Fixed some bugs.
[llvm/zpu.git] / lib / Transforms / Scalar / LoopStrengthReduce.cpp
blob3a4108af13b493fafa50ba2c65c6f028319a5894
1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into forms suitable for efficient execution
12 // on the target.
14 // This pass performs a strength reduction on array references inside loops that
15 // have as one or more of their components the loop induction variable, it
16 // rewrites expressions to take advantage of scaled-index addressing modes
17 // available on the target, and it performs a variety of other optimizations
18 // related to loop induction variables.
20 // Terminology note: this code has a lot of handling for "post-increment" or
21 // "post-inc" users. This is not talking about post-increment addressing modes;
22 // it is instead talking about code like this:
24 // %i = phi [ 0, %entry ], [ %i.next, %latch ]
25 // ...
26 // %i.next = add %i, 1
27 // %c = icmp eq %i.next, %n
29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30 // it's useful to think about these as the same register, with some uses using
31 // the value of the register before the add and some using // it after. In this
32 // example, the icmp is a post-increment user, since it uses %i.next, which is
33 // the value of the induction variable after the increment. The other common
34 // case of post-increment users is users outside the loop.
36 // TODO: More sophistication in the way Formulae are generated and filtered.
38 // TODO: Handle multiple loops at a time.
40 // TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
41 // instead of a GlobalValue?
43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
44 // smaller encoding (on x86 at least).
46 // TODO: When a negated register is used by an add (such as in a list of
47 // multiple base registers, or as the increment expression in an addrec),
48 // we may not actually need both reg and (-1 * reg) in registers; the
49 // negation can be implemented by using a sub instead of an add. The
50 // lack of support for taking this into consideration when making
51 // register pressure decisions is partly worked around by the "Special"
52 // use kind.
54 //===----------------------------------------------------------------------===//
56 #define DEBUG_TYPE "loop-reduce"
57 #include "llvm/Transforms/Scalar.h"
58 #include "llvm/Constants.h"
59 #include "llvm/Instructions.h"
60 #include "llvm/IntrinsicInst.h"
61 #include "llvm/DerivedTypes.h"
62 #include "llvm/Analysis/IVUsers.h"
63 #include "llvm/Analysis/Dominators.h"
64 #include "llvm/Analysis/LoopPass.h"
65 #include "llvm/Analysis/ScalarEvolutionExpander.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Local.h"
68 #include "llvm/ADT/SmallBitVector.h"
69 #include "llvm/ADT/SetVector.h"
70 #include "llvm/ADT/DenseSet.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/ValueHandle.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/Target/TargetLowering.h"
75 #include <algorithm>
76 using namespace llvm;
78 namespace {
80 /// RegSortData - This class holds data which is used to order reuse candidates.
81 class RegSortData {
82 public:
83 /// UsedByIndices - This represents the set of LSRUse indices which reference
84 /// a particular register.
85 SmallBitVector UsedByIndices;
87 RegSortData() {}
89 void print(raw_ostream &OS) const;
90 void dump() const;
95 void RegSortData::print(raw_ostream &OS) const {
96 OS << "[NumUses=" << UsedByIndices.count() << ']';
99 void RegSortData::dump() const {
100 print(errs()); errs() << '\n';
103 namespace {
105 /// RegUseTracker - Map register candidates to information about how they are
106 /// used.
107 class RegUseTracker {
108 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
110 RegUsesTy RegUsesMap;
111 SmallVector<const SCEV *, 16> RegSequence;
113 public:
114 void CountRegister(const SCEV *Reg, size_t LUIdx);
115 void DropRegister(const SCEV *Reg, size_t LUIdx);
116 void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx);
118 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
120 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
122 void clear();
124 typedef SmallVectorImpl<const SCEV *>::iterator iterator;
125 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
126 iterator begin() { return RegSequence.begin(); }
127 iterator end() { return RegSequence.end(); }
128 const_iterator begin() const { return RegSequence.begin(); }
129 const_iterator end() const { return RegSequence.end(); }
134 void
135 RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
136 std::pair<RegUsesTy::iterator, bool> Pair =
137 RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
138 RegSortData &RSD = Pair.first->second;
139 if (Pair.second)
140 RegSequence.push_back(Reg);
141 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
142 RSD.UsedByIndices.set(LUIdx);
145 void
146 RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
147 RegUsesTy::iterator It = RegUsesMap.find(Reg);
148 assert(It != RegUsesMap.end());
149 RegSortData &RSD = It->second;
150 assert(RSD.UsedByIndices.size() > LUIdx);
151 RSD.UsedByIndices.reset(LUIdx);
154 void
155 RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
156 assert(LUIdx <= LastLUIdx);
158 // Update RegUses. The data structure is not optimized for this purpose;
159 // we must iterate through it and update each of the bit vectors.
160 for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
161 I != E; ++I) {
162 SmallBitVector &UsedByIndices = I->second.UsedByIndices;
163 if (LUIdx < UsedByIndices.size())
164 UsedByIndices[LUIdx] =
165 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
166 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
170 bool
171 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
172 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
173 if (I == RegUsesMap.end())
174 return false;
175 const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
176 int i = UsedByIndices.find_first();
177 if (i == -1) return false;
178 if ((size_t)i != LUIdx) return true;
179 return UsedByIndices.find_next(i) != -1;
182 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
183 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
184 assert(I != RegUsesMap.end() && "Unknown register!");
185 return I->second.UsedByIndices;
188 void RegUseTracker::clear() {
189 RegUsesMap.clear();
190 RegSequence.clear();
193 namespace {
195 /// Formula - This class holds information that describes a formula for
196 /// computing satisfying a use. It may include broken-out immediates and scaled
197 /// registers.
198 struct Formula {
199 /// AM - This is used to represent complex addressing, as well as other kinds
200 /// of interesting uses.
201 TargetLowering::AddrMode AM;
203 /// BaseRegs - The list of "base" registers for this use. When this is
204 /// non-empty, AM.HasBaseReg should be set to true.
205 SmallVector<const SCEV *, 2> BaseRegs;
207 /// ScaledReg - The 'scaled' register for this use. This should be non-null
208 /// when AM.Scale is not zero.
209 const SCEV *ScaledReg;
211 Formula() : ScaledReg(0) {}
213 void InitialMatch(const SCEV *S, Loop *L,
214 ScalarEvolution &SE, DominatorTree &DT);
216 unsigned getNumRegs() const;
217 const Type *getType() const;
219 void DeleteBaseReg(const SCEV *&S);
221 bool referencesReg(const SCEV *S) const;
222 bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
223 const RegUseTracker &RegUses) const;
225 void print(raw_ostream &OS) const;
226 void dump() const;
231 /// DoInitialMatch - Recursion helper for InitialMatch.
232 static void DoInitialMatch(const SCEV *S, Loop *L,
233 SmallVectorImpl<const SCEV *> &Good,
234 SmallVectorImpl<const SCEV *> &Bad,
235 ScalarEvolution &SE, DominatorTree &DT) {
236 // Collect expressions which properly dominate the loop header.
237 if (S->properlyDominates(L->getHeader(), &DT)) {
238 Good.push_back(S);
239 return;
242 // Look at add operands.
243 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
244 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
245 I != E; ++I)
246 DoInitialMatch(*I, L, Good, Bad, SE, DT);
247 return;
250 // Look at addrec operands.
251 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
252 if (!AR->getStart()->isZero()) {
253 DoInitialMatch(AR->getStart(), L, Good, Bad, SE, DT);
254 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
255 AR->getStepRecurrence(SE),
256 AR->getLoop()),
257 L, Good, Bad, SE, DT);
258 return;
261 // Handle a multiplication by -1 (negation) if it didn't fold.
262 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
263 if (Mul->getOperand(0)->isAllOnesValue()) {
264 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
265 const SCEV *NewMul = SE.getMulExpr(Ops);
267 SmallVector<const SCEV *, 4> MyGood;
268 SmallVector<const SCEV *, 4> MyBad;
269 DoInitialMatch(NewMul, L, MyGood, MyBad, SE, DT);
270 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
271 SE.getEffectiveSCEVType(NewMul->getType())));
272 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
273 E = MyGood.end(); I != E; ++I)
274 Good.push_back(SE.getMulExpr(NegOne, *I));
275 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
276 E = MyBad.end(); I != E; ++I)
277 Bad.push_back(SE.getMulExpr(NegOne, *I));
278 return;
281 // Ok, we can't do anything interesting. Just stuff the whole thing into a
282 // register and hope for the best.
283 Bad.push_back(S);
286 /// InitialMatch - Incorporate loop-variant parts of S into this Formula,
287 /// attempting to keep all loop-invariant and loop-computable values in a
288 /// single base register.
289 void Formula::InitialMatch(const SCEV *S, Loop *L,
290 ScalarEvolution &SE, DominatorTree &DT) {
291 SmallVector<const SCEV *, 4> Good;
292 SmallVector<const SCEV *, 4> Bad;
293 DoInitialMatch(S, L, Good, Bad, SE, DT);
294 if (!Good.empty()) {
295 const SCEV *Sum = SE.getAddExpr(Good);
296 if (!Sum->isZero())
297 BaseRegs.push_back(Sum);
298 AM.HasBaseReg = true;
300 if (!Bad.empty()) {
301 const SCEV *Sum = SE.getAddExpr(Bad);
302 if (!Sum->isZero())
303 BaseRegs.push_back(Sum);
304 AM.HasBaseReg = true;
308 /// getNumRegs - Return the total number of register operands used by this
309 /// formula. This does not include register uses implied by non-constant
310 /// addrec strides.
311 unsigned Formula::getNumRegs() const {
312 return !!ScaledReg + BaseRegs.size();
315 /// getType - Return the type of this formula, if it has one, or null
316 /// otherwise. This type is meaningless except for the bit size.
317 const Type *Formula::getType() const {
318 return !BaseRegs.empty() ? BaseRegs.front()->getType() :
319 ScaledReg ? ScaledReg->getType() :
320 AM.BaseGV ? AM.BaseGV->getType() :
324 /// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
325 void Formula::DeleteBaseReg(const SCEV *&S) {
326 if (&S != &BaseRegs.back())
327 std::swap(S, BaseRegs.back());
328 BaseRegs.pop_back();
331 /// referencesReg - Test if this formula references the given register.
332 bool Formula::referencesReg(const SCEV *S) const {
333 return S == ScaledReg ||
334 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
337 /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
338 /// which are used by uses other than the use with the given index.
339 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
340 const RegUseTracker &RegUses) const {
341 if (ScaledReg)
342 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
343 return true;
344 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
345 E = BaseRegs.end(); I != E; ++I)
346 if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
347 return true;
348 return false;
351 void Formula::print(raw_ostream &OS) const {
352 bool First = true;
353 if (AM.BaseGV) {
354 if (!First) OS << " + "; else First = false;
355 WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
357 if (AM.BaseOffs != 0) {
358 if (!First) OS << " + "; else First = false;
359 OS << AM.BaseOffs;
361 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
362 E = BaseRegs.end(); I != E; ++I) {
363 if (!First) OS << " + "; else First = false;
364 OS << "reg(" << **I << ')';
366 if (AM.HasBaseReg && BaseRegs.empty()) {
367 if (!First) OS << " + "; else First = false;
368 OS << "**error: HasBaseReg**";
369 } else if (!AM.HasBaseReg && !BaseRegs.empty()) {
370 if (!First) OS << " + "; else First = false;
371 OS << "**error: !HasBaseReg**";
373 if (AM.Scale != 0) {
374 if (!First) OS << " + "; else First = false;
375 OS << AM.Scale << "*reg(";
376 if (ScaledReg)
377 OS << *ScaledReg;
378 else
379 OS << "<unknown>";
380 OS << ')';
384 void Formula::dump() const {
385 print(errs()); errs() << '\n';
388 /// isAddRecSExtable - Return true if the given addrec can be sign-extended
389 /// without changing its value.
390 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
391 const Type *WideTy =
392 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
393 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
396 /// isAddSExtable - Return true if the given add can be sign-extended
397 /// without changing its value.
398 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
399 const Type *WideTy =
400 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
401 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
404 /// isMulSExtable - Return true if the given mul can be sign-extended
405 /// without changing its value.
406 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
407 const Type *WideTy =
408 IntegerType::get(SE.getContext(),
409 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
410 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
413 /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
414 /// and if the remainder is known to be zero, or null otherwise. If
415 /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
416 /// to Y, ignoring that the multiplication may overflow, which is useful when
417 /// the result will be used in a context where the most significant bits are
418 /// ignored.
419 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
420 ScalarEvolution &SE,
421 bool IgnoreSignificantBits = false) {
422 // Handle the trivial case, which works for any SCEV type.
423 if (LHS == RHS)
424 return SE.getConstant(LHS->getType(), 1);
426 // Handle a few RHS special cases.
427 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
428 if (RC) {
429 const APInt &RA = RC->getValue()->getValue();
430 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
431 // some folding.
432 if (RA.isAllOnesValue())
433 return SE.getMulExpr(LHS, RC);
434 // Handle x /s 1 as x.
435 if (RA == 1)
436 return LHS;
439 // Check for a division of a constant by a constant.
440 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
441 if (!RC)
442 return 0;
443 const APInt &LA = C->getValue()->getValue();
444 const APInt &RA = RC->getValue()->getValue();
445 if (LA.srem(RA) != 0)
446 return 0;
447 return SE.getConstant(LA.sdiv(RA));
450 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
451 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
452 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
453 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
454 IgnoreSignificantBits);
455 if (!Step) return 0;
456 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
457 IgnoreSignificantBits);
458 if (!Start) return 0;
459 return SE.getAddRecExpr(Start, Step, AR->getLoop());
461 return 0;
464 // Distribute the sdiv over add operands, if the add doesn't overflow.
465 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
466 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
467 SmallVector<const SCEV *, 8> Ops;
468 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
469 I != E; ++I) {
470 const SCEV *Op = getExactSDiv(*I, RHS, SE,
471 IgnoreSignificantBits);
472 if (!Op) return 0;
473 Ops.push_back(Op);
475 return SE.getAddExpr(Ops);
477 return 0;
480 // Check for a multiply operand that we can pull RHS out of.
481 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
482 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
483 SmallVector<const SCEV *, 4> Ops;
484 bool Found = false;
485 for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
486 I != E; ++I) {
487 const SCEV *S = *I;
488 if (!Found)
489 if (const SCEV *Q = getExactSDiv(S, RHS, SE,
490 IgnoreSignificantBits)) {
491 S = Q;
492 Found = true;
494 Ops.push_back(S);
496 return Found ? SE.getMulExpr(Ops) : 0;
498 return 0;
501 // Otherwise we don't know.
502 return 0;
505 /// ExtractImmediate - If S involves the addition of a constant integer value,
506 /// return that integer value, and mutate S to point to a new SCEV with that
507 /// value excluded.
508 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
509 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
510 if (C->getValue()->getValue().getMinSignedBits() <= 64) {
511 S = SE.getConstant(C->getType(), 0);
512 return C->getValue()->getSExtValue();
514 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
515 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
516 int64_t Result = ExtractImmediate(NewOps.front(), SE);
517 if (Result != 0)
518 S = SE.getAddExpr(NewOps);
519 return Result;
520 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
521 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
522 int64_t Result = ExtractImmediate(NewOps.front(), SE);
523 if (Result != 0)
524 S = SE.getAddRecExpr(NewOps, AR->getLoop());
525 return Result;
527 return 0;
530 /// ExtractSymbol - If S involves the addition of a GlobalValue address,
531 /// return that symbol, and mutate S to point to a new SCEV with that
532 /// value excluded.
533 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
534 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
535 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
536 S = SE.getConstant(GV->getType(), 0);
537 return GV;
539 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
540 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
541 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
542 if (Result)
543 S = SE.getAddExpr(NewOps);
544 return Result;
545 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
546 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
547 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
548 if (Result)
549 S = SE.getAddRecExpr(NewOps, AR->getLoop());
550 return Result;
552 return 0;
555 /// isAddressUse - Returns true if the specified instruction is using the
556 /// specified value as an address.
557 static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
558 bool isAddress = isa<LoadInst>(Inst);
559 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
560 if (SI->getOperand(1) == OperandVal)
561 isAddress = true;
562 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
563 // Addressing modes can also be folded into prefetches and a variety
564 // of intrinsics.
565 switch (II->getIntrinsicID()) {
566 default: break;
567 case Intrinsic::prefetch:
568 case Intrinsic::x86_sse2_loadu_dq:
569 case Intrinsic::x86_sse2_loadu_pd:
570 case Intrinsic::x86_sse_loadu_ps:
571 case Intrinsic::x86_sse_storeu_ps:
572 case Intrinsic::x86_sse2_storeu_pd:
573 case Intrinsic::x86_sse2_storeu_dq:
574 case Intrinsic::x86_sse2_storel_dq:
575 if (II->getArgOperand(0) == OperandVal)
576 isAddress = true;
577 break;
580 return isAddress;
583 /// getAccessType - Return the type of the memory being accessed.
584 static const Type *getAccessType(const Instruction *Inst) {
585 const Type *AccessTy = Inst->getType();
586 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
587 AccessTy = SI->getOperand(0)->getType();
588 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
589 // Addressing modes can also be folded into prefetches and a variety
590 // of intrinsics.
591 switch (II->getIntrinsicID()) {
592 default: break;
593 case Intrinsic::x86_sse_storeu_ps:
594 case Intrinsic::x86_sse2_storeu_pd:
595 case Intrinsic::x86_sse2_storeu_dq:
596 case Intrinsic::x86_sse2_storel_dq:
597 AccessTy = II->getArgOperand(0)->getType();
598 break;
602 // All pointers have the same requirements, so canonicalize them to an
603 // arbitrary pointer type to minimize variation.
604 if (const PointerType *PTy = dyn_cast<PointerType>(AccessTy))
605 AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
606 PTy->getAddressSpace());
608 return AccessTy;
611 /// DeleteTriviallyDeadInstructions - If any of the instructions is the
612 /// specified set are trivially dead, delete them and see if this makes any of
613 /// their operands subsequently dead.
614 static bool
615 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
616 bool Changed = false;
618 while (!DeadInsts.empty()) {
619 Instruction *I = dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val());
621 if (I == 0 || !isInstructionTriviallyDead(I))
622 continue;
624 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
625 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
626 *OI = 0;
627 if (U->use_empty())
628 DeadInsts.push_back(U);
631 I->eraseFromParent();
632 Changed = true;
635 return Changed;
638 namespace {
640 /// Cost - This class is used to measure and compare candidate formulae.
641 class Cost {
642 /// TODO: Some of these could be merged. Also, a lexical ordering
643 /// isn't always optimal.
644 unsigned NumRegs;
645 unsigned AddRecCost;
646 unsigned NumIVMuls;
647 unsigned NumBaseAdds;
648 unsigned ImmCost;
649 unsigned SetupCost;
651 public:
652 Cost()
653 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
654 SetupCost(0) {}
656 bool operator<(const Cost &Other) const;
658 void Loose();
660 void RateFormula(const Formula &F,
661 SmallPtrSet<const SCEV *, 16> &Regs,
662 const DenseSet<const SCEV *> &VisitedRegs,
663 const Loop *L,
664 const SmallVectorImpl<int64_t> &Offsets,
665 ScalarEvolution &SE, DominatorTree &DT);
667 void print(raw_ostream &OS) const;
668 void dump() const;
670 private:
671 void RateRegister(const SCEV *Reg,
672 SmallPtrSet<const SCEV *, 16> &Regs,
673 const Loop *L,
674 ScalarEvolution &SE, DominatorTree &DT);
675 void RatePrimaryRegister(const SCEV *Reg,
676 SmallPtrSet<const SCEV *, 16> &Regs,
677 const Loop *L,
678 ScalarEvolution &SE, DominatorTree &DT);
683 /// RateRegister - Tally up interesting quantities from the given register.
684 void Cost::RateRegister(const SCEV *Reg,
685 SmallPtrSet<const SCEV *, 16> &Regs,
686 const Loop *L,
687 ScalarEvolution &SE, DominatorTree &DT) {
688 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
689 if (AR->getLoop() == L)
690 AddRecCost += 1; /// TODO: This should be a function of the stride.
692 // If this is an addrec for a loop that's already been visited by LSR,
693 // don't second-guess its addrec phi nodes. LSR isn't currently smart
694 // enough to reason about more than one loop at a time. Consider these
695 // registers free and leave them alone.
696 else if (L->contains(AR->getLoop()) ||
697 (!AR->getLoop()->contains(L) &&
698 DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) {
699 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
700 PHINode *PN = dyn_cast<PHINode>(I); ++I)
701 if (SE.isSCEVable(PN->getType()) &&
702 (SE.getEffectiveSCEVType(PN->getType()) ==
703 SE.getEffectiveSCEVType(AR->getType())) &&
704 SE.getSCEV(PN) == AR)
705 return;
707 // If this isn't one of the addrecs that the loop already has, it
708 // would require a costly new phi and add. TODO: This isn't
709 // precisely modeled right now.
710 ++NumBaseAdds;
711 if (!Regs.count(AR->getStart()))
712 RateRegister(AR->getStart(), Regs, L, SE, DT);
715 // Add the step value register, if it needs one.
716 // TODO: The non-affine case isn't precisely modeled here.
717 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1)))
718 if (!Regs.count(AR->getStart()))
719 RateRegister(AR->getOperand(1), Regs, L, SE, DT);
721 ++NumRegs;
723 // Rough heuristic; favor registers which don't require extra setup
724 // instructions in the preheader.
725 if (!isa<SCEVUnknown>(Reg) &&
726 !isa<SCEVConstant>(Reg) &&
727 !(isa<SCEVAddRecExpr>(Reg) &&
728 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
729 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
730 ++SetupCost;
732 NumIVMuls += isa<SCEVMulExpr>(Reg) &&
733 Reg->hasComputableLoopEvolution(L);
736 /// RatePrimaryRegister - Record this register in the set. If we haven't seen it
737 /// before, rate it.
738 void Cost::RatePrimaryRegister(const SCEV *Reg,
739 SmallPtrSet<const SCEV *, 16> &Regs,
740 const Loop *L,
741 ScalarEvolution &SE, DominatorTree &DT) {
742 if (Regs.insert(Reg))
743 RateRegister(Reg, Regs, L, SE, DT);
746 void Cost::RateFormula(const Formula &F,
747 SmallPtrSet<const SCEV *, 16> &Regs,
748 const DenseSet<const SCEV *> &VisitedRegs,
749 const Loop *L,
750 const SmallVectorImpl<int64_t> &Offsets,
751 ScalarEvolution &SE, DominatorTree &DT) {
752 // Tally up the registers.
753 if (const SCEV *ScaledReg = F.ScaledReg) {
754 if (VisitedRegs.count(ScaledReg)) {
755 Loose();
756 return;
758 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT);
760 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
761 E = F.BaseRegs.end(); I != E; ++I) {
762 const SCEV *BaseReg = *I;
763 if (VisitedRegs.count(BaseReg)) {
764 Loose();
765 return;
767 RatePrimaryRegister(BaseReg, Regs, L, SE, DT);
770 if (F.BaseRegs.size() > 1)
771 NumBaseAdds += F.BaseRegs.size() - 1;
773 // Tally up the non-zero immediates.
774 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
775 E = Offsets.end(); I != E; ++I) {
776 int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
777 if (F.AM.BaseGV)
778 ImmCost += 64; // Handle symbolic values conservatively.
779 // TODO: This should probably be the pointer size.
780 else if (Offset != 0)
781 ImmCost += APInt(64, Offset, true).getMinSignedBits();
785 /// Loose - Set this cost to a loosing value.
786 void Cost::Loose() {
787 NumRegs = ~0u;
788 AddRecCost = ~0u;
789 NumIVMuls = ~0u;
790 NumBaseAdds = ~0u;
791 ImmCost = ~0u;
792 SetupCost = ~0u;
795 /// operator< - Choose the lower cost.
796 bool Cost::operator<(const Cost &Other) const {
797 if (NumRegs != Other.NumRegs)
798 return NumRegs < Other.NumRegs;
799 if (AddRecCost != Other.AddRecCost)
800 return AddRecCost < Other.AddRecCost;
801 if (NumIVMuls != Other.NumIVMuls)
802 return NumIVMuls < Other.NumIVMuls;
803 if (NumBaseAdds != Other.NumBaseAdds)
804 return NumBaseAdds < Other.NumBaseAdds;
805 if (ImmCost != Other.ImmCost)
806 return ImmCost < Other.ImmCost;
807 if (SetupCost != Other.SetupCost)
808 return SetupCost < Other.SetupCost;
809 return false;
812 void Cost::print(raw_ostream &OS) const {
813 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
814 if (AddRecCost != 0)
815 OS << ", with addrec cost " << AddRecCost;
816 if (NumIVMuls != 0)
817 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
818 if (NumBaseAdds != 0)
819 OS << ", plus " << NumBaseAdds << " base add"
820 << (NumBaseAdds == 1 ? "" : "s");
821 if (ImmCost != 0)
822 OS << ", plus " << ImmCost << " imm cost";
823 if (SetupCost != 0)
824 OS << ", plus " << SetupCost << " setup cost";
827 void Cost::dump() const {
828 print(errs()); errs() << '\n';
831 namespace {
833 /// LSRFixup - An operand value in an instruction which is to be replaced
834 /// with some equivalent, possibly strength-reduced, replacement.
835 struct LSRFixup {
836 /// UserInst - The instruction which will be updated.
837 Instruction *UserInst;
839 /// OperandValToReplace - The operand of the instruction which will
840 /// be replaced. The operand may be used more than once; every instance
841 /// will be replaced.
842 Value *OperandValToReplace;
844 /// PostIncLoops - If this user is to use the post-incremented value of an
845 /// induction variable, this variable is non-null and holds the loop
846 /// associated with the induction variable.
847 PostIncLoopSet PostIncLoops;
849 /// LUIdx - The index of the LSRUse describing the expression which
850 /// this fixup needs, minus an offset (below).
851 size_t LUIdx;
853 /// Offset - A constant offset to be added to the LSRUse expression.
854 /// This allows multiple fixups to share the same LSRUse with different
855 /// offsets, for example in an unrolled loop.
856 int64_t Offset;
858 bool isUseFullyOutsideLoop(const Loop *L) const;
860 LSRFixup();
862 void print(raw_ostream &OS) const;
863 void dump() const;
868 LSRFixup::LSRFixup()
869 : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {}
871 /// isUseFullyOutsideLoop - Test whether this fixup always uses its
872 /// value outside of the given loop.
873 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
874 // PHI nodes use their value in their incoming blocks.
875 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
876 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
877 if (PN->getIncomingValue(i) == OperandValToReplace &&
878 L->contains(PN->getIncomingBlock(i)))
879 return false;
880 return true;
883 return !L->contains(UserInst);
886 void LSRFixup::print(raw_ostream &OS) const {
887 OS << "UserInst=";
888 // Store is common and interesting enough to be worth special-casing.
889 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
890 OS << "store ";
891 WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
892 } else if (UserInst->getType()->isVoidTy())
893 OS << UserInst->getOpcodeName();
894 else
895 WriteAsOperand(OS, UserInst, /*PrintType=*/false);
897 OS << ", OperandValToReplace=";
898 WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
900 for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
901 E = PostIncLoops.end(); I != E; ++I) {
902 OS << ", PostIncLoop=";
903 WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false);
906 if (LUIdx != ~size_t(0))
907 OS << ", LUIdx=" << LUIdx;
909 if (Offset != 0)
910 OS << ", Offset=" << Offset;
913 void LSRFixup::dump() const {
914 print(errs()); errs() << '\n';
917 namespace {
919 /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
920 /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
921 struct UniquifierDenseMapInfo {
922 static SmallVector<const SCEV *, 2> getEmptyKey() {
923 SmallVector<const SCEV *, 2> V;
924 V.push_back(reinterpret_cast<const SCEV *>(-1));
925 return V;
928 static SmallVector<const SCEV *, 2> getTombstoneKey() {
929 SmallVector<const SCEV *, 2> V;
930 V.push_back(reinterpret_cast<const SCEV *>(-2));
931 return V;
934 static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
935 unsigned Result = 0;
936 for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
937 E = V.end(); I != E; ++I)
938 Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
939 return Result;
942 static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
943 const SmallVector<const SCEV *, 2> &RHS) {
944 return LHS == RHS;
948 /// LSRUse - This class holds the state that LSR keeps for each use in
949 /// IVUsers, as well as uses invented by LSR itself. It includes information
950 /// about what kinds of things can be folded into the user, information about
951 /// the user itself, and information about how the use may be satisfied.
952 /// TODO: Represent multiple users of the same expression in common?
953 class LSRUse {
954 DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
956 public:
957 /// KindType - An enum for a kind of use, indicating what types of
958 /// scaled and immediate operands it might support.
959 enum KindType {
960 Basic, ///< A normal use, with no folding.
961 Special, ///< A special case of basic, allowing -1 scales.
962 Address, ///< An address use; folding according to TargetLowering
963 ICmpZero ///< An equality icmp with both operands folded into one.
964 // TODO: Add a generic icmp too?
967 KindType Kind;
968 const Type *AccessTy;
970 SmallVector<int64_t, 8> Offsets;
971 int64_t MinOffset;
972 int64_t MaxOffset;
974 /// AllFixupsOutsideLoop - This records whether all of the fixups using this
975 /// LSRUse are outside of the loop, in which case some special-case heuristics
976 /// may be used.
977 bool AllFixupsOutsideLoop;
979 /// WidestFixupType - This records the widest use type for any fixup using
980 /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different
981 /// max fixup widths to be equivalent, because the narrower one may be relying
982 /// on the implicit truncation to truncate away bogus bits.
983 const Type *WidestFixupType;
985 /// Formulae - A list of ways to build a value that can satisfy this user.
986 /// After the list is populated, one of these is selected heuristically and
987 /// used to formulate a replacement for OperandValToReplace in UserInst.
988 SmallVector<Formula, 12> Formulae;
990 /// Regs - The set of register candidates used by all formulae in this LSRUse.
991 SmallPtrSet<const SCEV *, 4> Regs;
993 LSRUse(KindType K, const Type *T) : Kind(K), AccessTy(T),
994 MinOffset(INT64_MAX),
995 MaxOffset(INT64_MIN),
996 AllFixupsOutsideLoop(true),
997 WidestFixupType(0) {}
999 bool HasFormulaWithSameRegs(const Formula &F) const;
1000 bool InsertFormula(const Formula &F);
1001 void DeleteFormula(Formula &F);
1002 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1004 void print(raw_ostream &OS) const;
1005 void dump() const;
1010 /// HasFormula - Test whether this use as a formula which has the same
1011 /// registers as the given formula.
1012 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1013 SmallVector<const SCEV *, 2> Key = F.BaseRegs;
1014 if (F.ScaledReg) Key.push_back(F.ScaledReg);
1015 // Unstable sort by host order ok, because this is only used for uniquifying.
1016 std::sort(Key.begin(), Key.end());
1017 return Uniquifier.count(Key);
1020 /// InsertFormula - If the given formula has not yet been inserted, add it to
1021 /// the list, and return true. Return false otherwise.
1022 bool LSRUse::InsertFormula(const Formula &F) {
1023 SmallVector<const SCEV *, 2> Key = F.BaseRegs;
1024 if (F.ScaledReg) Key.push_back(F.ScaledReg);
1025 // Unstable sort by host order ok, because this is only used for uniquifying.
1026 std::sort(Key.begin(), Key.end());
1028 if (!Uniquifier.insert(Key).second)
1029 return false;
1031 // Using a register to hold the value of 0 is not profitable.
1032 assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1033 "Zero allocated in a scaled register!");
1034 #ifndef NDEBUG
1035 for (SmallVectorImpl<const SCEV *>::const_iterator I =
1036 F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
1037 assert(!(*I)->isZero() && "Zero allocated in a base register!");
1038 #endif
1040 // Add the formula to the list.
1041 Formulae.push_back(F);
1043 // Record registers now being used by this use.
1044 if (F.ScaledReg) Regs.insert(F.ScaledReg);
1045 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1047 return true;
1050 /// DeleteFormula - Remove the given formula from this use's list.
1051 void LSRUse::DeleteFormula(Formula &F) {
1052 if (&F != &Formulae.back())
1053 std::swap(F, Formulae.back());
1054 Formulae.pop_back();
1055 assert(!Formulae.empty() && "LSRUse has no formulae left!");
1058 /// RecomputeRegs - Recompute the Regs field, and update RegUses.
1059 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1060 // Now that we've filtered out some formulae, recompute the Regs set.
1061 SmallPtrSet<const SCEV *, 4> OldRegs = Regs;
1062 Regs.clear();
1063 for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(),
1064 E = Formulae.end(); I != E; ++I) {
1065 const Formula &F = *I;
1066 if (F.ScaledReg) Regs.insert(F.ScaledReg);
1067 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1070 // Update the RegTracker.
1071 for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(),
1072 E = OldRegs.end(); I != E; ++I)
1073 if (!Regs.count(*I))
1074 RegUses.DropRegister(*I, LUIdx);
1077 void LSRUse::print(raw_ostream &OS) const {
1078 OS << "LSR Use: Kind=";
1079 switch (Kind) {
1080 case Basic: OS << "Basic"; break;
1081 case Special: OS << "Special"; break;
1082 case ICmpZero: OS << "ICmpZero"; break;
1083 case Address:
1084 OS << "Address of ";
1085 if (AccessTy->isPointerTy())
1086 OS << "pointer"; // the full pointer type could be really verbose
1087 else
1088 OS << *AccessTy;
1091 OS << ", Offsets={";
1092 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
1093 E = Offsets.end(); I != E; ++I) {
1094 OS << *I;
1095 if (llvm::next(I) != E)
1096 OS << ',';
1098 OS << '}';
1100 if (AllFixupsOutsideLoop)
1101 OS << ", all-fixups-outside-loop";
1103 if (WidestFixupType)
1104 OS << ", widest fixup type: " << *WidestFixupType;
1107 void LSRUse::dump() const {
1108 print(errs()); errs() << '\n';
1111 /// isLegalUse - Test whether the use described by AM is "legal", meaning it can
1112 /// be completely folded into the user instruction at isel time. This includes
1113 /// address-mode folding and special icmp tricks.
1114 static bool isLegalUse(const TargetLowering::AddrMode &AM,
1115 LSRUse::KindType Kind, const Type *AccessTy,
1116 const TargetLowering *TLI) {
1117 switch (Kind) {
1118 case LSRUse::Address:
1119 // If we have low-level target information, ask the target if it can
1120 // completely fold this address.
1121 if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
1123 // Otherwise, just guess that reg+reg addressing is legal.
1124 return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
1126 case LSRUse::ICmpZero:
1127 // There's not even a target hook for querying whether it would be legal to
1128 // fold a GV into an ICmp.
1129 if (AM.BaseGV)
1130 return false;
1132 // ICmp only has two operands; don't allow more than two non-trivial parts.
1133 if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
1134 return false;
1136 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1137 // putting the scaled register in the other operand of the icmp.
1138 if (AM.Scale != 0 && AM.Scale != -1)
1139 return false;
1141 // If we have low-level target information, ask the target if it can fold an
1142 // integer immediate on an icmp.
1143 if (AM.BaseOffs != 0) {
1144 if (TLI) return TLI->isLegalICmpImmediate(-AM.BaseOffs);
1145 return false;
1148 return true;
1150 case LSRUse::Basic:
1151 // Only handle single-register values.
1152 return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
1154 case LSRUse::Special:
1155 // Only handle -1 scales, or no scale.
1156 return AM.Scale == 0 || AM.Scale == -1;
1159 return false;
1162 static bool isLegalUse(TargetLowering::AddrMode AM,
1163 int64_t MinOffset, int64_t MaxOffset,
1164 LSRUse::KindType Kind, const Type *AccessTy,
1165 const TargetLowering *TLI) {
1166 // Check for overflow.
1167 if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
1168 (MinOffset > 0))
1169 return false;
1170 AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
1171 if (isLegalUse(AM, Kind, AccessTy, TLI)) {
1172 AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
1173 // Check for overflow.
1174 if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
1175 (MaxOffset > 0))
1176 return false;
1177 AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
1178 return isLegalUse(AM, Kind, AccessTy, TLI);
1180 return false;
1183 static bool isAlwaysFoldable(int64_t BaseOffs,
1184 GlobalValue *BaseGV,
1185 bool HasBaseReg,
1186 LSRUse::KindType Kind, const Type *AccessTy,
1187 const TargetLowering *TLI) {
1188 // Fast-path: zero is always foldable.
1189 if (BaseOffs == 0 && !BaseGV) return true;
1191 // Conservatively, create an address with an immediate and a
1192 // base and a scale.
1193 TargetLowering::AddrMode AM;
1194 AM.BaseOffs = BaseOffs;
1195 AM.BaseGV = BaseGV;
1196 AM.HasBaseReg = HasBaseReg;
1197 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1199 // Canonicalize a scale of 1 to a base register if the formula doesn't
1200 // already have a base register.
1201 if (!AM.HasBaseReg && AM.Scale == 1) {
1202 AM.Scale = 0;
1203 AM.HasBaseReg = true;
1206 return isLegalUse(AM, Kind, AccessTy, TLI);
1209 static bool isAlwaysFoldable(const SCEV *S,
1210 int64_t MinOffset, int64_t MaxOffset,
1211 bool HasBaseReg,
1212 LSRUse::KindType Kind, const Type *AccessTy,
1213 const TargetLowering *TLI,
1214 ScalarEvolution &SE) {
1215 // Fast-path: zero is always foldable.
1216 if (S->isZero()) return true;
1218 // Conservatively, create an address with an immediate and a
1219 // base and a scale.
1220 int64_t BaseOffs = ExtractImmediate(S, SE);
1221 GlobalValue *BaseGV = ExtractSymbol(S, SE);
1223 // If there's anything else involved, it's not foldable.
1224 if (!S->isZero()) return false;
1226 // Fast-path: zero is always foldable.
1227 if (BaseOffs == 0 && !BaseGV) return true;
1229 // Conservatively, create an address with an immediate and a
1230 // base and a scale.
1231 TargetLowering::AddrMode AM;
1232 AM.BaseOffs = BaseOffs;
1233 AM.BaseGV = BaseGV;
1234 AM.HasBaseReg = HasBaseReg;
1235 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1237 return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
1240 namespace {
1242 /// UseMapDenseMapInfo - A DenseMapInfo implementation for holding
1243 /// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind.
1244 struct UseMapDenseMapInfo {
1245 static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() {
1246 return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic);
1249 static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() {
1250 return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic);
1253 static unsigned
1254 getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) {
1255 unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first);
1256 Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second));
1257 return Result;
1260 static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS,
1261 const std::pair<const SCEV *, LSRUse::KindType> &RHS) {
1262 return LHS == RHS;
1266 /// LSRInstance - This class holds state for the main loop strength reduction
1267 /// logic.
1268 class LSRInstance {
1269 IVUsers &IU;
1270 ScalarEvolution &SE;
1271 DominatorTree &DT;
1272 LoopInfo &LI;
1273 const TargetLowering *const TLI;
1274 Loop *const L;
1275 bool Changed;
1277 /// IVIncInsertPos - This is the insert position that the current loop's
1278 /// induction variable increment should be placed. In simple loops, this is
1279 /// the latch block's terminator. But in more complicated cases, this is a
1280 /// position which will dominate all the in-loop post-increment users.
1281 Instruction *IVIncInsertPos;
1283 /// Factors - Interesting factors between use strides.
1284 SmallSetVector<int64_t, 8> Factors;
1286 /// Types - Interesting use types, to facilitate truncation reuse.
1287 SmallSetVector<const Type *, 4> Types;
1289 /// Fixups - The list of operands which are to be replaced.
1290 SmallVector<LSRFixup, 16> Fixups;
1292 /// Uses - The list of interesting uses.
1293 SmallVector<LSRUse, 16> Uses;
1295 /// RegUses - Track which uses use which register candidates.
1296 RegUseTracker RegUses;
1298 void OptimizeShadowIV();
1299 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1300 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1301 void OptimizeLoopTermCond();
1303 void CollectInterestingTypesAndFactors();
1304 void CollectFixupsAndInitialFormulae();
1306 LSRFixup &getNewFixup() {
1307 Fixups.push_back(LSRFixup());
1308 return Fixups.back();
1311 // Support for sharing of LSRUses between LSRFixups.
1312 typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>,
1313 size_t,
1314 UseMapDenseMapInfo> UseMapTy;
1315 UseMapTy UseMap;
1317 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1318 LSRUse::KindType Kind, const Type *AccessTy);
1320 std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
1321 LSRUse::KindType Kind,
1322 const Type *AccessTy);
1324 void DeleteUse(LSRUse &LU, size_t LUIdx);
1326 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1328 public:
1329 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1330 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1331 void CountRegisters(const Formula &F, size_t LUIdx);
1332 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1334 void CollectLoopInvariantFixupsAndFormulae();
1336 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1337 unsigned Depth = 0);
1338 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1339 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1340 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1341 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1342 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1343 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1344 void GenerateCrossUseConstantOffsets();
1345 void GenerateAllReuseFormulae();
1347 void FilterOutUndesirableDedicatedRegisters();
1349 size_t EstimateSearchSpaceComplexity() const;
1350 void NarrowSearchSpaceByDetectingSupersets();
1351 void NarrowSearchSpaceByCollapsingUnrolledCode();
1352 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1353 void NarrowSearchSpaceByPickingWinnerRegs();
1354 void NarrowSearchSpaceUsingHeuristics();
1356 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1357 Cost &SolutionCost,
1358 SmallVectorImpl<const Formula *> &Workspace,
1359 const Cost &CurCost,
1360 const SmallPtrSet<const SCEV *, 16> &CurRegs,
1361 DenseSet<const SCEV *> &VisitedRegs) const;
1362 void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1364 BasicBlock::iterator
1365 HoistInsertPosition(BasicBlock::iterator IP,
1366 const SmallVectorImpl<Instruction *> &Inputs) const;
1367 BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1368 const LSRFixup &LF,
1369 const LSRUse &LU) const;
1371 Value *Expand(const LSRFixup &LF,
1372 const Formula &F,
1373 BasicBlock::iterator IP,
1374 SCEVExpander &Rewriter,
1375 SmallVectorImpl<WeakVH> &DeadInsts) const;
1376 void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1377 const Formula &F,
1378 SCEVExpander &Rewriter,
1379 SmallVectorImpl<WeakVH> &DeadInsts,
1380 Pass *P) const;
1381 void Rewrite(const LSRFixup &LF,
1382 const Formula &F,
1383 SCEVExpander &Rewriter,
1384 SmallVectorImpl<WeakVH> &DeadInsts,
1385 Pass *P) const;
1386 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
1387 Pass *P);
1389 LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
1391 bool getChanged() const { return Changed; }
1393 void print_factors_and_types(raw_ostream &OS) const;
1394 void print_fixups(raw_ostream &OS) const;
1395 void print_uses(raw_ostream &OS) const;
1396 void print(raw_ostream &OS) const;
1397 void dump() const;
1402 /// OptimizeShadowIV - If IV is used in a int-to-float cast
1403 /// inside the loop then try to eliminate the cast operation.
1404 void LSRInstance::OptimizeShadowIV() {
1405 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1406 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1407 return;
1409 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1410 UI != E; /* empty */) {
1411 IVUsers::const_iterator CandidateUI = UI;
1412 ++UI;
1413 Instruction *ShadowUse = CandidateUI->getUser();
1414 const Type *DestTy = NULL;
1416 /* If shadow use is a int->float cast then insert a second IV
1417 to eliminate this cast.
1419 for (unsigned i = 0; i < n; ++i)
1420 foo((double)i);
1422 is transformed into
1424 double d = 0.0;
1425 for (unsigned i = 0; i < n; ++i, ++d)
1426 foo(d);
1428 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
1429 DestTy = UCast->getDestTy();
1430 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
1431 DestTy = SCast->getDestTy();
1432 if (!DestTy) continue;
1434 if (TLI) {
1435 // If target does not support DestTy natively then do not apply
1436 // this transformation.
1437 EVT DVT = TLI->getValueType(DestTy);
1438 if (!TLI->isTypeLegal(DVT)) continue;
1441 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1442 if (!PH) continue;
1443 if (PH->getNumIncomingValues() != 2) continue;
1445 const Type *SrcTy = PH->getType();
1446 int Mantissa = DestTy->getFPMantissaWidth();
1447 if (Mantissa == -1) continue;
1448 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1449 continue;
1451 unsigned Entry, Latch;
1452 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1453 Entry = 0;
1454 Latch = 1;
1455 } else {
1456 Entry = 1;
1457 Latch = 0;
1460 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1461 if (!Init) continue;
1462 Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
1464 BinaryOperator *Incr =
1465 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1466 if (!Incr) continue;
1467 if (Incr->getOpcode() != Instruction::Add
1468 && Incr->getOpcode() != Instruction::Sub)
1469 continue;
1471 /* Initialize new IV, double d = 0.0 in above example. */
1472 ConstantInt *C = NULL;
1473 if (Incr->getOperand(0) == PH)
1474 C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1475 else if (Incr->getOperand(1) == PH)
1476 C = dyn_cast<ConstantInt>(Incr->getOperand(0));
1477 else
1478 continue;
1480 if (!C) continue;
1482 // Ignore negative constants, as the code below doesn't handle them
1483 // correctly. TODO: Remove this restriction.
1484 if (!C->getValue().isStrictlyPositive()) continue;
1486 /* Add new PHINode. */
1487 PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
1489 /* create new increment. '++d' in above example. */
1490 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1491 BinaryOperator *NewIncr =
1492 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1493 Instruction::FAdd : Instruction::FSub,
1494 NewPH, CFP, "IV.S.next.", Incr);
1496 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1497 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
1499 /* Remove cast operation */
1500 ShadowUse->replaceAllUsesWith(NewPH);
1501 ShadowUse->eraseFromParent();
1502 Changed = true;
1503 break;
1507 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1508 /// set the IV user and stride information and return true, otherwise return
1509 /// false.
1510 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
1511 for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1512 if (UI->getUser() == Cond) {
1513 // NOTE: we could handle setcc instructions with multiple uses here, but
1514 // InstCombine does it as well for simple uses, it's not clear that it
1515 // occurs enough in real life to handle.
1516 CondUse = UI;
1517 return true;
1519 return false;
1522 /// OptimizeMax - Rewrite the loop's terminating condition if it uses
1523 /// a max computation.
1525 /// This is a narrow solution to a specific, but acute, problem. For loops
1526 /// like this:
1528 /// i = 0;
1529 /// do {
1530 /// p[i] = 0.0;
1531 /// } while (++i < n);
1533 /// the trip count isn't just 'n', because 'n' might not be positive. And
1534 /// unfortunately this can come up even for loops where the user didn't use
1535 /// a C do-while loop. For example, seemingly well-behaved top-test loops
1536 /// will commonly be lowered like this:
1538 /// if (n > 0) {
1539 /// i = 0;
1540 /// do {
1541 /// p[i] = 0.0;
1542 /// } while (++i < n);
1543 /// }
1545 /// and then it's possible for subsequent optimization to obscure the if
1546 /// test in such a way that indvars can't find it.
1548 /// When indvars can't find the if test in loops like this, it creates a
1549 /// max expression, which allows it to give the loop a canonical
1550 /// induction variable:
1552 /// i = 0;
1553 /// max = n < 1 ? 1 : n;
1554 /// do {
1555 /// p[i] = 0.0;
1556 /// } while (++i != max);
1558 /// Canonical induction variables are necessary because the loop passes
1559 /// are designed around them. The most obvious example of this is the
1560 /// LoopInfo analysis, which doesn't remember trip count values. It
1561 /// expects to be able to rediscover the trip count each time it is
1562 /// needed, and it does this using a simple analysis that only succeeds if
1563 /// the loop has a canonical induction variable.
1565 /// However, when it comes time to generate code, the maximum operation
1566 /// can be quite costly, especially if it's inside of an outer loop.
1568 /// This function solves this problem by detecting this type of loop and
1569 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1570 /// the instructions for the maximum computation.
1572 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
1573 // Check that the loop matches the pattern we're looking for.
1574 if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1575 Cond->getPredicate() != CmpInst::ICMP_NE)
1576 return Cond;
1578 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1579 if (!Sel || !Sel->hasOneUse()) return Cond;
1581 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1582 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1583 return Cond;
1584 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
1586 // Add one to the backedge-taken count to get the trip count.
1587 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
1588 if (IterationCount != SE.getSCEV(Sel)) return Cond;
1590 // Check for a max calculation that matches the pattern. There's no check
1591 // for ICMP_ULE here because the comparison would be with zero, which
1592 // isn't interesting.
1593 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1594 const SCEVNAryExpr *Max = 0;
1595 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
1596 Pred = ICmpInst::ICMP_SLE;
1597 Max = S;
1598 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
1599 Pred = ICmpInst::ICMP_SLT;
1600 Max = S;
1601 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
1602 Pred = ICmpInst::ICMP_ULT;
1603 Max = U;
1604 } else {
1605 // No match; bail.
1606 return Cond;
1609 // To handle a max with more than two operands, this optimization would
1610 // require additional checking and setup.
1611 if (Max->getNumOperands() != 2)
1612 return Cond;
1614 const SCEV *MaxLHS = Max->getOperand(0);
1615 const SCEV *MaxRHS = Max->getOperand(1);
1617 // ScalarEvolution canonicalizes constants to the left. For < and >, look
1618 // for a comparison with 1. For <= and >=, a comparison with zero.
1619 if (!MaxLHS ||
1620 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
1621 return Cond;
1623 // Check the relevant induction variable for conformance to
1624 // the pattern.
1625 const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
1626 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
1627 if (!AR || !AR->isAffine() ||
1628 AR->getStart() != One ||
1629 AR->getStepRecurrence(SE) != One)
1630 return Cond;
1632 assert(AR->getLoop() == L &&
1633 "Loop condition operand is an addrec in a different loop!");
1635 // Check the right operand of the select, and remember it, as it will
1636 // be used in the new comparison instruction.
1637 Value *NewRHS = 0;
1638 if (ICmpInst::isTrueWhenEqual(Pred)) {
1639 // Look for n+1, and grab n.
1640 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
1641 if (isa<ConstantInt>(BO->getOperand(1)) &&
1642 cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1643 SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1644 NewRHS = BO->getOperand(0);
1645 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
1646 if (isa<ConstantInt>(BO->getOperand(1)) &&
1647 cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1648 SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1649 NewRHS = BO->getOperand(0);
1650 if (!NewRHS)
1651 return Cond;
1652 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
1653 NewRHS = Sel->getOperand(1);
1654 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
1655 NewRHS = Sel->getOperand(2);
1656 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
1657 NewRHS = SU->getValue();
1658 else
1659 // Max doesn't match expected pattern.
1660 return Cond;
1662 // Determine the new comparison opcode. It may be signed or unsigned,
1663 // and the original comparison may be either equality or inequality.
1664 if (Cond->getPredicate() == CmpInst::ICMP_EQ)
1665 Pred = CmpInst::getInversePredicate(Pred);
1667 // Ok, everything looks ok to change the condition into an SLT or SGE and
1668 // delete the max calculation.
1669 ICmpInst *NewCond =
1670 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
1672 // Delete the max calculation instructions.
1673 Cond->replaceAllUsesWith(NewCond);
1674 CondUse->setUser(NewCond);
1675 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
1676 Cond->eraseFromParent();
1677 Sel->eraseFromParent();
1678 if (Cmp->use_empty())
1679 Cmp->eraseFromParent();
1680 return NewCond;
1683 /// OptimizeLoopTermCond - Change loop terminating condition to use the
1684 /// postinc iv when possible.
1685 void
1686 LSRInstance::OptimizeLoopTermCond() {
1687 SmallPtrSet<Instruction *, 4> PostIncs;
1689 BasicBlock *LatchBlock = L->getLoopLatch();
1690 SmallVector<BasicBlock*, 8> ExitingBlocks;
1691 L->getExitingBlocks(ExitingBlocks);
1693 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
1694 BasicBlock *ExitingBlock = ExitingBlocks[i];
1696 // Get the terminating condition for the loop if possible. If we
1697 // can, we want to change it to use a post-incremented version of its
1698 // induction variable, to allow coalescing the live ranges for the IV into
1699 // one register value.
1701 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1702 if (!TermBr)
1703 continue;
1704 // FIXME: Overly conservative, termination condition could be an 'or' etc..
1705 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
1706 continue;
1708 // Search IVUsesByStride to find Cond's IVUse if there is one.
1709 IVStrideUse *CondUse = 0;
1710 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
1711 if (!FindIVUserForCond(Cond, CondUse))
1712 continue;
1714 // If the trip count is computed in terms of a max (due to ScalarEvolution
1715 // being unable to find a sufficient guard, for example), change the loop
1716 // comparison to use SLT or ULT instead of NE.
1717 // One consequence of doing this now is that it disrupts the count-down
1718 // optimization. That's not always a bad thing though, because in such
1719 // cases it may still be worthwhile to avoid a max.
1720 Cond = OptimizeMax(Cond, CondUse);
1722 // If this exiting block dominates the latch block, it may also use
1723 // the post-inc value if it won't be shared with other uses.
1724 // Check for dominance.
1725 if (!DT.dominates(ExitingBlock, LatchBlock))
1726 continue;
1728 // Conservatively avoid trying to use the post-inc value in non-latch
1729 // exits if there may be pre-inc users in intervening blocks.
1730 if (LatchBlock != ExitingBlock)
1731 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1732 // Test if the use is reachable from the exiting block. This dominator
1733 // query is a conservative approximation of reachability.
1734 if (&*UI != CondUse &&
1735 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
1736 // Conservatively assume there may be reuse if the quotient of their
1737 // strides could be a legal scale.
1738 const SCEV *A = IU.getStride(*CondUse, L);
1739 const SCEV *B = IU.getStride(*UI, L);
1740 if (!A || !B) continue;
1741 if (SE.getTypeSizeInBits(A->getType()) !=
1742 SE.getTypeSizeInBits(B->getType())) {
1743 if (SE.getTypeSizeInBits(A->getType()) >
1744 SE.getTypeSizeInBits(B->getType()))
1745 B = SE.getSignExtendExpr(B, A->getType());
1746 else
1747 A = SE.getSignExtendExpr(A, B->getType());
1749 if (const SCEVConstant *D =
1750 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
1751 const ConstantInt *C = D->getValue();
1752 // Stride of one or negative one can have reuse with non-addresses.
1753 if (C->isOne() || C->isAllOnesValue())
1754 goto decline_post_inc;
1755 // Avoid weird situations.
1756 if (C->getValue().getMinSignedBits() >= 64 ||
1757 C->getValue().isMinSignedValue())
1758 goto decline_post_inc;
1759 // Without TLI, assume that any stride might be valid, and so any
1760 // use might be shared.
1761 if (!TLI)
1762 goto decline_post_inc;
1763 // Check for possible scaled-address reuse.
1764 const Type *AccessTy = getAccessType(UI->getUser());
1765 TargetLowering::AddrMode AM;
1766 AM.Scale = C->getSExtValue();
1767 if (TLI->isLegalAddressingMode(AM, AccessTy))
1768 goto decline_post_inc;
1769 AM.Scale = -AM.Scale;
1770 if (TLI->isLegalAddressingMode(AM, AccessTy))
1771 goto decline_post_inc;
1775 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
1776 << *Cond << '\n');
1778 // It's possible for the setcc instruction to be anywhere in the loop, and
1779 // possible for it to have multiple users. If it is not immediately before
1780 // the exiting block branch, move it.
1781 if (&*++BasicBlock::iterator(Cond) != TermBr) {
1782 if (Cond->hasOneUse()) {
1783 Cond->moveBefore(TermBr);
1784 } else {
1785 // Clone the terminating condition and insert into the loopend.
1786 ICmpInst *OldCond = Cond;
1787 Cond = cast<ICmpInst>(Cond->clone());
1788 Cond->setName(L->getHeader()->getName() + ".termcond");
1789 ExitingBlock->getInstList().insert(TermBr, Cond);
1791 // Clone the IVUse, as the old use still exists!
1792 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
1793 TermBr->replaceUsesOfWith(OldCond, Cond);
1797 // If we get to here, we know that we can transform the setcc instruction to
1798 // use the post-incremented version of the IV, allowing us to coalesce the
1799 // live ranges for the IV correctly.
1800 CondUse->transformToPostInc(L);
1801 Changed = true;
1803 PostIncs.insert(Cond);
1804 decline_post_inc:;
1807 // Determine an insertion point for the loop induction variable increment. It
1808 // must dominate all the post-inc comparisons we just set up, and it must
1809 // dominate the loop latch edge.
1810 IVIncInsertPos = L->getLoopLatch()->getTerminator();
1811 for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
1812 E = PostIncs.end(); I != E; ++I) {
1813 BasicBlock *BB =
1814 DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
1815 (*I)->getParent());
1816 if (BB == (*I)->getParent())
1817 IVIncInsertPos = *I;
1818 else if (BB != IVIncInsertPos->getParent())
1819 IVIncInsertPos = BB->getTerminator();
1823 /// reconcileNewOffset - Determine if the given use can accomodate a fixup
1824 /// at the given offset and other details. If so, update the use and
1825 /// return true.
1826 bool
1827 LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1828 LSRUse::KindType Kind, const Type *AccessTy) {
1829 int64_t NewMinOffset = LU.MinOffset;
1830 int64_t NewMaxOffset = LU.MaxOffset;
1831 const Type *NewAccessTy = AccessTy;
1833 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
1834 // something conservative, however this can pessimize in the case that one of
1835 // the uses will have all its uses outside the loop, for example.
1836 if (LU.Kind != Kind)
1837 return false;
1838 // Conservatively assume HasBaseReg is true for now.
1839 if (NewOffset < LU.MinOffset) {
1840 if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg,
1841 Kind, AccessTy, TLI))
1842 return false;
1843 NewMinOffset = NewOffset;
1844 } else if (NewOffset > LU.MaxOffset) {
1845 if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg,
1846 Kind, AccessTy, TLI))
1847 return false;
1848 NewMaxOffset = NewOffset;
1850 // Check for a mismatched access type, and fall back conservatively as needed.
1851 // TODO: Be less conservative when the type is similar and can use the same
1852 // addressing modes.
1853 if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
1854 NewAccessTy = Type::getVoidTy(AccessTy->getContext());
1856 // Update the use.
1857 LU.MinOffset = NewMinOffset;
1858 LU.MaxOffset = NewMaxOffset;
1859 LU.AccessTy = NewAccessTy;
1860 if (NewOffset != LU.Offsets.back())
1861 LU.Offsets.push_back(NewOffset);
1862 return true;
1865 /// getUse - Return an LSRUse index and an offset value for a fixup which
1866 /// needs the given expression, with the given kind and optional access type.
1867 /// Either reuse an existing use or create a new one, as needed.
1868 std::pair<size_t, int64_t>
1869 LSRInstance::getUse(const SCEV *&Expr,
1870 LSRUse::KindType Kind, const Type *AccessTy) {
1871 const SCEV *Copy = Expr;
1872 int64_t Offset = ExtractImmediate(Expr, SE);
1874 // Basic uses can't accept any offset, for example.
1875 if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
1876 Expr = Copy;
1877 Offset = 0;
1880 std::pair<UseMapTy::iterator, bool> P =
1881 UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0));
1882 if (!P.second) {
1883 // A use already existed with this base.
1884 size_t LUIdx = P.first->second;
1885 LSRUse &LU = Uses[LUIdx];
1886 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
1887 // Reuse this use.
1888 return std::make_pair(LUIdx, Offset);
1891 // Create a new use.
1892 size_t LUIdx = Uses.size();
1893 P.first->second = LUIdx;
1894 Uses.push_back(LSRUse(Kind, AccessTy));
1895 LSRUse &LU = Uses[LUIdx];
1897 // We don't need to track redundant offsets, but we don't need to go out
1898 // of our way here to avoid them.
1899 if (LU.Offsets.empty() || Offset != LU.Offsets.back())
1900 LU.Offsets.push_back(Offset);
1902 LU.MinOffset = Offset;
1903 LU.MaxOffset = Offset;
1904 return std::make_pair(LUIdx, Offset);
1907 /// DeleteUse - Delete the given use from the Uses list.
1908 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
1909 if (&LU != &Uses.back())
1910 std::swap(LU, Uses.back());
1911 Uses.pop_back();
1913 // Update RegUses.
1914 RegUses.SwapAndDropUse(LUIdx, Uses.size());
1917 /// FindUseWithFormula - Look for a use distinct from OrigLU which is has
1918 /// a formula that has the same registers as the given formula.
1919 LSRUse *
1920 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
1921 const LSRUse &OrigLU) {
1922 // Search all uses for the formula. This could be more clever.
1923 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
1924 LSRUse &LU = Uses[LUIdx];
1925 // Check whether this use is close enough to OrigLU, to see whether it's
1926 // worthwhile looking through its formulae.
1927 // Ignore ICmpZero uses because they may contain formulae generated by
1928 // GenerateICmpZeroScales, in which case adding fixup offsets may
1929 // be invalid.
1930 if (&LU != &OrigLU &&
1931 LU.Kind != LSRUse::ICmpZero &&
1932 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
1933 LU.WidestFixupType == OrigLU.WidestFixupType &&
1934 LU.HasFormulaWithSameRegs(OrigF)) {
1935 // Scan through this use's formulae.
1936 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
1937 E = LU.Formulae.end(); I != E; ++I) {
1938 const Formula &F = *I;
1939 // Check to see if this formula has the same registers and symbols
1940 // as OrigF.
1941 if (F.BaseRegs == OrigF.BaseRegs &&
1942 F.ScaledReg == OrigF.ScaledReg &&
1943 F.AM.BaseGV == OrigF.AM.BaseGV &&
1944 F.AM.Scale == OrigF.AM.Scale) {
1945 if (F.AM.BaseOffs == 0)
1946 return &LU;
1947 // This is the formula where all the registers and symbols matched;
1948 // there aren't going to be any others. Since we declined it, we
1949 // can skip the rest of the formulae and procede to the next LSRUse.
1950 break;
1956 // Nothing looked good.
1957 return 0;
1960 void LSRInstance::CollectInterestingTypesAndFactors() {
1961 SmallSetVector<const SCEV *, 4> Strides;
1963 // Collect interesting types and strides.
1964 SmallVector<const SCEV *, 4> Worklist;
1965 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
1966 const SCEV *Expr = IU.getExpr(*UI);
1968 // Collect interesting types.
1969 Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
1971 // Add strides for mentioned loops.
1972 Worklist.push_back(Expr);
1973 do {
1974 const SCEV *S = Worklist.pop_back_val();
1975 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1976 Strides.insert(AR->getStepRecurrence(SE));
1977 Worklist.push_back(AR->getStart());
1978 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1979 Worklist.append(Add->op_begin(), Add->op_end());
1981 } while (!Worklist.empty());
1984 // Compute interesting factors from the set of interesting strides.
1985 for (SmallSetVector<const SCEV *, 4>::const_iterator
1986 I = Strides.begin(), E = Strides.end(); I != E; ++I)
1987 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
1988 llvm::next(I); NewStrideIter != E; ++NewStrideIter) {
1989 const SCEV *OldStride = *I;
1990 const SCEV *NewStride = *NewStrideIter;
1992 if (SE.getTypeSizeInBits(OldStride->getType()) !=
1993 SE.getTypeSizeInBits(NewStride->getType())) {
1994 if (SE.getTypeSizeInBits(OldStride->getType()) >
1995 SE.getTypeSizeInBits(NewStride->getType()))
1996 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
1997 else
1998 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2000 if (const SCEVConstant *Factor =
2001 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2002 SE, true))) {
2003 if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2004 Factors.insert(Factor->getValue()->getValue().getSExtValue());
2005 } else if (const SCEVConstant *Factor =
2006 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2007 NewStride,
2008 SE, true))) {
2009 if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2010 Factors.insert(Factor->getValue()->getValue().getSExtValue());
2014 // If all uses use the same type, don't bother looking for truncation-based
2015 // reuse.
2016 if (Types.size() == 1)
2017 Types.clear();
2019 DEBUG(print_factors_and_types(dbgs()));
2022 void LSRInstance::CollectFixupsAndInitialFormulae() {
2023 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
2024 // Record the uses.
2025 LSRFixup &LF = getNewFixup();
2026 LF.UserInst = UI->getUser();
2027 LF.OperandValToReplace = UI->getOperandValToReplace();
2028 LF.PostIncLoops = UI->getPostIncLoops();
2030 LSRUse::KindType Kind = LSRUse::Basic;
2031 const Type *AccessTy = 0;
2032 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
2033 Kind = LSRUse::Address;
2034 AccessTy = getAccessType(LF.UserInst);
2037 const SCEV *S = IU.getExpr(*UI);
2039 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
2040 // (N - i == 0), and this allows (N - i) to be the expression that we work
2041 // with rather than just N or i, so we can consider the register
2042 // requirements for both N and i at the same time. Limiting this code to
2043 // equality icmps is not a problem because all interesting loops use
2044 // equality icmps, thanks to IndVarSimplify.
2045 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
2046 if (CI->isEquality()) {
2047 // Swap the operands if needed to put the OperandValToReplace on the
2048 // left, for consistency.
2049 Value *NV = CI->getOperand(1);
2050 if (NV == LF.OperandValToReplace) {
2051 CI->setOperand(1, CI->getOperand(0));
2052 CI->setOperand(0, NV);
2053 NV = CI->getOperand(1);
2054 Changed = true;
2057 // x == y --> x - y == 0
2058 const SCEV *N = SE.getSCEV(NV);
2059 if (N->isLoopInvariant(L)) {
2060 Kind = LSRUse::ICmpZero;
2061 S = SE.getMinusSCEV(N, S);
2064 // -1 and the negations of all interesting strides (except the negation
2065 // of -1) are now also interesting.
2066 for (size_t i = 0, e = Factors.size(); i != e; ++i)
2067 if (Factors[i] != -1)
2068 Factors.insert(-(uint64_t)Factors[i]);
2069 Factors.insert(-1);
2072 // Set up the initial formula for this use.
2073 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
2074 LF.LUIdx = P.first;
2075 LF.Offset = P.second;
2076 LSRUse &LU = Uses[LF.LUIdx];
2077 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
2078 if (!LU.WidestFixupType ||
2079 SE.getTypeSizeInBits(LU.WidestFixupType) <
2080 SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
2081 LU.WidestFixupType = LF.OperandValToReplace->getType();
2083 // If this is the first use of this LSRUse, give it a formula.
2084 if (LU.Formulae.empty()) {
2085 InsertInitialFormula(S, LU, LF.LUIdx);
2086 CountRegisters(LU.Formulae.back(), LF.LUIdx);
2090 DEBUG(print_fixups(dbgs()));
2093 /// InsertInitialFormula - Insert a formula for the given expression into
2094 /// the given use, separating out loop-variant portions from loop-invariant
2095 /// and loop-computable portions.
2096 void
2097 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
2098 Formula F;
2099 F.InitialMatch(S, L, SE, DT);
2100 bool Inserted = InsertFormula(LU, LUIdx, F);
2101 assert(Inserted && "Initial formula already exists!"); (void)Inserted;
2104 /// InsertSupplementalFormula - Insert a simple single-register formula for
2105 /// the given expression into the given use.
2106 void
2107 LSRInstance::InsertSupplementalFormula(const SCEV *S,
2108 LSRUse &LU, size_t LUIdx) {
2109 Formula F;
2110 F.BaseRegs.push_back(S);
2111 F.AM.HasBaseReg = true;
2112 bool Inserted = InsertFormula(LU, LUIdx, F);
2113 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
2116 /// CountRegisters - Note which registers are used by the given formula,
2117 /// updating RegUses.
2118 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
2119 if (F.ScaledReg)
2120 RegUses.CountRegister(F.ScaledReg, LUIdx);
2121 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
2122 E = F.BaseRegs.end(); I != E; ++I)
2123 RegUses.CountRegister(*I, LUIdx);
2126 /// InsertFormula - If the given formula has not yet been inserted, add it to
2127 /// the list, and return true. Return false otherwise.
2128 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
2129 if (!LU.InsertFormula(F))
2130 return false;
2132 CountRegisters(F, LUIdx);
2133 return true;
2136 /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
2137 /// loop-invariant values which we're tracking. These other uses will pin these
2138 /// values in registers, making them less profitable for elimination.
2139 /// TODO: This currently misses non-constant addrec step registers.
2140 /// TODO: Should this give more weight to users inside the loop?
2141 void
2142 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
2143 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
2144 SmallPtrSet<const SCEV *, 8> Inserted;
2146 while (!Worklist.empty()) {
2147 const SCEV *S = Worklist.pop_back_val();
2149 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
2150 Worklist.append(N->op_begin(), N->op_end());
2151 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
2152 Worklist.push_back(C->getOperand());
2153 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2154 Worklist.push_back(D->getLHS());
2155 Worklist.push_back(D->getRHS());
2156 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2157 if (!Inserted.insert(U)) continue;
2158 const Value *V = U->getValue();
2159 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
2160 // Look for instructions defined outside the loop.
2161 if (L->contains(Inst)) continue;
2162 } else if (isa<UndefValue>(V))
2163 // Undef doesn't have a live range, so it doesn't matter.
2164 continue;
2165 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
2166 UI != UE; ++UI) {
2167 const Instruction *UserInst = dyn_cast<Instruction>(*UI);
2168 // Ignore non-instructions.
2169 if (!UserInst)
2170 continue;
2171 // Ignore instructions in other functions (as can happen with
2172 // Constants).
2173 if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
2174 continue;
2175 // Ignore instructions not dominated by the loop.
2176 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
2177 UserInst->getParent() :
2178 cast<PHINode>(UserInst)->getIncomingBlock(
2179 PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
2180 if (!DT.dominates(L->getHeader(), UseBB))
2181 continue;
2182 // Ignore uses which are part of other SCEV expressions, to avoid
2183 // analyzing them multiple times.
2184 if (SE.isSCEVable(UserInst->getType())) {
2185 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
2186 // If the user is a no-op, look through to its uses.
2187 if (!isa<SCEVUnknown>(UserS))
2188 continue;
2189 if (UserS == U) {
2190 Worklist.push_back(
2191 SE.getUnknown(const_cast<Instruction *>(UserInst)));
2192 continue;
2195 // Ignore icmp instructions which are already being analyzed.
2196 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
2197 unsigned OtherIdx = !UI.getOperandNo();
2198 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
2199 if (SE.getSCEV(OtherOp)->hasComputableLoopEvolution(L))
2200 continue;
2203 LSRFixup &LF = getNewFixup();
2204 LF.UserInst = const_cast<Instruction *>(UserInst);
2205 LF.OperandValToReplace = UI.getUse();
2206 std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
2207 LF.LUIdx = P.first;
2208 LF.Offset = P.second;
2209 LSRUse &LU = Uses[LF.LUIdx];
2210 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
2211 if (!LU.WidestFixupType ||
2212 SE.getTypeSizeInBits(LU.WidestFixupType) <
2213 SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
2214 LU.WidestFixupType = LF.OperandValToReplace->getType();
2215 InsertSupplementalFormula(U, LU, LF.LUIdx);
2216 CountRegisters(LU.Formulae.back(), Uses.size() - 1);
2217 break;
2223 /// CollectSubexprs - Split S into subexpressions which can be pulled out into
2224 /// separate registers. If C is non-null, multiply each subexpression by C.
2225 static void CollectSubexprs(const SCEV *S, const SCEVConstant *C,
2226 SmallVectorImpl<const SCEV *> &Ops,
2227 const Loop *L,
2228 ScalarEvolution &SE) {
2229 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2230 // Break out add operands.
2231 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
2232 I != E; ++I)
2233 CollectSubexprs(*I, C, Ops, L, SE);
2234 return;
2235 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2236 // Split a non-zero base out of an addrec.
2237 if (!AR->getStart()->isZero()) {
2238 CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
2239 AR->getStepRecurrence(SE),
2240 AR->getLoop()),
2241 C, Ops, L, SE);
2242 CollectSubexprs(AR->getStart(), C, Ops, L, SE);
2243 return;
2245 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2246 // Break (C * (a + b + c)) into C*a + C*b + C*c.
2247 if (Mul->getNumOperands() == 2)
2248 if (const SCEVConstant *Op0 =
2249 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2250 CollectSubexprs(Mul->getOperand(1),
2251 C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0,
2252 Ops, L, SE);
2253 return;
2257 // Otherwise use the value itself, optionally with a scale applied.
2258 Ops.push_back(C ? SE.getMulExpr(C, S) : S);
2261 /// GenerateReassociations - Split out subexpressions from adds and the bases of
2262 /// addrecs.
2263 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
2264 Formula Base,
2265 unsigned Depth) {
2266 // Arbitrarily cap recursion to protect compile time.
2267 if (Depth >= 3) return;
2269 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2270 const SCEV *BaseReg = Base.BaseRegs[i];
2272 SmallVector<const SCEV *, 8> AddOps;
2273 CollectSubexprs(BaseReg, 0, AddOps, L, SE);
2275 if (AddOps.size() == 1) continue;
2277 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
2278 JE = AddOps.end(); J != JE; ++J) {
2280 // Loop-variant "unknown" values are uninteresting; we won't be able to
2281 // do anything meaningful with them.
2282 if (isa<SCEVUnknown>(*J) && !(*J)->isLoopInvariant(L))
2283 continue;
2285 // Don't pull a constant into a register if the constant could be folded
2286 // into an immediate field.
2287 if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
2288 Base.getNumRegs() > 1,
2289 LU.Kind, LU.AccessTy, TLI, SE))
2290 continue;
2292 // Collect all operands except *J.
2293 SmallVector<const SCEV *, 8> InnerAddOps
2294 (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
2295 InnerAddOps.append
2296 (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end());
2298 // Don't leave just a constant behind in a register if the constant could
2299 // be folded into an immediate field.
2300 if (InnerAddOps.size() == 1 &&
2301 isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
2302 Base.getNumRegs() > 1,
2303 LU.Kind, LU.AccessTy, TLI, SE))
2304 continue;
2306 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
2307 if (InnerSum->isZero())
2308 continue;
2309 Formula F = Base;
2310 F.BaseRegs[i] = InnerSum;
2311 F.BaseRegs.push_back(*J);
2312 if (InsertFormula(LU, LUIdx, F))
2313 // If that formula hadn't been seen before, recurse to find more like
2314 // it.
2315 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
2320 /// GenerateCombinations - Generate a formula consisting of all of the
2321 /// loop-dominating registers added into a single register.
2322 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
2323 Formula Base) {
2324 // This method is only interesting on a plurality of registers.
2325 if (Base.BaseRegs.size() <= 1) return;
2327 Formula F = Base;
2328 F.BaseRegs.clear();
2329 SmallVector<const SCEV *, 4> Ops;
2330 for (SmallVectorImpl<const SCEV *>::const_iterator
2331 I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
2332 const SCEV *BaseReg = *I;
2333 if (BaseReg->properlyDominates(L->getHeader(), &DT) &&
2334 !BaseReg->hasComputableLoopEvolution(L))
2335 Ops.push_back(BaseReg);
2336 else
2337 F.BaseRegs.push_back(BaseReg);
2339 if (Ops.size() > 1) {
2340 const SCEV *Sum = SE.getAddExpr(Ops);
2341 // TODO: If Sum is zero, it probably means ScalarEvolution missed an
2342 // opportunity to fold something. For now, just ignore such cases
2343 // rather than proceed with zero in a register.
2344 if (!Sum->isZero()) {
2345 F.BaseRegs.push_back(Sum);
2346 (void)InsertFormula(LU, LUIdx, F);
2351 /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
2352 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
2353 Formula Base) {
2354 // We can't add a symbolic offset if the address already contains one.
2355 if (Base.AM.BaseGV) return;
2357 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2358 const SCEV *G = Base.BaseRegs[i];
2359 GlobalValue *GV = ExtractSymbol(G, SE);
2360 if (G->isZero() || !GV)
2361 continue;
2362 Formula F = Base;
2363 F.AM.BaseGV = GV;
2364 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2365 LU.Kind, LU.AccessTy, TLI))
2366 continue;
2367 F.BaseRegs[i] = G;
2368 (void)InsertFormula(LU, LUIdx, F);
2372 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
2373 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
2374 Formula Base) {
2375 // TODO: For now, just add the min and max offset, because it usually isn't
2376 // worthwhile looking at everything inbetween.
2377 SmallVector<int64_t, 2> Worklist;
2378 Worklist.push_back(LU.MinOffset);
2379 if (LU.MaxOffset != LU.MinOffset)
2380 Worklist.push_back(LU.MaxOffset);
2382 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2383 const SCEV *G = Base.BaseRegs[i];
2385 for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
2386 E = Worklist.end(); I != E; ++I) {
2387 Formula F = Base;
2388 F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
2389 if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
2390 LU.Kind, LU.AccessTy, TLI)) {
2391 // Add the offset to the base register.
2392 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G);
2393 // If it cancelled out, drop the base register, otherwise update it.
2394 if (NewG->isZero()) {
2395 std::swap(F.BaseRegs[i], F.BaseRegs.back());
2396 F.BaseRegs.pop_back();
2397 } else
2398 F.BaseRegs[i] = NewG;
2400 (void)InsertFormula(LU, LUIdx, F);
2404 int64_t Imm = ExtractImmediate(G, SE);
2405 if (G->isZero() || Imm == 0)
2406 continue;
2407 Formula F = Base;
2408 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
2409 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2410 LU.Kind, LU.AccessTy, TLI))
2411 continue;
2412 F.BaseRegs[i] = G;
2413 (void)InsertFormula(LU, LUIdx, F);
2417 /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
2418 /// the comparison. For example, x == y -> x*c == y*c.
2419 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
2420 Formula Base) {
2421 if (LU.Kind != LSRUse::ICmpZero) return;
2423 // Determine the integer type for the base formula.
2424 const Type *IntTy = Base.getType();
2425 if (!IntTy) return;
2426 if (SE.getTypeSizeInBits(IntTy) > 64) return;
2428 // Don't do this if there is more than one offset.
2429 if (LU.MinOffset != LU.MaxOffset) return;
2431 assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
2433 // Check each interesting stride.
2434 for (SmallSetVector<int64_t, 8>::const_iterator
2435 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2436 int64_t Factor = *I;
2438 // Check that the multiplication doesn't overflow.
2439 if (Base.AM.BaseOffs == INT64_MIN && Factor == -1)
2440 continue;
2441 int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
2442 if (NewBaseOffs / Factor != Base.AM.BaseOffs)
2443 continue;
2445 // Check that multiplying with the use offset doesn't overflow.
2446 int64_t Offset = LU.MinOffset;
2447 if (Offset == INT64_MIN && Factor == -1)
2448 continue;
2449 Offset = (uint64_t)Offset * Factor;
2450 if (Offset / Factor != LU.MinOffset)
2451 continue;
2453 Formula F = Base;
2454 F.AM.BaseOffs = NewBaseOffs;
2456 // Check that this scale is legal.
2457 if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
2458 continue;
2460 // Compensate for the use having MinOffset built into it.
2461 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
2463 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
2465 // Check that multiplying with each base register doesn't overflow.
2466 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
2467 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
2468 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
2469 goto next;
2472 // Check that multiplying with the scaled register doesn't overflow.
2473 if (F.ScaledReg) {
2474 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
2475 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
2476 continue;
2479 // If we make it here and it's legal, add it.
2480 (void)InsertFormula(LU, LUIdx, F);
2481 next:;
2485 /// GenerateScales - Generate stride factor reuse formulae by making use of
2486 /// scaled-offset address modes, for example.
2487 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
2488 // Determine the integer type for the base formula.
2489 const Type *IntTy = Base.getType();
2490 if (!IntTy) return;
2492 // If this Formula already has a scaled register, we can't add another one.
2493 if (Base.AM.Scale != 0) return;
2495 // Check each interesting stride.
2496 for (SmallSetVector<int64_t, 8>::const_iterator
2497 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2498 int64_t Factor = *I;
2500 Base.AM.Scale = Factor;
2501 Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
2502 // Check whether this scale is going to be legal.
2503 if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2504 LU.Kind, LU.AccessTy, TLI)) {
2505 // As a special-case, handle special out-of-loop Basic users specially.
2506 // TODO: Reconsider this special case.
2507 if (LU.Kind == LSRUse::Basic &&
2508 isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2509 LSRUse::Special, LU.AccessTy, TLI) &&
2510 LU.AllFixupsOutsideLoop)
2511 LU.Kind = LSRUse::Special;
2512 else
2513 continue;
2515 // For an ICmpZero, negating a solitary base register won't lead to
2516 // new solutions.
2517 if (LU.Kind == LSRUse::ICmpZero &&
2518 !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
2519 continue;
2520 // For each addrec base reg, apply the scale, if possible.
2521 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
2522 if (const SCEVAddRecExpr *AR =
2523 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
2524 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
2525 if (FactorS->isZero())
2526 continue;
2527 // Divide out the factor, ignoring high bits, since we'll be
2528 // scaling the value back up in the end.
2529 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
2530 // TODO: This could be optimized to avoid all the copying.
2531 Formula F = Base;
2532 F.ScaledReg = Quotient;
2533 F.DeleteBaseReg(F.BaseRegs[i]);
2534 (void)InsertFormula(LU, LUIdx, F);
2540 /// GenerateTruncates - Generate reuse formulae from different IV types.
2541 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
2542 // This requires TargetLowering to tell us which truncates are free.
2543 if (!TLI) return;
2545 // Don't bother truncating symbolic values.
2546 if (Base.AM.BaseGV) return;
2548 // Determine the integer type for the base formula.
2549 const Type *DstTy = Base.getType();
2550 if (!DstTy) return;
2551 DstTy = SE.getEffectiveSCEVType(DstTy);
2553 for (SmallSetVector<const Type *, 4>::const_iterator
2554 I = Types.begin(), E = Types.end(); I != E; ++I) {
2555 const Type *SrcTy = *I;
2556 if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
2557 Formula F = Base;
2559 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
2560 for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
2561 JE = F.BaseRegs.end(); J != JE; ++J)
2562 *J = SE.getAnyExtendExpr(*J, SrcTy);
2564 // TODO: This assumes we've done basic processing on all uses and
2565 // have an idea what the register usage is.
2566 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
2567 continue;
2569 (void)InsertFormula(LU, LUIdx, F);
2574 namespace {
2576 /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
2577 /// defer modifications so that the search phase doesn't have to worry about
2578 /// the data structures moving underneath it.
2579 struct WorkItem {
2580 size_t LUIdx;
2581 int64_t Imm;
2582 const SCEV *OrigReg;
2584 WorkItem(size_t LI, int64_t I, const SCEV *R)
2585 : LUIdx(LI), Imm(I), OrigReg(R) {}
2587 void print(raw_ostream &OS) const;
2588 void dump() const;
2593 void WorkItem::print(raw_ostream &OS) const {
2594 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
2595 << " , add offset " << Imm;
2598 void WorkItem::dump() const {
2599 print(errs()); errs() << '\n';
2602 /// GenerateCrossUseConstantOffsets - Look for registers which are a constant
2603 /// distance apart and try to form reuse opportunities between them.
2604 void LSRInstance::GenerateCrossUseConstantOffsets() {
2605 // Group the registers by their value without any added constant offset.
2606 typedef std::map<int64_t, const SCEV *> ImmMapTy;
2607 typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
2608 RegMapTy Map;
2609 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
2610 SmallVector<const SCEV *, 8> Sequence;
2611 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2612 I != E; ++I) {
2613 const SCEV *Reg = *I;
2614 int64_t Imm = ExtractImmediate(Reg, SE);
2615 std::pair<RegMapTy::iterator, bool> Pair =
2616 Map.insert(std::make_pair(Reg, ImmMapTy()));
2617 if (Pair.second)
2618 Sequence.push_back(Reg);
2619 Pair.first->second.insert(std::make_pair(Imm, *I));
2620 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
2623 // Now examine each set of registers with the same base value. Build up
2624 // a list of work to do and do the work in a separate step so that we're
2625 // not adding formulae and register counts while we're searching.
2626 SmallVector<WorkItem, 32> WorkItems;
2627 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
2628 for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
2629 E = Sequence.end(); I != E; ++I) {
2630 const SCEV *Reg = *I;
2631 const ImmMapTy &Imms = Map.find(Reg)->second;
2633 // It's not worthwhile looking for reuse if there's only one offset.
2634 if (Imms.size() == 1)
2635 continue;
2637 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
2638 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2639 J != JE; ++J)
2640 dbgs() << ' ' << J->first;
2641 dbgs() << '\n');
2643 // Examine each offset.
2644 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2645 J != JE; ++J) {
2646 const SCEV *OrigReg = J->second;
2648 int64_t JImm = J->first;
2649 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
2651 if (!isa<SCEVConstant>(OrigReg) &&
2652 UsedByIndicesMap[Reg].count() == 1) {
2653 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
2654 continue;
2657 // Conservatively examine offsets between this orig reg a few selected
2658 // other orig regs.
2659 ImmMapTy::const_iterator OtherImms[] = {
2660 Imms.begin(), prior(Imms.end()),
2661 Imms.upper_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
2663 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
2664 ImmMapTy::const_iterator M = OtherImms[i];
2665 if (M == J || M == JE) continue;
2667 // Compute the difference between the two.
2668 int64_t Imm = (uint64_t)JImm - M->first;
2669 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
2670 LUIdx = UsedByIndices.find_next(LUIdx))
2671 // Make a memo of this use, offset, and register tuple.
2672 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
2673 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
2678 Map.clear();
2679 Sequence.clear();
2680 UsedByIndicesMap.clear();
2681 UniqueItems.clear();
2683 // Now iterate through the worklist and add new formulae.
2684 for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
2685 E = WorkItems.end(); I != E; ++I) {
2686 const WorkItem &WI = *I;
2687 size_t LUIdx = WI.LUIdx;
2688 LSRUse &LU = Uses[LUIdx];
2689 int64_t Imm = WI.Imm;
2690 const SCEV *OrigReg = WI.OrigReg;
2692 const Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
2693 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
2694 unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
2696 // TODO: Use a more targeted data structure.
2697 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
2698 const Formula &F = LU.Formulae[L];
2699 // Use the immediate in the scaled register.
2700 if (F.ScaledReg == OrigReg) {
2701 int64_t Offs = (uint64_t)F.AM.BaseOffs +
2702 Imm * (uint64_t)F.AM.Scale;
2703 // Don't create 50 + reg(-50).
2704 if (F.referencesReg(SE.getSCEV(
2705 ConstantInt::get(IntTy, -(uint64_t)Offs))))
2706 continue;
2707 Formula NewF = F;
2708 NewF.AM.BaseOffs = Offs;
2709 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2710 LU.Kind, LU.AccessTy, TLI))
2711 continue;
2712 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
2714 // If the new scale is a constant in a register, and adding the constant
2715 // value to the immediate would produce a value closer to zero than the
2716 // immediate itself, then the formula isn't worthwhile.
2717 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
2718 if (C->getValue()->getValue().isNegative() !=
2719 (NewF.AM.BaseOffs < 0) &&
2720 (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
2721 .ule(abs64(NewF.AM.BaseOffs)))
2722 continue;
2724 // OK, looks good.
2725 (void)InsertFormula(LU, LUIdx, NewF);
2726 } else {
2727 // Use the immediate in a base register.
2728 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
2729 const SCEV *BaseReg = F.BaseRegs[N];
2730 if (BaseReg != OrigReg)
2731 continue;
2732 Formula NewF = F;
2733 NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
2734 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2735 LU.Kind, LU.AccessTy, TLI))
2736 continue;
2737 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
2739 // If the new formula has a constant in a register, and adding the
2740 // constant value to the immediate would produce a value closer to
2741 // zero than the immediate itself, then the formula isn't worthwhile.
2742 for (SmallVectorImpl<const SCEV *>::const_iterator
2743 J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
2744 J != JE; ++J)
2745 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
2746 if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt(
2747 abs64(NewF.AM.BaseOffs)) &&
2748 (C->getValue()->getValue() +
2749 NewF.AM.BaseOffs).countTrailingZeros() >=
2750 CountTrailingZeros_64(NewF.AM.BaseOffs))
2751 goto skip_formula;
2753 // Ok, looks good.
2754 (void)InsertFormula(LU, LUIdx, NewF);
2755 break;
2756 skip_formula:;
2763 /// GenerateAllReuseFormulae - Generate formulae for each use.
2764 void
2765 LSRInstance::GenerateAllReuseFormulae() {
2766 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
2767 // queries are more precise.
2768 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2769 LSRUse &LU = Uses[LUIdx];
2770 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2771 GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
2772 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2773 GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
2775 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2776 LSRUse &LU = Uses[LUIdx];
2777 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2778 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
2779 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2780 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
2781 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2782 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
2783 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2784 GenerateScales(LU, LUIdx, LU.Formulae[i]);
2786 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2787 LSRUse &LU = Uses[LUIdx];
2788 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2789 GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
2792 GenerateCrossUseConstantOffsets();
2794 DEBUG(dbgs() << "\n"
2795 "After generating reuse formulae:\n";
2796 print_uses(dbgs()));
2799 /// If there are multiple formulae with the same set of registers used
2800 /// by other uses, pick the best one and delete the others.
2801 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
2802 DenseSet<const SCEV *> VisitedRegs;
2803 SmallPtrSet<const SCEV *, 16> Regs;
2804 #ifndef NDEBUG
2805 bool ChangedFormulae = false;
2806 #endif
2808 // Collect the best formula for each unique set of shared registers. This
2809 // is reset for each use.
2810 typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
2811 BestFormulaeTy;
2812 BestFormulaeTy BestFormulae;
2814 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2815 LSRUse &LU = Uses[LUIdx];
2816 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
2818 bool Any = false;
2819 for (size_t FIdx = 0, NumForms = LU.Formulae.size();
2820 FIdx != NumForms; ++FIdx) {
2821 Formula &F = LU.Formulae[FIdx];
2823 SmallVector<const SCEV *, 2> Key;
2824 for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
2825 JE = F.BaseRegs.end(); J != JE; ++J) {
2826 const SCEV *Reg = *J;
2827 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
2828 Key.push_back(Reg);
2830 if (F.ScaledReg &&
2831 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
2832 Key.push_back(F.ScaledReg);
2833 // Unstable sort by host order ok, because this is only used for
2834 // uniquifying.
2835 std::sort(Key.begin(), Key.end());
2837 std::pair<BestFormulaeTy::const_iterator, bool> P =
2838 BestFormulae.insert(std::make_pair(Key, FIdx));
2839 if (!P.second) {
2840 Formula &Best = LU.Formulae[P.first->second];
2842 Cost CostF;
2843 CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT);
2844 Regs.clear();
2845 Cost CostBest;
2846 CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT);
2847 Regs.clear();
2848 if (CostF < CostBest)
2849 std::swap(F, Best);
2850 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
2851 dbgs() << "\n"
2852 " in favor of formula "; Best.print(dbgs());
2853 dbgs() << '\n');
2854 #ifndef NDEBUG
2855 ChangedFormulae = true;
2856 #endif
2857 LU.DeleteFormula(F);
2858 --FIdx;
2859 --NumForms;
2860 Any = true;
2861 continue;
2865 // Now that we've filtered out some formulae, recompute the Regs set.
2866 if (Any)
2867 LU.RecomputeRegs(LUIdx, RegUses);
2869 // Reset this to prepare for the next use.
2870 BestFormulae.clear();
2873 DEBUG(if (ChangedFormulae) {
2874 dbgs() << "\n"
2875 "After filtering out undesirable candidates:\n";
2876 print_uses(dbgs());
2880 // This is a rough guess that seems to work fairly well.
2881 static const size_t ComplexityLimit = UINT16_MAX;
2883 /// EstimateSearchSpaceComplexity - Estimate the worst-case number of
2884 /// solutions the solver might have to consider. It almost never considers
2885 /// this many solutions because it prune the search space, but the pruning
2886 /// isn't always sufficient.
2887 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
2888 size_t Power = 1;
2889 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
2890 E = Uses.end(); I != E; ++I) {
2891 size_t FSize = I->Formulae.size();
2892 if (FSize >= ComplexityLimit) {
2893 Power = ComplexityLimit;
2894 break;
2896 Power *= FSize;
2897 if (Power >= ComplexityLimit)
2898 break;
2900 return Power;
2903 /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset
2904 /// of the registers of another formula, it won't help reduce register
2905 /// pressure (though it may not necessarily hurt register pressure); remove
2906 /// it to simplify the system.
2907 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
2908 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
2909 DEBUG(dbgs() << "The search space is too complex.\n");
2911 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
2912 "which use a superset of registers used by other "
2913 "formulae.\n");
2915 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2916 LSRUse &LU = Uses[LUIdx];
2917 bool Any = false;
2918 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
2919 Formula &F = LU.Formulae[i];
2920 // Look for a formula with a constant or GV in a register. If the use
2921 // also has a formula with that same value in an immediate field,
2922 // delete the one that uses a register.
2923 for (SmallVectorImpl<const SCEV *>::const_iterator
2924 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
2925 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
2926 Formula NewF = F;
2927 NewF.AM.BaseOffs += C->getValue()->getSExtValue();
2928 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
2929 (I - F.BaseRegs.begin()));
2930 if (LU.HasFormulaWithSameRegs(NewF)) {
2931 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
2932 LU.DeleteFormula(F);
2933 --i;
2934 --e;
2935 Any = true;
2936 break;
2938 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
2939 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
2940 if (!F.AM.BaseGV) {
2941 Formula NewF = F;
2942 NewF.AM.BaseGV = GV;
2943 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
2944 (I - F.BaseRegs.begin()));
2945 if (LU.HasFormulaWithSameRegs(NewF)) {
2946 DEBUG(dbgs() << " Deleting "; F.print(dbgs());
2947 dbgs() << '\n');
2948 LU.DeleteFormula(F);
2949 --i;
2950 --e;
2951 Any = true;
2952 break;
2958 if (Any)
2959 LU.RecomputeRegs(LUIdx, RegUses);
2962 DEBUG(dbgs() << "After pre-selection:\n";
2963 print_uses(dbgs()));
2967 /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers
2968 /// for expressions like A, A+1, A+2, etc., allocate a single register for
2969 /// them.
2970 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
2971 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
2972 DEBUG(dbgs() << "The search space is too complex.\n");
2974 DEBUG(dbgs() << "Narrowing the search space by assuming that uses "
2975 "separated by a constant offset will use the same "
2976 "registers.\n");
2978 // This is especially useful for unrolled loops.
2980 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2981 LSRUse &LU = Uses[LUIdx];
2982 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
2983 E = LU.Formulae.end(); I != E; ++I) {
2984 const Formula &F = *I;
2985 if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) {
2986 if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) {
2987 if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs,
2988 /*HasBaseReg=*/false,
2989 LU.Kind, LU.AccessTy)) {
2990 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs());
2991 dbgs() << '\n');
2993 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
2995 // Update the relocs to reference the new use.
2996 for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
2997 E = Fixups.end(); I != E; ++I) {
2998 LSRFixup &Fixup = *I;
2999 if (Fixup.LUIdx == LUIdx) {
3000 Fixup.LUIdx = LUThatHas - &Uses.front();
3001 Fixup.Offset += F.AM.BaseOffs;
3002 // Add the new offset to LUThatHas' offset list.
3003 if (LUThatHas->Offsets.back() != Fixup.Offset) {
3004 LUThatHas->Offsets.push_back(Fixup.Offset);
3005 if (Fixup.Offset > LUThatHas->MaxOffset)
3006 LUThatHas->MaxOffset = Fixup.Offset;
3007 if (Fixup.Offset < LUThatHas->MinOffset)
3008 LUThatHas->MinOffset = Fixup.Offset;
3010 DEBUG(dbgs() << "New fixup has offset "
3011 << Fixup.Offset << '\n');
3013 if (Fixup.LUIdx == NumUses-1)
3014 Fixup.LUIdx = LUIdx;
3017 // Delete formulae from the new use which are no longer legal.
3018 bool Any = false;
3019 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
3020 Formula &F = LUThatHas->Formulae[i];
3021 if (!isLegalUse(F.AM,
3022 LUThatHas->MinOffset, LUThatHas->MaxOffset,
3023 LUThatHas->Kind, LUThatHas->AccessTy, TLI)) {
3024 DEBUG(dbgs() << " Deleting "; F.print(dbgs());
3025 dbgs() << '\n');
3026 LUThatHas->DeleteFormula(F);
3027 --i;
3028 --e;
3029 Any = true;
3032 if (Any)
3033 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
3035 // Delete the old use.
3036 DeleteUse(LU, LUIdx);
3037 --LUIdx;
3038 --NumUses;
3039 break;
3046 DEBUG(dbgs() << "After pre-selection:\n";
3047 print_uses(dbgs()));
3051 /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call
3052 /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that
3053 /// we've done more filtering, as it may be able to find more formulae to
3054 /// eliminate.
3055 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
3056 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3057 DEBUG(dbgs() << "The search space is too complex.\n");
3059 DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
3060 "undesirable dedicated registers.\n");
3062 FilterOutUndesirableDedicatedRegisters();
3064 DEBUG(dbgs() << "After pre-selection:\n";
3065 print_uses(dbgs()));
3069 /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely
3070 /// to be profitable, and then in any use which has any reference to that
3071 /// register, delete all formulae which do not reference that register.
3072 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
3073 // With all other options exhausted, loop until the system is simple
3074 // enough to handle.
3075 SmallPtrSet<const SCEV *, 4> Taken;
3076 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3077 // Ok, we have too many of formulae on our hands to conveniently handle.
3078 // Use a rough heuristic to thin out the list.
3079 DEBUG(dbgs() << "The search space is too complex.\n");
3081 // Pick the register which is used by the most LSRUses, which is likely
3082 // to be a good reuse register candidate.
3083 const SCEV *Best = 0;
3084 unsigned BestNum = 0;
3085 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
3086 I != E; ++I) {
3087 const SCEV *Reg = *I;
3088 if (Taken.count(Reg))
3089 continue;
3090 if (!Best)
3091 Best = Reg;
3092 else {
3093 unsigned Count = RegUses.getUsedByIndices(Reg).count();
3094 if (Count > BestNum) {
3095 Best = Reg;
3096 BestNum = Count;
3101 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
3102 << " will yield profitable reuse.\n");
3103 Taken.insert(Best);
3105 // In any use with formulae which references this register, delete formulae
3106 // which don't reference it.
3107 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3108 LSRUse &LU = Uses[LUIdx];
3109 if (!LU.Regs.count(Best)) continue;
3111 bool Any = false;
3112 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3113 Formula &F = LU.Formulae[i];
3114 if (!F.referencesReg(Best)) {
3115 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
3116 LU.DeleteFormula(F);
3117 --e;
3118 --i;
3119 Any = true;
3120 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
3121 continue;
3125 if (Any)
3126 LU.RecomputeRegs(LUIdx, RegUses);
3129 DEBUG(dbgs() << "After pre-selection:\n";
3130 print_uses(dbgs()));
3134 /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
3135 /// formulae to choose from, use some rough heuristics to prune down the number
3136 /// of formulae. This keeps the main solver from taking an extraordinary amount
3137 /// of time in some worst-case scenarios.
3138 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
3139 NarrowSearchSpaceByDetectingSupersets();
3140 NarrowSearchSpaceByCollapsingUnrolledCode();
3141 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
3142 NarrowSearchSpaceByPickingWinnerRegs();
3145 /// SolveRecurse - This is the recursive solver.
3146 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
3147 Cost &SolutionCost,
3148 SmallVectorImpl<const Formula *> &Workspace,
3149 const Cost &CurCost,
3150 const SmallPtrSet<const SCEV *, 16> &CurRegs,
3151 DenseSet<const SCEV *> &VisitedRegs) const {
3152 // Some ideas:
3153 // - prune more:
3154 // - use more aggressive filtering
3155 // - sort the formula so that the most profitable solutions are found first
3156 // - sort the uses too
3157 // - search faster:
3158 // - don't compute a cost, and then compare. compare while computing a cost
3159 // and bail early.
3160 // - track register sets with SmallBitVector
3162 const LSRUse &LU = Uses[Workspace.size()];
3164 // If this use references any register that's already a part of the
3165 // in-progress solution, consider it a requirement that a formula must
3166 // reference that register in order to be considered. This prunes out
3167 // unprofitable searching.
3168 SmallSetVector<const SCEV *, 4> ReqRegs;
3169 for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
3170 E = CurRegs.end(); I != E; ++I)
3171 if (LU.Regs.count(*I))
3172 ReqRegs.insert(*I);
3174 bool AnySatisfiedReqRegs = false;
3175 SmallPtrSet<const SCEV *, 16> NewRegs;
3176 Cost NewCost;
3177 retry:
3178 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
3179 E = LU.Formulae.end(); I != E; ++I) {
3180 const Formula &F = *I;
3182 // Ignore formulae which do not use any of the required registers.
3183 for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
3184 JE = ReqRegs.end(); J != JE; ++J) {
3185 const SCEV *Reg = *J;
3186 if ((!F.ScaledReg || F.ScaledReg != Reg) &&
3187 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
3188 F.BaseRegs.end())
3189 goto skip;
3191 AnySatisfiedReqRegs = true;
3193 // Evaluate the cost of the current formula. If it's already worse than
3194 // the current best, prune the search at that point.
3195 NewCost = CurCost;
3196 NewRegs = CurRegs;
3197 NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
3198 if (NewCost < SolutionCost) {
3199 Workspace.push_back(&F);
3200 if (Workspace.size() != Uses.size()) {
3201 SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
3202 NewRegs, VisitedRegs);
3203 if (F.getNumRegs() == 1 && Workspace.size() == 1)
3204 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
3205 } else {
3206 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
3207 dbgs() << ". Regs:";
3208 for (SmallPtrSet<const SCEV *, 16>::const_iterator
3209 I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
3210 dbgs() << ' ' << **I;
3211 dbgs() << '\n');
3213 SolutionCost = NewCost;
3214 Solution = Workspace;
3216 Workspace.pop_back();
3218 skip:;
3221 // If none of the formulae had all of the required registers, relax the
3222 // constraint so that we don't exclude all formulae.
3223 if (!AnySatisfiedReqRegs) {
3224 assert(!ReqRegs.empty() && "Solver failed even without required registers");
3225 ReqRegs.clear();
3226 goto retry;
3230 /// Solve - Choose one formula from each use. Return the results in the given
3231 /// Solution vector.
3232 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
3233 SmallVector<const Formula *, 8> Workspace;
3234 Cost SolutionCost;
3235 SolutionCost.Loose();
3236 Cost CurCost;
3237 SmallPtrSet<const SCEV *, 16> CurRegs;
3238 DenseSet<const SCEV *> VisitedRegs;
3239 Workspace.reserve(Uses.size());
3241 // SolveRecurse does all the work.
3242 SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
3243 CurRegs, VisitedRegs);
3245 // Ok, we've now made all our decisions.
3246 DEBUG(dbgs() << "\n"
3247 "The chosen solution requires "; SolutionCost.print(dbgs());
3248 dbgs() << ":\n";
3249 for (size_t i = 0, e = Uses.size(); i != e; ++i) {
3250 dbgs() << " ";
3251 Uses[i].print(dbgs());
3252 dbgs() << "\n"
3253 " ";
3254 Solution[i]->print(dbgs());
3255 dbgs() << '\n';
3258 assert(Solution.size() == Uses.size() && "Malformed solution!");
3261 /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
3262 /// the dominator tree far as we can go while still being dominated by the
3263 /// input positions. This helps canonicalize the insert position, which
3264 /// encourages sharing.
3265 BasicBlock::iterator
3266 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
3267 const SmallVectorImpl<Instruction *> &Inputs)
3268 const {
3269 for (;;) {
3270 const Loop *IPLoop = LI.getLoopFor(IP->getParent());
3271 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
3273 BasicBlock *IDom;
3274 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
3275 if (!Rung) return IP;
3276 Rung = Rung->getIDom();
3277 if (!Rung) return IP;
3278 IDom = Rung->getBlock();
3280 // Don't climb into a loop though.
3281 const Loop *IDomLoop = LI.getLoopFor(IDom);
3282 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
3283 if (IDomDepth <= IPLoopDepth &&
3284 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
3285 break;
3288 bool AllDominate = true;
3289 Instruction *BetterPos = 0;
3290 Instruction *Tentative = IDom->getTerminator();
3291 for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
3292 E = Inputs.end(); I != E; ++I) {
3293 Instruction *Inst = *I;
3294 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
3295 AllDominate = false;
3296 break;
3298 // Attempt to find an insert position in the middle of the block,
3299 // instead of at the end, so that it can be used for other expansions.
3300 if (IDom == Inst->getParent() &&
3301 (!BetterPos || DT.dominates(BetterPos, Inst)))
3302 BetterPos = llvm::next(BasicBlock::iterator(Inst));
3304 if (!AllDominate)
3305 break;
3306 if (BetterPos)
3307 IP = BetterPos;
3308 else
3309 IP = Tentative;
3312 return IP;
3315 /// AdjustInsertPositionForExpand - Determine an input position which will be
3316 /// dominated by the operands and which will dominate the result.
3317 BasicBlock::iterator
3318 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP,
3319 const LSRFixup &LF,
3320 const LSRUse &LU) const {
3321 // Collect some instructions which must be dominated by the
3322 // expanding replacement. These must be dominated by any operands that
3323 // will be required in the expansion.
3324 SmallVector<Instruction *, 4> Inputs;
3325 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
3326 Inputs.push_back(I);
3327 if (LU.Kind == LSRUse::ICmpZero)
3328 if (Instruction *I =
3329 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
3330 Inputs.push_back(I);
3331 if (LF.PostIncLoops.count(L)) {
3332 if (LF.isUseFullyOutsideLoop(L))
3333 Inputs.push_back(L->getLoopLatch()->getTerminator());
3334 else
3335 Inputs.push_back(IVIncInsertPos);
3337 // The expansion must also be dominated by the increment positions of any
3338 // loops it for which it is using post-inc mode.
3339 for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
3340 E = LF.PostIncLoops.end(); I != E; ++I) {
3341 const Loop *PIL = *I;
3342 if (PIL == L) continue;
3344 // Be dominated by the loop exit.
3345 SmallVector<BasicBlock *, 4> ExitingBlocks;
3346 PIL->getExitingBlocks(ExitingBlocks);
3347 if (!ExitingBlocks.empty()) {
3348 BasicBlock *BB = ExitingBlocks[0];
3349 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
3350 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
3351 Inputs.push_back(BB->getTerminator());
3355 // Then, climb up the immediate dominator tree as far as we can go while
3356 // still being dominated by the input positions.
3357 IP = HoistInsertPosition(IP, Inputs);
3359 // Don't insert instructions before PHI nodes.
3360 while (isa<PHINode>(IP)) ++IP;
3362 // Ignore debug intrinsics.
3363 while (isa<DbgInfoIntrinsic>(IP)) ++IP;
3365 return IP;
3368 /// Expand - Emit instructions for the leading candidate expression for this
3369 /// LSRUse (this is called "expanding").
3370 Value *LSRInstance::Expand(const LSRFixup &LF,
3371 const Formula &F,
3372 BasicBlock::iterator IP,
3373 SCEVExpander &Rewriter,
3374 SmallVectorImpl<WeakVH> &DeadInsts) const {
3375 const LSRUse &LU = Uses[LF.LUIdx];
3377 // Determine an input position which will be dominated by the operands and
3378 // which will dominate the result.
3379 IP = AdjustInsertPositionForExpand(IP, LF, LU);
3381 // Inform the Rewriter if we have a post-increment use, so that it can
3382 // perform an advantageous expansion.
3383 Rewriter.setPostInc(LF.PostIncLoops);
3385 // This is the type that the user actually needs.
3386 const Type *OpTy = LF.OperandValToReplace->getType();
3387 // This will be the type that we'll initially expand to.
3388 const Type *Ty = F.getType();
3389 if (!Ty)
3390 // No type known; just expand directly to the ultimate type.
3391 Ty = OpTy;
3392 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
3393 // Expand directly to the ultimate type if it's the right size.
3394 Ty = OpTy;
3395 // This is the type to do integer arithmetic in.
3396 const Type *IntTy = SE.getEffectiveSCEVType(Ty);
3398 // Build up a list of operands to add together to form the full base.
3399 SmallVector<const SCEV *, 8> Ops;
3401 // Expand the BaseRegs portion.
3402 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
3403 E = F.BaseRegs.end(); I != E; ++I) {
3404 const SCEV *Reg = *I;
3405 assert(!Reg->isZero() && "Zero allocated in a base register!");
3407 // If we're expanding for a post-inc user, make the post-inc adjustment.
3408 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3409 Reg = TransformForPostIncUse(Denormalize, Reg,
3410 LF.UserInst, LF.OperandValToReplace,
3411 Loops, SE, DT);
3413 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
3416 // Flush the operand list to suppress SCEVExpander hoisting.
3417 if (!Ops.empty()) {
3418 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3419 Ops.clear();
3420 Ops.push_back(SE.getUnknown(FullV));
3423 // Expand the ScaledReg portion.
3424 Value *ICmpScaledV = 0;
3425 if (F.AM.Scale != 0) {
3426 const SCEV *ScaledS = F.ScaledReg;
3428 // If we're expanding for a post-inc user, make the post-inc adjustment.
3429 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3430 ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
3431 LF.UserInst, LF.OperandValToReplace,
3432 Loops, SE, DT);
3434 if (LU.Kind == LSRUse::ICmpZero) {
3435 // An interesting way of "folding" with an icmp is to use a negated
3436 // scale, which we'll implement by inserting it into the other operand
3437 // of the icmp.
3438 assert(F.AM.Scale == -1 &&
3439 "The only scale supported by ICmpZero uses is -1!");
3440 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
3441 } else {
3442 // Otherwise just expand the scaled register and an explicit scale,
3443 // which is expected to be matched as part of the address.
3444 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
3445 ScaledS = SE.getMulExpr(ScaledS,
3446 SE.getConstant(ScaledS->getType(), F.AM.Scale));
3447 Ops.push_back(ScaledS);
3449 // Flush the operand list to suppress SCEVExpander hoisting.
3450 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3451 Ops.clear();
3452 Ops.push_back(SE.getUnknown(FullV));
3456 // Expand the GV portion.
3457 if (F.AM.BaseGV) {
3458 Ops.push_back(SE.getUnknown(F.AM.BaseGV));
3460 // Flush the operand list to suppress SCEVExpander hoisting.
3461 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3462 Ops.clear();
3463 Ops.push_back(SE.getUnknown(FullV));
3466 // Expand the immediate portion.
3467 int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
3468 if (Offset != 0) {
3469 if (LU.Kind == LSRUse::ICmpZero) {
3470 // The other interesting way of "folding" with an ICmpZero is to use a
3471 // negated immediate.
3472 if (!ICmpScaledV)
3473 ICmpScaledV = ConstantInt::get(IntTy, -Offset);
3474 else {
3475 Ops.push_back(SE.getUnknown(ICmpScaledV));
3476 ICmpScaledV = ConstantInt::get(IntTy, Offset);
3478 } else {
3479 // Just add the immediate values. These again are expected to be matched
3480 // as part of the address.
3481 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
3485 // Emit instructions summing all the operands.
3486 const SCEV *FullS = Ops.empty() ?
3487 SE.getConstant(IntTy, 0) :
3488 SE.getAddExpr(Ops);
3489 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
3491 // We're done expanding now, so reset the rewriter.
3492 Rewriter.clearPostInc();
3494 // An ICmpZero Formula represents an ICmp which we're handling as a
3495 // comparison against zero. Now that we've expanded an expression for that
3496 // form, update the ICmp's other operand.
3497 if (LU.Kind == LSRUse::ICmpZero) {
3498 ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
3499 DeadInsts.push_back(CI->getOperand(1));
3500 assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
3501 "a scale at the same time!");
3502 if (F.AM.Scale == -1) {
3503 if (ICmpScaledV->getType() != OpTy) {
3504 Instruction *Cast =
3505 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
3506 OpTy, false),
3507 ICmpScaledV, OpTy, "tmp", CI);
3508 ICmpScaledV = Cast;
3510 CI->setOperand(1, ICmpScaledV);
3511 } else {
3512 assert(F.AM.Scale == 0 &&
3513 "ICmp does not support folding a global value and "
3514 "a scale at the same time!");
3515 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
3516 -(uint64_t)Offset);
3517 if (C->getType() != OpTy)
3518 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3519 OpTy, false),
3520 C, OpTy);
3522 CI->setOperand(1, C);
3526 return FullV;
3529 /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
3530 /// of their operands effectively happens in their predecessor blocks, so the
3531 /// expression may need to be expanded in multiple places.
3532 void LSRInstance::RewriteForPHI(PHINode *PN,
3533 const LSRFixup &LF,
3534 const Formula &F,
3535 SCEVExpander &Rewriter,
3536 SmallVectorImpl<WeakVH> &DeadInsts,
3537 Pass *P) const {
3538 DenseMap<BasicBlock *, Value *> Inserted;
3539 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3540 if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
3541 BasicBlock *BB = PN->getIncomingBlock(i);
3543 // If this is a critical edge, split the edge so that we do not insert
3544 // the code on all predecessor/successor paths. We do this unless this
3545 // is the canonical backedge for this loop, which complicates post-inc
3546 // users.
3547 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
3548 !isa<IndirectBrInst>(BB->getTerminator()) &&
3549 (PN->getParent() != L->getHeader() || !L->contains(BB))) {
3550 // Split the critical edge.
3551 BasicBlock *NewBB = SplitCriticalEdge(BB, PN->getParent(), P);
3553 // If PN is outside of the loop and BB is in the loop, we want to
3554 // move the block to be immediately before the PHI block, not
3555 // immediately after BB.
3556 if (L->contains(BB) && !L->contains(PN))
3557 NewBB->moveBefore(PN->getParent());
3559 // Splitting the edge can reduce the number of PHI entries we have.
3560 e = PN->getNumIncomingValues();
3561 BB = NewBB;
3562 i = PN->getBasicBlockIndex(BB);
3565 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
3566 Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
3567 if (!Pair.second)
3568 PN->setIncomingValue(i, Pair.first->second);
3569 else {
3570 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
3572 // If this is reuse-by-noop-cast, insert the noop cast.
3573 const Type *OpTy = LF.OperandValToReplace->getType();
3574 if (FullV->getType() != OpTy)
3575 FullV =
3576 CastInst::Create(CastInst::getCastOpcode(FullV, false,
3577 OpTy, false),
3578 FullV, LF.OperandValToReplace->getType(),
3579 "tmp", BB->getTerminator());
3581 PN->setIncomingValue(i, FullV);
3582 Pair.first->second = FullV;
3587 /// Rewrite - Emit instructions for the leading candidate expression for this
3588 /// LSRUse (this is called "expanding"), and update the UserInst to reference
3589 /// the newly expanded value.
3590 void LSRInstance::Rewrite(const LSRFixup &LF,
3591 const Formula &F,
3592 SCEVExpander &Rewriter,
3593 SmallVectorImpl<WeakVH> &DeadInsts,
3594 Pass *P) const {
3595 // First, find an insertion point that dominates UserInst. For PHI nodes,
3596 // find the nearest block which dominates all the relevant uses.
3597 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
3598 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
3599 } else {
3600 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
3602 // If this is reuse-by-noop-cast, insert the noop cast.
3603 const Type *OpTy = LF.OperandValToReplace->getType();
3604 if (FullV->getType() != OpTy) {
3605 Instruction *Cast =
3606 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
3607 FullV, OpTy, "tmp", LF.UserInst);
3608 FullV = Cast;
3611 // Update the user. ICmpZero is handled specially here (for now) because
3612 // Expand may have updated one of the operands of the icmp already, and
3613 // its new value may happen to be equal to LF.OperandValToReplace, in
3614 // which case doing replaceUsesOfWith leads to replacing both operands
3615 // with the same value. TODO: Reorganize this.
3616 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
3617 LF.UserInst->setOperand(0, FullV);
3618 else
3619 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
3622 DeadInsts.push_back(LF.OperandValToReplace);
3625 /// ImplementSolution - Rewrite all the fixup locations with new values,
3626 /// following the chosen solution.
3627 void
3628 LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
3629 Pass *P) {
3630 // Keep track of instructions we may have made dead, so that
3631 // we can remove them after we are done working.
3632 SmallVector<WeakVH, 16> DeadInsts;
3634 SCEVExpander Rewriter(SE);
3635 Rewriter.disableCanonicalMode();
3636 Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
3638 // Expand the new value definitions and update the users.
3639 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3640 E = Fixups.end(); I != E; ++I) {
3641 const LSRFixup &Fixup = *I;
3643 Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
3645 Changed = true;
3648 // Clean up after ourselves. This must be done before deleting any
3649 // instructions.
3650 Rewriter.clear();
3652 Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
3655 LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
3656 : IU(P->getAnalysis<IVUsers>()),
3657 SE(P->getAnalysis<ScalarEvolution>()),
3658 DT(P->getAnalysis<DominatorTree>()),
3659 LI(P->getAnalysis<LoopInfo>()),
3660 TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
3662 // If LoopSimplify form is not available, stay out of trouble.
3663 if (!L->isLoopSimplifyForm()) return;
3665 // If there's no interesting work to be done, bail early.
3666 if (IU.empty()) return;
3668 DEBUG(dbgs() << "\nLSR on loop ";
3669 WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
3670 dbgs() << ":\n");
3672 // First, perform some low-level loop optimizations.
3673 OptimizeShadowIV();
3674 OptimizeLoopTermCond();
3676 // Start collecting data and preparing for the solver.
3677 CollectInterestingTypesAndFactors();
3678 CollectFixupsAndInitialFormulae();
3679 CollectLoopInvariantFixupsAndFormulae();
3681 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
3682 print_uses(dbgs()));
3684 // Now use the reuse data to generate a bunch of interesting ways
3685 // to formulate the values needed for the uses.
3686 GenerateAllReuseFormulae();
3688 FilterOutUndesirableDedicatedRegisters();
3689 NarrowSearchSpaceUsingHeuristics();
3691 SmallVector<const Formula *, 8> Solution;
3692 Solve(Solution);
3694 // Release memory that is no longer needed.
3695 Factors.clear();
3696 Types.clear();
3697 RegUses.clear();
3699 #ifndef NDEBUG
3700 // Formulae should be legal.
3701 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3702 E = Uses.end(); I != E; ++I) {
3703 const LSRUse &LU = *I;
3704 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3705 JE = LU.Formulae.end(); J != JE; ++J)
3706 assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
3707 LU.Kind, LU.AccessTy, TLI) &&
3708 "Illegal formula generated!");
3710 #endif
3712 // Now that we've decided what we want, make it so.
3713 ImplementSolution(Solution, P);
3716 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
3717 if (Factors.empty() && Types.empty()) return;
3719 OS << "LSR has identified the following interesting factors and types: ";
3720 bool First = true;
3722 for (SmallSetVector<int64_t, 8>::const_iterator
3723 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3724 if (!First) OS << ", ";
3725 First = false;
3726 OS << '*' << *I;
3729 for (SmallSetVector<const Type *, 4>::const_iterator
3730 I = Types.begin(), E = Types.end(); I != E; ++I) {
3731 if (!First) OS << ", ";
3732 First = false;
3733 OS << '(' << **I << ')';
3735 OS << '\n';
3738 void LSRInstance::print_fixups(raw_ostream &OS) const {
3739 OS << "LSR is examining the following fixup sites:\n";
3740 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3741 E = Fixups.end(); I != E; ++I) {
3742 dbgs() << " ";
3743 I->print(OS);
3744 OS << '\n';
3748 void LSRInstance::print_uses(raw_ostream &OS) const {
3749 OS << "LSR is examining the following uses:\n";
3750 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3751 E = Uses.end(); I != E; ++I) {
3752 const LSRUse &LU = *I;
3753 dbgs() << " ";
3754 LU.print(OS);
3755 OS << '\n';
3756 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3757 JE = LU.Formulae.end(); J != JE; ++J) {
3758 OS << " ";
3759 J->print(OS);
3760 OS << '\n';
3765 void LSRInstance::print(raw_ostream &OS) const {
3766 print_factors_and_types(OS);
3767 print_fixups(OS);
3768 print_uses(OS);
3771 void LSRInstance::dump() const {
3772 print(errs()); errs() << '\n';
3775 namespace {
3777 class LoopStrengthReduce : public LoopPass {
3778 /// TLI - Keep a pointer of a TargetLowering to consult for determining
3779 /// transformation profitability.
3780 const TargetLowering *const TLI;
3782 public:
3783 static char ID; // Pass ID, replacement for typeid
3784 explicit LoopStrengthReduce(const TargetLowering *tli = 0);
3786 private:
3787 bool runOnLoop(Loop *L, LPPassManager &LPM);
3788 void getAnalysisUsage(AnalysisUsage &AU) const;
3793 char LoopStrengthReduce::ID = 0;
3794 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
3795 "Loop Strength Reduction", false, false)
3796 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
3797 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
3798 INITIALIZE_PASS_DEPENDENCY(IVUsers)
3799 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
3800 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
3801 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
3802 "Loop Strength Reduction", false, false)
3805 Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
3806 return new LoopStrengthReduce(TLI);
3809 LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
3810 : LoopPass(ID), TLI(tli) {
3811 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
3814 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
3815 // We split critical edges, so we change the CFG. However, we do update
3816 // many analyses if they are around.
3817 AU.addPreservedID(LoopSimplifyID);
3818 AU.addPreserved("domfrontier");
3820 AU.addRequired<LoopInfo>();
3821 AU.addPreserved<LoopInfo>();
3822 AU.addRequiredID(LoopSimplifyID);
3823 AU.addRequired<DominatorTree>();
3824 AU.addPreserved<DominatorTree>();
3825 AU.addRequired<ScalarEvolution>();
3826 AU.addPreserved<ScalarEvolution>();
3827 AU.addRequired<IVUsers>();
3828 AU.addPreserved<IVUsers>();
3831 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
3832 bool Changed = false;
3834 // Run the main LSR transformation.
3835 Changed |= LSRInstance(TLI, L, this).getChanged();
3837 // At this point, it is worth checking to see if any recurrence PHIs are also
3838 // dead, so that we can remove them as well.
3839 Changed |= DeleteDeadPHIs(L->getHeader());
3841 return Changed;