2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
23 #include <trace/events/block.h>
25 #define DM_MSG_PREFIX "core"
28 * Cookies are numeric values sent with CHANGE and REMOVE
29 * uevents while resuming, removing or renaming the device.
31 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
32 #define DM_COOKIE_LENGTH 24
34 static const char *_name
= DM_NAME
;
36 static unsigned int major
= 0;
37 static unsigned int _major
= 0;
39 static DEFINE_IDR(_minor_idr
);
41 static DEFINE_SPINLOCK(_minor_lock
);
44 * One of these is allocated per bio.
47 struct mapped_device
*md
;
51 unsigned long start_time
;
52 spinlock_t endio_lock
;
57 * One of these is allocated per target within a bio. Hopefully
58 * this will be simplified out one day.
67 * For request-based dm.
68 * One of these is allocated per request.
70 struct dm_rq_target_io
{
71 struct mapped_device
*md
;
73 struct request
*orig
, clone
;
79 * For request-based dm.
80 * One of these is allocated per bio.
82 struct dm_rq_clone_bio_info
{
84 struct dm_rq_target_io
*tio
;
87 union map_info
*dm_get_mapinfo(struct bio
*bio
)
89 if (bio
&& bio
->bi_private
)
90 return &((struct dm_target_io
*)bio
->bi_private
)->info
;
94 union map_info
*dm_get_rq_mapinfo(struct request
*rq
)
96 if (rq
&& rq
->end_io_data
)
97 return &((struct dm_rq_target_io
*)rq
->end_io_data
)->info
;
100 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo
);
102 #define MINOR_ALLOCED ((void *)-1)
105 * Bits for the md->flags field.
107 #define DMF_BLOCK_IO_FOR_SUSPEND 0
108 #define DMF_SUSPENDED 1
110 #define DMF_FREEING 3
111 #define DMF_DELETING 4
112 #define DMF_NOFLUSH_SUSPENDING 5
113 #define DMF_QUEUE_IO_TO_THREAD 6
116 * Work processed by per-device workqueue.
118 struct mapped_device
{
119 struct rw_semaphore io_lock
;
120 struct mutex suspend_lock
;
127 struct request_queue
*queue
;
128 struct gendisk
*disk
;
134 * A list of ios that arrived while we were suspended.
137 wait_queue_head_t wait
;
138 struct work_struct work
;
139 struct bio_list deferred
;
140 spinlock_t deferred_lock
;
143 * An error from the barrier request currently being processed.
148 * Processing queue (flush/barriers)
150 struct workqueue_struct
*wq
;
153 * The current mapping.
155 struct dm_table
*map
;
158 * io objects are allocated from here.
169 wait_queue_head_t eventq
;
171 struct list_head uevent_list
;
172 spinlock_t uevent_lock
; /* Protect access to uevent_list */
175 * freeze/thaw support require holding onto a super block
177 struct super_block
*frozen_sb
;
178 struct block_device
*bdev
;
180 /* forced geometry settings */
181 struct hd_geometry geometry
;
183 /* marker of flush suspend for request-based dm */
184 struct request suspend_rq
;
186 /* For saving the address of __make_request for request based dm */
187 make_request_fn
*saved_make_request_fn
;
192 /* zero-length barrier that will be cloned and submitted to targets */
193 struct bio barrier_bio
;
197 * For mempools pre-allocation at the table loading time.
199 struct dm_md_mempools
{
206 static struct kmem_cache
*_io_cache
;
207 static struct kmem_cache
*_tio_cache
;
208 static struct kmem_cache
*_rq_tio_cache
;
209 static struct kmem_cache
*_rq_bio_info_cache
;
211 static int __init
local_init(void)
215 /* allocate a slab for the dm_ios */
216 _io_cache
= KMEM_CACHE(dm_io
, 0);
220 /* allocate a slab for the target ios */
221 _tio_cache
= KMEM_CACHE(dm_target_io
, 0);
223 goto out_free_io_cache
;
225 _rq_tio_cache
= KMEM_CACHE(dm_rq_target_io
, 0);
227 goto out_free_tio_cache
;
229 _rq_bio_info_cache
= KMEM_CACHE(dm_rq_clone_bio_info
, 0);
230 if (!_rq_bio_info_cache
)
231 goto out_free_rq_tio_cache
;
233 r
= dm_uevent_init();
235 goto out_free_rq_bio_info_cache
;
238 r
= register_blkdev(_major
, _name
);
240 goto out_uevent_exit
;
249 out_free_rq_bio_info_cache
:
250 kmem_cache_destroy(_rq_bio_info_cache
);
251 out_free_rq_tio_cache
:
252 kmem_cache_destroy(_rq_tio_cache
);
254 kmem_cache_destroy(_tio_cache
);
256 kmem_cache_destroy(_io_cache
);
261 static void local_exit(void)
263 kmem_cache_destroy(_rq_bio_info_cache
);
264 kmem_cache_destroy(_rq_tio_cache
);
265 kmem_cache_destroy(_tio_cache
);
266 kmem_cache_destroy(_io_cache
);
267 unregister_blkdev(_major
, _name
);
272 DMINFO("cleaned up");
275 static int (*_inits
[])(void) __initdata
= {
284 static void (*_exits
[])(void) = {
293 static int __init
dm_init(void)
295 const int count
= ARRAY_SIZE(_inits
);
299 for (i
= 0; i
< count
; i
++) {
314 static void __exit
dm_exit(void)
316 int i
= ARRAY_SIZE(_exits
);
322 * Should be empty by this point.
324 idr_remove_all(&_minor_idr
);
325 idr_destroy(&_minor_idr
);
329 * Block device functions
331 static int dm_blk_open(struct block_device
*bdev
, fmode_t mode
)
333 struct mapped_device
*md
;
335 spin_lock(&_minor_lock
);
337 md
= bdev
->bd_disk
->private_data
;
341 if (test_bit(DMF_FREEING
, &md
->flags
) ||
342 test_bit(DMF_DELETING
, &md
->flags
)) {
348 atomic_inc(&md
->open_count
);
351 spin_unlock(&_minor_lock
);
353 return md
? 0 : -ENXIO
;
356 static int dm_blk_close(struct gendisk
*disk
, fmode_t mode
)
358 struct mapped_device
*md
= disk
->private_data
;
359 atomic_dec(&md
->open_count
);
364 int dm_open_count(struct mapped_device
*md
)
366 return atomic_read(&md
->open_count
);
370 * Guarantees nothing is using the device before it's deleted.
372 int dm_lock_for_deletion(struct mapped_device
*md
)
376 spin_lock(&_minor_lock
);
378 if (dm_open_count(md
))
381 set_bit(DMF_DELETING
, &md
->flags
);
383 spin_unlock(&_minor_lock
);
388 static int dm_blk_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
390 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
392 return dm_get_geometry(md
, geo
);
395 static int dm_blk_ioctl(struct block_device
*bdev
, fmode_t mode
,
396 unsigned int cmd
, unsigned long arg
)
398 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
399 struct dm_table
*map
= dm_get_table(md
);
400 struct dm_target
*tgt
;
403 if (!map
|| !dm_table_get_size(map
))
406 /* We only support devices that have a single target */
407 if (dm_table_get_num_targets(map
) != 1)
410 tgt
= dm_table_get_target(map
, 0);
412 if (dm_suspended(md
)) {
417 if (tgt
->type
->ioctl
)
418 r
= tgt
->type
->ioctl(tgt
, cmd
, arg
);
426 static struct dm_io
*alloc_io(struct mapped_device
*md
)
428 return mempool_alloc(md
->io_pool
, GFP_NOIO
);
431 static void free_io(struct mapped_device
*md
, struct dm_io
*io
)
433 mempool_free(io
, md
->io_pool
);
436 static void free_tio(struct mapped_device
*md
, struct dm_target_io
*tio
)
438 mempool_free(tio
, md
->tio_pool
);
441 static struct dm_rq_target_io
*alloc_rq_tio(struct mapped_device
*md
)
443 return mempool_alloc(md
->tio_pool
, GFP_ATOMIC
);
446 static void free_rq_tio(struct dm_rq_target_io
*tio
)
448 mempool_free(tio
, tio
->md
->tio_pool
);
451 static struct dm_rq_clone_bio_info
*alloc_bio_info(struct mapped_device
*md
)
453 return mempool_alloc(md
->io_pool
, GFP_ATOMIC
);
456 static void free_bio_info(struct dm_rq_clone_bio_info
*info
)
458 mempool_free(info
, info
->tio
->md
->io_pool
);
461 static void start_io_acct(struct dm_io
*io
)
463 struct mapped_device
*md
= io
->md
;
465 int rw
= bio_data_dir(io
->bio
);
467 io
->start_time
= jiffies
;
469 cpu
= part_stat_lock();
470 part_round_stats(cpu
, &dm_disk(md
)->part0
);
472 dm_disk(md
)->part0
.in_flight
[rw
] = atomic_inc_return(&md
->pending
[rw
]);
475 static void end_io_acct(struct dm_io
*io
)
477 struct mapped_device
*md
= io
->md
;
478 struct bio
*bio
= io
->bio
;
479 unsigned long duration
= jiffies
- io
->start_time
;
481 int rw
= bio_data_dir(bio
);
483 cpu
= part_stat_lock();
484 part_round_stats(cpu
, &dm_disk(md
)->part0
);
485 part_stat_add(cpu
, &dm_disk(md
)->part0
, ticks
[rw
], duration
);
489 * After this is decremented the bio must not be touched if it is
492 dm_disk(md
)->part0
.in_flight
[rw
] = pending
=
493 atomic_dec_return(&md
->pending
[rw
]);
494 pending
+= atomic_read(&md
->pending
[rw
^0x1]);
496 /* nudge anyone waiting on suspend queue */
502 * Add the bio to the list of deferred io.
504 static void queue_io(struct mapped_device
*md
, struct bio
*bio
)
506 down_write(&md
->io_lock
);
508 spin_lock_irq(&md
->deferred_lock
);
509 bio_list_add(&md
->deferred
, bio
);
510 spin_unlock_irq(&md
->deferred_lock
);
512 if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD
, &md
->flags
))
513 queue_work(md
->wq
, &md
->work
);
515 up_write(&md
->io_lock
);
519 * Everyone (including functions in this file), should use this
520 * function to access the md->map field, and make sure they call
521 * dm_table_put() when finished.
523 struct dm_table
*dm_get_table(struct mapped_device
*md
)
528 read_lock_irqsave(&md
->map_lock
, flags
);
532 read_unlock_irqrestore(&md
->map_lock
, flags
);
538 * Get the geometry associated with a dm device
540 int dm_get_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
548 * Set the geometry of a device.
550 int dm_set_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
552 sector_t sz
= (sector_t
)geo
->cylinders
* geo
->heads
* geo
->sectors
;
554 if (geo
->start
> sz
) {
555 DMWARN("Start sector is beyond the geometry limits.");
564 /*-----------------------------------------------------------------
566 * A more elegant soln is in the works that uses the queue
567 * merge fn, unfortunately there are a couple of changes to
568 * the block layer that I want to make for this. So in the
569 * interests of getting something for people to use I give
570 * you this clearly demarcated crap.
571 *---------------------------------------------------------------*/
573 static int __noflush_suspending(struct mapped_device
*md
)
575 return test_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
579 * Decrements the number of outstanding ios that a bio has been
580 * cloned into, completing the original io if necc.
582 static void dec_pending(struct dm_io
*io
, int error
)
587 struct mapped_device
*md
= io
->md
;
589 /* Push-back supersedes any I/O errors */
590 if (unlikely(error
)) {
591 spin_lock_irqsave(&io
->endio_lock
, flags
);
592 if (!(io
->error
> 0 && __noflush_suspending(md
)))
594 spin_unlock_irqrestore(&io
->endio_lock
, flags
);
597 if (atomic_dec_and_test(&io
->io_count
)) {
598 if (io
->error
== DM_ENDIO_REQUEUE
) {
600 * Target requested pushing back the I/O.
602 spin_lock_irqsave(&md
->deferred_lock
, flags
);
603 if (__noflush_suspending(md
)) {
604 if (!bio_rw_flagged(io
->bio
, BIO_RW_BARRIER
))
605 bio_list_add_head(&md
->deferred
,
608 /* noflush suspend was interrupted. */
610 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
613 io_error
= io
->error
;
616 if (bio_rw_flagged(bio
, BIO_RW_BARRIER
)) {
618 * There can be just one barrier request so we use
619 * a per-device variable for error reporting.
620 * Note that you can't touch the bio after end_io_acct
622 if (!md
->barrier_error
&& io_error
!= -EOPNOTSUPP
)
623 md
->barrier_error
= io_error
;
630 if (io_error
!= DM_ENDIO_REQUEUE
) {
631 trace_block_bio_complete(md
->queue
, bio
);
633 bio_endio(bio
, io_error
);
639 static void clone_endio(struct bio
*bio
, int error
)
642 struct dm_target_io
*tio
= bio
->bi_private
;
643 struct dm_io
*io
= tio
->io
;
644 struct mapped_device
*md
= tio
->io
->md
;
645 dm_endio_fn endio
= tio
->ti
->type
->end_io
;
647 if (!bio_flagged(bio
, BIO_UPTODATE
) && !error
)
651 r
= endio(tio
->ti
, bio
, error
, &tio
->info
);
652 if (r
< 0 || r
== DM_ENDIO_REQUEUE
)
654 * error and requeue request are handled
658 else if (r
== DM_ENDIO_INCOMPLETE
)
659 /* The target will handle the io */
662 DMWARN("unimplemented target endio return value: %d", r
);
668 * Store md for cleanup instead of tio which is about to get freed.
670 bio
->bi_private
= md
->bs
;
674 dec_pending(io
, error
);
678 * Partial completion handling for request-based dm
680 static void end_clone_bio(struct bio
*clone
, int error
)
682 struct dm_rq_clone_bio_info
*info
= clone
->bi_private
;
683 struct dm_rq_target_io
*tio
= info
->tio
;
684 struct bio
*bio
= info
->orig
;
685 unsigned int nr_bytes
= info
->orig
->bi_size
;
691 * An error has already been detected on the request.
692 * Once error occurred, just let clone->end_io() handle
698 * Don't notice the error to the upper layer yet.
699 * The error handling decision is made by the target driver,
700 * when the request is completed.
707 * I/O for the bio successfully completed.
708 * Notice the data completion to the upper layer.
712 * bios are processed from the head of the list.
713 * So the completing bio should always be rq->bio.
714 * If it's not, something wrong is happening.
716 if (tio
->orig
->bio
!= bio
)
717 DMERR("bio completion is going in the middle of the request");
720 * Update the original request.
721 * Do not use blk_end_request() here, because it may complete
722 * the original request before the clone, and break the ordering.
724 blk_update_request(tio
->orig
, 0, nr_bytes
);
728 * Don't touch any member of the md after calling this function because
729 * the md may be freed in dm_put() at the end of this function.
730 * Or do dm_get() before calling this function and dm_put() later.
732 static void rq_completed(struct mapped_device
*md
, int run_queue
)
734 int wakeup_waiters
= 0;
735 struct request_queue
*q
= md
->queue
;
738 spin_lock_irqsave(q
->queue_lock
, flags
);
739 if (!queue_in_flight(q
))
741 spin_unlock_irqrestore(q
->queue_lock
, flags
);
743 /* nudge anyone waiting on suspend queue */
751 * dm_put() must be at the end of this function. See the comment above
756 static void free_rq_clone(struct request
*clone
)
758 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
760 blk_rq_unprep_clone(clone
);
764 static void dm_unprep_request(struct request
*rq
)
766 struct request
*clone
= rq
->special
;
769 rq
->cmd_flags
&= ~REQ_DONTPREP
;
771 free_rq_clone(clone
);
775 * Requeue the original request of a clone.
777 void dm_requeue_unmapped_request(struct request
*clone
)
779 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
780 struct mapped_device
*md
= tio
->md
;
781 struct request
*rq
= tio
->orig
;
782 struct request_queue
*q
= rq
->q
;
785 dm_unprep_request(rq
);
787 spin_lock_irqsave(q
->queue_lock
, flags
);
788 if (elv_queue_empty(q
))
790 blk_requeue_request(q
, rq
);
791 spin_unlock_irqrestore(q
->queue_lock
, flags
);
795 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request
);
797 static void __stop_queue(struct request_queue
*q
)
802 static void stop_queue(struct request_queue
*q
)
806 spin_lock_irqsave(q
->queue_lock
, flags
);
808 spin_unlock_irqrestore(q
->queue_lock
, flags
);
811 static void __start_queue(struct request_queue
*q
)
813 if (blk_queue_stopped(q
))
817 static void start_queue(struct request_queue
*q
)
821 spin_lock_irqsave(q
->queue_lock
, flags
);
823 spin_unlock_irqrestore(q
->queue_lock
, flags
);
827 * Complete the clone and the original request.
828 * Must be called without queue lock.
830 static void dm_end_request(struct request
*clone
, int error
)
832 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
833 struct mapped_device
*md
= tio
->md
;
834 struct request
*rq
= tio
->orig
;
836 if (blk_pc_request(rq
)) {
837 rq
->errors
= clone
->errors
;
838 rq
->resid_len
= clone
->resid_len
;
842 * We are using the sense buffer of the original
844 * So setting the length of the sense data is enough.
846 rq
->sense_len
= clone
->sense_len
;
849 free_rq_clone(clone
);
851 blk_end_request_all(rq
, error
);
857 * Request completion handler for request-based dm
859 static void dm_softirq_done(struct request
*rq
)
861 struct request
*clone
= rq
->completion_data
;
862 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
863 dm_request_endio_fn rq_end_io
= tio
->ti
->type
->rq_end_io
;
864 int error
= tio
->error
;
866 if (!(rq
->cmd_flags
& REQ_FAILED
) && rq_end_io
)
867 error
= rq_end_io(tio
->ti
, clone
, error
, &tio
->info
);
870 /* The target wants to complete the I/O */
871 dm_end_request(clone
, error
);
872 else if (error
== DM_ENDIO_INCOMPLETE
)
873 /* The target will handle the I/O */
875 else if (error
== DM_ENDIO_REQUEUE
)
876 /* The target wants to requeue the I/O */
877 dm_requeue_unmapped_request(clone
);
879 DMWARN("unimplemented target endio return value: %d", error
);
885 * Complete the clone and the original request with the error status
886 * through softirq context.
888 static void dm_complete_request(struct request
*clone
, int error
)
890 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
891 struct request
*rq
= tio
->orig
;
894 rq
->completion_data
= clone
;
895 blk_complete_request(rq
);
899 * Complete the not-mapped clone and the original request with the error status
900 * through softirq context.
901 * Target's rq_end_io() function isn't called.
902 * This may be used when the target's map_rq() function fails.
904 void dm_kill_unmapped_request(struct request
*clone
, int error
)
906 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
907 struct request
*rq
= tio
->orig
;
909 rq
->cmd_flags
|= REQ_FAILED
;
910 dm_complete_request(clone
, error
);
912 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request
);
915 * Called with the queue lock held
917 static void end_clone_request(struct request
*clone
, int error
)
920 * For just cleaning up the information of the queue in which
921 * the clone was dispatched.
922 * The clone is *NOT* freed actually here because it is alloced from
923 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
925 __blk_put_request(clone
->q
, clone
);
928 * Actual request completion is done in a softirq context which doesn't
929 * hold the queue lock. Otherwise, deadlock could occur because:
930 * - another request may be submitted by the upper level driver
931 * of the stacking during the completion
932 * - the submission which requires queue lock may be done
935 dm_complete_request(clone
, error
);
938 static sector_t
max_io_len(struct mapped_device
*md
,
939 sector_t sector
, struct dm_target
*ti
)
941 sector_t offset
= sector
- ti
->begin
;
942 sector_t len
= ti
->len
- offset
;
945 * Does the target need to split even further ?
949 boundary
= ((offset
+ ti
->split_io
) & ~(ti
->split_io
- 1))
958 static void __map_bio(struct dm_target
*ti
, struct bio
*clone
,
959 struct dm_target_io
*tio
)
963 struct mapped_device
*md
;
965 clone
->bi_end_io
= clone_endio
;
966 clone
->bi_private
= tio
;
969 * Map the clone. If r == 0 we don't need to do
970 * anything, the target has assumed ownership of
973 atomic_inc(&tio
->io
->io_count
);
974 sector
= clone
->bi_sector
;
975 r
= ti
->type
->map(ti
, clone
, &tio
->info
);
976 if (r
== DM_MAPIO_REMAPPED
) {
977 /* the bio has been remapped so dispatch it */
979 trace_block_remap(bdev_get_queue(clone
->bi_bdev
), clone
,
980 tio
->io
->bio
->bi_bdev
->bd_dev
, sector
);
982 generic_make_request(clone
);
983 } else if (r
< 0 || r
== DM_MAPIO_REQUEUE
) {
984 /* error the io and bail out, or requeue it if needed */
986 dec_pending(tio
->io
, r
);
988 * Store bio_set for cleanup.
990 clone
->bi_private
= md
->bs
;
994 DMWARN("unimplemented target map return value: %d", r
);
1000 struct mapped_device
*md
;
1001 struct dm_table
*map
;
1005 sector_t sector_count
;
1009 static void dm_bio_destructor(struct bio
*bio
)
1011 struct bio_set
*bs
= bio
->bi_private
;
1017 * Creates a little bio that is just does part of a bvec.
1019 static struct bio
*split_bvec(struct bio
*bio
, sector_t sector
,
1020 unsigned short idx
, unsigned int offset
,
1021 unsigned int len
, struct bio_set
*bs
)
1024 struct bio_vec
*bv
= bio
->bi_io_vec
+ idx
;
1026 clone
= bio_alloc_bioset(GFP_NOIO
, 1, bs
);
1027 clone
->bi_destructor
= dm_bio_destructor
;
1028 *clone
->bi_io_vec
= *bv
;
1030 clone
->bi_sector
= sector
;
1031 clone
->bi_bdev
= bio
->bi_bdev
;
1032 clone
->bi_rw
= bio
->bi_rw
& ~(1 << BIO_RW_BARRIER
);
1034 clone
->bi_size
= to_bytes(len
);
1035 clone
->bi_io_vec
->bv_offset
= offset
;
1036 clone
->bi_io_vec
->bv_len
= clone
->bi_size
;
1037 clone
->bi_flags
|= 1 << BIO_CLONED
;
1039 if (bio_integrity(bio
)) {
1040 bio_integrity_clone(clone
, bio
, GFP_NOIO
, bs
);
1041 bio_integrity_trim(clone
,
1042 bio_sector_offset(bio
, idx
, offset
), len
);
1049 * Creates a bio that consists of range of complete bvecs.
1051 static struct bio
*clone_bio(struct bio
*bio
, sector_t sector
,
1052 unsigned short idx
, unsigned short bv_count
,
1053 unsigned int len
, struct bio_set
*bs
)
1057 clone
= bio_alloc_bioset(GFP_NOIO
, bio
->bi_max_vecs
, bs
);
1058 __bio_clone(clone
, bio
);
1059 clone
->bi_rw
&= ~(1 << BIO_RW_BARRIER
);
1060 clone
->bi_destructor
= dm_bio_destructor
;
1061 clone
->bi_sector
= sector
;
1062 clone
->bi_idx
= idx
;
1063 clone
->bi_vcnt
= idx
+ bv_count
;
1064 clone
->bi_size
= to_bytes(len
);
1065 clone
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
1067 if (bio_integrity(bio
)) {
1068 bio_integrity_clone(clone
, bio
, GFP_NOIO
, bs
);
1070 if (idx
!= bio
->bi_idx
|| clone
->bi_size
< bio
->bi_size
)
1071 bio_integrity_trim(clone
,
1072 bio_sector_offset(bio
, idx
, 0), len
);
1078 static struct dm_target_io
*alloc_tio(struct clone_info
*ci
,
1079 struct dm_target
*ti
)
1081 struct dm_target_io
*tio
= mempool_alloc(ci
->md
->tio_pool
, GFP_NOIO
);
1085 memset(&tio
->info
, 0, sizeof(tio
->info
));
1090 static void __flush_target(struct clone_info
*ci
, struct dm_target
*ti
,
1093 struct dm_target_io
*tio
= alloc_tio(ci
, ti
);
1096 tio
->info
.flush_request
= flush_nr
;
1098 clone
= bio_alloc_bioset(GFP_NOIO
, 0, ci
->md
->bs
);
1099 __bio_clone(clone
, ci
->bio
);
1100 clone
->bi_destructor
= dm_bio_destructor
;
1102 __map_bio(ti
, clone
, tio
);
1105 static int __clone_and_map_empty_barrier(struct clone_info
*ci
)
1107 unsigned target_nr
= 0, flush_nr
;
1108 struct dm_target
*ti
;
1110 while ((ti
= dm_table_get_target(ci
->map
, target_nr
++)))
1111 for (flush_nr
= 0; flush_nr
< ti
->num_flush_requests
;
1113 __flush_target(ci
, ti
, flush_nr
);
1115 ci
->sector_count
= 0;
1120 static int __clone_and_map(struct clone_info
*ci
)
1122 struct bio
*clone
, *bio
= ci
->bio
;
1123 struct dm_target
*ti
;
1124 sector_t len
= 0, max
;
1125 struct dm_target_io
*tio
;
1127 if (unlikely(bio_empty_barrier(bio
)))
1128 return __clone_and_map_empty_barrier(ci
);
1130 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1131 if (!dm_target_is_valid(ti
))
1134 max
= max_io_len(ci
->md
, ci
->sector
, ti
);
1137 * Allocate a target io object.
1139 tio
= alloc_tio(ci
, ti
);
1141 if (ci
->sector_count
<= max
) {
1143 * Optimise for the simple case where we can do all of
1144 * the remaining io with a single clone.
1146 clone
= clone_bio(bio
, ci
->sector
, ci
->idx
,
1147 bio
->bi_vcnt
- ci
->idx
, ci
->sector_count
,
1149 __map_bio(ti
, clone
, tio
);
1150 ci
->sector_count
= 0;
1152 } else if (to_sector(bio
->bi_io_vec
[ci
->idx
].bv_len
) <= max
) {
1154 * There are some bvecs that don't span targets.
1155 * Do as many of these as possible.
1158 sector_t remaining
= max
;
1161 for (i
= ci
->idx
; remaining
&& (i
< bio
->bi_vcnt
); i
++) {
1162 bv_len
= to_sector(bio
->bi_io_vec
[i
].bv_len
);
1164 if (bv_len
> remaining
)
1167 remaining
-= bv_len
;
1171 clone
= clone_bio(bio
, ci
->sector
, ci
->idx
, i
- ci
->idx
, len
,
1173 __map_bio(ti
, clone
, tio
);
1176 ci
->sector_count
-= len
;
1181 * Handle a bvec that must be split between two or more targets.
1183 struct bio_vec
*bv
= bio
->bi_io_vec
+ ci
->idx
;
1184 sector_t remaining
= to_sector(bv
->bv_len
);
1185 unsigned int offset
= 0;
1189 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1190 if (!dm_target_is_valid(ti
))
1193 max
= max_io_len(ci
->md
, ci
->sector
, ti
);
1195 tio
= alloc_tio(ci
, ti
);
1198 len
= min(remaining
, max
);
1200 clone
= split_bvec(bio
, ci
->sector
, ci
->idx
,
1201 bv
->bv_offset
+ offset
, len
,
1204 __map_bio(ti
, clone
, tio
);
1207 ci
->sector_count
-= len
;
1208 offset
+= to_bytes(len
);
1209 } while (remaining
-= len
);
1218 * Split the bio into several clones and submit it to targets.
1220 static void __split_and_process_bio(struct mapped_device
*md
, struct bio
*bio
)
1222 struct clone_info ci
;
1225 ci
.map
= dm_get_table(md
);
1226 if (unlikely(!ci
.map
)) {
1227 if (!bio_rw_flagged(bio
, BIO_RW_BARRIER
))
1230 if (!md
->barrier_error
)
1231 md
->barrier_error
= -EIO
;
1237 ci
.io
= alloc_io(md
);
1239 atomic_set(&ci
.io
->io_count
, 1);
1242 spin_lock_init(&ci
.io
->endio_lock
);
1243 ci
.sector
= bio
->bi_sector
;
1244 ci
.sector_count
= bio_sectors(bio
);
1245 if (unlikely(bio_empty_barrier(bio
)))
1246 ci
.sector_count
= 1;
1247 ci
.idx
= bio
->bi_idx
;
1249 start_io_acct(ci
.io
);
1250 while (ci
.sector_count
&& !error
)
1251 error
= __clone_and_map(&ci
);
1253 /* drop the extra reference count */
1254 dec_pending(ci
.io
, error
);
1255 dm_table_put(ci
.map
);
1257 /*-----------------------------------------------------------------
1259 *---------------------------------------------------------------*/
1261 static int dm_merge_bvec(struct request_queue
*q
,
1262 struct bvec_merge_data
*bvm
,
1263 struct bio_vec
*biovec
)
1265 struct mapped_device
*md
= q
->queuedata
;
1266 struct dm_table
*map
= dm_get_table(md
);
1267 struct dm_target
*ti
;
1268 sector_t max_sectors
;
1274 ti
= dm_table_find_target(map
, bvm
->bi_sector
);
1275 if (!dm_target_is_valid(ti
))
1279 * Find maximum amount of I/O that won't need splitting
1281 max_sectors
= min(max_io_len(md
, bvm
->bi_sector
, ti
),
1282 (sector_t
) BIO_MAX_SECTORS
);
1283 max_size
= (max_sectors
<< SECTOR_SHIFT
) - bvm
->bi_size
;
1288 * merge_bvec_fn() returns number of bytes
1289 * it can accept at this offset
1290 * max is precomputed maximal io size
1292 if (max_size
&& ti
->type
->merge
)
1293 max_size
= ti
->type
->merge(ti
, bvm
, biovec
, max_size
);
1295 * If the target doesn't support merge method and some of the devices
1296 * provided their merge_bvec method (we know this by looking at
1297 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1298 * entries. So always set max_size to 0, and the code below allows
1301 else if (queue_max_hw_sectors(q
) <= PAGE_SIZE
>> 9)
1310 * Always allow an entire first page
1312 if (max_size
<= biovec
->bv_len
&& !(bvm
->bi_size
>> SECTOR_SHIFT
))
1313 max_size
= biovec
->bv_len
;
1319 * The request function that just remaps the bio built up by
1322 static int _dm_request(struct request_queue
*q
, struct bio
*bio
)
1324 int rw
= bio_data_dir(bio
);
1325 struct mapped_device
*md
= q
->queuedata
;
1328 down_read(&md
->io_lock
);
1330 cpu
= part_stat_lock();
1331 part_stat_inc(cpu
, &dm_disk(md
)->part0
, ios
[rw
]);
1332 part_stat_add(cpu
, &dm_disk(md
)->part0
, sectors
[rw
], bio_sectors(bio
));
1336 * If we're suspended or the thread is processing barriers
1337 * we have to queue this io for later.
1339 if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD
, &md
->flags
)) ||
1340 unlikely(bio_rw_flagged(bio
, BIO_RW_BARRIER
))) {
1341 up_read(&md
->io_lock
);
1343 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) &&
1344 bio_rw(bio
) == READA
) {
1354 __split_and_process_bio(md
, bio
);
1355 up_read(&md
->io_lock
);
1359 static int dm_make_request(struct request_queue
*q
, struct bio
*bio
)
1361 struct mapped_device
*md
= q
->queuedata
;
1363 if (unlikely(bio_rw_flagged(bio
, BIO_RW_BARRIER
))) {
1364 bio_endio(bio
, -EOPNOTSUPP
);
1368 return md
->saved_make_request_fn(q
, bio
); /* call __make_request() */
1371 static int dm_request_based(struct mapped_device
*md
)
1373 return blk_queue_stackable(md
->queue
);
1376 static int dm_request(struct request_queue
*q
, struct bio
*bio
)
1378 struct mapped_device
*md
= q
->queuedata
;
1380 if (dm_request_based(md
))
1381 return dm_make_request(q
, bio
);
1383 return _dm_request(q
, bio
);
1386 void dm_dispatch_request(struct request
*rq
)
1390 if (blk_queue_io_stat(rq
->q
))
1391 rq
->cmd_flags
|= REQ_IO_STAT
;
1393 rq
->start_time
= jiffies
;
1394 r
= blk_insert_cloned_request(rq
->q
, rq
);
1396 dm_complete_request(rq
, r
);
1398 EXPORT_SYMBOL_GPL(dm_dispatch_request
);
1400 static void dm_rq_bio_destructor(struct bio
*bio
)
1402 struct dm_rq_clone_bio_info
*info
= bio
->bi_private
;
1403 struct mapped_device
*md
= info
->tio
->md
;
1405 free_bio_info(info
);
1406 bio_free(bio
, md
->bs
);
1409 static int dm_rq_bio_constructor(struct bio
*bio
, struct bio
*bio_orig
,
1412 struct dm_rq_target_io
*tio
= data
;
1413 struct mapped_device
*md
= tio
->md
;
1414 struct dm_rq_clone_bio_info
*info
= alloc_bio_info(md
);
1419 info
->orig
= bio_orig
;
1421 bio
->bi_end_io
= end_clone_bio
;
1422 bio
->bi_private
= info
;
1423 bio
->bi_destructor
= dm_rq_bio_destructor
;
1428 static int setup_clone(struct request
*clone
, struct request
*rq
,
1429 struct dm_rq_target_io
*tio
)
1431 int r
= blk_rq_prep_clone(clone
, rq
, tio
->md
->bs
, GFP_ATOMIC
,
1432 dm_rq_bio_constructor
, tio
);
1437 clone
->cmd
= rq
->cmd
;
1438 clone
->cmd_len
= rq
->cmd_len
;
1439 clone
->sense
= rq
->sense
;
1440 clone
->buffer
= rq
->buffer
;
1441 clone
->end_io
= end_clone_request
;
1442 clone
->end_io_data
= tio
;
1447 static int dm_rq_flush_suspending(struct mapped_device
*md
)
1449 return !md
->suspend_rq
.special
;
1453 * Called with the queue lock held.
1455 static int dm_prep_fn(struct request_queue
*q
, struct request
*rq
)
1457 struct mapped_device
*md
= q
->queuedata
;
1458 struct dm_rq_target_io
*tio
;
1459 struct request
*clone
;
1461 if (unlikely(rq
== &md
->suspend_rq
)) {
1462 if (dm_rq_flush_suspending(md
))
1465 /* The flush suspend was interrupted */
1466 return BLKPREP_KILL
;
1469 if (unlikely(rq
->special
)) {
1470 DMWARN("Already has something in rq->special.");
1471 return BLKPREP_KILL
;
1474 tio
= alloc_rq_tio(md
); /* Only one for each original request */
1477 return BLKPREP_DEFER
;
1483 memset(&tio
->info
, 0, sizeof(tio
->info
));
1485 clone
= &tio
->clone
;
1486 if (setup_clone(clone
, rq
, tio
)) {
1489 return BLKPREP_DEFER
;
1492 rq
->special
= clone
;
1493 rq
->cmd_flags
|= REQ_DONTPREP
;
1500 * 0 : the request has been processed (not requeued)
1501 * !0 : the request has been requeued
1503 static int map_request(struct dm_target
*ti
, struct request
*rq
,
1504 struct mapped_device
*md
)
1506 int r
, requeued
= 0;
1507 struct request
*clone
= rq
->special
;
1508 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
1511 * Hold the md reference here for the in-flight I/O.
1512 * We can't rely on the reference count by device opener,
1513 * because the device may be closed during the request completion
1514 * when all bios are completed.
1515 * See the comment in rq_completed() too.
1520 r
= ti
->type
->map_rq(ti
, clone
, &tio
->info
);
1522 case DM_MAPIO_SUBMITTED
:
1523 /* The target has taken the I/O to submit by itself later */
1525 case DM_MAPIO_REMAPPED
:
1526 /* The target has remapped the I/O so dispatch it */
1527 dm_dispatch_request(clone
);
1529 case DM_MAPIO_REQUEUE
:
1530 /* The target wants to requeue the I/O */
1531 dm_requeue_unmapped_request(clone
);
1536 DMWARN("unimplemented target map return value: %d", r
);
1540 /* The target wants to complete the I/O */
1541 dm_kill_unmapped_request(clone
, r
);
1549 * q->request_fn for request-based dm.
1550 * Called with the queue lock held.
1552 static void dm_request_fn(struct request_queue
*q
)
1554 struct mapped_device
*md
= q
->queuedata
;
1555 struct dm_table
*map
= dm_get_table(md
);
1556 struct dm_target
*ti
;
1560 * For noflush suspend, check blk_queue_stopped() to immediately
1561 * quit I/O dispatching.
1563 while (!blk_queue_plugged(q
) && !blk_queue_stopped(q
)) {
1564 rq
= blk_peek_request(q
);
1568 if (unlikely(rq
== &md
->suspend_rq
)) { /* Flush suspend maker */
1569 if (queue_in_flight(q
))
1570 /* Not quiet yet. Wait more */
1573 /* This device should be quiet now */
1575 blk_start_request(rq
);
1576 __blk_end_request_all(rq
, 0);
1581 ti
= dm_table_find_target(map
, blk_rq_pos(rq
));
1582 if (ti
->type
->busy
&& ti
->type
->busy(ti
))
1585 blk_start_request(rq
);
1586 spin_unlock(q
->queue_lock
);
1587 if (map_request(ti
, rq
, md
))
1590 spin_lock_irq(q
->queue_lock
);
1596 spin_lock_irq(q
->queue_lock
);
1599 if (!elv_queue_empty(q
))
1600 /* Some requests still remain, retry later */
1609 int dm_underlying_device_busy(struct request_queue
*q
)
1611 return blk_lld_busy(q
);
1613 EXPORT_SYMBOL_GPL(dm_underlying_device_busy
);
1615 static int dm_lld_busy(struct request_queue
*q
)
1618 struct mapped_device
*md
= q
->queuedata
;
1619 struct dm_table
*map
= dm_get_table(md
);
1621 if (!map
|| test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))
1624 r
= dm_table_any_busy_target(map
);
1631 static void dm_unplug_all(struct request_queue
*q
)
1633 struct mapped_device
*md
= q
->queuedata
;
1634 struct dm_table
*map
= dm_get_table(md
);
1637 if (dm_request_based(md
))
1638 generic_unplug_device(q
);
1640 dm_table_unplug_all(map
);
1645 static int dm_any_congested(void *congested_data
, int bdi_bits
)
1648 struct mapped_device
*md
= congested_data
;
1649 struct dm_table
*map
;
1651 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
1652 map
= dm_get_table(md
);
1655 * Request-based dm cares about only own queue for
1656 * the query about congestion status of request_queue
1658 if (dm_request_based(md
))
1659 r
= md
->queue
->backing_dev_info
.state
&
1662 r
= dm_table_any_congested(map
, bdi_bits
);
1671 /*-----------------------------------------------------------------
1672 * An IDR is used to keep track of allocated minor numbers.
1673 *---------------------------------------------------------------*/
1674 static void free_minor(int minor
)
1676 spin_lock(&_minor_lock
);
1677 idr_remove(&_minor_idr
, minor
);
1678 spin_unlock(&_minor_lock
);
1682 * See if the device with a specific minor # is free.
1684 static int specific_minor(int minor
)
1688 if (minor
>= (1 << MINORBITS
))
1691 r
= idr_pre_get(&_minor_idr
, GFP_KERNEL
);
1695 spin_lock(&_minor_lock
);
1697 if (idr_find(&_minor_idr
, minor
)) {
1702 r
= idr_get_new_above(&_minor_idr
, MINOR_ALLOCED
, minor
, &m
);
1707 idr_remove(&_minor_idr
, m
);
1713 spin_unlock(&_minor_lock
);
1717 static int next_free_minor(int *minor
)
1721 r
= idr_pre_get(&_minor_idr
, GFP_KERNEL
);
1725 spin_lock(&_minor_lock
);
1727 r
= idr_get_new(&_minor_idr
, MINOR_ALLOCED
, &m
);
1731 if (m
>= (1 << MINORBITS
)) {
1732 idr_remove(&_minor_idr
, m
);
1740 spin_unlock(&_minor_lock
);
1744 static const struct block_device_operations dm_blk_dops
;
1746 static void dm_wq_work(struct work_struct
*work
);
1749 * Allocate and initialise a blank device with a given minor.
1751 static struct mapped_device
*alloc_dev(int minor
)
1754 struct mapped_device
*md
= kzalloc(sizeof(*md
), GFP_KERNEL
);
1758 DMWARN("unable to allocate device, out of memory.");
1762 if (!try_module_get(THIS_MODULE
))
1763 goto bad_module_get
;
1765 /* get a minor number for the dev */
1766 if (minor
== DM_ANY_MINOR
)
1767 r
= next_free_minor(&minor
);
1769 r
= specific_minor(minor
);
1773 init_rwsem(&md
->io_lock
);
1774 mutex_init(&md
->suspend_lock
);
1775 spin_lock_init(&md
->deferred_lock
);
1776 rwlock_init(&md
->map_lock
);
1777 atomic_set(&md
->holders
, 1);
1778 atomic_set(&md
->open_count
, 0);
1779 atomic_set(&md
->event_nr
, 0);
1780 atomic_set(&md
->uevent_seq
, 0);
1781 INIT_LIST_HEAD(&md
->uevent_list
);
1782 spin_lock_init(&md
->uevent_lock
);
1784 md
->queue
= blk_init_queue(dm_request_fn
, NULL
);
1789 * Request-based dm devices cannot be stacked on top of bio-based dm
1790 * devices. The type of this dm device has not been decided yet,
1791 * although we initialized the queue using blk_init_queue().
1792 * The type is decided at the first table loading time.
1793 * To prevent problematic device stacking, clear the queue flag
1794 * for request stacking support until then.
1796 * This queue is new, so no concurrency on the queue_flags.
1798 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE
, md
->queue
);
1799 md
->saved_make_request_fn
= md
->queue
->make_request_fn
;
1800 md
->queue
->queuedata
= md
;
1801 md
->queue
->backing_dev_info
.congested_fn
= dm_any_congested
;
1802 md
->queue
->backing_dev_info
.congested_data
= md
;
1803 blk_queue_make_request(md
->queue
, dm_request
);
1804 blk_queue_bounce_limit(md
->queue
, BLK_BOUNCE_ANY
);
1805 md
->queue
->unplug_fn
= dm_unplug_all
;
1806 blk_queue_merge_bvec(md
->queue
, dm_merge_bvec
);
1807 blk_queue_softirq_done(md
->queue
, dm_softirq_done
);
1808 blk_queue_prep_rq(md
->queue
, dm_prep_fn
);
1809 blk_queue_lld_busy(md
->queue
, dm_lld_busy
);
1811 md
->disk
= alloc_disk(1);
1815 atomic_set(&md
->pending
[0], 0);
1816 atomic_set(&md
->pending
[1], 0);
1817 init_waitqueue_head(&md
->wait
);
1818 INIT_WORK(&md
->work
, dm_wq_work
);
1819 init_waitqueue_head(&md
->eventq
);
1821 md
->disk
->major
= _major
;
1822 md
->disk
->first_minor
= minor
;
1823 md
->disk
->fops
= &dm_blk_dops
;
1824 md
->disk
->queue
= md
->queue
;
1825 md
->disk
->private_data
= md
;
1826 sprintf(md
->disk
->disk_name
, "dm-%d", minor
);
1828 format_dev_t(md
->name
, MKDEV(_major
, minor
));
1830 md
->wq
= create_singlethread_workqueue("kdmflush");
1834 md
->bdev
= bdget_disk(md
->disk
, 0);
1838 /* Populate the mapping, nobody knows we exist yet */
1839 spin_lock(&_minor_lock
);
1840 old_md
= idr_replace(&_minor_idr
, md
, minor
);
1841 spin_unlock(&_minor_lock
);
1843 BUG_ON(old_md
!= MINOR_ALLOCED
);
1848 destroy_workqueue(md
->wq
);
1850 del_gendisk(md
->disk
);
1853 blk_cleanup_queue(md
->queue
);
1857 module_put(THIS_MODULE
);
1863 static void unlock_fs(struct mapped_device
*md
);
1865 static void free_dev(struct mapped_device
*md
)
1867 int minor
= MINOR(disk_devt(md
->disk
));
1871 destroy_workqueue(md
->wq
);
1873 mempool_destroy(md
->tio_pool
);
1875 mempool_destroy(md
->io_pool
);
1877 bioset_free(md
->bs
);
1878 blk_integrity_unregister(md
->disk
);
1879 del_gendisk(md
->disk
);
1882 spin_lock(&_minor_lock
);
1883 md
->disk
->private_data
= NULL
;
1884 spin_unlock(&_minor_lock
);
1887 blk_cleanup_queue(md
->queue
);
1888 module_put(THIS_MODULE
);
1892 static void __bind_mempools(struct mapped_device
*md
, struct dm_table
*t
)
1894 struct dm_md_mempools
*p
;
1896 if (md
->io_pool
&& md
->tio_pool
&& md
->bs
)
1897 /* the md already has necessary mempools */
1900 p
= dm_table_get_md_mempools(t
);
1901 BUG_ON(!p
|| md
->io_pool
|| md
->tio_pool
|| md
->bs
);
1903 md
->io_pool
= p
->io_pool
;
1905 md
->tio_pool
= p
->tio_pool
;
1911 /* mempool bind completed, now no need any mempools in the table */
1912 dm_table_free_md_mempools(t
);
1916 * Bind a table to the device.
1918 static void event_callback(void *context
)
1920 unsigned long flags
;
1922 struct mapped_device
*md
= (struct mapped_device
*) context
;
1924 spin_lock_irqsave(&md
->uevent_lock
, flags
);
1925 list_splice_init(&md
->uevent_list
, &uevents
);
1926 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
1928 dm_send_uevents(&uevents
, &disk_to_dev(md
->disk
)->kobj
);
1930 atomic_inc(&md
->event_nr
);
1931 wake_up(&md
->eventq
);
1935 * Protected by md->suspend_lock obtained by dm_swap_table().
1937 static void __set_size(struct mapped_device
*md
, sector_t size
)
1939 set_capacity(md
->disk
, size
);
1941 i_size_write(md
->bdev
->bd_inode
, (loff_t
)size
<< SECTOR_SHIFT
);
1944 static int __bind(struct mapped_device
*md
, struct dm_table
*t
,
1945 struct queue_limits
*limits
)
1947 struct request_queue
*q
= md
->queue
;
1949 unsigned long flags
;
1951 size
= dm_table_get_size(t
);
1954 * Wipe any geometry if the size of the table changed.
1956 if (size
!= get_capacity(md
->disk
))
1957 memset(&md
->geometry
, 0, sizeof(md
->geometry
));
1959 __set_size(md
, size
);
1962 dm_table_destroy(t
);
1966 dm_table_event_callback(t
, event_callback
, md
);
1969 * The queue hasn't been stopped yet, if the old table type wasn't
1970 * for request-based during suspension. So stop it to prevent
1971 * I/O mapping before resume.
1972 * This must be done before setting the queue restrictions,
1973 * because request-based dm may be run just after the setting.
1975 if (dm_table_request_based(t
) && !blk_queue_stopped(q
))
1978 __bind_mempools(md
, t
);
1980 write_lock_irqsave(&md
->map_lock
, flags
);
1982 dm_table_set_restrictions(t
, q
, limits
);
1983 write_unlock_irqrestore(&md
->map_lock
, flags
);
1988 static void __unbind(struct mapped_device
*md
)
1990 struct dm_table
*map
= md
->map
;
1991 unsigned long flags
;
1996 dm_table_event_callback(map
, NULL
, NULL
);
1997 write_lock_irqsave(&md
->map_lock
, flags
);
1999 write_unlock_irqrestore(&md
->map_lock
, flags
);
2000 dm_table_destroy(map
);
2004 * Constructor for a new device.
2006 int dm_create(int minor
, struct mapped_device
**result
)
2008 struct mapped_device
*md
;
2010 md
= alloc_dev(minor
);
2020 static struct mapped_device
*dm_find_md(dev_t dev
)
2022 struct mapped_device
*md
;
2023 unsigned minor
= MINOR(dev
);
2025 if (MAJOR(dev
) != _major
|| minor
>= (1 << MINORBITS
))
2028 spin_lock(&_minor_lock
);
2030 md
= idr_find(&_minor_idr
, minor
);
2031 if (md
&& (md
== MINOR_ALLOCED
||
2032 (MINOR(disk_devt(dm_disk(md
))) != minor
) ||
2033 test_bit(DMF_FREEING
, &md
->flags
))) {
2039 spin_unlock(&_minor_lock
);
2044 struct mapped_device
*dm_get_md(dev_t dev
)
2046 struct mapped_device
*md
= dm_find_md(dev
);
2054 void *dm_get_mdptr(struct mapped_device
*md
)
2056 return md
->interface_ptr
;
2059 void dm_set_mdptr(struct mapped_device
*md
, void *ptr
)
2061 md
->interface_ptr
= ptr
;
2064 void dm_get(struct mapped_device
*md
)
2066 atomic_inc(&md
->holders
);
2069 const char *dm_device_name(struct mapped_device
*md
)
2073 EXPORT_SYMBOL_GPL(dm_device_name
);
2075 void dm_put(struct mapped_device
*md
)
2077 struct dm_table
*map
;
2079 BUG_ON(test_bit(DMF_FREEING
, &md
->flags
));
2081 if (atomic_dec_and_lock(&md
->holders
, &_minor_lock
)) {
2082 map
= dm_get_table(md
);
2083 idr_replace(&_minor_idr
, MINOR_ALLOCED
,
2084 MINOR(disk_devt(dm_disk(md
))));
2085 set_bit(DMF_FREEING
, &md
->flags
);
2086 spin_unlock(&_minor_lock
);
2087 if (!dm_suspended(md
)) {
2088 dm_table_presuspend_targets(map
);
2089 dm_table_postsuspend_targets(map
);
2097 EXPORT_SYMBOL_GPL(dm_put
);
2099 static int dm_wait_for_completion(struct mapped_device
*md
, int interruptible
)
2102 DECLARE_WAITQUEUE(wait
, current
);
2103 struct request_queue
*q
= md
->queue
;
2104 unsigned long flags
;
2106 dm_unplug_all(md
->queue
);
2108 add_wait_queue(&md
->wait
, &wait
);
2111 set_current_state(interruptible
);
2114 if (dm_request_based(md
)) {
2115 spin_lock_irqsave(q
->queue_lock
, flags
);
2116 if (!queue_in_flight(q
) && blk_queue_stopped(q
)) {
2117 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2120 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2121 } else if (!atomic_read(&md
->pending
[0]) &&
2122 !atomic_read(&md
->pending
[1]))
2125 if (interruptible
== TASK_INTERRUPTIBLE
&&
2126 signal_pending(current
)) {
2133 set_current_state(TASK_RUNNING
);
2135 remove_wait_queue(&md
->wait
, &wait
);
2140 static void dm_flush(struct mapped_device
*md
)
2142 dm_wait_for_completion(md
, TASK_UNINTERRUPTIBLE
);
2144 bio_init(&md
->barrier_bio
);
2145 md
->barrier_bio
.bi_bdev
= md
->bdev
;
2146 md
->barrier_bio
.bi_rw
= WRITE_BARRIER
;
2147 __split_and_process_bio(md
, &md
->barrier_bio
);
2149 dm_wait_for_completion(md
, TASK_UNINTERRUPTIBLE
);
2152 static void process_barrier(struct mapped_device
*md
, struct bio
*bio
)
2154 md
->barrier_error
= 0;
2158 if (!bio_empty_barrier(bio
)) {
2159 __split_and_process_bio(md
, bio
);
2163 if (md
->barrier_error
!= DM_ENDIO_REQUEUE
)
2164 bio_endio(bio
, md
->barrier_error
);
2166 spin_lock_irq(&md
->deferred_lock
);
2167 bio_list_add_head(&md
->deferred
, bio
);
2168 spin_unlock_irq(&md
->deferred_lock
);
2173 * Process the deferred bios
2175 static void dm_wq_work(struct work_struct
*work
)
2177 struct mapped_device
*md
= container_of(work
, struct mapped_device
,
2181 down_write(&md
->io_lock
);
2183 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
2184 spin_lock_irq(&md
->deferred_lock
);
2185 c
= bio_list_pop(&md
->deferred
);
2186 spin_unlock_irq(&md
->deferred_lock
);
2189 clear_bit(DMF_QUEUE_IO_TO_THREAD
, &md
->flags
);
2193 up_write(&md
->io_lock
);
2195 if (dm_request_based(md
))
2196 generic_make_request(c
);
2198 if (bio_rw_flagged(c
, BIO_RW_BARRIER
))
2199 process_barrier(md
, c
);
2201 __split_and_process_bio(md
, c
);
2204 down_write(&md
->io_lock
);
2207 up_write(&md
->io_lock
);
2210 static void dm_queue_flush(struct mapped_device
*md
)
2212 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2213 smp_mb__after_clear_bit();
2214 queue_work(md
->wq
, &md
->work
);
2218 * Swap in a new table (destroying old one).
2220 int dm_swap_table(struct mapped_device
*md
, struct dm_table
*table
)
2222 struct queue_limits limits
;
2225 mutex_lock(&md
->suspend_lock
);
2227 /* device must be suspended */
2228 if (!dm_suspended(md
))
2231 r
= dm_calculate_queue_limits(table
, &limits
);
2235 /* cannot change the device type, once a table is bound */
2237 (dm_table_get_type(md
->map
) != dm_table_get_type(table
))) {
2238 DMWARN("can't change the device type after a table is bound");
2243 r
= __bind(md
, table
, &limits
);
2246 mutex_unlock(&md
->suspend_lock
);
2250 static void dm_rq_invalidate_suspend_marker(struct mapped_device
*md
)
2252 md
->suspend_rq
.special
= (void *)0x1;
2255 static void dm_rq_abort_suspend(struct mapped_device
*md
, int noflush
)
2257 struct request_queue
*q
= md
->queue
;
2258 unsigned long flags
;
2260 spin_lock_irqsave(q
->queue_lock
, flags
);
2262 dm_rq_invalidate_suspend_marker(md
);
2264 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2267 static void dm_rq_start_suspend(struct mapped_device
*md
, int noflush
)
2269 struct request
*rq
= &md
->suspend_rq
;
2270 struct request_queue
*q
= md
->queue
;
2276 blk_insert_request(q
, rq
, 0, NULL
);
2280 static int dm_rq_suspend_available(struct mapped_device
*md
, int noflush
)
2283 struct request
*rq
= &md
->suspend_rq
;
2284 struct request_queue
*q
= md
->queue
;
2285 unsigned long flags
;
2290 /* The marker must be protected by queue lock if it is in use */
2291 spin_lock_irqsave(q
->queue_lock
, flags
);
2292 if (unlikely(rq
->ref_count
)) {
2294 * This can happen, when the previous flush suspend was
2295 * interrupted, the marker is still in the queue and
2296 * this flush suspend has been invoked, because we don't
2297 * remove the marker at the time of suspend interruption.
2298 * We have only one marker per mapped_device, so we can't
2299 * start another flush suspend while it is in use.
2301 BUG_ON(!rq
->special
); /* The marker should be invalidated */
2302 DMWARN("Invalidating the previous flush suspend is still in"
2303 " progress. Please retry later.");
2306 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2312 * Functions to lock and unlock any filesystem running on the
2315 static int lock_fs(struct mapped_device
*md
)
2319 WARN_ON(md
->frozen_sb
);
2321 md
->frozen_sb
= freeze_bdev(md
->bdev
);
2322 if (IS_ERR(md
->frozen_sb
)) {
2323 r
= PTR_ERR(md
->frozen_sb
);
2324 md
->frozen_sb
= NULL
;
2328 set_bit(DMF_FROZEN
, &md
->flags
);
2333 static void unlock_fs(struct mapped_device
*md
)
2335 if (!test_bit(DMF_FROZEN
, &md
->flags
))
2338 thaw_bdev(md
->bdev
, md
->frozen_sb
);
2339 md
->frozen_sb
= NULL
;
2340 clear_bit(DMF_FROZEN
, &md
->flags
);
2344 * We need to be able to change a mapping table under a mounted
2345 * filesystem. For example we might want to move some data in
2346 * the background. Before the table can be swapped with
2347 * dm_bind_table, dm_suspend must be called to flush any in
2348 * flight bios and ensure that any further io gets deferred.
2351 * Suspend mechanism in request-based dm.
2353 * After the suspend starts, further incoming requests are kept in
2354 * the request_queue and deferred.
2355 * Remaining requests in the request_queue at the start of suspend are flushed
2356 * if it is flush suspend.
2357 * The suspend completes when the following conditions have been satisfied,
2359 * 1. q->in_flight is 0 (which means no in_flight request)
2360 * 2. queue has been stopped (which means no request dispatching)
2365 * Noflush suspend doesn't need to dispatch remaining requests.
2366 * So stop the queue immediately. Then, wait for all in_flight requests
2367 * to be completed or requeued.
2369 * To abort noflush suspend, start the queue.
2374 * Flush suspend needs to dispatch remaining requests. So stop the queue
2375 * after the remaining requests are completed. (Requeued request must be also
2376 * re-dispatched and completed. Until then, we can't stop the queue.)
2378 * During flushing the remaining requests, further incoming requests are also
2379 * inserted to the same queue. To distinguish which requests are to be
2380 * flushed, we insert a marker request to the queue at the time of starting
2381 * flush suspend, like a barrier.
2382 * The dispatching is blocked when the marker is found on the top of the queue.
2383 * And the queue is stopped when all in_flight requests are completed, since
2384 * that means the remaining requests are completely flushed.
2385 * Then, the marker is removed from the queue.
2387 * To abort flush suspend, we also need to take care of the marker, not only
2388 * starting the queue.
2389 * We don't remove the marker forcibly from the queue since it's against
2390 * the block-layer manner. Instead, we put a invalidated mark on the marker.
2391 * When the invalidated marker is found on the top of the queue, it is
2392 * immediately removed from the queue, so it doesn't block dispatching.
2393 * Because we have only one marker per mapped_device, we can't start another
2394 * flush suspend until the invalidated marker is removed from the queue.
2395 * So fail and return with -EBUSY in such a case.
2397 int dm_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2399 struct dm_table
*map
= NULL
;
2401 int do_lockfs
= suspend_flags
& DM_SUSPEND_LOCKFS_FLAG
? 1 : 0;
2402 int noflush
= suspend_flags
& DM_SUSPEND_NOFLUSH_FLAG
? 1 : 0;
2404 mutex_lock(&md
->suspend_lock
);
2406 if (dm_suspended(md
)) {
2411 if (dm_request_based(md
) && !dm_rq_suspend_available(md
, noflush
)) {
2416 map
= dm_get_table(md
);
2419 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2420 * This flag is cleared before dm_suspend returns.
2423 set_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2425 /* This does not get reverted if there's an error later. */
2426 dm_table_presuspend_targets(map
);
2429 * Flush I/O to the device. noflush supersedes do_lockfs,
2430 * because lock_fs() needs to flush I/Os.
2432 if (!noflush
&& do_lockfs
) {
2439 * Here we must make sure that no processes are submitting requests
2440 * to target drivers i.e. no one may be executing
2441 * __split_and_process_bio. This is called from dm_request and
2444 * To get all processes out of __split_and_process_bio in dm_request,
2445 * we take the write lock. To prevent any process from reentering
2446 * __split_and_process_bio from dm_request, we set
2447 * DMF_QUEUE_IO_TO_THREAD.
2449 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
2450 * and call flush_workqueue(md->wq). flush_workqueue will wait until
2451 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
2452 * further calls to __split_and_process_bio from dm_wq_work.
2454 down_write(&md
->io_lock
);
2455 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2456 set_bit(DMF_QUEUE_IO_TO_THREAD
, &md
->flags
);
2457 up_write(&md
->io_lock
);
2459 flush_workqueue(md
->wq
);
2461 if (dm_request_based(md
))
2462 dm_rq_start_suspend(md
, noflush
);
2465 * At this point no more requests are entering target request routines.
2466 * We call dm_wait_for_completion to wait for all existing requests
2469 r
= dm_wait_for_completion(md
, TASK_INTERRUPTIBLE
);
2471 down_write(&md
->io_lock
);
2473 clear_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2474 up_write(&md
->io_lock
);
2476 /* were we interrupted ? */
2480 if (dm_request_based(md
))
2481 dm_rq_abort_suspend(md
, noflush
);
2484 goto out
; /* pushback list is already flushed, so skip flush */
2488 * If dm_wait_for_completion returned 0, the device is completely
2489 * quiescent now. There is no request-processing activity. All new
2490 * requests are being added to md->deferred list.
2493 dm_table_postsuspend_targets(map
);
2495 set_bit(DMF_SUSPENDED
, &md
->flags
);
2501 mutex_unlock(&md
->suspend_lock
);
2505 int dm_resume(struct mapped_device
*md
)
2508 struct dm_table
*map
= NULL
;
2510 mutex_lock(&md
->suspend_lock
);
2511 if (!dm_suspended(md
))
2514 map
= dm_get_table(md
);
2515 if (!map
|| !dm_table_get_size(map
))
2518 r
= dm_table_resume_targets(map
);
2525 * Flushing deferred I/Os must be done after targets are resumed
2526 * so that mapping of targets can work correctly.
2527 * Request-based dm is queueing the deferred I/Os in its request_queue.
2529 if (dm_request_based(md
))
2530 start_queue(md
->queue
);
2534 clear_bit(DMF_SUSPENDED
, &md
->flags
);
2536 dm_table_unplug_all(map
);
2540 mutex_unlock(&md
->suspend_lock
);
2545 /*-----------------------------------------------------------------
2546 * Event notification.
2547 *---------------------------------------------------------------*/
2548 void dm_kobject_uevent(struct mapped_device
*md
, enum kobject_action action
,
2551 char udev_cookie
[DM_COOKIE_LENGTH
];
2552 char *envp
[] = { udev_cookie
, NULL
};
2555 kobject_uevent(&disk_to_dev(md
->disk
)->kobj
, action
);
2557 snprintf(udev_cookie
, DM_COOKIE_LENGTH
, "%s=%u",
2558 DM_COOKIE_ENV_VAR_NAME
, cookie
);
2559 kobject_uevent_env(&disk_to_dev(md
->disk
)->kobj
, action
, envp
);
2563 uint32_t dm_next_uevent_seq(struct mapped_device
*md
)
2565 return atomic_add_return(1, &md
->uevent_seq
);
2568 uint32_t dm_get_event_nr(struct mapped_device
*md
)
2570 return atomic_read(&md
->event_nr
);
2573 int dm_wait_event(struct mapped_device
*md
, int event_nr
)
2575 return wait_event_interruptible(md
->eventq
,
2576 (event_nr
!= atomic_read(&md
->event_nr
)));
2579 void dm_uevent_add(struct mapped_device
*md
, struct list_head
*elist
)
2581 unsigned long flags
;
2583 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2584 list_add(elist
, &md
->uevent_list
);
2585 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2589 * The gendisk is only valid as long as you have a reference
2592 struct gendisk
*dm_disk(struct mapped_device
*md
)
2597 struct kobject
*dm_kobject(struct mapped_device
*md
)
2603 * struct mapped_device should not be exported outside of dm.c
2604 * so use this check to verify that kobj is part of md structure
2606 struct mapped_device
*dm_get_from_kobject(struct kobject
*kobj
)
2608 struct mapped_device
*md
;
2610 md
= container_of(kobj
, struct mapped_device
, kobj
);
2611 if (&md
->kobj
!= kobj
)
2614 if (test_bit(DMF_FREEING
, &md
->flags
) ||
2615 test_bit(DMF_DELETING
, &md
->flags
))
2622 int dm_suspended(struct mapped_device
*md
)
2624 return test_bit(DMF_SUSPENDED
, &md
->flags
);
2627 int dm_noflush_suspending(struct dm_target
*ti
)
2629 struct mapped_device
*md
= dm_table_get_md(ti
->table
);
2630 int r
= __noflush_suspending(md
);
2636 EXPORT_SYMBOL_GPL(dm_noflush_suspending
);
2638 struct dm_md_mempools
*dm_alloc_md_mempools(unsigned type
)
2640 struct dm_md_mempools
*pools
= kmalloc(sizeof(*pools
), GFP_KERNEL
);
2645 pools
->io_pool
= (type
== DM_TYPE_BIO_BASED
) ?
2646 mempool_create_slab_pool(MIN_IOS
, _io_cache
) :
2647 mempool_create_slab_pool(MIN_IOS
, _rq_bio_info_cache
);
2648 if (!pools
->io_pool
)
2649 goto free_pools_and_out
;
2651 pools
->tio_pool
= (type
== DM_TYPE_BIO_BASED
) ?
2652 mempool_create_slab_pool(MIN_IOS
, _tio_cache
) :
2653 mempool_create_slab_pool(MIN_IOS
, _rq_tio_cache
);
2654 if (!pools
->tio_pool
)
2655 goto free_io_pool_and_out
;
2657 pools
->bs
= (type
== DM_TYPE_BIO_BASED
) ?
2658 bioset_create(16, 0) : bioset_create(MIN_IOS
, 0);
2660 goto free_tio_pool_and_out
;
2664 free_tio_pool_and_out
:
2665 mempool_destroy(pools
->tio_pool
);
2667 free_io_pool_and_out
:
2668 mempool_destroy(pools
->io_pool
);
2676 void dm_free_md_mempools(struct dm_md_mempools
*pools
)
2682 mempool_destroy(pools
->io_pool
);
2684 if (pools
->tio_pool
)
2685 mempool_destroy(pools
->tio_pool
);
2688 bioset_free(pools
->bs
);
2693 static const struct block_device_operations dm_blk_dops
= {
2694 .open
= dm_blk_open
,
2695 .release
= dm_blk_close
,
2696 .ioctl
= dm_blk_ioctl
,
2697 .getgeo
= dm_blk_getgeo
,
2698 .owner
= THIS_MODULE
2701 EXPORT_SYMBOL(dm_get_mapinfo
);
2706 module_init(dm_init
);
2707 module_exit(dm_exit
);
2709 module_param(major
, uint
, 0);
2710 MODULE_PARM_DESC(major
, "The major number of the device mapper");
2711 MODULE_DESCRIPTION(DM_NAME
" driver");
2712 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2713 MODULE_LICENSE("GPL");