1 //===- InstCombineCompares.cpp --------------------------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the visitICmp and visitFCmp functions.
12 //===----------------------------------------------------------------------===//
14 #include "InstCombine.h"
15 #include "llvm/IntrinsicInst.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/Analysis/MemoryBuiltins.h"
18 #include "llvm/Target/TargetData.h"
19 #include "llvm/Support/ConstantRange.h"
20 #include "llvm/Support/GetElementPtrTypeIterator.h"
21 #include "llvm/Support/PatternMatch.h"
23 using namespace PatternMatch
;
25 /// AddOne - Add one to a ConstantInt
26 static Constant
*AddOne(Constant
*C
) {
27 return ConstantExpr::getAdd(C
, ConstantInt::get(C
->getType(), 1));
29 /// SubOne - Subtract one from a ConstantInt
30 static Constant
*SubOne(ConstantInt
*C
) {
31 return ConstantExpr::getSub(C
, ConstantInt::get(C
->getType(), 1));
34 static ConstantInt
*ExtractElement(Constant
*V
, Constant
*Idx
) {
35 return cast
<ConstantInt
>(ConstantExpr::getExtractElement(V
, Idx
));
38 static bool HasAddOverflow(ConstantInt
*Result
,
39 ConstantInt
*In1
, ConstantInt
*In2
,
42 if (In2
->getValue().isNegative())
43 return Result
->getValue().sgt(In1
->getValue());
45 return Result
->getValue().slt(In1
->getValue());
47 return Result
->getValue().ult(In1
->getValue());
50 /// AddWithOverflow - Compute Result = In1+In2, returning true if the result
51 /// overflowed for this type.
52 static bool AddWithOverflow(Constant
*&Result
, Constant
*In1
,
53 Constant
*In2
, bool IsSigned
= false) {
54 Result
= ConstantExpr::getAdd(In1
, In2
);
56 if (const VectorType
*VTy
= dyn_cast
<VectorType
>(In1
->getType())) {
57 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
58 Constant
*Idx
= ConstantInt::get(Type::getInt32Ty(In1
->getContext()), i
);
59 if (HasAddOverflow(ExtractElement(Result
, Idx
),
60 ExtractElement(In1
, Idx
),
61 ExtractElement(In2
, Idx
),
68 return HasAddOverflow(cast
<ConstantInt
>(Result
),
69 cast
<ConstantInt
>(In1
), cast
<ConstantInt
>(In2
),
73 static bool HasSubOverflow(ConstantInt
*Result
,
74 ConstantInt
*In1
, ConstantInt
*In2
,
77 if (In2
->getValue().isNegative())
78 return Result
->getValue().slt(In1
->getValue());
80 return Result
->getValue().sgt(In1
->getValue());
82 return Result
->getValue().ugt(In1
->getValue());
85 /// SubWithOverflow - Compute Result = In1-In2, returning true if the result
86 /// overflowed for this type.
87 static bool SubWithOverflow(Constant
*&Result
, Constant
*In1
,
88 Constant
*In2
, bool IsSigned
= false) {
89 Result
= ConstantExpr::getSub(In1
, In2
);
91 if (const VectorType
*VTy
= dyn_cast
<VectorType
>(In1
->getType())) {
92 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
93 Constant
*Idx
= ConstantInt::get(Type::getInt32Ty(In1
->getContext()), i
);
94 if (HasSubOverflow(ExtractElement(Result
, Idx
),
95 ExtractElement(In1
, Idx
),
96 ExtractElement(In2
, Idx
),
103 return HasSubOverflow(cast
<ConstantInt
>(Result
),
104 cast
<ConstantInt
>(In1
), cast
<ConstantInt
>(In2
),
108 /// isSignBitCheck - Given an exploded icmp instruction, return true if the
109 /// comparison only checks the sign bit. If it only checks the sign bit, set
110 /// TrueIfSigned if the result of the comparison is true when the input value is
112 static bool isSignBitCheck(ICmpInst::Predicate pred
, ConstantInt
*RHS
,
113 bool &TrueIfSigned
) {
115 case ICmpInst::ICMP_SLT
: // True if LHS s< 0
117 return RHS
->isZero();
118 case ICmpInst::ICMP_SLE
: // True if LHS s<= RHS and RHS == -1
120 return RHS
->isAllOnesValue();
121 case ICmpInst::ICMP_SGT
: // True if LHS s> -1
122 TrueIfSigned
= false;
123 return RHS
->isAllOnesValue();
124 case ICmpInst::ICMP_UGT
:
125 // True if LHS u> RHS and RHS == high-bit-mask - 1
127 return RHS
->getValue() ==
128 APInt::getSignedMaxValue(RHS
->getType()->getPrimitiveSizeInBits());
129 case ICmpInst::ICMP_UGE
:
130 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
132 return RHS
->getValue().isSignBit();
138 // isHighOnes - Return true if the constant is of the form 1+0+.
139 // This is the same as lowones(~X).
140 static bool isHighOnes(const ConstantInt
*CI
) {
141 return (~CI
->getValue() + 1).isPowerOf2();
144 /// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
145 /// set of known zero and one bits, compute the maximum and minimum values that
146 /// could have the specified known zero and known one bits, returning them in
148 static void ComputeSignedMinMaxValuesFromKnownBits(const APInt
& KnownZero
,
149 const APInt
& KnownOne
,
150 APInt
& Min
, APInt
& Max
) {
151 assert(KnownZero
.getBitWidth() == KnownOne
.getBitWidth() &&
152 KnownZero
.getBitWidth() == Min
.getBitWidth() &&
153 KnownZero
.getBitWidth() == Max
.getBitWidth() &&
154 "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
155 APInt UnknownBits
= ~(KnownZero
|KnownOne
);
157 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
158 // bit if it is unknown.
160 Max
= KnownOne
|UnknownBits
;
162 if (UnknownBits
.isNegative()) { // Sign bit is unknown
163 Min
.set(Min
.getBitWidth()-1);
164 Max
.clear(Max
.getBitWidth()-1);
168 // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
169 // a set of known zero and one bits, compute the maximum and minimum values that
170 // could have the specified known zero and known one bits, returning them in
172 static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt
&KnownZero
,
173 const APInt
&KnownOne
,
174 APInt
&Min
, APInt
&Max
) {
175 assert(KnownZero
.getBitWidth() == KnownOne
.getBitWidth() &&
176 KnownZero
.getBitWidth() == Min
.getBitWidth() &&
177 KnownZero
.getBitWidth() == Max
.getBitWidth() &&
178 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
179 APInt UnknownBits
= ~(KnownZero
|KnownOne
);
181 // The minimum value is when the unknown bits are all zeros.
183 // The maximum value is when the unknown bits are all ones.
184 Max
= KnownOne
|UnknownBits
;
189 /// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
190 /// cmp pred (load (gep GV, ...)), cmpcst
191 /// where GV is a global variable with a constant initializer. Try to simplify
192 /// this into some simple computation that does not need the load. For example
193 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
195 /// If AndCst is non-null, then the loaded value is masked with that constant
196 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
197 Instruction
*InstCombiner::
198 FoldCmpLoadFromIndexedGlobal(GetElementPtrInst
*GEP
, GlobalVariable
*GV
,
199 CmpInst
&ICI
, ConstantInt
*AndCst
) {
200 // We need TD information to know the pointer size unless this is inbounds.
201 if (!GEP
->isInBounds() && TD
== 0) return 0;
203 ConstantArray
*Init
= dyn_cast
<ConstantArray
>(GV
->getInitializer());
204 if (Init
== 0 || Init
->getNumOperands() > 1024) return 0;
206 // There are many forms of this optimization we can handle, for now, just do
207 // the simple index into a single-dimensional array.
209 // Require: GEP GV, 0, i {{, constant indices}}
210 if (GEP
->getNumOperands() < 3 ||
211 !isa
<ConstantInt
>(GEP
->getOperand(1)) ||
212 !cast
<ConstantInt
>(GEP
->getOperand(1))->isZero() ||
213 isa
<Constant
>(GEP
->getOperand(2)))
216 // Check that indices after the variable are constants and in-range for the
217 // type they index. Collect the indices. This is typically for arrays of
219 SmallVector
<unsigned, 4> LaterIndices
;
221 const Type
*EltTy
= cast
<ArrayType
>(Init
->getType())->getElementType();
222 for (unsigned i
= 3, e
= GEP
->getNumOperands(); i
!= e
; ++i
) {
223 ConstantInt
*Idx
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
));
224 if (Idx
== 0) return 0; // Variable index.
226 uint64_t IdxVal
= Idx
->getZExtValue();
227 if ((unsigned)IdxVal
!= IdxVal
) return 0; // Too large array index.
229 if (const StructType
*STy
= dyn_cast
<StructType
>(EltTy
))
230 EltTy
= STy
->getElementType(IdxVal
);
231 else if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(EltTy
)) {
232 if (IdxVal
>= ATy
->getNumElements()) return 0;
233 EltTy
= ATy
->getElementType();
235 return 0; // Unknown type.
238 LaterIndices
.push_back(IdxVal
);
241 enum { Overdefined
= -3, Undefined
= -2 };
243 // Variables for our state machines.
245 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
246 // "i == 47 | i == 87", where 47 is the first index the condition is true for,
247 // and 87 is the second (and last) index. FirstTrueElement is -2 when
248 // undefined, otherwise set to the first true element. SecondTrueElement is
249 // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
250 int FirstTrueElement
= Undefined
, SecondTrueElement
= Undefined
;
252 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
253 // form "i != 47 & i != 87". Same state transitions as for true elements.
254 int FirstFalseElement
= Undefined
, SecondFalseElement
= Undefined
;
256 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
257 /// define a state machine that triggers for ranges of values that the index
258 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
259 /// This is -2 when undefined, -3 when overdefined, and otherwise the last
260 /// index in the range (inclusive). We use -2 for undefined here because we
261 /// use relative comparisons and don't want 0-1 to match -1.
262 int TrueRangeEnd
= Undefined
, FalseRangeEnd
= Undefined
;
264 // MagicBitvector - This is a magic bitvector where we set a bit if the
265 // comparison is true for element 'i'. If there are 64 elements or less in
266 // the array, this will fully represent all the comparison results.
267 uint64_t MagicBitvector
= 0;
270 // Scan the array and see if one of our patterns matches.
271 Constant
*CompareRHS
= cast
<Constant
>(ICI
.getOperand(1));
272 for (unsigned i
= 0, e
= Init
->getNumOperands(); i
!= e
; ++i
) {
273 Constant
*Elt
= Init
->getOperand(i
);
275 // If this is indexing an array of structures, get the structure element.
276 if (!LaterIndices
.empty())
277 Elt
= ConstantExpr::getExtractValue(Elt
, LaterIndices
.data(),
278 LaterIndices
.size());
280 // If the element is masked, handle it.
281 if (AndCst
) Elt
= ConstantExpr::getAnd(Elt
, AndCst
);
283 // Find out if the comparison would be true or false for the i'th element.
284 Constant
*C
= ConstantFoldCompareInstOperands(ICI
.getPredicate(), Elt
,
286 // If the result is undef for this element, ignore it.
287 if (isa
<UndefValue
>(C
)) {
288 // Extend range state machines to cover this element in case there is an
289 // undef in the middle of the range.
290 if (TrueRangeEnd
== (int)i
-1)
292 if (FalseRangeEnd
== (int)i
-1)
297 // If we can't compute the result for any of the elements, we have to give
298 // up evaluating the entire conditional.
299 if (!isa
<ConstantInt
>(C
)) return 0;
301 // Otherwise, we know if the comparison is true or false for this element,
302 // update our state machines.
303 bool IsTrueForElt
= !cast
<ConstantInt
>(C
)->isZero();
305 // State machine for single/double/range index comparison.
307 // Update the TrueElement state machine.
308 if (FirstTrueElement
== Undefined
)
309 FirstTrueElement
= TrueRangeEnd
= i
; // First true element.
311 // Update double-compare state machine.
312 if (SecondTrueElement
== Undefined
)
313 SecondTrueElement
= i
;
315 SecondTrueElement
= Overdefined
;
317 // Update range state machine.
318 if (TrueRangeEnd
== (int)i
-1)
321 TrueRangeEnd
= Overdefined
;
324 // Update the FalseElement state machine.
325 if (FirstFalseElement
== Undefined
)
326 FirstFalseElement
= FalseRangeEnd
= i
; // First false element.
328 // Update double-compare state machine.
329 if (SecondFalseElement
== Undefined
)
330 SecondFalseElement
= i
;
332 SecondFalseElement
= Overdefined
;
334 // Update range state machine.
335 if (FalseRangeEnd
== (int)i
-1)
338 FalseRangeEnd
= Overdefined
;
343 // If this element is in range, update our magic bitvector.
344 if (i
< 64 && IsTrueForElt
)
345 MagicBitvector
|= 1ULL << i
;
347 // If all of our states become overdefined, bail out early. Since the
348 // predicate is expensive, only check it every 8 elements. This is only
349 // really useful for really huge arrays.
350 if ((i
& 8) == 0 && i
>= 64 && SecondTrueElement
== Overdefined
&&
351 SecondFalseElement
== Overdefined
&& TrueRangeEnd
== Overdefined
&&
352 FalseRangeEnd
== Overdefined
)
356 // Now that we've scanned the entire array, emit our new comparison(s). We
357 // order the state machines in complexity of the generated code.
358 Value
*Idx
= GEP
->getOperand(2);
360 // If the index is larger than the pointer size of the target, truncate the
361 // index down like the GEP would do implicitly. We don't have to do this for
362 // an inbounds GEP because the index can't be out of range.
363 if (!GEP
->isInBounds() &&
364 Idx
->getType()->getPrimitiveSizeInBits() > TD
->getPointerSizeInBits())
365 Idx
= Builder
->CreateTrunc(Idx
, TD
->getIntPtrType(Idx
->getContext()));
367 // If the comparison is only true for one or two elements, emit direct
369 if (SecondTrueElement
!= Overdefined
) {
370 // None true -> false.
371 if (FirstTrueElement
== Undefined
)
372 return ReplaceInstUsesWith(ICI
, ConstantInt::getFalse(GEP
->getContext()));
374 Value
*FirstTrueIdx
= ConstantInt::get(Idx
->getType(), FirstTrueElement
);
376 // True for one element -> 'i == 47'.
377 if (SecondTrueElement
== Undefined
)
378 return new ICmpInst(ICmpInst::ICMP_EQ
, Idx
, FirstTrueIdx
);
380 // True for two elements -> 'i == 47 | i == 72'.
381 Value
*C1
= Builder
->CreateICmpEQ(Idx
, FirstTrueIdx
);
382 Value
*SecondTrueIdx
= ConstantInt::get(Idx
->getType(), SecondTrueElement
);
383 Value
*C2
= Builder
->CreateICmpEQ(Idx
, SecondTrueIdx
);
384 return BinaryOperator::CreateOr(C1
, C2
);
387 // If the comparison is only false for one or two elements, emit direct
389 if (SecondFalseElement
!= Overdefined
) {
390 // None false -> true.
391 if (FirstFalseElement
== Undefined
)
392 return ReplaceInstUsesWith(ICI
, ConstantInt::getTrue(GEP
->getContext()));
394 Value
*FirstFalseIdx
= ConstantInt::get(Idx
->getType(), FirstFalseElement
);
396 // False for one element -> 'i != 47'.
397 if (SecondFalseElement
== Undefined
)
398 return new ICmpInst(ICmpInst::ICMP_NE
, Idx
, FirstFalseIdx
);
400 // False for two elements -> 'i != 47 & i != 72'.
401 Value
*C1
= Builder
->CreateICmpNE(Idx
, FirstFalseIdx
);
402 Value
*SecondFalseIdx
= ConstantInt::get(Idx
->getType(),SecondFalseElement
);
403 Value
*C2
= Builder
->CreateICmpNE(Idx
, SecondFalseIdx
);
404 return BinaryOperator::CreateAnd(C1
, C2
);
407 // If the comparison can be replaced with a range comparison for the elements
408 // where it is true, emit the range check.
409 if (TrueRangeEnd
!= Overdefined
) {
410 assert(TrueRangeEnd
!= FirstTrueElement
&& "Should emit single compare");
412 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
413 if (FirstTrueElement
) {
414 Value
*Offs
= ConstantInt::get(Idx
->getType(), -FirstTrueElement
);
415 Idx
= Builder
->CreateAdd(Idx
, Offs
);
418 Value
*End
= ConstantInt::get(Idx
->getType(),
419 TrueRangeEnd
-FirstTrueElement
+1);
420 return new ICmpInst(ICmpInst::ICMP_ULT
, Idx
, End
);
423 // False range check.
424 if (FalseRangeEnd
!= Overdefined
) {
425 assert(FalseRangeEnd
!= FirstFalseElement
&& "Should emit single compare");
426 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
427 if (FirstFalseElement
) {
428 Value
*Offs
= ConstantInt::get(Idx
->getType(), -FirstFalseElement
);
429 Idx
= Builder
->CreateAdd(Idx
, Offs
);
432 Value
*End
= ConstantInt::get(Idx
->getType(),
433 FalseRangeEnd
-FirstFalseElement
);
434 return new ICmpInst(ICmpInst::ICMP_UGT
, Idx
, End
);
438 // If a 32-bit or 64-bit magic bitvector captures the entire comparison state
439 // of this load, replace it with computation that does:
440 // ((magic_cst >> i) & 1) != 0
441 if (Init
->getNumOperands() <= 32 ||
442 (TD
&& Init
->getNumOperands() <= 64 && TD
->isLegalInteger(64))) {
444 if (Init
->getNumOperands() <= 32)
445 Ty
= Type::getInt32Ty(Init
->getContext());
447 Ty
= Type::getInt64Ty(Init
->getContext());
448 Value
*V
= Builder
->CreateIntCast(Idx
, Ty
, false);
449 V
= Builder
->CreateLShr(ConstantInt::get(Ty
, MagicBitvector
), V
);
450 V
= Builder
->CreateAnd(ConstantInt::get(Ty
, 1), V
);
451 return new ICmpInst(ICmpInst::ICMP_NE
, V
, ConstantInt::get(Ty
, 0));
458 /// EvaluateGEPOffsetExpression - Return a value that can be used to compare
459 /// the *offset* implied by a GEP to zero. For example, if we have &A[i], we
460 /// want to return 'i' for "icmp ne i, 0". Note that, in general, indices can
461 /// be complex, and scales are involved. The above expression would also be
462 /// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
463 /// This later form is less amenable to optimization though, and we are allowed
464 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
466 /// If we can't emit an optimized form for this expression, this returns null.
468 static Value
*EvaluateGEPOffsetExpression(User
*GEP
, Instruction
&I
,
470 TargetData
&TD
= *IC
.getTargetData();
471 gep_type_iterator GTI
= gep_type_begin(GEP
);
473 // Check to see if this gep only has a single variable index. If so, and if
474 // any constant indices are a multiple of its scale, then we can compute this
475 // in terms of the scale of the variable index. For example, if the GEP
476 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
477 // because the expression will cross zero at the same point.
478 unsigned i
, e
= GEP
->getNumOperands();
480 for (i
= 1; i
!= e
; ++i
, ++GTI
) {
481 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
))) {
482 // Compute the aggregate offset of constant indices.
483 if (CI
->isZero()) continue;
485 // Handle a struct index, which adds its field offset to the pointer.
486 if (const StructType
*STy
= dyn_cast
<StructType
>(*GTI
)) {
487 Offset
+= TD
.getStructLayout(STy
)->getElementOffset(CI
->getZExtValue());
489 uint64_t Size
= TD
.getTypeAllocSize(GTI
.getIndexedType());
490 Offset
+= Size
*CI
->getSExtValue();
493 // Found our variable index.
498 // If there are no variable indices, we must have a constant offset, just
499 // evaluate it the general way.
500 if (i
== e
) return 0;
502 Value
*VariableIdx
= GEP
->getOperand(i
);
503 // Determine the scale factor of the variable element. For example, this is
504 // 4 if the variable index is into an array of i32.
505 uint64_t VariableScale
= TD
.getTypeAllocSize(GTI
.getIndexedType());
507 // Verify that there are no other variable indices. If so, emit the hard way.
508 for (++i
, ++GTI
; i
!= e
; ++i
, ++GTI
) {
509 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
));
512 // Compute the aggregate offset of constant indices.
513 if (CI
->isZero()) continue;
515 // Handle a struct index, which adds its field offset to the pointer.
516 if (const StructType
*STy
= dyn_cast
<StructType
>(*GTI
)) {
517 Offset
+= TD
.getStructLayout(STy
)->getElementOffset(CI
->getZExtValue());
519 uint64_t Size
= TD
.getTypeAllocSize(GTI
.getIndexedType());
520 Offset
+= Size
*CI
->getSExtValue();
524 // Okay, we know we have a single variable index, which must be a
525 // pointer/array/vector index. If there is no offset, life is simple, return
527 unsigned IntPtrWidth
= TD
.getPointerSizeInBits();
529 // Cast to intptrty in case a truncation occurs. If an extension is needed,
530 // we don't need to bother extending: the extension won't affect where the
531 // computation crosses zero.
532 if (VariableIdx
->getType()->getPrimitiveSizeInBits() > IntPtrWidth
)
533 VariableIdx
= new TruncInst(VariableIdx
,
534 TD
.getIntPtrType(VariableIdx
->getContext()),
535 VariableIdx
->getName(), &I
);
539 // Otherwise, there is an index. The computation we will do will be modulo
540 // the pointer size, so get it.
541 uint64_t PtrSizeMask
= ~0ULL >> (64-IntPtrWidth
);
543 Offset
&= PtrSizeMask
;
544 VariableScale
&= PtrSizeMask
;
546 // To do this transformation, any constant index must be a multiple of the
547 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
548 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
549 // multiple of the variable scale.
550 int64_t NewOffs
= Offset
/ (int64_t)VariableScale
;
551 if (Offset
!= NewOffs
*(int64_t)VariableScale
)
554 // Okay, we can do this evaluation. Start by converting the index to intptr.
555 const Type
*IntPtrTy
= TD
.getIntPtrType(VariableIdx
->getContext());
556 if (VariableIdx
->getType() != IntPtrTy
)
557 VariableIdx
= CastInst::CreateIntegerCast(VariableIdx
, IntPtrTy
,
559 VariableIdx
->getName(), &I
);
560 Constant
*OffsetVal
= ConstantInt::get(IntPtrTy
, NewOffs
);
561 return BinaryOperator::CreateAdd(VariableIdx
, OffsetVal
, "offset", &I
);
564 /// FoldGEPICmp - Fold comparisons between a GEP instruction and something
565 /// else. At this point we know that the GEP is on the LHS of the comparison.
566 Instruction
*InstCombiner::FoldGEPICmp(GEPOperator
*GEPLHS
, Value
*RHS
,
567 ICmpInst::Predicate Cond
,
569 // Look through bitcasts.
570 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(RHS
))
571 RHS
= BCI
->getOperand(0);
573 Value
*PtrBase
= GEPLHS
->getOperand(0);
574 if (TD
&& PtrBase
== RHS
&& GEPLHS
->isInBounds()) {
575 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
576 // This transformation (ignoring the base and scales) is valid because we
577 // know pointers can't overflow since the gep is inbounds. See if we can
578 // output an optimized form.
579 Value
*Offset
= EvaluateGEPOffsetExpression(GEPLHS
, I
, *this);
581 // If not, synthesize the offset the hard way.
583 Offset
= EmitGEPOffset(GEPLHS
);
584 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
), Offset
,
585 Constant::getNullValue(Offset
->getType()));
586 } else if (GEPOperator
*GEPRHS
= dyn_cast
<GEPOperator
>(RHS
)) {
587 // If the base pointers are different, but the indices are the same, just
588 // compare the base pointer.
589 if (PtrBase
!= GEPRHS
->getOperand(0)) {
590 bool IndicesTheSame
= GEPLHS
->getNumOperands()==GEPRHS
->getNumOperands();
591 IndicesTheSame
&= GEPLHS
->getOperand(0)->getType() ==
592 GEPRHS
->getOperand(0)->getType();
594 for (unsigned i
= 1, e
= GEPLHS
->getNumOperands(); i
!= e
; ++i
)
595 if (GEPLHS
->getOperand(i
) != GEPRHS
->getOperand(i
)) {
596 IndicesTheSame
= false;
600 // If all indices are the same, just compare the base pointers.
602 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
),
603 GEPLHS
->getOperand(0), GEPRHS
->getOperand(0));
605 // Otherwise, the base pointers are different and the indices are
606 // different, bail out.
610 // If one of the GEPs has all zero indices, recurse.
611 bool AllZeros
= true;
612 for (unsigned i
= 1, e
= GEPLHS
->getNumOperands(); i
!= e
; ++i
)
613 if (!isa
<Constant
>(GEPLHS
->getOperand(i
)) ||
614 !cast
<Constant
>(GEPLHS
->getOperand(i
))->isNullValue()) {
619 return FoldGEPICmp(GEPRHS
, GEPLHS
->getOperand(0),
620 ICmpInst::getSwappedPredicate(Cond
), I
);
622 // If the other GEP has all zero indices, recurse.
624 for (unsigned i
= 1, e
= GEPRHS
->getNumOperands(); i
!= e
; ++i
)
625 if (!isa
<Constant
>(GEPRHS
->getOperand(i
)) ||
626 !cast
<Constant
>(GEPRHS
->getOperand(i
))->isNullValue()) {
631 return FoldGEPICmp(GEPLHS
, GEPRHS
->getOperand(0), Cond
, I
);
633 if (GEPLHS
->getNumOperands() == GEPRHS
->getNumOperands()) {
634 // If the GEPs only differ by one index, compare it.
635 unsigned NumDifferences
= 0; // Keep track of # differences.
636 unsigned DiffOperand
= 0; // The operand that differs.
637 for (unsigned i
= 1, e
= GEPRHS
->getNumOperands(); i
!= e
; ++i
)
638 if (GEPLHS
->getOperand(i
) != GEPRHS
->getOperand(i
)) {
639 if (GEPLHS
->getOperand(i
)->getType()->getPrimitiveSizeInBits() !=
640 GEPRHS
->getOperand(i
)->getType()->getPrimitiveSizeInBits()) {
641 // Irreconcilable differences.
645 if (NumDifferences
++) break;
650 if (NumDifferences
== 0) // SAME GEP?
651 return ReplaceInstUsesWith(I
, // No comparison is needed here.
652 ConstantInt::get(Type::getInt1Ty(I
.getContext()),
653 ICmpInst::isTrueWhenEqual(Cond
)));
655 else if (NumDifferences
== 1) {
656 Value
*LHSV
= GEPLHS
->getOperand(DiffOperand
);
657 Value
*RHSV
= GEPRHS
->getOperand(DiffOperand
);
658 // Make sure we do a signed comparison here.
659 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
), LHSV
, RHSV
);
663 // Only lower this if the icmp is the only user of the GEP or if we expect
664 // the result to fold to a constant!
666 (isa
<ConstantExpr
>(GEPLHS
) || GEPLHS
->hasOneUse()) &&
667 (isa
<ConstantExpr
>(GEPRHS
) || GEPRHS
->hasOneUse())) {
668 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
669 Value
*L
= EmitGEPOffset(GEPLHS
);
670 Value
*R
= EmitGEPOffset(GEPRHS
);
671 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
), L
, R
);
677 /// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
678 Instruction
*InstCombiner::FoldICmpAddOpCst(ICmpInst
&ICI
,
679 Value
*X
, ConstantInt
*CI
,
680 ICmpInst::Predicate Pred
,
682 // If we have X+0, exit early (simplifying logic below) and let it get folded
683 // elsewhere. icmp X+0, X -> icmp X, X
685 bool isTrue
= ICmpInst::isTrueWhenEqual(Pred
);
686 return ReplaceInstUsesWith(ICI
, ConstantInt::get(ICI
.getType(), isTrue
));
689 // (X+4) == X -> false.
690 if (Pred
== ICmpInst::ICMP_EQ
)
691 return ReplaceInstUsesWith(ICI
, ConstantInt::getFalse(X
->getContext()));
693 // (X+4) != X -> true.
694 if (Pred
== ICmpInst::ICMP_NE
)
695 return ReplaceInstUsesWith(ICI
, ConstantInt::getTrue(X
->getContext()));
697 // If this is an instruction (as opposed to constantexpr) get NUW/NSW info.
698 bool isNUW
= false, isNSW
= false;
699 if (BinaryOperator
*Add
= dyn_cast
<BinaryOperator
>(TheAdd
)) {
700 isNUW
= Add
->hasNoUnsignedWrap();
701 isNSW
= Add
->hasNoSignedWrap();
704 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
705 // so the values can never be equal. Similiarly for all other "or equals"
708 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
709 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
710 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
711 if (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_ULE
) {
712 // If this is an NUW add, then this is always false.
714 return ReplaceInstUsesWith(ICI
, ConstantInt::getFalse(X
->getContext()));
717 ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI
->getType()), CI
);
718 return new ICmpInst(ICmpInst::ICMP_UGT
, X
, R
);
721 // (X+1) >u X --> X <u (0-1) --> X != 255
722 // (X+2) >u X --> X <u (0-2) --> X <u 254
723 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
724 if (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_UGE
) {
725 // If this is an NUW add, then this is always true.
727 return ReplaceInstUsesWith(ICI
, ConstantInt::getTrue(X
->getContext()));
728 return new ICmpInst(ICmpInst::ICMP_ULT
, X
, ConstantExpr::getNeg(CI
));
731 unsigned BitWidth
= CI
->getType()->getPrimitiveSizeInBits();
732 ConstantInt
*SMax
= ConstantInt::get(X
->getContext(),
733 APInt::getSignedMaxValue(BitWidth
));
735 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
736 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
737 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
738 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
739 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
740 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
741 if (Pred
== ICmpInst::ICMP_SLT
|| Pred
== ICmpInst::ICMP_SLE
) {
742 // If this is an NSW add, then we have two cases: if the constant is
743 // positive, then this is always false, if negative, this is always true.
745 bool isTrue
= CI
->getValue().isNegative();
746 return ReplaceInstUsesWith(ICI
, ConstantInt::get(ICI
.getType(), isTrue
));
749 return new ICmpInst(ICmpInst::ICMP_SGT
, X
, ConstantExpr::getSub(SMax
, CI
));
752 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
753 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
754 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
755 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
756 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
757 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
759 // If this is an NSW add, then we have two cases: if the constant is
760 // positive, then this is always true, if negative, this is always false.
762 bool isTrue
= !CI
->getValue().isNegative();
763 return ReplaceInstUsesWith(ICI
, ConstantInt::get(ICI
.getType(), isTrue
));
766 assert(Pred
== ICmpInst::ICMP_SGT
|| Pred
== ICmpInst::ICMP_SGE
);
767 Constant
*C
= ConstantInt::get(X
->getContext(), CI
->getValue()-1);
768 return new ICmpInst(ICmpInst::ICMP_SLT
, X
, ConstantExpr::getSub(SMax
, C
));
771 /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
772 /// and CmpRHS are both known to be integer constants.
773 Instruction
*InstCombiner::FoldICmpDivCst(ICmpInst
&ICI
, BinaryOperator
*DivI
,
774 ConstantInt
*DivRHS
) {
775 ConstantInt
*CmpRHS
= cast
<ConstantInt
>(ICI
.getOperand(1));
776 const APInt
&CmpRHSV
= CmpRHS
->getValue();
778 // FIXME: If the operand types don't match the type of the divide
779 // then don't attempt this transform. The code below doesn't have the
780 // logic to deal with a signed divide and an unsigned compare (and
781 // vice versa). This is because (x /s C1) <s C2 produces different
782 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
783 // (x /u C1) <u C2. Simply casting the operands and result won't
784 // work. :( The if statement below tests that condition and bails
786 bool DivIsSigned
= DivI
->getOpcode() == Instruction::SDiv
;
787 if (!ICI
.isEquality() && DivIsSigned
!= ICI
.isSigned())
789 if (DivRHS
->isZero())
790 return 0; // The ProdOV computation fails on divide by zero.
791 if (DivIsSigned
&& DivRHS
->isAllOnesValue())
792 return 0; // The overflow computation also screws up here
794 return 0; // Not worth bothering, and eliminates some funny cases
797 // Compute Prod = CI * DivRHS. We are essentially solving an equation
798 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
799 // C2 (CI). By solving for X we can turn this into a range check
800 // instead of computing a divide.
801 Constant
*Prod
= ConstantExpr::getMul(CmpRHS
, DivRHS
);
803 // Determine if the product overflows by seeing if the product is
804 // not equal to the divide. Make sure we do the same kind of divide
805 // as in the LHS instruction that we're folding.
806 bool ProdOV
= (DivIsSigned
? ConstantExpr::getSDiv(Prod
, DivRHS
) :
807 ConstantExpr::getUDiv(Prod
, DivRHS
)) != CmpRHS
;
809 // Get the ICmp opcode
810 ICmpInst::Predicate Pred
= ICI
.getPredicate();
812 // Figure out the interval that is being checked. For example, a comparison
813 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
814 // Compute this interval based on the constants involved and the signedness of
815 // the compare/divide. This computes a half-open interval, keeping track of
816 // whether either value in the interval overflows. After analysis each
817 // overflow variable is set to 0 if it's corresponding bound variable is valid
818 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
819 int LoOverflow
= 0, HiOverflow
= 0;
820 Constant
*LoBound
= 0, *HiBound
= 0;
822 if (!DivIsSigned
) { // udiv
823 // e.g. X/5 op 3 --> [15, 20)
825 HiOverflow
= LoOverflow
= ProdOV
;
827 HiOverflow
= AddWithOverflow(HiBound
, LoBound
, DivRHS
, false);
828 } else if (DivRHS
->getValue().isStrictlyPositive()) { // Divisor is > 0.
829 if (CmpRHSV
== 0) { // (X / pos) op 0
830 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
831 LoBound
= cast
<ConstantInt
>(ConstantExpr::getNeg(SubOne(DivRHS
)));
833 } else if (CmpRHSV
.isStrictlyPositive()) { // (X / pos) op pos
834 LoBound
= Prod
; // e.g. X/5 op 3 --> [15, 20)
835 HiOverflow
= LoOverflow
= ProdOV
;
837 HiOverflow
= AddWithOverflow(HiBound
, Prod
, DivRHS
, true);
838 } else { // (X / pos) op neg
839 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
840 HiBound
= AddOne(Prod
);
841 LoOverflow
= HiOverflow
= ProdOV
? -1 : 0;
843 ConstantInt
* DivNeg
=
844 cast
<ConstantInt
>(ConstantExpr::getNeg(DivRHS
));
845 LoOverflow
= AddWithOverflow(LoBound
, HiBound
, DivNeg
, true) ? -1 : 0;
848 } else if (DivRHS
->getValue().isNegative()) { // Divisor is < 0.
849 if (CmpRHSV
== 0) { // (X / neg) op 0
850 // e.g. X/-5 op 0 --> [-4, 5)
851 LoBound
= AddOne(DivRHS
);
852 HiBound
= cast
<ConstantInt
>(ConstantExpr::getNeg(DivRHS
));
853 if (HiBound
== DivRHS
) { // -INTMIN = INTMIN
854 HiOverflow
= 1; // [INTMIN+1, overflow)
855 HiBound
= 0; // e.g. X/INTMIN = 0 --> X > INTMIN
857 } else if (CmpRHSV
.isStrictlyPositive()) { // (X / neg) op pos
858 // e.g. X/-5 op 3 --> [-19, -14)
859 HiBound
= AddOne(Prod
);
860 HiOverflow
= LoOverflow
= ProdOV
? -1 : 0;
862 LoOverflow
= AddWithOverflow(LoBound
, HiBound
, DivRHS
, true) ? -1 : 0;
863 } else { // (X / neg) op neg
864 LoBound
= Prod
; // e.g. X/-5 op -3 --> [15, 20)
865 LoOverflow
= HiOverflow
= ProdOV
;
867 HiOverflow
= SubWithOverflow(HiBound
, Prod
, DivRHS
, true);
870 // Dividing by a negative swaps the condition. LT <-> GT
871 Pred
= ICmpInst::getSwappedPredicate(Pred
);
874 Value
*X
= DivI
->getOperand(0);
876 default: llvm_unreachable("Unhandled icmp opcode!");
877 case ICmpInst::ICMP_EQ
:
878 if (LoOverflow
&& HiOverflow
)
879 return ReplaceInstUsesWith(ICI
, ConstantInt::getFalse(ICI
.getContext()));
881 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SGE
:
882 ICmpInst::ICMP_UGE
, X
, LoBound
);
884 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SLT
:
885 ICmpInst::ICMP_ULT
, X
, HiBound
);
886 return ReplaceInstUsesWith(ICI
,
887 InsertRangeTest(X
, LoBound
, HiBound
, DivIsSigned
,
889 case ICmpInst::ICMP_NE
:
890 if (LoOverflow
&& HiOverflow
)
891 return ReplaceInstUsesWith(ICI
, ConstantInt::getTrue(ICI
.getContext()));
893 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SLT
:
894 ICmpInst::ICMP_ULT
, X
, LoBound
);
896 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SGE
:
897 ICmpInst::ICMP_UGE
, X
, HiBound
);
898 return ReplaceInstUsesWith(ICI
, InsertRangeTest(X
, LoBound
, HiBound
,
899 DivIsSigned
, false));
900 case ICmpInst::ICMP_ULT
:
901 case ICmpInst::ICMP_SLT
:
902 if (LoOverflow
== +1) // Low bound is greater than input range.
903 return ReplaceInstUsesWith(ICI
, ConstantInt::getTrue(ICI
.getContext()));
904 if (LoOverflow
== -1) // Low bound is less than input range.
905 return ReplaceInstUsesWith(ICI
, ConstantInt::getFalse(ICI
.getContext()));
906 return new ICmpInst(Pred
, X
, LoBound
);
907 case ICmpInst::ICMP_UGT
:
908 case ICmpInst::ICMP_SGT
:
909 if (HiOverflow
== +1) // High bound greater than input range.
910 return ReplaceInstUsesWith(ICI
, ConstantInt::getFalse(ICI
.getContext()));
911 else if (HiOverflow
== -1) // High bound less than input range.
912 return ReplaceInstUsesWith(ICI
, ConstantInt::getTrue(ICI
.getContext()));
913 if (Pred
== ICmpInst::ICMP_UGT
)
914 return new ICmpInst(ICmpInst::ICMP_UGE
, X
, HiBound
);
916 return new ICmpInst(ICmpInst::ICMP_SGE
, X
, HiBound
);
921 /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
923 Instruction
*InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst
&ICI
,
926 const APInt
&RHSV
= RHS
->getValue();
928 switch (LHSI
->getOpcode()) {
929 case Instruction::Trunc
:
930 if (ICI
.isEquality() && LHSI
->hasOneUse()) {
931 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
932 // of the high bits truncated out of x are known.
933 unsigned DstBits
= LHSI
->getType()->getPrimitiveSizeInBits(),
934 SrcBits
= LHSI
->getOperand(0)->getType()->getPrimitiveSizeInBits();
935 APInt
Mask(APInt::getHighBitsSet(SrcBits
, SrcBits
-DstBits
));
936 APInt
KnownZero(SrcBits
, 0), KnownOne(SrcBits
, 0);
937 ComputeMaskedBits(LHSI
->getOperand(0), Mask
, KnownZero
, KnownOne
);
939 // If all the high bits are known, we can do this xform.
940 if ((KnownZero
|KnownOne
).countLeadingOnes() >= SrcBits
-DstBits
) {
941 // Pull in the high bits from known-ones set.
942 APInt
NewRHS(RHS
->getValue());
943 NewRHS
.zext(SrcBits
);
945 return new ICmpInst(ICI
.getPredicate(), LHSI
->getOperand(0),
946 ConstantInt::get(ICI
.getContext(), NewRHS
));
951 case Instruction::Xor
: // (icmp pred (xor X, XorCST), CI)
952 if (ConstantInt
*XorCST
= dyn_cast
<ConstantInt
>(LHSI
->getOperand(1))) {
953 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
955 if ((ICI
.getPredicate() == ICmpInst::ICMP_SLT
&& RHSV
== 0) ||
956 (ICI
.getPredicate() == ICmpInst::ICMP_SGT
&& RHSV
.isAllOnesValue())) {
957 Value
*CompareVal
= LHSI
->getOperand(0);
959 // If the sign bit of the XorCST is not set, there is no change to
960 // the operation, just stop using the Xor.
961 if (!XorCST
->getValue().isNegative()) {
962 ICI
.setOperand(0, CompareVal
);
967 // Was the old condition true if the operand is positive?
968 bool isTrueIfPositive
= ICI
.getPredicate() == ICmpInst::ICMP_SGT
;
970 // If so, the new one isn't.
971 isTrueIfPositive
^= true;
973 if (isTrueIfPositive
)
974 return new ICmpInst(ICmpInst::ICMP_SGT
, CompareVal
,
977 return new ICmpInst(ICmpInst::ICMP_SLT
, CompareVal
,
981 if (LHSI
->hasOneUse()) {
982 // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
983 if (!ICI
.isEquality() && XorCST
->getValue().isSignBit()) {
984 const APInt
&SignBit
= XorCST
->getValue();
985 ICmpInst::Predicate Pred
= ICI
.isSigned()
986 ? ICI
.getUnsignedPredicate()
987 : ICI
.getSignedPredicate();
988 return new ICmpInst(Pred
, LHSI
->getOperand(0),
989 ConstantInt::get(ICI
.getContext(),
993 // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
994 if (!ICI
.isEquality() && XorCST
->getValue().isMaxSignedValue()) {
995 const APInt
&NotSignBit
= XorCST
->getValue();
996 ICmpInst::Predicate Pred
= ICI
.isSigned()
997 ? ICI
.getUnsignedPredicate()
998 : ICI
.getSignedPredicate();
999 Pred
= ICI
.getSwappedPredicate(Pred
);
1000 return new ICmpInst(Pred
, LHSI
->getOperand(0),
1001 ConstantInt::get(ICI
.getContext(),
1002 RHSV
^ NotSignBit
));
1007 case Instruction::And
: // (icmp pred (and X, AndCST), RHS)
1008 if (LHSI
->hasOneUse() && isa
<ConstantInt
>(LHSI
->getOperand(1)) &&
1009 LHSI
->getOperand(0)->hasOneUse()) {
1010 ConstantInt
*AndCST
= cast
<ConstantInt
>(LHSI
->getOperand(1));
1012 // If the LHS is an AND of a truncating cast, we can widen the
1013 // and/compare to be the input width without changing the value
1014 // produced, eliminating a cast.
1015 if (TruncInst
*Cast
= dyn_cast
<TruncInst
>(LHSI
->getOperand(0))) {
1016 // We can do this transformation if either the AND constant does not
1017 // have its sign bit set or if it is an equality comparison.
1018 // Extending a relational comparison when we're checking the sign
1019 // bit would not work.
1020 if (Cast
->hasOneUse() &&
1021 (ICI
.isEquality() ||
1022 (AndCST
->getValue().isNonNegative() && RHSV
.isNonNegative()))) {
1024 cast
<IntegerType
>(Cast
->getOperand(0)->getType())->getBitWidth();
1025 APInt NewCST
= AndCST
->getValue();
1026 NewCST
.zext(BitWidth
);
1028 NewCI
.zext(BitWidth
);
1030 Builder
->CreateAnd(Cast
->getOperand(0),
1031 ConstantInt::get(ICI
.getContext(), NewCST
),
1033 return new ICmpInst(ICI
.getPredicate(), NewAnd
,
1034 ConstantInt::get(ICI
.getContext(), NewCI
));
1038 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
1039 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
1040 // happens a LOT in code produced by the C front-end, for bitfield
1042 BinaryOperator
*Shift
= dyn_cast
<BinaryOperator
>(LHSI
->getOperand(0));
1043 if (Shift
&& !Shift
->isShift())
1047 ShAmt
= Shift
? dyn_cast
<ConstantInt
>(Shift
->getOperand(1)) : 0;
1048 const Type
*Ty
= Shift
? Shift
->getType() : 0; // Type of the shift.
1049 const Type
*AndTy
= AndCST
->getType(); // Type of the and.
1051 // We can fold this as long as we can't shift unknown bits
1052 // into the mask. This can only happen with signed shift
1053 // rights, as they sign-extend.
1055 bool CanFold
= Shift
->isLogicalShift();
1057 // To test for the bad case of the signed shr, see if any
1058 // of the bits shifted in could be tested after the mask.
1059 uint32_t TyBits
= Ty
->getPrimitiveSizeInBits();
1060 int ShAmtVal
= TyBits
- ShAmt
->getLimitedValue(TyBits
);
1062 uint32_t BitWidth
= AndTy
->getPrimitiveSizeInBits();
1063 if ((APInt::getHighBitsSet(BitWidth
, BitWidth
-ShAmtVal
) &
1064 AndCST
->getValue()) == 0)
1070 if (Shift
->getOpcode() == Instruction::Shl
)
1071 NewCst
= ConstantExpr::getLShr(RHS
, ShAmt
);
1073 NewCst
= ConstantExpr::getShl(RHS
, ShAmt
);
1075 // Check to see if we are shifting out any of the bits being
1077 if (ConstantExpr::get(Shift
->getOpcode(),
1078 NewCst
, ShAmt
) != RHS
) {
1079 // If we shifted bits out, the fold is not going to work out.
1080 // As a special case, check to see if this means that the
1081 // result is always true or false now.
1082 if (ICI
.getPredicate() == ICmpInst::ICMP_EQ
)
1083 return ReplaceInstUsesWith(ICI
,
1084 ConstantInt::getFalse(ICI
.getContext()));
1085 if (ICI
.getPredicate() == ICmpInst::ICMP_NE
)
1086 return ReplaceInstUsesWith(ICI
,
1087 ConstantInt::getTrue(ICI
.getContext()));
1089 ICI
.setOperand(1, NewCst
);
1090 Constant
*NewAndCST
;
1091 if (Shift
->getOpcode() == Instruction::Shl
)
1092 NewAndCST
= ConstantExpr::getLShr(AndCST
, ShAmt
);
1094 NewAndCST
= ConstantExpr::getShl(AndCST
, ShAmt
);
1095 LHSI
->setOperand(1, NewAndCST
);
1096 LHSI
->setOperand(0, Shift
->getOperand(0));
1097 Worklist
.Add(Shift
); // Shift is dead.
1103 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
1104 // preferable because it allows the C<<Y expression to be hoisted out
1105 // of a loop if Y is invariant and X is not.
1106 if (Shift
&& Shift
->hasOneUse() && RHSV
== 0 &&
1107 ICI
.isEquality() && !Shift
->isArithmeticShift() &&
1108 !isa
<Constant
>(Shift
->getOperand(0))) {
1111 if (Shift
->getOpcode() == Instruction::LShr
) {
1112 NS
= Builder
->CreateShl(AndCST
, Shift
->getOperand(1), "tmp");
1114 // Insert a logical shift.
1115 NS
= Builder
->CreateLShr(AndCST
, Shift
->getOperand(1), "tmp");
1118 // Compute X & (C << Y).
1120 Builder
->CreateAnd(Shift
->getOperand(0), NS
, LHSI
->getName());
1122 ICI
.setOperand(0, NewAnd
);
1127 // Try to optimize things like "A[i]&42 == 0" to index computations.
1128 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(LHSI
->getOperand(0))) {
1129 if (GetElementPtrInst
*GEP
=
1130 dyn_cast
<GetElementPtrInst
>(LI
->getOperand(0)))
1131 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0)))
1132 if (GV
->isConstant() && GV
->hasDefinitiveInitializer() &&
1133 !LI
->isVolatile() && isa
<ConstantInt
>(LHSI
->getOperand(1))) {
1134 ConstantInt
*C
= cast
<ConstantInt
>(LHSI
->getOperand(1));
1135 if (Instruction
*Res
= FoldCmpLoadFromIndexedGlobal(GEP
, GV
,ICI
, C
))
1141 case Instruction::Or
: {
1142 if (!ICI
.isEquality() || !RHS
->isNullValue() || !LHSI
->hasOneUse())
1145 if (match(LHSI
, m_Or(m_PtrToInt(m_Value(P
)), m_PtrToInt(m_Value(Q
))))) {
1146 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1147 // -> and (icmp eq P, null), (icmp eq Q, null).
1149 Value
*ICIP
= Builder
->CreateICmp(ICI
.getPredicate(), P
,
1150 Constant::getNullValue(P
->getType()));
1151 Value
*ICIQ
= Builder
->CreateICmp(ICI
.getPredicate(), Q
,
1152 Constant::getNullValue(Q
->getType()));
1154 if (ICI
.getPredicate() == ICmpInst::ICMP_EQ
)
1155 Op
= BinaryOperator::CreateAnd(ICIP
, ICIQ
);
1157 Op
= BinaryOperator::CreateOr(ICIP
, ICIQ
);
1163 case Instruction::Shl
: { // (icmp pred (shl X, ShAmt), CI)
1164 ConstantInt
*ShAmt
= dyn_cast
<ConstantInt
>(LHSI
->getOperand(1));
1167 uint32_t TypeBits
= RHSV
.getBitWidth();
1169 // Check that the shift amount is in range. If not, don't perform
1170 // undefined shifts. When the shift is visited it will be
1172 if (ShAmt
->uge(TypeBits
))
1175 if (ICI
.isEquality()) {
1176 // If we are comparing against bits always shifted out, the
1177 // comparison cannot succeed.
1179 ConstantExpr::getShl(ConstantExpr::getLShr(RHS
, ShAmt
),
1181 if (Comp
!= RHS
) {// Comparing against a bit that we know is zero.
1182 bool IsICMP_NE
= ICI
.getPredicate() == ICmpInst::ICMP_NE
;
1184 ConstantInt::get(Type::getInt1Ty(ICI
.getContext()), IsICMP_NE
);
1185 return ReplaceInstUsesWith(ICI
, Cst
);
1188 if (LHSI
->hasOneUse()) {
1189 // Otherwise strength reduce the shift into an and.
1190 uint32_t ShAmtVal
= (uint32_t)ShAmt
->getLimitedValue(TypeBits
);
1192 ConstantInt::get(ICI
.getContext(), APInt::getLowBitsSet(TypeBits
,
1193 TypeBits
-ShAmtVal
));
1196 Builder
->CreateAnd(LHSI
->getOperand(0),Mask
, LHSI
->getName()+".mask");
1197 return new ICmpInst(ICI
.getPredicate(), And
,
1198 ConstantInt::get(ICI
.getContext(),
1199 RHSV
.lshr(ShAmtVal
)));
1203 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1204 bool TrueIfSigned
= false;
1205 if (LHSI
->hasOneUse() &&
1206 isSignBitCheck(ICI
.getPredicate(), RHS
, TrueIfSigned
)) {
1207 // (X << 31) <s 0 --> (X&1) != 0
1208 Constant
*Mask
= ConstantInt::get(ICI
.getContext(), APInt(TypeBits
, 1) <<
1209 (TypeBits
-ShAmt
->getZExtValue()-1));
1211 Builder
->CreateAnd(LHSI
->getOperand(0), Mask
, LHSI
->getName()+".mask");
1212 return new ICmpInst(TrueIfSigned
? ICmpInst::ICMP_NE
: ICmpInst::ICMP_EQ
,
1213 And
, Constant::getNullValue(And
->getType()));
1218 case Instruction::LShr
: // (icmp pred (shr X, ShAmt), CI)
1219 case Instruction::AShr
: {
1220 // Only handle equality comparisons of shift-by-constant.
1221 ConstantInt
*ShAmt
= dyn_cast
<ConstantInt
>(LHSI
->getOperand(1));
1222 if (!ShAmt
|| !ICI
.isEquality()) break;
1224 // Check that the shift amount is in range. If not, don't perform
1225 // undefined shifts. When the shift is visited it will be
1227 uint32_t TypeBits
= RHSV
.getBitWidth();
1228 if (ShAmt
->uge(TypeBits
))
1231 uint32_t ShAmtVal
= (uint32_t)ShAmt
->getLimitedValue(TypeBits
);
1233 // If we are comparing against bits always shifted out, the
1234 // comparison cannot succeed.
1235 APInt Comp
= RHSV
<< ShAmtVal
;
1236 if (LHSI
->getOpcode() == Instruction::LShr
)
1237 Comp
= Comp
.lshr(ShAmtVal
);
1239 Comp
= Comp
.ashr(ShAmtVal
);
1241 if (Comp
!= RHSV
) { // Comparing against a bit that we know is zero.
1242 bool IsICMP_NE
= ICI
.getPredicate() == ICmpInst::ICMP_NE
;
1243 Constant
*Cst
= ConstantInt::get(Type::getInt1Ty(ICI
.getContext()),
1245 return ReplaceInstUsesWith(ICI
, Cst
);
1248 // Otherwise, check to see if the bits shifted out are known to be zero.
1249 // If so, we can compare against the unshifted value:
1250 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
1251 if (LHSI
->hasOneUse() &&
1252 MaskedValueIsZero(LHSI
->getOperand(0),
1253 APInt::getLowBitsSet(Comp
.getBitWidth(), ShAmtVal
))) {
1254 return new ICmpInst(ICI
.getPredicate(), LHSI
->getOperand(0),
1255 ConstantExpr::getShl(RHS
, ShAmt
));
1258 if (LHSI
->hasOneUse()) {
1259 // Otherwise strength reduce the shift into an and.
1260 APInt
Val(APInt::getHighBitsSet(TypeBits
, TypeBits
- ShAmtVal
));
1261 Constant
*Mask
= ConstantInt::get(ICI
.getContext(), Val
);
1263 Value
*And
= Builder
->CreateAnd(LHSI
->getOperand(0),
1264 Mask
, LHSI
->getName()+".mask");
1265 return new ICmpInst(ICI
.getPredicate(), And
,
1266 ConstantExpr::getShl(RHS
, ShAmt
));
1271 case Instruction::SDiv
:
1272 case Instruction::UDiv
:
1273 // Fold: icmp pred ([us]div X, C1), C2 -> range test
1274 // Fold this div into the comparison, producing a range check.
1275 // Determine, based on the divide type, what the range is being
1276 // checked. If there is an overflow on the low or high side, remember
1277 // it, otherwise compute the range [low, hi) bounding the new value.
1278 // See: InsertRangeTest above for the kinds of replacements possible.
1279 if (ConstantInt
*DivRHS
= dyn_cast
<ConstantInt
>(LHSI
->getOperand(1)))
1280 if (Instruction
*R
= FoldICmpDivCst(ICI
, cast
<BinaryOperator
>(LHSI
),
1285 case Instruction::Add
:
1286 // Fold: icmp pred (add X, C1), C2
1287 if (!ICI
.isEquality()) {
1288 ConstantInt
*LHSC
= dyn_cast
<ConstantInt
>(LHSI
->getOperand(1));
1290 const APInt
&LHSV
= LHSC
->getValue();
1292 ConstantRange CR
= ICI
.makeConstantRange(ICI
.getPredicate(), RHSV
)
1295 if (ICI
.isSigned()) {
1296 if (CR
.getLower().isSignBit()) {
1297 return new ICmpInst(ICmpInst::ICMP_SLT
, LHSI
->getOperand(0),
1298 ConstantInt::get(ICI
.getContext(),CR
.getUpper()));
1299 } else if (CR
.getUpper().isSignBit()) {
1300 return new ICmpInst(ICmpInst::ICMP_SGE
, LHSI
->getOperand(0),
1301 ConstantInt::get(ICI
.getContext(),CR
.getLower()));
1304 if (CR
.getLower().isMinValue()) {
1305 return new ICmpInst(ICmpInst::ICMP_ULT
, LHSI
->getOperand(0),
1306 ConstantInt::get(ICI
.getContext(),CR
.getUpper()));
1307 } else if (CR
.getUpper().isMinValue()) {
1308 return new ICmpInst(ICmpInst::ICMP_UGE
, LHSI
->getOperand(0),
1309 ConstantInt::get(ICI
.getContext(),CR
.getLower()));
1316 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
1317 if (ICI
.isEquality()) {
1318 bool isICMP_NE
= ICI
.getPredicate() == ICmpInst::ICMP_NE
;
1320 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
1321 // the second operand is a constant, simplify a bit.
1322 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(LHSI
)) {
1323 switch (BO
->getOpcode()) {
1324 case Instruction::SRem
:
1325 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
1326 if (RHSV
== 0 && isa
<ConstantInt
>(BO
->getOperand(1)) &&BO
->hasOneUse()){
1327 const APInt
&V
= cast
<ConstantInt
>(BO
->getOperand(1))->getValue();
1328 if (V
.sgt(1) && V
.isPowerOf2()) {
1330 Builder
->CreateURem(BO
->getOperand(0), BO
->getOperand(1),
1332 return new ICmpInst(ICI
.getPredicate(), NewRem
,
1333 Constant::getNullValue(BO
->getType()));
1337 case Instruction::Add
:
1338 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
1339 if (ConstantInt
*BOp1C
= dyn_cast
<ConstantInt
>(BO
->getOperand(1))) {
1340 if (BO
->hasOneUse())
1341 return new ICmpInst(ICI
.getPredicate(), BO
->getOperand(0),
1342 ConstantExpr::getSub(RHS
, BOp1C
));
1343 } else if (RHSV
== 0) {
1344 // Replace ((add A, B) != 0) with (A != -B) if A or B is
1345 // efficiently invertible, or if the add has just this one use.
1346 Value
*BOp0
= BO
->getOperand(0), *BOp1
= BO
->getOperand(1);
1348 if (Value
*NegVal
= dyn_castNegVal(BOp1
))
1349 return new ICmpInst(ICI
.getPredicate(), BOp0
, NegVal
);
1350 else if (Value
*NegVal
= dyn_castNegVal(BOp0
))
1351 return new ICmpInst(ICI
.getPredicate(), NegVal
, BOp1
);
1352 else if (BO
->hasOneUse()) {
1353 Value
*Neg
= Builder
->CreateNeg(BOp1
);
1355 return new ICmpInst(ICI
.getPredicate(), BOp0
, Neg
);
1359 case Instruction::Xor
:
1360 // For the xor case, we can xor two constants together, eliminating
1361 // the explicit xor.
1362 if (Constant
*BOC
= dyn_cast
<Constant
>(BO
->getOperand(1)))
1363 return new ICmpInst(ICI
.getPredicate(), BO
->getOperand(0),
1364 ConstantExpr::getXor(RHS
, BOC
));
1367 case Instruction::Sub
:
1368 // Replace (([sub|xor] A, B) != 0) with (A != B)
1370 return new ICmpInst(ICI
.getPredicate(), BO
->getOperand(0),
1374 case Instruction::Or
:
1375 // If bits are being or'd in that are not present in the constant we
1376 // are comparing against, then the comparison could never succeed!
1377 if (ConstantInt
*BOC
= dyn_cast
<ConstantInt
>(BO
->getOperand(1))) {
1378 Constant
*NotCI
= ConstantExpr::getNot(RHS
);
1379 if (!ConstantExpr::getAnd(BOC
, NotCI
)->isNullValue())
1380 return ReplaceInstUsesWith(ICI
,
1381 ConstantInt::get(Type::getInt1Ty(ICI
.getContext()),
1386 case Instruction::And
:
1387 if (ConstantInt
*BOC
= dyn_cast
<ConstantInt
>(BO
->getOperand(1))) {
1388 // If bits are being compared against that are and'd out, then the
1389 // comparison can never succeed!
1390 if ((RHSV
& ~BOC
->getValue()) != 0)
1391 return ReplaceInstUsesWith(ICI
,
1392 ConstantInt::get(Type::getInt1Ty(ICI
.getContext()),
1395 // If we have ((X & C) == C), turn it into ((X & C) != 0).
1396 if (RHS
== BOC
&& RHSV
.isPowerOf2())
1397 return new ICmpInst(isICMP_NE
? ICmpInst::ICMP_EQ
:
1398 ICmpInst::ICMP_NE
, LHSI
,
1399 Constant::getNullValue(RHS
->getType()));
1401 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
1402 if (BOC
->getValue().isSignBit()) {
1403 Value
*X
= BO
->getOperand(0);
1404 Constant
*Zero
= Constant::getNullValue(X
->getType());
1405 ICmpInst::Predicate pred
= isICMP_NE
?
1406 ICmpInst::ICMP_SLT
: ICmpInst::ICMP_SGE
;
1407 return new ICmpInst(pred
, X
, Zero
);
1410 // ((X & ~7) == 0) --> X < 8
1411 if (RHSV
== 0 && isHighOnes(BOC
)) {
1412 Value
*X
= BO
->getOperand(0);
1413 Constant
*NegX
= ConstantExpr::getNeg(BOC
);
1414 ICmpInst::Predicate pred
= isICMP_NE
?
1415 ICmpInst::ICMP_UGE
: ICmpInst::ICMP_ULT
;
1416 return new ICmpInst(pred
, X
, NegX
);
1421 } else if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(LHSI
)) {
1422 // Handle icmp {eq|ne} <intrinsic>, intcst.
1423 switch (II
->getIntrinsicID()) {
1424 case Intrinsic::bswap
:
1426 ICI
.setOperand(0, II
->getArgOperand(0));
1427 ICI
.setOperand(1, ConstantInt::get(II
->getContext(), RHSV
.byteSwap()));
1429 case Intrinsic::ctlz
:
1430 case Intrinsic::cttz
:
1431 // ctz(A) == bitwidth(a) -> A == 0 and likewise for !=
1432 if (RHSV
== RHS
->getType()->getBitWidth()) {
1434 ICI
.setOperand(0, II
->getArgOperand(0));
1435 ICI
.setOperand(1, ConstantInt::get(RHS
->getType(), 0));
1439 case Intrinsic::ctpop
:
1440 // popcount(A) == 0 -> A == 0 and likewise for !=
1441 if (RHS
->isZero()) {
1443 ICI
.setOperand(0, II
->getArgOperand(0));
1444 ICI
.setOperand(1, RHS
);
1456 /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
1457 /// We only handle extending casts so far.
1459 Instruction
*InstCombiner::visitICmpInstWithCastAndCast(ICmpInst
&ICI
) {
1460 const CastInst
*LHSCI
= cast
<CastInst
>(ICI
.getOperand(0));
1461 Value
*LHSCIOp
= LHSCI
->getOperand(0);
1462 const Type
*SrcTy
= LHSCIOp
->getType();
1463 const Type
*DestTy
= LHSCI
->getType();
1466 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
1467 // integer type is the same size as the pointer type.
1468 if (TD
&& LHSCI
->getOpcode() == Instruction::PtrToInt
&&
1469 TD
->getPointerSizeInBits() ==
1470 cast
<IntegerType
>(DestTy
)->getBitWidth()) {
1472 if (Constant
*RHSC
= dyn_cast
<Constant
>(ICI
.getOperand(1))) {
1473 RHSOp
= ConstantExpr::getIntToPtr(RHSC
, SrcTy
);
1474 } else if (PtrToIntInst
*RHSC
= dyn_cast
<PtrToIntInst
>(ICI
.getOperand(1))) {
1475 RHSOp
= RHSC
->getOperand(0);
1476 // If the pointer types don't match, insert a bitcast.
1477 if (LHSCIOp
->getType() != RHSOp
->getType())
1478 RHSOp
= Builder
->CreateBitCast(RHSOp
, LHSCIOp
->getType());
1482 return new ICmpInst(ICI
.getPredicate(), LHSCIOp
, RHSOp
);
1485 // The code below only handles extension cast instructions, so far.
1487 if (LHSCI
->getOpcode() != Instruction::ZExt
&&
1488 LHSCI
->getOpcode() != Instruction::SExt
)
1491 bool isSignedExt
= LHSCI
->getOpcode() == Instruction::SExt
;
1492 bool isSignedCmp
= ICI
.isSigned();
1494 if (CastInst
*CI
= dyn_cast
<CastInst
>(ICI
.getOperand(1))) {
1495 // Not an extension from the same type?
1496 RHSCIOp
= CI
->getOperand(0);
1497 if (RHSCIOp
->getType() != LHSCIOp
->getType())
1500 // If the signedness of the two casts doesn't agree (i.e. one is a sext
1501 // and the other is a zext), then we can't handle this.
1502 if (CI
->getOpcode() != LHSCI
->getOpcode())
1505 // Deal with equality cases early.
1506 if (ICI
.isEquality())
1507 return new ICmpInst(ICI
.getPredicate(), LHSCIOp
, RHSCIOp
);
1509 // A signed comparison of sign extended values simplifies into a
1510 // signed comparison.
1511 if (isSignedCmp
&& isSignedExt
)
1512 return new ICmpInst(ICI
.getPredicate(), LHSCIOp
, RHSCIOp
);
1514 // The other three cases all fold into an unsigned comparison.
1515 return new ICmpInst(ICI
.getUnsignedPredicate(), LHSCIOp
, RHSCIOp
);
1518 // If we aren't dealing with a constant on the RHS, exit early
1519 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(ICI
.getOperand(1));
1523 // Compute the constant that would happen if we truncated to SrcTy then
1524 // reextended to DestTy.
1525 Constant
*Res1
= ConstantExpr::getTrunc(CI
, SrcTy
);
1526 Constant
*Res2
= ConstantExpr::getCast(LHSCI
->getOpcode(),
1529 // If the re-extended constant didn't change...
1531 // Deal with equality cases early.
1532 if (ICI
.isEquality())
1533 return new ICmpInst(ICI
.getPredicate(), LHSCIOp
, Res1
);
1535 // A signed comparison of sign extended values simplifies into a
1536 // signed comparison.
1537 if (isSignedExt
&& isSignedCmp
)
1538 return new ICmpInst(ICI
.getPredicate(), LHSCIOp
, Res1
);
1540 // The other three cases all fold into an unsigned comparison.
1541 return new ICmpInst(ICI
.getUnsignedPredicate(), LHSCIOp
, Res1
);
1544 // The re-extended constant changed so the constant cannot be represented
1545 // in the shorter type. Consequently, we cannot emit a simple comparison.
1547 // First, handle some easy cases. We know the result cannot be equal at this
1548 // point so handle the ICI.isEquality() cases
1549 if (ICI
.getPredicate() == ICmpInst::ICMP_EQ
)
1550 return ReplaceInstUsesWith(ICI
, ConstantInt::getFalse(ICI
.getContext()));
1551 if (ICI
.getPredicate() == ICmpInst::ICMP_NE
)
1552 return ReplaceInstUsesWith(ICI
, ConstantInt::getTrue(ICI
.getContext()));
1554 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
1555 // should have been folded away previously and not enter in here.
1558 // We're performing a signed comparison.
1559 if (cast
<ConstantInt
>(CI
)->getValue().isNegative())
1560 Result
= ConstantInt::getFalse(ICI
.getContext()); // X < (small) --> false
1562 Result
= ConstantInt::getTrue(ICI
.getContext()); // X < (large) --> true
1564 // We're performing an unsigned comparison.
1566 // We're performing an unsigned comp with a sign extended value.
1567 // This is true if the input is >= 0. [aka >s -1]
1568 Constant
*NegOne
= Constant::getAllOnesValue(SrcTy
);
1569 Result
= Builder
->CreateICmpSGT(LHSCIOp
, NegOne
, ICI
.getName());
1571 // Unsigned extend & unsigned compare -> always true.
1572 Result
= ConstantInt::getTrue(ICI
.getContext());
1576 // Finally, return the value computed.
1577 if (ICI
.getPredicate() == ICmpInst::ICMP_ULT
||
1578 ICI
.getPredicate() == ICmpInst::ICMP_SLT
)
1579 return ReplaceInstUsesWith(ICI
, Result
);
1581 assert((ICI
.getPredicate()==ICmpInst::ICMP_UGT
||
1582 ICI
.getPredicate()==ICmpInst::ICMP_SGT
) &&
1583 "ICmp should be folded!");
1584 if (Constant
*CI
= dyn_cast
<Constant
>(Result
))
1585 return ReplaceInstUsesWith(ICI
, ConstantExpr::getNot(CI
));
1586 return BinaryOperator::CreateNot(Result
);
1591 Instruction
*InstCombiner::visitICmpInst(ICmpInst
&I
) {
1592 bool Changed
= false;
1593 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
1595 /// Orders the operands of the compare so that they are listed from most
1596 /// complex to least complex. This puts constants before unary operators,
1597 /// before binary operators.
1598 if (getComplexity(Op0
) < getComplexity(Op1
)) {
1600 std::swap(Op0
, Op1
);
1604 if (Value
*V
= SimplifyICmpInst(I
.getPredicate(), Op0
, Op1
, TD
))
1605 return ReplaceInstUsesWith(I
, V
);
1607 const Type
*Ty
= Op0
->getType();
1609 // icmp's with boolean values can always be turned into bitwise operations
1610 if (Ty
->isIntegerTy(1)) {
1611 switch (I
.getPredicate()) {
1612 default: llvm_unreachable("Invalid icmp instruction!");
1613 case ICmpInst::ICMP_EQ
: { // icmp eq i1 A, B -> ~(A^B)
1614 Value
*Xor
= Builder
->CreateXor(Op0
, Op1
, I
.getName()+"tmp");
1615 return BinaryOperator::CreateNot(Xor
);
1617 case ICmpInst::ICMP_NE
: // icmp eq i1 A, B -> A^B
1618 return BinaryOperator::CreateXor(Op0
, Op1
);
1620 case ICmpInst::ICMP_UGT
:
1621 std::swap(Op0
, Op1
); // Change icmp ugt -> icmp ult
1623 case ICmpInst::ICMP_ULT
:{ // icmp ult i1 A, B -> ~A & B
1624 Value
*Not
= Builder
->CreateNot(Op0
, I
.getName()+"tmp");
1625 return BinaryOperator::CreateAnd(Not
, Op1
);
1627 case ICmpInst::ICMP_SGT
:
1628 std::swap(Op0
, Op1
); // Change icmp sgt -> icmp slt
1630 case ICmpInst::ICMP_SLT
: { // icmp slt i1 A, B -> A & ~B
1631 Value
*Not
= Builder
->CreateNot(Op1
, I
.getName()+"tmp");
1632 return BinaryOperator::CreateAnd(Not
, Op0
);
1634 case ICmpInst::ICMP_UGE
:
1635 std::swap(Op0
, Op1
); // Change icmp uge -> icmp ule
1637 case ICmpInst::ICMP_ULE
: { // icmp ule i1 A, B -> ~A | B
1638 Value
*Not
= Builder
->CreateNot(Op0
, I
.getName()+"tmp");
1639 return BinaryOperator::CreateOr(Not
, Op1
);
1641 case ICmpInst::ICMP_SGE
:
1642 std::swap(Op0
, Op1
); // Change icmp sge -> icmp sle
1644 case ICmpInst::ICMP_SLE
: { // icmp sle i1 A, B -> A | ~B
1645 Value
*Not
= Builder
->CreateNot(Op1
, I
.getName()+"tmp");
1646 return BinaryOperator::CreateOr(Not
, Op0
);
1651 unsigned BitWidth
= 0;
1653 BitWidth
= TD
->getTypeSizeInBits(Ty
->getScalarType());
1654 else if (Ty
->isIntOrIntVectorTy())
1655 BitWidth
= Ty
->getScalarSizeInBits();
1657 bool isSignBit
= false;
1659 // See if we are doing a comparison with a constant.
1660 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op1
)) {
1661 Value
*A
= 0, *B
= 0;
1663 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
1664 if (I
.isEquality() && CI
->isZero() &&
1665 match(Op0
, m_Sub(m_Value(A
), m_Value(B
)))) {
1666 // (icmp cond A B) if cond is equality
1667 return new ICmpInst(I
.getPredicate(), A
, B
);
1670 // If we have an icmp le or icmp ge instruction, turn it into the
1671 // appropriate icmp lt or icmp gt instruction. This allows us to rely on
1672 // them being folded in the code below. The SimplifyICmpInst code has
1673 // already handled the edge cases for us, so we just assert on them.
1674 switch (I
.getPredicate()) {
1676 case ICmpInst::ICMP_ULE
:
1677 assert(!CI
->isMaxValue(false)); // A <=u MAX -> TRUE
1678 return new ICmpInst(ICmpInst::ICMP_ULT
, Op0
,
1679 ConstantInt::get(CI
->getContext(), CI
->getValue()+1));
1680 case ICmpInst::ICMP_SLE
:
1681 assert(!CI
->isMaxValue(true)); // A <=s MAX -> TRUE
1682 return new ICmpInst(ICmpInst::ICMP_SLT
, Op0
,
1683 ConstantInt::get(CI
->getContext(), CI
->getValue()+1));
1684 case ICmpInst::ICMP_UGE
:
1685 assert(!CI
->isMinValue(false)); // A >=u MIN -> TRUE
1686 return new ICmpInst(ICmpInst::ICMP_UGT
, Op0
,
1687 ConstantInt::get(CI
->getContext(), CI
->getValue()-1));
1688 case ICmpInst::ICMP_SGE
:
1689 assert(!CI
->isMinValue(true)); // A >=s MIN -> TRUE
1690 return new ICmpInst(ICmpInst::ICMP_SGT
, Op0
,
1691 ConstantInt::get(CI
->getContext(), CI
->getValue()-1));
1694 // If this comparison is a normal comparison, it demands all
1695 // bits, if it is a sign bit comparison, it only demands the sign bit.
1697 isSignBit
= isSignBitCheck(I
.getPredicate(), CI
, UnusedBit
);
1700 // See if we can fold the comparison based on range information we can get
1701 // by checking whether bits are known to be zero or one in the input.
1702 if (BitWidth
!= 0) {
1703 APInt
Op0KnownZero(BitWidth
, 0), Op0KnownOne(BitWidth
, 0);
1704 APInt
Op1KnownZero(BitWidth
, 0), Op1KnownOne(BitWidth
, 0);
1706 if (SimplifyDemandedBits(I
.getOperandUse(0),
1707 isSignBit
? APInt::getSignBit(BitWidth
)
1708 : APInt::getAllOnesValue(BitWidth
),
1709 Op0KnownZero
, Op0KnownOne
, 0))
1711 if (SimplifyDemandedBits(I
.getOperandUse(1),
1712 APInt::getAllOnesValue(BitWidth
),
1713 Op1KnownZero
, Op1KnownOne
, 0))
1716 // Given the known and unknown bits, compute a range that the LHS could be
1717 // in. Compute the Min, Max and RHS values based on the known bits. For the
1718 // EQ and NE we use unsigned values.
1719 APInt
Op0Min(BitWidth
, 0), Op0Max(BitWidth
, 0);
1720 APInt
Op1Min(BitWidth
, 0), Op1Max(BitWidth
, 0);
1722 ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero
, Op0KnownOne
,
1724 ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero
, Op1KnownOne
,
1727 ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero
, Op0KnownOne
,
1729 ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero
, Op1KnownOne
,
1733 // If Min and Max are known to be the same, then SimplifyDemandedBits
1734 // figured out that the LHS is a constant. Just constant fold this now so
1735 // that code below can assume that Min != Max.
1736 if (!isa
<Constant
>(Op0
) && Op0Min
== Op0Max
)
1737 return new ICmpInst(I
.getPredicate(),
1738 ConstantInt::get(I
.getContext(), Op0Min
), Op1
);
1739 if (!isa
<Constant
>(Op1
) && Op1Min
== Op1Max
)
1740 return new ICmpInst(I
.getPredicate(), Op0
,
1741 ConstantInt::get(I
.getContext(), Op1Min
));
1743 // Based on the range information we know about the LHS, see if we can
1744 // simplify this comparison. For example, (x&4) < 8 is always true.
1745 switch (I
.getPredicate()) {
1746 default: llvm_unreachable("Unknown icmp opcode!");
1747 case ICmpInst::ICMP_EQ
:
1748 if (Op0Max
.ult(Op1Min
) || Op0Min
.ugt(Op1Max
))
1749 return ReplaceInstUsesWith(I
, ConstantInt::getFalse(I
.getContext()));
1751 case ICmpInst::ICMP_NE
:
1752 if (Op0Max
.ult(Op1Min
) || Op0Min
.ugt(Op1Max
))
1753 return ReplaceInstUsesWith(I
, ConstantInt::getTrue(I
.getContext()));
1755 case ICmpInst::ICMP_ULT
:
1756 if (Op0Max
.ult(Op1Min
)) // A <u B -> true if max(A) < min(B)
1757 return ReplaceInstUsesWith(I
, ConstantInt::getTrue(I
.getContext()));
1758 if (Op0Min
.uge(Op1Max
)) // A <u B -> false if min(A) >= max(B)
1759 return ReplaceInstUsesWith(I
, ConstantInt::getFalse(I
.getContext()));
1760 if (Op1Min
== Op0Max
) // A <u B -> A != B if max(A) == min(B)
1761 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
1762 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op1
)) {
1763 if (Op1Max
== Op0Min
+1) // A <u C -> A == C-1 if min(A)+1 == C
1764 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
1765 ConstantInt::get(CI
->getContext(), CI
->getValue()-1));
1767 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
1768 if (CI
->isMinValue(true))
1769 return new ICmpInst(ICmpInst::ICMP_SGT
, Op0
,
1770 Constant::getAllOnesValue(Op0
->getType()));
1773 case ICmpInst::ICMP_UGT
:
1774 if (Op0Min
.ugt(Op1Max
)) // A >u B -> true if min(A) > max(B)
1775 return ReplaceInstUsesWith(I
, ConstantInt::getTrue(I
.getContext()));
1776 if (Op0Max
.ule(Op1Min
)) // A >u B -> false if max(A) <= max(B)
1777 return ReplaceInstUsesWith(I
, ConstantInt::getFalse(I
.getContext()));
1779 if (Op1Max
== Op0Min
) // A >u B -> A != B if min(A) == max(B)
1780 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
1781 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op1
)) {
1782 if (Op1Min
== Op0Max
-1) // A >u C -> A == C+1 if max(a)-1 == C
1783 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
1784 ConstantInt::get(CI
->getContext(), CI
->getValue()+1));
1786 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
1787 if (CI
->isMaxValue(true))
1788 return new ICmpInst(ICmpInst::ICMP_SLT
, Op0
,
1789 Constant::getNullValue(Op0
->getType()));
1792 case ICmpInst::ICMP_SLT
:
1793 if (Op0Max
.slt(Op1Min
)) // A <s B -> true if max(A) < min(C)
1794 return ReplaceInstUsesWith(I
, ConstantInt::getTrue(I
.getContext()));
1795 if (Op0Min
.sge(Op1Max
)) // A <s B -> false if min(A) >= max(C)
1796 return ReplaceInstUsesWith(I
, ConstantInt::getFalse(I
.getContext()));
1797 if (Op1Min
== Op0Max
) // A <s B -> A != B if max(A) == min(B)
1798 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
1799 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op1
)) {
1800 if (Op1Max
== Op0Min
+1) // A <s C -> A == C-1 if min(A)+1 == C
1801 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
1802 ConstantInt::get(CI
->getContext(), CI
->getValue()-1));
1805 case ICmpInst::ICMP_SGT
:
1806 if (Op0Min
.sgt(Op1Max
)) // A >s B -> true if min(A) > max(B)
1807 return ReplaceInstUsesWith(I
, ConstantInt::getTrue(I
.getContext()));
1808 if (Op0Max
.sle(Op1Min
)) // A >s B -> false if max(A) <= min(B)
1809 return ReplaceInstUsesWith(I
, ConstantInt::getFalse(I
.getContext()));
1811 if (Op1Max
== Op0Min
) // A >s B -> A != B if min(A) == max(B)
1812 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
1813 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op1
)) {
1814 if (Op1Min
== Op0Max
-1) // A >s C -> A == C+1 if max(A)-1 == C
1815 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
1816 ConstantInt::get(CI
->getContext(), CI
->getValue()+1));
1819 case ICmpInst::ICMP_SGE
:
1820 assert(!isa
<ConstantInt
>(Op1
) && "ICMP_SGE with ConstantInt not folded!");
1821 if (Op0Min
.sge(Op1Max
)) // A >=s B -> true if min(A) >= max(B)
1822 return ReplaceInstUsesWith(I
, ConstantInt::getTrue(I
.getContext()));
1823 if (Op0Max
.slt(Op1Min
)) // A >=s B -> false if max(A) < min(B)
1824 return ReplaceInstUsesWith(I
, ConstantInt::getFalse(I
.getContext()));
1826 case ICmpInst::ICMP_SLE
:
1827 assert(!isa
<ConstantInt
>(Op1
) && "ICMP_SLE with ConstantInt not folded!");
1828 if (Op0Max
.sle(Op1Min
)) // A <=s B -> true if max(A) <= min(B)
1829 return ReplaceInstUsesWith(I
, ConstantInt::getTrue(I
.getContext()));
1830 if (Op0Min
.sgt(Op1Max
)) // A <=s B -> false if min(A) > max(B)
1831 return ReplaceInstUsesWith(I
, ConstantInt::getFalse(I
.getContext()));
1833 case ICmpInst::ICMP_UGE
:
1834 assert(!isa
<ConstantInt
>(Op1
) && "ICMP_UGE with ConstantInt not folded!");
1835 if (Op0Min
.uge(Op1Max
)) // A >=u B -> true if min(A) >= max(B)
1836 return ReplaceInstUsesWith(I
, ConstantInt::getTrue(I
.getContext()));
1837 if (Op0Max
.ult(Op1Min
)) // A >=u B -> false if max(A) < min(B)
1838 return ReplaceInstUsesWith(I
, ConstantInt::getFalse(I
.getContext()));
1840 case ICmpInst::ICMP_ULE
:
1841 assert(!isa
<ConstantInt
>(Op1
) && "ICMP_ULE with ConstantInt not folded!");
1842 if (Op0Max
.ule(Op1Min
)) // A <=u B -> true if max(A) <= min(B)
1843 return ReplaceInstUsesWith(I
, ConstantInt::getTrue(I
.getContext()));
1844 if (Op0Min
.ugt(Op1Max
)) // A <=u B -> false if min(A) > max(B)
1845 return ReplaceInstUsesWith(I
, ConstantInt::getFalse(I
.getContext()));
1849 // Turn a signed comparison into an unsigned one if both operands
1850 // are known to have the same sign.
1852 ((Op0KnownZero
.isNegative() && Op1KnownZero
.isNegative()) ||
1853 (Op0KnownOne
.isNegative() && Op1KnownOne
.isNegative())))
1854 return new ICmpInst(I
.getUnsignedPredicate(), Op0
, Op1
);
1857 // Test if the ICmpInst instruction is used exclusively by a select as
1858 // part of a minimum or maximum operation. If so, refrain from doing
1859 // any other folding. This helps out other analyses which understand
1860 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
1861 // and CodeGen. And in this case, at least one of the comparison
1862 // operands has at least one user besides the compare (the select),
1863 // which would often largely negate the benefit of folding anyway.
1865 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(*I
.use_begin()))
1866 if ((SI
->getOperand(1) == Op0
&& SI
->getOperand(2) == Op1
) ||
1867 (SI
->getOperand(2) == Op0
&& SI
->getOperand(1) == Op1
))
1870 // See if we are doing a comparison between a constant and an instruction that
1871 // can be folded into the comparison.
1872 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op1
)) {
1873 // Since the RHS is a ConstantInt (CI), if the left hand side is an
1874 // instruction, see if that instruction also has constants so that the
1875 // instruction can be folded into the icmp
1876 if (Instruction
*LHSI
= dyn_cast
<Instruction
>(Op0
))
1877 if (Instruction
*Res
= visitICmpInstWithInstAndIntCst(I
, LHSI
, CI
))
1881 // Handle icmp with constant (but not simple integer constant) RHS
1882 if (Constant
*RHSC
= dyn_cast
<Constant
>(Op1
)) {
1883 if (Instruction
*LHSI
= dyn_cast
<Instruction
>(Op0
))
1884 switch (LHSI
->getOpcode()) {
1885 case Instruction::GetElementPtr
:
1886 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
1887 if (RHSC
->isNullValue() &&
1888 cast
<GetElementPtrInst
>(LHSI
)->hasAllZeroIndices())
1889 return new ICmpInst(I
.getPredicate(), LHSI
->getOperand(0),
1890 Constant::getNullValue(LHSI
->getOperand(0)->getType()));
1892 case Instruction::PHI
:
1893 // Only fold icmp into the PHI if the phi and icmp are in the same
1894 // block. If in the same block, we're encouraging jump threading. If
1895 // not, we are just pessimizing the code by making an i1 phi.
1896 if (LHSI
->getParent() == I
.getParent())
1897 if (Instruction
*NV
= FoldOpIntoPhi(I
, true))
1900 case Instruction::Select
: {
1901 // If either operand of the select is a constant, we can fold the
1902 // comparison into the select arms, which will cause one to be
1903 // constant folded and the select turned into a bitwise or.
1904 Value
*Op1
= 0, *Op2
= 0;
1905 if (Constant
*C
= dyn_cast
<Constant
>(LHSI
->getOperand(1)))
1906 Op1
= ConstantExpr::getICmp(I
.getPredicate(), C
, RHSC
);
1907 if (Constant
*C
= dyn_cast
<Constant
>(LHSI
->getOperand(2)))
1908 Op2
= ConstantExpr::getICmp(I
.getPredicate(), C
, RHSC
);
1910 // We only want to perform this transformation if it will not lead to
1911 // additional code. This is true if either both sides of the select
1912 // fold to a constant (in which case the icmp is replaced with a select
1913 // which will usually simplify) or this is the only user of the
1914 // select (in which case we are trading a select+icmp for a simpler
1916 if ((Op1
&& Op2
) || (LHSI
->hasOneUse() && (Op1
|| Op2
))) {
1918 Op1
= Builder
->CreateICmp(I
.getPredicate(), LHSI
->getOperand(1),
1921 Op2
= Builder
->CreateICmp(I
.getPredicate(), LHSI
->getOperand(2),
1923 return SelectInst::Create(LHSI
->getOperand(0), Op1
, Op2
);
1927 case Instruction::IntToPtr
:
1928 // icmp pred inttoptr(X), null -> icmp pred X, 0
1929 if (RHSC
->isNullValue() && TD
&&
1930 TD
->getIntPtrType(RHSC
->getContext()) ==
1931 LHSI
->getOperand(0)->getType())
1932 return new ICmpInst(I
.getPredicate(), LHSI
->getOperand(0),
1933 Constant::getNullValue(LHSI
->getOperand(0)->getType()));
1936 case Instruction::Load
:
1937 // Try to optimize things like "A[i] > 4" to index computations.
1938 if (GetElementPtrInst
*GEP
=
1939 dyn_cast
<GetElementPtrInst
>(LHSI
->getOperand(0))) {
1940 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0)))
1941 if (GV
->isConstant() && GV
->hasDefinitiveInitializer() &&
1942 !cast
<LoadInst
>(LHSI
)->isVolatile())
1943 if (Instruction
*Res
= FoldCmpLoadFromIndexedGlobal(GEP
, GV
, I
))
1950 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
1951 if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(Op0
))
1952 if (Instruction
*NI
= FoldGEPICmp(GEP
, Op1
, I
.getPredicate(), I
))
1954 if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(Op1
))
1955 if (Instruction
*NI
= FoldGEPICmp(GEP
, Op0
,
1956 ICmpInst::getSwappedPredicate(I
.getPredicate()), I
))
1959 // Test to see if the operands of the icmp are casted versions of other
1960 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
1962 if (BitCastInst
*CI
= dyn_cast
<BitCastInst
>(Op0
)) {
1963 if (Op0
->getType()->isPointerTy() &&
1964 (isa
<Constant
>(Op1
) || isa
<BitCastInst
>(Op1
))) {
1965 // We keep moving the cast from the left operand over to the right
1966 // operand, where it can often be eliminated completely.
1967 Op0
= CI
->getOperand(0);
1969 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
1970 // so eliminate it as well.
1971 if (BitCastInst
*CI2
= dyn_cast
<BitCastInst
>(Op1
))
1972 Op1
= CI2
->getOperand(0);
1974 // If Op1 is a constant, we can fold the cast into the constant.
1975 if (Op0
->getType() != Op1
->getType()) {
1976 if (Constant
*Op1C
= dyn_cast
<Constant
>(Op1
)) {
1977 Op1
= ConstantExpr::getBitCast(Op1C
, Op0
->getType());
1979 // Otherwise, cast the RHS right before the icmp
1980 Op1
= Builder
->CreateBitCast(Op1
, Op0
->getType());
1983 return new ICmpInst(I
.getPredicate(), Op0
, Op1
);
1987 if (isa
<CastInst
>(Op0
)) {
1988 // Handle the special case of: icmp (cast bool to X), <cst>
1989 // This comes up when you have code like
1992 // For generality, we handle any zero-extension of any operand comparison
1993 // with a constant or another cast from the same type.
1994 if (isa
<Constant
>(Op1
) || isa
<CastInst
>(Op1
))
1995 if (Instruction
*R
= visitICmpInstWithCastAndCast(I
))
1999 // See if it's the same type of instruction on the left and right.
2000 if (BinaryOperator
*Op0I
= dyn_cast
<BinaryOperator
>(Op0
)) {
2001 if (BinaryOperator
*Op1I
= dyn_cast
<BinaryOperator
>(Op1
)) {
2002 if (Op0I
->getOpcode() == Op1I
->getOpcode() && Op0I
->hasOneUse() &&
2003 Op1I
->hasOneUse() && Op0I
->getOperand(1) == Op1I
->getOperand(1)) {
2004 switch (Op0I
->getOpcode()) {
2006 case Instruction::Add
:
2007 case Instruction::Sub
:
2008 case Instruction::Xor
:
2009 if (I
.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
2010 return new ICmpInst(I
.getPredicate(), Op0I
->getOperand(0),
2011 Op1I
->getOperand(0));
2012 // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
2013 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op0I
->getOperand(1))) {
2014 if (CI
->getValue().isSignBit()) {
2015 ICmpInst::Predicate Pred
= I
.isSigned()
2016 ? I
.getUnsignedPredicate()
2017 : I
.getSignedPredicate();
2018 return new ICmpInst(Pred
, Op0I
->getOperand(0),
2019 Op1I
->getOperand(0));
2022 if (CI
->getValue().isMaxSignedValue()) {
2023 ICmpInst::Predicate Pred
= I
.isSigned()
2024 ? I
.getUnsignedPredicate()
2025 : I
.getSignedPredicate();
2026 Pred
= I
.getSwappedPredicate(Pred
);
2027 return new ICmpInst(Pred
, Op0I
->getOperand(0),
2028 Op1I
->getOperand(0));
2032 case Instruction::Mul
:
2033 if (!I
.isEquality())
2036 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op0I
->getOperand(1))) {
2037 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
2038 // Mask = -1 >> count-trailing-zeros(Cst).
2039 if (!CI
->isZero() && !CI
->isOne()) {
2040 const APInt
&AP
= CI
->getValue();
2041 ConstantInt
*Mask
= ConstantInt::get(I
.getContext(),
2042 APInt::getLowBitsSet(AP
.getBitWidth(),
2044 AP
.countTrailingZeros()));
2045 Value
*And1
= Builder
->CreateAnd(Op0I
->getOperand(0), Mask
);
2046 Value
*And2
= Builder
->CreateAnd(Op1I
->getOperand(0), Mask
);
2047 return new ICmpInst(I
.getPredicate(), And1
, And2
);
2056 // ~x < ~y --> y < x
2058 if (match(Op0
, m_Not(m_Value(A
))) &&
2059 match(Op1
, m_Not(m_Value(B
))))
2060 return new ICmpInst(I
.getPredicate(), B
, A
);
2063 if (I
.isEquality()) {
2064 Value
*A
, *B
, *C
, *D
;
2066 // -x == -y --> x == y
2067 if (match(Op0
, m_Neg(m_Value(A
))) &&
2068 match(Op1
, m_Neg(m_Value(B
))))
2069 return new ICmpInst(I
.getPredicate(), A
, B
);
2071 if (match(Op0
, m_Xor(m_Value(A
), m_Value(B
)))) {
2072 if (A
== Op1
|| B
== Op1
) { // (A^B) == A -> B == 0
2073 Value
*OtherVal
= A
== Op1
? B
: A
;
2074 return new ICmpInst(I
.getPredicate(), OtherVal
,
2075 Constant::getNullValue(A
->getType()));
2078 if (match(Op1
, m_Xor(m_Value(C
), m_Value(D
)))) {
2079 // A^c1 == C^c2 --> A == C^(c1^c2)
2080 ConstantInt
*C1
, *C2
;
2081 if (match(B
, m_ConstantInt(C1
)) &&
2082 match(D
, m_ConstantInt(C2
)) && Op1
->hasOneUse()) {
2083 Constant
*NC
= ConstantInt::get(I
.getContext(),
2084 C1
->getValue() ^ C2
->getValue());
2085 Value
*Xor
= Builder
->CreateXor(C
, NC
, "tmp");
2086 return new ICmpInst(I
.getPredicate(), A
, Xor
);
2089 // A^B == A^D -> B == D
2090 if (A
== C
) return new ICmpInst(I
.getPredicate(), B
, D
);
2091 if (A
== D
) return new ICmpInst(I
.getPredicate(), B
, C
);
2092 if (B
== C
) return new ICmpInst(I
.getPredicate(), A
, D
);
2093 if (B
== D
) return new ICmpInst(I
.getPredicate(), A
, C
);
2097 if (match(Op1
, m_Xor(m_Value(A
), m_Value(B
))) &&
2098 (A
== Op0
|| B
== Op0
)) {
2099 // A == (A^B) -> B == 0
2100 Value
*OtherVal
= A
== Op0
? B
: A
;
2101 return new ICmpInst(I
.getPredicate(), OtherVal
,
2102 Constant::getNullValue(A
->getType()));
2105 // (A-B) == A -> B == 0
2106 if (match(Op0
, m_Sub(m_Specific(Op1
), m_Value(B
))))
2107 return new ICmpInst(I
.getPredicate(), B
,
2108 Constant::getNullValue(B
->getType()));
2110 // A == (A-B) -> B == 0
2111 if (match(Op1
, m_Sub(m_Specific(Op0
), m_Value(B
))))
2112 return new ICmpInst(I
.getPredicate(), B
,
2113 Constant::getNullValue(B
->getType()));
2115 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
2116 if (Op0
->hasOneUse() && Op1
->hasOneUse() &&
2117 match(Op0
, m_And(m_Value(A
), m_Value(B
))) &&
2118 match(Op1
, m_And(m_Value(C
), m_Value(D
)))) {
2119 Value
*X
= 0, *Y
= 0, *Z
= 0;
2122 X
= B
; Y
= D
; Z
= A
;
2123 } else if (A
== D
) {
2124 X
= B
; Y
= C
; Z
= A
;
2125 } else if (B
== C
) {
2126 X
= A
; Y
= D
; Z
= B
;
2127 } else if (B
== D
) {
2128 X
= A
; Y
= C
; Z
= B
;
2131 if (X
) { // Build (X^Y) & Z
2132 Op1
= Builder
->CreateXor(X
, Y
, "tmp");
2133 Op1
= Builder
->CreateAnd(Op1
, Z
, "tmp");
2134 I
.setOperand(0, Op1
);
2135 I
.setOperand(1, Constant::getNullValue(Op1
->getType()));
2142 Value
*X
; ConstantInt
*Cst
;
2144 if (match(Op0
, m_Add(m_Value(X
), m_ConstantInt(Cst
))) && Op1
== X
)
2145 return FoldICmpAddOpCst(I
, X
, Cst
, I
.getPredicate(), Op0
);
2148 if (match(Op1
, m_Add(m_Value(X
), m_ConstantInt(Cst
))) && Op0
== X
)
2149 return FoldICmpAddOpCst(I
, X
, Cst
, I
.getSwappedPredicate(), Op1
);
2151 return Changed
? &I
: 0;
2159 /// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
2161 Instruction
*InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst
&I
,
2164 if (!isa
<ConstantFP
>(RHSC
)) return 0;
2165 const APFloat
&RHS
= cast
<ConstantFP
>(RHSC
)->getValueAPF();
2167 // Get the width of the mantissa. We don't want to hack on conversions that
2168 // might lose information from the integer, e.g. "i64 -> float"
2169 int MantissaWidth
= LHSI
->getType()->getFPMantissaWidth();
2170 if (MantissaWidth
== -1) return 0; // Unknown.
2172 // Check to see that the input is converted from an integer type that is small
2173 // enough that preserves all bits. TODO: check here for "known" sign bits.
2174 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
2175 unsigned InputSize
= LHSI
->getOperand(0)->getType()->getScalarSizeInBits();
2177 // If this is a uitofp instruction, we need an extra bit to hold the sign.
2178 bool LHSUnsigned
= isa
<UIToFPInst
>(LHSI
);
2182 // If the conversion would lose info, don't hack on this.
2183 if ((int)InputSize
> MantissaWidth
)
2186 // Otherwise, we can potentially simplify the comparison. We know that it
2187 // will always come through as an integer value and we know the constant is
2188 // not a NAN (it would have been previously simplified).
2189 assert(!RHS
.isNaN() && "NaN comparison not already folded!");
2191 ICmpInst::Predicate Pred
;
2192 switch (I
.getPredicate()) {
2193 default: llvm_unreachable("Unexpected predicate!");
2194 case FCmpInst::FCMP_UEQ
:
2195 case FCmpInst::FCMP_OEQ
:
2196 Pred
= ICmpInst::ICMP_EQ
;
2198 case FCmpInst::FCMP_UGT
:
2199 case FCmpInst::FCMP_OGT
:
2200 Pred
= LHSUnsigned
? ICmpInst::ICMP_UGT
: ICmpInst::ICMP_SGT
;
2202 case FCmpInst::FCMP_UGE
:
2203 case FCmpInst::FCMP_OGE
:
2204 Pred
= LHSUnsigned
? ICmpInst::ICMP_UGE
: ICmpInst::ICMP_SGE
;
2206 case FCmpInst::FCMP_ULT
:
2207 case FCmpInst::FCMP_OLT
:
2208 Pred
= LHSUnsigned
? ICmpInst::ICMP_ULT
: ICmpInst::ICMP_SLT
;
2210 case FCmpInst::FCMP_ULE
:
2211 case FCmpInst::FCMP_OLE
:
2212 Pred
= LHSUnsigned
? ICmpInst::ICMP_ULE
: ICmpInst::ICMP_SLE
;
2214 case FCmpInst::FCMP_UNE
:
2215 case FCmpInst::FCMP_ONE
:
2216 Pred
= ICmpInst::ICMP_NE
;
2218 case FCmpInst::FCMP_ORD
:
2219 return ReplaceInstUsesWith(I
, ConstantInt::getTrue(I
.getContext()));
2220 case FCmpInst::FCMP_UNO
:
2221 return ReplaceInstUsesWith(I
, ConstantInt::getFalse(I
.getContext()));
2224 const IntegerType
*IntTy
= cast
<IntegerType
>(LHSI
->getOperand(0)->getType());
2226 // Now we know that the APFloat is a normal number, zero or inf.
2228 // See if the FP constant is too large for the integer. For example,
2229 // comparing an i8 to 300.0.
2230 unsigned IntWidth
= IntTy
->getScalarSizeInBits();
2233 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
2234 // and large values.
2235 APFloat
SMax(RHS
.getSemantics(), APFloat::fcZero
, false);
2236 SMax
.convertFromAPInt(APInt::getSignedMaxValue(IntWidth
), true,
2237 APFloat::rmNearestTiesToEven
);
2238 if (SMax
.compare(RHS
) == APFloat::cmpLessThan
) { // smax < 13123.0
2239 if (Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_SLT
||
2240 Pred
== ICmpInst::ICMP_SLE
)
2241 return ReplaceInstUsesWith(I
, ConstantInt::getTrue(I
.getContext()));
2242 return ReplaceInstUsesWith(I
, ConstantInt::getFalse(I
.getContext()));
2245 // If the RHS value is > UnsignedMax, fold the comparison. This handles
2246 // +INF and large values.
2247 APFloat
UMax(RHS
.getSemantics(), APFloat::fcZero
, false);
2248 UMax
.convertFromAPInt(APInt::getMaxValue(IntWidth
), false,
2249 APFloat::rmNearestTiesToEven
);
2250 if (UMax
.compare(RHS
) == APFloat::cmpLessThan
) { // umax < 13123.0
2251 if (Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_ULT
||
2252 Pred
== ICmpInst::ICMP_ULE
)
2253 return ReplaceInstUsesWith(I
, ConstantInt::getTrue(I
.getContext()));
2254 return ReplaceInstUsesWith(I
, ConstantInt::getFalse(I
.getContext()));
2259 // See if the RHS value is < SignedMin.
2260 APFloat
SMin(RHS
.getSemantics(), APFloat::fcZero
, false);
2261 SMin
.convertFromAPInt(APInt::getSignedMinValue(IntWidth
), true,
2262 APFloat::rmNearestTiesToEven
);
2263 if (SMin
.compare(RHS
) == APFloat::cmpGreaterThan
) { // smin > 12312.0
2264 if (Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_SGT
||
2265 Pred
== ICmpInst::ICMP_SGE
)
2266 return ReplaceInstUsesWith(I
, ConstantInt::getTrue(I
.getContext()));
2267 return ReplaceInstUsesWith(I
, ConstantInt::getFalse(I
.getContext()));
2271 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
2272 // [0, UMAX], but it may still be fractional. See if it is fractional by
2273 // casting the FP value to the integer value and back, checking for equality.
2274 // Don't do this for zero, because -0.0 is not fractional.
2275 Constant
*RHSInt
= LHSUnsigned
2276 ? ConstantExpr::getFPToUI(RHSC
, IntTy
)
2277 : ConstantExpr::getFPToSI(RHSC
, IntTy
);
2278 if (!RHS
.isZero()) {
2279 bool Equal
= LHSUnsigned
2280 ? ConstantExpr::getUIToFP(RHSInt
, RHSC
->getType()) == RHSC
2281 : ConstantExpr::getSIToFP(RHSInt
, RHSC
->getType()) == RHSC
;
2283 // If we had a comparison against a fractional value, we have to adjust
2284 // the compare predicate and sometimes the value. RHSC is rounded towards
2285 // zero at this point.
2287 default: llvm_unreachable("Unexpected integer comparison!");
2288 case ICmpInst::ICMP_NE
: // (float)int != 4.4 --> true
2289 return ReplaceInstUsesWith(I
, ConstantInt::getTrue(I
.getContext()));
2290 case ICmpInst::ICMP_EQ
: // (float)int == 4.4 --> false
2291 return ReplaceInstUsesWith(I
, ConstantInt::getFalse(I
.getContext()));
2292 case ICmpInst::ICMP_ULE
:
2293 // (float)int <= 4.4 --> int <= 4
2294 // (float)int <= -4.4 --> false
2295 if (RHS
.isNegative())
2296 return ReplaceInstUsesWith(I
, ConstantInt::getFalse(I
.getContext()));
2298 case ICmpInst::ICMP_SLE
:
2299 // (float)int <= 4.4 --> int <= 4
2300 // (float)int <= -4.4 --> int < -4
2301 if (RHS
.isNegative())
2302 Pred
= ICmpInst::ICMP_SLT
;
2304 case ICmpInst::ICMP_ULT
:
2305 // (float)int < -4.4 --> false
2306 // (float)int < 4.4 --> int <= 4
2307 if (RHS
.isNegative())
2308 return ReplaceInstUsesWith(I
, ConstantInt::getFalse(I
.getContext()));
2309 Pred
= ICmpInst::ICMP_ULE
;
2311 case ICmpInst::ICMP_SLT
:
2312 // (float)int < -4.4 --> int < -4
2313 // (float)int < 4.4 --> int <= 4
2314 if (!RHS
.isNegative())
2315 Pred
= ICmpInst::ICMP_SLE
;
2317 case ICmpInst::ICMP_UGT
:
2318 // (float)int > 4.4 --> int > 4
2319 // (float)int > -4.4 --> true
2320 if (RHS
.isNegative())
2321 return ReplaceInstUsesWith(I
, ConstantInt::getTrue(I
.getContext()));
2323 case ICmpInst::ICMP_SGT
:
2324 // (float)int > 4.4 --> int > 4
2325 // (float)int > -4.4 --> int >= -4
2326 if (RHS
.isNegative())
2327 Pred
= ICmpInst::ICMP_SGE
;
2329 case ICmpInst::ICMP_UGE
:
2330 // (float)int >= -4.4 --> true
2331 // (float)int >= 4.4 --> int > 4
2332 if (!RHS
.isNegative())
2333 return ReplaceInstUsesWith(I
, ConstantInt::getTrue(I
.getContext()));
2334 Pred
= ICmpInst::ICMP_UGT
;
2336 case ICmpInst::ICMP_SGE
:
2337 // (float)int >= -4.4 --> int >= -4
2338 // (float)int >= 4.4 --> int > 4
2339 if (!RHS
.isNegative())
2340 Pred
= ICmpInst::ICMP_SGT
;
2346 // Lower this FP comparison into an appropriate integer version of the
2348 return new ICmpInst(Pred
, LHSI
->getOperand(0), RHSInt
);
2351 Instruction
*InstCombiner::visitFCmpInst(FCmpInst
&I
) {
2352 bool Changed
= false;
2354 /// Orders the operands of the compare so that they are listed from most
2355 /// complex to least complex. This puts constants before unary operators,
2356 /// before binary operators.
2357 if (getComplexity(I
.getOperand(0)) < getComplexity(I
.getOperand(1))) {
2362 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
2364 if (Value
*V
= SimplifyFCmpInst(I
.getPredicate(), Op0
, Op1
, TD
))
2365 return ReplaceInstUsesWith(I
, V
);
2367 // Simplify 'fcmp pred X, X'
2369 switch (I
.getPredicate()) {
2370 default: llvm_unreachable("Unknown predicate!");
2371 case FCmpInst::FCMP_UNO
: // True if unordered: isnan(X) | isnan(Y)
2372 case FCmpInst::FCMP_ULT
: // True if unordered or less than
2373 case FCmpInst::FCMP_UGT
: // True if unordered or greater than
2374 case FCmpInst::FCMP_UNE
: // True if unordered or not equal
2375 // Canonicalize these to be 'fcmp uno %X, 0.0'.
2376 I
.setPredicate(FCmpInst::FCMP_UNO
);
2377 I
.setOperand(1, Constant::getNullValue(Op0
->getType()));
2380 case FCmpInst::FCMP_ORD
: // True if ordered (no nans)
2381 case FCmpInst::FCMP_OEQ
: // True if ordered and equal
2382 case FCmpInst::FCMP_OGE
: // True if ordered and greater than or equal
2383 case FCmpInst::FCMP_OLE
: // True if ordered and less than or equal
2384 // Canonicalize these to be 'fcmp ord %X, 0.0'.
2385 I
.setPredicate(FCmpInst::FCMP_ORD
);
2386 I
.setOperand(1, Constant::getNullValue(Op0
->getType()));
2391 // Handle fcmp with constant RHS
2392 if (Constant
*RHSC
= dyn_cast
<Constant
>(Op1
)) {
2393 if (Instruction
*LHSI
= dyn_cast
<Instruction
>(Op0
))
2394 switch (LHSI
->getOpcode()) {
2395 case Instruction::PHI
:
2396 // Only fold fcmp into the PHI if the phi and fcmp are in the same
2397 // block. If in the same block, we're encouraging jump threading. If
2398 // not, we are just pessimizing the code by making an i1 phi.
2399 if (LHSI
->getParent() == I
.getParent())
2400 if (Instruction
*NV
= FoldOpIntoPhi(I
, true))
2403 case Instruction::SIToFP
:
2404 case Instruction::UIToFP
:
2405 if (Instruction
*NV
= FoldFCmp_IntToFP_Cst(I
, LHSI
, RHSC
))
2408 case Instruction::Select
: {
2409 // If either operand of the select is a constant, we can fold the
2410 // comparison into the select arms, which will cause one to be
2411 // constant folded and the select turned into a bitwise or.
2412 Value
*Op1
= 0, *Op2
= 0;
2413 if (LHSI
->hasOneUse()) {
2414 if (Constant
*C
= dyn_cast
<Constant
>(LHSI
->getOperand(1))) {
2415 // Fold the known value into the constant operand.
2416 Op1
= ConstantExpr::getCompare(I
.getPredicate(), C
, RHSC
);
2417 // Insert a new FCmp of the other select operand.
2418 Op2
= Builder
->CreateFCmp(I
.getPredicate(),
2419 LHSI
->getOperand(2), RHSC
, I
.getName());
2420 } else if (Constant
*C
= dyn_cast
<Constant
>(LHSI
->getOperand(2))) {
2421 // Fold the known value into the constant operand.
2422 Op2
= ConstantExpr::getCompare(I
.getPredicate(), C
, RHSC
);
2423 // Insert a new FCmp of the other select operand.
2424 Op1
= Builder
->CreateFCmp(I
.getPredicate(), LHSI
->getOperand(1),
2430 return SelectInst::Create(LHSI
->getOperand(0), Op1
, Op2
);
2433 case Instruction::Load
:
2434 if (GetElementPtrInst
*GEP
=
2435 dyn_cast
<GetElementPtrInst
>(LHSI
->getOperand(0))) {
2436 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0)))
2437 if (GV
->isConstant() && GV
->hasDefinitiveInitializer() &&
2438 !cast
<LoadInst
>(LHSI
)->isVolatile())
2439 if (Instruction
*Res
= FoldCmpLoadFromIndexedGlobal(GEP
, GV
, I
))
2446 return Changed
? &I
: 0;