Fixed some bugs.
[llvm/zpu.git] / lib / Transforms / Scalar / LoopUnswitch.cpp
blobeb05f995c781dd8abc355ddc85e71d2d9a2fe696
1 //===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops that contain branches on loop-invariant conditions
11 // to have multiple loops. For example, it turns the left into the right code:
13 // for (...) if (lic)
14 // A for (...)
15 // if (lic) A; B; C
16 // B else
17 // C for (...)
18 // A; C
20 // This can increase the size of the code exponentially (doubling it every time
21 // a loop is unswitched) so we only unswitch if the resultant code will be
22 // smaller than a threshold.
24 // This pass expects LICM to be run before it to hoist invariant conditions out
25 // of the loop, to make the unswitching opportunity obvious.
27 //===----------------------------------------------------------------------===//
29 #define DEBUG_TYPE "loop-unswitch"
30 #include "llvm/Transforms/Scalar.h"
31 #include "llvm/Constants.h"
32 #include "llvm/DerivedTypes.h"
33 #include "llvm/Function.h"
34 #include "llvm/Instructions.h"
35 #include "llvm/Analysis/ConstantFolding.h"
36 #include "llvm/Analysis/InlineCost.h"
37 #include "llvm/Analysis/InstructionSimplify.h"
38 #include "llvm/Analysis/LoopInfo.h"
39 #include "llvm/Analysis/LoopPass.h"
40 #include "llvm/Analysis/Dominators.h"
41 #include "llvm/Transforms/Utils/Cloning.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/SmallPtrSet.h"
46 #include "llvm/ADT/STLExtras.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <set>
52 using namespace llvm;
54 STATISTIC(NumBranches, "Number of branches unswitched");
55 STATISTIC(NumSwitches, "Number of switches unswitched");
56 STATISTIC(NumSelects , "Number of selects unswitched");
57 STATISTIC(NumTrivial , "Number of unswitches that are trivial");
58 STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
60 // The specific value of 50 here was chosen based only on intuition and a
61 // few specific examples.
62 static cl::opt<unsigned>
63 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
64 cl::init(50), cl::Hidden);
66 namespace {
67 class LoopUnswitch : public LoopPass {
68 LoopInfo *LI; // Loop information
69 LPPassManager *LPM;
71 // LoopProcessWorklist - Used to check if second loop needs processing
72 // after RewriteLoopBodyWithConditionConstant rewrites first loop.
73 std::vector<Loop*> LoopProcessWorklist;
74 SmallPtrSet<Value *,8> UnswitchedVals;
76 bool OptimizeForSize;
77 bool redoLoop;
79 Loop *currentLoop;
80 DominatorTree *DT;
81 BasicBlock *loopHeader;
82 BasicBlock *loopPreheader;
84 // LoopBlocks contains all of the basic blocks of the loop, including the
85 // preheader of the loop, the body of the loop, and the exit blocks of the
86 // loop, in that order.
87 std::vector<BasicBlock*> LoopBlocks;
88 // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
89 std::vector<BasicBlock*> NewBlocks;
91 public:
92 static char ID; // Pass ID, replacement for typeid
93 explicit LoopUnswitch(bool Os = false) :
94 LoopPass(ID), OptimizeForSize(Os), redoLoop(false),
95 currentLoop(NULL), DT(NULL), loopHeader(NULL),
96 loopPreheader(NULL) {
97 initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
100 bool runOnLoop(Loop *L, LPPassManager &LPM);
101 bool processCurrentLoop();
103 /// This transformation requires natural loop information & requires that
104 /// loop preheaders be inserted into the CFG.
106 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
107 AU.addRequiredID(LoopSimplifyID);
108 AU.addPreservedID(LoopSimplifyID);
109 AU.addRequired<LoopInfo>();
110 AU.addPreserved<LoopInfo>();
111 AU.addRequiredID(LCSSAID);
112 AU.addPreservedID(LCSSAID);
113 AU.addPreserved<DominatorTree>();
116 private:
118 virtual void releaseMemory() {
119 UnswitchedVals.clear();
122 /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
123 /// remove it.
124 void RemoveLoopFromWorklist(Loop *L) {
125 std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(),
126 LoopProcessWorklist.end(), L);
127 if (I != LoopProcessWorklist.end())
128 LoopProcessWorklist.erase(I);
131 void initLoopData() {
132 loopHeader = currentLoop->getHeader();
133 loopPreheader = currentLoop->getLoopPreheader();
136 /// Split all of the edges from inside the loop to their exit blocks.
137 /// Update the appropriate Phi nodes as we do so.
138 void SplitExitEdges(Loop *L, const SmallVector<BasicBlock *, 8> &ExitBlocks);
140 bool UnswitchIfProfitable(Value *LoopCond, Constant *Val);
141 void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
142 BasicBlock *ExitBlock);
143 void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L);
145 void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
146 Constant *Val, bool isEqual);
148 void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
149 BasicBlock *TrueDest,
150 BasicBlock *FalseDest,
151 Instruction *InsertPt);
153 void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
154 void RemoveBlockIfDead(BasicBlock *BB,
155 std::vector<Instruction*> &Worklist, Loop *l);
156 void RemoveLoopFromHierarchy(Loop *L);
157 bool IsTrivialUnswitchCondition(Value *Cond, Constant **Val = 0,
158 BasicBlock **LoopExit = 0);
162 char LoopUnswitch::ID = 0;
163 INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
164 false, false)
165 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
166 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
167 INITIALIZE_PASS_DEPENDENCY(LCSSA)
168 INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
169 false, false)
171 Pass *llvm::createLoopUnswitchPass(bool Os) {
172 return new LoopUnswitch(Os);
175 /// FindLIVLoopCondition - Cond is a condition that occurs in L. If it is
176 /// invariant in the loop, or has an invariant piece, return the invariant.
177 /// Otherwise, return null.
178 static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
179 // We can never unswitch on vector conditions.
180 if (Cond->getType()->isVectorTy())
181 return 0;
183 // Constants should be folded, not unswitched on!
184 if (isa<Constant>(Cond)) return 0;
186 // TODO: Handle: br (VARIANT|INVARIANT).
188 // Hoist simple values out.
189 if (L->makeLoopInvariant(Cond, Changed))
190 return Cond;
192 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
193 if (BO->getOpcode() == Instruction::And ||
194 BO->getOpcode() == Instruction::Or) {
195 // If either the left or right side is invariant, we can unswitch on this,
196 // which will cause the branch to go away in one loop and the condition to
197 // simplify in the other one.
198 if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
199 return LHS;
200 if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
201 return RHS;
204 return 0;
207 bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
208 LI = &getAnalysis<LoopInfo>();
209 LPM = &LPM_Ref;
210 DT = getAnalysisIfAvailable<DominatorTree>();
211 currentLoop = L;
212 Function *F = currentLoop->getHeader()->getParent();
213 bool Changed = false;
214 do {
215 assert(currentLoop->isLCSSAForm(*DT));
216 redoLoop = false;
217 Changed |= processCurrentLoop();
218 } while(redoLoop);
220 if (Changed) {
221 // FIXME: Reconstruct dom info, because it is not preserved properly.
222 if (DT)
223 DT->runOnFunction(*F);
225 return Changed;
228 /// processCurrentLoop - Do actual work and unswitch loop if possible
229 /// and profitable.
230 bool LoopUnswitch::processCurrentLoop() {
231 bool Changed = false;
232 LLVMContext &Context = currentLoop->getHeader()->getContext();
234 // Loop over all of the basic blocks in the loop. If we find an interior
235 // block that is branching on a loop-invariant condition, we can unswitch this
236 // loop.
237 for (Loop::block_iterator I = currentLoop->block_begin(),
238 E = currentLoop->block_end(); I != E; ++I) {
239 TerminatorInst *TI = (*I)->getTerminator();
240 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
241 // If this isn't branching on an invariant condition, we can't unswitch
242 // it.
243 if (BI->isConditional()) {
244 // See if this, or some part of it, is loop invariant. If so, we can
245 // unswitch on it if we desire.
246 Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
247 currentLoop, Changed);
248 if (LoopCond && UnswitchIfProfitable(LoopCond,
249 ConstantInt::getTrue(Context))) {
250 ++NumBranches;
251 return true;
254 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
255 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
256 currentLoop, Changed);
257 if (LoopCond && SI->getNumCases() > 1) {
258 // Find a value to unswitch on:
259 // FIXME: this should chose the most expensive case!
260 Constant *UnswitchVal = SI->getCaseValue(1);
261 // Do not process same value again and again.
262 if (!UnswitchedVals.insert(UnswitchVal))
263 continue;
265 if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
266 ++NumSwitches;
267 return true;
272 // Scan the instructions to check for unswitchable values.
273 for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
274 BBI != E; ++BBI)
275 if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
276 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
277 currentLoop, Changed);
278 if (LoopCond && UnswitchIfProfitable(LoopCond,
279 ConstantInt::getTrue(Context))) {
280 ++NumSelects;
281 return true;
285 return Changed;
288 /// isTrivialLoopExitBlock - Check to see if all paths from BB exit the
289 /// loop with no side effects (including infinite loops).
291 /// If true, we return true and set ExitBB to the block we
292 /// exit through.
294 static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
295 BasicBlock *&ExitBB,
296 std::set<BasicBlock*> &Visited) {
297 if (!Visited.insert(BB).second) {
298 // Already visited. Without more analysis, this could indicate an infinte loop.
299 return false;
300 } else if (!L->contains(BB)) {
301 // Otherwise, this is a loop exit, this is fine so long as this is the
302 // first exit.
303 if (ExitBB != 0) return false;
304 ExitBB = BB;
305 return true;
308 // Otherwise, this is an unvisited intra-loop node. Check all successors.
309 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
310 // Check to see if the successor is a trivial loop exit.
311 if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
312 return false;
315 // Okay, everything after this looks good, check to make sure that this block
316 // doesn't include any side effects.
317 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
318 if (I->mayHaveSideEffects())
319 return false;
321 return true;
324 /// isTrivialLoopExitBlock - Return true if the specified block unconditionally
325 /// leads to an exit from the specified loop, and has no side-effects in the
326 /// process. If so, return the block that is exited to, otherwise return null.
327 static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
328 std::set<BasicBlock*> Visited;
329 Visited.insert(L->getHeader()); // Branches to header make infinite loops.
330 BasicBlock *ExitBB = 0;
331 if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
332 return ExitBB;
333 return 0;
336 /// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
337 /// trivial: that is, that the condition controls whether or not the loop does
338 /// anything at all. If this is a trivial condition, unswitching produces no
339 /// code duplications (equivalently, it produces a simpler loop and a new empty
340 /// loop, which gets deleted).
342 /// If this is a trivial condition, return true, otherwise return false. When
343 /// returning true, this sets Cond and Val to the condition that controls the
344 /// trivial condition: when Cond dynamically equals Val, the loop is known to
345 /// exit. Finally, this sets LoopExit to the BB that the loop exits to when
346 /// Cond == Val.
348 bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val,
349 BasicBlock **LoopExit) {
350 BasicBlock *Header = currentLoop->getHeader();
351 TerminatorInst *HeaderTerm = Header->getTerminator();
352 LLVMContext &Context = Header->getContext();
354 BasicBlock *LoopExitBB = 0;
355 if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
356 // If the header block doesn't end with a conditional branch on Cond, we
357 // can't handle it.
358 if (!BI->isConditional() || BI->getCondition() != Cond)
359 return false;
361 // Check to see if a successor of the branch is guaranteed to
362 // exit through a unique exit block without having any
363 // side-effects. If so, determine the value of Cond that causes it to do
364 // this.
365 if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
366 BI->getSuccessor(0)))) {
367 if (Val) *Val = ConstantInt::getTrue(Context);
368 } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
369 BI->getSuccessor(1)))) {
370 if (Val) *Val = ConstantInt::getFalse(Context);
372 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
373 // If this isn't a switch on Cond, we can't handle it.
374 if (SI->getCondition() != Cond) return false;
376 // Check to see if a successor of the switch is guaranteed to go to the
377 // latch block or exit through a one exit block without having any
378 // side-effects. If so, determine the value of Cond that causes it to do
379 // this. Note that we can't trivially unswitch on the default case.
380 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
381 if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
382 SI->getSuccessor(i)))) {
383 // Okay, we found a trivial case, remember the value that is trivial.
384 if (Val) *Val = SI->getCaseValue(i);
385 break;
389 // If we didn't find a single unique LoopExit block, or if the loop exit block
390 // contains phi nodes, this isn't trivial.
391 if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
392 return false; // Can't handle this.
394 if (LoopExit) *LoopExit = LoopExitBB;
396 // We already know that nothing uses any scalar values defined inside of this
397 // loop. As such, we just have to check to see if this loop will execute any
398 // side-effecting instructions (e.g. stores, calls, volatile loads) in the
399 // part of the loop that the code *would* execute. We already checked the
400 // tail, check the header now.
401 for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
402 if (I->mayHaveSideEffects())
403 return false;
404 return true;
407 /// UnswitchIfProfitable - We have found that we can unswitch currentLoop when
408 /// LoopCond == Val to simplify the loop. If we decide that this is profitable,
409 /// unswitch the loop, reprocess the pieces, then return true.
410 bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val) {
412 initLoopData();
414 // If LoopSimplify was unable to form a preheader, don't do any unswitching.
415 if (!loopPreheader)
416 return false;
418 Function *F = loopHeader->getParent();
420 Constant *CondVal = 0;
421 BasicBlock *ExitBlock = 0;
422 if (IsTrivialUnswitchCondition(LoopCond, &CondVal, &ExitBlock)) {
423 // If the condition is trivial, always unswitch. There is no code growth
424 // for this case.
425 UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, ExitBlock);
426 return true;
429 // Check to see if it would be profitable to unswitch current loop.
431 // Do not do non-trivial unswitch while optimizing for size.
432 if (OptimizeForSize || F->hasFnAttr(Attribute::OptimizeForSize))
433 return false;
435 // FIXME: This is overly conservative because it does not take into
436 // consideration code simplification opportunities and code that can
437 // be shared by the resultant unswitched loops.
438 CodeMetrics Metrics;
439 for (Loop::block_iterator I = currentLoop->block_begin(),
440 E = currentLoop->block_end();
441 I != E; ++I)
442 Metrics.analyzeBasicBlock(*I);
444 // Limit the number of instructions to avoid causing significant code
445 // expansion, and the number of basic blocks, to avoid loops with
446 // large numbers of branches which cause loop unswitching to go crazy.
447 // This is a very ad-hoc heuristic.
448 if (Metrics.NumInsts > Threshold ||
449 Metrics.NumBlocks * 5 > Threshold ||
450 Metrics.containsIndirectBr || Metrics.isRecursive) {
451 DEBUG(dbgs() << "NOT unswitching loop %"
452 << currentLoop->getHeader()->getName() << ", cost too high: "
453 << currentLoop->getBlocks().size() << "\n");
454 return false;
457 UnswitchNontrivialCondition(LoopCond, Val, currentLoop);
458 return true;
461 // RemapInstruction - Convert the instruction operands from referencing the
462 // current values into those specified by VMap.
464 static inline void RemapInstruction(Instruction *I,
465 ValueToValueMapTy &VMap) {
466 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
467 Value *Op = I->getOperand(op);
468 ValueToValueMapTy::iterator It = VMap.find(Op);
469 if (It != VMap.end()) Op = It->second;
470 I->setOperand(op, Op);
474 /// CloneLoop - Recursively clone the specified loop and all of its children,
475 /// mapping the blocks with the specified map.
476 static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
477 LoopInfo *LI, LPPassManager *LPM) {
478 Loop *New = new Loop();
479 LPM->insertLoop(New, PL);
481 // Add all of the blocks in L to the new loop.
482 for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
483 I != E; ++I)
484 if (LI->getLoopFor(*I) == L)
485 New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), LI->getBase());
487 // Add all of the subloops to the new loop.
488 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
489 CloneLoop(*I, New, VM, LI, LPM);
491 return New;
494 /// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
495 /// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest. Insert the
496 /// code immediately before InsertPt.
497 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
498 BasicBlock *TrueDest,
499 BasicBlock *FalseDest,
500 Instruction *InsertPt) {
501 // Insert a conditional branch on LIC to the two preheaders. The original
502 // code is the true version and the new code is the false version.
503 Value *BranchVal = LIC;
504 if (!isa<ConstantInt>(Val) ||
505 Val->getType() != Type::getInt1Ty(LIC->getContext()))
506 BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val, "tmp");
507 else if (Val != ConstantInt::getTrue(Val->getContext()))
508 // We want to enter the new loop when the condition is true.
509 std::swap(TrueDest, FalseDest);
511 // Insert the new branch.
512 BranchInst *BI = BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt);
514 // If either edge is critical, split it. This helps preserve LoopSimplify
515 // form for enclosing loops.
516 SplitCriticalEdge(BI, 0, this);
517 SplitCriticalEdge(BI, 1, this);
520 /// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
521 /// condition in it (a cond branch from its header block to its latch block,
522 /// where the path through the loop that doesn't execute its body has no
523 /// side-effects), unswitch it. This doesn't involve any code duplication, just
524 /// moving the conditional branch outside of the loop and updating loop info.
525 void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
526 Constant *Val,
527 BasicBlock *ExitBlock) {
528 DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
529 << loopHeader->getName() << " [" << L->getBlocks().size()
530 << " blocks] in Function " << L->getHeader()->getParent()->getName()
531 << " on cond: " << *Val << " == " << *Cond << "\n");
533 // First step, split the preheader, so that we know that there is a safe place
534 // to insert the conditional branch. We will change loopPreheader to have a
535 // conditional branch on Cond.
536 BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, this);
538 // Now that we have a place to insert the conditional branch, create a place
539 // to branch to: this is the exit block out of the loop that we should
540 // short-circuit to.
542 // Split this block now, so that the loop maintains its exit block, and so
543 // that the jump from the preheader can execute the contents of the exit block
544 // without actually branching to it (the exit block should be dominated by the
545 // loop header, not the preheader).
546 assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
547 BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), this);
549 // Okay, now we have a position to branch from and a position to branch to,
550 // insert the new conditional branch.
551 EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
552 loopPreheader->getTerminator());
553 LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L);
554 loopPreheader->getTerminator()->eraseFromParent();
556 // We need to reprocess this loop, it could be unswitched again.
557 redoLoop = true;
559 // Now that we know that the loop is never entered when this condition is a
560 // particular value, rewrite the loop with this info. We know that this will
561 // at least eliminate the old branch.
562 RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
563 ++NumTrivial;
566 /// SplitExitEdges - Split all of the edges from inside the loop to their exit
567 /// blocks. Update the appropriate Phi nodes as we do so.
568 void LoopUnswitch::SplitExitEdges(Loop *L,
569 const SmallVector<BasicBlock *, 8> &ExitBlocks){
571 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
572 BasicBlock *ExitBlock = ExitBlocks[i];
573 SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
574 pred_end(ExitBlock));
575 SplitBlockPredecessors(ExitBlock, Preds.data(), Preds.size(),
576 ".us-lcssa", this);
580 /// UnswitchNontrivialCondition - We determined that the loop is profitable
581 /// to unswitch when LIC equal Val. Split it into loop versions and test the
582 /// condition outside of either loop. Return the loops created as Out1/Out2.
583 void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
584 Loop *L) {
585 Function *F = loopHeader->getParent();
586 DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
587 << loopHeader->getName() << " [" << L->getBlocks().size()
588 << " blocks] in Function " << F->getName()
589 << " when '" << *Val << "' == " << *LIC << "\n");
591 LoopBlocks.clear();
592 NewBlocks.clear();
594 // First step, split the preheader and exit blocks, and add these blocks to
595 // the LoopBlocks list.
596 BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, this);
597 LoopBlocks.push_back(NewPreheader);
599 // We want the loop to come after the preheader, but before the exit blocks.
600 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
602 SmallVector<BasicBlock*, 8> ExitBlocks;
603 L->getUniqueExitBlocks(ExitBlocks);
605 // Split all of the edges from inside the loop to their exit blocks. Update
606 // the appropriate Phi nodes as we do so.
607 SplitExitEdges(L, ExitBlocks);
609 // The exit blocks may have been changed due to edge splitting, recompute.
610 ExitBlocks.clear();
611 L->getUniqueExitBlocks(ExitBlocks);
613 // Add exit blocks to the loop blocks.
614 LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
616 // Next step, clone all of the basic blocks that make up the loop (including
617 // the loop preheader and exit blocks), keeping track of the mapping between
618 // the instructions and blocks.
619 NewBlocks.reserve(LoopBlocks.size());
620 ValueToValueMapTy VMap;
621 for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
622 BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
623 NewBlocks.push_back(NewBB);
624 VMap[LoopBlocks[i]] = NewBB; // Keep the BB mapping.
625 LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
628 // Splice the newly inserted blocks into the function right before the
629 // original preheader.
630 F->getBasicBlockList().splice(NewPreheader, F->getBasicBlockList(),
631 NewBlocks[0], F->end());
633 // Now we create the new Loop object for the versioned loop.
634 Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
635 Loop *ParentLoop = L->getParentLoop();
636 if (ParentLoop) {
637 // Make sure to add the cloned preheader and exit blocks to the parent loop
638 // as well.
639 ParentLoop->addBasicBlockToLoop(NewBlocks[0], LI->getBase());
642 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
643 BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
644 // The new exit block should be in the same loop as the old one.
645 if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
646 ExitBBLoop->addBasicBlockToLoop(NewExit, LI->getBase());
648 assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
649 "Exit block should have been split to have one successor!");
650 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
652 // If the successor of the exit block had PHI nodes, add an entry for
653 // NewExit.
654 PHINode *PN;
655 for (BasicBlock::iterator I = ExitSucc->begin(); isa<PHINode>(I); ++I) {
656 PN = cast<PHINode>(I);
657 Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
658 ValueToValueMapTy::iterator It = VMap.find(V);
659 if (It != VMap.end()) V = It->second;
660 PN->addIncoming(V, NewExit);
664 // Rewrite the code to refer to itself.
665 for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
666 for (BasicBlock::iterator I = NewBlocks[i]->begin(),
667 E = NewBlocks[i]->end(); I != E; ++I)
668 RemapInstruction(I, VMap);
670 // Rewrite the original preheader to select between versions of the loop.
671 BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
672 assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
673 "Preheader splitting did not work correctly!");
675 // Emit the new branch that selects between the two versions of this loop.
676 EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
677 LPM->deleteSimpleAnalysisValue(OldBR, L);
678 OldBR->eraseFromParent();
680 LoopProcessWorklist.push_back(NewLoop);
681 redoLoop = true;
683 // Keep a WeakVH holding onto LIC. If the first call to RewriteLoopBody
684 // deletes the instruction (for example by simplifying a PHI that feeds into
685 // the condition that we're unswitching on), we don't rewrite the second
686 // iteration.
687 WeakVH LICHandle(LIC);
689 // Now we rewrite the original code to know that the condition is true and the
690 // new code to know that the condition is false.
691 RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
693 // It's possible that simplifying one loop could cause the other to be
694 // changed to another value or a constant. If its a constant, don't simplify
695 // it.
696 if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
697 LICHandle && !isa<Constant>(LICHandle))
698 RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
701 /// RemoveFromWorklist - Remove all instances of I from the worklist vector
702 /// specified.
703 static void RemoveFromWorklist(Instruction *I,
704 std::vector<Instruction*> &Worklist) {
705 std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(),
706 Worklist.end(), I);
707 while (WI != Worklist.end()) {
708 unsigned Offset = WI-Worklist.begin();
709 Worklist.erase(WI);
710 WI = std::find(Worklist.begin()+Offset, Worklist.end(), I);
714 /// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
715 /// program, replacing all uses with V and update the worklist.
716 static void ReplaceUsesOfWith(Instruction *I, Value *V,
717 std::vector<Instruction*> &Worklist,
718 Loop *L, LPPassManager *LPM) {
719 DEBUG(dbgs() << "Replace with '" << *V << "': " << *I);
721 // Add uses to the worklist, which may be dead now.
722 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
723 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
724 Worklist.push_back(Use);
726 // Add users to the worklist which may be simplified now.
727 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
728 UI != E; ++UI)
729 Worklist.push_back(cast<Instruction>(*UI));
730 LPM->deleteSimpleAnalysisValue(I, L);
731 RemoveFromWorklist(I, Worklist);
732 I->replaceAllUsesWith(V);
733 I->eraseFromParent();
734 ++NumSimplify;
737 /// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
738 /// information, and remove any dead successors it has.
740 void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
741 std::vector<Instruction*> &Worklist,
742 Loop *L) {
743 if (pred_begin(BB) != pred_end(BB)) {
744 // This block isn't dead, since an edge to BB was just removed, see if there
745 // are any easy simplifications we can do now.
746 if (BasicBlock *Pred = BB->getSinglePredecessor()) {
747 // If it has one pred, fold phi nodes in BB.
748 while (isa<PHINode>(BB->begin()))
749 ReplaceUsesOfWith(BB->begin(),
750 cast<PHINode>(BB->begin())->getIncomingValue(0),
751 Worklist, L, LPM);
753 // If this is the header of a loop and the only pred is the latch, we now
754 // have an unreachable loop.
755 if (Loop *L = LI->getLoopFor(BB))
756 if (loopHeader == BB && L->contains(Pred)) {
757 // Remove the branch from the latch to the header block, this makes
758 // the header dead, which will make the latch dead (because the header
759 // dominates the latch).
760 LPM->deleteSimpleAnalysisValue(Pred->getTerminator(), L);
761 Pred->getTerminator()->eraseFromParent();
762 new UnreachableInst(BB->getContext(), Pred);
764 // The loop is now broken, remove it from LI.
765 RemoveLoopFromHierarchy(L);
767 // Reprocess the header, which now IS dead.
768 RemoveBlockIfDead(BB, Worklist, L);
769 return;
772 // If pred ends in a uncond branch, add uncond branch to worklist so that
773 // the two blocks will get merged.
774 if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
775 if (BI->isUnconditional())
776 Worklist.push_back(BI);
778 return;
781 DEBUG(dbgs() << "Nuking dead block: " << *BB);
783 // Remove the instructions in the basic block from the worklist.
784 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
785 RemoveFromWorklist(I, Worklist);
787 // Anything that uses the instructions in this basic block should have their
788 // uses replaced with undefs.
789 // If I is not void type then replaceAllUsesWith undef.
790 // This allows ValueHandlers and custom metadata to adjust itself.
791 if (!I->getType()->isVoidTy())
792 I->replaceAllUsesWith(UndefValue::get(I->getType()));
795 // If this is the edge to the header block for a loop, remove the loop and
796 // promote all subloops.
797 if (Loop *BBLoop = LI->getLoopFor(BB)) {
798 if (BBLoop->getLoopLatch() == BB)
799 RemoveLoopFromHierarchy(BBLoop);
802 // Remove the block from the loop info, which removes it from any loops it
803 // was in.
804 LI->removeBlock(BB);
807 // Remove phi node entries in successors for this block.
808 TerminatorInst *TI = BB->getTerminator();
809 SmallVector<BasicBlock*, 4> Succs;
810 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
811 Succs.push_back(TI->getSuccessor(i));
812 TI->getSuccessor(i)->removePredecessor(BB);
815 // Unique the successors, remove anything with multiple uses.
816 array_pod_sort(Succs.begin(), Succs.end());
817 Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end());
819 // Remove the basic block, including all of the instructions contained in it.
820 LPM->deleteSimpleAnalysisValue(BB, L);
821 BB->eraseFromParent();
822 // Remove successor blocks here that are not dead, so that we know we only
823 // have dead blocks in this list. Nondead blocks have a way of becoming dead,
824 // then getting removed before we revisit them, which is badness.
826 for (unsigned i = 0; i != Succs.size(); ++i)
827 if (pred_begin(Succs[i]) != pred_end(Succs[i])) {
828 // One exception is loop headers. If this block was the preheader for a
829 // loop, then we DO want to visit the loop so the loop gets deleted.
830 // We know that if the successor is a loop header, that this loop had to
831 // be the preheader: the case where this was the latch block was handled
832 // above and headers can only have two predecessors.
833 if (!LI->isLoopHeader(Succs[i])) {
834 Succs.erase(Succs.begin()+i);
835 --i;
839 for (unsigned i = 0, e = Succs.size(); i != e; ++i)
840 RemoveBlockIfDead(Succs[i], Worklist, L);
843 /// RemoveLoopFromHierarchy - We have discovered that the specified loop has
844 /// become unwrapped, either because the backedge was deleted, or because the
845 /// edge into the header was removed. If the edge into the header from the
846 /// latch block was removed, the loop is unwrapped but subloops are still alive,
847 /// so they just reparent loops. If the loops are actually dead, they will be
848 /// removed later.
849 void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) {
850 LPM->deleteLoopFromQueue(L);
851 RemoveLoopFromWorklist(L);
854 // RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
855 // the value specified by Val in the specified loop, or we know it does NOT have
856 // that value. Rewrite any uses of LIC or of properties correlated to it.
857 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
858 Constant *Val,
859 bool IsEqual) {
860 assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
862 // FIXME: Support correlated properties, like:
863 // for (...)
864 // if (li1 < li2)
865 // ...
866 // if (li1 > li2)
867 // ...
869 // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches,
870 // selects, switches.
871 std::vector<User*> Users(LIC->use_begin(), LIC->use_end());
872 std::vector<Instruction*> Worklist;
873 LLVMContext &Context = Val->getContext();
876 // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
877 // in the loop with the appropriate one directly.
878 if (IsEqual || (isa<ConstantInt>(Val) &&
879 Val->getType()->isIntegerTy(1))) {
880 Value *Replacement;
881 if (IsEqual)
882 Replacement = Val;
883 else
884 Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
885 !cast<ConstantInt>(Val)->getZExtValue());
887 for (unsigned i = 0, e = Users.size(); i != e; ++i)
888 if (Instruction *U = cast<Instruction>(Users[i])) {
889 if (!L->contains(U))
890 continue;
891 U->replaceUsesOfWith(LIC, Replacement);
892 Worklist.push_back(U);
894 SimplifyCode(Worklist, L);
895 return;
898 // Otherwise, we don't know the precise value of LIC, but we do know that it
899 // is certainly NOT "Val". As such, simplify any uses in the loop that we
900 // can. This case occurs when we unswitch switch statements.
901 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
902 Instruction *U = cast<Instruction>(Users[i]);
903 if (!L->contains(U))
904 continue;
906 Worklist.push_back(U);
908 // TODO: We could do other simplifications, for example, turning
909 // 'icmp eq LIC, Val' -> false.
911 // If we know that LIC is not Val, use this info to simplify code.
912 SwitchInst *SI = dyn_cast<SwitchInst>(U);
913 if (SI == 0 || !isa<ConstantInt>(Val)) continue;
915 unsigned DeadCase = SI->findCaseValue(cast<ConstantInt>(Val));
916 if (DeadCase == 0) continue; // Default case is live for multiple values.
918 // Found a dead case value. Don't remove PHI nodes in the
919 // successor if they become single-entry, those PHI nodes may
920 // be in the Users list.
922 // FIXME: This is a hack. We need to keep the successor around
923 // and hooked up so as to preserve the loop structure, because
924 // trying to update it is complicated. So instead we preserve the
925 // loop structure and put the block on a dead code path.
926 BasicBlock *Switch = SI->getParent();
927 SplitEdge(Switch, SI->getSuccessor(DeadCase), this);
928 // Compute the successors instead of relying on the return value
929 // of SplitEdge, since it may have split the switch successor
930 // after PHI nodes.
931 BasicBlock *NewSISucc = SI->getSuccessor(DeadCase);
932 BasicBlock *OldSISucc = *succ_begin(NewSISucc);
933 // Create an "unreachable" destination.
934 BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
935 Switch->getParent(),
936 OldSISucc);
937 new UnreachableInst(Context, Abort);
938 // Force the new case destination to branch to the "unreachable"
939 // block while maintaining a (dead) CFG edge to the old block.
940 NewSISucc->getTerminator()->eraseFromParent();
941 BranchInst::Create(Abort, OldSISucc,
942 ConstantInt::getTrue(Context), NewSISucc);
943 // Release the PHI operands for this edge.
944 for (BasicBlock::iterator II = NewSISucc->begin();
945 PHINode *PN = dyn_cast<PHINode>(II); ++II)
946 PN->setIncomingValue(PN->getBasicBlockIndex(Switch),
947 UndefValue::get(PN->getType()));
948 // Tell the domtree about the new block. We don't fully update the
949 // domtree here -- instead we force it to do a full recomputation
950 // after the pass is complete -- but we do need to inform it of
951 // new blocks.
952 if (DT)
953 DT->addNewBlock(Abort, NewSISucc);
956 SimplifyCode(Worklist, L);
959 /// SimplifyCode - Okay, now that we have simplified some instructions in the
960 /// loop, walk over it and constant prop, dce, and fold control flow where
961 /// possible. Note that this is effectively a very simple loop-structure-aware
962 /// optimizer. During processing of this loop, L could very well be deleted, so
963 /// it must not be used.
965 /// FIXME: When the loop optimizer is more mature, separate this out to a new
966 /// pass.
968 void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
969 while (!Worklist.empty()) {
970 Instruction *I = Worklist.back();
971 Worklist.pop_back();
973 // Simple constant folding.
974 if (Constant *C = ConstantFoldInstruction(I)) {
975 ReplaceUsesOfWith(I, C, Worklist, L, LPM);
976 continue;
979 // Simple DCE.
980 if (isInstructionTriviallyDead(I)) {
981 DEBUG(dbgs() << "Remove dead instruction '" << *I);
983 // Add uses to the worklist, which may be dead now.
984 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
985 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
986 Worklist.push_back(Use);
987 LPM->deleteSimpleAnalysisValue(I, L);
988 RemoveFromWorklist(I, Worklist);
989 I->eraseFromParent();
990 ++NumSimplify;
991 continue;
994 // See if instruction simplification can hack this up. This is common for
995 // things like "select false, X, Y" after unswitching made the condition be
996 // 'false'.
997 if (Value *V = SimplifyInstruction(I)) {
998 ReplaceUsesOfWith(I, V, Worklist, L, LPM);
999 continue;
1002 // Special case hacks that appear commonly in unswitched code.
1003 if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1004 if (BI->isUnconditional()) {
1005 // If BI's parent is the only pred of the successor, fold the two blocks
1006 // together.
1007 BasicBlock *Pred = BI->getParent();
1008 BasicBlock *Succ = BI->getSuccessor(0);
1009 BasicBlock *SinglePred = Succ->getSinglePredecessor();
1010 if (!SinglePred) continue; // Nothing to do.
1011 assert(SinglePred == Pred && "CFG broken");
1013 DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
1014 << Succ->getName() << "\n");
1016 // Resolve any single entry PHI nodes in Succ.
1017 while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1018 ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
1020 // Move all of the successor contents from Succ to Pred.
1021 Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
1022 Succ->end());
1023 LPM->deleteSimpleAnalysisValue(BI, L);
1024 BI->eraseFromParent();
1025 RemoveFromWorklist(BI, Worklist);
1027 // If Succ has any successors with PHI nodes, update them to have
1028 // entries coming from Pred instead of Succ.
1029 Succ->replaceAllUsesWith(Pred);
1031 // Remove Succ from the loop tree.
1032 LI->removeBlock(Succ);
1033 LPM->deleteSimpleAnalysisValue(Succ, L);
1034 Succ->eraseFromParent();
1035 ++NumSimplify;
1036 continue;
1039 if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){
1040 // Conditional branch. Turn it into an unconditional branch, then
1041 // remove dead blocks.
1042 continue; // FIXME: Enable.
1044 DEBUG(dbgs() << "Folded branch: " << *BI);
1045 BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue());
1046 BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue());
1047 DeadSucc->removePredecessor(BI->getParent(), true);
1048 Worklist.push_back(BranchInst::Create(LiveSucc, BI));
1049 LPM->deleteSimpleAnalysisValue(BI, L);
1050 BI->eraseFromParent();
1051 RemoveFromWorklist(BI, Worklist);
1052 ++NumSimplify;
1054 RemoveBlockIfDead(DeadSucc, Worklist, L);
1056 continue;