Fixed some bugs.
[llvm/zpu.git] / lib / Target / X86 / X86Subtarget.cpp
blob0d02e5ee472bbfd51479efc715e45008c01b89d6
1 //===-- X86Subtarget.cpp - X86 Subtarget Information ------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the X86 specific subclass of TargetSubtarget.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "subtarget"
15 #include "X86Subtarget.h"
16 #include "X86InstrInfo.h"
17 #include "X86GenSubtarget.inc"
18 #include "llvm/GlobalValue.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/raw_ostream.h"
21 #include "llvm/System/Host.h"
22 #include "llvm/Target/TargetMachine.h"
23 #include "llvm/Target/TargetOptions.h"
24 #include "llvm/ADT/SmallVector.h"
25 using namespace llvm;
27 #if defined(_MSC_VER)
28 #include <intrin.h>
29 #endif
31 /// ClassifyBlockAddressReference - Classify a blockaddress reference for the
32 /// current subtarget according to how we should reference it in a non-pcrel
33 /// context.
34 unsigned char X86Subtarget::
35 ClassifyBlockAddressReference() const {
36 if (isPICStyleGOT()) // 32-bit ELF targets.
37 return X86II::MO_GOTOFF;
39 if (isPICStyleStubPIC()) // Darwin/32 in PIC mode.
40 return X86II::MO_PIC_BASE_OFFSET;
42 // Direct static reference to label.
43 return X86II::MO_NO_FLAG;
46 /// ClassifyGlobalReference - Classify a global variable reference for the
47 /// current subtarget according to how we should reference it in a non-pcrel
48 /// context.
49 unsigned char X86Subtarget::
50 ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const {
51 // DLLImport only exists on windows, it is implemented as a load from a
52 // DLLIMPORT stub.
53 if (GV->hasDLLImportLinkage())
54 return X86II::MO_DLLIMPORT;
56 // Determine whether this is a reference to a definition or a declaration.
57 // Materializable GVs (in JIT lazy compilation mode) do not require an extra
58 // load from stub.
59 bool isDecl = GV->hasAvailableExternallyLinkage();
60 if (GV->isDeclaration() && !GV->isMaterializable())
61 isDecl = true;
63 // X86-64 in PIC mode.
64 if (isPICStyleRIPRel()) {
65 // Large model never uses stubs.
66 if (TM.getCodeModel() == CodeModel::Large)
67 return X86II::MO_NO_FLAG;
69 if (isTargetDarwin()) {
70 // If symbol visibility is hidden, the extra load is not needed if
71 // target is x86-64 or the symbol is definitely defined in the current
72 // translation unit.
73 if (GV->hasDefaultVisibility() &&
74 (isDecl || GV->isWeakForLinker()))
75 return X86II::MO_GOTPCREL;
76 } else if (!isTargetWin64()) {
77 assert(isTargetELF() && "Unknown rip-relative target");
79 // Extra load is needed for all externally visible.
80 if (!GV->hasLocalLinkage() && GV->hasDefaultVisibility())
81 return X86II::MO_GOTPCREL;
84 return X86II::MO_NO_FLAG;
87 if (isPICStyleGOT()) { // 32-bit ELF targets.
88 // Extra load is needed for all externally visible.
89 if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
90 return X86II::MO_GOTOFF;
91 return X86II::MO_GOT;
94 if (isPICStyleStubPIC()) { // Darwin/32 in PIC mode.
95 // Determine whether we have a stub reference and/or whether the reference
96 // is relative to the PIC base or not.
98 // If this is a strong reference to a definition, it is definitely not
99 // through a stub.
100 if (!isDecl && !GV->isWeakForLinker())
101 return X86II::MO_PIC_BASE_OFFSET;
103 // Unless we have a symbol with hidden visibility, we have to go through a
104 // normal $non_lazy_ptr stub because this symbol might be resolved late.
105 if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference.
106 return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
108 // If symbol visibility is hidden, we have a stub for common symbol
109 // references and external declarations.
110 if (isDecl || GV->hasCommonLinkage()) {
111 // Hidden $non_lazy_ptr reference.
112 return X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE;
115 // Otherwise, no stub.
116 return X86II::MO_PIC_BASE_OFFSET;
119 if (isPICStyleStubNoDynamic()) { // Darwin/32 in -mdynamic-no-pic mode.
120 // Determine whether we have a stub reference.
122 // If this is a strong reference to a definition, it is definitely not
123 // through a stub.
124 if (!isDecl && !GV->isWeakForLinker())
125 return X86II::MO_NO_FLAG;
127 // Unless we have a symbol with hidden visibility, we have to go through a
128 // normal $non_lazy_ptr stub because this symbol might be resolved late.
129 if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference.
130 return X86II::MO_DARWIN_NONLAZY;
132 // Otherwise, no stub.
133 return X86II::MO_NO_FLAG;
136 // Direct static reference to global.
137 return X86II::MO_NO_FLAG;
141 /// getBZeroEntry - This function returns the name of a function which has an
142 /// interface like the non-standard bzero function, if such a function exists on
143 /// the current subtarget and it is considered prefereable over memset with zero
144 /// passed as the second argument. Otherwise it returns null.
145 const char *X86Subtarget::getBZeroEntry() const {
146 // Darwin 10 has a __bzero entry point for this purpose.
147 if (getDarwinVers() >= 10)
148 return "__bzero";
150 return 0;
153 /// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls
154 /// to immediate address.
155 bool X86Subtarget::IsLegalToCallImmediateAddr(const TargetMachine &TM) const {
156 if (Is64Bit)
157 return false;
158 return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
161 /// getSpecialAddressLatency - For targets where it is beneficial to
162 /// backschedule instructions that compute addresses, return a value
163 /// indicating the number of scheduling cycles of backscheduling that
164 /// should be attempted.
165 unsigned X86Subtarget::getSpecialAddressLatency() const {
166 // For x86 out-of-order targets, back-schedule address computations so
167 // that loads and stores aren't blocked.
168 // This value was chosen arbitrarily.
169 return 200;
172 /// GetCpuIDAndInfo - Execute the specified cpuid and return the 4 values in the
173 /// specified arguments. If we can't run cpuid on the host, return true.
174 static bool GetCpuIDAndInfo(unsigned value, unsigned *rEAX,
175 unsigned *rEBX, unsigned *rECX, unsigned *rEDX) {
176 #if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
177 #if defined(__GNUC__)
178 // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
179 asm ("movq\t%%rbx, %%rsi\n\t"
180 "cpuid\n\t"
181 "xchgq\t%%rbx, %%rsi\n\t"
182 : "=a" (*rEAX),
183 "=S" (*rEBX),
184 "=c" (*rECX),
185 "=d" (*rEDX)
186 : "a" (value));
187 return false;
188 #elif defined(_MSC_VER)
189 int registers[4];
190 __cpuid(registers, value);
191 *rEAX = registers[0];
192 *rEBX = registers[1];
193 *rECX = registers[2];
194 *rEDX = registers[3];
195 return false;
196 #endif
197 #elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
198 #if defined(__GNUC__)
199 asm ("movl\t%%ebx, %%esi\n\t"
200 "cpuid\n\t"
201 "xchgl\t%%ebx, %%esi\n\t"
202 : "=a" (*rEAX),
203 "=S" (*rEBX),
204 "=c" (*rECX),
205 "=d" (*rEDX)
206 : "a" (value));
207 return false;
208 #elif defined(_MSC_VER)
209 __asm {
210 mov eax,value
211 cpuid
212 mov esi,rEAX
213 mov dword ptr [esi],eax
214 mov esi,rEBX
215 mov dword ptr [esi],ebx
216 mov esi,rECX
217 mov dword ptr [esi],ecx
218 mov esi,rEDX
219 mov dword ptr [esi],edx
221 return false;
222 #endif
223 #endif
224 return true;
227 static void DetectFamilyModel(unsigned EAX, unsigned &Family, unsigned &Model) {
228 Family = (EAX >> 8) & 0xf; // Bits 8 - 11
229 Model = (EAX >> 4) & 0xf; // Bits 4 - 7
230 if (Family == 6 || Family == 0xf) {
231 if (Family == 0xf)
232 // Examine extended family ID if family ID is F.
233 Family += (EAX >> 20) & 0xff; // Bits 20 - 27
234 // Examine extended model ID if family ID is 6 or F.
235 Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
239 void X86Subtarget::AutoDetectSubtargetFeatures() {
240 unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
241 union {
242 unsigned u[3];
243 char c[12];
244 } text;
246 if (GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1))
247 return;
249 GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
251 if ((EDX >> 15) & 1) HasCMov = true;
252 if ((EDX >> 23) & 1) X86SSELevel = MMX;
253 if ((EDX >> 25) & 1) X86SSELevel = SSE1;
254 if ((EDX >> 26) & 1) X86SSELevel = SSE2;
255 if (ECX & 0x1) X86SSELevel = SSE3;
256 if ((ECX >> 9) & 1) X86SSELevel = SSSE3;
257 if ((ECX >> 19) & 1) X86SSELevel = SSE41;
258 if ((ECX >> 20) & 1) X86SSELevel = SSE42;
260 bool IsIntel = memcmp(text.c, "GenuineIntel", 12) == 0;
261 bool IsAMD = !IsIntel && memcmp(text.c, "AuthenticAMD", 12) == 0;
263 HasCLMUL = IsIntel && ((ECX >> 1) & 0x1);
264 HasFMA3 = IsIntel && ((ECX >> 12) & 0x1);
265 HasAVX = ((ECX >> 28) & 0x1);
266 HasAES = IsIntel && ((ECX >> 25) & 0x1);
268 if (IsIntel || IsAMD) {
269 // Determine if bit test memory instructions are slow.
270 unsigned Family = 0;
271 unsigned Model = 0;
272 DetectFamilyModel(EAX, Family, Model);
273 IsBTMemSlow = IsAMD || (Family == 6 && Model >= 13);
274 // If it's Nehalem, unaligned memory access is fast.
275 if (Family == 15 && Model == 26)
276 IsUAMemFast = true;
278 GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
279 HasX86_64 = (EDX >> 29) & 0x1;
280 HasSSE4A = IsAMD && ((ECX >> 6) & 0x1);
281 HasFMA4 = IsAMD && ((ECX >> 16) & 0x1);
285 X86Subtarget::X86Subtarget(const std::string &TT, const std::string &FS,
286 bool is64Bit)
287 : PICStyle(PICStyles::None)
288 , X86SSELevel(NoMMXSSE)
289 , X863DNowLevel(NoThreeDNow)
290 , HasCMov(false)
291 , HasX86_64(false)
292 , HasSSE4A(false)
293 , HasAVX(false)
294 , HasAES(false)
295 , HasCLMUL(false)
296 , HasFMA3(false)
297 , HasFMA4(false)
298 , IsBTMemSlow(false)
299 , IsUAMemFast(false)
300 , HasVectorUAMem(false)
301 , stackAlignment(8)
302 // FIXME: this is a known good value for Yonah. How about others?
303 , MaxInlineSizeThreshold(128)
304 , TargetTriple(TT)
305 , Is64Bit(is64Bit) {
307 // default to hard float ABI
308 if (FloatABIType == FloatABI::Default)
309 FloatABIType = FloatABI::Hard;
311 // Determine default and user specified characteristics
312 if (!FS.empty()) {
313 // If feature string is not empty, parse features string.
314 std::string CPU = sys::getHostCPUName();
315 ParseSubtargetFeatures(FS, CPU);
316 // All X86-64 CPUs also have SSE2, however user might request no SSE via
317 // -mattr, so don't force SSELevel here.
318 } else {
319 // Otherwise, use CPUID to auto-detect feature set.
320 AutoDetectSubtargetFeatures();
321 // Make sure SSE2 is enabled; it is available on all X86-64 CPUs.
322 if (Is64Bit && X86SSELevel < SSE2)
323 X86SSELevel = SSE2;
326 // If requesting codegen for X86-64, make sure that 64-bit features
327 // are enabled.
328 if (Is64Bit) {
329 HasX86_64 = true;
331 // All 64-bit cpus have cmov support.
332 HasCMov = true;
335 DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
336 << ", 3DNowLevel " << X863DNowLevel
337 << ", 64bit " << HasX86_64 << "\n");
338 assert((!Is64Bit || HasX86_64) &&
339 "64-bit code requested on a subtarget that doesn't support it!");
341 // Stack alignment is 16 bytes on Darwin (both 32 and 64 bit) and for all 64
342 // bit targets.
343 if (isTargetDarwin() || Is64Bit)
344 stackAlignment = 16;
346 if (StackAlignment)
347 stackAlignment = StackAlignment;
350 /// IsCalleePop - Determines whether the callee is required to pop its
351 /// own arguments. Callee pop is necessary to support tail calls.
352 bool X86Subtarget::IsCalleePop(bool IsVarArg,
353 CallingConv::ID CallingConv) const {
354 if (IsVarArg)
355 return false;
357 switch (CallingConv) {
358 default:
359 return false;
360 case CallingConv::X86_StdCall:
361 return !is64Bit();
362 case CallingConv::X86_FastCall:
363 return !is64Bit();
364 case CallingConv::X86_ThisCall:
365 return !is64Bit();
366 case CallingConv::Fast:
367 return GuaranteedTailCallOpt;
368 case CallingConv::GHC:
369 return GuaranteedTailCallOpt;