Fixed some bugs.
[llvm/zpu.git] / lib / Target / X86 / X86InstrInfo.cpp
blob79d9872a1b2ea1667c2d762a07b369f73cda1903
1 //===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of the TargetInstrInfo class.
12 //===----------------------------------------------------------------------===//
14 #include "X86InstrInfo.h"
15 #include "X86.h"
16 #include "X86GenInstrInfo.inc"
17 #include "X86InstrBuilder.h"
18 #include "X86MachineFunctionInfo.h"
19 #include "X86Subtarget.h"
20 #include "X86TargetMachine.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/LiveVariables.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/MC/MCInst.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetOptions.h"
36 #include "llvm/MC/MCAsmInfo.h"
37 #include <limits>
39 using namespace llvm;
41 static cl::opt<bool>
42 NoFusing("disable-spill-fusing",
43 cl::desc("Disable fusing of spill code into instructions"));
44 static cl::opt<bool>
45 PrintFailedFusing("print-failed-fuse-candidates",
46 cl::desc("Print instructions that the allocator wants to"
47 " fuse, but the X86 backend currently can't"),
48 cl::Hidden);
49 static cl::opt<bool>
50 ReMatPICStubLoad("remat-pic-stub-load",
51 cl::desc("Re-materialize load from stub in PIC mode"),
52 cl::init(false), cl::Hidden);
54 X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
55 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
56 TM(tm), RI(tm, *this) {
57 enum {
58 TB_NOT_REVERSABLE = 1U << 31,
59 TB_FLAGS = TB_NOT_REVERSABLE
62 static const unsigned OpTbl2Addr[][2] = {
63 { X86::ADC32ri, X86::ADC32mi },
64 { X86::ADC32ri8, X86::ADC32mi8 },
65 { X86::ADC32rr, X86::ADC32mr },
66 { X86::ADC64ri32, X86::ADC64mi32 },
67 { X86::ADC64ri8, X86::ADC64mi8 },
68 { X86::ADC64rr, X86::ADC64mr },
69 { X86::ADD16ri, X86::ADD16mi },
70 { X86::ADD16ri8, X86::ADD16mi8 },
71 { X86::ADD16ri_DB, X86::ADD16mi | TB_NOT_REVERSABLE },
72 { X86::ADD16ri8_DB, X86::ADD16mi8 | TB_NOT_REVERSABLE },
73 { X86::ADD16rr, X86::ADD16mr },
74 { X86::ADD16rr_DB, X86::ADD16mr | TB_NOT_REVERSABLE },
75 { X86::ADD32ri, X86::ADD32mi },
76 { X86::ADD32ri8, X86::ADD32mi8 },
77 { X86::ADD32ri_DB, X86::ADD32mi | TB_NOT_REVERSABLE },
78 { X86::ADD32ri8_DB, X86::ADD32mi8 | TB_NOT_REVERSABLE },
79 { X86::ADD32rr, X86::ADD32mr },
80 { X86::ADD32rr_DB, X86::ADD32mr | TB_NOT_REVERSABLE },
81 { X86::ADD64ri32, X86::ADD64mi32 },
82 { X86::ADD64ri8, X86::ADD64mi8 },
83 { X86::ADD64ri32_DB,X86::ADD64mi32 | TB_NOT_REVERSABLE },
84 { X86::ADD64ri8_DB, X86::ADD64mi8 | TB_NOT_REVERSABLE },
85 { X86::ADD64rr, X86::ADD64mr },
86 { X86::ADD64rr_DB, X86::ADD64mr | TB_NOT_REVERSABLE },
87 { X86::ADD8ri, X86::ADD8mi },
88 { X86::ADD8rr, X86::ADD8mr },
89 { X86::AND16ri, X86::AND16mi },
90 { X86::AND16ri8, X86::AND16mi8 },
91 { X86::AND16rr, X86::AND16mr },
92 { X86::AND32ri, X86::AND32mi },
93 { X86::AND32ri8, X86::AND32mi8 },
94 { X86::AND32rr, X86::AND32mr },
95 { X86::AND64ri32, X86::AND64mi32 },
96 { X86::AND64ri8, X86::AND64mi8 },
97 { X86::AND64rr, X86::AND64mr },
98 { X86::AND8ri, X86::AND8mi },
99 { X86::AND8rr, X86::AND8mr },
100 { X86::DEC16r, X86::DEC16m },
101 { X86::DEC32r, X86::DEC32m },
102 { X86::DEC64_16r, X86::DEC64_16m },
103 { X86::DEC64_32r, X86::DEC64_32m },
104 { X86::DEC64r, X86::DEC64m },
105 { X86::DEC8r, X86::DEC8m },
106 { X86::INC16r, X86::INC16m },
107 { X86::INC32r, X86::INC32m },
108 { X86::INC64_16r, X86::INC64_16m },
109 { X86::INC64_32r, X86::INC64_32m },
110 { X86::INC64r, X86::INC64m },
111 { X86::INC8r, X86::INC8m },
112 { X86::NEG16r, X86::NEG16m },
113 { X86::NEG32r, X86::NEG32m },
114 { X86::NEG64r, X86::NEG64m },
115 { X86::NEG8r, X86::NEG8m },
116 { X86::NOT16r, X86::NOT16m },
117 { X86::NOT32r, X86::NOT32m },
118 { X86::NOT64r, X86::NOT64m },
119 { X86::NOT8r, X86::NOT8m },
120 { X86::OR16ri, X86::OR16mi },
121 { X86::OR16ri8, X86::OR16mi8 },
122 { X86::OR16rr, X86::OR16mr },
123 { X86::OR32ri, X86::OR32mi },
124 { X86::OR32ri8, X86::OR32mi8 },
125 { X86::OR32rr, X86::OR32mr },
126 { X86::OR64ri32, X86::OR64mi32 },
127 { X86::OR64ri8, X86::OR64mi8 },
128 { X86::OR64rr, X86::OR64mr },
129 { X86::OR8ri, X86::OR8mi },
130 { X86::OR8rr, X86::OR8mr },
131 { X86::ROL16r1, X86::ROL16m1 },
132 { X86::ROL16rCL, X86::ROL16mCL },
133 { X86::ROL16ri, X86::ROL16mi },
134 { X86::ROL32r1, X86::ROL32m1 },
135 { X86::ROL32rCL, X86::ROL32mCL },
136 { X86::ROL32ri, X86::ROL32mi },
137 { X86::ROL64r1, X86::ROL64m1 },
138 { X86::ROL64rCL, X86::ROL64mCL },
139 { X86::ROL64ri, X86::ROL64mi },
140 { X86::ROL8r1, X86::ROL8m1 },
141 { X86::ROL8rCL, X86::ROL8mCL },
142 { X86::ROL8ri, X86::ROL8mi },
143 { X86::ROR16r1, X86::ROR16m1 },
144 { X86::ROR16rCL, X86::ROR16mCL },
145 { X86::ROR16ri, X86::ROR16mi },
146 { X86::ROR32r1, X86::ROR32m1 },
147 { X86::ROR32rCL, X86::ROR32mCL },
148 { X86::ROR32ri, X86::ROR32mi },
149 { X86::ROR64r1, X86::ROR64m1 },
150 { X86::ROR64rCL, X86::ROR64mCL },
151 { X86::ROR64ri, X86::ROR64mi },
152 { X86::ROR8r1, X86::ROR8m1 },
153 { X86::ROR8rCL, X86::ROR8mCL },
154 { X86::ROR8ri, X86::ROR8mi },
155 { X86::SAR16r1, X86::SAR16m1 },
156 { X86::SAR16rCL, X86::SAR16mCL },
157 { X86::SAR16ri, X86::SAR16mi },
158 { X86::SAR32r1, X86::SAR32m1 },
159 { X86::SAR32rCL, X86::SAR32mCL },
160 { X86::SAR32ri, X86::SAR32mi },
161 { X86::SAR64r1, X86::SAR64m1 },
162 { X86::SAR64rCL, X86::SAR64mCL },
163 { X86::SAR64ri, X86::SAR64mi },
164 { X86::SAR8r1, X86::SAR8m1 },
165 { X86::SAR8rCL, X86::SAR8mCL },
166 { X86::SAR8ri, X86::SAR8mi },
167 { X86::SBB32ri, X86::SBB32mi },
168 { X86::SBB32ri8, X86::SBB32mi8 },
169 { X86::SBB32rr, X86::SBB32mr },
170 { X86::SBB64ri32, X86::SBB64mi32 },
171 { X86::SBB64ri8, X86::SBB64mi8 },
172 { X86::SBB64rr, X86::SBB64mr },
173 { X86::SHL16rCL, X86::SHL16mCL },
174 { X86::SHL16ri, X86::SHL16mi },
175 { X86::SHL32rCL, X86::SHL32mCL },
176 { X86::SHL32ri, X86::SHL32mi },
177 { X86::SHL64rCL, X86::SHL64mCL },
178 { X86::SHL64ri, X86::SHL64mi },
179 { X86::SHL8rCL, X86::SHL8mCL },
180 { X86::SHL8ri, X86::SHL8mi },
181 { X86::SHLD16rrCL, X86::SHLD16mrCL },
182 { X86::SHLD16rri8, X86::SHLD16mri8 },
183 { X86::SHLD32rrCL, X86::SHLD32mrCL },
184 { X86::SHLD32rri8, X86::SHLD32mri8 },
185 { X86::SHLD64rrCL, X86::SHLD64mrCL },
186 { X86::SHLD64rri8, X86::SHLD64mri8 },
187 { X86::SHR16r1, X86::SHR16m1 },
188 { X86::SHR16rCL, X86::SHR16mCL },
189 { X86::SHR16ri, X86::SHR16mi },
190 { X86::SHR32r1, X86::SHR32m1 },
191 { X86::SHR32rCL, X86::SHR32mCL },
192 { X86::SHR32ri, X86::SHR32mi },
193 { X86::SHR64r1, X86::SHR64m1 },
194 { X86::SHR64rCL, X86::SHR64mCL },
195 { X86::SHR64ri, X86::SHR64mi },
196 { X86::SHR8r1, X86::SHR8m1 },
197 { X86::SHR8rCL, X86::SHR8mCL },
198 { X86::SHR8ri, X86::SHR8mi },
199 { X86::SHRD16rrCL, X86::SHRD16mrCL },
200 { X86::SHRD16rri8, X86::SHRD16mri8 },
201 { X86::SHRD32rrCL, X86::SHRD32mrCL },
202 { X86::SHRD32rri8, X86::SHRD32mri8 },
203 { X86::SHRD64rrCL, X86::SHRD64mrCL },
204 { X86::SHRD64rri8, X86::SHRD64mri8 },
205 { X86::SUB16ri, X86::SUB16mi },
206 { X86::SUB16ri8, X86::SUB16mi8 },
207 { X86::SUB16rr, X86::SUB16mr },
208 { X86::SUB32ri, X86::SUB32mi },
209 { X86::SUB32ri8, X86::SUB32mi8 },
210 { X86::SUB32rr, X86::SUB32mr },
211 { X86::SUB64ri32, X86::SUB64mi32 },
212 { X86::SUB64ri8, X86::SUB64mi8 },
213 { X86::SUB64rr, X86::SUB64mr },
214 { X86::SUB8ri, X86::SUB8mi },
215 { X86::SUB8rr, X86::SUB8mr },
216 { X86::XOR16ri, X86::XOR16mi },
217 { X86::XOR16ri8, X86::XOR16mi8 },
218 { X86::XOR16rr, X86::XOR16mr },
219 { X86::XOR32ri, X86::XOR32mi },
220 { X86::XOR32ri8, X86::XOR32mi8 },
221 { X86::XOR32rr, X86::XOR32mr },
222 { X86::XOR64ri32, X86::XOR64mi32 },
223 { X86::XOR64ri8, X86::XOR64mi8 },
224 { X86::XOR64rr, X86::XOR64mr },
225 { X86::XOR8ri, X86::XOR8mi },
226 { X86::XOR8rr, X86::XOR8mr }
229 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
230 unsigned RegOp = OpTbl2Addr[i][0];
231 unsigned MemOp = OpTbl2Addr[i][1] & ~TB_FLAGS;
232 assert(!RegOp2MemOpTable2Addr.count(RegOp) && "Duplicated entries?");
233 RegOp2MemOpTable2Addr[RegOp] = std::make_pair(MemOp, 0U);
235 // If this is not a reversable operation (because there is a many->one)
236 // mapping, don't insert the reverse of the operation into MemOp2RegOpTable.
237 if (OpTbl2Addr[i][1] & TB_NOT_REVERSABLE)
238 continue;
240 // Index 0, folded load and store, no alignment requirement.
241 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5);
243 assert(!MemOp2RegOpTable.count(MemOp) &&
244 "Duplicated entries in unfolding maps?");
245 MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo);
248 // If the third value is 1, then it's folding either a load or a store.
249 static const unsigned OpTbl0[][4] = {
250 { X86::BT16ri8, X86::BT16mi8, 1, 0 },
251 { X86::BT32ri8, X86::BT32mi8, 1, 0 },
252 { X86::BT64ri8, X86::BT64mi8, 1, 0 },
253 { X86::CALL32r, X86::CALL32m, 1, 0 },
254 { X86::CALL64r, X86::CALL64m, 1, 0 },
255 { X86::WINCALL64r, X86::WINCALL64m, 1, 0 },
256 { X86::CMP16ri, X86::CMP16mi, 1, 0 },
257 { X86::CMP16ri8, X86::CMP16mi8, 1, 0 },
258 { X86::CMP16rr, X86::CMP16mr, 1, 0 },
259 { X86::CMP32ri, X86::CMP32mi, 1, 0 },
260 { X86::CMP32ri8, X86::CMP32mi8, 1, 0 },
261 { X86::CMP32rr, X86::CMP32mr, 1, 0 },
262 { X86::CMP64ri32, X86::CMP64mi32, 1, 0 },
263 { X86::CMP64ri8, X86::CMP64mi8, 1, 0 },
264 { X86::CMP64rr, X86::CMP64mr, 1, 0 },
265 { X86::CMP8ri, X86::CMP8mi, 1, 0 },
266 { X86::CMP8rr, X86::CMP8mr, 1, 0 },
267 { X86::DIV16r, X86::DIV16m, 1, 0 },
268 { X86::DIV32r, X86::DIV32m, 1, 0 },
269 { X86::DIV64r, X86::DIV64m, 1, 0 },
270 { X86::DIV8r, X86::DIV8m, 1, 0 },
271 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0, 16 },
272 { X86::FsMOVAPDrr, X86::MOVSDmr | TB_NOT_REVERSABLE , 0, 0 },
273 { X86::FsMOVAPSrr, X86::MOVSSmr | TB_NOT_REVERSABLE , 0, 0 },
274 { X86::IDIV16r, X86::IDIV16m, 1, 0 },
275 { X86::IDIV32r, X86::IDIV32m, 1, 0 },
276 { X86::IDIV64r, X86::IDIV64m, 1, 0 },
277 { X86::IDIV8r, X86::IDIV8m, 1, 0 },
278 { X86::IMUL16r, X86::IMUL16m, 1, 0 },
279 { X86::IMUL32r, X86::IMUL32m, 1, 0 },
280 { X86::IMUL64r, X86::IMUL64m, 1, 0 },
281 { X86::IMUL8r, X86::IMUL8m, 1, 0 },
282 { X86::JMP32r, X86::JMP32m, 1, 0 },
283 { X86::JMP64r, X86::JMP64m, 1, 0 },
284 { X86::MOV16ri, X86::MOV16mi, 0, 0 },
285 { X86::MOV16rr, X86::MOV16mr, 0, 0 },
286 { X86::MOV32ri, X86::MOV32mi, 0, 0 },
287 { X86::MOV32rr, X86::MOV32mr, 0, 0 },
288 { X86::MOV64ri32, X86::MOV64mi32, 0, 0 },
289 { X86::MOV64rr, X86::MOV64mr, 0, 0 },
290 { X86::MOV8ri, X86::MOV8mi, 0, 0 },
291 { X86::MOV8rr, X86::MOV8mr, 0, 0 },
292 { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0, 0 },
293 { X86::MOVAPDrr, X86::MOVAPDmr, 0, 16 },
294 { X86::MOVAPSrr, X86::MOVAPSmr, 0, 16 },
295 { X86::MOVDQArr, X86::MOVDQAmr, 0, 16 },
296 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0, 0 },
297 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0, 0 },
298 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0, 0 },
299 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0, 0 },
300 { X86::MOVUPDrr, X86::MOVUPDmr, 0, 0 },
301 { X86::MOVUPSrr, X86::MOVUPSmr, 0, 0 },
302 { X86::MUL16r, X86::MUL16m, 1, 0 },
303 { X86::MUL32r, X86::MUL32m, 1, 0 },
304 { X86::MUL64r, X86::MUL64m, 1, 0 },
305 { X86::MUL8r, X86::MUL8m, 1, 0 },
306 { X86::SETAEr, X86::SETAEm, 0, 0 },
307 { X86::SETAr, X86::SETAm, 0, 0 },
308 { X86::SETBEr, X86::SETBEm, 0, 0 },
309 { X86::SETBr, X86::SETBm, 0, 0 },
310 { X86::SETEr, X86::SETEm, 0, 0 },
311 { X86::SETGEr, X86::SETGEm, 0, 0 },
312 { X86::SETGr, X86::SETGm, 0, 0 },
313 { X86::SETLEr, X86::SETLEm, 0, 0 },
314 { X86::SETLr, X86::SETLm, 0, 0 },
315 { X86::SETNEr, X86::SETNEm, 0, 0 },
316 { X86::SETNOr, X86::SETNOm, 0, 0 },
317 { X86::SETNPr, X86::SETNPm, 0, 0 },
318 { X86::SETNSr, X86::SETNSm, 0, 0 },
319 { X86::SETOr, X86::SETOm, 0, 0 },
320 { X86::SETPr, X86::SETPm, 0, 0 },
321 { X86::SETSr, X86::SETSm, 0, 0 },
322 { X86::TAILJMPr, X86::TAILJMPm, 1, 0 },
323 { X86::TAILJMPr64, X86::TAILJMPm64, 1, 0 },
324 { X86::TEST16ri, X86::TEST16mi, 1, 0 },
325 { X86::TEST32ri, X86::TEST32mi, 1, 0 },
326 { X86::TEST64ri32, X86::TEST64mi32, 1, 0 },
327 { X86::TEST8ri, X86::TEST8mi, 1, 0 }
330 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
331 unsigned RegOp = OpTbl0[i][0];
332 unsigned MemOp = OpTbl0[i][1] & ~TB_FLAGS;
333 unsigned FoldedLoad = OpTbl0[i][2];
334 unsigned Align = OpTbl0[i][3];
335 assert(!RegOp2MemOpTable0.count(RegOp) && "Duplicated entries?");
336 RegOp2MemOpTable0[RegOp] = std::make_pair(MemOp, Align);
338 // If this is not a reversable operation (because there is a many->one)
339 // mapping, don't insert the reverse of the operation into MemOp2RegOpTable.
340 if (OpTbl0[i][1] & TB_NOT_REVERSABLE)
341 continue;
343 // Index 0, folded load or store.
344 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
345 assert(!MemOp2RegOpTable.count(MemOp) && "Duplicated entries?");
346 MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo);
349 static const unsigned OpTbl1[][3] = {
350 { X86::CMP16rr, X86::CMP16rm, 0 },
351 { X86::CMP32rr, X86::CMP32rm, 0 },
352 { X86::CMP64rr, X86::CMP64rm, 0 },
353 { X86::CMP8rr, X86::CMP8rm, 0 },
354 { X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 },
355 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 },
356 { X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 },
357 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 },
358 { X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 },
359 { X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 },
360 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 },
361 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 },
362 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 },
363 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 },
364 { X86::FsMOVAPDrr, X86::MOVSDrm | TB_NOT_REVERSABLE , 0 },
365 { X86::FsMOVAPSrr, X86::MOVSSrm | TB_NOT_REVERSABLE , 0 },
366 { X86::IMUL16rri, X86::IMUL16rmi, 0 },
367 { X86::IMUL16rri8, X86::IMUL16rmi8, 0 },
368 { X86::IMUL32rri, X86::IMUL32rmi, 0 },
369 { X86::IMUL32rri8, X86::IMUL32rmi8, 0 },
370 { X86::IMUL64rri32, X86::IMUL64rmi32, 0 },
371 { X86::IMUL64rri8, X86::IMUL64rmi8, 0 },
372 { X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 },
373 { X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 },
374 { X86::Int_COMISDrr, X86::Int_COMISDrm, 0 },
375 { X86::Int_COMISSrr, X86::Int_COMISSrm, 0 },
376 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm, 16 },
377 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm, 16 },
378 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm, 16 },
379 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm, 16 },
380 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm, 16 },
381 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm, 0 },
382 { X86::CVTSD2SI64rr, X86::CVTSD2SI64rm, 0 },
383 { X86::CVTSD2SIrr, X86::CVTSD2SIrm, 0 },
384 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 },
385 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
386 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 },
387 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
388 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 },
389 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 },
390 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm, 0 },
391 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm, 0 },
392 { X86::CVTTPD2DQrr, X86::CVTTPD2DQrm, 16 },
393 { X86::CVTTPS2DQrr, X86::CVTTPS2DQrm, 16 },
394 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
395 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
396 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
397 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
398 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 },
399 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 },
400 { X86::MOV16rr, X86::MOV16rm, 0 },
401 { X86::MOV32rr, X86::MOV32rm, 0 },
402 { X86::MOV64rr, X86::MOV64rm, 0 },
403 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 },
404 { X86::MOV64toSDrr, X86::MOV64toSDrm, 0 },
405 { X86::MOV8rr, X86::MOV8rm, 0 },
406 { X86::MOVAPDrr, X86::MOVAPDrm, 16 },
407 { X86::MOVAPSrr, X86::MOVAPSrm, 16 },
408 { X86::MOVDDUPrr, X86::MOVDDUPrm, 0 },
409 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 },
410 { X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 },
411 { X86::MOVDQArr, X86::MOVDQArm, 16 },
412 { X86::MOVSHDUPrr, X86::MOVSHDUPrm, 16 },
413 { X86::MOVSLDUPrr, X86::MOVSLDUPrm, 16 },
414 { X86::MOVSX16rr8, X86::MOVSX16rm8, 0 },
415 { X86::MOVSX32rr16, X86::MOVSX32rm16, 0 },
416 { X86::MOVSX32rr8, X86::MOVSX32rm8, 0 },
417 { X86::MOVSX64rr16, X86::MOVSX64rm16, 0 },
418 { X86::MOVSX64rr32, X86::MOVSX64rm32, 0 },
419 { X86::MOVSX64rr8, X86::MOVSX64rm8, 0 },
420 { X86::MOVUPDrr, X86::MOVUPDrm, 16 },
421 { X86::MOVUPSrr, X86::MOVUPSrm, 0 },
422 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm, 0 },
423 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm, 0 },
424 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, 16 },
425 { X86::MOVZX16rr8, X86::MOVZX16rm8, 0 },
426 { X86::MOVZX32rr16, X86::MOVZX32rm16, 0 },
427 { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
428 { X86::MOVZX32rr8, X86::MOVZX32rm8, 0 },
429 { X86::MOVZX64rr16, X86::MOVZX64rm16, 0 },
430 { X86::MOVZX64rr32, X86::MOVZX64rm32, 0 },
431 { X86::MOVZX64rr8, X86::MOVZX64rm8, 0 },
432 { X86::PSHUFDri, X86::PSHUFDmi, 16 },
433 { X86::PSHUFHWri, X86::PSHUFHWmi, 16 },
434 { X86::PSHUFLWri, X86::PSHUFLWmi, 16 },
435 { X86::RCPPSr, X86::RCPPSm, 16 },
436 { X86::RCPPSr_Int, X86::RCPPSm_Int, 16 },
437 { X86::RSQRTPSr, X86::RSQRTPSm, 16 },
438 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int, 16 },
439 { X86::RSQRTSSr, X86::RSQRTSSm, 0 },
440 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 },
441 { X86::SQRTPDr, X86::SQRTPDm, 16 },
442 { X86::SQRTPDr_Int, X86::SQRTPDm_Int, 16 },
443 { X86::SQRTPSr, X86::SQRTPSm, 16 },
444 { X86::SQRTPSr_Int, X86::SQRTPSm_Int, 16 },
445 { X86::SQRTSDr, X86::SQRTSDm, 0 },
446 { X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 },
447 { X86::SQRTSSr, X86::SQRTSSm, 0 },
448 { X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 },
449 { X86::TEST16rr, X86::TEST16rm, 0 },
450 { X86::TEST32rr, X86::TEST32rm, 0 },
451 { X86::TEST64rr, X86::TEST64rm, 0 },
452 { X86::TEST8rr, X86::TEST8rm, 0 },
453 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
454 { X86::UCOMISDrr, X86::UCOMISDrm, 0 },
455 { X86::UCOMISSrr, X86::UCOMISSrm, 0 }
458 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
459 unsigned RegOp = OpTbl1[i][0];
460 unsigned MemOp = OpTbl1[i][1] & ~TB_FLAGS;
461 unsigned Align = OpTbl1[i][2];
462 assert(!RegOp2MemOpTable1.count(RegOp) && "Duplicate entries");
463 RegOp2MemOpTable1[RegOp] = std::make_pair(MemOp, Align);
465 // If this is not a reversable operation (because there is a many->one)
466 // mapping, don't insert the reverse of the operation into MemOp2RegOpTable.
467 if (OpTbl1[i][1] & TB_NOT_REVERSABLE)
468 continue;
470 // Index 1, folded load
471 unsigned AuxInfo = 1 | (1 << 4);
472 assert(!MemOp2RegOpTable.count(MemOp) && "Duplicate entries");
473 MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo);
476 static const unsigned OpTbl2[][3] = {
477 { X86::ADC32rr, X86::ADC32rm, 0 },
478 { X86::ADC64rr, X86::ADC64rm, 0 },
479 { X86::ADD16rr, X86::ADD16rm, 0 },
480 { X86::ADD16rr_DB, X86::ADD16rm | TB_NOT_REVERSABLE, 0 },
481 { X86::ADD32rr, X86::ADD32rm, 0 },
482 { X86::ADD32rr_DB, X86::ADD32rm | TB_NOT_REVERSABLE, 0 },
483 { X86::ADD64rr, X86::ADD64rm, 0 },
484 { X86::ADD64rr_DB, X86::ADD64rm | TB_NOT_REVERSABLE, 0 },
485 { X86::ADD8rr, X86::ADD8rm, 0 },
486 { X86::ADDPDrr, X86::ADDPDrm, 16 },
487 { X86::ADDPSrr, X86::ADDPSrm, 16 },
488 { X86::ADDSDrr, X86::ADDSDrm, 0 },
489 { X86::ADDSSrr, X86::ADDSSrm, 0 },
490 { X86::ADDSUBPDrr, X86::ADDSUBPDrm, 16 },
491 { X86::ADDSUBPSrr, X86::ADDSUBPSrm, 16 },
492 { X86::AND16rr, X86::AND16rm, 0 },
493 { X86::AND32rr, X86::AND32rm, 0 },
494 { X86::AND64rr, X86::AND64rm, 0 },
495 { X86::AND8rr, X86::AND8rm, 0 },
496 { X86::ANDNPDrr, X86::ANDNPDrm, 16 },
497 { X86::ANDNPSrr, X86::ANDNPSrm, 16 },
498 { X86::ANDPDrr, X86::ANDPDrm, 16 },
499 { X86::ANDPSrr, X86::ANDPSrm, 16 },
500 { X86::CMOVA16rr, X86::CMOVA16rm, 0 },
501 { X86::CMOVA32rr, X86::CMOVA32rm, 0 },
502 { X86::CMOVA64rr, X86::CMOVA64rm, 0 },
503 { X86::CMOVAE16rr, X86::CMOVAE16rm, 0 },
504 { X86::CMOVAE32rr, X86::CMOVAE32rm, 0 },
505 { X86::CMOVAE64rr, X86::CMOVAE64rm, 0 },
506 { X86::CMOVB16rr, X86::CMOVB16rm, 0 },
507 { X86::CMOVB32rr, X86::CMOVB32rm, 0 },
508 { X86::CMOVB64rr, X86::CMOVB64rm, 0 },
509 { X86::CMOVBE16rr, X86::CMOVBE16rm, 0 },
510 { X86::CMOVBE32rr, X86::CMOVBE32rm, 0 },
511 { X86::CMOVBE64rr, X86::CMOVBE64rm, 0 },
512 { X86::CMOVE16rr, X86::CMOVE16rm, 0 },
513 { X86::CMOVE32rr, X86::CMOVE32rm, 0 },
514 { X86::CMOVE64rr, X86::CMOVE64rm, 0 },
515 { X86::CMOVG16rr, X86::CMOVG16rm, 0 },
516 { X86::CMOVG32rr, X86::CMOVG32rm, 0 },
517 { X86::CMOVG64rr, X86::CMOVG64rm, 0 },
518 { X86::CMOVGE16rr, X86::CMOVGE16rm, 0 },
519 { X86::CMOVGE32rr, X86::CMOVGE32rm, 0 },
520 { X86::CMOVGE64rr, X86::CMOVGE64rm, 0 },
521 { X86::CMOVL16rr, X86::CMOVL16rm, 0 },
522 { X86::CMOVL32rr, X86::CMOVL32rm, 0 },
523 { X86::CMOVL64rr, X86::CMOVL64rm, 0 },
524 { X86::CMOVLE16rr, X86::CMOVLE16rm, 0 },
525 { X86::CMOVLE32rr, X86::CMOVLE32rm, 0 },
526 { X86::CMOVLE64rr, X86::CMOVLE64rm, 0 },
527 { X86::CMOVNE16rr, X86::CMOVNE16rm, 0 },
528 { X86::CMOVNE32rr, X86::CMOVNE32rm, 0 },
529 { X86::CMOVNE64rr, X86::CMOVNE64rm, 0 },
530 { X86::CMOVNO16rr, X86::CMOVNO16rm, 0 },
531 { X86::CMOVNO32rr, X86::CMOVNO32rm, 0 },
532 { X86::CMOVNO64rr, X86::CMOVNO64rm, 0 },
533 { X86::CMOVNP16rr, X86::CMOVNP16rm, 0 },
534 { X86::CMOVNP32rr, X86::CMOVNP32rm, 0 },
535 { X86::CMOVNP64rr, X86::CMOVNP64rm, 0 },
536 { X86::CMOVNS16rr, X86::CMOVNS16rm, 0 },
537 { X86::CMOVNS32rr, X86::CMOVNS32rm, 0 },
538 { X86::CMOVNS64rr, X86::CMOVNS64rm, 0 },
539 { X86::CMOVO16rr, X86::CMOVO16rm, 0 },
540 { X86::CMOVO32rr, X86::CMOVO32rm, 0 },
541 { X86::CMOVO64rr, X86::CMOVO64rm, 0 },
542 { X86::CMOVP16rr, X86::CMOVP16rm, 0 },
543 { X86::CMOVP32rr, X86::CMOVP32rm, 0 },
544 { X86::CMOVP64rr, X86::CMOVP64rm, 0 },
545 { X86::CMOVS16rr, X86::CMOVS16rm, 0 },
546 { X86::CMOVS32rr, X86::CMOVS32rm, 0 },
547 { X86::CMOVS64rr, X86::CMOVS64rm, 0 },
548 { X86::CMPPDrri, X86::CMPPDrmi, 16 },
549 { X86::CMPPSrri, X86::CMPPSrmi, 16 },
550 { X86::CMPSDrr, X86::CMPSDrm, 0 },
551 { X86::CMPSSrr, X86::CMPSSrm, 0 },
552 { X86::DIVPDrr, X86::DIVPDrm, 16 },
553 { X86::DIVPSrr, X86::DIVPSrm, 16 },
554 { X86::DIVSDrr, X86::DIVSDrm, 0 },
555 { X86::DIVSSrr, X86::DIVSSrm, 0 },
556 { X86::FsANDNPDrr, X86::FsANDNPDrm, 16 },
557 { X86::FsANDNPSrr, X86::FsANDNPSrm, 16 },
558 { X86::FsANDPDrr, X86::FsANDPDrm, 16 },
559 { X86::FsANDPSrr, X86::FsANDPSrm, 16 },
560 { X86::FsORPDrr, X86::FsORPDrm, 16 },
561 { X86::FsORPSrr, X86::FsORPSrm, 16 },
562 { X86::FsXORPDrr, X86::FsXORPDrm, 16 },
563 { X86::FsXORPSrr, X86::FsXORPSrm, 16 },
564 { X86::HADDPDrr, X86::HADDPDrm, 16 },
565 { X86::HADDPSrr, X86::HADDPSrm, 16 },
566 { X86::HSUBPDrr, X86::HSUBPDrm, 16 },
567 { X86::HSUBPSrr, X86::HSUBPSrm, 16 },
568 { X86::IMUL16rr, X86::IMUL16rm, 0 },
569 { X86::IMUL32rr, X86::IMUL32rm, 0 },
570 { X86::IMUL64rr, X86::IMUL64rm, 0 },
571 { X86::MAXPDrr, X86::MAXPDrm, 16 },
572 { X86::MAXPDrr_Int, X86::MAXPDrm_Int, 16 },
573 { X86::MAXPSrr, X86::MAXPSrm, 16 },
574 { X86::MAXPSrr_Int, X86::MAXPSrm_Int, 16 },
575 { X86::MAXSDrr, X86::MAXSDrm, 0 },
576 { X86::MAXSDrr_Int, X86::MAXSDrm_Int, 0 },
577 { X86::MAXSSrr, X86::MAXSSrm, 0 },
578 { X86::MAXSSrr_Int, X86::MAXSSrm_Int, 0 },
579 { X86::MINPDrr, X86::MINPDrm, 16 },
580 { X86::MINPDrr_Int, X86::MINPDrm_Int, 16 },
581 { X86::MINPSrr, X86::MINPSrm, 16 },
582 { X86::MINPSrr_Int, X86::MINPSrm_Int, 16 },
583 { X86::MINSDrr, X86::MINSDrm, 0 },
584 { X86::MINSDrr_Int, X86::MINSDrm_Int, 0 },
585 { X86::MINSSrr, X86::MINSSrm, 0 },
586 { X86::MINSSrr_Int, X86::MINSSrm_Int, 0 },
587 { X86::MULPDrr, X86::MULPDrm, 16 },
588 { X86::MULPSrr, X86::MULPSrm, 16 },
589 { X86::MULSDrr, X86::MULSDrm, 0 },
590 { X86::MULSSrr, X86::MULSSrm, 0 },
591 { X86::OR16rr, X86::OR16rm, 0 },
592 { X86::OR32rr, X86::OR32rm, 0 },
593 { X86::OR64rr, X86::OR64rm, 0 },
594 { X86::OR8rr, X86::OR8rm, 0 },
595 { X86::ORPDrr, X86::ORPDrm, 16 },
596 { X86::ORPSrr, X86::ORPSrm, 16 },
597 { X86::PACKSSDWrr, X86::PACKSSDWrm, 16 },
598 { X86::PACKSSWBrr, X86::PACKSSWBrm, 16 },
599 { X86::PACKUSWBrr, X86::PACKUSWBrm, 16 },
600 { X86::PADDBrr, X86::PADDBrm, 16 },
601 { X86::PADDDrr, X86::PADDDrm, 16 },
602 { X86::PADDQrr, X86::PADDQrm, 16 },
603 { X86::PADDSBrr, X86::PADDSBrm, 16 },
604 { X86::PADDSWrr, X86::PADDSWrm, 16 },
605 { X86::PADDWrr, X86::PADDWrm, 16 },
606 { X86::PANDNrr, X86::PANDNrm, 16 },
607 { X86::PANDrr, X86::PANDrm, 16 },
608 { X86::PAVGBrr, X86::PAVGBrm, 16 },
609 { X86::PAVGWrr, X86::PAVGWrm, 16 },
610 { X86::PCMPEQBrr, X86::PCMPEQBrm, 16 },
611 { X86::PCMPEQDrr, X86::PCMPEQDrm, 16 },
612 { X86::PCMPEQWrr, X86::PCMPEQWrm, 16 },
613 { X86::PCMPGTBrr, X86::PCMPGTBrm, 16 },
614 { X86::PCMPGTDrr, X86::PCMPGTDrm, 16 },
615 { X86::PCMPGTWrr, X86::PCMPGTWrm, 16 },
616 { X86::PINSRWrri, X86::PINSRWrmi, 16 },
617 { X86::PMADDWDrr, X86::PMADDWDrm, 16 },
618 { X86::PMAXSWrr, X86::PMAXSWrm, 16 },
619 { X86::PMAXUBrr, X86::PMAXUBrm, 16 },
620 { X86::PMINSWrr, X86::PMINSWrm, 16 },
621 { X86::PMINUBrr, X86::PMINUBrm, 16 },
622 { X86::PMULDQrr, X86::PMULDQrm, 16 },
623 { X86::PMULHUWrr, X86::PMULHUWrm, 16 },
624 { X86::PMULHWrr, X86::PMULHWrm, 16 },
625 { X86::PMULLDrr, X86::PMULLDrm, 16 },
626 { X86::PMULLWrr, X86::PMULLWrm, 16 },
627 { X86::PMULUDQrr, X86::PMULUDQrm, 16 },
628 { X86::PORrr, X86::PORrm, 16 },
629 { X86::PSADBWrr, X86::PSADBWrm, 16 },
630 { X86::PSLLDrr, X86::PSLLDrm, 16 },
631 { X86::PSLLQrr, X86::PSLLQrm, 16 },
632 { X86::PSLLWrr, X86::PSLLWrm, 16 },
633 { X86::PSRADrr, X86::PSRADrm, 16 },
634 { X86::PSRAWrr, X86::PSRAWrm, 16 },
635 { X86::PSRLDrr, X86::PSRLDrm, 16 },
636 { X86::PSRLQrr, X86::PSRLQrm, 16 },
637 { X86::PSRLWrr, X86::PSRLWrm, 16 },
638 { X86::PSUBBrr, X86::PSUBBrm, 16 },
639 { X86::PSUBDrr, X86::PSUBDrm, 16 },
640 { X86::PSUBSBrr, X86::PSUBSBrm, 16 },
641 { X86::PSUBSWrr, X86::PSUBSWrm, 16 },
642 { X86::PSUBWrr, X86::PSUBWrm, 16 },
643 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, 16 },
644 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, 16 },
645 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, 16 },
646 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, 16 },
647 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, 16 },
648 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, 16 },
649 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, 16 },
650 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, 16 },
651 { X86::PXORrr, X86::PXORrm, 16 },
652 { X86::SBB32rr, X86::SBB32rm, 0 },
653 { X86::SBB64rr, X86::SBB64rm, 0 },
654 { X86::SHUFPDrri, X86::SHUFPDrmi, 16 },
655 { X86::SHUFPSrri, X86::SHUFPSrmi, 16 },
656 { X86::SUB16rr, X86::SUB16rm, 0 },
657 { X86::SUB32rr, X86::SUB32rm, 0 },
658 { X86::SUB64rr, X86::SUB64rm, 0 },
659 { X86::SUB8rr, X86::SUB8rm, 0 },
660 { X86::SUBPDrr, X86::SUBPDrm, 16 },
661 { X86::SUBPSrr, X86::SUBPSrm, 16 },
662 { X86::SUBSDrr, X86::SUBSDrm, 0 },
663 { X86::SUBSSrr, X86::SUBSSrm, 0 },
664 // FIXME: TEST*rr -> swapped operand of TEST*mr.
665 { X86::UNPCKHPDrr, X86::UNPCKHPDrm, 16 },
666 { X86::UNPCKHPSrr, X86::UNPCKHPSrm, 16 },
667 { X86::UNPCKLPDrr, X86::UNPCKLPDrm, 16 },
668 { X86::UNPCKLPSrr, X86::UNPCKLPSrm, 16 },
669 { X86::XOR16rr, X86::XOR16rm, 0 },
670 { X86::XOR32rr, X86::XOR32rm, 0 },
671 { X86::XOR64rr, X86::XOR64rm, 0 },
672 { X86::XOR8rr, X86::XOR8rm, 0 },
673 { X86::XORPDrr, X86::XORPDrm, 16 },
674 { X86::XORPSrr, X86::XORPSrm, 16 }
677 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
678 unsigned RegOp = OpTbl2[i][0];
679 unsigned MemOp = OpTbl2[i][1] & ~TB_FLAGS;
680 unsigned Align = OpTbl2[i][2];
682 assert(!RegOp2MemOpTable2.count(RegOp) && "Duplicate entry!");
683 RegOp2MemOpTable2[RegOp] = std::make_pair(MemOp, Align);
685 // If this is not a reversable operation (because there is a many->one)
686 // mapping, don't insert the reverse of the operation into MemOp2RegOpTable.
687 if (OpTbl2[i][1] & TB_NOT_REVERSABLE)
688 continue;
690 // Index 2, folded load
691 unsigned AuxInfo = 2 | (1 << 4);
692 assert(!MemOp2RegOpTable.count(MemOp) &&
693 "Duplicated entries in unfolding maps?");
694 MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo);
698 bool
699 X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
700 unsigned &SrcReg, unsigned &DstReg,
701 unsigned &SubIdx) const {
702 switch (MI.getOpcode()) {
703 default: break;
704 case X86::MOVSX16rr8:
705 case X86::MOVZX16rr8:
706 case X86::MOVSX32rr8:
707 case X86::MOVZX32rr8:
708 case X86::MOVSX64rr8:
709 case X86::MOVZX64rr8:
710 if (!TM.getSubtarget<X86Subtarget>().is64Bit())
711 // It's not always legal to reference the low 8-bit of the larger
712 // register in 32-bit mode.
713 return false;
714 case X86::MOVSX32rr16:
715 case X86::MOVZX32rr16:
716 case X86::MOVSX64rr16:
717 case X86::MOVZX64rr16:
718 case X86::MOVSX64rr32:
719 case X86::MOVZX64rr32: {
720 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
721 // Be conservative.
722 return false;
723 SrcReg = MI.getOperand(1).getReg();
724 DstReg = MI.getOperand(0).getReg();
725 switch (MI.getOpcode()) {
726 default:
727 llvm_unreachable(0);
728 break;
729 case X86::MOVSX16rr8:
730 case X86::MOVZX16rr8:
731 case X86::MOVSX32rr8:
732 case X86::MOVZX32rr8:
733 case X86::MOVSX64rr8:
734 case X86::MOVZX64rr8:
735 SubIdx = X86::sub_8bit;
736 break;
737 case X86::MOVSX32rr16:
738 case X86::MOVZX32rr16:
739 case X86::MOVSX64rr16:
740 case X86::MOVZX64rr16:
741 SubIdx = X86::sub_16bit;
742 break;
743 case X86::MOVSX64rr32:
744 case X86::MOVZX64rr32:
745 SubIdx = X86::sub_32bit;
746 break;
748 return true;
751 return false;
754 /// isFrameOperand - Return true and the FrameIndex if the specified
755 /// operand and follow operands form a reference to the stack frame.
756 bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
757 int &FrameIndex) const {
758 if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
759 MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
760 MI->getOperand(Op+1).getImm() == 1 &&
761 MI->getOperand(Op+2).getReg() == 0 &&
762 MI->getOperand(Op+3).getImm() == 0) {
763 FrameIndex = MI->getOperand(Op).getIndex();
764 return true;
766 return false;
769 static bool isFrameLoadOpcode(int Opcode) {
770 switch (Opcode) {
771 default: break;
772 case X86::MOV8rm:
773 case X86::MOV16rm:
774 case X86::MOV32rm:
775 case X86::MOV64rm:
776 case X86::LD_Fp64m:
777 case X86::MOVSSrm:
778 case X86::MOVSDrm:
779 case X86::MOVAPSrm:
780 case X86::MOVAPDrm:
781 case X86::MOVDQArm:
782 case X86::MMX_MOVD64rm:
783 case X86::MMX_MOVQ64rm:
784 return true;
785 break;
787 return false;
790 static bool isFrameStoreOpcode(int Opcode) {
791 switch (Opcode) {
792 default: break;
793 case X86::MOV8mr:
794 case X86::MOV16mr:
795 case X86::MOV32mr:
796 case X86::MOV64mr:
797 case X86::ST_FpP64m:
798 case X86::MOVSSmr:
799 case X86::MOVSDmr:
800 case X86::MOVAPSmr:
801 case X86::MOVAPDmr:
802 case X86::MOVDQAmr:
803 case X86::MMX_MOVD64mr:
804 case X86::MMX_MOVQ64mr:
805 case X86::MMX_MOVNTQmr:
806 return true;
808 return false;
811 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
812 int &FrameIndex) const {
813 if (isFrameLoadOpcode(MI->getOpcode()))
814 if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
815 return MI->getOperand(0).getReg();
816 return 0;
819 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
820 int &FrameIndex) const {
821 if (isFrameLoadOpcode(MI->getOpcode())) {
822 unsigned Reg;
823 if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
824 return Reg;
825 // Check for post-frame index elimination operations
826 const MachineMemOperand *Dummy;
827 return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
829 return 0;
832 bool X86InstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
833 const MachineMemOperand *&MMO,
834 int &FrameIndex) const {
835 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
836 oe = MI->memoperands_end();
837 o != oe;
838 ++o) {
839 if ((*o)->isLoad() && (*o)->getValue())
840 if (const FixedStackPseudoSourceValue *Value =
841 dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
842 FrameIndex = Value->getFrameIndex();
843 MMO = *o;
844 return true;
847 return false;
850 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
851 int &FrameIndex) const {
852 if (isFrameStoreOpcode(MI->getOpcode()))
853 if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
854 isFrameOperand(MI, 0, FrameIndex))
855 return MI->getOperand(X86::AddrNumOperands).getReg();
856 return 0;
859 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
860 int &FrameIndex) const {
861 if (isFrameStoreOpcode(MI->getOpcode())) {
862 unsigned Reg;
863 if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
864 return Reg;
865 // Check for post-frame index elimination operations
866 const MachineMemOperand *Dummy;
867 return hasStoreToStackSlot(MI, Dummy, FrameIndex);
869 return 0;
872 bool X86InstrInfo::hasStoreToStackSlot(const MachineInstr *MI,
873 const MachineMemOperand *&MMO,
874 int &FrameIndex) const {
875 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
876 oe = MI->memoperands_end();
877 o != oe;
878 ++o) {
879 if ((*o)->isStore() && (*o)->getValue())
880 if (const FixedStackPseudoSourceValue *Value =
881 dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
882 FrameIndex = Value->getFrameIndex();
883 MMO = *o;
884 return true;
887 return false;
890 /// regIsPICBase - Return true if register is PIC base (i.e.g defined by
891 /// X86::MOVPC32r.
892 static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
893 bool isPICBase = false;
894 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
895 E = MRI.def_end(); I != E; ++I) {
896 MachineInstr *DefMI = I.getOperand().getParent();
897 if (DefMI->getOpcode() != X86::MOVPC32r)
898 return false;
899 assert(!isPICBase && "More than one PIC base?");
900 isPICBase = true;
902 return isPICBase;
905 bool
906 X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
907 AliasAnalysis *AA) const {
908 switch (MI->getOpcode()) {
909 default: break;
910 case X86::MOV8rm:
911 case X86::MOV16rm:
912 case X86::MOV32rm:
913 case X86::MOV64rm:
914 case X86::LD_Fp64m:
915 case X86::MOVSSrm:
916 case X86::MOVSDrm:
917 case X86::MOVAPSrm:
918 case X86::MOVUPSrm:
919 case X86::MOVUPSrm_Int:
920 case X86::MOVAPDrm:
921 case X86::MOVDQArm:
922 case X86::MMX_MOVD64rm:
923 case X86::MMX_MOVQ64rm:
924 case X86::FsMOVAPSrm:
925 case X86::FsMOVAPDrm: {
926 // Loads from constant pools are trivially rematerializable.
927 if (MI->getOperand(1).isReg() &&
928 MI->getOperand(2).isImm() &&
929 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
930 MI->isInvariantLoad(AA)) {
931 unsigned BaseReg = MI->getOperand(1).getReg();
932 if (BaseReg == 0 || BaseReg == X86::RIP)
933 return true;
934 // Allow re-materialization of PIC load.
935 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
936 return false;
937 const MachineFunction &MF = *MI->getParent()->getParent();
938 const MachineRegisterInfo &MRI = MF.getRegInfo();
939 bool isPICBase = false;
940 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
941 E = MRI.def_end(); I != E; ++I) {
942 MachineInstr *DefMI = I.getOperand().getParent();
943 if (DefMI->getOpcode() != X86::MOVPC32r)
944 return false;
945 assert(!isPICBase && "More than one PIC base?");
946 isPICBase = true;
948 return isPICBase;
950 return false;
953 case X86::LEA32r:
954 case X86::LEA64r: {
955 if (MI->getOperand(2).isImm() &&
956 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
957 !MI->getOperand(4).isReg()) {
958 // lea fi#, lea GV, etc. are all rematerializable.
959 if (!MI->getOperand(1).isReg())
960 return true;
961 unsigned BaseReg = MI->getOperand(1).getReg();
962 if (BaseReg == 0)
963 return true;
964 // Allow re-materialization of lea PICBase + x.
965 const MachineFunction &MF = *MI->getParent()->getParent();
966 const MachineRegisterInfo &MRI = MF.getRegInfo();
967 return regIsPICBase(BaseReg, MRI);
969 return false;
973 // All other instructions marked M_REMATERIALIZABLE are always trivially
974 // rematerializable.
975 return true;
978 /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
979 /// would clobber the EFLAGS condition register. Note the result may be
980 /// conservative. If it cannot definitely determine the safety after visiting
981 /// a few instructions in each direction it assumes it's not safe.
982 static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
983 MachineBasicBlock::iterator I) {
984 MachineBasicBlock::iterator E = MBB.end();
986 // It's always safe to clobber EFLAGS at the end of a block.
987 if (I == E)
988 return true;
990 // For compile time consideration, if we are not able to determine the
991 // safety after visiting 4 instructions in each direction, we will assume
992 // it's not safe.
993 MachineBasicBlock::iterator Iter = I;
994 for (unsigned i = 0; i < 4; ++i) {
995 bool SeenDef = false;
996 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
997 MachineOperand &MO = Iter->getOperand(j);
998 if (!MO.isReg())
999 continue;
1000 if (MO.getReg() == X86::EFLAGS) {
1001 if (MO.isUse())
1002 return false;
1003 SeenDef = true;
1007 if (SeenDef)
1008 // This instruction defines EFLAGS, no need to look any further.
1009 return true;
1010 ++Iter;
1011 // Skip over DBG_VALUE.
1012 while (Iter != E && Iter->isDebugValue())
1013 ++Iter;
1015 // If we make it to the end of the block, it's safe to clobber EFLAGS.
1016 if (Iter == E)
1017 return true;
1020 MachineBasicBlock::iterator B = MBB.begin();
1021 Iter = I;
1022 for (unsigned i = 0; i < 4; ++i) {
1023 // If we make it to the beginning of the block, it's safe to clobber
1024 // EFLAGS iff EFLAGS is not live-in.
1025 if (Iter == B)
1026 return !MBB.isLiveIn(X86::EFLAGS);
1028 --Iter;
1029 // Skip over DBG_VALUE.
1030 while (Iter != B && Iter->isDebugValue())
1031 --Iter;
1033 bool SawKill = false;
1034 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1035 MachineOperand &MO = Iter->getOperand(j);
1036 if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
1037 if (MO.isDef()) return MO.isDead();
1038 if (MO.isKill()) SawKill = true;
1042 if (SawKill)
1043 // This instruction kills EFLAGS and doesn't redefine it, so
1044 // there's no need to look further.
1045 return true;
1048 // Conservative answer.
1049 return false;
1052 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
1053 MachineBasicBlock::iterator I,
1054 unsigned DestReg, unsigned SubIdx,
1055 const MachineInstr *Orig,
1056 const TargetRegisterInfo &TRI) const {
1057 DebugLoc DL = Orig->getDebugLoc();
1059 // MOV32r0 etc. are implemented with xor which clobbers condition code.
1060 // Re-materialize them as movri instructions to avoid side effects.
1061 bool Clone = true;
1062 unsigned Opc = Orig->getOpcode();
1063 switch (Opc) {
1064 default: break;
1065 case X86::MOV8r0:
1066 case X86::MOV16r0:
1067 case X86::MOV32r0:
1068 case X86::MOV64r0: {
1069 if (!isSafeToClobberEFLAGS(MBB, I)) {
1070 switch (Opc) {
1071 default: break;
1072 case X86::MOV8r0: Opc = X86::MOV8ri; break;
1073 case X86::MOV16r0: Opc = X86::MOV16ri; break;
1074 case X86::MOV32r0: Opc = X86::MOV32ri; break;
1075 case X86::MOV64r0: Opc = X86::MOV64ri64i32; break;
1077 Clone = false;
1079 break;
1083 if (Clone) {
1084 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
1085 MBB.insert(I, MI);
1086 } else {
1087 BuildMI(MBB, I, DL, get(Opc)).addOperand(Orig->getOperand(0)).addImm(0);
1090 MachineInstr *NewMI = prior(I);
1091 NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
1094 /// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
1095 /// is not marked dead.
1096 static bool hasLiveCondCodeDef(MachineInstr *MI) {
1097 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1098 MachineOperand &MO = MI->getOperand(i);
1099 if (MO.isReg() && MO.isDef() &&
1100 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1101 return true;
1104 return false;
1107 /// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
1108 /// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
1109 /// to a 32-bit superregister and then truncating back down to a 16-bit
1110 /// subregister.
1111 MachineInstr *
1112 X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1113 MachineFunction::iterator &MFI,
1114 MachineBasicBlock::iterator &MBBI,
1115 LiveVariables *LV) const {
1116 MachineInstr *MI = MBBI;
1117 unsigned Dest = MI->getOperand(0).getReg();
1118 unsigned Src = MI->getOperand(1).getReg();
1119 bool isDead = MI->getOperand(0).isDead();
1120 bool isKill = MI->getOperand(1).isKill();
1122 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1123 ? X86::LEA64_32r : X86::LEA32r;
1124 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
1125 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1126 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1128 // Build and insert into an implicit UNDEF value. This is OK because
1129 // well be shifting and then extracting the lower 16-bits.
1130 // This has the potential to cause partial register stall. e.g.
1131 // movw (%rbp,%rcx,2), %dx
1132 // leal -65(%rdx), %esi
1133 // But testing has shown this *does* help performance in 64-bit mode (at
1134 // least on modern x86 machines).
1135 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1136 MachineInstr *InsMI =
1137 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
1138 .addReg(leaInReg, RegState::Define, X86::sub_16bit)
1139 .addReg(Src, getKillRegState(isKill));
1141 MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
1142 get(Opc), leaOutReg);
1143 switch (MIOpc) {
1144 default:
1145 llvm_unreachable(0);
1146 break;
1147 case X86::SHL16ri: {
1148 unsigned ShAmt = MI->getOperand(2).getImm();
1149 MIB.addReg(0).addImm(1 << ShAmt)
1150 .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
1151 break;
1153 case X86::INC16r:
1154 case X86::INC64_16r:
1155 addRegOffset(MIB, leaInReg, true, 1);
1156 break;
1157 case X86::DEC16r:
1158 case X86::DEC64_16r:
1159 addRegOffset(MIB, leaInReg, true, -1);
1160 break;
1161 case X86::ADD16ri:
1162 case X86::ADD16ri8:
1163 case X86::ADD16ri_DB:
1164 case X86::ADD16ri8_DB:
1165 addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
1166 break;
1167 case X86::ADD16rr:
1168 case X86::ADD16rr_DB: {
1169 unsigned Src2 = MI->getOperand(2).getReg();
1170 bool isKill2 = MI->getOperand(2).isKill();
1171 unsigned leaInReg2 = 0;
1172 MachineInstr *InsMI2 = 0;
1173 if (Src == Src2) {
1174 // ADD16rr %reg1028<kill>, %reg1028
1175 // just a single insert_subreg.
1176 addRegReg(MIB, leaInReg, true, leaInReg, false);
1177 } else {
1178 leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1179 // Build and insert into an implicit UNDEF value. This is OK because
1180 // well be shifting and then extracting the lower 16-bits.
1181 BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2);
1182 InsMI2 =
1183 BuildMI(*MFI, MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
1184 .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
1185 .addReg(Src2, getKillRegState(isKill2));
1186 addRegReg(MIB, leaInReg, true, leaInReg2, true);
1188 if (LV && isKill2 && InsMI2)
1189 LV->replaceKillInstruction(Src2, MI, InsMI2);
1190 break;
1194 MachineInstr *NewMI = MIB;
1195 MachineInstr *ExtMI =
1196 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
1197 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1198 .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
1200 if (LV) {
1201 // Update live variables
1202 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1203 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1204 if (isKill)
1205 LV->replaceKillInstruction(Src, MI, InsMI);
1206 if (isDead)
1207 LV->replaceKillInstruction(Dest, MI, ExtMI);
1210 return ExtMI;
1213 /// convertToThreeAddress - This method must be implemented by targets that
1214 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
1215 /// may be able to convert a two-address instruction into a true
1216 /// three-address instruction on demand. This allows the X86 target (for
1217 /// example) to convert ADD and SHL instructions into LEA instructions if they
1218 /// would require register copies due to two-addressness.
1220 /// This method returns a null pointer if the transformation cannot be
1221 /// performed, otherwise it returns the new instruction.
1223 MachineInstr *
1224 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1225 MachineBasicBlock::iterator &MBBI,
1226 LiveVariables *LV) const {
1227 MachineInstr *MI = MBBI;
1228 MachineFunction &MF = *MI->getParent()->getParent();
1229 // All instructions input are two-addr instructions. Get the known operands.
1230 unsigned Dest = MI->getOperand(0).getReg();
1231 unsigned Src = MI->getOperand(1).getReg();
1232 bool isDead = MI->getOperand(0).isDead();
1233 bool isKill = MI->getOperand(1).isKill();
1235 MachineInstr *NewMI = NULL;
1236 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
1237 // we have better subtarget support, enable the 16-bit LEA generation here.
1238 // 16-bit LEA is also slow on Core2.
1239 bool DisableLEA16 = true;
1240 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1242 unsigned MIOpc = MI->getOpcode();
1243 switch (MIOpc) {
1244 case X86::SHUFPSrri: {
1245 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1246 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1248 unsigned B = MI->getOperand(1).getReg();
1249 unsigned C = MI->getOperand(2).getReg();
1250 if (B != C) return 0;
1251 unsigned A = MI->getOperand(0).getReg();
1252 unsigned M = MI->getOperand(3).getImm();
1253 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
1254 .addReg(A, RegState::Define | getDeadRegState(isDead))
1255 .addReg(B, getKillRegState(isKill)).addImm(M);
1256 break;
1258 case X86::SHL64ri: {
1259 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1260 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1261 // the flags produced by a shift yet, so this is safe.
1262 unsigned ShAmt = MI->getOperand(2).getImm();
1263 if (ShAmt == 0 || ShAmt >= 4) return 0;
1265 // LEA can't handle RSP.
1266 if (TargetRegisterInfo::isVirtualRegister(Src) &&
1267 !MF.getRegInfo().constrainRegClass(Src, &X86::GR64_NOSPRegClass))
1268 return 0;
1270 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1271 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1272 .addReg(0).addImm(1 << ShAmt)
1273 .addReg(Src, getKillRegState(isKill))
1274 .addImm(0).addReg(0);
1275 break;
1277 case X86::SHL32ri: {
1278 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1279 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1280 // the flags produced by a shift yet, so this is safe.
1281 unsigned ShAmt = MI->getOperand(2).getImm();
1282 if (ShAmt == 0 || ShAmt >= 4) return 0;
1284 // LEA can't handle ESP.
1285 if (TargetRegisterInfo::isVirtualRegister(Src) &&
1286 !MF.getRegInfo().constrainRegClass(Src, &X86::GR32_NOSPRegClass))
1287 return 0;
1289 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1290 NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
1291 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1292 .addReg(0).addImm(1 << ShAmt)
1293 .addReg(Src, getKillRegState(isKill)).addImm(0).addReg(0);
1294 break;
1296 case X86::SHL16ri: {
1297 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1298 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1299 // the flags produced by a shift yet, so this is safe.
1300 unsigned ShAmt = MI->getOperand(2).getImm();
1301 if (ShAmt == 0 || ShAmt >= 4) return 0;
1303 if (DisableLEA16)
1304 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1305 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1306 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1307 .addReg(0).addImm(1 << ShAmt)
1308 .addReg(Src, getKillRegState(isKill))
1309 .addImm(0).addReg(0);
1310 break;
1312 default: {
1313 // The following opcodes also sets the condition code register(s). Only
1314 // convert them to equivalent lea if the condition code register def's
1315 // are dead!
1316 if (hasLiveCondCodeDef(MI))
1317 return 0;
1319 switch (MIOpc) {
1320 default: return 0;
1321 case X86::INC64r:
1322 case X86::INC32r:
1323 case X86::INC64_32r: {
1324 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1325 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1326 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1328 // LEA can't handle RSP.
1329 if (TargetRegisterInfo::isVirtualRegister(Src) &&
1330 !MF.getRegInfo().constrainRegClass(Src,
1331 MIOpc == X86::INC64r ? X86::GR64_NOSPRegisterClass :
1332 X86::GR32_NOSPRegisterClass))
1333 return 0;
1335 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1336 .addReg(Dest, RegState::Define |
1337 getDeadRegState(isDead)),
1338 Src, isKill, 1);
1339 break;
1341 case X86::INC16r:
1342 case X86::INC64_16r:
1343 if (DisableLEA16)
1344 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1345 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1346 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1347 .addReg(Dest, RegState::Define |
1348 getDeadRegState(isDead)),
1349 Src, isKill, 1);
1350 break;
1351 case X86::DEC64r:
1352 case X86::DEC32r:
1353 case X86::DEC64_32r: {
1354 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1355 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1356 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1357 // LEA can't handle RSP.
1358 if (TargetRegisterInfo::isVirtualRegister(Src) &&
1359 !MF.getRegInfo().constrainRegClass(Src,
1360 MIOpc == X86::DEC64r ? X86::GR64_NOSPRegisterClass :
1361 X86::GR32_NOSPRegisterClass))
1362 return 0;
1364 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1365 .addReg(Dest, RegState::Define |
1366 getDeadRegState(isDead)),
1367 Src, isKill, -1);
1368 break;
1370 case X86::DEC16r:
1371 case X86::DEC64_16r:
1372 if (DisableLEA16)
1373 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1374 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1375 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1376 .addReg(Dest, RegState::Define |
1377 getDeadRegState(isDead)),
1378 Src, isKill, -1);
1379 break;
1380 case X86::ADD64rr:
1381 case X86::ADD64rr_DB:
1382 case X86::ADD32rr:
1383 case X86::ADD32rr_DB: {
1384 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1385 unsigned Opc;
1386 TargetRegisterClass *RC;
1387 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) {
1388 Opc = X86::LEA64r;
1389 RC = X86::GR64_NOSPRegisterClass;
1390 } else {
1391 Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1392 RC = X86::GR32_NOSPRegisterClass;
1396 unsigned Src2 = MI->getOperand(2).getReg();
1397 bool isKill2 = MI->getOperand(2).isKill();
1399 // LEA can't handle RSP.
1400 if (TargetRegisterInfo::isVirtualRegister(Src2) &&
1401 !MF.getRegInfo().constrainRegClass(Src2, RC))
1402 return 0;
1404 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1405 .addReg(Dest, RegState::Define |
1406 getDeadRegState(isDead)),
1407 Src, isKill, Src2, isKill2);
1408 if (LV && isKill2)
1409 LV->replaceKillInstruction(Src2, MI, NewMI);
1410 break;
1412 case X86::ADD16rr:
1413 case X86::ADD16rr_DB: {
1414 if (DisableLEA16)
1415 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1416 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1417 unsigned Src2 = MI->getOperand(2).getReg();
1418 bool isKill2 = MI->getOperand(2).isKill();
1419 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1420 .addReg(Dest, RegState::Define |
1421 getDeadRegState(isDead)),
1422 Src, isKill, Src2, isKill2);
1423 if (LV && isKill2)
1424 LV->replaceKillInstruction(Src2, MI, NewMI);
1425 break;
1427 case X86::ADD64ri32:
1428 case X86::ADD64ri8:
1429 case X86::ADD64ri32_DB:
1430 case X86::ADD64ri8_DB:
1431 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1432 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1433 .addReg(Dest, RegState::Define |
1434 getDeadRegState(isDead)),
1435 Src, isKill, MI->getOperand(2).getImm());
1436 break;
1437 case X86::ADD32ri:
1438 case X86::ADD32ri8:
1439 case X86::ADD32ri_DB:
1440 case X86::ADD32ri8_DB: {
1441 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1442 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1443 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1444 .addReg(Dest, RegState::Define |
1445 getDeadRegState(isDead)),
1446 Src, isKill, MI->getOperand(2).getImm());
1447 break;
1449 case X86::ADD16ri:
1450 case X86::ADD16ri8:
1451 case X86::ADD16ri_DB:
1452 case X86::ADD16ri8_DB:
1453 if (DisableLEA16)
1454 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1455 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1456 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1457 .addReg(Dest, RegState::Define |
1458 getDeadRegState(isDead)),
1459 Src, isKill, MI->getOperand(2).getImm());
1460 break;
1465 if (!NewMI) return 0;
1467 if (LV) { // Update live variables
1468 if (isKill)
1469 LV->replaceKillInstruction(Src, MI, NewMI);
1470 if (isDead)
1471 LV->replaceKillInstruction(Dest, MI, NewMI);
1474 MFI->insert(MBBI, NewMI); // Insert the new inst
1475 return NewMI;
1478 /// commuteInstruction - We have a few instructions that must be hacked on to
1479 /// commute them.
1481 MachineInstr *
1482 X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
1483 switch (MI->getOpcode()) {
1484 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1485 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1486 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1487 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1488 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1489 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1490 unsigned Opc;
1491 unsigned Size;
1492 switch (MI->getOpcode()) {
1493 default: llvm_unreachable("Unreachable!");
1494 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1495 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1496 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1497 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1498 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1499 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1501 unsigned Amt = MI->getOperand(3).getImm();
1502 if (NewMI) {
1503 MachineFunction &MF = *MI->getParent()->getParent();
1504 MI = MF.CloneMachineInstr(MI);
1505 NewMI = false;
1507 MI->setDesc(get(Opc));
1508 MI->getOperand(3).setImm(Size-Amt);
1509 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1511 case X86::CMOVB16rr:
1512 case X86::CMOVB32rr:
1513 case X86::CMOVB64rr:
1514 case X86::CMOVAE16rr:
1515 case X86::CMOVAE32rr:
1516 case X86::CMOVAE64rr:
1517 case X86::CMOVE16rr:
1518 case X86::CMOVE32rr:
1519 case X86::CMOVE64rr:
1520 case X86::CMOVNE16rr:
1521 case X86::CMOVNE32rr:
1522 case X86::CMOVNE64rr:
1523 case X86::CMOVBE16rr:
1524 case X86::CMOVBE32rr:
1525 case X86::CMOVBE64rr:
1526 case X86::CMOVA16rr:
1527 case X86::CMOVA32rr:
1528 case X86::CMOVA64rr:
1529 case X86::CMOVL16rr:
1530 case X86::CMOVL32rr:
1531 case X86::CMOVL64rr:
1532 case X86::CMOVGE16rr:
1533 case X86::CMOVGE32rr:
1534 case X86::CMOVGE64rr:
1535 case X86::CMOVLE16rr:
1536 case X86::CMOVLE32rr:
1537 case X86::CMOVLE64rr:
1538 case X86::CMOVG16rr:
1539 case X86::CMOVG32rr:
1540 case X86::CMOVG64rr:
1541 case X86::CMOVS16rr:
1542 case X86::CMOVS32rr:
1543 case X86::CMOVS64rr:
1544 case X86::CMOVNS16rr:
1545 case X86::CMOVNS32rr:
1546 case X86::CMOVNS64rr:
1547 case X86::CMOVP16rr:
1548 case X86::CMOVP32rr:
1549 case X86::CMOVP64rr:
1550 case X86::CMOVNP16rr:
1551 case X86::CMOVNP32rr:
1552 case X86::CMOVNP64rr:
1553 case X86::CMOVO16rr:
1554 case X86::CMOVO32rr:
1555 case X86::CMOVO64rr:
1556 case X86::CMOVNO16rr:
1557 case X86::CMOVNO32rr:
1558 case X86::CMOVNO64rr: {
1559 unsigned Opc = 0;
1560 switch (MI->getOpcode()) {
1561 default: break;
1562 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1563 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1564 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1565 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1566 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1567 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1568 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1569 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1570 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1571 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1572 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1573 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1574 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1575 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1576 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1577 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1578 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1579 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1580 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1581 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1582 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1583 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1584 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1585 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1586 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1587 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1588 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1589 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1590 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1591 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1592 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1593 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
1594 case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break;
1595 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1596 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1597 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1598 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1599 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
1600 case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break;
1601 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1602 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1603 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1604 case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break;
1605 case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break;
1606 case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break;
1607 case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1608 case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1609 case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
1611 if (NewMI) {
1612 MachineFunction &MF = *MI->getParent()->getParent();
1613 MI = MF.CloneMachineInstr(MI);
1614 NewMI = false;
1616 MI->setDesc(get(Opc));
1617 // Fallthrough intended.
1619 default:
1620 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1624 static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1625 switch (BrOpc) {
1626 default: return X86::COND_INVALID;
1627 case X86::JE_4: return X86::COND_E;
1628 case X86::JNE_4: return X86::COND_NE;
1629 case X86::JL_4: return X86::COND_L;
1630 case X86::JLE_4: return X86::COND_LE;
1631 case X86::JG_4: return X86::COND_G;
1632 case X86::JGE_4: return X86::COND_GE;
1633 case X86::JB_4: return X86::COND_B;
1634 case X86::JBE_4: return X86::COND_BE;
1635 case X86::JA_4: return X86::COND_A;
1636 case X86::JAE_4: return X86::COND_AE;
1637 case X86::JS_4: return X86::COND_S;
1638 case X86::JNS_4: return X86::COND_NS;
1639 case X86::JP_4: return X86::COND_P;
1640 case X86::JNP_4: return X86::COND_NP;
1641 case X86::JO_4: return X86::COND_O;
1642 case X86::JNO_4: return X86::COND_NO;
1646 unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1647 switch (CC) {
1648 default: llvm_unreachable("Illegal condition code!");
1649 case X86::COND_E: return X86::JE_4;
1650 case X86::COND_NE: return X86::JNE_4;
1651 case X86::COND_L: return X86::JL_4;
1652 case X86::COND_LE: return X86::JLE_4;
1653 case X86::COND_G: return X86::JG_4;
1654 case X86::COND_GE: return X86::JGE_4;
1655 case X86::COND_B: return X86::JB_4;
1656 case X86::COND_BE: return X86::JBE_4;
1657 case X86::COND_A: return X86::JA_4;
1658 case X86::COND_AE: return X86::JAE_4;
1659 case X86::COND_S: return X86::JS_4;
1660 case X86::COND_NS: return X86::JNS_4;
1661 case X86::COND_P: return X86::JP_4;
1662 case X86::COND_NP: return X86::JNP_4;
1663 case X86::COND_O: return X86::JO_4;
1664 case X86::COND_NO: return X86::JNO_4;
1668 /// GetOppositeBranchCondition - Return the inverse of the specified condition,
1669 /// e.g. turning COND_E to COND_NE.
1670 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1671 switch (CC) {
1672 default: llvm_unreachable("Illegal condition code!");
1673 case X86::COND_E: return X86::COND_NE;
1674 case X86::COND_NE: return X86::COND_E;
1675 case X86::COND_L: return X86::COND_GE;
1676 case X86::COND_LE: return X86::COND_G;
1677 case X86::COND_G: return X86::COND_LE;
1678 case X86::COND_GE: return X86::COND_L;
1679 case X86::COND_B: return X86::COND_AE;
1680 case X86::COND_BE: return X86::COND_A;
1681 case X86::COND_A: return X86::COND_BE;
1682 case X86::COND_AE: return X86::COND_B;
1683 case X86::COND_S: return X86::COND_NS;
1684 case X86::COND_NS: return X86::COND_S;
1685 case X86::COND_P: return X86::COND_NP;
1686 case X86::COND_NP: return X86::COND_P;
1687 case X86::COND_O: return X86::COND_NO;
1688 case X86::COND_NO: return X86::COND_O;
1692 bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
1693 const TargetInstrDesc &TID = MI->getDesc();
1694 if (!TID.isTerminator()) return false;
1696 // Conditional branch is a special case.
1697 if (TID.isBranch() && !TID.isBarrier())
1698 return true;
1699 if (!TID.isPredicable())
1700 return true;
1701 return !isPredicated(MI);
1704 bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1705 MachineBasicBlock *&TBB,
1706 MachineBasicBlock *&FBB,
1707 SmallVectorImpl<MachineOperand> &Cond,
1708 bool AllowModify) const {
1709 // Start from the bottom of the block and work up, examining the
1710 // terminator instructions.
1711 MachineBasicBlock::iterator I = MBB.end();
1712 MachineBasicBlock::iterator UnCondBrIter = MBB.end();
1713 while (I != MBB.begin()) {
1714 --I;
1715 if (I->isDebugValue())
1716 continue;
1718 // Working from the bottom, when we see a non-terminator instruction, we're
1719 // done.
1720 if (!isUnpredicatedTerminator(I))
1721 break;
1723 // A terminator that isn't a branch can't easily be handled by this
1724 // analysis.
1725 if (!I->getDesc().isBranch())
1726 return true;
1728 // Handle unconditional branches.
1729 if (I->getOpcode() == X86::JMP_4) {
1730 UnCondBrIter = I;
1732 if (!AllowModify) {
1733 TBB = I->getOperand(0).getMBB();
1734 continue;
1737 // If the block has any instructions after a JMP, delete them.
1738 while (llvm::next(I) != MBB.end())
1739 llvm::next(I)->eraseFromParent();
1741 Cond.clear();
1742 FBB = 0;
1744 // Delete the JMP if it's equivalent to a fall-through.
1745 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1746 TBB = 0;
1747 I->eraseFromParent();
1748 I = MBB.end();
1749 UnCondBrIter = MBB.end();
1750 continue;
1753 // TBB is used to indicate the unconditional destination.
1754 TBB = I->getOperand(0).getMBB();
1755 continue;
1758 // Handle conditional branches.
1759 X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
1760 if (BranchCode == X86::COND_INVALID)
1761 return true; // Can't handle indirect branch.
1763 // Working from the bottom, handle the first conditional branch.
1764 if (Cond.empty()) {
1765 MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
1766 if (AllowModify && UnCondBrIter != MBB.end() &&
1767 MBB.isLayoutSuccessor(TargetBB)) {
1768 // If we can modify the code and it ends in something like:
1770 // jCC L1
1771 // jmp L2
1772 // L1:
1773 // ...
1774 // L2:
1776 // Then we can change this to:
1778 // jnCC L2
1779 // L1:
1780 // ...
1781 // L2:
1783 // Which is a bit more efficient.
1784 // We conditionally jump to the fall-through block.
1785 BranchCode = GetOppositeBranchCondition(BranchCode);
1786 unsigned JNCC = GetCondBranchFromCond(BranchCode);
1787 MachineBasicBlock::iterator OldInst = I;
1789 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
1790 .addMBB(UnCondBrIter->getOperand(0).getMBB());
1791 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4))
1792 .addMBB(TargetBB);
1793 MBB.addSuccessor(TargetBB);
1795 OldInst->eraseFromParent();
1796 UnCondBrIter->eraseFromParent();
1798 // Restart the analysis.
1799 UnCondBrIter = MBB.end();
1800 I = MBB.end();
1801 continue;
1804 FBB = TBB;
1805 TBB = I->getOperand(0).getMBB();
1806 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1807 continue;
1810 // Handle subsequent conditional branches. Only handle the case where all
1811 // conditional branches branch to the same destination and their condition
1812 // opcodes fit one of the special multi-branch idioms.
1813 assert(Cond.size() == 1);
1814 assert(TBB);
1816 // Only handle the case where all conditional branches branch to the same
1817 // destination.
1818 if (TBB != I->getOperand(0).getMBB())
1819 return true;
1821 // If the conditions are the same, we can leave them alone.
1822 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1823 if (OldBranchCode == BranchCode)
1824 continue;
1826 // If they differ, see if they fit one of the known patterns. Theoretically,
1827 // we could handle more patterns here, but we shouldn't expect to see them
1828 // if instruction selection has done a reasonable job.
1829 if ((OldBranchCode == X86::COND_NP &&
1830 BranchCode == X86::COND_E) ||
1831 (OldBranchCode == X86::COND_E &&
1832 BranchCode == X86::COND_NP))
1833 BranchCode = X86::COND_NP_OR_E;
1834 else if ((OldBranchCode == X86::COND_P &&
1835 BranchCode == X86::COND_NE) ||
1836 (OldBranchCode == X86::COND_NE &&
1837 BranchCode == X86::COND_P))
1838 BranchCode = X86::COND_NE_OR_P;
1839 else
1840 return true;
1842 // Update the MachineOperand.
1843 Cond[0].setImm(BranchCode);
1846 return false;
1849 unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1850 MachineBasicBlock::iterator I = MBB.end();
1851 unsigned Count = 0;
1853 while (I != MBB.begin()) {
1854 --I;
1855 if (I->isDebugValue())
1856 continue;
1857 if (I->getOpcode() != X86::JMP_4 &&
1858 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1859 break;
1860 // Remove the branch.
1861 I->eraseFromParent();
1862 I = MBB.end();
1863 ++Count;
1866 return Count;
1869 unsigned
1870 X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1871 MachineBasicBlock *FBB,
1872 const SmallVectorImpl<MachineOperand> &Cond,
1873 DebugLoc DL) const {
1874 // Shouldn't be a fall through.
1875 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1876 assert((Cond.size() == 1 || Cond.size() == 0) &&
1877 "X86 branch conditions have one component!");
1879 if (Cond.empty()) {
1880 // Unconditional branch?
1881 assert(!FBB && "Unconditional branch with multiple successors!");
1882 BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB);
1883 return 1;
1886 // Conditional branch.
1887 unsigned Count = 0;
1888 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1889 switch (CC) {
1890 case X86::COND_NP_OR_E:
1891 // Synthesize NP_OR_E with two branches.
1892 BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB);
1893 ++Count;
1894 BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB);
1895 ++Count;
1896 break;
1897 case X86::COND_NE_OR_P:
1898 // Synthesize NE_OR_P with two branches.
1899 BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB);
1900 ++Count;
1901 BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB);
1902 ++Count;
1903 break;
1904 default: {
1905 unsigned Opc = GetCondBranchFromCond(CC);
1906 BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
1907 ++Count;
1910 if (FBB) {
1911 // Two-way Conditional branch. Insert the second branch.
1912 BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB);
1913 ++Count;
1915 return Count;
1918 /// isHReg - Test if the given register is a physical h register.
1919 static bool isHReg(unsigned Reg) {
1920 return X86::GR8_ABCD_HRegClass.contains(Reg);
1923 // Try and copy between VR128/VR64 and GR64 registers.
1924 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg) {
1925 // SrcReg(VR128) -> DestReg(GR64)
1926 // SrcReg(VR64) -> DestReg(GR64)
1927 // SrcReg(GR64) -> DestReg(VR128)
1928 // SrcReg(GR64) -> DestReg(VR64)
1930 if (X86::GR64RegClass.contains(DestReg)) {
1931 if (X86::VR128RegClass.contains(SrcReg)) {
1932 // Copy from a VR128 register to a GR64 register.
1933 return X86::MOVPQIto64rr;
1934 } else if (X86::VR64RegClass.contains(SrcReg)) {
1935 // Copy from a VR64 register to a GR64 register.
1936 return X86::MOVSDto64rr;
1938 } else if (X86::GR64RegClass.contains(SrcReg)) {
1939 // Copy from a GR64 register to a VR128 register.
1940 if (X86::VR128RegClass.contains(DestReg))
1941 return X86::MOV64toPQIrr;
1942 // Copy from a GR64 register to a VR64 register.
1943 else if (X86::VR64RegClass.contains(DestReg))
1944 return X86::MOV64toSDrr;
1947 return 0;
1950 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
1951 MachineBasicBlock::iterator MI, DebugLoc DL,
1952 unsigned DestReg, unsigned SrcReg,
1953 bool KillSrc) const {
1954 // First deal with the normal symmetric copies.
1955 unsigned Opc = 0;
1956 if (X86::GR64RegClass.contains(DestReg, SrcReg))
1957 Opc = X86::MOV64rr;
1958 else if (X86::GR32RegClass.contains(DestReg, SrcReg))
1959 Opc = X86::MOV32rr;
1960 else if (X86::GR16RegClass.contains(DestReg, SrcReg))
1961 Opc = X86::MOV16rr;
1962 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
1963 // Copying to or from a physical H register on x86-64 requires a NOREX
1964 // move. Otherwise use a normal move.
1965 if ((isHReg(DestReg) || isHReg(SrcReg)) &&
1966 TM.getSubtarget<X86Subtarget>().is64Bit())
1967 Opc = X86::MOV8rr_NOREX;
1968 else
1969 Opc = X86::MOV8rr;
1970 } else if (X86::VR128RegClass.contains(DestReg, SrcReg))
1971 Opc = X86::MOVAPSrr;
1972 else if (X86::VR64RegClass.contains(DestReg, SrcReg))
1973 Opc = X86::MMX_MOVQ64rr;
1974 else
1975 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg);
1977 if (Opc) {
1978 BuildMI(MBB, MI, DL, get(Opc), DestReg)
1979 .addReg(SrcReg, getKillRegState(KillSrc));
1980 return;
1983 // Moving EFLAGS to / from another register requires a push and a pop.
1984 if (SrcReg == X86::EFLAGS) {
1985 if (X86::GR64RegClass.contains(DestReg)) {
1986 BuildMI(MBB, MI, DL, get(X86::PUSHF64));
1987 BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
1988 return;
1989 } else if (X86::GR32RegClass.contains(DestReg)) {
1990 BuildMI(MBB, MI, DL, get(X86::PUSHF32));
1991 BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
1992 return;
1995 if (DestReg == X86::EFLAGS) {
1996 if (X86::GR64RegClass.contains(SrcReg)) {
1997 BuildMI(MBB, MI, DL, get(X86::PUSH64r))
1998 .addReg(SrcReg, getKillRegState(KillSrc));
1999 BuildMI(MBB, MI, DL, get(X86::POPF64));
2000 return;
2001 } else if (X86::GR32RegClass.contains(SrcReg)) {
2002 BuildMI(MBB, MI, DL, get(X86::PUSH32r))
2003 .addReg(SrcReg, getKillRegState(KillSrc));
2004 BuildMI(MBB, MI, DL, get(X86::POPF32));
2005 return;
2009 DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
2010 << " to " << RI.getName(DestReg) << '\n');
2011 llvm_unreachable("Cannot emit physreg copy instruction");
2014 static unsigned getLoadStoreRegOpcode(unsigned Reg,
2015 const TargetRegisterClass *RC,
2016 bool isStackAligned,
2017 const TargetMachine &TM,
2018 bool load) {
2019 switch (RC->getID()) {
2020 default:
2021 llvm_unreachable("Unknown regclass");
2022 case X86::GR64RegClassID:
2023 case X86::GR64_ABCDRegClassID:
2024 case X86::GR64_NOREXRegClassID:
2025 case X86::GR64_NOREX_NOSPRegClassID:
2026 case X86::GR64_NOSPRegClassID:
2027 case X86::GR64_TCRegClassID:
2028 return load ? X86::MOV64rm : X86::MOV64mr;
2029 case X86::GR32RegClassID:
2030 case X86::GR32_ABCDRegClassID:
2031 case X86::GR32_ADRegClassID:
2032 case X86::GR32_NOREXRegClassID:
2033 case X86::GR32_NOSPRegClassID:
2034 case X86::GR32_TCRegClassID:
2035 return load ? X86::MOV32rm : X86::MOV32mr;
2036 case X86::GR16RegClassID:
2037 case X86::GR16_ABCDRegClassID:
2038 case X86::GR16_NOREXRegClassID:
2039 return load ? X86::MOV16rm : X86::MOV16mr;
2040 case X86::GR8RegClassID:
2041 // Copying to or from a physical H register on x86-64 requires a NOREX
2042 // move. Otherwise use a normal move.
2043 if (isHReg(Reg) &&
2044 TM.getSubtarget<X86Subtarget>().is64Bit())
2045 return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
2046 else
2047 return load ? X86::MOV8rm : X86::MOV8mr;
2048 case X86::GR8_ABCD_LRegClassID:
2049 case X86::GR8_NOREXRegClassID:
2050 return load ? X86::MOV8rm :X86::MOV8mr;
2051 case X86::GR8_ABCD_HRegClassID:
2052 if (TM.getSubtarget<X86Subtarget>().is64Bit())
2053 return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
2054 else
2055 return load ? X86::MOV8rm : X86::MOV8mr;
2056 case X86::RFP80RegClassID:
2057 return load ? X86::LD_Fp80m : X86::ST_FpP80m;
2058 case X86::RFP64RegClassID:
2059 return load ? X86::LD_Fp64m : X86::ST_Fp64m;
2060 case X86::RFP32RegClassID:
2061 return load ? X86::LD_Fp32m : X86::ST_Fp32m;
2062 case X86::FR32RegClassID:
2063 return load ? X86::MOVSSrm : X86::MOVSSmr;
2064 case X86::FR64RegClassID:
2065 return load ? X86::MOVSDrm : X86::MOVSDmr;
2066 case X86::VR128RegClassID:
2067 // If stack is realigned we can use aligned stores.
2068 if (isStackAligned)
2069 return load ? X86::MOVAPSrm : X86::MOVAPSmr;
2070 else
2071 return load ? X86::MOVUPSrm : X86::MOVUPSmr;
2072 case X86::VR64RegClassID:
2073 return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
2077 static unsigned getStoreRegOpcode(unsigned SrcReg,
2078 const TargetRegisterClass *RC,
2079 bool isStackAligned,
2080 TargetMachine &TM) {
2081 return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false);
2085 static unsigned getLoadRegOpcode(unsigned DestReg,
2086 const TargetRegisterClass *RC,
2087 bool isStackAligned,
2088 const TargetMachine &TM) {
2089 return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true);
2092 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
2093 MachineBasicBlock::iterator MI,
2094 unsigned SrcReg, bool isKill, int FrameIdx,
2095 const TargetRegisterClass *RC,
2096 const TargetRegisterInfo *TRI) const {
2097 const MachineFunction &MF = *MBB.getParent();
2098 assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
2099 "Stack slot too small for store");
2100 bool isAligned = (RI.getStackAlignment() >= 16) || RI.canRealignStack(MF);
2101 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
2102 DebugLoc DL = MBB.findDebugLoc(MI);
2103 addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
2104 .addReg(SrcReg, getKillRegState(isKill));
2107 void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
2108 bool isKill,
2109 SmallVectorImpl<MachineOperand> &Addr,
2110 const TargetRegisterClass *RC,
2111 MachineInstr::mmo_iterator MMOBegin,
2112 MachineInstr::mmo_iterator MMOEnd,
2113 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2114 bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= 16;
2115 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
2116 DebugLoc DL;
2117 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
2118 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
2119 MIB.addOperand(Addr[i]);
2120 MIB.addReg(SrcReg, getKillRegState(isKill));
2121 (*MIB).setMemRefs(MMOBegin, MMOEnd);
2122 NewMIs.push_back(MIB);
2126 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
2127 MachineBasicBlock::iterator MI,
2128 unsigned DestReg, int FrameIdx,
2129 const TargetRegisterClass *RC,
2130 const TargetRegisterInfo *TRI) const {
2131 const MachineFunction &MF = *MBB.getParent();
2132 bool isAligned = (RI.getStackAlignment() >= 16) || RI.canRealignStack(MF);
2133 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
2134 DebugLoc DL = MBB.findDebugLoc(MI);
2135 addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
2138 void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
2139 SmallVectorImpl<MachineOperand> &Addr,
2140 const TargetRegisterClass *RC,
2141 MachineInstr::mmo_iterator MMOBegin,
2142 MachineInstr::mmo_iterator MMOEnd,
2143 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2144 bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= 16;
2145 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
2146 DebugLoc DL;
2147 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
2148 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
2149 MIB.addOperand(Addr[i]);
2150 (*MIB).setMemRefs(MMOBegin, MMOEnd);
2151 NewMIs.push_back(MIB);
2154 bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
2155 MachineBasicBlock::iterator MI,
2156 const std::vector<CalleeSavedInfo> &CSI,
2157 const TargetRegisterInfo *TRI) const {
2158 if (CSI.empty())
2159 return false;
2161 DebugLoc DL = MBB.findDebugLoc(MI);
2163 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
2164 bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64();
2165 unsigned SlotSize = is64Bit ? 8 : 4;
2167 MachineFunction &MF = *MBB.getParent();
2168 unsigned FPReg = RI.getFrameRegister(MF);
2169 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2170 unsigned CalleeFrameSize = 0;
2172 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
2173 for (unsigned i = CSI.size(); i != 0; --i) {
2174 unsigned Reg = CSI[i-1].getReg();
2175 // Add the callee-saved register as live-in. It's killed at the spill.
2176 MBB.addLiveIn(Reg);
2177 if (Reg == FPReg)
2178 // X86RegisterInfo::emitPrologue will handle spilling of frame register.
2179 continue;
2180 if (!X86::VR128RegClass.contains(Reg) && !isWin64) {
2181 CalleeFrameSize += SlotSize;
2182 BuildMI(MBB, MI, DL, get(Opc)).addReg(Reg, RegState::Kill);
2183 } else {
2184 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
2185 storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(),
2186 RC, &RI);
2190 X86FI->setCalleeSavedFrameSize(CalleeFrameSize);
2191 return true;
2194 bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
2195 MachineBasicBlock::iterator MI,
2196 const std::vector<CalleeSavedInfo> &CSI,
2197 const TargetRegisterInfo *TRI) const {
2198 if (CSI.empty())
2199 return false;
2201 DebugLoc DL = MBB.findDebugLoc(MI);
2203 MachineFunction &MF = *MBB.getParent();
2204 unsigned FPReg = RI.getFrameRegister(MF);
2205 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
2206 bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64();
2207 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
2208 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2209 unsigned Reg = CSI[i].getReg();
2210 if (Reg == FPReg)
2211 // X86RegisterInfo::emitEpilogue will handle restoring of frame register.
2212 continue;
2213 if (!X86::VR128RegClass.contains(Reg) && !isWin64) {
2214 BuildMI(MBB, MI, DL, get(Opc), Reg);
2215 } else {
2216 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
2217 loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(),
2218 RC, &RI);
2221 return true;
2224 MachineInstr*
2225 X86InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
2226 int FrameIx, uint64_t Offset,
2227 const MDNode *MDPtr,
2228 DebugLoc DL) const {
2229 X86AddressMode AM;
2230 AM.BaseType = X86AddressMode::FrameIndexBase;
2231 AM.Base.FrameIndex = FrameIx;
2232 MachineInstrBuilder MIB = BuildMI(MF, DL, get(X86::DBG_VALUE));
2233 addFullAddress(MIB, AM).addImm(Offset).addMetadata(MDPtr);
2234 return &*MIB;
2237 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
2238 const SmallVectorImpl<MachineOperand> &MOs,
2239 MachineInstr *MI,
2240 const TargetInstrInfo &TII) {
2241 // Create the base instruction with the memory operand as the first part.
2242 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2243 MI->getDebugLoc(), true);
2244 MachineInstrBuilder MIB(NewMI);
2245 unsigned NumAddrOps = MOs.size();
2246 for (unsigned i = 0; i != NumAddrOps; ++i)
2247 MIB.addOperand(MOs[i]);
2248 if (NumAddrOps < 4) // FrameIndex only
2249 addOffset(MIB, 0);
2251 // Loop over the rest of the ri operands, converting them over.
2252 unsigned NumOps = MI->getDesc().getNumOperands()-2;
2253 for (unsigned i = 0; i != NumOps; ++i) {
2254 MachineOperand &MO = MI->getOperand(i+2);
2255 MIB.addOperand(MO);
2257 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
2258 MachineOperand &MO = MI->getOperand(i);
2259 MIB.addOperand(MO);
2261 return MIB;
2264 static MachineInstr *FuseInst(MachineFunction &MF,
2265 unsigned Opcode, unsigned OpNo,
2266 const SmallVectorImpl<MachineOperand> &MOs,
2267 MachineInstr *MI, const TargetInstrInfo &TII) {
2268 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2269 MI->getDebugLoc(), true);
2270 MachineInstrBuilder MIB(NewMI);
2272 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2273 MachineOperand &MO = MI->getOperand(i);
2274 if (i == OpNo) {
2275 assert(MO.isReg() && "Expected to fold into reg operand!");
2276 unsigned NumAddrOps = MOs.size();
2277 for (unsigned i = 0; i != NumAddrOps; ++i)
2278 MIB.addOperand(MOs[i]);
2279 if (NumAddrOps < 4) // FrameIndex only
2280 addOffset(MIB, 0);
2281 } else {
2282 MIB.addOperand(MO);
2285 return MIB;
2288 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
2289 const SmallVectorImpl<MachineOperand> &MOs,
2290 MachineInstr *MI) {
2291 MachineFunction &MF = *MI->getParent()->getParent();
2292 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
2294 unsigned NumAddrOps = MOs.size();
2295 for (unsigned i = 0; i != NumAddrOps; ++i)
2296 MIB.addOperand(MOs[i]);
2297 if (NumAddrOps < 4) // FrameIndex only
2298 addOffset(MIB, 0);
2299 return MIB.addImm(0);
2302 MachineInstr*
2303 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2304 MachineInstr *MI, unsigned i,
2305 const SmallVectorImpl<MachineOperand> &MOs,
2306 unsigned Size, unsigned Align) const {
2307 const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
2308 bool isTwoAddrFold = false;
2309 unsigned NumOps = MI->getDesc().getNumOperands();
2310 bool isTwoAddr = NumOps > 1 &&
2311 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2313 MachineInstr *NewMI = NULL;
2314 // Folding a memory location into the two-address part of a two-address
2315 // instruction is different than folding it other places. It requires
2316 // replacing the *two* registers with the memory location.
2317 if (isTwoAddr && NumOps >= 2 && i < 2 &&
2318 MI->getOperand(0).isReg() &&
2319 MI->getOperand(1).isReg() &&
2320 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
2321 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2322 isTwoAddrFold = true;
2323 } else if (i == 0) { // If operand 0
2324 if (MI->getOpcode() == X86::MOV64r0)
2325 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
2326 else if (MI->getOpcode() == X86::MOV32r0)
2327 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
2328 else if (MI->getOpcode() == X86::MOV16r0)
2329 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2330 else if (MI->getOpcode() == X86::MOV8r0)
2331 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
2332 if (NewMI)
2333 return NewMI;
2335 OpcodeTablePtr = &RegOp2MemOpTable0;
2336 } else if (i == 1) {
2337 OpcodeTablePtr = &RegOp2MemOpTable1;
2338 } else if (i == 2) {
2339 OpcodeTablePtr = &RegOp2MemOpTable2;
2342 // If table selected...
2343 if (OpcodeTablePtr) {
2344 // Find the Opcode to fuse
2345 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
2346 OpcodeTablePtr->find(MI->getOpcode());
2347 if (I != OpcodeTablePtr->end()) {
2348 unsigned Opcode = I->second.first;
2349 unsigned MinAlign = I->second.second;
2350 if (Align < MinAlign)
2351 return NULL;
2352 bool NarrowToMOV32rm = false;
2353 if (Size) {
2354 unsigned RCSize = MI->getDesc().OpInfo[i].getRegClass(&RI)->getSize();
2355 if (Size < RCSize) {
2356 // Check if it's safe to fold the load. If the size of the object is
2357 // narrower than the load width, then it's not.
2358 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
2359 return NULL;
2360 // If this is a 64-bit load, but the spill slot is 32, then we can do
2361 // a 32-bit load which is implicitly zero-extended. This likely is due
2362 // to liveintervalanalysis remat'ing a load from stack slot.
2363 if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
2364 return NULL;
2365 Opcode = X86::MOV32rm;
2366 NarrowToMOV32rm = true;
2370 if (isTwoAddrFold)
2371 NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
2372 else
2373 NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
2375 if (NarrowToMOV32rm) {
2376 // If this is the special case where we use a MOV32rm to load a 32-bit
2377 // value and zero-extend the top bits. Change the destination register
2378 // to a 32-bit one.
2379 unsigned DstReg = NewMI->getOperand(0).getReg();
2380 if (TargetRegisterInfo::isPhysicalRegister(DstReg))
2381 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
2382 X86::sub_32bit));
2383 else
2384 NewMI->getOperand(0).setSubReg(X86::sub_32bit);
2386 return NewMI;
2390 // No fusion
2391 if (PrintFailedFusing && !MI->isCopy())
2392 dbgs() << "We failed to fuse operand " << i << " in " << *MI;
2393 return NULL;
2397 MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2398 MachineInstr *MI,
2399 const SmallVectorImpl<unsigned> &Ops,
2400 int FrameIndex) const {
2401 // Check switch flag
2402 if (NoFusing) return NULL;
2404 if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
2405 switch (MI->getOpcode()) {
2406 case X86::CVTSD2SSrr:
2407 case X86::Int_CVTSD2SSrr:
2408 case X86::CVTSS2SDrr:
2409 case X86::Int_CVTSS2SDrr:
2410 case X86::RCPSSr:
2411 case X86::RCPSSr_Int:
2412 case X86::ROUNDSDr:
2413 case X86::ROUNDSSr:
2414 case X86::RSQRTSSr:
2415 case X86::RSQRTSSr_Int:
2416 case X86::SQRTSSr:
2417 case X86::SQRTSSr_Int:
2418 return 0;
2421 const MachineFrameInfo *MFI = MF.getFrameInfo();
2422 unsigned Size = MFI->getObjectSize(FrameIndex);
2423 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2424 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2425 unsigned NewOpc = 0;
2426 unsigned RCSize = 0;
2427 switch (MI->getOpcode()) {
2428 default: return NULL;
2429 case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
2430 case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
2431 case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
2432 case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
2434 // Check if it's safe to fold the load. If the size of the object is
2435 // narrower than the load width, then it's not.
2436 if (Size < RCSize)
2437 return NULL;
2438 // Change to CMPXXri r, 0 first.
2439 MI->setDesc(get(NewOpc));
2440 MI->getOperand(1).ChangeToImmediate(0);
2441 } else if (Ops.size() != 1)
2442 return NULL;
2444 SmallVector<MachineOperand,4> MOs;
2445 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
2446 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
2449 MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2450 MachineInstr *MI,
2451 const SmallVectorImpl<unsigned> &Ops,
2452 MachineInstr *LoadMI) const {
2453 // Check switch flag
2454 if (NoFusing) return NULL;
2456 if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
2457 switch (MI->getOpcode()) {
2458 case X86::CVTSD2SSrr:
2459 case X86::Int_CVTSD2SSrr:
2460 case X86::CVTSS2SDrr:
2461 case X86::Int_CVTSS2SDrr:
2462 case X86::RCPSSr:
2463 case X86::RCPSSr_Int:
2464 case X86::ROUNDSDr:
2465 case X86::ROUNDSSr:
2466 case X86::RSQRTSSr:
2467 case X86::RSQRTSSr_Int:
2468 case X86::SQRTSSr:
2469 case X86::SQRTSSr_Int:
2470 return 0;
2473 // Determine the alignment of the load.
2474 unsigned Alignment = 0;
2475 if (LoadMI->hasOneMemOperand())
2476 Alignment = (*LoadMI->memoperands_begin())->getAlignment();
2477 else
2478 switch (LoadMI->getOpcode()) {
2479 case X86::AVX_SET0PSY:
2480 case X86::AVX_SET0PDY:
2481 Alignment = 32;
2482 break;
2483 case X86::V_SET0PS:
2484 case X86::V_SET0PD:
2485 case X86::V_SET0PI:
2486 case X86::V_SETALLONES:
2487 case X86::AVX_SET0PS:
2488 case X86::AVX_SET0PD:
2489 case X86::AVX_SET0PI:
2490 Alignment = 16;
2491 break;
2492 case X86::FsFLD0SD:
2493 Alignment = 8;
2494 break;
2495 case X86::FsFLD0SS:
2496 Alignment = 4;
2497 break;
2498 default:
2499 llvm_unreachable("Don't know how to fold this instruction!");
2501 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2502 unsigned NewOpc = 0;
2503 switch (MI->getOpcode()) {
2504 default: return NULL;
2505 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2506 case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
2507 case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
2508 case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
2510 // Change to CMPXXri r, 0 first.
2511 MI->setDesc(get(NewOpc));
2512 MI->getOperand(1).ChangeToImmediate(0);
2513 } else if (Ops.size() != 1)
2514 return NULL;
2516 // Make sure the subregisters match.
2517 // Otherwise we risk changing the size of the load.
2518 if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
2519 return NULL;
2521 SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
2522 switch (LoadMI->getOpcode()) {
2523 case X86::V_SET0PS:
2524 case X86::V_SET0PD:
2525 case X86::V_SET0PI:
2526 case X86::V_SETALLONES:
2527 case X86::AVX_SET0PS:
2528 case X86::AVX_SET0PD:
2529 case X86::AVX_SET0PI:
2530 case X86::AVX_SET0PSY:
2531 case X86::AVX_SET0PDY:
2532 case X86::FsFLD0SD:
2533 case X86::FsFLD0SS: {
2534 // Folding a V_SET0P? or V_SETALLONES as a load, to ease register pressure.
2535 // Create a constant-pool entry and operands to load from it.
2537 // Medium and large mode can't fold loads this way.
2538 if (TM.getCodeModel() != CodeModel::Small &&
2539 TM.getCodeModel() != CodeModel::Kernel)
2540 return NULL;
2542 // x86-32 PIC requires a PIC base register for constant pools.
2543 unsigned PICBase = 0;
2544 if (TM.getRelocationModel() == Reloc::PIC_) {
2545 if (TM.getSubtarget<X86Subtarget>().is64Bit())
2546 PICBase = X86::RIP;
2547 else
2548 // FIXME: PICBase = getGlobalBaseReg(&MF);
2549 // This doesn't work for several reasons.
2550 // 1. GlobalBaseReg may have been spilled.
2551 // 2. It may not be live at MI.
2552 return NULL;
2555 // Create a constant-pool entry.
2556 MachineConstantPool &MCP = *MF.getConstantPool();
2557 const Type *Ty;
2558 unsigned Opc = LoadMI->getOpcode();
2559 if (Opc == X86::FsFLD0SS)
2560 Ty = Type::getFloatTy(MF.getFunction()->getContext());
2561 else if (Opc == X86::FsFLD0SD)
2562 Ty = Type::getDoubleTy(MF.getFunction()->getContext());
2563 else if (Opc == X86::AVX_SET0PSY || Opc == X86::AVX_SET0PDY)
2564 Ty = VectorType::get(Type::getFloatTy(MF.getFunction()->getContext()), 8);
2565 else
2566 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
2567 const Constant *C = LoadMI->getOpcode() == X86::V_SETALLONES ?
2568 Constant::getAllOnesValue(Ty) :
2569 Constant::getNullValue(Ty);
2570 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
2572 // Create operands to load from the constant pool entry.
2573 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2574 MOs.push_back(MachineOperand::CreateImm(1));
2575 MOs.push_back(MachineOperand::CreateReg(0, false));
2576 MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
2577 MOs.push_back(MachineOperand::CreateReg(0, false));
2578 break;
2580 default: {
2581 // Folding a normal load. Just copy the load's address operands.
2582 unsigned NumOps = LoadMI->getDesc().getNumOperands();
2583 for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
2584 MOs.push_back(LoadMI->getOperand(i));
2585 break;
2588 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
2592 bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2593 const SmallVectorImpl<unsigned> &Ops) const {
2594 // Check switch flag
2595 if (NoFusing) return 0;
2597 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2598 switch (MI->getOpcode()) {
2599 default: return false;
2600 case X86::TEST8rr:
2601 case X86::TEST16rr:
2602 case X86::TEST32rr:
2603 case X86::TEST64rr:
2604 return true;
2608 if (Ops.size() != 1)
2609 return false;
2611 unsigned OpNum = Ops[0];
2612 unsigned Opc = MI->getOpcode();
2613 unsigned NumOps = MI->getDesc().getNumOperands();
2614 bool isTwoAddr = NumOps > 1 &&
2615 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2617 // Folding a memory location into the two-address part of a two-address
2618 // instruction is different than folding it other places. It requires
2619 // replacing the *two* registers with the memory location.
2620 const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
2621 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2622 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2623 } else if (OpNum == 0) { // If operand 0
2624 switch (Opc) {
2625 case X86::MOV8r0:
2626 case X86::MOV16r0:
2627 case X86::MOV32r0:
2628 case X86::MOV64r0: return true;
2629 default: break;
2631 OpcodeTablePtr = &RegOp2MemOpTable0;
2632 } else if (OpNum == 1) {
2633 OpcodeTablePtr = &RegOp2MemOpTable1;
2634 } else if (OpNum == 2) {
2635 OpcodeTablePtr = &RegOp2MemOpTable2;
2638 if (OpcodeTablePtr && OpcodeTablePtr->count(Opc))
2639 return true;
2640 return TargetInstrInfoImpl::canFoldMemoryOperand(MI, Ops);
2643 bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2644 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2645 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2646 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
2647 MemOp2RegOpTable.find(MI->getOpcode());
2648 if (I == MemOp2RegOpTable.end())
2649 return false;
2650 unsigned Opc = I->second.first;
2651 unsigned Index = I->second.second & 0xf;
2652 bool FoldedLoad = I->second.second & (1 << 4);
2653 bool FoldedStore = I->second.second & (1 << 5);
2654 if (UnfoldLoad && !FoldedLoad)
2655 return false;
2656 UnfoldLoad &= FoldedLoad;
2657 if (UnfoldStore && !FoldedStore)
2658 return false;
2659 UnfoldStore &= FoldedStore;
2661 const TargetInstrDesc &TID = get(Opc);
2662 const TargetOperandInfo &TOI = TID.OpInfo[Index];
2663 const TargetRegisterClass *RC = TOI.getRegClass(&RI);
2664 if (!MI->hasOneMemOperand() &&
2665 RC == &X86::VR128RegClass &&
2666 !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
2667 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
2668 // conservatively assume the address is unaligned. That's bad for
2669 // performance.
2670 return false;
2671 SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
2672 SmallVector<MachineOperand,2> BeforeOps;
2673 SmallVector<MachineOperand,2> AfterOps;
2674 SmallVector<MachineOperand,4> ImpOps;
2675 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2676 MachineOperand &Op = MI->getOperand(i);
2677 if (i >= Index && i < Index + X86::AddrNumOperands)
2678 AddrOps.push_back(Op);
2679 else if (Op.isReg() && Op.isImplicit())
2680 ImpOps.push_back(Op);
2681 else if (i < Index)
2682 BeforeOps.push_back(Op);
2683 else if (i > Index)
2684 AfterOps.push_back(Op);
2687 // Emit the load instruction.
2688 if (UnfoldLoad) {
2689 std::pair<MachineInstr::mmo_iterator,
2690 MachineInstr::mmo_iterator> MMOs =
2691 MF.extractLoadMemRefs(MI->memoperands_begin(),
2692 MI->memoperands_end());
2693 loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
2694 if (UnfoldStore) {
2695 // Address operands cannot be marked isKill.
2696 for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
2697 MachineOperand &MO = NewMIs[0]->getOperand(i);
2698 if (MO.isReg())
2699 MO.setIsKill(false);
2704 // Emit the data processing instruction.
2705 MachineInstr *DataMI = MF.CreateMachineInstr(TID, MI->getDebugLoc(), true);
2706 MachineInstrBuilder MIB(DataMI);
2708 if (FoldedStore)
2709 MIB.addReg(Reg, RegState::Define);
2710 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2711 MIB.addOperand(BeforeOps[i]);
2712 if (FoldedLoad)
2713 MIB.addReg(Reg);
2714 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2715 MIB.addOperand(AfterOps[i]);
2716 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2717 MachineOperand &MO = ImpOps[i];
2718 MIB.addReg(MO.getReg(),
2719 getDefRegState(MO.isDef()) |
2720 RegState::Implicit |
2721 getKillRegState(MO.isKill()) |
2722 getDeadRegState(MO.isDead()) |
2723 getUndefRegState(MO.isUndef()));
2725 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2726 unsigned NewOpc = 0;
2727 switch (DataMI->getOpcode()) {
2728 default: break;
2729 case X86::CMP64ri32:
2730 case X86::CMP64ri8:
2731 case X86::CMP32ri:
2732 case X86::CMP32ri8:
2733 case X86::CMP16ri:
2734 case X86::CMP16ri8:
2735 case X86::CMP8ri: {
2736 MachineOperand &MO0 = DataMI->getOperand(0);
2737 MachineOperand &MO1 = DataMI->getOperand(1);
2738 if (MO1.getImm() == 0) {
2739 switch (DataMI->getOpcode()) {
2740 default: break;
2741 case X86::CMP64ri8:
2742 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2743 case X86::CMP32ri8:
2744 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2745 case X86::CMP16ri8:
2746 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2747 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2749 DataMI->setDesc(get(NewOpc));
2750 MO1.ChangeToRegister(MO0.getReg(), false);
2754 NewMIs.push_back(DataMI);
2756 // Emit the store instruction.
2757 if (UnfoldStore) {
2758 const TargetRegisterClass *DstRC = TID.OpInfo[0].getRegClass(&RI);
2759 std::pair<MachineInstr::mmo_iterator,
2760 MachineInstr::mmo_iterator> MMOs =
2761 MF.extractStoreMemRefs(MI->memoperands_begin(),
2762 MI->memoperands_end());
2763 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
2766 return true;
2769 bool
2770 X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2771 SmallVectorImpl<SDNode*> &NewNodes) const {
2772 if (!N->isMachineOpcode())
2773 return false;
2775 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
2776 MemOp2RegOpTable.find(N->getMachineOpcode());
2777 if (I == MemOp2RegOpTable.end())
2778 return false;
2779 unsigned Opc = I->second.first;
2780 unsigned Index = I->second.second & 0xf;
2781 bool FoldedLoad = I->second.second & (1 << 4);
2782 bool FoldedStore = I->second.second & (1 << 5);
2783 const TargetInstrDesc &TID = get(Opc);
2784 const TargetRegisterClass *RC = TID.OpInfo[Index].getRegClass(&RI);
2785 unsigned NumDefs = TID.NumDefs;
2786 std::vector<SDValue> AddrOps;
2787 std::vector<SDValue> BeforeOps;
2788 std::vector<SDValue> AfterOps;
2789 DebugLoc dl = N->getDebugLoc();
2790 unsigned NumOps = N->getNumOperands();
2791 for (unsigned i = 0; i != NumOps-1; ++i) {
2792 SDValue Op = N->getOperand(i);
2793 if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
2794 AddrOps.push_back(Op);
2795 else if (i < Index-NumDefs)
2796 BeforeOps.push_back(Op);
2797 else if (i > Index-NumDefs)
2798 AfterOps.push_back(Op);
2800 SDValue Chain = N->getOperand(NumOps-1);
2801 AddrOps.push_back(Chain);
2803 // Emit the load instruction.
2804 SDNode *Load = 0;
2805 MachineFunction &MF = DAG.getMachineFunction();
2806 if (FoldedLoad) {
2807 EVT VT = *RC->vt_begin();
2808 std::pair<MachineInstr::mmo_iterator,
2809 MachineInstr::mmo_iterator> MMOs =
2810 MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
2811 cast<MachineSDNode>(N)->memoperands_end());
2812 if (!(*MMOs.first) &&
2813 RC == &X86::VR128RegClass &&
2814 !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
2815 // Do not introduce a slow unaligned load.
2816 return false;
2817 bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= 16;
2818 Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
2819 VT, MVT::Other, &AddrOps[0], AddrOps.size());
2820 NewNodes.push_back(Load);
2822 // Preserve memory reference information.
2823 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
2826 // Emit the data processing instruction.
2827 std::vector<EVT> VTs;
2828 const TargetRegisterClass *DstRC = 0;
2829 if (TID.getNumDefs() > 0) {
2830 DstRC = TID.OpInfo[0].getRegClass(&RI);
2831 VTs.push_back(*DstRC->vt_begin());
2833 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
2834 EVT VT = N->getValueType(i);
2835 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
2836 VTs.push_back(VT);
2838 if (Load)
2839 BeforeOps.push_back(SDValue(Load, 0));
2840 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2841 SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
2842 BeforeOps.size());
2843 NewNodes.push_back(NewNode);
2845 // Emit the store instruction.
2846 if (FoldedStore) {
2847 AddrOps.pop_back();
2848 AddrOps.push_back(SDValue(NewNode, 0));
2849 AddrOps.push_back(Chain);
2850 std::pair<MachineInstr::mmo_iterator,
2851 MachineInstr::mmo_iterator> MMOs =
2852 MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
2853 cast<MachineSDNode>(N)->memoperands_end());
2854 if (!(*MMOs.first) &&
2855 RC == &X86::VR128RegClass &&
2856 !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
2857 // Do not introduce a slow unaligned store.
2858 return false;
2859 bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= 16;
2860 SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
2861 isAligned, TM),
2862 dl, MVT::Other,
2863 &AddrOps[0], AddrOps.size());
2864 NewNodes.push_back(Store);
2866 // Preserve memory reference information.
2867 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
2870 return true;
2873 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2874 bool UnfoldLoad, bool UnfoldStore,
2875 unsigned *LoadRegIndex) const {
2876 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
2877 MemOp2RegOpTable.find(Opc);
2878 if (I == MemOp2RegOpTable.end())
2879 return 0;
2880 bool FoldedLoad = I->second.second & (1 << 4);
2881 bool FoldedStore = I->second.second & (1 << 5);
2882 if (UnfoldLoad && !FoldedLoad)
2883 return 0;
2884 if (UnfoldStore && !FoldedStore)
2885 return 0;
2886 if (LoadRegIndex)
2887 *LoadRegIndex = I->second.second & 0xf;
2888 return I->second.first;
2891 bool
2892 X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
2893 int64_t &Offset1, int64_t &Offset2) const {
2894 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
2895 return false;
2896 unsigned Opc1 = Load1->getMachineOpcode();
2897 unsigned Opc2 = Load2->getMachineOpcode();
2898 switch (Opc1) {
2899 default: return false;
2900 case X86::MOV8rm:
2901 case X86::MOV16rm:
2902 case X86::MOV32rm:
2903 case X86::MOV64rm:
2904 case X86::LD_Fp32m:
2905 case X86::LD_Fp64m:
2906 case X86::LD_Fp80m:
2907 case X86::MOVSSrm:
2908 case X86::MOVSDrm:
2909 case X86::MMX_MOVD64rm:
2910 case X86::MMX_MOVQ64rm:
2911 case X86::FsMOVAPSrm:
2912 case X86::FsMOVAPDrm:
2913 case X86::MOVAPSrm:
2914 case X86::MOVUPSrm:
2915 case X86::MOVUPSrm_Int:
2916 case X86::MOVAPDrm:
2917 case X86::MOVDQArm:
2918 case X86::MOVDQUrm:
2919 case X86::MOVDQUrm_Int:
2920 break;
2922 switch (Opc2) {
2923 default: return false;
2924 case X86::MOV8rm:
2925 case X86::MOV16rm:
2926 case X86::MOV32rm:
2927 case X86::MOV64rm:
2928 case X86::LD_Fp32m:
2929 case X86::LD_Fp64m:
2930 case X86::LD_Fp80m:
2931 case X86::MOVSSrm:
2932 case X86::MOVSDrm:
2933 case X86::MMX_MOVD64rm:
2934 case X86::MMX_MOVQ64rm:
2935 case X86::FsMOVAPSrm:
2936 case X86::FsMOVAPDrm:
2937 case X86::MOVAPSrm:
2938 case X86::MOVUPSrm:
2939 case X86::MOVUPSrm_Int:
2940 case X86::MOVAPDrm:
2941 case X86::MOVDQArm:
2942 case X86::MOVDQUrm:
2943 case X86::MOVDQUrm_Int:
2944 break;
2947 // Check if chain operands and base addresses match.
2948 if (Load1->getOperand(0) != Load2->getOperand(0) ||
2949 Load1->getOperand(5) != Load2->getOperand(5))
2950 return false;
2951 // Segment operands should match as well.
2952 if (Load1->getOperand(4) != Load2->getOperand(4))
2953 return false;
2954 // Scale should be 1, Index should be Reg0.
2955 if (Load1->getOperand(1) == Load2->getOperand(1) &&
2956 Load1->getOperand(2) == Load2->getOperand(2)) {
2957 if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
2958 return false;
2960 // Now let's examine the displacements.
2961 if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
2962 isa<ConstantSDNode>(Load2->getOperand(3))) {
2963 Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
2964 Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
2965 return true;
2968 return false;
2971 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
2972 int64_t Offset1, int64_t Offset2,
2973 unsigned NumLoads) const {
2974 assert(Offset2 > Offset1);
2975 if ((Offset2 - Offset1) / 8 > 64)
2976 return false;
2978 unsigned Opc1 = Load1->getMachineOpcode();
2979 unsigned Opc2 = Load2->getMachineOpcode();
2980 if (Opc1 != Opc2)
2981 return false; // FIXME: overly conservative?
2983 switch (Opc1) {
2984 default: break;
2985 case X86::LD_Fp32m:
2986 case X86::LD_Fp64m:
2987 case X86::LD_Fp80m:
2988 case X86::MMX_MOVD64rm:
2989 case X86::MMX_MOVQ64rm:
2990 return false;
2993 EVT VT = Load1->getValueType(0);
2994 switch (VT.getSimpleVT().SimpleTy) {
2995 default:
2996 // XMM registers. In 64-bit mode we can be a bit more aggressive since we
2997 // have 16 of them to play with.
2998 if (TM.getSubtargetImpl()->is64Bit()) {
2999 if (NumLoads >= 3)
3000 return false;
3001 } else if (NumLoads) {
3002 return false;
3004 break;
3005 case MVT::i8:
3006 case MVT::i16:
3007 case MVT::i32:
3008 case MVT::i64:
3009 case MVT::f32:
3010 case MVT::f64:
3011 if (NumLoads)
3012 return false;
3013 break;
3016 return true;
3020 bool X86InstrInfo::
3021 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
3022 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
3023 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
3024 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
3025 return true;
3026 Cond[0].setImm(GetOppositeBranchCondition(CC));
3027 return false;
3030 bool X86InstrInfo::
3031 isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
3032 // FIXME: Return false for x87 stack register classes for now. We can't
3033 // allow any loads of these registers before FpGet_ST0_80.
3034 return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
3035 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
3039 /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or higher)
3040 /// register? e.g. r8, xmm8, xmm13, etc.
3041 bool X86InstrInfo::isX86_64ExtendedReg(unsigned RegNo) {
3042 switch (RegNo) {
3043 default: break;
3044 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
3045 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
3046 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
3047 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
3048 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
3049 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
3050 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
3051 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
3052 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
3053 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
3054 case X86::YMM8: case X86::YMM9: case X86::YMM10: case X86::YMM11:
3055 case X86::YMM12: case X86::YMM13: case X86::YMM14: case X86::YMM15:
3056 case X86::CR8: case X86::CR9: case X86::CR10: case X86::CR11:
3057 case X86::CR12: case X86::CR13: case X86::CR14: case X86::CR15:
3058 return true;
3060 return false;
3063 /// getGlobalBaseReg - Return a virtual register initialized with the
3064 /// the global base register value. Output instructions required to
3065 /// initialize the register in the function entry block, if necessary.
3067 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
3069 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3070 assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3071 "X86-64 PIC uses RIP relative addressing");
3073 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3074 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3075 if (GlobalBaseReg != 0)
3076 return GlobalBaseReg;
3078 // Create the register. The code to initialize it is inserted
3079 // later, by the CGBR pass (below).
3080 MachineRegisterInfo &RegInfo = MF->getRegInfo();
3081 GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3082 X86FI->setGlobalBaseReg(GlobalBaseReg);
3083 return GlobalBaseReg;
3086 // These are the replaceable SSE instructions. Some of these have Int variants
3087 // that we don't include here. We don't want to replace instructions selected
3088 // by intrinsics.
3089 static const unsigned ReplaceableInstrs[][3] = {
3090 //PackedSingle PackedDouble PackedInt
3091 { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr },
3092 { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm },
3093 { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr },
3094 { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr },
3095 { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm },
3096 { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr },
3097 { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm },
3098 { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr },
3099 { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm },
3100 { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr },
3101 { X86::ORPSrm, X86::ORPDrm, X86::PORrm },
3102 { X86::ORPSrr, X86::ORPDrr, X86::PORrr },
3103 { X86::V_SET0PS, X86::V_SET0PD, X86::V_SET0PI },
3104 { X86::XORPSrm, X86::XORPDrm, X86::PXORrm },
3105 { X86::XORPSrr, X86::XORPDrr, X86::PXORrr },
3106 // AVX 128-bit support
3107 { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr },
3108 { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm },
3109 { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr },
3110 { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr },
3111 { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm },
3112 { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
3113 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm },
3114 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr },
3115 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm },
3116 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr },
3117 { X86::VORPSrm, X86::VORPDrm, X86::VPORrm },
3118 { X86::VORPSrr, X86::VORPDrr, X86::VPORrr },
3119 { X86::AVX_SET0PS, X86::AVX_SET0PD, X86::AVX_SET0PI },
3120 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm },
3121 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr },
3124 // FIXME: Some shuffle and unpack instructions have equivalents in different
3125 // domains, but they require a bit more work than just switching opcodes.
3127 static const unsigned *lookup(unsigned opcode, unsigned domain) {
3128 for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
3129 if (ReplaceableInstrs[i][domain-1] == opcode)
3130 return ReplaceableInstrs[i];
3131 return 0;
3134 std::pair<uint16_t, uint16_t>
3135 X86InstrInfo::GetSSEDomain(const MachineInstr *MI) const {
3136 uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
3137 return std::make_pair(domain,
3138 domain && lookup(MI->getOpcode(), domain) ? 0xe : 0);
3141 void X86InstrInfo::SetSSEDomain(MachineInstr *MI, unsigned Domain) const {
3142 assert(Domain>0 && Domain<4 && "Invalid execution domain");
3143 uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
3144 assert(dom && "Not an SSE instruction");
3145 const unsigned *table = lookup(MI->getOpcode(), dom);
3146 assert(table && "Cannot change domain");
3147 MI->setDesc(get(table[Domain-1]));
3150 /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
3151 void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
3152 NopInst.setOpcode(X86::NOOP);
3155 bool X86InstrInfo::
3156 hasHighOperandLatency(const InstrItineraryData *ItinData,
3157 const MachineRegisterInfo *MRI,
3158 const MachineInstr *DefMI, unsigned DefIdx,
3159 const MachineInstr *UseMI, unsigned UseIdx) const {
3160 switch (DefMI->getOpcode()) {
3161 default: return false;
3162 case X86::DIVSDrm:
3163 case X86::DIVSDrm_Int:
3164 case X86::DIVSDrr:
3165 case X86::DIVSDrr_Int:
3166 case X86::DIVSSrm:
3167 case X86::DIVSSrm_Int:
3168 case X86::DIVSSrr:
3169 case X86::DIVSSrr_Int:
3170 case X86::SQRTPDm:
3171 case X86::SQRTPDm_Int:
3172 case X86::SQRTPDr:
3173 case X86::SQRTPDr_Int:
3174 case X86::SQRTPSm:
3175 case X86::SQRTPSm_Int:
3176 case X86::SQRTPSr:
3177 case X86::SQRTPSr_Int:
3178 case X86::SQRTSDm:
3179 case X86::SQRTSDm_Int:
3180 case X86::SQRTSDr:
3181 case X86::SQRTSDr_Int:
3182 case X86::SQRTSSm:
3183 case X86::SQRTSSm_Int:
3184 case X86::SQRTSSr:
3185 case X86::SQRTSSr_Int:
3186 return true;
3190 namespace {
3191 /// CGBR - Create Global Base Reg pass. This initializes the PIC
3192 /// global base register for x86-32.
3193 struct CGBR : public MachineFunctionPass {
3194 static char ID;
3195 CGBR() : MachineFunctionPass(ID) {}
3197 virtual bool runOnMachineFunction(MachineFunction &MF) {
3198 const X86TargetMachine *TM =
3199 static_cast<const X86TargetMachine *>(&MF.getTarget());
3201 assert(!TM->getSubtarget<X86Subtarget>().is64Bit() &&
3202 "X86-64 PIC uses RIP relative addressing");
3204 // Only emit a global base reg in PIC mode.
3205 if (TM->getRelocationModel() != Reloc::PIC_)
3206 return false;
3208 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3209 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3211 // If we didn't need a GlobalBaseReg, don't insert code.
3212 if (GlobalBaseReg == 0)
3213 return false;
3215 // Insert the set of GlobalBaseReg into the first MBB of the function
3216 MachineBasicBlock &FirstMBB = MF.front();
3217 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
3218 DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
3219 MachineRegisterInfo &RegInfo = MF.getRegInfo();
3220 const X86InstrInfo *TII = TM->getInstrInfo();
3222 unsigned PC;
3223 if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT())
3224 PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3225 else
3226 PC = GlobalBaseReg;
3228 // Operand of MovePCtoStack is completely ignored by asm printer. It's
3229 // only used in JIT code emission as displacement to pc.
3230 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
3232 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3233 // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
3234 if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) {
3235 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
3236 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
3237 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
3238 X86II::MO_GOT_ABSOLUTE_ADDRESS);
3241 return true;
3244 virtual const char *getPassName() const {
3245 return "X86 PIC Global Base Reg Initialization";
3248 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
3249 AU.setPreservesCFG();
3250 MachineFunctionPass::getAnalysisUsage(AU);
3255 char CGBR::ID = 0;
3256 FunctionPass*
3257 llvm::createGlobalBaseRegPass() { return new CGBR(); }