:
2030 case X86::GR32_ABCDRegClassID
:
2031 case X86::GR32_ADRegClassID
:
2032 case X86::GR32_NOREXRegClassID
:
2033 case X86::GR32_NOSPRegClassID
:
2034 case X86::GR32_TCRegClassID
:
2035 return load
? X86::MOV32rm
: X86::MOV32mr
;
2036 case X86::GR16RegClassID
:
2037 case X86::GR16_ABCDRegClassID
:
2038 case X86::GR16_NOREXRegClassID
:
2039 return load
? X86::MOV16rm
: X86::MOV16mr
;
2040 case X86::GR8RegClassID
:
2041 // Copying to or from a physical H register on x86-64 requires a NOREX
2042 // move. Otherwise use a normal move.
2044 TM
.getSubtarget
<X86Subtarget
>().is64Bit())
2045 return load
? X86::MOV8rm_NOREX
: X86::MOV8mr_NOREX
;
2047 return load
? X86::MOV8rm
: X86::MOV8mr
;
2048 case X86::GR8_ABCD_LRegClassID
:
2049 case X86::GR8_NOREXRegClassID
:
2050 return load
? X86::MOV8rm
:X86::MOV8mr
;
2051 case X86::GR8_ABCD_HRegClassID
:
2052 if (TM
.getSubtarget
<X86Subtarget
>().is64Bit())
2053 return load
? X86::MOV8rm_NOREX
: X86::MOV8mr_NOREX
;
2055 return load
? X86::MOV8rm
: X86::MOV8mr
;
2056 case X86::RFP80RegClassID
:
2057 return load
? X86::LD_Fp80m
: X86::ST_FpP80m
;
2058 case X86::RFP64RegClassID
:
2059 return load
? X86::LD_Fp64m
: X86::ST_Fp64m
;
2060 case X86::RFP32RegClassID
:
2061 return load
? X86::LD_Fp32m
: X86::ST_Fp32m
;
2062 case X86::FR32RegClassID
:
2063 return load
? X86::MOVSSrm
: X86::MOVSSmr
;
2064 case X86::FR64RegClassID
:
2065 return load
? X86::MOVSDrm
: X86::MOVSDmr
;
2066 case X86::VR128RegClassID
:
2067 // If stack is realigned we can use aligned stores.
2069 return load
? X86::MOVAPSrm
: X86::MOVAPSmr
;
2071 return load
? X86::MOVUPSrm
: X86::MOVUPSmr
;
2072 case X86::VR64RegClassID
:
2073 return load
? X86::MMX_MOVQ64rm
: X86::MMX_MOVQ64mr
;
2077 static unsigned getStoreRegOpcode(unsigned SrcReg
,
2078 const TargetRegisterClass
*RC
,
2079 bool isStackAligned
,
2080 TargetMachine
&TM
) {
2081 return getLoadStoreRegOpcode(SrcReg
, RC
, isStackAligned
, TM
, false);
2085 static unsigned getLoadRegOpcode(unsigned DestReg
,
2086 const TargetRegisterClass
*RC
,
2087 bool isStackAligned
,
2088 const TargetMachine
&TM
) {
2089 return getLoadStoreRegOpcode(DestReg
, RC
, isStackAligned
, TM
, true);
2092 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock
&MBB
,
2093 MachineBasicBlock::iterator MI
,
2094 unsigned SrcReg
, bool isKill
, int FrameIdx
,
2095 const TargetRegisterClass
*RC
,
2096 const TargetRegisterInfo
*TRI
) const {
2097 const MachineFunction
&MF
= *MBB
.getParent();
2098 assert(MF
.getFrameInfo()->getObjectSize(FrameIdx
) >= RC
->getSize() &&
2099 "Stack slot too small for store");
2100 bool isAligned
= (RI
.getStackAlignment() >= 16) || RI
.canRealignStack(MF
);
2101 unsigned Opc
= getStoreRegOpcode(SrcReg
, RC
, isAligned
, TM
);
2102 DebugLoc DL
= MBB
.findDebugLoc(MI
);
2103 addFrameReference(BuildMI(MBB
, MI
, DL
, get(Opc
)), FrameIdx
)
2104 .addReg(SrcReg
, getKillRegState(isKill
));
2107 void X86InstrInfo::storeRegToAddr(MachineFunction
&MF
, unsigned SrcReg
,
2109 SmallVectorImpl
<MachineOperand
> &Addr
,
2110 const TargetRegisterClass
*RC
,
2111 MachineInstr::mmo_iterator MMOBegin
,
2112 MachineInstr::mmo_iterator MMOEnd
,
2113 SmallVectorImpl
<MachineInstr
*> &NewMIs
) const {
2114 bool isAligned
= MMOBegin
!= MMOEnd
&& (*MMOBegin
)->getAlignment() >= 16;
2115 unsigned Opc
= getStoreRegOpcode(SrcReg
, RC
, isAligned
, TM
);
2117 MachineInstrBuilder MIB
= BuildMI(MF
, DL
, get(Opc
));
2118 for (unsigned i
= 0, e
= Addr
.size(); i
!= e
; ++i
)
2119 MIB
.addOperand(Addr
[i
]);
2120 MIB
.addReg(SrcReg
, getKillRegState(isKill
));
2121 (*MIB
).setMemRefs(MMOBegin
, MMOEnd
);
2122 NewMIs
.push_back(MIB
);
2126 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock
&MBB
,
2127 MachineBasicBlock::iterator MI
,
2128 unsigned DestReg
, int FrameIdx
,
2129 const TargetRegisterClass
*RC
,
2130 const TargetRegisterInfo
*TRI
) const {
2131 const MachineFunction
&MF
= *MBB
.getParent();
2132 bool isAligned
= (RI
.getStackAlignment() >= 16) || RI
.canRealignStack(MF
);
2133 unsigned Opc
= getLoadRegOpcode(DestReg
, RC
, isAligned
, TM
);
2134 DebugLoc DL
= MBB
.findDebugLoc(MI
);
2135 addFrameReference(BuildMI(MBB
, MI
, DL
, get(Opc
), DestReg
), FrameIdx
);
2138 void X86InstrInfo::loadRegFromAddr(MachineFunction
&MF
, unsigned DestReg
,
2139 SmallVectorImpl
<MachineOperand
> &Addr
,
2140 const TargetRegisterClass
*RC
,
2141 MachineInstr::mmo_iterator MMOBegin
,
2142 MachineInstr::mmo_iterator MMOEnd
,
2143 SmallVectorImpl
<MachineInstr
*> &NewMIs
) const {
2144 bool isAligned
= MMOBegin
!= MMOEnd
&& (*MMOBegin
)->getAlignment() >= 16;
2145 unsigned Opc
= getLoadRegOpcode(DestReg
, RC
, isAligned
, TM
);
2147 MachineInstrBuilder MIB
= BuildMI(MF
, DL
, get(Opc
), DestReg
);
2148 for (unsigned i
= 0, e
= Addr
.size(); i
!= e
; ++i
)
2149 MIB
.addOperand(Addr
[i
]);
2150 (*MIB
).setMemRefs(MMOBegin
, MMOEnd
);
2151 NewMIs
.push_back(MIB
);
2154 bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock
&MBB
,
2155 MachineBasicBlock::iterator MI
,
2156 const std::vector
<CalleeSavedInfo
> &CSI
,
2157 const TargetRegisterInfo
*TRI
) const {
2161 DebugLoc DL
= MBB
.findDebugLoc(MI
);
2163 bool is64Bit
= TM
.getSubtarget
<X86Subtarget
>().is64Bit();
2164 bool isWin64
= TM
.getSubtarget
<X86Subtarget
>().isTargetWin64();
2165 unsigned SlotSize
= is64Bit
? 8 : 4;
2167 MachineFunction
&MF
= *MBB
.getParent();
2168 unsigned FPReg
= RI
.getFrameRegister(MF
);
2169 X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
2170 unsigned CalleeFrameSize
= 0;
2172 unsigned Opc
= is64Bit
? X86::PUSH64r
: X86::PUSH32r
;
2173 for (unsigned i
= CSI
.size(); i
!= 0; --i
) {
2174 unsigned Reg
= CSI
[i
-1].getReg();
2175 // Add the callee-saved register as live-in. It's killed at the spill.
2178 // X86RegisterInfo::emitPrologue will handle spilling of frame register.
2180 if (!X86::VR128RegClass
.contains(Reg
) && !isWin64
) {
2181 CalleeFrameSize
+= SlotSize
;
2182 BuildMI(MBB
, MI
, DL
, get(Opc
)).addReg(Reg
, RegState::Kill
);
2184 const TargetRegisterClass
*RC
= TRI
->getMinimalPhysRegClass(Reg
);
2185 storeRegToStackSlot(MBB
, MI
, Reg
, true, CSI
[i
-1].getFrameIdx(),
2190 X86FI
->setCalleeSavedFrameSize(CalleeFrameSize
);
2194 bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock
&MBB
,
2195 MachineBasicBlock::iterator MI
,
2196 const std::vector
<CalleeSavedInfo
> &CSI
,
2197 const TargetRegisterInfo
*TRI
) const {
2201 DebugLoc DL
= MBB
.findDebugLoc(MI
);
2203 MachineFunction
&MF
= *MBB
.getParent();
2204 unsigned FPReg
= RI
.getFrameRegister(MF
);
2205 bool is64Bit
= TM
.getSubtarget
<X86Subtarget
>().is64Bit();
2206 bool isWin64
= TM
.getSubtarget
<X86Subtarget
>().isTargetWin64();
2207 unsigned Opc
= is64Bit
? X86::POP64r
: X86::POP32r
;
2208 for (unsigned i
= 0, e
= CSI
.size(); i
!= e
; ++i
) {
2209 unsigned Reg
= CSI
[i
].getReg();
2211 // X86RegisterInfo::emitEpilogue will handle restoring of frame register.
2213 if (!X86::VR128RegClass
.contains(Reg
) && !isWin64
) {
2214 BuildMI(MBB
, MI
, DL
, get(Opc
), Reg
);
2216 const TargetRegisterClass
*RC
= TRI
->getMinimalPhysRegClass(Reg
);
2217 loadRegFromStackSlot(MBB
, MI
, Reg
, CSI
[i
].getFrameIdx(),
2225 X86InstrInfo::emitFrameIndexDebugValue(MachineFunction
&MF
,
2226 int FrameIx
, uint64_t Offset
,
2227 const MDNode
*MDPtr
,
2228 DebugLoc DL
) const {
2230 AM
.BaseType
= X86AddressMode::FrameIndexBase
;
2231 AM
.Base
.FrameIndex
= FrameIx
;
2232 MachineInstrBuilder MIB
= BuildMI(MF
, DL
, get(X86::DBG_VALUE
));
2233 addFullAddress(MIB
, AM
).addImm(Offset
).addMetadata(MDPtr
);
2237 static MachineInstr
*FuseTwoAddrInst(MachineFunction
&MF
, unsigned Opcode
,
2238 const SmallVectorImpl
<MachineOperand
> &MOs
,
2240 const TargetInstrInfo
&TII
) {
2241 // Create the base instruction with the memory operand as the first part.
2242 MachineInstr
*NewMI
= MF
.CreateMachineInstr(TII
.get(Opcode
),
2243 MI
->getDebugLoc(), true);
2244 MachineInstrBuilder
MIB(NewMI
);
2245 unsigned NumAddrOps
= MOs
.size();
2246 for (unsigned i
= 0; i
!= NumAddrOps
; ++i
)
2247 MIB
.addOperand(MOs
[i
]);
2248 if (NumAddrOps
< 4) // FrameIndex only
2251 // Loop over the rest of the ri operands, converting them over.
2252 unsigned NumOps
= MI
->getDesc().getNumOperands()-2;
2253 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
2254 MachineOperand
&MO
= MI
->getOperand(i
+2);
2257 for (unsigned i
= NumOps
+2, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
2258 MachineOperand
&MO
= MI
->getOperand(i
);
2264 static MachineInstr
*FuseInst(MachineFunction
&MF
,
2265 unsigned Opcode
, unsigned OpNo
,
2266 const SmallVectorImpl
<MachineOperand
> &MOs
,
2267 MachineInstr
*MI
, const TargetInstrInfo
&TII
) {
2268 MachineInstr
*NewMI
= MF
.CreateMachineInstr(TII
.get(Opcode
),
2269 MI
->getDebugLoc(), true);
2270 MachineInstrBuilder
MIB(NewMI
);
2272 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
2273 MachineOperand
&MO
= MI
->getOperand(i
);
2275 assert(MO
.isReg() && "Expected to fold into reg operand!");
2276 unsigned NumAddrOps
= MOs
.size();
2277 for (unsigned i
= 0; i
!= NumAddrOps
; ++i
)
2278 MIB
.addOperand(MOs
[i
]);
2279 if (NumAddrOps
< 4) // FrameIndex only
2288 static MachineInstr
*MakeM0Inst(const TargetInstrInfo
&TII
, unsigned Opcode
,
2289 const SmallVectorImpl
<MachineOperand
> &MOs
,
2291 MachineFunction
&MF
= *MI
->getParent()->getParent();
2292 MachineInstrBuilder MIB
= BuildMI(MF
, MI
->getDebugLoc(), TII
.get(Opcode
));
2294 unsigned NumAddrOps
= MOs
.size();
2295 for (unsigned i
= 0; i
!= NumAddrOps
; ++i
)
2296 MIB
.addOperand(MOs
[i
]);
2297 if (NumAddrOps
< 4) // FrameIndex only
2299 return MIB
.addImm(0);
2303 X86InstrInfo::foldMemoryOperandImpl(MachineFunction
&MF
,
2304 MachineInstr
*MI
, unsigned i
,
2305 const SmallVectorImpl
<MachineOperand
> &MOs
,
2306 unsigned Size
, unsigned Align
) const {
2307 const DenseMap
<unsigned, std::pair
<unsigned,unsigned> > *OpcodeTablePtr
= 0;
2308 bool isTwoAddrFold
= false;
2309 unsigned NumOps
= MI
->getDesc().getNumOperands();
2310 bool isTwoAddr
= NumOps
> 1 &&
2311 MI
->getDesc().getOperandConstraint(1, TOI::TIED_TO
) != -1;
2313 MachineInstr
*NewMI
= NULL
;
2314 // Folding a memory location into the two-address part of a two-address
2315 // instruction is different than folding it other places. It requires
2316 // replacing the *two* registers with the memory location.
2317 if (isTwoAddr
&& NumOps
>= 2 && i
< 2 &&
2318 MI
->getOperand(0).isReg() &&
2319 MI
->getOperand(1).isReg() &&
2320 MI
->getOperand(0).getReg() == MI
->getOperand(1).getReg()) {
2321 OpcodeTablePtr
= &RegOp2MemOpTable2Addr
;
2322 isTwoAddrFold
= true;
2323 } else if (i
== 0) { // If operand 0
2324 if (MI
->getOpcode() == X86::MOV64r0
)
2325 NewMI
= MakeM0Inst(*this, X86::MOV64mi32
, MOs
, MI
);
2326 else if (MI
->getOpcode() == X86::MOV32r0
)
2327 NewMI
= MakeM0Inst(*this, X86::MOV32mi
, MOs
, MI
);
2328 else if (MI
->getOpcode() == X86::MOV16r0
)
2329 NewMI
= MakeM0Inst(*this, X86::MOV16mi
, MOs
, MI
);
2330 else if (MI
->getOpcode() == X86::MOV8r0
)
2331 NewMI
= MakeM0Inst(*this, X86::MOV8mi
, MOs
, MI
);
2335 OpcodeTablePtr
= &RegOp2MemOpTable0
;
2336 } else if (i
== 1) {
2337 OpcodeTablePtr
= &RegOp2MemOpTable1
;
2338 } else if (i
== 2) {
2339 OpcodeTablePtr
= &RegOp2MemOpTable2
;
2342 // If table selected...
2343 if (OpcodeTablePtr
) {
2344 // Find the Opcode to fuse
2345 DenseMap
<unsigned, std::pair
<unsigned,unsigned> >::const_iterator I
=
2346 OpcodeTablePtr
->find(MI
->getOpcode());
2347 if (I
!= OpcodeTablePtr
->end()) {
2348 unsigned Opcode
= I
->second
.first
;
2349 unsigned MinAlign
= I
->second
.second
;
2350 if (Align
< MinAlign
)
2352 bool NarrowToMOV32rm
= false;
2354 unsigned RCSize
= MI
->getDesc().OpInfo
[i
].getRegClass(&RI
)->getSize();
2355 if (Size
< RCSize
) {
2356 // Check if it's safe to fold the load. If the size of the object is
2357 // narrower than the load width, then it's not.
2358 if (Opcode
!= X86::MOV64rm
|| RCSize
!= 8 || Size
!= 4)
2360 // If this is a 64-bit load, but the spill slot is 32, then we can do
2361 // a 32-bit load which is implicitly zero-extended. This likely is due
2362 // to liveintervalanalysis remat'ing a load from stack slot.
2363 if (MI
->getOperand(0).getSubReg() || MI
->getOperand(1).getSubReg())
2365 Opcode
= X86::MOV32rm
;
2366 NarrowToMOV32rm
= true;
2371 NewMI
= FuseTwoAddrInst(MF
, Opcode
, MOs
, MI
, *this);
2373 NewMI
= FuseInst(MF
, Opcode
, i
, MOs
, MI
, *this);
2375 if (NarrowToMOV32rm
) {
2376 // If this is the special case where we use a MOV32rm to load a 32-bit
2377 // value and zero-extend the top bits. Change the destination register
2379 unsigned DstReg
= NewMI
->getOperand(0).getReg();
2380 if (TargetRegisterInfo::isPhysicalRegister(DstReg
))
2381 NewMI
->getOperand(0).setReg(RI
.getSubReg(DstReg
,
2384 NewMI
->getOperand(0).setSubReg(X86::sub_32bit
);
2391 if (PrintFailedFusing
&& !MI
->isCopy())
2392 dbgs() << "We failed to fuse operand " << i
<< " in " << *MI
;
2397 MachineInstr
* X86InstrInfo::foldMemoryOperandImpl(MachineFunction
&MF
,
2399 const SmallVectorImpl
<unsigned> &Ops
,
2400 int FrameIndex
) const {
2401 // Check switch flag
2402 if (NoFusing
) return NULL
;
2404 if (!MF
.getFunction()->hasFnAttr(Attribute::OptimizeForSize
))
2405 switch (MI
->getOpcode()) {
2406 case X86::CVTSD2SSrr
:
2407 case X86::Int_CVTSD2SSrr
:
2408 case X86::CVTSS2SDrr
:
2409 case X86::Int_CVTSS2SDrr
:
2411 case X86::RCPSSr_Int
:
2415 case X86::RSQRTSSr_Int
:
2417 case X86::SQRTSSr_Int
:
2421 const MachineFrameInfo
*MFI
= MF
.getFrameInfo();
2422 unsigned Size
= MFI
->getObjectSize(FrameIndex
);
2423 unsigned Alignment
= MFI
->getObjectAlignment(FrameIndex
);
2424 if (Ops
.size() == 2 && Ops
[0] == 0 && Ops
[1] == 1) {
2425 unsigned NewOpc
= 0;
2426 unsigned RCSize
= 0;
2427 switch (MI
->getOpcode()) {
2428 default: return NULL
;
2429 case X86::TEST8rr
: NewOpc
= X86::CMP8ri
; RCSize
= 1; break;
2430 case X86::TEST16rr
: NewOpc
= X86::CMP16ri8
; RCSize
= 2; break;
2431 case X86::TEST32rr
: NewOpc
= X86::CMP32ri8
; RCSize
= 4; break;
2432 case X86::TEST64rr
: NewOpc
= X86::CMP64ri8
; RCSize
= 8; break;
2434 // Check if it's safe to fold the load. If the size of the object is
2435 // narrower than the load width, then it's not.
2438 // Change to CMPXXri r, 0 first.
2439 MI
->setDesc(get(NewOpc
));
2440 MI
->getOperand(1).ChangeToImmediate(0);
2441 } else if (Ops
.size() != 1)
2444 SmallVector
<MachineOperand
,4> MOs
;
2445 MOs
.push_back(MachineOperand::CreateFI(FrameIndex
));
2446 return foldMemoryOperandImpl(MF
, MI
, Ops
[0], MOs
, Size
, Alignment
);
2449 MachineInstr
* X86InstrInfo::foldMemoryOperandImpl(MachineFunction
&MF
,
2451 const SmallVectorImpl
<unsigned> &Ops
,
2452 MachineInstr
*LoadMI
) const {
2453 // Check switch flag
2454 if (NoFusing
) return NULL
;
2456 if (!MF
.getFunction()->hasFnAttr(Attribute::OptimizeForSize
))
2457 switch (MI
->getOpcode()) {
2458 case X86::CVTSD2SSrr
:
2459 case X86::Int_CVTSD2SSrr
:
2460 case X86::CVTSS2SDrr
:
2461 case X86::Int_CVTSS2SDrr
:
2463 case X86::RCPSSr_Int
:
2467 case X86::RSQRTSSr_Int
:
2469 case X86::SQRTSSr_Int
:
2473 // Determine the alignment of the load.
2474 unsigned Alignment
= 0;
2475 if (LoadMI
->hasOneMemOperand())
2476 Alignment
= (*LoadMI
->memoperands_begin())->getAlignment();
2478 switch (LoadMI
->getOpcode()) {
2479 case X86::AVX_SET0PSY
:
2480 case X86::AVX_SET0PDY
:
2486 case X86::V_SETALLONES
:
2487 case X86::AVX_SET0PS
:
2488 case X86::AVX_SET0PD
:
2489 case X86::AVX_SET0PI
:
2499 llvm_unreachable("Don't know how to fold this instruction!");
2501 if (Ops
.size() == 2 && Ops
[0] == 0 && Ops
[1] == 1) {
2502 unsigned NewOpc
= 0;
2503 switch (MI
->getOpcode()) {
2504 default: return NULL
;
2505 case X86::TEST8rr
: NewOpc
= X86::CMP8ri
; break;
2506 case X86::TEST16rr
: NewOpc
= X86::CMP16ri8
; break;
2507 case X86::TEST32rr
: NewOpc
= X86::CMP32ri8
; break;
2508 case X86::TEST64rr
: NewOpc
= X86::CMP64ri8
; break;
2510 // Change to CMPXXri r, 0 first.
2511 MI
->setDesc(get(NewOpc
));
2512 MI
->getOperand(1).ChangeToImmediate(0);
2513 } else if (Ops
.size() != 1)
2516 // Make sure the subregisters match.
2517 // Otherwise we risk changing the size of the load.
2518 if (LoadMI
->getOperand(0).getSubReg() != MI
->getOperand(Ops
[0]).getSubReg())
2521 SmallVector
<MachineOperand
,X86::AddrNumOperands
> MOs
;
2522 switch (LoadMI
->getOpcode()) {
2526 case X86::V_SETALLONES
:
2527 case X86::AVX_SET0PS
:
2528 case X86::AVX_SET0PD
:
2529 case X86::AVX_SET0PI
:
2530 case X86::AVX_SET0PSY
:
2531 case X86::AVX_SET0PDY
:
2533 case X86::FsFLD0SS
: {
2534 // Folding a V_SET0P? or V_SETALLONES as a load, to ease register pressure.
2535 // Create a constant-pool entry and operands to load from it.
2537 // Medium and large mode can't fold loads this way.
2538 if (TM
.getCodeModel() != CodeModel::Small
&&
2539 TM
.getCodeModel() != CodeModel::Kernel
)
2542 // x86-32 PIC requires a PIC base register for constant pools.
2543 unsigned PICBase
= 0;
2544 if (TM
.getRelocationModel() == Reloc::PIC_
) {
2545 if (TM
.getSubtarget
<X86Subtarget
>().is64Bit())
2548 // FIXME: PICBase = getGlobalBaseReg(&MF);
2549 // This doesn't work for several reasons.
2550 // 1. GlobalBaseReg may have been spilled.
2551 // 2. It may not be live at MI.
2555 // Create a constant-pool entry.
2556 MachineConstantPool
&MCP
= *MF
.getConstantPool();
2558 unsigned Opc
= LoadMI
->getOpcode();
2559 if (Opc
== X86::FsFLD0SS
)
2560 Ty
= Type::getFloatTy(MF
.getFunction()->getContext());
2561 else if (Opc
== X86::FsFLD0SD
)
2562 Ty
= Type::getDoubleTy(MF
.getFunction()->getContext());
2563 else if (Opc
== X86::AVX_SET0PSY
|| Opc
== X86::AVX_SET0PDY
)
2564 Ty
= VectorType::get(Type::getFloatTy(MF
.getFunction()->getContext()), 8);
2566 Ty
= VectorType::get(Type::getInt32Ty(MF
.getFunction()->getContext()), 4);
2567 const Constant
*C
= LoadMI
->getOpcode() == X86::V_SETALLONES
?
2568 Constant::getAllOnesValue(Ty
) :
2569 Constant::getNullValue(Ty
);
2570 unsigned CPI
= MCP
.getConstantPoolIndex(C
, Alignment
);
2572 // Create operands to load from the constant pool entry.
2573 MOs
.push_back(MachineOperand::CreateReg(PICBase
, false));
2574 MOs
.push_back(MachineOperand::CreateImm(1));
2575 MOs
.push_back(MachineOperand::CreateReg(0, false));
2576 MOs
.push_back(MachineOperand::CreateCPI(CPI
, 0));
2577 MOs
.push_back(MachineOperand::CreateReg(0, false));
2581 // Folding a normal load. Just copy the load's address operands.
2582 unsigned NumOps
= LoadMI
->getDesc().getNumOperands();
2583 for (unsigned i
= NumOps
- X86::AddrNumOperands
; i
!= NumOps
; ++i
)
2584 MOs
.push_back(LoadMI
->getOperand(i
));
2588 return foldMemoryOperandImpl(MF
, MI
, Ops
[0], MOs
, 0, Alignment
);
2592 bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr
*MI
,
2593 const SmallVectorImpl
<unsigned> &Ops
) const {
2594 // Check switch flag
2595 if (NoFusing
) return 0;
2597 if (Ops
.size() == 2 && Ops
[0] == 0 && Ops
[1] == 1) {
2598 switch (MI
->getOpcode()) {
2599 default: return false;
2608 if (Ops
.size() != 1)
2611 unsigned OpNum
= Ops
[0];
2612 unsigned Opc
= MI
->getOpcode();
2613 unsigned NumOps
= MI
->getDesc().getNumOperands();
2614 bool isTwoAddr
= NumOps
> 1 &&
2615 MI
->getDesc().getOperandConstraint(1, TOI::TIED_TO
) != -1;
2617 // Folding a memory location into the two-address part of a two-address
2618 // instruction is different than folding it other places. It requires
2619 // replacing the *two* registers with the memory location.
2620 const DenseMap
<unsigned, std::pair
<unsigned,unsigned> > *OpcodeTablePtr
= 0;
2621 if (isTwoAddr
&& NumOps
>= 2 && OpNum
< 2) {
2622 OpcodeTablePtr
= &RegOp2MemOpTable2Addr
;
2623 } else if (OpNum
== 0) { // If operand 0
2628 case X86::MOV64r0
: return true;
2631 OpcodeTablePtr
= &RegOp2MemOpTable0
;
2632 } else if (OpNum
== 1) {
2633 OpcodeTablePtr
= &RegOp2MemOpTable1
;
2634 } else if (OpNum
== 2) {
2635 OpcodeTablePtr
= &RegOp2MemOpTable2
;
2638 if (OpcodeTablePtr
&& OpcodeTablePtr
->count(Opc
))
2640 return TargetInstrInfoImpl::canFoldMemoryOperand(MI
, Ops
);
2643 bool X86InstrInfo::unfoldMemoryOperand(MachineFunction
&MF
, MachineInstr
*MI
,
2644 unsigned Reg
, bool UnfoldLoad
, bool UnfoldStore
,
2645 SmallVectorImpl
<MachineInstr
*> &NewMIs
) const {
2646 DenseMap
<unsigned, std::pair
<unsigned,unsigned> >::const_iterator I
=
2647 MemOp2RegOpTable
.find(MI
->getOpcode());
2648 if (I
== MemOp2RegOpTable
.end())
2650 unsigned Opc
= I
->second
.first
;
2651 unsigned Index
= I
->second
.second
& 0xf;
2652 bool FoldedLoad
= I
->second
.second
& (1 << 4);
2653 bool FoldedStore
= I
->second
.second
& (1 << 5);
2654 if (UnfoldLoad
&& !FoldedLoad
)
2656 UnfoldLoad
&= FoldedLoad
;
2657 if (UnfoldStore
&& !FoldedStore
)
2659 UnfoldStore
&= FoldedStore
;
2661 const TargetInstrDesc
&TID
= get(Opc
);
2662 const TargetOperandInfo
&TOI
= TID
.OpInfo
[Index
];
2663 const TargetRegisterClass
*RC
= TOI
.getRegClass(&RI
);
2664 if (!MI
->hasOneMemOperand() &&
2665 RC
== &X86::VR128RegClass
&&
2666 !TM
.getSubtarget
<X86Subtarget
>().isUnalignedMemAccessFast())
2667 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
2668 // conservatively assume the address is unaligned. That's bad for
2671 SmallVector
<MachineOperand
, X86::AddrNumOperands
> AddrOps
;
2672 SmallVector
<MachineOperand
,2> BeforeOps
;
2673 SmallVector
<MachineOperand
,2> AfterOps
;
2674 SmallVector
<MachineOperand
,4> ImpOps
;
2675 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
2676 MachineOperand
&Op
= MI
->getOperand(i
);
2677 if (i
>= Index
&& i
< Index
+ X86::AddrNumOperands
)
2678 AddrOps
.push_back(Op
);
2679 else if (Op
.isReg() && Op
.isImplicit())
2680 ImpOps
.push_back(Op
);
2682 BeforeOps
.push_back(Op
);
2684 AfterOps
.push_back(Op
);
2687 // Emit the load instruction.
2689 std::pair
<MachineInstr::mmo_iterator
,
2690 MachineInstr::mmo_iterator
> MMOs
=
2691 MF
.extractLoadMemRefs(MI
->memoperands_begin(),
2692 MI
->memoperands_end());
2693 loadRegFromAddr(MF
, Reg
, AddrOps
, RC
, MMOs
.first
, MMOs
.second
, NewMIs
);
2695 // Address operands cannot be marked isKill.
2696 for (unsigned i
= 1; i
!= 1 + X86::AddrNumOperands
; ++i
) {
2697 MachineOperand
&MO
= NewMIs
[0]->getOperand(i
);
2699 MO
.setIsKill(false);
2704 // Emit the data processing instruction.
2705 MachineInstr
*DataMI
= MF
.CreateMachineInstr(TID
, MI
->getDebugLoc(), true);
2706 MachineInstrBuilder
MIB(DataMI
);
2709 MIB
.addReg(Reg
, RegState::Define
);
2710 for (unsigned i
= 0, e
= BeforeOps
.size(); i
!= e
; ++i
)
2711 MIB
.addOperand(BeforeOps
[i
]);
2714 for (unsigned i
= 0, e
= AfterOps
.size(); i
!= e
; ++i
)
2715 MIB
.addOperand(AfterOps
[i
]);
2716 for (unsigned i
= 0, e
= ImpOps
.size(); i
!= e
; ++i
) {
2717 MachineOperand
&MO
= ImpOps
[i
];
2718 MIB
.addReg(MO
.getReg(),
2719 getDefRegState(MO
.isDef()) |
2720 RegState::Implicit
|
2721 getKillRegState(MO
.isKill()) |
2722 getDeadRegState(MO
.isDead()) |
2723 getUndefRegState(MO
.isUndef()));
2725 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2726 unsigned NewOpc
= 0;
2727 switch (DataMI
->getOpcode()) {
2729 case X86::CMP64ri32
:
2736 MachineOperand
&MO0
= DataMI
->getOperand(0);
2737 MachineOperand
&MO1
= DataMI
->getOperand(1);
2738 if (MO1
.getImm() == 0) {
2739 switch (DataMI
->getOpcode()) {
2742 case X86::CMP64ri32
: NewOpc
= X86::TEST64rr
; break;
2744 case X86::CMP32ri
: NewOpc
= X86::TEST32rr
; break;
2746 case X86::CMP16ri
: NewOpc
= X86::TEST16rr
; break;
2747 case X86::CMP8ri
: NewOpc
= X86::TEST8rr
; break;
2749 DataMI
->setDesc(get(NewOpc
));
2750 MO1
.ChangeToRegister(MO0
.getReg(), false);
2754 NewMIs
.push_back(DataMI
);
2756 // Emit the store instruction.
2758 const TargetRegisterClass
*DstRC
= TID
.OpInfo
[0].getRegClass(&RI
);
2759 std::pair
<MachineInstr::mmo_iterator
,
2760 MachineInstr::mmo_iterator
> MMOs
=
2761 MF
.extractStoreMemRefs(MI
->memoperands_begin(),
2762 MI
->memoperands_end());
2763 storeRegToAddr(MF
, Reg
, true, AddrOps
, DstRC
, MMOs
.first
, MMOs
.second
, NewMIs
);
2770 X86InstrInfo::unfoldMemoryOperand(SelectionDAG
&DAG
, SDNode
*N
,
2771 SmallVectorImpl
<SDNode
*> &NewNodes
) const {
2772 if (!N
->isMachineOpcode())
2775 DenseMap
<unsigned, std::pair
<unsigned,unsigned> >::const_iterator I
=
2776 MemOp2RegOpTable
.find(N
->getMachineOpcode());
2777 if (I
== MemOp2RegOpTable
.end())
2779 unsigned Opc
= I
->second
.first
;
2780 unsigned Index
= I
->second
.second
& 0xf;
2781 bool FoldedLoad
= I
->second
.second
& (1 << 4);
2782 bool FoldedStore
= I
->second
.second
& (1 << 5);
2783 const TargetInstrDesc
&TID
= get(Opc
);
2784 const TargetRegisterClass
*RC
= TID
.OpInfo
[Index
].getRegClass(&RI
);
2785 unsigned NumDefs
= TID
.NumDefs
;
2786 std::vector
<SDValue
> AddrOps
;
2787 std::vector
<SDValue
> BeforeOps
;
2788 std::vector
<SDValue
> AfterOps
;
2789 DebugLoc dl
= N
->getDebugLoc();
2790 unsigned NumOps
= N
->getNumOperands();
2791 for (unsigned i
= 0; i
!= NumOps
-1; ++i
) {
2792 SDValue Op
= N
->getOperand(i
);
2793 if (i
>= Index
-NumDefs
&& i
< Index
-NumDefs
+ X86::AddrNumOperands
)
2794 AddrOps
.push_back(Op
);
2795 else if (i
< Index
-NumDefs
)
2796 BeforeOps
.push_back(Op
);
2797 else if (i
> Index
-NumDefs
)
2798 AfterOps
.push_back(Op
);
2800 SDValue Chain
= N
->getOperand(NumOps
-1);
2801 AddrOps
.push_back(Chain
);
2803 // Emit the load instruction.
2805 MachineFunction
&MF
= DAG
.getMachineFunction();
2807 EVT VT
= *RC
->vt_begin();
2808 std::pair
<MachineInstr::mmo_iterator
,
2809 MachineInstr::mmo_iterator
> MMOs
=
2810 MF
.extractLoadMemRefs(cast
<MachineSDNode
>(N
)->memoperands_begin(),
2811 cast
<MachineSDNode
>(N
)->memoperands_end());
2812 if (!(*MMOs
.first
) &&
2813 RC
== &X86::VR128RegClass
&&
2814 !TM
.getSubtarget
<X86Subtarget
>().isUnalignedMemAccessFast())
2815 // Do not introduce a slow unaligned load.
2817 bool isAligned
= (*MMOs
.first
) && (*MMOs
.first
)->getAlignment() >= 16;
2818 Load
= DAG
.getMachineNode(getLoadRegOpcode(0, RC
, isAligned
, TM
), dl
,
2819 VT
, MVT::Other
, &AddrOps
[0], AddrOps
.size());
2820 NewNodes
.push_back(Load
);
2822 // Preserve memory reference information.
2823 cast
<MachineSDNode
>(Load
)->setMemRefs(MMOs
.first
, MMOs
.second
);
2826 // Emit the data processing instruction.
2827 std::vector
<EVT
> VTs
;
2828 const TargetRegisterClass
*DstRC
= 0;
2829 if (TID
.getNumDefs() > 0) {
2830 DstRC
= TID
.OpInfo
[0].getRegClass(&RI
);
2831 VTs
.push_back(*DstRC
->vt_begin());
2833 for (unsigned i
= 0, e
= N
->getNumValues(); i
!= e
; ++i
) {
2834 EVT VT
= N
->getValueType(i
);
2835 if (VT
!= MVT::Other
&& i
>= (unsigned)TID
.getNumDefs())
2839 BeforeOps
.push_back(SDValue(Load
, 0));
2840 std::copy(AfterOps
.begin(), AfterOps
.end(), std::back_inserter(BeforeOps
));
2841 SDNode
*NewNode
= DAG
.getMachineNode(Opc
, dl
, VTs
, &BeforeOps
[0],
2843 NewNodes
.push_back(NewNode
);
2845 // Emit the store instruction.
2848 AddrOps
.push_back(SDValue(NewNode
, 0));
2849 AddrOps
.push_back(Chain
);
2850 std::pair
<MachineInstr::mmo_iterator
,
2851 MachineInstr::mmo_iterator
> MMOs
=
2852 MF
.extractStoreMemRefs(cast
<MachineSDNode
>(N
)->memoperands_begin(),
2853 cast
<MachineSDNode
>(N
)->memoperands_end());
2854 if (!(*MMOs
.first
) &&
2855 RC
== &X86::VR128RegClass
&&
2856 !TM
.getSubtarget
<X86Subtarget
>().isUnalignedMemAccessFast())
2857 // Do not introduce a slow unaligned store.
2859 bool isAligned
= (*MMOs
.first
) && (*MMOs
.first
)->getAlignment() >= 16;
2860 SDNode
*Store
= DAG
.getMachineNode(getStoreRegOpcode(0, DstRC
,
2863 &AddrOps
[0], AddrOps
.size());
2864 NewNodes
.push_back(Store
);
2866 // Preserve memory reference information.
2867 cast
<MachineSDNode
>(Load
)->setMemRefs(MMOs
.first
, MMOs
.second
);
2873 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc
,
2874 bool UnfoldLoad
, bool UnfoldStore
,
2875 unsigned *LoadRegIndex
) const {
2876 DenseMap
<unsigned, std::pair
<unsigned,unsigned> >::const_iterator I
=
2877 MemOp2RegOpTable
.find(Opc
);
2878 if (I
== MemOp2RegOpTable
.end())
2880 bool FoldedLoad
= I
->second
.second
& (1 << 4);
2881 bool FoldedStore
= I
->second
.second
& (1 << 5);
2882 if (UnfoldLoad
&& !FoldedLoad
)
2884 if (UnfoldStore
&& !FoldedStore
)
2887 *LoadRegIndex
= I
->second
.second
& 0xf;
2888 return I
->second
.first
;
2892 X86InstrInfo::areLoadsFromSameBasePtr(SDNode
*Load1
, SDNode
*Load2
,
2893 int64_t &Offset1
, int64_t &Offset2
) const {
2894 if (!Load1
->isMachineOpcode() || !Load2
->isMachineOpcode())
2896 unsigned Opc1
= Load1
->getMachineOpcode();
2897 unsigned Opc2
= Load2
->getMachineOpcode();
2899 default: return false;
2909 case X86::MMX_MOVD64rm
:
2910 case X86::MMX_MOVQ64rm
:
2911 case X86::FsMOVAPSrm
:
2912 case X86::FsMOVAPDrm
:
2915 case X86::MOVUPSrm_Int
:
2919 case X86::MOVDQUrm_Int
:
2923 default: return false;
2933 case X86::MMX_MOVD64rm
:
2934 case X86::MMX_MOVQ64rm
:
2935 case X86::FsMOVAPSrm
:
2936 case X86::FsMOVAPDrm
:
2939 case X86::MOVUPSrm_Int
:
2943 case X86::MOVDQUrm_Int
:
2947 // Check if chain operands and base addresses match.
2948 if (Load1
->getOperand(0) != Load2
->getOperand(0) ||
2949 Load1
->getOperand(5) != Load2
->getOperand(5))
2951 // Segment operands should match as well.
2952 if (Load1
->getOperand(4) != Load2
->getOperand(4))
2954 // Scale should be 1, Index should be Reg0.
2955 if (Load1
->getOperand(1) == Load2
->getOperand(1) &&
2956 Load1
->getOperand(2) == Load2
->getOperand(2)) {
2957 if (cast
<ConstantSDNode
>(Load1
->getOperand(1))->getZExtValue() != 1)
2960 // Now let's examine the displacements.
2961 if (isa
<ConstantSDNode
>(Load1
->getOperand(3)) &&
2962 isa
<ConstantSDNode
>(Load2
->getOperand(3))) {
2963 Offset1
= cast
<ConstantSDNode
>(Load1
->getOperand(3))->getSExtValue();
2964 Offset2
= cast
<ConstantSDNode
>(Load2
->getOperand(3))->getSExtValue();
2971 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode
*Load1
, SDNode
*Load2
,
2972 int64_t Offset1
, int64_t Offset2
,
2973 unsigned NumLoads
) const {
2974 assert(Offset2
> Offset1
);
2975 if ((Offset2
- Offset1
) / 8 > 64)
2978 unsigned Opc1
= Load1
->getMachineOpcode();
2979 unsigned Opc2
= Load2
->getMachineOpcode();
2981 return false; // FIXME: overly conservative?
2988 case X86::MMX_MOVD64rm
:
2989 case X86::MMX_MOVQ64rm
:
2993 EVT VT
= Load1
->getValueType(0);
2994 switch (VT
.getSimpleVT().SimpleTy
) {
2996 // XMM registers. In 64-bit mode we can be a bit more aggressive since we
2997 // have 16 of them to play with.
2998 if (TM
.getSubtargetImpl()->is64Bit()) {
3001 } else if (NumLoads
) {
3021 ReverseBranchCondition(SmallVectorImpl
<MachineOperand
> &Cond
) const {
3022 assert(Cond
.size() == 1 && "Invalid X86 branch condition!");
3023 X86::CondCode CC
= static_cast<X86::CondCode
>(Cond
[0].getImm());
3024 if (CC
== X86::COND_NE_OR_P
|| CC
== X86::COND_NP_OR_E
)
3026 Cond
[0].setImm(GetOppositeBranchCondition(CC
));
3031 isSafeToMoveRegClassDefs(const TargetRegisterClass
*RC
) const {
3032 // FIXME: Return false for x87 stack register classes for now. We can't
3033 // allow any loads of these registers before FpGet_ST0_80.
3034 return !(RC
== &X86::CCRRegClass
|| RC
== &X86::RFP32RegClass
||
3035 RC
== &X86::RFP64RegClass
|| RC
== &X86::RFP80RegClass
);
3039 /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or higher)
3040 /// register? e.g. r8, xmm8, xmm13, etc.
3041 bool X86InstrInfo::isX86_64ExtendedReg(unsigned RegNo
) {
3044 case X86::R8
: case X86::R9
: case X86::R10
: case X86::R11
:
3045 case X86::R12
: case X86::R13
: case X86::R14
: case X86::R15
:
3046 case X86::R8D
: case X86::R9D
: case X86::R10D
: case X86::R11D
:
3047 case X86::R12D
: case X86::R13D
: case X86::R14D
: case X86::R15D
:
3048 case X86::R8W
: case X86::R9W
: case X86::R10W
: case X86::R11W
:
3049 case X86::R12W
: case X86::R13W
: case X86::R14W
: case X86::R15W
:
3050 case X86::R8B
: case X86::R9B
: case X86::R10B
: case X86::R11B
:
3051 case X86::R12B
: case X86::R13B
: case X86::R14B
: case X86::R15B
:
3052 case X86::XMM8
: case X86::XMM9
: case X86::XMM10
: case X86::XMM11
:
3053 case X86::XMM12
: case X86::XMM13
: case X86::XMM14
: case X86::XMM15
:
3054 case X86::YMM8
: case X86::YMM9
: case X86::YMM10
: case X86::YMM11
:
3055 case X86::YMM12
: case X86::YMM13
: case X86::YMM14
: case X86::YMM15
:
3056 case X86::CR8
: case X86::CR9
: case X86::CR10
: case X86::CR11
:
3057 case X86::CR12
: case X86::CR13
: case X86::CR14
: case X86::CR15
:
3063 /// getGlobalBaseReg - Return a virtual register initialized with the
3064 /// the global base register value. Output instructions required to
3065 /// initialize the register in the function entry block, if necessary.
3067 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
3069 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction
*MF
) const {
3070 assert(!TM
.getSubtarget
<X86Subtarget
>().is64Bit() &&
3071 "X86-64 PIC uses RIP relative addressing");
3073 X86MachineFunctionInfo
*X86FI
= MF
->getInfo
<X86MachineFunctionInfo
>();
3074 unsigned GlobalBaseReg
= X86FI
->getGlobalBaseReg();
3075 if (GlobalBaseReg
!= 0)
3076 return GlobalBaseReg
;
3078 // Create the register. The code to initialize it is inserted
3079 // later, by the CGBR pass (below).
3080 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
3081 GlobalBaseReg
= RegInfo
.createVirtualRegister(X86::GR32RegisterClass
);
3082 X86FI
->setGlobalBaseReg(GlobalBaseReg
);
3083 return GlobalBaseReg
;
3086 // These are the replaceable SSE instructions. Some of these have Int variants
3087 // that we don't include here. We don't want to replace instructions selected
3089 static const unsigned ReplaceableInstrs
[][3] = {
3090 //PackedSingle PackedDouble PackedInt
3091 { X86::MOVAPSmr
, X86::MOVAPDmr
, X86::MOVDQAmr
},
3092 { X86::MOVAPSrm
, X86::MOVAPDrm
, X86::MOVDQArm
},
3093 { X86::MOVAPSrr
, X86::MOVAPDrr
, X86::MOVDQArr
},
3094 { X86::MOVUPSmr
, X86::MOVUPDmr
, X86::MOVDQUmr
},
3095 { X86::MOVUPSrm
, X86::MOVUPDrm
, X86::MOVDQUrm
},
3096 { X86::MOVNTPSmr
, X86::MOVNTPDmr
, X86::MOVNTDQmr
},
3097 { X86::ANDNPSrm
, X86::ANDNPDrm
, X86::PANDNrm
},
3098 { X86::ANDNPSrr
, X86::ANDNPDrr
, X86::PANDNrr
},
3099 { X86::ANDPSrm
, X86::ANDPDrm
, X86::PANDrm
},
3100 { X86::ANDPSrr
, X86::ANDPDrr
, X86::PANDrr
},
3101 { X86::ORPSrm
, X86::ORPDrm
, X86::PORrm
},
3102 { X86::ORPSrr
, X86::ORPDrr
, X86::PORrr
},
3103 { X86::V_SET0PS
, X86::V_SET0PD
, X86::V_SET0PI
},
3104 { X86::XORPSrm
, X86::XORPDrm
, X86::PXORrm
},
3105 { X86::XORPSrr
, X86::XORPDrr
, X86::PXORrr
},
3106 // AVX 128-bit support
3107 { X86::VMOVAPSmr
, X86::VMOVAPDmr
, X86::VMOVDQAmr
},
3108 { X86::VMOVAPSrm
, X86::VMOVAPDrm
, X86::VMOVDQArm
},
3109 { X86::VMOVAPSrr
, X86::VMOVAPDrr
, X86::VMOVDQArr
},
3110 { X86::VMOVUPSmr
, X86::VMOVUPDmr
, X86::VMOVDQUmr
},
3111 { X86::VMOVUPSrm
, X86::VMOVUPDrm
, X86::VMOVDQUrm
},
3112 { X86::VMOVNTPSmr
, X86::VMOVNTPDmr
, X86::VMOVNTDQmr
},
3113 { X86::VANDNPSrm
, X86::VANDNPDrm
, X86::VPANDNrm
},
3114 { X86::VANDNPSrr
, X86::VANDNPDrr
, X86::VPANDNrr
},
3115 { X86::VANDPSrm
, X86::VANDPDrm
, X86::VPANDrm
},
3116 { X86::VANDPSrr
, X86::VANDPDrr
, X86::VPANDrr
},
3117 { X86::VORPSrm
, X86::VORPDrm
, X86::VPORrm
},
3118 { X86::VORPSrr
, X86::VORPDrr
, X86::VPORrr
},
3119 { X86::AVX_SET0PS
, X86::AVX_SET0PD
, X86::AVX_SET0PI
},
3120 { X86::VXORPSrm
, X86::VXORPDrm
, X86::VPXORrm
},
3121 { X86::VXORPSrr
, X86::VXORPDrr
, X86::VPXORrr
},
3124 // FIXME: Some shuffle and unpack instructions have equivalents in different
3125 // domains, but they require a bit more work than just switching opcodes.
3127 static const unsigned *lookup(unsigned opcode
, unsigned domain
) {
3128 for (unsigned i
= 0, e
= array_lengthof(ReplaceableInstrs
); i
!= e
; ++i
)
3129 if (ReplaceableInstrs
[i
][domain
-1] == opcode
)
3130 return ReplaceableInstrs
[i
];
3134 std::pair
<uint16_t, uint16_t>
3135 X86InstrInfo::GetSSEDomain(const MachineInstr
*MI
) const {
3136 uint16_t domain
= (MI
->getDesc().TSFlags
>> X86II::SSEDomainShift
) & 3;
3137 return std::make_pair(domain
,
3138 domain
&& lookup(MI
->getOpcode(), domain
) ? 0xe : 0);
3141 void X86InstrInfo::SetSSEDomain(MachineInstr
*MI
, unsigned Domain
) const {
3142 assert(Domain
>0 && Domain
<4 && "Invalid execution domain");
3143 uint16_t dom
= (MI
->getDesc().TSFlags
>> X86II::SSEDomainShift
) & 3;
3144 assert(dom
&& "Not an SSE instruction");
3145 const unsigned *table
= lookup(MI
->getOpcode(), dom
);
3146 assert(table
&& "Cannot change domain");
3147 MI
->setDesc(get(table
[Domain
-1]));
3150 /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
3151 void X86InstrInfo::getNoopForMachoTarget(MCInst
&NopInst
) const {
3152 NopInst
.setOpcode(X86::NOOP
);
3156 hasHighOperandLatency(const InstrItineraryData
*ItinData
,
3157 const MachineRegisterInfo
*MRI
,
3158 const MachineInstr
*DefMI
, unsigned DefIdx
,
3159 const MachineInstr
*UseMI
, unsigned UseIdx
) const {
3160 switch (DefMI
->getOpcode()) {
3161 default: return false;
3163 case X86::DIVSDrm_Int
:
3165 case X86::DIVSDrr_Int
:
3167 case X86::DIVSSrm_Int
:
3169 case X86::DIVSSrr_Int
:
3171 case X86::SQRTPDm_Int
:
3173 case X86::SQRTPDr_Int
:
3175 case X86::SQRTPSm_Int
:
3177 case X86::SQRTPSr_Int
:
3179 case X86::SQRTSDm_Int
:
3181 case X86::SQRTSDr_Int
:
3183 case X86::SQRTSSm_Int
:
3185 case X86::SQRTSSr_Int
:
3191 /// CGBR - Create Global Base Reg pass. This initializes the PIC
3192 /// global base register for x86-32.
3193 struct CGBR
: public MachineFunctionPass
{
3195 CGBR() : MachineFunctionPass(ID
) {}
3197 virtual bool runOnMachineFunction(MachineFunction
&MF
) {
3198 const X86TargetMachine
*TM
=
3199 static_cast<const X86TargetMachine
*>(&MF
.getTarget());
3201 assert(!TM
->getSubtarget
<X86Subtarget
>().is64Bit() &&
3202 "X86-64 PIC uses RIP relative addressing");
3204 // Only emit a global base reg in PIC mode.
3205 if (TM
->getRelocationModel() != Reloc::PIC_
)
3208 X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
3209 unsigned GlobalBaseReg
= X86FI
->getGlobalBaseReg();
3211 // If we didn't need a GlobalBaseReg, don't insert code.
3212 if (GlobalBaseReg
== 0)
3215 // Insert the set of GlobalBaseReg into the first MBB of the function
3216 MachineBasicBlock
&FirstMBB
= MF
.front();
3217 MachineBasicBlock::iterator MBBI
= FirstMBB
.begin();
3218 DebugLoc DL
= FirstMBB
.findDebugLoc(MBBI
);
3219 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
3220 const X86InstrInfo
*TII
= TM
->getInstrInfo();
3223 if (TM
->getSubtarget
<X86Subtarget
>().isPICStyleGOT())
3224 PC
= RegInfo
.createVirtualRegister(X86::GR32RegisterClass
);
3228 // Operand of MovePCtoStack is completely ignored by asm printer. It's
3229 // only used in JIT code emission as displacement to pc.
3230 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::MOVPC32r
), PC
).addImm(0);
3232 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3233 // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
3234 if (TM
->getSubtarget
<X86Subtarget
>().isPICStyleGOT()) {
3235 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
3236 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::ADD32ri
), GlobalBaseReg
)
3237 .addReg(PC
).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
3238 X86II::MO_GOT_ABSOLUTE_ADDRESS
);
3244 virtual const char *getPassName() const {
3245 return "X86 PIC Global Base Reg Initialization";
3248 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
3249 AU
.setPreservesCFG();
3250 MachineFunctionPass::getAnalysisUsage(AU
);
3257 llvm::createGlobalBaseRegPass() { return new CGBR(); }