1 //===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the X86MCCodeEmitter class.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "x86-emitter"
16 #include "X86InstrInfo.h"
17 #include "X86FixupKinds.h"
18 #include "llvm/MC/MCCodeEmitter.h"
19 #include "llvm/MC/MCExpr.h"
20 #include "llvm/MC/MCInst.h"
21 #include "llvm/MC/MCSymbol.h"
22 #include "llvm/Support/raw_ostream.h"
26 class X86MCCodeEmitter
: public MCCodeEmitter
{
27 X86MCCodeEmitter(const X86MCCodeEmitter
&); // DO NOT IMPLEMENT
28 void operator=(const X86MCCodeEmitter
&); // DO NOT IMPLEMENT
29 const TargetMachine
&TM
;
30 const TargetInstrInfo
&TII
;
34 X86MCCodeEmitter(TargetMachine
&tm
, MCContext
&ctx
, bool is64Bit
)
35 : TM(tm
), TII(*TM
.getInstrInfo()), Ctx(ctx
) {
36 Is64BitMode
= is64Bit
;
39 ~X86MCCodeEmitter() {}
41 unsigned getNumFixupKinds() const {
45 const MCFixupKindInfo
&getFixupKindInfo(MCFixupKind Kind
) const {
46 const static MCFixupKindInfo Infos
[] = {
47 { "reloc_pcrel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel
},
48 { "reloc_pcrel_1byte", 0, 1 * 8, MCFixupKindInfo::FKF_IsPCRel
},
49 { "reloc_pcrel_2byte", 0, 2 * 8, MCFixupKindInfo::FKF_IsPCRel
},
50 { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel
},
51 { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel
},
52 { "reloc_signed_4byte", 0, 4 * 8, 0},
53 { "reloc_global_offset_table", 0, 4 * 8, 0}
56 if (Kind
< FirstTargetFixupKind
)
57 return MCCodeEmitter::getFixupKindInfo(Kind
);
59 assert(unsigned(Kind
- FirstTargetFixupKind
) < getNumFixupKinds() &&
61 return Infos
[Kind
- FirstTargetFixupKind
];
64 static unsigned GetX86RegNum(const MCOperand
&MO
) {
65 return X86RegisterInfo::getX86RegNum(MO
.getReg());
68 // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
69 // 0-7 and the difference between the 2 groups is given by the REX prefix.
70 // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
71 // in 1's complement form, example:
73 // ModRM field => XMM9 => 1
74 // VEX.VVVV => XMM9 => ~9
76 // See table 4-35 of Intel AVX Programming Reference for details.
77 static unsigned char getVEXRegisterEncoding(const MCInst
&MI
,
79 unsigned SrcReg
= MI
.getOperand(OpNum
).getReg();
80 unsigned SrcRegNum
= GetX86RegNum(MI
.getOperand(OpNum
));
81 if ((SrcReg
>= X86::XMM8
&& SrcReg
<= X86::XMM15
) ||
82 (SrcReg
>= X86::YMM8
&& SrcReg
<= X86::YMM15
))
85 // The registers represented through VEX_VVVV should
86 // be encoded in 1's complement form.
87 return (~SrcRegNum
) & 0xf;
90 void EmitByte(unsigned char C
, unsigned &CurByte
, raw_ostream
&OS
) const {
95 void EmitConstant(uint64_t Val
, unsigned Size
, unsigned &CurByte
,
96 raw_ostream
&OS
) const {
97 // Output the constant in little endian byte order.
98 for (unsigned i
= 0; i
!= Size
; ++i
) {
99 EmitByte(Val
& 255, CurByte
, OS
);
104 void EmitImmediate(const MCOperand
&Disp
,
105 unsigned ImmSize
, MCFixupKind FixupKind
,
106 unsigned &CurByte
, raw_ostream
&OS
,
107 SmallVectorImpl
<MCFixup
> &Fixups
,
108 int ImmOffset
= 0) const;
110 inline static unsigned char ModRMByte(unsigned Mod
, unsigned RegOpcode
,
112 assert(Mod
< 4 && RegOpcode
< 8 && RM
< 8 && "ModRM Fields out of range!");
113 return RM
| (RegOpcode
<< 3) | (Mod
<< 6);
116 void EmitRegModRMByte(const MCOperand
&ModRMReg
, unsigned RegOpcodeFld
,
117 unsigned &CurByte
, raw_ostream
&OS
) const {
118 EmitByte(ModRMByte(3, RegOpcodeFld
, GetX86RegNum(ModRMReg
)), CurByte
, OS
);
121 void EmitSIBByte(unsigned SS
, unsigned Index
, unsigned Base
,
122 unsigned &CurByte
, raw_ostream
&OS
) const {
123 // SIB byte is in the same format as the ModRMByte.
124 EmitByte(ModRMByte(SS
, Index
, Base
), CurByte
, OS
);
128 void EmitMemModRMByte(const MCInst
&MI
, unsigned Op
,
129 unsigned RegOpcodeField
,
130 uint64_t TSFlags
, unsigned &CurByte
, raw_ostream
&OS
,
131 SmallVectorImpl
<MCFixup
> &Fixups
) const;
133 void EncodeInstruction(const MCInst
&MI
, raw_ostream
&OS
,
134 SmallVectorImpl
<MCFixup
> &Fixups
) const;
136 void EmitVEXOpcodePrefix(uint64_t TSFlags
, unsigned &CurByte
, int MemOperand
,
137 const MCInst
&MI
, const TargetInstrDesc
&Desc
,
138 raw_ostream
&OS
) const;
140 void EmitSegmentOverridePrefix(uint64_t TSFlags
, unsigned &CurByte
,
141 int MemOperand
, const MCInst
&MI
,
142 raw_ostream
&OS
) const;
144 void EmitOpcodePrefix(uint64_t TSFlags
, unsigned &CurByte
, int MemOperand
,
145 const MCInst
&MI
, const TargetInstrDesc
&Desc
,
146 raw_ostream
&OS
) const;
149 } // end anonymous namespace
152 MCCodeEmitter
*llvm::createX86_32MCCodeEmitter(const Target
&,
155 return new X86MCCodeEmitter(TM
, Ctx
, false);
158 MCCodeEmitter
*llvm::createX86_64MCCodeEmitter(const Target
&,
161 return new X86MCCodeEmitter(TM
, Ctx
, true);
164 /// isDisp8 - Return true if this signed displacement fits in a 8-bit
165 /// sign-extended field.
166 static bool isDisp8(int Value
) {
167 return Value
== (signed char)Value
;
170 /// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
171 /// in an instruction with the specified TSFlags.
172 static MCFixupKind
getImmFixupKind(uint64_t TSFlags
) {
173 unsigned Size
= X86II::getSizeOfImm(TSFlags
);
174 bool isPCRel
= X86II::isImmPCRel(TSFlags
);
177 default: assert(0 && "Unknown immediate size");
178 case 1: return isPCRel
? MCFixupKind(X86::reloc_pcrel_1byte
) : FK_Data_1
;
179 case 2: return isPCRel
? MCFixupKind(X86::reloc_pcrel_2byte
) : FK_Data_2
;
180 case 4: return isPCRel
? MCFixupKind(X86::reloc_pcrel_4byte
) : FK_Data_4
;
181 case 8: assert(!isPCRel
); return FK_Data_8
;
185 /// Is32BitMemOperand - Return true if the specified instruction with a memory
186 /// operand should emit the 0x67 prefix byte in 64-bit mode due to a 32-bit
187 /// memory operand. Op specifies the operand # of the memoperand.
188 static bool Is32BitMemOperand(const MCInst
&MI
, unsigned Op
) {
189 const MCOperand
&BaseReg
= MI
.getOperand(Op
+X86::AddrBaseReg
);
190 const MCOperand
&IndexReg
= MI
.getOperand(Op
+X86::AddrIndexReg
);
192 if ((BaseReg
.getReg() != 0 && X86::GR32RegClass
.contains(BaseReg
.getReg())) ||
193 (IndexReg
.getReg() != 0 && X86::GR32RegClass
.contains(IndexReg
.getReg())))
198 /// StartsWithGlobalOffsetTable - Return true for the simple cases where this
199 /// expression starts with _GLOBAL_OFFSET_TABLE_. This is a needed to support
200 /// PIC on ELF i386 as that symbol is magic. We check only simple case that
201 /// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
202 /// of a binary expression.
203 static bool StartsWithGlobalOffsetTable(const MCExpr
*Expr
) {
204 if (Expr
->getKind() == MCExpr::Binary
) {
205 const MCBinaryExpr
*BE
= static_cast<const MCBinaryExpr
*>(Expr
);
209 if (Expr
->getKind() != MCExpr::SymbolRef
)
212 const MCSymbolRefExpr
*Ref
= static_cast<const MCSymbolRefExpr
*>(Expr
);
213 const MCSymbol
&S
= Ref
->getSymbol();
214 return S
.getName() == "_GLOBAL_OFFSET_TABLE_";
217 void X86MCCodeEmitter::
218 EmitImmediate(const MCOperand
&DispOp
, unsigned Size
, MCFixupKind FixupKind
,
219 unsigned &CurByte
, raw_ostream
&OS
,
220 SmallVectorImpl
<MCFixup
> &Fixups
, int ImmOffset
) const {
221 // If this is a simple integer displacement that doesn't require a relocation,
223 if (DispOp
.isImm()) {
224 // FIXME: is this right for pc-rel encoding?? Probably need to emit this as
226 EmitConstant(DispOp
.getImm()+ImmOffset
, Size
, CurByte
, OS
);
230 // If we have an immoffset, add it to the expression.
231 const MCExpr
*Expr
= DispOp
.getExpr();
233 if (FixupKind
== FK_Data_4
&& StartsWithGlobalOffsetTable(Expr
)) {
234 assert(ImmOffset
== 0);
236 FixupKind
= MCFixupKind(X86::reloc_global_offset_table
);
240 // If the fixup is pc-relative, we need to bias the value to be relative to
241 // the start of the field, not the end of the field.
242 if (FixupKind
== MCFixupKind(X86::reloc_pcrel_4byte
) ||
243 FixupKind
== MCFixupKind(X86::reloc_riprel_4byte
) ||
244 FixupKind
== MCFixupKind(X86::reloc_riprel_4byte_movq_load
))
246 if (FixupKind
== MCFixupKind(X86::reloc_pcrel_2byte
))
248 if (FixupKind
== MCFixupKind(X86::reloc_pcrel_1byte
))
252 Expr
= MCBinaryExpr::CreateAdd(Expr
, MCConstantExpr::Create(ImmOffset
, Ctx
),
255 // Emit a symbolic constant as a fixup and 4 zeros.
256 Fixups
.push_back(MCFixup::Create(CurByte
, Expr
, FixupKind
));
257 EmitConstant(0, Size
, CurByte
, OS
);
260 void X86MCCodeEmitter::EmitMemModRMByte(const MCInst
&MI
, unsigned Op
,
261 unsigned RegOpcodeField
,
262 uint64_t TSFlags
, unsigned &CurByte
,
264 SmallVectorImpl
<MCFixup
> &Fixups
) const{
265 const MCOperand
&Disp
= MI
.getOperand(Op
+X86::AddrDisp
);
266 const MCOperand
&Base
= MI
.getOperand(Op
+X86::AddrBaseReg
);
267 const MCOperand
&Scale
= MI
.getOperand(Op
+X86::AddrScaleAmt
);
268 const MCOperand
&IndexReg
= MI
.getOperand(Op
+X86::AddrIndexReg
);
269 unsigned BaseReg
= Base
.getReg();
271 // Handle %rip relative addressing.
272 if (BaseReg
== X86::RIP
) { // [disp32+RIP] in X86-64 mode
273 assert(Is64BitMode
&& "Rip-relative addressing requires 64-bit mode");
274 assert(IndexReg
.getReg() == 0 && "Invalid rip-relative address");
275 EmitByte(ModRMByte(0, RegOpcodeField
, 5), CurByte
, OS
);
277 unsigned FixupKind
= X86::reloc_riprel_4byte
;
279 // movq loads are handled with a special relocation form which allows the
280 // linker to eliminate some loads for GOT references which end up in the
281 // same linkage unit.
282 if (MI
.getOpcode() == X86::MOV64rm
)
283 FixupKind
= X86::reloc_riprel_4byte_movq_load
;
285 // rip-relative addressing is actually relative to the *next* instruction.
286 // Since an immediate can follow the mod/rm byte for an instruction, this
287 // means that we need to bias the immediate field of the instruction with
288 // the size of the immediate field. If we have this case, add it into the
289 // expression to emit.
290 int ImmSize
= X86II::hasImm(TSFlags
) ? X86II::getSizeOfImm(TSFlags
) : 0;
292 EmitImmediate(Disp
, 4, MCFixupKind(FixupKind
),
293 CurByte
, OS
, Fixups
, -ImmSize
);
297 unsigned BaseRegNo
= BaseReg
? GetX86RegNum(Base
) : -1U;
299 // Determine whether a SIB byte is needed.
300 // If no BaseReg, issue a RIP relative instruction only if the MCE can
301 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
302 // 2-7) and absolute references.
304 if (// The SIB byte must be used if there is an index register.
305 IndexReg
.getReg() == 0 &&
306 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
307 // encode to an R/M value of 4, which indicates that a SIB byte is
309 BaseRegNo
!= N86::ESP
&&
310 // If there is no base register and we're in 64-bit mode, we need a SIB
311 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
312 (!Is64BitMode
|| BaseReg
!= 0)) {
314 if (BaseReg
== 0) { // [disp32] in X86-32 mode
315 EmitByte(ModRMByte(0, RegOpcodeField
, 5), CurByte
, OS
);
316 EmitImmediate(Disp
, 4, FK_Data_4
, CurByte
, OS
, Fixups
);
320 // If the base is not EBP/ESP and there is no displacement, use simple
321 // indirect register encoding, this handles addresses like [EAX]. The
322 // encoding for [EBP] with no displacement means [disp32] so we handle it
323 // by emitting a displacement of 0 below.
324 if (Disp
.isImm() && Disp
.getImm() == 0 && BaseRegNo
!= N86::EBP
) {
325 EmitByte(ModRMByte(0, RegOpcodeField
, BaseRegNo
), CurByte
, OS
);
329 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
330 if (Disp
.isImm() && isDisp8(Disp
.getImm())) {
331 EmitByte(ModRMByte(1, RegOpcodeField
, BaseRegNo
), CurByte
, OS
);
332 EmitImmediate(Disp
, 1, FK_Data_1
, CurByte
, OS
, Fixups
);
336 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
337 EmitByte(ModRMByte(2, RegOpcodeField
, BaseRegNo
), CurByte
, OS
);
338 EmitImmediate(Disp
, 4, MCFixupKind(X86::reloc_signed_4byte
), CurByte
, OS
,
343 // We need a SIB byte, so start by outputting the ModR/M byte first
344 assert(IndexReg
.getReg() != X86::ESP
&&
345 IndexReg
.getReg() != X86::RSP
&& "Cannot use ESP as index reg!");
347 bool ForceDisp32
= false;
348 bool ForceDisp8
= false;
350 // If there is no base register, we emit the special case SIB byte with
351 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
352 EmitByte(ModRMByte(0, RegOpcodeField
, 4), CurByte
, OS
);
354 } else if (!Disp
.isImm()) {
355 // Emit the normal disp32 encoding.
356 EmitByte(ModRMByte(2, RegOpcodeField
, 4), CurByte
, OS
);
358 } else if (Disp
.getImm() == 0 &&
359 // Base reg can't be anything that ends up with '5' as the base
360 // reg, it is the magic [*] nomenclature that indicates no base.
361 BaseRegNo
!= N86::EBP
) {
362 // Emit no displacement ModR/M byte
363 EmitByte(ModRMByte(0, RegOpcodeField
, 4), CurByte
, OS
);
364 } else if (isDisp8(Disp
.getImm())) {
365 // Emit the disp8 encoding.
366 EmitByte(ModRMByte(1, RegOpcodeField
, 4), CurByte
, OS
);
367 ForceDisp8
= true; // Make sure to force 8 bit disp if Base=EBP
369 // Emit the normal disp32 encoding.
370 EmitByte(ModRMByte(2, RegOpcodeField
, 4), CurByte
, OS
);
373 // Calculate what the SS field value should be...
374 static const unsigned SSTable
[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
375 unsigned SS
= SSTable
[Scale
.getImm()];
378 // Handle the SIB byte for the case where there is no base, see Intel
379 // Manual 2A, table 2-7. The displacement has already been output.
381 if (IndexReg
.getReg())
382 IndexRegNo
= GetX86RegNum(IndexReg
);
383 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
385 EmitSIBByte(SS
, IndexRegNo
, 5, CurByte
, OS
);
388 if (IndexReg
.getReg())
389 IndexRegNo
= GetX86RegNum(IndexReg
);
391 IndexRegNo
= 4; // For example [ESP+1*<noreg>+4]
392 EmitSIBByte(SS
, IndexRegNo
, GetX86RegNum(Base
), CurByte
, OS
);
395 // Do we need to output a displacement?
397 EmitImmediate(Disp
, 1, FK_Data_1
, CurByte
, OS
, Fixups
);
398 else if (ForceDisp32
|| Disp
.getImm() != 0)
399 EmitImmediate(Disp
, 4, MCFixupKind(X86::reloc_signed_4byte
), CurByte
, OS
,
403 /// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
405 void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags
, unsigned &CurByte
,
406 int MemOperand
, const MCInst
&MI
,
407 const TargetInstrDesc
&Desc
,
408 raw_ostream
&OS
) const {
409 bool HasVEX_4V
= false;
410 if ((TSFlags
>> 32) & X86II::VEX_4V
)
413 // VEX_R: opcode externsion equivalent to REX.R in
414 // 1's complement (inverted) form
416 // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
417 // 0: Same as REX_R=1 (64 bit mode only)
419 unsigned char VEX_R
= 0x1;
421 // VEX_X: equivalent to REX.X, only used when a
422 // register is used for index in SIB Byte.
424 // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
425 // 0: Same as REX.X=1 (64-bit mode only)
426 unsigned char VEX_X
= 0x1;
430 // 1: Same as REX_B=0 (ignored in 32-bit mode)
431 // 0: Same as REX_B=1 (64 bit mode only)
433 unsigned char VEX_B
= 0x1;
435 // VEX_W: opcode specific (use like REX.W, or used for
436 // opcode extension, or ignored, depending on the opcode byte)
437 unsigned char VEX_W
= 0;
439 // VEX_5M (VEX m-mmmmm field):
441 // 0b00000: Reserved for future use
442 // 0b00001: implied 0F leading opcode
443 // 0b00010: implied 0F 38 leading opcode bytes
444 // 0b00011: implied 0F 3A leading opcode bytes
445 // 0b00100-0b11111: Reserved for future use
447 unsigned char VEX_5M
= 0x1;
449 // VEX_4V (VEX vvvv field): a register specifier
450 // (in 1's complement form) or 1111 if unused.
451 unsigned char VEX_4V
= 0xf;
453 // VEX_L (Vector Length):
455 // 0: scalar or 128-bit vector
458 unsigned char VEX_L
= 0;
460 // VEX_PP: opcode extension providing equivalent
461 // functionality of a SIMD prefix
468 unsigned char VEX_PP
= 0;
470 // Encode the operand size opcode prefix as needed.
471 if (TSFlags
& X86II::OpSize
)
474 if ((TSFlags
>> 32) & X86II::VEX_W
)
477 if ((TSFlags
>> 32) & X86II::VEX_L
)
480 switch (TSFlags
& X86II::Op0Mask
) {
481 default: assert(0 && "Invalid prefix!");
482 case X86II::T8
: // 0F 38
485 case X86II::TA
: // 0F 3A
488 case X86II::TF
: // F2 0F 38
492 case X86II::XS
: // F3 0F
495 case X86II::XD
: // F2 0F
498 case X86II::TB
: // Bypass: Not used by VEX
503 // Set the vector length to 256-bit if YMM0-YMM15 is used
504 for (unsigned i
= 0; i
!= MI
.getNumOperands(); ++i
) {
505 if (!MI
.getOperand(i
).isReg())
507 unsigned SrcReg
= MI
.getOperand(i
).getReg();
508 if (SrcReg
>= X86::YMM0
&& SrcReg
<= X86::YMM15
)
512 unsigned NumOps
= MI
.getNumOperands();
514 bool IsDestMem
= false;
516 switch (TSFlags
& X86II::FormMask
) {
517 case X86II::MRMInitReg
: assert(0 && "FIXME: Remove this!");
518 case X86II::MRMDestMem
:
520 // The important info for the VEX prefix is never beyond the address
521 // registers. Don't check beyond that.
522 NumOps
= CurOp
= X86::AddrNumOperands
;
523 case X86II::MRM0m
: case X86II::MRM1m
:
524 case X86II::MRM2m
: case X86II::MRM3m
:
525 case X86II::MRM4m
: case X86II::MRM5m
:
526 case X86II::MRM6m
: case X86II::MRM7m
:
527 case X86II::MRMSrcMem
:
528 case X86II::MRMSrcReg
:
529 if (MI
.getNumOperands() > CurOp
&& MI
.getOperand(CurOp
).isReg() &&
530 X86InstrInfo::isX86_64ExtendedReg(MI
.getOperand(CurOp
).getReg()))
535 VEX_4V
= getVEXRegisterEncoding(MI
, IsDestMem
? CurOp
-1 : CurOp
);
539 // To only check operands before the memory address ones, start
540 // the search from the begining
544 // If the last register should be encoded in the immediate field
545 // do not use any bit from VEX prefix to this register, ignore it
546 if ((TSFlags
>> 32) & X86II::VEX_I8IMM
)
549 for (; CurOp
!= NumOps
; ++CurOp
) {
550 const MCOperand
&MO
= MI
.getOperand(CurOp
);
551 if (MO
.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO
.getReg()))
553 if (!VEX_B
&& MO
.isReg() &&
554 ((TSFlags
& X86II::FormMask
) == X86II::MRMSrcMem
) &&
555 X86InstrInfo::isX86_64ExtendedReg(MO
.getReg()))
559 default: // MRMDestReg, MRM0r-MRM7r, RawFrm
560 if (!MI
.getNumOperands())
563 if (MI
.getOperand(CurOp
).isReg() &&
564 X86InstrInfo::isX86_64ExtendedReg(MI
.getOperand(CurOp
).getReg()))
568 VEX_4V
= getVEXRegisterEncoding(MI
, CurOp
);
571 for (; CurOp
!= NumOps
; ++CurOp
) {
572 const MCOperand
&MO
= MI
.getOperand(CurOp
);
573 if (MO
.isReg() && !HasVEX_4V
&&
574 X86InstrInfo::isX86_64ExtendedReg(MO
.getReg()))
580 // Emit segment override opcode prefix as needed.
581 EmitSegmentOverridePrefix(TSFlags
, CurByte
, MemOperand
, MI
, OS
);
583 // VEX opcode prefix can have 2 or 3 bytes
586 // +-----+ +--------------+ +-------------------+
587 // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
588 // +-----+ +--------------+ +-------------------+
590 // +-----+ +-------------------+
591 // | C5h | | R | vvvv | L | pp |
592 // +-----+ +-------------------+
594 unsigned char LastByte
= VEX_PP
| (VEX_L
<< 2) | (VEX_4V
<< 3);
596 if (VEX_B
&& VEX_X
&& !VEX_W
&& (VEX_5M
== 1)) { // 2 byte VEX prefix
597 EmitByte(0xC5, CurByte
, OS
);
598 EmitByte(LastByte
| (VEX_R
<< 7), CurByte
, OS
);
603 EmitByte(0xC4, CurByte
, OS
);
604 EmitByte(VEX_R
<< 7 | VEX_X
<< 6 | VEX_B
<< 5 | VEX_5M
, CurByte
, OS
);
605 EmitByte(LastByte
| (VEX_W
<< 7), CurByte
, OS
);
608 /// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
609 /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
610 /// size, and 3) use of X86-64 extended registers.
611 static unsigned DetermineREXPrefix(const MCInst
&MI
, uint64_t TSFlags
,
612 const TargetInstrDesc
&Desc
) {
614 if (TSFlags
& X86II::REX_W
)
615 REX
|= 1 << 3; // set REX.W
617 if (MI
.getNumOperands() == 0) return REX
;
619 unsigned NumOps
= MI
.getNumOperands();
620 // FIXME: MCInst should explicitize the two-addrness.
621 bool isTwoAddr
= NumOps
> 1 &&
622 Desc
.getOperandConstraint(1, TOI::TIED_TO
) != -1;
624 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
625 unsigned i
= isTwoAddr
? 1 : 0;
626 for (; i
!= NumOps
; ++i
) {
627 const MCOperand
&MO
= MI
.getOperand(i
);
628 if (!MO
.isReg()) continue;
629 unsigned Reg
= MO
.getReg();
630 if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg
)) continue;
631 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
632 // that returns non-zero.
633 REX
|= 0x40; // REX fixed encoding prefix
637 switch (TSFlags
& X86II::FormMask
) {
638 case X86II::MRMInitReg
: assert(0 && "FIXME: Remove this!");
639 case X86II::MRMSrcReg
:
640 if (MI
.getOperand(0).isReg() &&
641 X86InstrInfo::isX86_64ExtendedReg(MI
.getOperand(0).getReg()))
642 REX
|= 1 << 2; // set REX.R
643 i
= isTwoAddr
? 2 : 1;
644 for (; i
!= NumOps
; ++i
) {
645 const MCOperand
&MO
= MI
.getOperand(i
);
646 if (MO
.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO
.getReg()))
647 REX
|= 1 << 0; // set REX.B
650 case X86II::MRMSrcMem
: {
651 if (MI
.getOperand(0).isReg() &&
652 X86InstrInfo::isX86_64ExtendedReg(MI
.getOperand(0).getReg()))
653 REX
|= 1 << 2; // set REX.R
655 i
= isTwoAddr
? 2 : 1;
656 for (; i
!= NumOps
; ++i
) {
657 const MCOperand
&MO
= MI
.getOperand(i
);
659 if (X86InstrInfo::isX86_64ExtendedReg(MO
.getReg()))
660 REX
|= 1 << Bit
; // set REX.B (Bit=0) and REX.X (Bit=1)
666 case X86II::MRM0m
: case X86II::MRM1m
:
667 case X86II::MRM2m
: case X86II::MRM3m
:
668 case X86II::MRM4m
: case X86II::MRM5m
:
669 case X86II::MRM6m
: case X86II::MRM7m
:
670 case X86II::MRMDestMem
: {
671 unsigned e
= (isTwoAddr
? X86::AddrNumOperands
+1 : X86::AddrNumOperands
);
672 i
= isTwoAddr
? 1 : 0;
673 if (NumOps
> e
&& MI
.getOperand(e
).isReg() &&
674 X86InstrInfo::isX86_64ExtendedReg(MI
.getOperand(e
).getReg()))
675 REX
|= 1 << 2; // set REX.R
677 for (; i
!= e
; ++i
) {
678 const MCOperand
&MO
= MI
.getOperand(i
);
680 if (X86InstrInfo::isX86_64ExtendedReg(MO
.getReg()))
681 REX
|= 1 << Bit
; // REX.B (Bit=0) and REX.X (Bit=1)
688 if (MI
.getOperand(0).isReg() &&
689 X86InstrInfo::isX86_64ExtendedReg(MI
.getOperand(0).getReg()))
690 REX
|= 1 << 0; // set REX.B
691 i
= isTwoAddr
? 2 : 1;
692 for (unsigned e
= NumOps
; i
!= e
; ++i
) {
693 const MCOperand
&MO
= MI
.getOperand(i
);
694 if (MO
.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO
.getReg()))
695 REX
|= 1 << 2; // set REX.R
702 /// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
703 void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags
,
704 unsigned &CurByte
, int MemOperand
,
706 raw_ostream
&OS
) const {
707 switch (TSFlags
& X86II::SegOvrMask
) {
708 default: assert(0 && "Invalid segment!");
710 // No segment override, check for explicit one on memory operand.
711 if (MemOperand
!= -1) { // If the instruction has a memory operand.
712 switch (MI
.getOperand(MemOperand
+X86::AddrSegmentReg
).getReg()) {
713 default: assert(0 && "Unknown segment register!");
715 case X86::CS
: EmitByte(0x2E, CurByte
, OS
); break;
716 case X86::SS
: EmitByte(0x36, CurByte
, OS
); break;
717 case X86::DS
: EmitByte(0x3E, CurByte
, OS
); break;
718 case X86::ES
: EmitByte(0x26, CurByte
, OS
); break;
719 case X86::FS
: EmitByte(0x64, CurByte
, OS
); break;
720 case X86::GS
: EmitByte(0x65, CurByte
, OS
); break;
725 EmitByte(0x64, CurByte
, OS
);
728 EmitByte(0x65, CurByte
, OS
);
733 /// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
735 /// MemOperand is the operand # of the start of a memory operand if present. If
736 /// Not present, it is -1.
737 void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags
, unsigned &CurByte
,
738 int MemOperand
, const MCInst
&MI
,
739 const TargetInstrDesc
&Desc
,
740 raw_ostream
&OS
) const {
742 // Emit the lock opcode prefix as needed.
743 if (TSFlags
& X86II::LOCK
)
744 EmitByte(0xF0, CurByte
, OS
);
746 // Emit segment override opcode prefix as needed.
747 EmitSegmentOverridePrefix(TSFlags
, CurByte
, MemOperand
, MI
, OS
);
749 // Emit the repeat opcode prefix as needed.
750 if ((TSFlags
& X86II::Op0Mask
) == X86II::REP
)
751 EmitByte(0xF3, CurByte
, OS
);
753 // Emit the address size opcode prefix as needed.
754 if ((TSFlags
& X86II::AdSize
) ||
755 (MemOperand
!= -1 && Is64BitMode
&& Is32BitMemOperand(MI
, MemOperand
)))
756 EmitByte(0x67, CurByte
, OS
);
758 // Emit the operand size opcode prefix as needed.
759 if (TSFlags
& X86II::OpSize
)
760 EmitByte(0x66, CurByte
, OS
);
762 bool Need0FPrefix
= false;
763 switch (TSFlags
& X86II::Op0Mask
) {
764 default: assert(0 && "Invalid prefix!");
765 case 0: break; // No prefix!
766 case X86II::REP
: break; // already handled.
767 case X86II::TB
: // Two-byte opcode prefix
768 case X86II::T8
: // 0F 38
769 case X86II::TA
: // 0F 3A
772 case X86II::TF
: // F2 0F 38
773 EmitByte(0xF2, CurByte
, OS
);
776 case X86II::XS
: // F3 0F
777 EmitByte(0xF3, CurByte
, OS
);
780 case X86II::XD
: // F2 0F
781 EmitByte(0xF2, CurByte
, OS
);
784 case X86II::D8
: EmitByte(0xD8, CurByte
, OS
); break;
785 case X86II::D9
: EmitByte(0xD9, CurByte
, OS
); break;
786 case X86II::DA
: EmitByte(0xDA, CurByte
, OS
); break;
787 case X86II::DB
: EmitByte(0xDB, CurByte
, OS
); break;
788 case X86II::DC
: EmitByte(0xDC, CurByte
, OS
); break;
789 case X86II::DD
: EmitByte(0xDD, CurByte
, OS
); break;
790 case X86II::DE
: EmitByte(0xDE, CurByte
, OS
); break;
791 case X86II::DF
: EmitByte(0xDF, CurByte
, OS
); break;
794 // Handle REX prefix.
795 // FIXME: Can this come before F2 etc to simplify emission?
797 if (unsigned REX
= DetermineREXPrefix(MI
, TSFlags
, Desc
))
798 EmitByte(0x40 | REX
, CurByte
, OS
);
801 // 0x0F escape code must be emitted just before the opcode.
803 EmitByte(0x0F, CurByte
, OS
);
805 // FIXME: Pull this up into previous switch if REX can be moved earlier.
806 switch (TSFlags
& X86II::Op0Mask
) {
807 case X86II::TF
: // F2 0F 38
808 case X86II::T8
: // 0F 38
809 EmitByte(0x38, CurByte
, OS
);
811 case X86II::TA
: // 0F 3A
812 EmitByte(0x3A, CurByte
, OS
);
817 void X86MCCodeEmitter::
818 EncodeInstruction(const MCInst
&MI
, raw_ostream
&OS
,
819 SmallVectorImpl
<MCFixup
> &Fixups
) const {
820 unsigned Opcode
= MI
.getOpcode();
821 const TargetInstrDesc
&Desc
= TII
.get(Opcode
);
822 uint64_t TSFlags
= Desc
.TSFlags
;
824 // Pseudo instructions don't get encoded.
825 if ((TSFlags
& X86II::FormMask
) == X86II::Pseudo
)
828 // If this is a two-address instruction, skip one of the register operands.
829 // FIXME: This should be handled during MCInst lowering.
830 unsigned NumOps
= Desc
.getNumOperands();
832 if (NumOps
> 1 && Desc
.getOperandConstraint(1, TOI::TIED_TO
) != -1)
834 else if (NumOps
> 2 && Desc
.getOperandConstraint(NumOps
-1, TOI::TIED_TO
)== 0)
835 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
838 // Keep track of the current byte being emitted.
839 unsigned CurByte
= 0;
841 // Is this instruction encoded using the AVX VEX prefix?
842 bool HasVEXPrefix
= false;
844 // It uses the VEX.VVVV field?
845 bool HasVEX_4V
= false;
847 if ((TSFlags
>> 32) & X86II::VEX
)
849 if ((TSFlags
>> 32) & X86II::VEX_4V
)
853 // Determine where the memory operand starts, if present.
854 int MemoryOperand
= X86II::getMemoryOperandNo(TSFlags
);
855 if (MemoryOperand
!= -1) MemoryOperand
+= CurOp
;
858 EmitOpcodePrefix(TSFlags
, CurByte
, MemoryOperand
, MI
, Desc
, OS
);
860 EmitVEXOpcodePrefix(TSFlags
, CurByte
, MemoryOperand
, MI
, Desc
, OS
);
863 unsigned char BaseOpcode
= X86II::getBaseOpcodeFor(TSFlags
);
865 if ((TSFlags
>> 32) & X86II::Has3DNow0F0FOpcode
)
866 BaseOpcode
= 0x0F; // Weird 3DNow! encoding.
868 unsigned SrcRegNum
= 0;
869 switch (TSFlags
& X86II::FormMask
) {
870 case X86II::MRMInitReg
:
871 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
872 default: errs() << "FORM: " << (TSFlags
& X86II::FormMask
) << "\n";
873 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
875 assert(0 && "Pseudo instruction shouldn't be emitted");
877 EmitByte(BaseOpcode
, CurByte
, OS
);
880 case X86II::RawFrmImm8
:
881 EmitByte(BaseOpcode
, CurByte
, OS
);
882 EmitImmediate(MI
.getOperand(CurOp
++),
883 X86II::getSizeOfImm(TSFlags
), getImmFixupKind(TSFlags
),
884 CurByte
, OS
, Fixups
);
885 EmitImmediate(MI
.getOperand(CurOp
++), 1, FK_Data_1
, CurByte
, OS
, Fixups
);
887 case X86II::RawFrmImm16
:
888 EmitByte(BaseOpcode
, CurByte
, OS
);
889 EmitImmediate(MI
.getOperand(CurOp
++),
890 X86II::getSizeOfImm(TSFlags
), getImmFixupKind(TSFlags
),
891 CurByte
, OS
, Fixups
);
892 EmitImmediate(MI
.getOperand(CurOp
++), 2, FK_Data_2
, CurByte
, OS
, Fixups
);
895 case X86II::AddRegFrm
:
896 EmitByte(BaseOpcode
+ GetX86RegNum(MI
.getOperand(CurOp
++)), CurByte
, OS
);
899 case X86II::MRMDestReg
:
900 EmitByte(BaseOpcode
, CurByte
, OS
);
901 EmitRegModRMByte(MI
.getOperand(CurOp
),
902 GetX86RegNum(MI
.getOperand(CurOp
+1)), CurByte
, OS
);
906 case X86II::MRMDestMem
:
907 EmitByte(BaseOpcode
, CurByte
, OS
);
908 SrcRegNum
= CurOp
+ X86::AddrNumOperands
;
910 if (HasVEX_4V
) // Skip 1st src (which is encoded in VEX_VVVV)
913 EmitMemModRMByte(MI
, CurOp
,
914 GetX86RegNum(MI
.getOperand(SrcRegNum
)),
915 TSFlags
, CurByte
, OS
, Fixups
);
916 CurOp
= SrcRegNum
+ 1;
919 case X86II::MRMSrcReg
:
920 EmitByte(BaseOpcode
, CurByte
, OS
);
921 SrcRegNum
= CurOp
+ 1;
923 if (HasVEX_4V
) // Skip 1st src (which is encoded in VEX_VVVV)
926 EmitRegModRMByte(MI
.getOperand(SrcRegNum
),
927 GetX86RegNum(MI
.getOperand(CurOp
)), CurByte
, OS
);
928 CurOp
= SrcRegNum
+ 1;
931 case X86II::MRMSrcMem
: {
932 int AddrOperands
= X86::AddrNumOperands
;
933 unsigned FirstMemOp
= CurOp
+1;
936 ++FirstMemOp
; // Skip the register source (which is encoded in VEX_VVVV).
939 EmitByte(BaseOpcode
, CurByte
, OS
);
941 EmitMemModRMByte(MI
, FirstMemOp
, GetX86RegNum(MI
.getOperand(CurOp
)),
942 TSFlags
, CurByte
, OS
, Fixups
);
943 CurOp
+= AddrOperands
+ 1;
947 case X86II::MRM0r
: case X86II::MRM1r
:
948 case X86II::MRM2r
: case X86II::MRM3r
:
949 case X86II::MRM4r
: case X86II::MRM5r
:
950 case X86II::MRM6r
: case X86II::MRM7r
:
951 if (HasVEX_4V
) // Skip the register dst (which is encoded in VEX_VVVV).
953 EmitByte(BaseOpcode
, CurByte
, OS
);
954 EmitRegModRMByte(MI
.getOperand(CurOp
++),
955 (TSFlags
& X86II::FormMask
)-X86II::MRM0r
,
958 case X86II::MRM0m
: case X86II::MRM1m
:
959 case X86II::MRM2m
: case X86II::MRM3m
:
960 case X86II::MRM4m
: case X86II::MRM5m
:
961 case X86II::MRM6m
: case X86II::MRM7m
:
962 EmitByte(BaseOpcode
, CurByte
, OS
);
963 EmitMemModRMByte(MI
, CurOp
, (TSFlags
& X86II::FormMask
)-X86II::MRM0m
,
964 TSFlags
, CurByte
, OS
, Fixups
);
965 CurOp
+= X86::AddrNumOperands
;
968 EmitByte(BaseOpcode
, CurByte
, OS
);
969 EmitByte(0xC1, CurByte
, OS
);
972 EmitByte(BaseOpcode
, CurByte
, OS
);
973 EmitByte(0xC2, CurByte
, OS
);
976 EmitByte(BaseOpcode
, CurByte
, OS
);
977 EmitByte(0xC3, CurByte
, OS
);
980 EmitByte(BaseOpcode
, CurByte
, OS
);
981 EmitByte(0xC4, CurByte
, OS
);
984 EmitByte(BaseOpcode
, CurByte
, OS
);
985 EmitByte(0xC8, CurByte
, OS
);
988 EmitByte(BaseOpcode
, CurByte
, OS
);
989 EmitByte(0xC9, CurByte
, OS
);
992 EmitByte(BaseOpcode
, CurByte
, OS
);
993 EmitByte(0xE8, CurByte
, OS
);
996 EmitByte(BaseOpcode
, CurByte
, OS
);
997 EmitByte(0xF0, CurByte
, OS
);
1000 EmitByte(BaseOpcode
, CurByte
, OS
);
1001 EmitByte(0xF8, CurByte
, OS
);
1004 EmitByte(BaseOpcode
, CurByte
, OS
);
1005 EmitByte(0xF9, CurByte
, OS
);
1009 // If there is a remaining operand, it must be a trailing immediate. Emit it
1010 // according to the right size for the instruction.
1011 if (CurOp
!= NumOps
) {
1012 // The last source register of a 4 operand instruction in AVX is encoded
1013 // in bits[7:4] of a immediate byte, and bits[3:0] are ignored.
1014 if ((TSFlags
>> 32) & X86II::VEX_I8IMM
) {
1015 const MCOperand
&MO
= MI
.getOperand(CurOp
++);
1017 X86InstrInfo::isX86_64ExtendedReg(MO
.getReg());
1018 unsigned RegNum
= (IsExtReg
? (1 << 7) : 0);
1019 RegNum
|= GetX86RegNum(MO
) << 4;
1020 EmitImmediate(MCOperand::CreateImm(RegNum
), 1, FK_Data_1
, CurByte
, OS
,
1024 if (MI
.getOpcode() == X86::MOV64ri32
|| MI
.getOpcode() == X86::MOV64mi32
)
1025 FixupKind
= X86::reloc_signed_4byte
;
1027 FixupKind
= getImmFixupKind(TSFlags
);
1028 EmitImmediate(MI
.getOperand(CurOp
++),
1029 X86II::getSizeOfImm(TSFlags
), MCFixupKind(FixupKind
),
1030 CurByte
, OS
, Fixups
);
1034 if ((TSFlags
>> 32) & X86II::Has3DNow0F0FOpcode
)
1035 EmitByte(X86II::getBaseOpcodeFor(TSFlags
), CurByte
, OS
);
1040 if (/*!Desc.isVariadic() &&*/ CurOp
!= NumOps
) {
1041 errs() << "Cannot encode all operands of: ";