Fixed some bugs.
[llvm/zpu.git] / lib / VMCore / Verifier.cpp
blob2b87619038cd34b475127a6ae1c48fc24fe17415
1 //===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
16 // * Both of a binary operator's parameters are of the same type
17 // * Verify that the indices of mem access instructions match other operands
18 // * Verify that arithmetic and other things are only performed on first-class
19 // types. Verify that shifts & logicals only happen on integrals f.e.
20 // * All of the constants in a switch statement are of the correct type
21 // * The code is in valid SSA form
22 // * It should be illegal to put a label into any other type (like a structure)
23 // or to return one. [except constant arrays!]
24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 // * PHI nodes must have an entry for each predecessor, with no extras.
26 // * PHI nodes must be the first thing in a basic block, all grouped together
27 // * PHI nodes must have at least one entry
28 // * All basic blocks should only end with terminator insts, not contain them
29 // * The entry node to a function must not have predecessors
30 // * All Instructions must be embedded into a basic block
31 // * Functions cannot take a void-typed parameter
32 // * Verify that a function's argument list agrees with it's declared type.
33 // * It is illegal to specify a name for a void value.
34 // * It is illegal to have a internal global value with no initializer
35 // * It is illegal to have a ret instruction that returns a value that does not
36 // agree with the function return value type.
37 // * Function call argument types match the function prototype
38 // * All other things that are tested by asserts spread about the code...
40 //===----------------------------------------------------------------------===//
42 #include "llvm/Analysis/Verifier.h"
43 #include "llvm/CallingConv.h"
44 #include "llvm/Constants.h"
45 #include "llvm/DerivedTypes.h"
46 #include "llvm/InlineAsm.h"
47 #include "llvm/IntrinsicInst.h"
48 #include "llvm/Metadata.h"
49 #include "llvm/Module.h"
50 #include "llvm/Pass.h"
51 #include "llvm/PassManager.h"
52 #include "llvm/TypeSymbolTable.h"
53 #include "llvm/Analysis/Dominators.h"
54 #include "llvm/Assembly/Writer.h"
55 #include "llvm/CodeGen/ValueTypes.h"
56 #include "llvm/Support/CallSite.h"
57 #include "llvm/Support/CFG.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/InstVisitor.h"
60 #include "llvm/ADT/SetVector.h"
61 #include "llvm/ADT/SmallPtrSet.h"
62 #include "llvm/ADT/SmallVector.h"
63 #include "llvm/ADT/StringExtras.h"
64 #include "llvm/ADT/STLExtras.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include <algorithm>
68 #include <cstdarg>
69 using namespace llvm;
71 namespace { // Anonymous namespace for class
72 struct PreVerifier : public FunctionPass {
73 static char ID; // Pass ID, replacement for typeid
75 PreVerifier() : FunctionPass(ID) {
76 initializePreVerifierPass(*PassRegistry::getPassRegistry());
79 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
80 AU.setPreservesAll();
83 // Check that the prerequisites for successful DominatorTree construction
84 // are satisfied.
85 bool runOnFunction(Function &F) {
86 bool Broken = false;
88 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
89 if (I->empty() || !I->back().isTerminator()) {
90 dbgs() << "Basic Block in function '" << F.getName()
91 << "' does not have terminator!\n";
92 WriteAsOperand(dbgs(), I, true);
93 dbgs() << "\n";
94 Broken = true;
98 if (Broken)
99 report_fatal_error("Broken module, no Basic Block terminator!");
101 return false;
106 char PreVerifier::ID = 0;
107 INITIALIZE_PASS(PreVerifier, "preverify", "Preliminary module verification",
108 false, false)
109 static char &PreVerifyID = PreVerifier::ID;
111 namespace {
112 class TypeSet : public AbstractTypeUser {
113 public:
114 TypeSet() {}
116 /// Insert a type into the set of types.
117 bool insert(const Type *Ty) {
118 if (!Types.insert(Ty))
119 return false;
120 if (Ty->isAbstract())
121 Ty->addAbstractTypeUser(this);
122 return true;
125 // Remove ourselves as abstract type listeners for any types that remain
126 // abstract when the TypeSet is destroyed.
127 ~TypeSet() {
128 for (SmallSetVector<const Type *, 16>::iterator I = Types.begin(),
129 E = Types.end(); I != E; ++I) {
130 const Type *Ty = *I;
131 if (Ty->isAbstract())
132 Ty->removeAbstractTypeUser(this);
136 // Abstract type user interface.
138 /// Remove types from the set when refined. Do not insert the type it was
139 /// refined to because that type hasn't been verified yet.
140 void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
141 Types.remove(OldTy);
142 OldTy->removeAbstractTypeUser(this);
145 /// Stop listening for changes to a type which is no longer abstract.
146 void typeBecameConcrete(const DerivedType *AbsTy) {
147 AbsTy->removeAbstractTypeUser(this);
150 void dump() const {}
152 private:
153 SmallSetVector<const Type *, 16> Types;
155 // Disallow copying.
156 TypeSet(const TypeSet &);
157 TypeSet &operator=(const TypeSet &);
160 struct Verifier : public FunctionPass, public InstVisitor<Verifier> {
161 static char ID; // Pass ID, replacement for typeid
162 bool Broken; // Is this module found to be broken?
163 bool RealPass; // Are we not being run by a PassManager?
164 VerifierFailureAction action;
165 // What to do if verification fails.
166 Module *Mod; // Module we are verifying right now
167 LLVMContext *Context; // Context within which we are verifying
168 DominatorTree *DT; // Dominator Tree, caution can be null!
170 std::string Messages;
171 raw_string_ostream MessagesStr;
173 /// InstInThisBlock - when verifying a basic block, keep track of all of the
174 /// instructions we have seen so far. This allows us to do efficient
175 /// dominance checks for the case when an instruction has an operand that is
176 /// an instruction in the same block.
177 SmallPtrSet<Instruction*, 16> InstsInThisBlock;
179 /// Types - keep track of the types that have been checked already.
180 TypeSet Types;
182 /// MDNodes - keep track of the metadata nodes that have been checked
183 /// already.
184 SmallPtrSet<MDNode *, 32> MDNodes;
186 Verifier()
187 : FunctionPass(ID),
188 Broken(false), RealPass(true), action(AbortProcessAction),
189 Mod(0), Context(0), DT(0), MessagesStr(Messages) {
190 initializeVerifierPass(*PassRegistry::getPassRegistry());
192 explicit Verifier(VerifierFailureAction ctn)
193 : FunctionPass(ID),
194 Broken(false), RealPass(true), action(ctn), Mod(0), Context(0), DT(0),
195 MessagesStr(Messages) {
196 initializeVerifierPass(*PassRegistry::getPassRegistry());
199 bool doInitialization(Module &M) {
200 Mod = &M;
201 Context = &M.getContext();
202 verifyTypeSymbolTable(M.getTypeSymbolTable());
204 // If this is a real pass, in a pass manager, we must abort before
205 // returning back to the pass manager, or else the pass manager may try to
206 // run other passes on the broken module.
207 if (RealPass)
208 return abortIfBroken();
209 return false;
212 bool runOnFunction(Function &F) {
213 // Get dominator information if we are being run by PassManager
214 if (RealPass) DT = &getAnalysis<DominatorTree>();
216 Mod = F.getParent();
217 if (!Context) Context = &F.getContext();
219 visit(F);
220 InstsInThisBlock.clear();
222 // If this is a real pass, in a pass manager, we must abort before
223 // returning back to the pass manager, or else the pass manager may try to
224 // run other passes on the broken module.
225 if (RealPass)
226 return abortIfBroken();
228 return false;
231 bool doFinalization(Module &M) {
232 // Scan through, checking all of the external function's linkage now...
233 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
234 visitGlobalValue(*I);
236 // Check to make sure function prototypes are okay.
237 if (I->isDeclaration()) visitFunction(*I);
240 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
241 I != E; ++I)
242 visitGlobalVariable(*I);
244 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
245 I != E; ++I)
246 visitGlobalAlias(*I);
248 for (Module::named_metadata_iterator I = M.named_metadata_begin(),
249 E = M.named_metadata_end(); I != E; ++I)
250 visitNamedMDNode(*I);
252 // If the module is broken, abort at this time.
253 return abortIfBroken();
256 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
257 AU.setPreservesAll();
258 AU.addRequiredID(PreVerifyID);
259 if (RealPass)
260 AU.addRequired<DominatorTree>();
263 /// abortIfBroken - If the module is broken and we are supposed to abort on
264 /// this condition, do so.
266 bool abortIfBroken() {
267 if (!Broken) return false;
268 MessagesStr << "Broken module found, ";
269 switch (action) {
270 default: llvm_unreachable("Unknown action");
271 case AbortProcessAction:
272 MessagesStr << "compilation aborted!\n";
273 dbgs() << MessagesStr.str();
274 // Client should choose different reaction if abort is not desired
275 abort();
276 case PrintMessageAction:
277 MessagesStr << "verification continues.\n";
278 dbgs() << MessagesStr.str();
279 return false;
280 case ReturnStatusAction:
281 MessagesStr << "compilation terminated.\n";
282 return true;
287 // Verification methods...
288 void verifyTypeSymbolTable(TypeSymbolTable &ST);
289 void visitGlobalValue(GlobalValue &GV);
290 void visitGlobalVariable(GlobalVariable &GV);
291 void visitGlobalAlias(GlobalAlias &GA);
292 void visitNamedMDNode(NamedMDNode &NMD);
293 void visitMDNode(MDNode &MD, Function *F);
294 void visitFunction(Function &F);
295 void visitBasicBlock(BasicBlock &BB);
296 using InstVisitor<Verifier>::visit;
298 void visit(Instruction &I);
300 void visitTruncInst(TruncInst &I);
301 void visitZExtInst(ZExtInst &I);
302 void visitSExtInst(SExtInst &I);
303 void visitFPTruncInst(FPTruncInst &I);
304 void visitFPExtInst(FPExtInst &I);
305 void visitFPToUIInst(FPToUIInst &I);
306 void visitFPToSIInst(FPToSIInst &I);
307 void visitUIToFPInst(UIToFPInst &I);
308 void visitSIToFPInst(SIToFPInst &I);
309 void visitIntToPtrInst(IntToPtrInst &I);
310 void visitPtrToIntInst(PtrToIntInst &I);
311 void visitBitCastInst(BitCastInst &I);
312 void visitPHINode(PHINode &PN);
313 void visitBinaryOperator(BinaryOperator &B);
314 void visitICmpInst(ICmpInst &IC);
315 void visitFCmpInst(FCmpInst &FC);
316 void visitExtractElementInst(ExtractElementInst &EI);
317 void visitInsertElementInst(InsertElementInst &EI);
318 void visitShuffleVectorInst(ShuffleVectorInst &EI);
319 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
320 void visitCallInst(CallInst &CI);
321 void visitInvokeInst(InvokeInst &II);
322 void visitGetElementPtrInst(GetElementPtrInst &GEP);
323 void visitLoadInst(LoadInst &LI);
324 void visitStoreInst(StoreInst &SI);
325 void visitInstruction(Instruction &I);
326 void visitTerminatorInst(TerminatorInst &I);
327 void visitBranchInst(BranchInst &BI);
328 void visitReturnInst(ReturnInst &RI);
329 void visitSwitchInst(SwitchInst &SI);
330 void visitIndirectBrInst(IndirectBrInst &BI);
331 void visitSelectInst(SelectInst &SI);
332 void visitUserOp1(Instruction &I);
333 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
334 void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
335 void visitAllocaInst(AllocaInst &AI);
336 void visitExtractValueInst(ExtractValueInst &EVI);
337 void visitInsertValueInst(InsertValueInst &IVI);
339 void VerifyCallSite(CallSite CS);
340 bool PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty,
341 int VT, unsigned ArgNo, std::string &Suffix);
342 void VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
343 unsigned RetNum, unsigned ParamNum, ...);
344 void VerifyParameterAttrs(Attributes Attrs, const Type *Ty,
345 bool isReturnValue, const Value *V);
346 void VerifyFunctionAttrs(const FunctionType *FT, const AttrListPtr &Attrs,
347 const Value *V);
348 void VerifyType(const Type *Ty);
350 void WriteValue(const Value *V) {
351 if (!V) return;
352 if (isa<Instruction>(V)) {
353 MessagesStr << *V << '\n';
354 } else {
355 WriteAsOperand(MessagesStr, V, true, Mod);
356 MessagesStr << '\n';
360 void WriteType(const Type *T) {
361 if (!T) return;
362 MessagesStr << ' ';
363 WriteTypeSymbolic(MessagesStr, T, Mod);
367 // CheckFailed - A check failed, so print out the condition and the message
368 // that failed. This provides a nice place to put a breakpoint if you want
369 // to see why something is not correct.
370 void CheckFailed(const Twine &Message,
371 const Value *V1 = 0, const Value *V2 = 0,
372 const Value *V3 = 0, const Value *V4 = 0) {
373 MessagesStr << Message.str() << "\n";
374 WriteValue(V1);
375 WriteValue(V2);
376 WriteValue(V3);
377 WriteValue(V4);
378 Broken = true;
381 void CheckFailed(const Twine &Message, const Value *V1,
382 const Type *T2, const Value *V3 = 0) {
383 MessagesStr << Message.str() << "\n";
384 WriteValue(V1);
385 WriteType(T2);
386 WriteValue(V3);
387 Broken = true;
390 void CheckFailed(const Twine &Message, const Type *T1,
391 const Type *T2 = 0, const Type *T3 = 0) {
392 MessagesStr << Message.str() << "\n";
393 WriteType(T1);
394 WriteType(T2);
395 WriteType(T3);
396 Broken = true;
399 } // End anonymous namespace
401 char Verifier::ID = 0;
402 INITIALIZE_PASS_BEGIN(Verifier, "verify", "Module Verifier", false, false)
403 INITIALIZE_PASS_DEPENDENCY(PreVerifier)
404 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
405 INITIALIZE_PASS_END(Verifier, "verify", "Module Verifier", false, false)
407 // Assert - We know that cond should be true, if not print an error message.
408 #define Assert(C, M) \
409 do { if (!(C)) { CheckFailed(M); return; } } while (0)
410 #define Assert1(C, M, V1) \
411 do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
412 #define Assert2(C, M, V1, V2) \
413 do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
414 #define Assert3(C, M, V1, V2, V3) \
415 do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
416 #define Assert4(C, M, V1, V2, V3, V4) \
417 do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
419 void Verifier::visit(Instruction &I) {
420 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
421 Assert1(I.getOperand(i) != 0, "Operand is null", &I);
422 InstVisitor<Verifier>::visit(I);
426 void Verifier::visitGlobalValue(GlobalValue &GV) {
427 Assert1(!GV.isDeclaration() ||
428 GV.isMaterializable() ||
429 GV.hasExternalLinkage() ||
430 GV.hasDLLImportLinkage() ||
431 GV.hasExternalWeakLinkage() ||
432 (isa<GlobalAlias>(GV) &&
433 (GV.hasLocalLinkage() || GV.hasWeakLinkage())),
434 "Global is external, but doesn't have external or dllimport or weak linkage!",
435 &GV);
437 Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
438 "Global is marked as dllimport, but not external", &GV);
440 Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
441 "Only global variables can have appending linkage!", &GV);
443 if (GV.hasAppendingLinkage()) {
444 GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
445 Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(),
446 "Only global arrays can have appending linkage!", GVar);
449 Assert1(!GV.hasLinkerPrivateWeakDefAutoLinkage() || GV.hasDefaultVisibility(),
450 "linker_private_weak_def_auto can only have default visibility!",
451 &GV);
454 void Verifier::visitGlobalVariable(GlobalVariable &GV) {
455 if (GV.hasInitializer()) {
456 Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
457 "Global variable initializer type does not match global "
458 "variable type!", &GV);
460 // If the global has common linkage, it must have a zero initializer and
461 // cannot be constant.
462 if (GV.hasCommonLinkage()) {
463 Assert1(GV.getInitializer()->isNullValue(),
464 "'common' global must have a zero initializer!", &GV);
465 Assert1(!GV.isConstant(), "'common' global may not be marked constant!",
466 &GV);
468 } else {
469 Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
470 GV.hasExternalWeakLinkage(),
471 "invalid linkage type for global declaration", &GV);
474 visitGlobalValue(GV);
477 void Verifier::visitGlobalAlias(GlobalAlias &GA) {
478 Assert1(!GA.getName().empty(),
479 "Alias name cannot be empty!", &GA);
480 Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() ||
481 GA.hasWeakLinkage(),
482 "Alias should have external or external weak linkage!", &GA);
483 Assert1(GA.getAliasee(),
484 "Aliasee cannot be NULL!", &GA);
485 Assert1(GA.getType() == GA.getAliasee()->getType(),
486 "Alias and aliasee types should match!", &GA);
488 if (!isa<GlobalValue>(GA.getAliasee())) {
489 const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee());
490 Assert1(CE &&
491 (CE->getOpcode() == Instruction::BitCast ||
492 CE->getOpcode() == Instruction::GetElementPtr) &&
493 isa<GlobalValue>(CE->getOperand(0)),
494 "Aliasee should be either GlobalValue or bitcast of GlobalValue",
495 &GA);
498 const GlobalValue* Aliasee = GA.resolveAliasedGlobal(/*stopOnWeak*/ false);
499 Assert1(Aliasee,
500 "Aliasing chain should end with function or global variable", &GA);
502 visitGlobalValue(GA);
505 void Verifier::visitNamedMDNode(NamedMDNode &NMD) {
506 for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
507 MDNode *MD = NMD.getOperand(i);
508 if (!MD)
509 continue;
511 Assert1(!MD->isFunctionLocal(),
512 "Named metadata operand cannot be function local!", MD);
513 visitMDNode(*MD, 0);
517 void Verifier::visitMDNode(MDNode &MD, Function *F) {
518 // Only visit each node once. Metadata can be mutually recursive, so this
519 // avoids infinite recursion here, as well as being an optimization.
520 if (!MDNodes.insert(&MD))
521 return;
523 for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
524 Value *Op = MD.getOperand(i);
525 if (!Op)
526 continue;
527 if (isa<Constant>(Op) || isa<MDString>(Op))
528 continue;
529 if (MDNode *N = dyn_cast<MDNode>(Op)) {
530 Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(),
531 "Global metadata operand cannot be function local!", &MD, N);
532 visitMDNode(*N, F);
533 continue;
535 Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op);
537 // If this was an instruction, bb, or argument, verify that it is in the
538 // function that we expect.
539 Function *ActualF = 0;
540 if (Instruction *I = dyn_cast<Instruction>(Op))
541 ActualF = I->getParent()->getParent();
542 else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op))
543 ActualF = BB->getParent();
544 else if (Argument *A = dyn_cast<Argument>(Op))
545 ActualF = A->getParent();
546 assert(ActualF && "Unimplemented function local metadata case!");
548 Assert2(ActualF == F, "function-local metadata used in wrong function",
549 &MD, Op);
553 void Verifier::verifyTypeSymbolTable(TypeSymbolTable &ST) {
554 for (TypeSymbolTable::iterator I = ST.begin(), E = ST.end(); I != E; ++I)
555 VerifyType(I->second);
558 // VerifyParameterAttrs - Check the given attributes for an argument or return
559 // value of the specified type. The value V is printed in error messages.
560 void Verifier::VerifyParameterAttrs(Attributes Attrs, const Type *Ty,
561 bool isReturnValue, const Value *V) {
562 if (Attrs == Attribute::None)
563 return;
565 Attributes FnCheckAttr = Attrs & Attribute::FunctionOnly;
566 Assert1(!FnCheckAttr, "Attribute " + Attribute::getAsString(FnCheckAttr) +
567 " only applies to the function!", V);
569 if (isReturnValue) {
570 Attributes RetI = Attrs & Attribute::ParameterOnly;
571 Assert1(!RetI, "Attribute " + Attribute::getAsString(RetI) +
572 " does not apply to return values!", V);
575 for (unsigned i = 0;
576 i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
577 Attributes MutI = Attrs & Attribute::MutuallyIncompatible[i];
578 Assert1(!(MutI & (MutI - 1)), "Attributes " +
579 Attribute::getAsString(MutI) + " are incompatible!", V);
582 Attributes TypeI = Attrs & Attribute::typeIncompatible(Ty);
583 Assert1(!TypeI, "Wrong type for attribute " +
584 Attribute::getAsString(TypeI), V);
586 Attributes ByValI = Attrs & Attribute::ByVal;
587 if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
588 Assert1(!ByValI || PTy->getElementType()->isSized(),
589 "Attribute " + Attribute::getAsString(ByValI) +
590 " does not support unsized types!", V);
591 } else {
592 Assert1(!ByValI,
593 "Attribute " + Attribute::getAsString(ByValI) +
594 " only applies to parameters with pointer type!", V);
598 // VerifyFunctionAttrs - Check parameter attributes against a function type.
599 // The value V is printed in error messages.
600 void Verifier::VerifyFunctionAttrs(const FunctionType *FT,
601 const AttrListPtr &Attrs,
602 const Value *V) {
603 if (Attrs.isEmpty())
604 return;
606 bool SawNest = false;
608 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
609 const AttributeWithIndex &Attr = Attrs.getSlot(i);
611 const Type *Ty;
612 if (Attr.Index == 0)
613 Ty = FT->getReturnType();
614 else if (Attr.Index-1 < FT->getNumParams())
615 Ty = FT->getParamType(Attr.Index-1);
616 else
617 break; // VarArgs attributes, verified elsewhere.
619 VerifyParameterAttrs(Attr.Attrs, Ty, Attr.Index == 0, V);
621 if (Attr.Attrs & Attribute::Nest) {
622 Assert1(!SawNest, "More than one parameter has attribute nest!", V);
623 SawNest = true;
626 if (Attr.Attrs & Attribute::StructRet)
627 Assert1(Attr.Index == 1, "Attribute sret not on first parameter!", V);
630 Attributes FAttrs = Attrs.getFnAttributes();
631 Attributes NotFn = FAttrs & (~Attribute::FunctionOnly);
632 Assert1(!NotFn, "Attribute " + Attribute::getAsString(NotFn) +
633 " does not apply to the function!", V);
635 for (unsigned i = 0;
636 i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
637 Attributes MutI = FAttrs & Attribute::MutuallyIncompatible[i];
638 Assert1(!(MutI & (MutI - 1)), "Attributes " +
639 Attribute::getAsString(MutI) + " are incompatible!", V);
643 static bool VerifyAttributeCount(const AttrListPtr &Attrs, unsigned Params) {
644 if (Attrs.isEmpty())
645 return true;
647 unsigned LastSlot = Attrs.getNumSlots() - 1;
648 unsigned LastIndex = Attrs.getSlot(LastSlot).Index;
649 if (LastIndex <= Params
650 || (LastIndex == (unsigned)~0
651 && (LastSlot == 0 || Attrs.getSlot(LastSlot - 1).Index <= Params)))
652 return true;
654 return false;
657 // visitFunction - Verify that a function is ok.
659 void Verifier::visitFunction(Function &F) {
660 // Check function arguments.
661 const FunctionType *FT = F.getFunctionType();
662 unsigned NumArgs = F.arg_size();
664 Assert1(Context == &F.getContext(),
665 "Function context does not match Module context!", &F);
667 Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
668 Assert2(FT->getNumParams() == NumArgs,
669 "# formal arguments must match # of arguments for function type!",
670 &F, FT);
671 Assert1(F.getReturnType()->isFirstClassType() ||
672 F.getReturnType()->isVoidTy() ||
673 F.getReturnType()->isStructTy(),
674 "Functions cannot return aggregate values!", &F);
676 Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
677 "Invalid struct return type!", &F);
679 const AttrListPtr &Attrs = F.getAttributes();
681 Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
682 "Attributes after last parameter!", &F);
684 // Check function attributes.
685 VerifyFunctionAttrs(FT, Attrs, &F);
687 // Check that this function meets the restrictions on this calling convention.
688 switch (F.getCallingConv()) {
689 default:
690 break;
691 case CallingConv::C:
692 break;
693 case CallingConv::Fast:
694 case CallingConv::Cold:
695 case CallingConv::X86_FastCall:
696 case CallingConv::X86_ThisCall:
697 case CallingConv::PTX_Kernel:
698 case CallingConv::PTX_Device:
699 Assert1(!F.isVarArg(),
700 "Varargs functions must have C calling conventions!", &F);
701 break;
704 bool isLLVMdotName = F.getName().size() >= 5 &&
705 F.getName().substr(0, 5) == "llvm.";
707 // Check that the argument values match the function type for this function...
708 unsigned i = 0;
709 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
710 I != E; ++I, ++i) {
711 Assert2(I->getType() == FT->getParamType(i),
712 "Argument value does not match function argument type!",
713 I, FT->getParamType(i));
714 Assert1(I->getType()->isFirstClassType(),
715 "Function arguments must have first-class types!", I);
716 if (!isLLVMdotName)
717 Assert2(!I->getType()->isMetadataTy(),
718 "Function takes metadata but isn't an intrinsic", I, &F);
721 if (F.isMaterializable()) {
722 // Function has a body somewhere we can't see.
723 } else if (F.isDeclaration()) {
724 Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() ||
725 F.hasExternalWeakLinkage(),
726 "invalid linkage type for function declaration", &F);
727 } else {
728 // Verify that this function (which has a body) is not named "llvm.*". It
729 // is not legal to define intrinsics.
730 Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
732 // Check the entry node
733 BasicBlock *Entry = &F.getEntryBlock();
734 Assert1(pred_begin(Entry) == pred_end(Entry),
735 "Entry block to function must not have predecessors!", Entry);
737 // The address of the entry block cannot be taken, unless it is dead.
738 if (Entry->hasAddressTaken()) {
739 Assert1(!BlockAddress::get(Entry)->isConstantUsed(),
740 "blockaddress may not be used with the entry block!", Entry);
744 // If this function is actually an intrinsic, verify that it is only used in
745 // direct call/invokes, never having its "address taken".
746 if (F.getIntrinsicID()) {
747 const User *U;
748 if (F.hasAddressTaken(&U))
749 Assert1(0, "Invalid user of intrinsic instruction!", U);
753 // verifyBasicBlock - Verify that a basic block is well formed...
755 void Verifier::visitBasicBlock(BasicBlock &BB) {
756 InstsInThisBlock.clear();
758 // Ensure that basic blocks have terminators!
759 Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
761 // Check constraints that this basic block imposes on all of the PHI nodes in
762 // it.
763 if (isa<PHINode>(BB.front())) {
764 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
765 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
766 std::sort(Preds.begin(), Preds.end());
767 PHINode *PN;
768 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
769 // Ensure that PHI nodes have at least one entry!
770 Assert1(PN->getNumIncomingValues() != 0,
771 "PHI nodes must have at least one entry. If the block is dead, "
772 "the PHI should be removed!", PN);
773 Assert1(PN->getNumIncomingValues() == Preds.size(),
774 "PHINode should have one entry for each predecessor of its "
775 "parent basic block!", PN);
777 // Get and sort all incoming values in the PHI node...
778 Values.clear();
779 Values.reserve(PN->getNumIncomingValues());
780 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
781 Values.push_back(std::make_pair(PN->getIncomingBlock(i),
782 PN->getIncomingValue(i)));
783 std::sort(Values.begin(), Values.end());
785 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
786 // Check to make sure that if there is more than one entry for a
787 // particular basic block in this PHI node, that the incoming values are
788 // all identical.
790 Assert4(i == 0 || Values[i].first != Values[i-1].first ||
791 Values[i].second == Values[i-1].second,
792 "PHI node has multiple entries for the same basic block with "
793 "different incoming values!", PN, Values[i].first,
794 Values[i].second, Values[i-1].second);
796 // Check to make sure that the predecessors and PHI node entries are
797 // matched up.
798 Assert3(Values[i].first == Preds[i],
799 "PHI node entries do not match predecessors!", PN,
800 Values[i].first, Preds[i]);
806 void Verifier::visitTerminatorInst(TerminatorInst &I) {
807 // Ensure that terminators only exist at the end of the basic block.
808 Assert1(&I == I.getParent()->getTerminator(),
809 "Terminator found in the middle of a basic block!", I.getParent());
810 visitInstruction(I);
813 void Verifier::visitBranchInst(BranchInst &BI) {
814 if (BI.isConditional()) {
815 Assert2(BI.getCondition()->getType()->isIntegerTy(1),
816 "Branch condition is not 'i1' type!", &BI, BI.getCondition());
818 visitTerminatorInst(BI);
821 void Verifier::visitReturnInst(ReturnInst &RI) {
822 Function *F = RI.getParent()->getParent();
823 unsigned N = RI.getNumOperands();
824 if (F->getReturnType()->isVoidTy())
825 Assert2(N == 0,
826 "Found return instr that returns non-void in Function of void "
827 "return type!", &RI, F->getReturnType());
828 else if (N == 1 && F->getReturnType() == RI.getOperand(0)->getType()) {
829 // Exactly one return value and it matches the return type. Good.
830 } else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
831 // The return type is a struct; check for multiple return values.
832 Assert2(STy->getNumElements() == N,
833 "Incorrect number of return values in ret instruction!",
834 &RI, F->getReturnType());
835 for (unsigned i = 0; i != N; ++i)
836 Assert2(STy->getElementType(i) == RI.getOperand(i)->getType(),
837 "Function return type does not match operand "
838 "type of return inst!", &RI, F->getReturnType());
839 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(F->getReturnType())) {
840 // The return type is an array; check for multiple return values.
841 Assert2(ATy->getNumElements() == N,
842 "Incorrect number of return values in ret instruction!",
843 &RI, F->getReturnType());
844 for (unsigned i = 0; i != N; ++i)
845 Assert2(ATy->getElementType() == RI.getOperand(i)->getType(),
846 "Function return type does not match operand "
847 "type of return inst!", &RI, F->getReturnType());
848 } else {
849 CheckFailed("Function return type does not match operand "
850 "type of return inst!", &RI, F->getReturnType());
853 // Check to make sure that the return value has necessary properties for
854 // terminators...
855 visitTerminatorInst(RI);
858 void Verifier::visitSwitchInst(SwitchInst &SI) {
859 // Check to make sure that all of the constants in the switch instruction
860 // have the same type as the switched-on value.
861 const Type *SwitchTy = SI.getCondition()->getType();
862 SmallPtrSet<ConstantInt*, 32> Constants;
863 for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i) {
864 Assert1(SI.getCaseValue(i)->getType() == SwitchTy,
865 "Switch constants must all be same type as switch value!", &SI);
866 Assert2(Constants.insert(SI.getCaseValue(i)),
867 "Duplicate integer as switch case", &SI, SI.getCaseValue(i));
870 visitTerminatorInst(SI);
873 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
874 Assert1(BI.getAddress()->getType()->isPointerTy(),
875 "Indirectbr operand must have pointer type!", &BI);
876 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
877 Assert1(BI.getDestination(i)->getType()->isLabelTy(),
878 "Indirectbr destinations must all have pointer type!", &BI);
880 visitTerminatorInst(BI);
883 void Verifier::visitSelectInst(SelectInst &SI) {
884 Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
885 SI.getOperand(2)),
886 "Invalid operands for select instruction!", &SI);
888 Assert1(SI.getTrueValue()->getType() == SI.getType(),
889 "Select values must have same type as select instruction!", &SI);
890 visitInstruction(SI);
893 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
894 /// a pass, if any exist, it's an error.
896 void Verifier::visitUserOp1(Instruction &I) {
897 Assert1(0, "User-defined operators should not live outside of a pass!", &I);
900 void Verifier::visitTruncInst(TruncInst &I) {
901 // Get the source and destination types
902 const Type *SrcTy = I.getOperand(0)->getType();
903 const Type *DestTy = I.getType();
905 // Get the size of the types in bits, we'll need this later
906 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
907 unsigned DestBitSize = DestTy->getScalarSizeInBits();
909 Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
910 Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
911 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
912 "trunc source and destination must both be a vector or neither", &I);
913 Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
915 visitInstruction(I);
918 void Verifier::visitZExtInst(ZExtInst &I) {
919 // Get the source and destination types
920 const Type *SrcTy = I.getOperand(0)->getType();
921 const Type *DestTy = I.getType();
923 // Get the size of the types in bits, we'll need this later
924 Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
925 Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
926 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
927 "zext source and destination must both be a vector or neither", &I);
928 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
929 unsigned DestBitSize = DestTy->getScalarSizeInBits();
931 Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
933 visitInstruction(I);
936 void Verifier::visitSExtInst(SExtInst &I) {
937 // Get the source and destination types
938 const Type *SrcTy = I.getOperand(0)->getType();
939 const Type *DestTy = I.getType();
941 // Get the size of the types in bits, we'll need this later
942 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
943 unsigned DestBitSize = DestTy->getScalarSizeInBits();
945 Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
946 Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
947 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
948 "sext source and destination must both be a vector or neither", &I);
949 Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
951 visitInstruction(I);
954 void Verifier::visitFPTruncInst(FPTruncInst &I) {
955 // Get the source and destination types
956 const Type *SrcTy = I.getOperand(0)->getType();
957 const Type *DestTy = I.getType();
958 // Get the size of the types in bits, we'll need this later
959 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
960 unsigned DestBitSize = DestTy->getScalarSizeInBits();
962 Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I);
963 Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I);
964 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
965 "fptrunc source and destination must both be a vector or neither",&I);
966 Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
968 visitInstruction(I);
971 void Verifier::visitFPExtInst(FPExtInst &I) {
972 // Get the source and destination types
973 const Type *SrcTy = I.getOperand(0)->getType();
974 const Type *DestTy = I.getType();
976 // Get the size of the types in bits, we'll need this later
977 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
978 unsigned DestBitSize = DestTy->getScalarSizeInBits();
980 Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I);
981 Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I);
982 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
983 "fpext source and destination must both be a vector or neither", &I);
984 Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
986 visitInstruction(I);
989 void Verifier::visitUIToFPInst(UIToFPInst &I) {
990 // Get the source and destination types
991 const Type *SrcTy = I.getOperand(0)->getType();
992 const Type *DestTy = I.getType();
994 bool SrcVec = SrcTy->isVectorTy();
995 bool DstVec = DestTy->isVectorTy();
997 Assert1(SrcVec == DstVec,
998 "UIToFP source and dest must both be vector or scalar", &I);
999 Assert1(SrcTy->isIntOrIntVectorTy(),
1000 "UIToFP source must be integer or integer vector", &I);
1001 Assert1(DestTy->isFPOrFPVectorTy(),
1002 "UIToFP result must be FP or FP vector", &I);
1004 if (SrcVec && DstVec)
1005 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1006 cast<VectorType>(DestTy)->getNumElements(),
1007 "UIToFP source and dest vector length mismatch", &I);
1009 visitInstruction(I);
1012 void Verifier::visitSIToFPInst(SIToFPInst &I) {
1013 // Get the source and destination types
1014 const Type *SrcTy = I.getOperand(0)->getType();
1015 const Type *DestTy = I.getType();
1017 bool SrcVec = SrcTy->isVectorTy();
1018 bool DstVec = DestTy->isVectorTy();
1020 Assert1(SrcVec == DstVec,
1021 "SIToFP source and dest must both be vector or scalar", &I);
1022 Assert1(SrcTy->isIntOrIntVectorTy(),
1023 "SIToFP source must be integer or integer vector", &I);
1024 Assert1(DestTy->isFPOrFPVectorTy(),
1025 "SIToFP result must be FP or FP vector", &I);
1027 if (SrcVec && DstVec)
1028 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1029 cast<VectorType>(DestTy)->getNumElements(),
1030 "SIToFP source and dest vector length mismatch", &I);
1032 visitInstruction(I);
1035 void Verifier::visitFPToUIInst(FPToUIInst &I) {
1036 // Get the source and destination types
1037 const Type *SrcTy = I.getOperand(0)->getType();
1038 const Type *DestTy = I.getType();
1040 bool SrcVec = SrcTy->isVectorTy();
1041 bool DstVec = DestTy->isVectorTy();
1043 Assert1(SrcVec == DstVec,
1044 "FPToUI source and dest must both be vector or scalar", &I);
1045 Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
1046 &I);
1047 Assert1(DestTy->isIntOrIntVectorTy(),
1048 "FPToUI result must be integer or integer vector", &I);
1050 if (SrcVec && DstVec)
1051 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1052 cast<VectorType>(DestTy)->getNumElements(),
1053 "FPToUI source and dest vector length mismatch", &I);
1055 visitInstruction(I);
1058 void Verifier::visitFPToSIInst(FPToSIInst &I) {
1059 // Get the source and destination types
1060 const Type *SrcTy = I.getOperand(0)->getType();
1061 const Type *DestTy = I.getType();
1063 bool SrcVec = SrcTy->isVectorTy();
1064 bool DstVec = DestTy->isVectorTy();
1066 Assert1(SrcVec == DstVec,
1067 "FPToSI source and dest must both be vector or scalar", &I);
1068 Assert1(SrcTy->isFPOrFPVectorTy(),
1069 "FPToSI source must be FP or FP vector", &I);
1070 Assert1(DestTy->isIntOrIntVectorTy(),
1071 "FPToSI result must be integer or integer vector", &I);
1073 if (SrcVec && DstVec)
1074 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1075 cast<VectorType>(DestTy)->getNumElements(),
1076 "FPToSI source and dest vector length mismatch", &I);
1078 visitInstruction(I);
1081 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
1082 // Get the source and destination types
1083 const Type *SrcTy = I.getOperand(0)->getType();
1084 const Type *DestTy = I.getType();
1086 Assert1(SrcTy->isPointerTy(), "PtrToInt source must be pointer", &I);
1087 Assert1(DestTy->isIntegerTy(), "PtrToInt result must be integral", &I);
1089 visitInstruction(I);
1092 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
1093 // Get the source and destination types
1094 const Type *SrcTy = I.getOperand(0)->getType();
1095 const Type *DestTy = I.getType();
1097 Assert1(SrcTy->isIntegerTy(), "IntToPtr source must be an integral", &I);
1098 Assert1(DestTy->isPointerTy(), "IntToPtr result must be a pointer",&I);
1100 visitInstruction(I);
1103 void Verifier::visitBitCastInst(BitCastInst &I) {
1104 // Get the source and destination types
1105 const Type *SrcTy = I.getOperand(0)->getType();
1106 const Type *DestTy = I.getType();
1108 // Get the size of the types in bits, we'll need this later
1109 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
1110 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
1112 // BitCast implies a no-op cast of type only. No bits change.
1113 // However, you can't cast pointers to anything but pointers.
1114 Assert1(DestTy->isPointerTy() == DestTy->isPointerTy(),
1115 "Bitcast requires both operands to be pointer or neither", &I);
1116 Assert1(SrcBitSize == DestBitSize, "Bitcast requires types of same width",&I);
1118 // Disallow aggregates.
1119 Assert1(!SrcTy->isAggregateType(),
1120 "Bitcast operand must not be aggregate", &I);
1121 Assert1(!DestTy->isAggregateType(),
1122 "Bitcast type must not be aggregate", &I);
1124 visitInstruction(I);
1127 /// visitPHINode - Ensure that a PHI node is well formed.
1129 void Verifier::visitPHINode(PHINode &PN) {
1130 // Ensure that the PHI nodes are all grouped together at the top of the block.
1131 // This can be tested by checking whether the instruction before this is
1132 // either nonexistent (because this is begin()) or is a PHI node. If not,
1133 // then there is some other instruction before a PHI.
1134 Assert2(&PN == &PN.getParent()->front() ||
1135 isa<PHINode>(--BasicBlock::iterator(&PN)),
1136 "PHI nodes not grouped at top of basic block!",
1137 &PN, PN.getParent());
1139 // Check that all of the values of the PHI node have the same type as the
1140 // result, and that the incoming blocks are really basic blocks.
1141 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1142 Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
1143 "PHI node operands are not the same type as the result!", &PN);
1144 Assert1(isa<BasicBlock>(PN.getOperand(
1145 PHINode::getOperandNumForIncomingBlock(i))),
1146 "PHI node incoming block is not a BasicBlock!", &PN);
1149 // All other PHI node constraints are checked in the visitBasicBlock method.
1151 visitInstruction(PN);
1154 void Verifier::VerifyCallSite(CallSite CS) {
1155 Instruction *I = CS.getInstruction();
1157 Assert1(CS.getCalledValue()->getType()->isPointerTy(),
1158 "Called function must be a pointer!", I);
1159 const PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
1161 Assert1(FPTy->getElementType()->isFunctionTy(),
1162 "Called function is not pointer to function type!", I);
1163 const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
1165 // Verify that the correct number of arguments are being passed
1166 if (FTy->isVarArg())
1167 Assert1(CS.arg_size() >= FTy->getNumParams(),
1168 "Called function requires more parameters than were provided!",I);
1169 else
1170 Assert1(CS.arg_size() == FTy->getNumParams(),
1171 "Incorrect number of arguments passed to called function!", I);
1173 // Verify that all arguments to the call match the function type.
1174 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1175 Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
1176 "Call parameter type does not match function signature!",
1177 CS.getArgument(i), FTy->getParamType(i), I);
1179 const AttrListPtr &Attrs = CS.getAttributes();
1181 Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
1182 "Attributes after last parameter!", I);
1184 // Verify call attributes.
1185 VerifyFunctionAttrs(FTy, Attrs, I);
1187 if (FTy->isVarArg())
1188 // Check attributes on the varargs part.
1189 for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
1190 Attributes Attr = Attrs.getParamAttributes(Idx);
1192 VerifyParameterAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I);
1194 Attributes VArgI = Attr & Attribute::VarArgsIncompatible;
1195 Assert1(!VArgI, "Attribute " + Attribute::getAsString(VArgI) +
1196 " cannot be used for vararg call arguments!", I);
1199 // Verify that there's no metadata unless it's a direct call to an intrinsic.
1200 if (!CS.getCalledFunction() ||
1201 !CS.getCalledFunction()->getName().startswith("llvm.")) {
1202 for (FunctionType::param_iterator PI = FTy->param_begin(),
1203 PE = FTy->param_end(); PI != PE; ++PI)
1204 Assert1(!PI->get()->isMetadataTy(),
1205 "Function has metadata parameter but isn't an intrinsic", I);
1208 visitInstruction(*I);
1211 void Verifier::visitCallInst(CallInst &CI) {
1212 VerifyCallSite(&CI);
1214 if (Function *F = CI.getCalledFunction())
1215 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
1216 visitIntrinsicFunctionCall(ID, CI);
1219 void Verifier::visitInvokeInst(InvokeInst &II) {
1220 VerifyCallSite(&II);
1221 visitTerminatorInst(II);
1224 /// visitBinaryOperator - Check that both arguments to the binary operator are
1225 /// of the same type!
1227 void Verifier::visitBinaryOperator(BinaryOperator &B) {
1228 Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
1229 "Both operands to a binary operator are not of the same type!", &B);
1231 switch (B.getOpcode()) {
1232 // Check that integer arithmetic operators are only used with
1233 // integral operands.
1234 case Instruction::Add:
1235 case Instruction::Sub:
1236 case Instruction::Mul:
1237 case Instruction::SDiv:
1238 case Instruction::UDiv:
1239 case Instruction::SRem:
1240 case Instruction::URem:
1241 Assert1(B.getType()->isIntOrIntVectorTy(),
1242 "Integer arithmetic operators only work with integral types!", &B);
1243 Assert1(B.getType() == B.getOperand(0)->getType(),
1244 "Integer arithmetic operators must have same type "
1245 "for operands and result!", &B);
1246 break;
1247 // Check that floating-point arithmetic operators are only used with
1248 // floating-point operands.
1249 case Instruction::FAdd:
1250 case Instruction::FSub:
1251 case Instruction::FMul:
1252 case Instruction::FDiv:
1253 case Instruction::FRem:
1254 Assert1(B.getType()->isFPOrFPVectorTy(),
1255 "Floating-point arithmetic operators only work with "
1256 "floating-point types!", &B);
1257 Assert1(B.getType() == B.getOperand(0)->getType(),
1258 "Floating-point arithmetic operators must have same type "
1259 "for operands and result!", &B);
1260 break;
1261 // Check that logical operators are only used with integral operands.
1262 case Instruction::And:
1263 case Instruction::Or:
1264 case Instruction::Xor:
1265 Assert1(B.getType()->isIntOrIntVectorTy(),
1266 "Logical operators only work with integral types!", &B);
1267 Assert1(B.getType() == B.getOperand(0)->getType(),
1268 "Logical operators must have same type for operands and result!",
1269 &B);
1270 break;
1271 case Instruction::Shl:
1272 case Instruction::LShr:
1273 case Instruction::AShr:
1274 Assert1(B.getType()->isIntOrIntVectorTy(),
1275 "Shifts only work with integral types!", &B);
1276 Assert1(B.getType() == B.getOperand(0)->getType(),
1277 "Shift return type must be same as operands!", &B);
1278 break;
1279 default:
1280 llvm_unreachable("Unknown BinaryOperator opcode!");
1283 visitInstruction(B);
1286 void Verifier::visitICmpInst(ICmpInst &IC) {
1287 // Check that the operands are the same type
1288 const Type *Op0Ty = IC.getOperand(0)->getType();
1289 const Type *Op1Ty = IC.getOperand(1)->getType();
1290 Assert1(Op0Ty == Op1Ty,
1291 "Both operands to ICmp instruction are not of the same type!", &IC);
1292 // Check that the operands are the right type
1293 Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPointerTy(),
1294 "Invalid operand types for ICmp instruction", &IC);
1295 // Check that the predicate is valid.
1296 Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
1297 IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
1298 "Invalid predicate in ICmp instruction!", &IC);
1300 visitInstruction(IC);
1303 void Verifier::visitFCmpInst(FCmpInst &FC) {
1304 // Check that the operands are the same type
1305 const Type *Op0Ty = FC.getOperand(0)->getType();
1306 const Type *Op1Ty = FC.getOperand(1)->getType();
1307 Assert1(Op0Ty == Op1Ty,
1308 "Both operands to FCmp instruction are not of the same type!", &FC);
1309 // Check that the operands are the right type
1310 Assert1(Op0Ty->isFPOrFPVectorTy(),
1311 "Invalid operand types for FCmp instruction", &FC);
1312 // Check that the predicate is valid.
1313 Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
1314 FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
1315 "Invalid predicate in FCmp instruction!", &FC);
1317 visitInstruction(FC);
1320 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
1321 Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
1322 EI.getOperand(1)),
1323 "Invalid extractelement operands!", &EI);
1324 visitInstruction(EI);
1327 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
1328 Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
1329 IE.getOperand(1),
1330 IE.getOperand(2)),
1331 "Invalid insertelement operands!", &IE);
1332 visitInstruction(IE);
1335 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
1336 Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
1337 SV.getOperand(2)),
1338 "Invalid shufflevector operands!", &SV);
1339 visitInstruction(SV);
1342 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1343 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
1344 const Type *ElTy =
1345 GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(),
1346 Idxs.begin(), Idxs.end());
1347 Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
1348 Assert2(GEP.getType()->isPointerTy() &&
1349 cast<PointerType>(GEP.getType())->getElementType() == ElTy,
1350 "GEP is not of right type for indices!", &GEP, ElTy);
1351 visitInstruction(GEP);
1354 void Verifier::visitLoadInst(LoadInst &LI) {
1355 const PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
1356 Assert1(PTy, "Load operand must be a pointer.", &LI);
1357 const Type *ElTy = PTy->getElementType();
1358 Assert2(ElTy == LI.getType(),
1359 "Load result type does not match pointer operand type!", &LI, ElTy);
1360 visitInstruction(LI);
1363 void Verifier::visitStoreInst(StoreInst &SI) {
1364 const PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
1365 Assert1(PTy, "Store operand must be a pointer.", &SI);
1366 const Type *ElTy = PTy->getElementType();
1367 Assert2(ElTy == SI.getOperand(0)->getType(),
1368 "Stored value type does not match pointer operand type!",
1369 &SI, ElTy);
1370 visitInstruction(SI);
1373 void Verifier::visitAllocaInst(AllocaInst &AI) {
1374 const PointerType *PTy = AI.getType();
1375 Assert1(PTy->getAddressSpace() == 0,
1376 "Allocation instruction pointer not in the generic address space!",
1377 &AI);
1378 Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type",
1379 &AI);
1380 Assert1(AI.getArraySize()->getType()->isIntegerTy(),
1381 "Alloca array size must have integer type", &AI);
1382 visitInstruction(AI);
1385 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
1386 Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
1387 EVI.idx_begin(), EVI.idx_end()) ==
1388 EVI.getType(),
1389 "Invalid ExtractValueInst operands!", &EVI);
1391 visitInstruction(EVI);
1394 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
1395 Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
1396 IVI.idx_begin(), IVI.idx_end()) ==
1397 IVI.getOperand(1)->getType(),
1398 "Invalid InsertValueInst operands!", &IVI);
1400 visitInstruction(IVI);
1403 /// verifyInstruction - Verify that an instruction is well formed.
1405 void Verifier::visitInstruction(Instruction &I) {
1406 BasicBlock *BB = I.getParent();
1407 Assert1(BB, "Instruction not embedded in basic block!", &I);
1409 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
1410 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
1411 UI != UE; ++UI)
1412 Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB),
1413 "Only PHI nodes may reference their own value!", &I);
1416 // Check that void typed values don't have names
1417 Assert1(!I.getType()->isVoidTy() || !I.hasName(),
1418 "Instruction has a name, but provides a void value!", &I);
1420 // Check that the return value of the instruction is either void or a legal
1421 // value type.
1422 Assert1(I.getType()->isVoidTy() ||
1423 I.getType()->isFirstClassType(),
1424 "Instruction returns a non-scalar type!", &I);
1426 // Check that the instruction doesn't produce metadata. Calls are already
1427 // checked against the callee type.
1428 Assert1(!I.getType()->isMetadataTy() ||
1429 isa<CallInst>(I) || isa<InvokeInst>(I),
1430 "Invalid use of metadata!", &I);
1432 // Check that all uses of the instruction, if they are instructions
1433 // themselves, actually have parent basic blocks. If the use is not an
1434 // instruction, it is an error!
1435 for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
1436 UI != UE; ++UI) {
1437 if (Instruction *Used = dyn_cast<Instruction>(*UI))
1438 Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
1439 " embedded in a basic block!", &I, Used);
1440 else {
1441 CheckFailed("Use of instruction is not an instruction!", *UI);
1442 return;
1446 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1447 Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
1449 // Check to make sure that only first-class-values are operands to
1450 // instructions.
1451 if (!I.getOperand(i)->getType()->isFirstClassType()) {
1452 Assert1(0, "Instruction operands must be first-class values!", &I);
1455 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
1456 // Check to make sure that the "address of" an intrinsic function is never
1457 // taken.
1458 Assert1(!F->isIntrinsic() || (i + 1 == e && isa<CallInst>(I)),
1459 "Cannot take the address of an intrinsic!", &I);
1460 Assert1(F->getParent() == Mod, "Referencing function in another module!",
1461 &I);
1462 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
1463 Assert1(OpBB->getParent() == BB->getParent(),
1464 "Referring to a basic block in another function!", &I);
1465 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
1466 Assert1(OpArg->getParent() == BB->getParent(),
1467 "Referring to an argument in another function!", &I);
1468 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
1469 Assert1(GV->getParent() == Mod, "Referencing global in another module!",
1470 &I);
1471 } else if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
1472 BasicBlock *OpBlock = Op->getParent();
1474 // Check that a definition dominates all of its uses.
1475 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
1476 // Invoke results are only usable in the normal destination, not in the
1477 // exceptional destination.
1478 BasicBlock *NormalDest = II->getNormalDest();
1480 Assert2(NormalDest != II->getUnwindDest(),
1481 "No uses of invoke possible due to dominance structure!",
1482 Op, &I);
1484 // PHI nodes differ from other nodes because they actually "use" the
1485 // value in the predecessor basic blocks they correspond to.
1486 BasicBlock *UseBlock = BB;
1487 if (isa<PHINode>(I))
1488 UseBlock = dyn_cast<BasicBlock>(I.getOperand(i+1));
1489 Assert2(UseBlock, "Invoke operand is PHI node with bad incoming-BB",
1490 Op, &I);
1492 if (isa<PHINode>(I) && UseBlock == OpBlock) {
1493 // Special case of a phi node in the normal destination or the unwind
1494 // destination.
1495 Assert2(BB == NormalDest || !DT->isReachableFromEntry(UseBlock),
1496 "Invoke result not available in the unwind destination!",
1497 Op, &I);
1498 } else {
1499 Assert2(DT->dominates(NormalDest, UseBlock) ||
1500 !DT->isReachableFromEntry(UseBlock),
1501 "Invoke result does not dominate all uses!", Op, &I);
1503 // If the normal successor of an invoke instruction has multiple
1504 // predecessors, then the normal edge from the invoke is critical,
1505 // so the invoke value can only be live if the destination block
1506 // dominates all of it's predecessors (other than the invoke).
1507 if (!NormalDest->getSinglePredecessor() &&
1508 DT->isReachableFromEntry(UseBlock))
1509 // If it is used by something non-phi, then the other case is that
1510 // 'NormalDest' dominates all of its predecessors other than the
1511 // invoke. In this case, the invoke value can still be used.
1512 for (pred_iterator PI = pred_begin(NormalDest),
1513 E = pred_end(NormalDest); PI != E; ++PI)
1514 if (*PI != II->getParent() && !DT->dominates(NormalDest, *PI) &&
1515 DT->isReachableFromEntry(*PI)) {
1516 CheckFailed("Invoke result does not dominate all uses!", Op,&I);
1517 return;
1520 } else if (isa<PHINode>(I)) {
1521 // PHI nodes are more difficult than other nodes because they actually
1522 // "use" the value in the predecessor basic blocks they correspond to.
1523 BasicBlock *PredBB = dyn_cast<BasicBlock>(I.getOperand(i+1));
1524 Assert2(PredBB && (DT->dominates(OpBlock, PredBB) ||
1525 !DT->isReachableFromEntry(PredBB)),
1526 "Instruction does not dominate all uses!", Op, &I);
1527 } else {
1528 if (OpBlock == BB) {
1529 // If they are in the same basic block, make sure that the definition
1530 // comes before the use.
1531 Assert2(InstsInThisBlock.count(Op) || !DT->isReachableFromEntry(BB),
1532 "Instruction does not dominate all uses!", Op, &I);
1535 // Definition must dominate use unless use is unreachable!
1536 Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, &I) ||
1537 !DT->isReachableFromEntry(BB),
1538 "Instruction does not dominate all uses!", Op, &I);
1540 } else if (isa<InlineAsm>(I.getOperand(i))) {
1541 Assert1((i + 1 == e && isa<CallInst>(I)) ||
1542 (i + 3 == e && isa<InvokeInst>(I)),
1543 "Cannot take the address of an inline asm!", &I);
1546 InstsInThisBlock.insert(&I);
1548 VerifyType(I.getType());
1551 /// VerifyType - Verify that a type is well formed.
1553 void Verifier::VerifyType(const Type *Ty) {
1554 if (!Types.insert(Ty)) return;
1556 Assert1(Context == &Ty->getContext(),
1557 "Type context does not match Module context!", Ty);
1559 switch (Ty->getTypeID()) {
1560 case Type::FunctionTyID: {
1561 const FunctionType *FTy = cast<FunctionType>(Ty);
1563 const Type *RetTy = FTy->getReturnType();
1564 Assert2(FunctionType::isValidReturnType(RetTy),
1565 "Function type with invalid return type", RetTy, FTy);
1566 VerifyType(RetTy);
1568 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
1569 const Type *ElTy = FTy->getParamType(i);
1570 Assert2(FunctionType::isValidArgumentType(ElTy),
1571 "Function type with invalid parameter type", ElTy, FTy);
1572 VerifyType(ElTy);
1574 break;
1576 case Type::StructTyID: {
1577 const StructType *STy = cast<StructType>(Ty);
1578 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1579 const Type *ElTy = STy->getElementType(i);
1580 Assert2(StructType::isValidElementType(ElTy),
1581 "Structure type with invalid element type", ElTy, STy);
1582 VerifyType(ElTy);
1584 break;
1586 case Type::ArrayTyID: {
1587 const ArrayType *ATy = cast<ArrayType>(Ty);
1588 Assert1(ArrayType::isValidElementType(ATy->getElementType()),
1589 "Array type with invalid element type", ATy);
1590 VerifyType(ATy->getElementType());
1591 break;
1593 case Type::PointerTyID: {
1594 const PointerType *PTy = cast<PointerType>(Ty);
1595 Assert1(PointerType::isValidElementType(PTy->getElementType()),
1596 "Pointer type with invalid element type", PTy);
1597 VerifyType(PTy->getElementType());
1598 break;
1600 case Type::VectorTyID: {
1601 const VectorType *VTy = cast<VectorType>(Ty);
1602 Assert1(VectorType::isValidElementType(VTy->getElementType()),
1603 "Vector type with invalid element type", VTy);
1604 VerifyType(VTy->getElementType());
1605 break;
1607 default:
1608 break;
1612 // Flags used by TableGen to mark intrinsic parameters with the
1613 // LLVMExtendedElementVectorType and LLVMTruncatedElementVectorType classes.
1614 static const unsigned ExtendedElementVectorType = 0x40000000;
1615 static const unsigned TruncatedElementVectorType = 0x20000000;
1617 /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
1619 void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
1620 Function *IF = CI.getCalledFunction();
1621 Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
1622 IF);
1624 #define GET_INTRINSIC_VERIFIER
1625 #include "llvm/Intrinsics.gen"
1626 #undef GET_INTRINSIC_VERIFIER
1628 // If the intrinsic takes MDNode arguments, verify that they are either global
1629 // or are local to *this* function.
1630 for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
1631 if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i)))
1632 visitMDNode(*MD, CI.getParent()->getParent());
1634 switch (ID) {
1635 default:
1636 break;
1637 case Intrinsic::dbg_declare: { // llvm.dbg.declare
1638 Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
1639 "invalid llvm.dbg.declare intrinsic call 1", &CI);
1640 MDNode *MD = cast<MDNode>(CI.getArgOperand(0));
1641 Assert1(MD->getNumOperands() == 1,
1642 "invalid llvm.dbg.declare intrinsic call 2", &CI);
1643 } break;
1644 case Intrinsic::memcpy:
1645 case Intrinsic::memmove:
1646 case Intrinsic::memset:
1647 Assert1(isa<ConstantInt>(CI.getArgOperand(3)),
1648 "alignment argument of memory intrinsics must be a constant int",
1649 &CI);
1650 break;
1651 case Intrinsic::gcroot:
1652 case Intrinsic::gcwrite:
1653 case Intrinsic::gcread:
1654 if (ID == Intrinsic::gcroot) {
1655 AllocaInst *AI =
1656 dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
1657 Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
1658 Assert1(isa<Constant>(CI.getArgOperand(1)),
1659 "llvm.gcroot parameter #2 must be a constant.", &CI);
1660 if (!AI->getType()->getElementType()->isPointerTy()) {
1661 Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
1662 "llvm.gcroot parameter #1 must either be a pointer alloca, "
1663 "or argument #2 must be a non-null constant.", &CI);
1667 Assert1(CI.getParent()->getParent()->hasGC(),
1668 "Enclosing function does not use GC.", &CI);
1669 break;
1670 case Intrinsic::init_trampoline:
1671 Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
1672 "llvm.init_trampoline parameter #2 must resolve to a function.",
1673 &CI);
1674 break;
1675 case Intrinsic::prefetch:
1676 Assert1(isa<ConstantInt>(CI.getArgOperand(1)) &&
1677 isa<ConstantInt>(CI.getArgOperand(2)) &&
1678 cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
1679 cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
1680 "invalid arguments to llvm.prefetch",
1681 &CI);
1682 break;
1683 case Intrinsic::stackprotector:
1684 Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
1685 "llvm.stackprotector parameter #2 must resolve to an alloca.",
1686 &CI);
1687 break;
1688 case Intrinsic::lifetime_start:
1689 case Intrinsic::lifetime_end:
1690 case Intrinsic::invariant_start:
1691 Assert1(isa<ConstantInt>(CI.getArgOperand(0)),
1692 "size argument of memory use markers must be a constant integer",
1693 &CI);
1694 break;
1695 case Intrinsic::invariant_end:
1696 Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
1697 "llvm.invariant.end parameter #2 must be a constant integer", &CI);
1698 break;
1702 /// Produce a string to identify an intrinsic parameter or return value.
1703 /// The ArgNo value numbers the return values from 0 to NumRets-1 and the
1704 /// parameters beginning with NumRets.
1706 static std::string IntrinsicParam(unsigned ArgNo, unsigned NumRets) {
1707 if (ArgNo >= NumRets)
1708 return "Intrinsic parameter #" + utostr(ArgNo - NumRets);
1709 if (NumRets == 1)
1710 return "Intrinsic result type";
1711 return "Intrinsic result type #" + utostr(ArgNo);
1714 bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty,
1715 int VT, unsigned ArgNo, std::string &Suffix) {
1716 const FunctionType *FTy = F->getFunctionType();
1718 unsigned NumElts = 0;
1719 const Type *EltTy = Ty;
1720 const VectorType *VTy = dyn_cast<VectorType>(Ty);
1721 if (VTy) {
1722 EltTy = VTy->getElementType();
1723 NumElts = VTy->getNumElements();
1726 const Type *RetTy = FTy->getReturnType();
1727 const StructType *ST = dyn_cast<StructType>(RetTy);
1728 unsigned NumRetVals;
1729 if (RetTy->isVoidTy())
1730 NumRetVals = 0;
1731 else if (ST)
1732 NumRetVals = ST->getNumElements();
1733 else
1734 NumRetVals = 1;
1736 if (VT < 0) {
1737 int Match = ~VT;
1739 // Check flags that indicate a type that is an integral vector type with
1740 // elements that are larger or smaller than the elements of the matched
1741 // type.
1742 if ((Match & (ExtendedElementVectorType |
1743 TruncatedElementVectorType)) != 0) {
1744 const IntegerType *IEltTy = dyn_cast<IntegerType>(EltTy);
1745 if (!VTy || !IEltTy) {
1746 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not "
1747 "an integral vector type.", F);
1748 return false;
1750 // Adjust the current Ty (in the opposite direction) rather than
1751 // the type being matched against.
1752 if ((Match & ExtendedElementVectorType) != 0) {
1753 if ((IEltTy->getBitWidth() & 1) != 0) {
1754 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " vector "
1755 "element bit-width is odd.", F);
1756 return false;
1758 Ty = VectorType::getTruncatedElementVectorType(VTy);
1759 } else
1760 Ty = VectorType::getExtendedElementVectorType(VTy);
1761 Match &= ~(ExtendedElementVectorType | TruncatedElementVectorType);
1764 if (Match <= static_cast<int>(NumRetVals - 1)) {
1765 if (ST)
1766 RetTy = ST->getElementType(Match);
1768 if (Ty != RetTy) {
1769 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " does not "
1770 "match return type.", F);
1771 return false;
1773 } else {
1774 if (Ty != FTy->getParamType(Match - NumRetVals)) {
1775 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " does not "
1776 "match parameter %" + utostr(Match - NumRetVals) + ".", F);
1777 return false;
1780 } else if (VT == MVT::iAny) {
1781 if (!EltTy->isIntegerTy()) {
1782 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not "
1783 "an integer type.", F);
1784 return false;
1787 unsigned GotBits = cast<IntegerType>(EltTy)->getBitWidth();
1788 Suffix += ".";
1790 if (EltTy != Ty)
1791 Suffix += "v" + utostr(NumElts);
1793 Suffix += "i" + utostr(GotBits);
1795 // Check some constraints on various intrinsics.
1796 switch (ID) {
1797 default: break; // Not everything needs to be checked.
1798 case Intrinsic::bswap:
1799 if (GotBits < 16 || GotBits % 16 != 0) {
1800 CheckFailed("Intrinsic requires even byte width argument", F);
1801 return false;
1803 break;
1805 } else if (VT == MVT::fAny) {
1806 if (!EltTy->isFloatingPointTy()) {
1807 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not "
1808 "a floating-point type.", F);
1809 return false;
1812 Suffix += ".";
1814 if (EltTy != Ty)
1815 Suffix += "v" + utostr(NumElts);
1817 Suffix += EVT::getEVT(EltTy).getEVTString();
1818 } else if (VT == MVT::vAny) {
1819 if (!VTy) {
1820 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a vector type.",
1822 return false;
1824 Suffix += ".v" + utostr(NumElts) + EVT::getEVT(EltTy).getEVTString();
1825 } else if (VT == MVT::iPTR) {
1826 if (!Ty->isPointerTy()) {
1827 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a "
1828 "pointer and a pointer is required.", F);
1829 return false;
1831 } else if (VT == MVT::iPTRAny) {
1832 // Outside of TableGen, we don't distinguish iPTRAny (to any address space)
1833 // and iPTR. In the verifier, we can not distinguish which case we have so
1834 // allow either case to be legal.
1835 if (const PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
1836 EVT PointeeVT = EVT::getEVT(PTyp->getElementType(), true);
1837 if (PointeeVT == MVT::Other) {
1838 CheckFailed("Intrinsic has pointer to complex type.");
1839 return false;
1841 Suffix += ".p" + utostr(PTyp->getAddressSpace()) +
1842 PointeeVT.getEVTString();
1843 } else {
1844 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a "
1845 "pointer and a pointer is required.", F);
1846 return false;
1848 } else if (EVT((MVT::SimpleValueType)VT).isVector()) {
1849 EVT VVT = EVT((MVT::SimpleValueType)VT);
1851 // If this is a vector argument, verify the number and type of elements.
1852 if (VVT.getVectorElementType() != EVT::getEVT(EltTy)) {
1853 CheckFailed("Intrinsic prototype has incorrect vector element type!", F);
1854 return false;
1857 if (VVT.getVectorNumElements() != NumElts) {
1858 CheckFailed("Intrinsic prototype has incorrect number of "
1859 "vector elements!", F);
1860 return false;
1862 } else if (EVT((MVT::SimpleValueType)VT).getTypeForEVT(Ty->getContext()) !=
1863 EltTy) {
1864 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is wrong!", F);
1865 return false;
1866 } else if (EltTy != Ty) {
1867 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is a vector "
1868 "and a scalar is required.", F);
1869 return false;
1872 return true;
1875 /// VerifyIntrinsicPrototype - TableGen emits calls to this function into
1876 /// Intrinsics.gen. This implements a little state machine that verifies the
1877 /// prototype of intrinsics.
1878 void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
1879 unsigned NumRetVals,
1880 unsigned NumParams, ...) {
1881 va_list VA;
1882 va_start(VA, NumParams);
1883 const FunctionType *FTy = F->getFunctionType();
1885 // For overloaded intrinsics, the Suffix of the function name must match the
1886 // types of the arguments. This variable keeps track of the expected
1887 // suffix, to be checked at the end.
1888 std::string Suffix;
1890 if (FTy->getNumParams() + FTy->isVarArg() != NumParams) {
1891 CheckFailed("Intrinsic prototype has incorrect number of arguments!", F);
1892 return;
1895 const Type *Ty = FTy->getReturnType();
1896 const StructType *ST = dyn_cast<StructType>(Ty);
1898 if (NumRetVals == 0 && !Ty->isVoidTy()) {
1899 CheckFailed("Intrinsic should return void", F);
1900 return;
1903 // Verify the return types.
1904 if (ST && ST->getNumElements() != NumRetVals) {
1905 CheckFailed("Intrinsic prototype has incorrect number of return types!", F);
1906 return;
1909 for (unsigned ArgNo = 0; ArgNo != NumRetVals; ++ArgNo) {
1910 int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative.
1912 if (ST) Ty = ST->getElementType(ArgNo);
1913 if (!PerformTypeCheck(ID, F, Ty, VT, ArgNo, Suffix))
1914 break;
1917 // Verify the parameter types.
1918 for (unsigned ArgNo = 0; ArgNo != NumParams; ++ArgNo) {
1919 int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative.
1921 if (VT == MVT::isVoid && ArgNo > 0) {
1922 if (!FTy->isVarArg())
1923 CheckFailed("Intrinsic prototype has no '...'!", F);
1924 break;
1927 if (!PerformTypeCheck(ID, F, FTy->getParamType(ArgNo), VT,
1928 ArgNo + NumRetVals, Suffix))
1929 break;
1932 va_end(VA);
1934 // For intrinsics without pointer arguments, if we computed a Suffix then the
1935 // intrinsic is overloaded and we need to make sure that the name of the
1936 // function is correct. We add the suffix to the name of the intrinsic and
1937 // compare against the given function name. If they are not the same, the
1938 // function name is invalid. This ensures that overloading of intrinsics
1939 // uses a sane and consistent naming convention. Note that intrinsics with
1940 // pointer argument may or may not be overloaded so we will check assuming it
1941 // has a suffix and not.
1942 if (!Suffix.empty()) {
1943 std::string Name(Intrinsic::getName(ID));
1944 if (Name + Suffix != F->getName()) {
1945 CheckFailed("Overloaded intrinsic has incorrect suffix: '" +
1946 F->getName().substr(Name.length()) + "'. It should be '" +
1947 Suffix + "'", F);
1951 // Check parameter attributes.
1952 Assert1(F->getAttributes() == Intrinsic::getAttributes(ID),
1953 "Intrinsic has wrong parameter attributes!", F);
1957 //===----------------------------------------------------------------------===//
1958 // Implement the public interfaces to this file...
1959 //===----------------------------------------------------------------------===//
1961 FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
1962 return new Verifier(action);
1966 /// verifyFunction - Check a function for errors, printing messages on stderr.
1967 /// Return true if the function is corrupt.
1969 bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
1970 Function &F = const_cast<Function&>(f);
1971 assert(!F.isDeclaration() && "Cannot verify external functions");
1973 FunctionPassManager FPM(F.getParent());
1974 Verifier *V = new Verifier(action);
1975 FPM.add(V);
1976 FPM.run(F);
1977 return V->Broken;
1980 /// verifyModule - Check a module for errors, printing messages on stderr.
1981 /// Return true if the module is corrupt.
1983 bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
1984 std::string *ErrorInfo) {
1985 PassManager PM;
1986 Verifier *V = new Verifier(action);
1987 PM.add(V);
1988 PM.run(const_cast<Module&>(M));
1990 if (ErrorInfo && V->Broken)
1991 *ErrorInfo = V->MessagesStr.str();
1992 return V->Broken;