init from v2.6.32.60
[mach-moxart.git] / drivers / acpi / processor_idle.c
bloba6ad608c96a2f050ccaa5adbe19921d48621fc8e
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44 #include <linux/irqflags.h>
47 * Include the apic definitions for x86 to have the APIC timer related defines
48 * available also for UP (on SMP it gets magically included via linux/smp.h).
49 * asm/acpi.h is not an option, as it would require more include magic. Also
50 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
52 #ifdef CONFIG_X86
53 #include <asm/apic.h>
54 #endif
56 #include <asm/io.h>
57 #include <asm/uaccess.h>
59 #include <acpi/acpi_bus.h>
60 #include <acpi/processor.h>
61 #include <asm/processor.h>
63 #define PREFIX "ACPI: "
65 #define ACPI_PROCESSOR_CLASS "processor"
66 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
67 ACPI_MODULE_NAME("processor_idle");
68 #define ACPI_PROCESSOR_FILE_POWER "power"
69 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
70 #define C2_OVERHEAD 1 /* 1us */
71 #define C3_OVERHEAD 1 /* 1us */
72 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
74 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
75 module_param(max_cstate, uint, 0000);
76 static unsigned int nocst __read_mostly;
77 module_param(nocst, uint, 0000);
79 static unsigned int latency_factor __read_mostly = 2;
80 module_param(latency_factor, uint, 0644);
82 static s64 us_to_pm_timer_ticks(s64 t)
84 return div64_u64(t * PM_TIMER_FREQUENCY, 1000000);
87 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
88 * For now disable this. Probably a bug somewhere else.
90 * To skip this limit, boot/load with a large max_cstate limit.
92 static int set_max_cstate(const struct dmi_system_id *id)
94 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
95 return 0;
97 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
98 " Override with \"processor.max_cstate=%d\"\n", id->ident,
99 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
101 max_cstate = (long)id->driver_data;
103 return 0;
106 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
107 callers to only run once -AK */
108 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
109 { set_max_cstate, "Clevo 5600D", {
110 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
111 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
112 (void *)2},
113 { set_max_cstate, "Pavilion zv5000", {
114 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
115 DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
116 (void *)1},
117 { set_max_cstate, "Asus L8400B", {
118 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
119 DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
120 (void *)1},
126 * Callers should disable interrupts before the call and enable
127 * interrupts after return.
129 static void acpi_safe_halt(void)
131 current_thread_info()->status &= ~TS_POLLING;
133 * TS_POLLING-cleared state must be visible before we
134 * test NEED_RESCHED:
136 smp_mb();
137 if (!need_resched()) {
138 safe_halt();
139 local_irq_disable();
141 current_thread_info()->status |= TS_POLLING;
144 #ifdef ARCH_APICTIMER_STOPS_ON_C3
147 * Some BIOS implementations switch to C3 in the published C2 state.
148 * This seems to be a common problem on AMD boxen, but other vendors
149 * are affected too. We pick the most conservative approach: we assume
150 * that the local APIC stops in both C2 and C3.
152 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
153 struct acpi_processor_cx *cx)
155 struct acpi_processor_power *pwr = &pr->power;
156 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
158 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
159 return;
161 if (boot_cpu_has(X86_FEATURE_AMDC1E))
162 type = ACPI_STATE_C1;
165 * Check, if one of the previous states already marked the lapic
166 * unstable
168 if (pwr->timer_broadcast_on_state < state)
169 return;
171 if (cx->type >= type)
172 pr->power.timer_broadcast_on_state = state;
175 static void lapic_timer_propagate_broadcast(void *arg)
177 struct acpi_processor *pr = (struct acpi_processor *) arg;
178 unsigned long reason;
180 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
181 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
183 clockevents_notify(reason, &pr->id);
186 /* Power(C) State timer broadcast control */
187 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
188 struct acpi_processor_cx *cx,
189 int broadcast)
191 int state = cx - pr->power.states;
193 if (state >= pr->power.timer_broadcast_on_state) {
194 unsigned long reason;
196 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
197 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
198 clockevents_notify(reason, &pr->id);
202 #else
204 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
205 struct acpi_processor_cx *cstate) { }
206 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
207 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
208 struct acpi_processor_cx *cx,
209 int broadcast)
213 #endif
216 * Suspend / resume control
218 static int acpi_idle_suspend;
219 static u32 saved_bm_rld;
221 static void acpi_idle_bm_rld_save(void)
223 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
225 static void acpi_idle_bm_rld_restore(void)
227 u32 resumed_bm_rld;
229 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
231 if (resumed_bm_rld != saved_bm_rld)
232 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
235 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
237 if (acpi_idle_suspend == 1)
238 return 0;
240 acpi_idle_bm_rld_save();
241 acpi_idle_suspend = 1;
242 return 0;
245 int acpi_processor_resume(struct acpi_device * device)
247 if (acpi_idle_suspend == 0)
248 return 0;
250 acpi_idle_bm_rld_restore();
251 acpi_idle_suspend = 0;
252 return 0;
255 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
256 static void tsc_check_state(int state)
258 switch (boot_cpu_data.x86_vendor) {
259 case X86_VENDOR_AMD:
260 case X86_VENDOR_INTEL:
262 * AMD Fam10h TSC will tick in all
263 * C/P/S0/S1 states when this bit is set.
265 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
266 return;
268 /*FALL THROUGH*/
269 default:
270 /* TSC could halt in idle, so notify users */
271 if (state > ACPI_STATE_C1)
272 mark_tsc_unstable("TSC halts in idle");
275 #else
276 static void tsc_check_state(int state) { return; }
277 #endif
279 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
282 if (!pr)
283 return -EINVAL;
285 if (!pr->pblk)
286 return -ENODEV;
288 /* if info is obtained from pblk/fadt, type equals state */
289 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
290 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
292 #ifndef CONFIG_HOTPLUG_CPU
294 * Check for P_LVL2_UP flag before entering C2 and above on
295 * an SMP system.
297 if ((num_online_cpus() > 1) &&
298 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
299 return -ENODEV;
300 #endif
302 /* determine C2 and C3 address from pblk */
303 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
304 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
306 /* determine latencies from FADT */
307 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
308 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
311 * FADT specified C2 latency must be less than or equal to
312 * 100 microseconds.
314 if (acpi_gbl_FADT.C2latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
315 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
316 "C2 latency too large [%d]\n", acpi_gbl_FADT.C2latency));
317 /* invalidate C2 */
318 pr->power.states[ACPI_STATE_C2].address = 0;
321 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
322 "lvl2[0x%08x] lvl3[0x%08x]\n",
323 pr->power.states[ACPI_STATE_C2].address,
324 pr->power.states[ACPI_STATE_C3].address));
326 return 0;
329 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
331 if (!pr->power.states[ACPI_STATE_C1].valid) {
332 /* set the first C-State to C1 */
333 /* all processors need to support C1 */
334 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
335 pr->power.states[ACPI_STATE_C1].valid = 1;
336 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
338 /* the C0 state only exists as a filler in our array */
339 pr->power.states[ACPI_STATE_C0].valid = 1;
340 return 0;
343 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
345 acpi_status status = 0;
346 acpi_integer count;
347 int current_count;
348 int i;
349 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
350 union acpi_object *cst;
353 if (nocst)
354 return -ENODEV;
356 current_count = 0;
358 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
359 if (ACPI_FAILURE(status)) {
360 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
361 return -ENODEV;
364 cst = buffer.pointer;
366 /* There must be at least 2 elements */
367 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
368 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
369 status = -EFAULT;
370 goto end;
373 count = cst->package.elements[0].integer.value;
375 /* Validate number of power states. */
376 if (count < 1 || count != cst->package.count - 1) {
377 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
378 status = -EFAULT;
379 goto end;
382 /* Tell driver that at least _CST is supported. */
383 pr->flags.has_cst = 1;
385 for (i = 1; i <= count; i++) {
386 union acpi_object *element;
387 union acpi_object *obj;
388 struct acpi_power_register *reg;
389 struct acpi_processor_cx cx;
391 memset(&cx, 0, sizeof(cx));
393 element = &(cst->package.elements[i]);
394 if (element->type != ACPI_TYPE_PACKAGE)
395 continue;
397 if (element->package.count != 4)
398 continue;
400 obj = &(element->package.elements[0]);
402 if (obj->type != ACPI_TYPE_BUFFER)
403 continue;
405 reg = (struct acpi_power_register *)obj->buffer.pointer;
407 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
408 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
409 continue;
411 /* There should be an easy way to extract an integer... */
412 obj = &(element->package.elements[1]);
413 if (obj->type != ACPI_TYPE_INTEGER)
414 continue;
416 cx.type = obj->integer.value;
418 * Some buggy BIOSes won't list C1 in _CST -
419 * Let acpi_processor_get_power_info_default() handle them later
421 if (i == 1 && cx.type != ACPI_STATE_C1)
422 current_count++;
424 cx.address = reg->address;
425 cx.index = current_count + 1;
427 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
428 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
429 if (acpi_processor_ffh_cstate_probe
430 (pr->id, &cx, reg) == 0) {
431 cx.entry_method = ACPI_CSTATE_FFH;
432 } else if (cx.type == ACPI_STATE_C1) {
434 * C1 is a special case where FIXED_HARDWARE
435 * can be handled in non-MWAIT way as well.
436 * In that case, save this _CST entry info.
437 * Otherwise, ignore this info and continue.
439 cx.entry_method = ACPI_CSTATE_HALT;
440 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
441 } else {
442 continue;
444 if (cx.type == ACPI_STATE_C1 &&
445 (idle_halt || idle_nomwait)) {
447 * In most cases the C1 space_id obtained from
448 * _CST object is FIXED_HARDWARE access mode.
449 * But when the option of idle=halt is added,
450 * the entry_method type should be changed from
451 * CSTATE_FFH to CSTATE_HALT.
452 * When the option of idle=nomwait is added,
453 * the C1 entry_method type should be
454 * CSTATE_HALT.
456 cx.entry_method = ACPI_CSTATE_HALT;
457 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
459 } else {
460 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
461 cx.address);
464 if (cx.type == ACPI_STATE_C1) {
465 cx.valid = 1;
468 obj = &(element->package.elements[2]);
469 if (obj->type != ACPI_TYPE_INTEGER)
470 continue;
472 cx.latency = obj->integer.value;
474 obj = &(element->package.elements[3]);
475 if (obj->type != ACPI_TYPE_INTEGER)
476 continue;
478 cx.power = obj->integer.value;
480 current_count++;
481 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
484 * We support total ACPI_PROCESSOR_MAX_POWER - 1
485 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
487 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
488 printk(KERN_WARNING
489 "Limiting number of power states to max (%d)\n",
490 ACPI_PROCESSOR_MAX_POWER);
491 printk(KERN_WARNING
492 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
493 break;
497 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
498 current_count));
500 /* Validate number of power states discovered */
501 if (current_count < 2)
502 status = -EFAULT;
504 end:
505 kfree(buffer.pointer);
507 return status;
510 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
513 if (!cx->address)
514 return;
517 * Otherwise we've met all of our C2 requirements.
518 * Normalize the C2 latency to expidite policy
520 cx->valid = 1;
522 cx->latency_ticks = cx->latency;
524 return;
527 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
528 struct acpi_processor_cx *cx)
530 static int bm_check_flag = -1;
531 static int bm_control_flag = -1;
534 if (!cx->address)
535 return;
538 * C3 latency must be less than or equal to 1000
539 * microseconds.
541 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
542 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
543 "latency too large [%d]\n", cx->latency));
544 return;
548 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
549 * DMA transfers are used by any ISA device to avoid livelock.
550 * Note that we could disable Type-F DMA (as recommended by
551 * the erratum), but this is known to disrupt certain ISA
552 * devices thus we take the conservative approach.
554 else if (errata.piix4.fdma) {
555 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
556 "C3 not supported on PIIX4 with Type-F DMA\n"));
557 return;
560 /* All the logic here assumes flags.bm_check is same across all CPUs */
561 if (bm_check_flag == -1) {
562 /* Determine whether bm_check is needed based on CPU */
563 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
564 bm_check_flag = pr->flags.bm_check;
565 bm_control_flag = pr->flags.bm_control;
566 } else {
567 pr->flags.bm_check = bm_check_flag;
568 pr->flags.bm_control = bm_control_flag;
571 if (pr->flags.bm_check) {
572 if (!pr->flags.bm_control) {
573 if (pr->flags.has_cst != 1) {
574 /* bus mastering control is necessary */
575 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
576 "C3 support requires BM control\n"));
577 return;
578 } else {
579 /* Here we enter C3 without bus mastering */
580 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
581 "C3 support without BM control\n"));
584 } else {
586 * WBINVD should be set in fadt, for C3 state to be
587 * supported on when bm_check is not required.
589 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
590 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
591 "Cache invalidation should work properly"
592 " for C3 to be enabled on SMP systems\n"));
593 return;
598 * Otherwise we've met all of our C3 requirements.
599 * Normalize the C3 latency to expidite policy. Enable
600 * checking of bus mastering status (bm_check) so we can
601 * use this in our C3 policy
603 cx->valid = 1;
605 cx->latency_ticks = cx->latency;
607 * On older chipsets, BM_RLD needs to be set
608 * in order for Bus Master activity to wake the
609 * system from C3. Newer chipsets handle DMA
610 * during C3 automatically and BM_RLD is a NOP.
611 * In either case, the proper way to
612 * handle BM_RLD is to set it and leave it set.
614 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
616 return;
619 static int acpi_processor_power_verify(struct acpi_processor *pr)
621 unsigned int i;
622 unsigned int working = 0;
624 pr->power.timer_broadcast_on_state = INT_MAX;
626 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
627 struct acpi_processor_cx *cx = &pr->power.states[i];
629 switch (cx->type) {
630 case ACPI_STATE_C1:
631 cx->valid = 1;
632 break;
634 case ACPI_STATE_C2:
635 acpi_processor_power_verify_c2(cx);
636 break;
638 case ACPI_STATE_C3:
639 acpi_processor_power_verify_c3(pr, cx);
640 break;
642 if (!cx->valid)
643 continue;
645 lapic_timer_check_state(i, pr, cx);
646 tsc_check_state(cx->type);
647 working++;
650 smp_call_function_single(pr->id, lapic_timer_propagate_broadcast,
651 pr, 1);
653 return (working);
656 static int acpi_processor_get_power_info(struct acpi_processor *pr)
658 unsigned int i;
659 int result;
662 /* NOTE: the idle thread may not be running while calling
663 * this function */
665 /* Zero initialize all the C-states info. */
666 memset(pr->power.states, 0, sizeof(pr->power.states));
668 result = acpi_processor_get_power_info_cst(pr);
669 if (result == -ENODEV)
670 result = acpi_processor_get_power_info_fadt(pr);
672 if (result)
673 return result;
675 acpi_processor_get_power_info_default(pr);
677 pr->power.count = acpi_processor_power_verify(pr);
680 * if one state of type C2 or C3 is available, mark this
681 * CPU as being "idle manageable"
683 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
684 if (pr->power.states[i].valid) {
685 pr->power.count = i;
686 if (pr->power.states[i].type >= ACPI_STATE_C2)
687 pr->flags.power = 1;
691 return 0;
694 #ifdef CONFIG_ACPI_PROCFS
695 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
697 struct acpi_processor *pr = seq->private;
698 unsigned int i;
701 if (!pr)
702 goto end;
704 seq_printf(seq, "active state: C%zd\n"
705 "max_cstate: C%d\n"
706 "maximum allowed latency: %d usec\n",
707 pr->power.state ? pr->power.state - pr->power.states : 0,
708 max_cstate, pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
710 seq_puts(seq, "states:\n");
712 for (i = 1; i <= pr->power.count; i++) {
713 seq_printf(seq, " %cC%d: ",
714 (&pr->power.states[i] ==
715 pr->power.state ? '*' : ' '), i);
717 if (!pr->power.states[i].valid) {
718 seq_puts(seq, "<not supported>\n");
719 continue;
722 switch (pr->power.states[i].type) {
723 case ACPI_STATE_C1:
724 seq_printf(seq, "type[C1] ");
725 break;
726 case ACPI_STATE_C2:
727 seq_printf(seq, "type[C2] ");
728 break;
729 case ACPI_STATE_C3:
730 seq_printf(seq, "type[C3] ");
731 break;
732 default:
733 seq_printf(seq, "type[--] ");
734 break;
737 if (pr->power.states[i].promotion.state)
738 seq_printf(seq, "promotion[C%zd] ",
739 (pr->power.states[i].promotion.state -
740 pr->power.states));
741 else
742 seq_puts(seq, "promotion[--] ");
744 if (pr->power.states[i].demotion.state)
745 seq_printf(seq, "demotion[C%zd] ",
746 (pr->power.states[i].demotion.state -
747 pr->power.states));
748 else
749 seq_puts(seq, "demotion[--] ");
751 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
752 pr->power.states[i].latency,
753 pr->power.states[i].usage,
754 (unsigned long long)pr->power.states[i].time);
757 end:
758 return 0;
761 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
763 return single_open(file, acpi_processor_power_seq_show,
764 PDE(inode)->data);
767 static const struct file_operations acpi_processor_power_fops = {
768 .owner = THIS_MODULE,
769 .open = acpi_processor_power_open_fs,
770 .read = seq_read,
771 .llseek = seq_lseek,
772 .release = single_release,
774 #endif
777 * acpi_idle_bm_check - checks if bus master activity was detected
779 static int acpi_idle_bm_check(void)
781 u32 bm_status = 0;
783 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
784 if (bm_status)
785 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
787 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
788 * the true state of bus mastering activity; forcing us to
789 * manually check the BMIDEA bit of each IDE channel.
791 else if (errata.piix4.bmisx) {
792 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
793 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
794 bm_status = 1;
796 return bm_status;
800 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
801 * @cx: cstate data
803 * Caller disables interrupt before call and enables interrupt after return.
805 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
807 /* Don't trace irqs off for idle */
808 stop_critical_timings();
809 if (cx->entry_method == ACPI_CSTATE_FFH) {
810 /* Call into architectural FFH based C-state */
811 acpi_processor_ffh_cstate_enter(cx);
812 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
813 acpi_safe_halt();
814 } else {
815 int unused;
816 /* IO port based C-state */
817 inb(cx->address);
818 /* Dummy wait op - must do something useless after P_LVL2 read
819 because chipsets cannot guarantee that STPCLK# signal
820 gets asserted in time to freeze execution properly. */
821 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
823 start_critical_timings();
827 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
828 * @dev: the target CPU
829 * @state: the state data
831 * This is equivalent to the HALT instruction.
833 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
834 struct cpuidle_state *state)
836 ktime_t kt1, kt2;
837 s64 idle_time;
838 struct acpi_processor *pr;
839 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
841 pr = __get_cpu_var(processors);
843 if (unlikely(!pr))
844 return 0;
846 local_irq_disable();
848 /* Do not access any ACPI IO ports in suspend path */
849 if (acpi_idle_suspend) {
850 local_irq_enable();
851 cpu_relax();
852 return 0;
855 lapic_timer_state_broadcast(pr, cx, 1);
856 kt1 = ktime_get_real();
857 acpi_idle_do_entry(cx);
858 kt2 = ktime_get_real();
859 idle_time = ktime_to_us(ktime_sub(kt2, kt1));
861 local_irq_enable();
862 cx->usage++;
863 lapic_timer_state_broadcast(pr, cx, 0);
865 return idle_time;
869 * acpi_idle_enter_simple - enters an ACPI state without BM handling
870 * @dev: the target CPU
871 * @state: the state data
873 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
874 struct cpuidle_state *state)
876 struct acpi_processor *pr;
877 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
878 ktime_t kt1, kt2;
879 s64 idle_time;
880 s64 sleep_ticks = 0;
882 pr = __get_cpu_var(processors);
884 if (unlikely(!pr))
885 return 0;
887 if (acpi_idle_suspend)
888 return(acpi_idle_enter_c1(dev, state));
890 local_irq_disable();
891 if (cx->entry_method != ACPI_CSTATE_FFH) {
892 current_thread_info()->status &= ~TS_POLLING;
894 * TS_POLLING-cleared state must be visible before we test
895 * NEED_RESCHED:
897 smp_mb();
900 if (unlikely(need_resched())) {
901 current_thread_info()->status |= TS_POLLING;
902 local_irq_enable();
903 return 0;
907 * Must be done before busmaster disable as we might need to
908 * access HPET !
910 lapic_timer_state_broadcast(pr, cx, 1);
912 if (cx->type == ACPI_STATE_C3)
913 ACPI_FLUSH_CPU_CACHE();
915 kt1 = ktime_get_real();
916 /* Tell the scheduler that we are going deep-idle: */
917 sched_clock_idle_sleep_event();
918 acpi_idle_do_entry(cx);
919 kt2 = ktime_get_real();
920 idle_time = ktime_to_us(ktime_sub(kt2, kt1));
922 sleep_ticks = us_to_pm_timer_ticks(idle_time);
924 /* Tell the scheduler how much we idled: */
925 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
927 local_irq_enable();
928 current_thread_info()->status |= TS_POLLING;
930 cx->usage++;
932 lapic_timer_state_broadcast(pr, cx, 0);
933 cx->time += sleep_ticks;
934 return idle_time;
937 static int c3_cpu_count;
938 static DEFINE_SPINLOCK(c3_lock);
941 * acpi_idle_enter_bm - enters C3 with proper BM handling
942 * @dev: the target CPU
943 * @state: the state data
945 * If BM is detected, the deepest non-C3 idle state is entered instead.
947 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
948 struct cpuidle_state *state)
950 struct acpi_processor *pr;
951 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
952 ktime_t kt1, kt2;
953 s64 idle_time;
954 s64 sleep_ticks = 0;
957 pr = __get_cpu_var(processors);
959 if (unlikely(!pr))
960 return 0;
962 if (acpi_idle_suspend)
963 return(acpi_idle_enter_c1(dev, state));
965 if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
966 if (dev->safe_state) {
967 dev->last_state = dev->safe_state;
968 return dev->safe_state->enter(dev, dev->safe_state);
969 } else {
970 local_irq_disable();
971 acpi_safe_halt();
972 local_irq_enable();
973 return 0;
977 local_irq_disable();
978 if (cx->entry_method != ACPI_CSTATE_FFH) {
979 current_thread_info()->status &= ~TS_POLLING;
981 * TS_POLLING-cleared state must be visible before we test
982 * NEED_RESCHED:
984 smp_mb();
987 if (unlikely(need_resched())) {
988 current_thread_info()->status |= TS_POLLING;
989 local_irq_enable();
990 return 0;
993 acpi_unlazy_tlb(smp_processor_id());
995 /* Tell the scheduler that we are going deep-idle: */
996 sched_clock_idle_sleep_event();
998 * Must be done before busmaster disable as we might need to
999 * access HPET !
1001 lapic_timer_state_broadcast(pr, cx, 1);
1003 kt1 = ktime_get_real();
1005 * disable bus master
1006 * bm_check implies we need ARB_DIS
1007 * !bm_check implies we need cache flush
1008 * bm_control implies whether we can do ARB_DIS
1010 * That leaves a case where bm_check is set and bm_control is
1011 * not set. In that case we cannot do much, we enter C3
1012 * without doing anything.
1014 if (pr->flags.bm_check && pr->flags.bm_control) {
1015 spin_lock(&c3_lock);
1016 c3_cpu_count++;
1017 /* Disable bus master arbitration when all CPUs are in C3 */
1018 if (c3_cpu_count == num_online_cpus())
1019 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
1020 spin_unlock(&c3_lock);
1021 } else if (!pr->flags.bm_check) {
1022 ACPI_FLUSH_CPU_CACHE();
1025 acpi_idle_do_entry(cx);
1027 /* Re-enable bus master arbitration */
1028 if (pr->flags.bm_check && pr->flags.bm_control) {
1029 spin_lock(&c3_lock);
1030 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
1031 c3_cpu_count--;
1032 spin_unlock(&c3_lock);
1034 kt2 = ktime_get_real();
1035 idle_time = ktime_to_us(ktime_sub(kt2, kt1));
1037 sleep_ticks = us_to_pm_timer_ticks(idle_time);
1038 /* Tell the scheduler how much we idled: */
1039 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1041 local_irq_enable();
1042 current_thread_info()->status |= TS_POLLING;
1044 cx->usage++;
1046 lapic_timer_state_broadcast(pr, cx, 0);
1047 cx->time += sleep_ticks;
1048 return idle_time;
1051 struct cpuidle_driver acpi_idle_driver = {
1052 .name = "acpi_idle",
1053 .owner = THIS_MODULE,
1057 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1058 * @pr: the ACPI processor
1060 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1062 int i, count = CPUIDLE_DRIVER_STATE_START;
1063 struct acpi_processor_cx *cx;
1064 struct cpuidle_state *state;
1065 struct cpuidle_device *dev = &pr->power.dev;
1067 if (!pr->flags.power_setup_done)
1068 return -EINVAL;
1070 if (pr->flags.power == 0) {
1071 return -EINVAL;
1074 dev->cpu = pr->id;
1075 for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1076 dev->states[i].name[0] = '\0';
1077 dev->states[i].desc[0] = '\0';
1080 if (max_cstate == 0)
1081 max_cstate = 1;
1083 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1084 cx = &pr->power.states[i];
1085 state = &dev->states[count];
1087 if (!cx->valid)
1088 continue;
1090 #ifdef CONFIG_HOTPLUG_CPU
1091 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1092 !pr->flags.has_cst &&
1093 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1094 continue;
1095 #endif
1096 cpuidle_set_statedata(state, cx);
1098 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1099 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1100 state->exit_latency = cx->latency;
1101 state->target_residency = cx->latency * latency_factor;
1102 state->power_usage = cx->power;
1104 state->flags = 0;
1105 switch (cx->type) {
1106 case ACPI_STATE_C1:
1107 state->flags |= CPUIDLE_FLAG_SHALLOW;
1108 if (cx->entry_method == ACPI_CSTATE_FFH)
1109 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1111 state->enter = acpi_idle_enter_c1;
1112 dev->safe_state = state;
1113 break;
1115 case ACPI_STATE_C2:
1116 state->flags |= CPUIDLE_FLAG_BALANCED;
1117 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1118 state->enter = acpi_idle_enter_simple;
1119 dev->safe_state = state;
1120 break;
1122 case ACPI_STATE_C3:
1123 state->flags |= CPUIDLE_FLAG_DEEP;
1124 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1125 state->flags |= CPUIDLE_FLAG_CHECK_BM;
1126 state->enter = pr->flags.bm_check ?
1127 acpi_idle_enter_bm :
1128 acpi_idle_enter_simple;
1129 break;
1132 count++;
1133 if (count == CPUIDLE_STATE_MAX)
1134 break;
1137 dev->state_count = count;
1139 if (!count)
1140 return -EINVAL;
1142 return 0;
1145 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1147 int ret = 0;
1149 if (boot_option_idle_override)
1150 return 0;
1152 if (!pr)
1153 return -EINVAL;
1155 if (nocst) {
1156 return -ENODEV;
1159 if (!pr->flags.power_setup_done)
1160 return -ENODEV;
1162 cpuidle_pause_and_lock();
1163 cpuidle_disable_device(&pr->power.dev);
1164 acpi_processor_get_power_info(pr);
1165 if (pr->flags.power) {
1166 acpi_processor_setup_cpuidle(pr);
1167 ret = cpuidle_enable_device(&pr->power.dev);
1169 cpuidle_resume_and_unlock();
1171 return ret;
1174 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1175 struct acpi_device *device)
1177 acpi_status status = 0;
1178 static int first_run;
1179 #ifdef CONFIG_ACPI_PROCFS
1180 struct proc_dir_entry *entry = NULL;
1181 #endif
1183 if (boot_option_idle_override)
1184 return 0;
1186 if (!first_run) {
1187 if (idle_halt) {
1189 * When the boot option of "idle=halt" is added, halt
1190 * is used for CPU IDLE.
1191 * In such case C2/C3 is meaningless. So the max_cstate
1192 * is set to one.
1194 max_cstate = 1;
1196 dmi_check_system(processor_power_dmi_table);
1197 max_cstate = acpi_processor_cstate_check(max_cstate);
1198 if (max_cstate < ACPI_C_STATES_MAX)
1199 printk(KERN_NOTICE
1200 "ACPI: processor limited to max C-state %d\n",
1201 max_cstate);
1202 first_run++;
1205 if (!pr)
1206 return -EINVAL;
1208 if (acpi_gbl_FADT.cst_control && !nocst) {
1209 status =
1210 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1211 if (ACPI_FAILURE(status)) {
1212 ACPI_EXCEPTION((AE_INFO, status,
1213 "Notifying BIOS of _CST ability failed"));
1217 acpi_processor_get_power_info(pr);
1218 pr->flags.power_setup_done = 1;
1221 * Install the idle handler if processor power management is supported.
1222 * Note that we use previously set idle handler will be used on
1223 * platforms that only support C1.
1225 if (pr->flags.power) {
1226 acpi_processor_setup_cpuidle(pr);
1227 if (cpuidle_register_device(&pr->power.dev))
1228 return -EIO;
1230 #ifdef CONFIG_ACPI_PROCFS
1231 /* 'power' [R] */
1232 entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
1233 S_IRUGO, acpi_device_dir(device),
1234 &acpi_processor_power_fops,
1235 acpi_driver_data(device));
1236 if (!entry)
1237 return -EIO;
1238 #endif
1239 return 0;
1242 int acpi_processor_power_exit(struct acpi_processor *pr,
1243 struct acpi_device *device)
1245 if (boot_option_idle_override)
1246 return 0;
1248 cpuidle_unregister_device(&pr->power.dev);
1249 pr->flags.power_setup_done = 0;
1251 #ifdef CONFIG_ACPI_PROCFS
1252 if (acpi_device_dir(device))
1253 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1254 acpi_device_dir(device));
1255 #endif
1257 return 0;