init from v2.6.32.60
[mach-moxart.git] / drivers / md / raid1.c
blob968cb14b63c0dc82cc5a40dd9b6a451581c14241
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/delay.h>
35 #include <linux/blkdev.h>
36 #include <linux/seq_file.h>
37 #include "md.h"
38 #include "raid1.h"
39 #include "bitmap.h"
41 #define DEBUG 0
42 #if DEBUG
43 #define PRINTK(x...) printk(x)
44 #else
45 #define PRINTK(x...)
46 #endif
49 * Number of guaranteed r1bios in case of extreme VM load:
51 #define NR_RAID1_BIOS 256
54 static void unplug_slaves(mddev_t *mddev);
56 static void allow_barrier(conf_t *conf);
57 static void lower_barrier(conf_t *conf);
59 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
61 struct pool_info *pi = data;
62 r1bio_t *r1_bio;
63 int size = offsetof(r1bio_t, bios[pi->raid_disks]);
65 /* allocate a r1bio with room for raid_disks entries in the bios array */
66 r1_bio = kzalloc(size, gfp_flags);
67 if (!r1_bio && pi->mddev)
68 unplug_slaves(pi->mddev);
70 return r1_bio;
73 static void r1bio_pool_free(void *r1_bio, void *data)
75 kfree(r1_bio);
78 #define RESYNC_BLOCK_SIZE (64*1024)
79 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
80 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
81 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
82 #define RESYNC_WINDOW (2048*1024)
84 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
86 struct pool_info *pi = data;
87 struct page *page;
88 r1bio_t *r1_bio;
89 struct bio *bio;
90 int i, j;
92 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
93 if (!r1_bio) {
94 unplug_slaves(pi->mddev);
95 return NULL;
99 * Allocate bios : 1 for reading, n-1 for writing
101 for (j = pi->raid_disks ; j-- ; ) {
102 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
103 if (!bio)
104 goto out_free_bio;
105 r1_bio->bios[j] = bio;
108 * Allocate RESYNC_PAGES data pages and attach them to
109 * the first bio.
110 * If this is a user-requested check/repair, allocate
111 * RESYNC_PAGES for each bio.
113 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
114 j = pi->raid_disks;
115 else
116 j = 1;
117 while(j--) {
118 bio = r1_bio->bios[j];
119 for (i = 0; i < RESYNC_PAGES; i++) {
120 page = alloc_page(gfp_flags);
121 if (unlikely(!page))
122 goto out_free_pages;
124 bio->bi_io_vec[i].bv_page = page;
125 bio->bi_vcnt = i+1;
128 /* If not user-requests, copy the page pointers to all bios */
129 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
130 for (i=0; i<RESYNC_PAGES ; i++)
131 for (j=1; j<pi->raid_disks; j++)
132 r1_bio->bios[j]->bi_io_vec[i].bv_page =
133 r1_bio->bios[0]->bi_io_vec[i].bv_page;
136 r1_bio->master_bio = NULL;
138 return r1_bio;
140 out_free_pages:
141 for (j=0 ; j < pi->raid_disks; j++)
142 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
143 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
144 j = -1;
145 out_free_bio:
146 while ( ++j < pi->raid_disks )
147 bio_put(r1_bio->bios[j]);
148 r1bio_pool_free(r1_bio, data);
149 return NULL;
152 static void r1buf_pool_free(void *__r1_bio, void *data)
154 struct pool_info *pi = data;
155 int i,j;
156 r1bio_t *r1bio = __r1_bio;
158 for (i = 0; i < RESYNC_PAGES; i++)
159 for (j = pi->raid_disks; j-- ;) {
160 if (j == 0 ||
161 r1bio->bios[j]->bi_io_vec[i].bv_page !=
162 r1bio->bios[0]->bi_io_vec[i].bv_page)
163 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
165 for (i=0 ; i < pi->raid_disks; i++)
166 bio_put(r1bio->bios[i]);
168 r1bio_pool_free(r1bio, data);
171 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
173 int i;
175 for (i = 0; i < conf->raid_disks; i++) {
176 struct bio **bio = r1_bio->bios + i;
177 if (*bio && *bio != IO_BLOCKED)
178 bio_put(*bio);
179 *bio = NULL;
183 static void free_r1bio(r1bio_t *r1_bio)
185 conf_t *conf = r1_bio->mddev->private;
188 * Wake up any possible resync thread that waits for the device
189 * to go idle.
191 allow_barrier(conf);
193 put_all_bios(conf, r1_bio);
194 mempool_free(r1_bio, conf->r1bio_pool);
197 static void put_buf(r1bio_t *r1_bio)
199 conf_t *conf = r1_bio->mddev->private;
200 int i;
202 for (i=0; i<conf->raid_disks; i++) {
203 struct bio *bio = r1_bio->bios[i];
204 if (bio->bi_end_io)
205 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208 mempool_free(r1_bio, conf->r1buf_pool);
210 lower_barrier(conf);
213 static void reschedule_retry(r1bio_t *r1_bio)
215 unsigned long flags;
216 mddev_t *mddev = r1_bio->mddev;
217 conf_t *conf = mddev->private;
219 spin_lock_irqsave(&conf->device_lock, flags);
220 list_add(&r1_bio->retry_list, &conf->retry_list);
221 conf->nr_queued ++;
222 spin_unlock_irqrestore(&conf->device_lock, flags);
224 wake_up(&conf->wait_barrier);
225 md_wakeup_thread(mddev->thread);
229 * raid_end_bio_io() is called when we have finished servicing a mirrored
230 * operation and are ready to return a success/failure code to the buffer
231 * cache layer.
233 static void raid_end_bio_io(r1bio_t *r1_bio)
235 struct bio *bio = r1_bio->master_bio;
237 /* if nobody has done the final endio yet, do it now */
238 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
239 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
240 (bio_data_dir(bio) == WRITE) ? "write" : "read",
241 (unsigned long long) bio->bi_sector,
242 (unsigned long long) bio->bi_sector +
243 (bio->bi_size >> 9) - 1);
245 bio_endio(bio,
246 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
248 free_r1bio(r1_bio);
252 * Update disk head position estimator based on IRQ completion info.
254 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
256 conf_t *conf = r1_bio->mddev->private;
258 conf->mirrors[disk].head_position =
259 r1_bio->sector + (r1_bio->sectors);
262 static void raid1_end_read_request(struct bio *bio, int error)
264 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
265 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
266 int mirror;
267 conf_t *conf = r1_bio->mddev->private;
269 mirror = r1_bio->read_disk;
271 * this branch is our 'one mirror IO has finished' event handler:
273 update_head_pos(mirror, r1_bio);
275 if (uptodate)
276 set_bit(R1BIO_Uptodate, &r1_bio->state);
277 else {
278 /* If all other devices have failed, we want to return
279 * the error upwards rather than fail the last device.
280 * Here we redefine "uptodate" to mean "Don't want to retry"
282 unsigned long flags;
283 spin_lock_irqsave(&conf->device_lock, flags);
284 if (r1_bio->mddev->degraded == conf->raid_disks ||
285 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
286 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
287 uptodate = 1;
288 spin_unlock_irqrestore(&conf->device_lock, flags);
291 if (uptodate)
292 raid_end_bio_io(r1_bio);
293 else {
295 * oops, read error:
297 char b[BDEVNAME_SIZE];
298 if (printk_ratelimit())
299 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
300 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
301 reschedule_retry(r1_bio);
304 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
307 static void raid1_end_write_request(struct bio *bio, int error)
309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
311 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
312 conf_t *conf = r1_bio->mddev->private;
313 struct bio *to_put = NULL;
316 for (mirror = 0; mirror < conf->raid_disks; mirror++)
317 if (r1_bio->bios[mirror] == bio)
318 break;
320 if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
321 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
322 set_bit(R1BIO_BarrierRetry, &r1_bio->state);
323 r1_bio->mddev->barriers_work = 0;
324 /* Don't rdev_dec_pending in this branch - keep it for the retry */
325 } else {
327 * this branch is our 'one mirror IO has finished' event handler:
329 r1_bio->bios[mirror] = NULL;
330 to_put = bio;
331 if (!uptodate) {
332 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
333 /* an I/O failed, we can't clear the bitmap */
334 set_bit(R1BIO_Degraded, &r1_bio->state);
335 } else
337 * Set R1BIO_Uptodate in our master bio, so that
338 * we will return a good error code for to the higher
339 * levels even if IO on some other mirrored buffer fails.
341 * The 'master' represents the composite IO operation to
342 * user-side. So if something waits for IO, then it will
343 * wait for the 'master' bio.
345 set_bit(R1BIO_Uptodate, &r1_bio->state);
347 update_head_pos(mirror, r1_bio);
349 if (behind) {
350 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
351 atomic_dec(&r1_bio->behind_remaining);
353 /* In behind mode, we ACK the master bio once the I/O has safely
354 * reached all non-writemostly disks. Setting the Returned bit
355 * ensures that this gets done only once -- we don't ever want to
356 * return -EIO here, instead we'll wait */
358 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
359 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
360 /* Maybe we can return now */
361 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
362 struct bio *mbio = r1_bio->master_bio;
363 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
364 (unsigned long long) mbio->bi_sector,
365 (unsigned long long) mbio->bi_sector +
366 (mbio->bi_size >> 9) - 1);
367 bio_endio(mbio, 0);
371 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
375 * Let's see if all mirrored write operations have finished
376 * already.
378 if (atomic_dec_and_test(&r1_bio->remaining)) {
379 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
380 reschedule_retry(r1_bio);
381 else {
382 /* it really is the end of this request */
383 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
384 /* free extra copy of the data pages */
385 int i = bio->bi_vcnt;
386 while (i--)
387 safe_put_page(bio->bi_io_vec[i].bv_page);
389 /* clear the bitmap if all writes complete successfully */
390 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
391 r1_bio->sectors,
392 !test_bit(R1BIO_Degraded, &r1_bio->state),
393 behind);
394 md_write_end(r1_bio->mddev);
395 raid_end_bio_io(r1_bio);
399 if (to_put)
400 bio_put(to_put);
405 * This routine returns the disk from which the requested read should
406 * be done. There is a per-array 'next expected sequential IO' sector
407 * number - if this matches on the next IO then we use the last disk.
408 * There is also a per-disk 'last know head position' sector that is
409 * maintained from IRQ contexts, both the normal and the resync IO
410 * completion handlers update this position correctly. If there is no
411 * perfect sequential match then we pick the disk whose head is closest.
413 * If there are 2 mirrors in the same 2 devices, performance degrades
414 * because position is mirror, not device based.
416 * The rdev for the device selected will have nr_pending incremented.
418 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
420 const sector_t this_sector = r1_bio->sector;
421 int new_disk = conf->last_used, disk = new_disk;
422 int wonly_disk = -1;
423 const int sectors = r1_bio->sectors;
424 sector_t new_distance, current_distance;
425 mdk_rdev_t *rdev;
427 rcu_read_lock();
429 * Check if we can balance. We can balance on the whole
430 * device if no resync is going on, or below the resync window.
431 * We take the first readable disk when above the resync window.
433 retry:
434 if (conf->mddev->recovery_cp < MaxSector &&
435 (this_sector + sectors >= conf->next_resync)) {
436 /* Choose the first operational device, for consistancy */
437 new_disk = 0;
439 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
440 r1_bio->bios[new_disk] == IO_BLOCKED ||
441 !rdev || !test_bit(In_sync, &rdev->flags)
442 || test_bit(WriteMostly, &rdev->flags);
443 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
445 if (rdev && test_bit(In_sync, &rdev->flags) &&
446 r1_bio->bios[new_disk] != IO_BLOCKED)
447 wonly_disk = new_disk;
449 if (new_disk == conf->raid_disks - 1) {
450 new_disk = wonly_disk;
451 break;
454 goto rb_out;
458 /* make sure the disk is operational */
459 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
460 r1_bio->bios[new_disk] == IO_BLOCKED ||
461 !rdev || !test_bit(In_sync, &rdev->flags) ||
462 test_bit(WriteMostly, &rdev->flags);
463 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
465 if (rdev && test_bit(In_sync, &rdev->flags) &&
466 r1_bio->bios[new_disk] != IO_BLOCKED)
467 wonly_disk = new_disk;
469 if (new_disk <= 0)
470 new_disk = conf->raid_disks;
471 new_disk--;
472 if (new_disk == disk) {
473 new_disk = wonly_disk;
474 break;
478 if (new_disk < 0)
479 goto rb_out;
481 disk = new_disk;
482 /* now disk == new_disk == starting point for search */
485 * Don't change to another disk for sequential reads:
487 if (conf->next_seq_sect == this_sector)
488 goto rb_out;
489 if (this_sector == conf->mirrors[new_disk].head_position)
490 goto rb_out;
492 current_distance = abs(this_sector - conf->mirrors[disk].head_position);
494 /* Find the disk whose head is closest */
496 do {
497 if (disk <= 0)
498 disk = conf->raid_disks;
499 disk--;
501 rdev = rcu_dereference(conf->mirrors[disk].rdev);
503 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
504 !test_bit(In_sync, &rdev->flags) ||
505 test_bit(WriteMostly, &rdev->flags))
506 continue;
508 if (!atomic_read(&rdev->nr_pending)) {
509 new_disk = disk;
510 break;
512 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
513 if (new_distance < current_distance) {
514 current_distance = new_distance;
515 new_disk = disk;
517 } while (disk != conf->last_used);
519 rb_out:
522 if (new_disk >= 0) {
523 rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
524 if (!rdev)
525 goto retry;
526 atomic_inc(&rdev->nr_pending);
527 if (!test_bit(In_sync, &rdev->flags)) {
528 /* cannot risk returning a device that failed
529 * before we inc'ed nr_pending
531 rdev_dec_pending(rdev, conf->mddev);
532 goto retry;
534 conf->next_seq_sect = this_sector + sectors;
535 conf->last_used = new_disk;
537 rcu_read_unlock();
539 return new_disk;
542 static void unplug_slaves(mddev_t *mddev)
544 conf_t *conf = mddev->private;
545 int i;
547 rcu_read_lock();
548 for (i=0; i<mddev->raid_disks; i++) {
549 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
550 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
551 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
553 atomic_inc(&rdev->nr_pending);
554 rcu_read_unlock();
556 blk_unplug(r_queue);
558 rdev_dec_pending(rdev, mddev);
559 rcu_read_lock();
562 rcu_read_unlock();
565 static void raid1_unplug(struct request_queue *q)
567 mddev_t *mddev = q->queuedata;
569 unplug_slaves(mddev);
570 md_wakeup_thread(mddev->thread);
573 static int raid1_congested(void *data, int bits)
575 mddev_t *mddev = data;
576 conf_t *conf = mddev->private;
577 int i, ret = 0;
579 if (mddev_congested(mddev, bits))
580 return 1;
582 rcu_read_lock();
583 for (i = 0; i < mddev->raid_disks; i++) {
584 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
585 if (rdev && !test_bit(Faulty, &rdev->flags)) {
586 struct request_queue *q = bdev_get_queue(rdev->bdev);
588 /* Note the '|| 1' - when read_balance prefers
589 * non-congested targets, it can be removed
591 if ((bits & (1<<BDI_async_congested)) || 1)
592 ret |= bdi_congested(&q->backing_dev_info, bits);
593 else
594 ret &= bdi_congested(&q->backing_dev_info, bits);
597 rcu_read_unlock();
598 return ret;
602 static int flush_pending_writes(conf_t *conf)
604 /* Any writes that have been queued but are awaiting
605 * bitmap updates get flushed here.
606 * We return 1 if any requests were actually submitted.
608 int rv = 0;
610 spin_lock_irq(&conf->device_lock);
612 if (conf->pending_bio_list.head) {
613 struct bio *bio;
614 bio = bio_list_get(&conf->pending_bio_list);
615 blk_remove_plug(conf->mddev->queue);
616 spin_unlock_irq(&conf->device_lock);
617 /* flush any pending bitmap writes to
618 * disk before proceeding w/ I/O */
619 bitmap_unplug(conf->mddev->bitmap);
621 while (bio) { /* submit pending writes */
622 struct bio *next = bio->bi_next;
623 bio->bi_next = NULL;
624 generic_make_request(bio);
625 bio = next;
627 rv = 1;
628 } else
629 spin_unlock_irq(&conf->device_lock);
630 return rv;
633 /* Barriers....
634 * Sometimes we need to suspend IO while we do something else,
635 * either some resync/recovery, or reconfigure the array.
636 * To do this we raise a 'barrier'.
637 * The 'barrier' is a counter that can be raised multiple times
638 * to count how many activities are happening which preclude
639 * normal IO.
640 * We can only raise the barrier if there is no pending IO.
641 * i.e. if nr_pending == 0.
642 * We choose only to raise the barrier if no-one is waiting for the
643 * barrier to go down. This means that as soon as an IO request
644 * is ready, no other operations which require a barrier will start
645 * until the IO request has had a chance.
647 * So: regular IO calls 'wait_barrier'. When that returns there
648 * is no backgroup IO happening, It must arrange to call
649 * allow_barrier when it has finished its IO.
650 * backgroup IO calls must call raise_barrier. Once that returns
651 * there is no normal IO happeing. It must arrange to call
652 * lower_barrier when the particular background IO completes.
654 #define RESYNC_DEPTH 32
656 static void raise_barrier(conf_t *conf)
658 spin_lock_irq(&conf->resync_lock);
660 /* Wait until no block IO is waiting */
661 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
662 conf->resync_lock,
663 raid1_unplug(conf->mddev->queue));
665 /* block any new IO from starting */
666 conf->barrier++;
668 /* No wait for all pending IO to complete */
669 wait_event_lock_irq(conf->wait_barrier,
670 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
671 conf->resync_lock,
672 raid1_unplug(conf->mddev->queue));
674 spin_unlock_irq(&conf->resync_lock);
677 static void lower_barrier(conf_t *conf)
679 unsigned long flags;
680 spin_lock_irqsave(&conf->resync_lock, flags);
681 conf->barrier--;
682 spin_unlock_irqrestore(&conf->resync_lock, flags);
683 wake_up(&conf->wait_barrier);
686 static void wait_barrier(conf_t *conf)
688 spin_lock_irq(&conf->resync_lock);
689 if (conf->barrier) {
690 conf->nr_waiting++;
691 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
692 conf->resync_lock,
693 raid1_unplug(conf->mddev->queue));
694 conf->nr_waiting--;
696 conf->nr_pending++;
697 spin_unlock_irq(&conf->resync_lock);
700 static void allow_barrier(conf_t *conf)
702 unsigned long flags;
703 spin_lock_irqsave(&conf->resync_lock, flags);
704 conf->nr_pending--;
705 spin_unlock_irqrestore(&conf->resync_lock, flags);
706 wake_up(&conf->wait_barrier);
709 static void freeze_array(conf_t *conf)
711 /* stop syncio and normal IO and wait for everything to
712 * go quite.
713 * We increment barrier and nr_waiting, and then
714 * wait until nr_pending match nr_queued+1
715 * This is called in the context of one normal IO request
716 * that has failed. Thus any sync request that might be pending
717 * will be blocked by nr_pending, and we need to wait for
718 * pending IO requests to complete or be queued for re-try.
719 * Thus the number queued (nr_queued) plus this request (1)
720 * must match the number of pending IOs (nr_pending) before
721 * we continue.
723 spin_lock_irq(&conf->resync_lock);
724 conf->barrier++;
725 conf->nr_waiting++;
726 wait_event_lock_irq(conf->wait_barrier,
727 conf->nr_pending == conf->nr_queued+1,
728 conf->resync_lock,
729 ({ flush_pending_writes(conf);
730 raid1_unplug(conf->mddev->queue); }));
731 spin_unlock_irq(&conf->resync_lock);
733 static void unfreeze_array(conf_t *conf)
735 /* reverse the effect of the freeze */
736 spin_lock_irq(&conf->resync_lock);
737 conf->barrier--;
738 conf->nr_waiting--;
739 wake_up(&conf->wait_barrier);
740 spin_unlock_irq(&conf->resync_lock);
744 /* duplicate the data pages for behind I/O */
745 static struct page **alloc_behind_pages(struct bio *bio)
747 int i;
748 struct bio_vec *bvec;
749 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
750 GFP_NOIO);
751 if (unlikely(!pages))
752 goto do_sync_io;
754 bio_for_each_segment(bvec, bio, i) {
755 pages[i] = alloc_page(GFP_NOIO);
756 if (unlikely(!pages[i]))
757 goto do_sync_io;
758 memcpy(kmap(pages[i]) + bvec->bv_offset,
759 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
760 kunmap(pages[i]);
761 kunmap(bvec->bv_page);
764 return pages;
766 do_sync_io:
767 if (pages)
768 for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
769 put_page(pages[i]);
770 kfree(pages);
771 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
772 return NULL;
775 static int make_request(struct request_queue *q, struct bio * bio)
777 mddev_t *mddev = q->queuedata;
778 conf_t *conf = mddev->private;
779 mirror_info_t *mirror;
780 r1bio_t *r1_bio;
781 struct bio *read_bio;
782 int i, targets = 0, disks;
783 struct bitmap *bitmap;
784 unsigned long flags;
785 struct bio_list bl;
786 struct page **behind_pages = NULL;
787 const int rw = bio_data_dir(bio);
788 const bool do_sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
789 int cpu;
790 bool do_barriers;
791 mdk_rdev_t *blocked_rdev;
794 * Register the new request and wait if the reconstruction
795 * thread has put up a bar for new requests.
796 * Continue immediately if no resync is active currently.
797 * We test barriers_work *after* md_write_start as md_write_start
798 * may cause the first superblock write, and that will check out
799 * if barriers work.
802 md_write_start(mddev, bio); /* wait on superblock update early */
804 if (unlikely(!mddev->barriers_work &&
805 bio_rw_flagged(bio, BIO_RW_BARRIER))) {
806 if (rw == WRITE)
807 md_write_end(mddev);
808 bio_endio(bio, -EOPNOTSUPP);
809 return 0;
812 wait_barrier(conf);
814 bitmap = mddev->bitmap;
816 cpu = part_stat_lock();
817 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
818 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
819 bio_sectors(bio));
820 part_stat_unlock();
823 * make_request() can abort the operation when READA is being
824 * used and no empty request is available.
827 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
829 r1_bio->master_bio = bio;
830 r1_bio->sectors = bio->bi_size >> 9;
831 r1_bio->state = 0;
832 r1_bio->mddev = mddev;
833 r1_bio->sector = bio->bi_sector;
835 if (rw == READ) {
837 * read balancing logic:
839 int rdisk = read_balance(conf, r1_bio);
841 if (rdisk < 0) {
842 /* couldn't find anywhere to read from */
843 raid_end_bio_io(r1_bio);
844 return 0;
846 mirror = conf->mirrors + rdisk;
848 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
849 bitmap) {
850 /* Reading from a write-mostly device must
851 * take care not to over-take any writes
852 * that are 'behind'
854 wait_event(bitmap->behind_wait,
855 atomic_read(&bitmap->behind_writes) == 0);
857 r1_bio->read_disk = rdisk;
859 read_bio = bio_clone(bio, GFP_NOIO);
861 r1_bio->bios[rdisk] = read_bio;
863 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
864 read_bio->bi_bdev = mirror->rdev->bdev;
865 read_bio->bi_end_io = raid1_end_read_request;
866 read_bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
867 read_bio->bi_private = r1_bio;
869 generic_make_request(read_bio);
870 return 0;
874 * WRITE:
876 /* first select target devices under spinlock and
877 * inc refcount on their rdev. Record them by setting
878 * bios[x] to bio
880 disks = conf->raid_disks;
881 #if 0
882 { static int first=1;
883 if (first) printk("First Write sector %llu disks %d\n",
884 (unsigned long long)r1_bio->sector, disks);
885 first = 0;
887 #endif
888 retry_write:
889 blocked_rdev = NULL;
890 rcu_read_lock();
891 for (i = 0; i < disks; i++) {
892 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
893 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
894 atomic_inc(&rdev->nr_pending);
895 blocked_rdev = rdev;
896 break;
898 if (rdev && !test_bit(Faulty, &rdev->flags)) {
899 atomic_inc(&rdev->nr_pending);
900 if (test_bit(Faulty, &rdev->flags)) {
901 rdev_dec_pending(rdev, mddev);
902 r1_bio->bios[i] = NULL;
903 } else {
904 r1_bio->bios[i] = bio;
905 targets++;
907 } else
908 r1_bio->bios[i] = NULL;
910 rcu_read_unlock();
912 if (unlikely(blocked_rdev)) {
913 /* Wait for this device to become unblocked */
914 int j;
916 for (j = 0; j < i; j++)
917 if (r1_bio->bios[j])
918 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
920 allow_barrier(conf);
921 md_wait_for_blocked_rdev(blocked_rdev, mddev);
922 wait_barrier(conf);
923 goto retry_write;
926 BUG_ON(targets == 0); /* we never fail the last device */
928 if (targets < conf->raid_disks) {
929 /* array is degraded, we will not clear the bitmap
930 * on I/O completion (see raid1_end_write_request) */
931 set_bit(R1BIO_Degraded, &r1_bio->state);
934 /* do behind I/O ?
935 * Not if there are too many, or cannot allocate memory,
936 * or a reader on WriteMostly is waiting for behind writes
937 * to flush */
938 if (bitmap &&
939 atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
940 !waitqueue_active(&bitmap->behind_wait) &&
941 (behind_pages = alloc_behind_pages(bio)) != NULL)
942 set_bit(R1BIO_BehindIO, &r1_bio->state);
944 atomic_set(&r1_bio->remaining, 0);
945 atomic_set(&r1_bio->behind_remaining, 0);
947 do_barriers = bio_rw_flagged(bio, BIO_RW_BARRIER);
948 if (do_barriers)
949 set_bit(R1BIO_Barrier, &r1_bio->state);
951 bio_list_init(&bl);
952 for (i = 0; i < disks; i++) {
953 struct bio *mbio;
954 if (!r1_bio->bios[i])
955 continue;
957 mbio = bio_clone(bio, GFP_NOIO);
958 r1_bio->bios[i] = mbio;
960 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
961 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
962 mbio->bi_end_io = raid1_end_write_request;
963 mbio->bi_rw = WRITE | (do_barriers << BIO_RW_BARRIER) |
964 (do_sync << BIO_RW_SYNCIO);
965 mbio->bi_private = r1_bio;
967 if (behind_pages) {
968 struct bio_vec *bvec;
969 int j;
971 /* Yes, I really want the '__' version so that
972 * we clear any unused pointer in the io_vec, rather
973 * than leave them unchanged. This is important
974 * because when we come to free the pages, we won't
975 * know the originial bi_idx, so we just free
976 * them all
978 __bio_for_each_segment(bvec, mbio, j, 0)
979 bvec->bv_page = behind_pages[j];
980 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
981 atomic_inc(&r1_bio->behind_remaining);
984 atomic_inc(&r1_bio->remaining);
986 bio_list_add(&bl, mbio);
988 kfree(behind_pages); /* the behind pages are attached to the bios now */
990 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
991 test_bit(R1BIO_BehindIO, &r1_bio->state));
992 spin_lock_irqsave(&conf->device_lock, flags);
993 bio_list_merge(&conf->pending_bio_list, &bl);
994 bio_list_init(&bl);
996 blk_plug_device(mddev->queue);
997 spin_unlock_irqrestore(&conf->device_lock, flags);
999 /* In case raid1d snuck into freeze_array */
1000 wake_up(&conf->wait_barrier);
1002 if (do_sync)
1003 md_wakeup_thread(mddev->thread);
1004 #if 0
1005 while ((bio = bio_list_pop(&bl)) != NULL)
1006 generic_make_request(bio);
1007 #endif
1009 return 0;
1012 static void status(struct seq_file *seq, mddev_t *mddev)
1014 conf_t *conf = mddev->private;
1015 int i;
1017 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1018 conf->raid_disks - mddev->degraded);
1019 rcu_read_lock();
1020 for (i = 0; i < conf->raid_disks; i++) {
1021 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1022 seq_printf(seq, "%s",
1023 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1025 rcu_read_unlock();
1026 seq_printf(seq, "]");
1030 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1032 char b[BDEVNAME_SIZE];
1033 conf_t *conf = mddev->private;
1036 * If it is not operational, then we have already marked it as dead
1037 * else if it is the last working disks, ignore the error, let the
1038 * next level up know.
1039 * else mark the drive as failed
1041 if (test_bit(In_sync, &rdev->flags)
1042 && (conf->raid_disks - mddev->degraded) == 1) {
1044 * Don't fail the drive, act as though we were just a
1045 * normal single drive.
1046 * However don't try a recovery from this drive as
1047 * it is very likely to fail.
1049 mddev->recovery_disabled = 1;
1050 return;
1052 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1053 unsigned long flags;
1054 spin_lock_irqsave(&conf->device_lock, flags);
1055 mddev->degraded++;
1056 set_bit(Faulty, &rdev->flags);
1057 spin_unlock_irqrestore(&conf->device_lock, flags);
1059 * if recovery is running, make sure it aborts.
1061 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1062 } else
1063 set_bit(Faulty, &rdev->flags);
1064 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1065 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device.\n"
1066 "raid1: Operation continuing on %d devices.\n",
1067 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1070 static void print_conf(conf_t *conf)
1072 int i;
1074 printk("RAID1 conf printout:\n");
1075 if (!conf) {
1076 printk("(!conf)\n");
1077 return;
1079 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1080 conf->raid_disks);
1082 rcu_read_lock();
1083 for (i = 0; i < conf->raid_disks; i++) {
1084 char b[BDEVNAME_SIZE];
1085 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1086 if (rdev)
1087 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1088 i, !test_bit(In_sync, &rdev->flags),
1089 !test_bit(Faulty, &rdev->flags),
1090 bdevname(rdev->bdev,b));
1092 rcu_read_unlock();
1095 static void close_sync(conf_t *conf)
1097 wait_barrier(conf);
1098 allow_barrier(conf);
1100 mempool_destroy(conf->r1buf_pool);
1101 conf->r1buf_pool = NULL;
1104 static int raid1_spare_active(mddev_t *mddev)
1106 int i;
1107 conf_t *conf = mddev->private;
1110 * Find all failed disks within the RAID1 configuration
1111 * and mark them readable.
1112 * Called under mddev lock, so rcu protection not needed.
1114 for (i = 0; i < conf->raid_disks; i++) {
1115 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1116 if (rdev
1117 && !test_bit(Faulty, &rdev->flags)
1118 && !test_and_set_bit(In_sync, &rdev->flags)) {
1119 unsigned long flags;
1120 spin_lock_irqsave(&conf->device_lock, flags);
1121 mddev->degraded--;
1122 spin_unlock_irqrestore(&conf->device_lock, flags);
1126 print_conf(conf);
1127 return 0;
1131 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1133 conf_t *conf = mddev->private;
1134 int err = -EEXIST;
1135 int mirror = 0;
1136 mirror_info_t *p;
1137 int first = 0;
1138 int last = mddev->raid_disks - 1;
1140 if (rdev->raid_disk >= 0)
1141 first = last = rdev->raid_disk;
1143 for (mirror = first; mirror <= last; mirror++)
1144 if ( !(p=conf->mirrors+mirror)->rdev) {
1146 disk_stack_limits(mddev->gendisk, rdev->bdev,
1147 rdev->data_offset << 9);
1148 /* as we don't honour merge_bvec_fn, we must never risk
1149 * violating it, so limit ->max_sector to one PAGE, as
1150 * a one page request is never in violation.
1152 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1153 queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9))
1154 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1156 p->head_position = 0;
1157 rdev->raid_disk = mirror;
1158 err = 0;
1159 /* As all devices are equivalent, we don't need a full recovery
1160 * if this was recently any drive of the array
1162 if (rdev->saved_raid_disk < 0)
1163 conf->fullsync = 1;
1164 rcu_assign_pointer(p->rdev, rdev);
1165 break;
1167 md_integrity_add_rdev(rdev, mddev);
1168 print_conf(conf);
1169 return err;
1172 static int raid1_remove_disk(mddev_t *mddev, int number)
1174 conf_t *conf = mddev->private;
1175 int err = 0;
1176 mdk_rdev_t *rdev;
1177 mirror_info_t *p = conf->mirrors+ number;
1179 print_conf(conf);
1180 rdev = p->rdev;
1181 if (rdev) {
1182 if (test_bit(In_sync, &rdev->flags) ||
1183 atomic_read(&rdev->nr_pending)) {
1184 err = -EBUSY;
1185 goto abort;
1187 /* Only remove non-faulty devices is recovery
1188 * is not possible.
1190 if (!test_bit(Faulty, &rdev->flags) &&
1191 !mddev->recovery_disabled &&
1192 mddev->degraded < conf->raid_disks) {
1193 err = -EBUSY;
1194 goto abort;
1196 p->rdev = NULL;
1197 synchronize_rcu();
1198 if (atomic_read(&rdev->nr_pending)) {
1199 /* lost the race, try later */
1200 err = -EBUSY;
1201 p->rdev = rdev;
1202 goto abort;
1204 md_integrity_register(mddev);
1206 abort:
1208 print_conf(conf);
1209 return err;
1213 static void end_sync_read(struct bio *bio, int error)
1215 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1216 int i;
1218 for (i=r1_bio->mddev->raid_disks; i--; )
1219 if (r1_bio->bios[i] == bio)
1220 break;
1221 BUG_ON(i < 0);
1222 update_head_pos(i, r1_bio);
1224 * we have read a block, now it needs to be re-written,
1225 * or re-read if the read failed.
1226 * We don't do much here, just schedule handling by raid1d
1228 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1229 set_bit(R1BIO_Uptodate, &r1_bio->state);
1231 if (atomic_dec_and_test(&r1_bio->remaining))
1232 reschedule_retry(r1_bio);
1235 static void end_sync_write(struct bio *bio, int error)
1237 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1238 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1239 mddev_t *mddev = r1_bio->mddev;
1240 conf_t *conf = mddev->private;
1241 int i;
1242 int mirror=0;
1244 for (i = 0; i < conf->raid_disks; i++)
1245 if (r1_bio->bios[i] == bio) {
1246 mirror = i;
1247 break;
1249 if (!uptodate) {
1250 int sync_blocks = 0;
1251 sector_t s = r1_bio->sector;
1252 long sectors_to_go = r1_bio->sectors;
1253 /* make sure these bits doesn't get cleared. */
1254 do {
1255 bitmap_end_sync(mddev->bitmap, s,
1256 &sync_blocks, 1);
1257 s += sync_blocks;
1258 sectors_to_go -= sync_blocks;
1259 } while (sectors_to_go > 0);
1260 md_error(mddev, conf->mirrors[mirror].rdev);
1263 update_head_pos(mirror, r1_bio);
1265 if (atomic_dec_and_test(&r1_bio->remaining)) {
1266 sector_t s = r1_bio->sectors;
1267 put_buf(r1_bio);
1268 md_done_sync(mddev, s, uptodate);
1272 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1274 conf_t *conf = mddev->private;
1275 int i;
1276 int disks = conf->raid_disks;
1277 struct bio *bio, *wbio;
1279 bio = r1_bio->bios[r1_bio->read_disk];
1282 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1283 /* We have read all readable devices. If we haven't
1284 * got the block, then there is no hope left.
1285 * If we have, then we want to do a comparison
1286 * and skip the write if everything is the same.
1287 * If any blocks failed to read, then we need to
1288 * attempt an over-write
1290 int primary;
1291 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1292 for (i=0; i<mddev->raid_disks; i++)
1293 if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1294 md_error(mddev, conf->mirrors[i].rdev);
1296 md_done_sync(mddev, r1_bio->sectors, 1);
1297 put_buf(r1_bio);
1298 return;
1300 for (primary=0; primary<mddev->raid_disks; primary++)
1301 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1302 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1303 r1_bio->bios[primary]->bi_end_io = NULL;
1304 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1305 break;
1307 r1_bio->read_disk = primary;
1308 for (i=0; i<mddev->raid_disks; i++)
1309 if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1310 int j;
1311 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1312 struct bio *pbio = r1_bio->bios[primary];
1313 struct bio *sbio = r1_bio->bios[i];
1315 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1316 for (j = vcnt; j-- ; ) {
1317 struct page *p, *s;
1318 p = pbio->bi_io_vec[j].bv_page;
1319 s = sbio->bi_io_vec[j].bv_page;
1320 if (memcmp(page_address(p),
1321 page_address(s),
1322 PAGE_SIZE))
1323 break;
1325 } else
1326 j = 0;
1327 if (j >= 0)
1328 mddev->resync_mismatches += r1_bio->sectors;
1329 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1330 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1331 sbio->bi_end_io = NULL;
1332 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1333 } else {
1334 /* fixup the bio for reuse */
1335 int size;
1336 sbio->bi_vcnt = vcnt;
1337 sbio->bi_size = r1_bio->sectors << 9;
1338 sbio->bi_idx = 0;
1339 sbio->bi_phys_segments = 0;
1340 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1341 sbio->bi_flags |= 1 << BIO_UPTODATE;
1342 sbio->bi_next = NULL;
1343 sbio->bi_sector = r1_bio->sector +
1344 conf->mirrors[i].rdev->data_offset;
1345 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1346 size = sbio->bi_size;
1347 for (j = 0; j < vcnt ; j++) {
1348 struct bio_vec *bi;
1349 bi = &sbio->bi_io_vec[j];
1350 bi->bv_offset = 0;
1351 if (size > PAGE_SIZE)
1352 bi->bv_len = PAGE_SIZE;
1353 else
1354 bi->bv_len = size;
1355 size -= PAGE_SIZE;
1356 memcpy(page_address(bi->bv_page),
1357 page_address(pbio->bi_io_vec[j].bv_page),
1358 PAGE_SIZE);
1364 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1365 /* ouch - failed to read all of that.
1366 * Try some synchronous reads of other devices to get
1367 * good data, much like with normal read errors. Only
1368 * read into the pages we already have so we don't
1369 * need to re-issue the read request.
1370 * We don't need to freeze the array, because being in an
1371 * active sync request, there is no normal IO, and
1372 * no overlapping syncs.
1374 sector_t sect = r1_bio->sector;
1375 int sectors = r1_bio->sectors;
1376 int idx = 0;
1378 while(sectors) {
1379 int s = sectors;
1380 int d = r1_bio->read_disk;
1381 int success = 0;
1382 mdk_rdev_t *rdev;
1384 if (s > (PAGE_SIZE>>9))
1385 s = PAGE_SIZE >> 9;
1386 do {
1387 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1388 /* No rcu protection needed here devices
1389 * can only be removed when no resync is
1390 * active, and resync is currently active
1392 rdev = conf->mirrors[d].rdev;
1393 if (sync_page_io(rdev->bdev,
1394 sect + rdev->data_offset,
1395 s<<9,
1396 bio->bi_io_vec[idx].bv_page,
1397 READ)) {
1398 success = 1;
1399 break;
1402 d++;
1403 if (d == conf->raid_disks)
1404 d = 0;
1405 } while (!success && d != r1_bio->read_disk);
1407 if (success) {
1408 int start = d;
1409 /* write it back and re-read */
1410 set_bit(R1BIO_Uptodate, &r1_bio->state);
1411 while (d != r1_bio->read_disk) {
1412 if (d == 0)
1413 d = conf->raid_disks;
1414 d--;
1415 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1416 continue;
1417 rdev = conf->mirrors[d].rdev;
1418 atomic_add(s, &rdev->corrected_errors);
1419 if (sync_page_io(rdev->bdev,
1420 sect + rdev->data_offset,
1421 s<<9,
1422 bio->bi_io_vec[idx].bv_page,
1423 WRITE) == 0)
1424 md_error(mddev, rdev);
1426 d = start;
1427 while (d != r1_bio->read_disk) {
1428 if (d == 0)
1429 d = conf->raid_disks;
1430 d--;
1431 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1432 continue;
1433 rdev = conf->mirrors[d].rdev;
1434 if (sync_page_io(rdev->bdev,
1435 sect + rdev->data_offset,
1436 s<<9,
1437 bio->bi_io_vec[idx].bv_page,
1438 READ) == 0)
1439 md_error(mddev, rdev);
1441 } else {
1442 char b[BDEVNAME_SIZE];
1443 /* Cannot read from anywhere, array is toast */
1444 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1445 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1446 " for block %llu\n",
1447 bdevname(bio->bi_bdev,b),
1448 (unsigned long long)r1_bio->sector);
1449 md_done_sync(mddev, r1_bio->sectors, 0);
1450 put_buf(r1_bio);
1451 return;
1453 sectors -= s;
1454 sect += s;
1455 idx ++;
1460 * schedule writes
1462 atomic_set(&r1_bio->remaining, 1);
1463 for (i = 0; i < disks ; i++) {
1464 wbio = r1_bio->bios[i];
1465 if (wbio->bi_end_io == NULL ||
1466 (wbio->bi_end_io == end_sync_read &&
1467 (i == r1_bio->read_disk ||
1468 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1469 continue;
1471 wbio->bi_rw = WRITE;
1472 wbio->bi_end_io = end_sync_write;
1473 atomic_inc(&r1_bio->remaining);
1474 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1476 generic_make_request(wbio);
1479 if (atomic_dec_and_test(&r1_bio->remaining)) {
1480 /* if we're here, all write(s) have completed, so clean up */
1481 md_done_sync(mddev, r1_bio->sectors, 1);
1482 put_buf(r1_bio);
1487 * This is a kernel thread which:
1489 * 1. Retries failed read operations on working mirrors.
1490 * 2. Updates the raid superblock when problems encounter.
1491 * 3. Performs writes following reads for array syncronising.
1494 static void fix_read_error(conf_t *conf, int read_disk,
1495 sector_t sect, int sectors)
1497 mddev_t *mddev = conf->mddev;
1498 while(sectors) {
1499 int s = sectors;
1500 int d = read_disk;
1501 int success = 0;
1502 int start;
1503 mdk_rdev_t *rdev;
1505 if (s > (PAGE_SIZE>>9))
1506 s = PAGE_SIZE >> 9;
1508 do {
1509 /* Note: no rcu protection needed here
1510 * as this is synchronous in the raid1d thread
1511 * which is the thread that might remove
1512 * a device. If raid1d ever becomes multi-threaded....
1514 rdev = conf->mirrors[d].rdev;
1515 if (rdev &&
1516 test_bit(In_sync, &rdev->flags) &&
1517 sync_page_io(rdev->bdev,
1518 sect + rdev->data_offset,
1519 s<<9,
1520 conf->tmppage, READ))
1521 success = 1;
1522 else {
1523 d++;
1524 if (d == conf->raid_disks)
1525 d = 0;
1527 } while (!success && d != read_disk);
1529 if (!success) {
1530 /* Cannot read from anywhere -- bye bye array */
1531 md_error(mddev, conf->mirrors[read_disk].rdev);
1532 break;
1534 /* write it back and re-read */
1535 start = d;
1536 while (d != read_disk) {
1537 if (d==0)
1538 d = conf->raid_disks;
1539 d--;
1540 rdev = conf->mirrors[d].rdev;
1541 if (rdev &&
1542 test_bit(In_sync, &rdev->flags)) {
1543 if (sync_page_io(rdev->bdev,
1544 sect + rdev->data_offset,
1545 s<<9, conf->tmppage, WRITE)
1546 == 0)
1547 /* Well, this device is dead */
1548 md_error(mddev, rdev);
1551 d = start;
1552 while (d != read_disk) {
1553 char b[BDEVNAME_SIZE];
1554 if (d==0)
1555 d = conf->raid_disks;
1556 d--;
1557 rdev = conf->mirrors[d].rdev;
1558 if (rdev &&
1559 test_bit(In_sync, &rdev->flags)) {
1560 if (sync_page_io(rdev->bdev,
1561 sect + rdev->data_offset,
1562 s<<9, conf->tmppage, READ)
1563 == 0)
1564 /* Well, this device is dead */
1565 md_error(mddev, rdev);
1566 else {
1567 atomic_add(s, &rdev->corrected_errors);
1568 printk(KERN_INFO
1569 "raid1:%s: read error corrected "
1570 "(%d sectors at %llu on %s)\n",
1571 mdname(mddev), s,
1572 (unsigned long long)(sect +
1573 rdev->data_offset),
1574 bdevname(rdev->bdev, b));
1578 sectors -= s;
1579 sect += s;
1583 static void raid1d(mddev_t *mddev)
1585 r1bio_t *r1_bio;
1586 struct bio *bio;
1587 unsigned long flags;
1588 conf_t *conf = mddev->private;
1589 struct list_head *head = &conf->retry_list;
1590 int unplug=0;
1591 mdk_rdev_t *rdev;
1593 md_check_recovery(mddev);
1595 for (;;) {
1596 char b[BDEVNAME_SIZE];
1598 unplug += flush_pending_writes(conf);
1600 spin_lock_irqsave(&conf->device_lock, flags);
1601 if (list_empty(head)) {
1602 spin_unlock_irqrestore(&conf->device_lock, flags);
1603 break;
1605 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1606 list_del(head->prev);
1607 conf->nr_queued--;
1608 spin_unlock_irqrestore(&conf->device_lock, flags);
1610 mddev = r1_bio->mddev;
1611 conf = mddev->private;
1612 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1613 sync_request_write(mddev, r1_bio);
1614 unplug = 1;
1615 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1616 /* some requests in the r1bio were BIO_RW_BARRIER
1617 * requests which failed with -EOPNOTSUPP. Hohumm..
1618 * Better resubmit without the barrier.
1619 * We know which devices to resubmit for, because
1620 * all others have had their bios[] entry cleared.
1621 * We already have a nr_pending reference on these rdevs.
1623 int i;
1624 const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO);
1625 clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1626 clear_bit(R1BIO_Barrier, &r1_bio->state);
1627 for (i=0; i < conf->raid_disks; i++)
1628 if (r1_bio->bios[i])
1629 atomic_inc(&r1_bio->remaining);
1630 for (i=0; i < conf->raid_disks; i++)
1631 if (r1_bio->bios[i]) {
1632 struct bio_vec *bvec;
1633 int j;
1635 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1636 /* copy pages from the failed bio, as
1637 * this might be a write-behind device */
1638 __bio_for_each_segment(bvec, bio, j, 0)
1639 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1640 bio_put(r1_bio->bios[i]);
1641 bio->bi_sector = r1_bio->sector +
1642 conf->mirrors[i].rdev->data_offset;
1643 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1644 bio->bi_end_io = raid1_end_write_request;
1645 bio->bi_rw = WRITE |
1646 (do_sync << BIO_RW_SYNCIO);
1647 bio->bi_private = r1_bio;
1648 r1_bio->bios[i] = bio;
1649 generic_make_request(bio);
1651 } else {
1652 int disk;
1654 /* we got a read error. Maybe the drive is bad. Maybe just
1655 * the block and we can fix it.
1656 * We freeze all other IO, and try reading the block from
1657 * other devices. When we find one, we re-write
1658 * and check it that fixes the read error.
1659 * This is all done synchronously while the array is
1660 * frozen
1662 if (mddev->ro == 0) {
1663 freeze_array(conf);
1664 fix_read_error(conf, r1_bio->read_disk,
1665 r1_bio->sector,
1666 r1_bio->sectors);
1667 unfreeze_array(conf);
1668 } else
1669 md_error(mddev,
1670 conf->mirrors[r1_bio->read_disk].rdev);
1672 bio = r1_bio->bios[r1_bio->read_disk];
1673 if ((disk=read_balance(conf, r1_bio)) == -1) {
1674 printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1675 " read error for block %llu\n",
1676 bdevname(bio->bi_bdev,b),
1677 (unsigned long long)r1_bio->sector);
1678 raid_end_bio_io(r1_bio);
1679 } else {
1680 const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO);
1681 r1_bio->bios[r1_bio->read_disk] =
1682 mddev->ro ? IO_BLOCKED : NULL;
1683 r1_bio->read_disk = disk;
1684 bio_put(bio);
1685 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1686 r1_bio->bios[r1_bio->read_disk] = bio;
1687 rdev = conf->mirrors[disk].rdev;
1688 if (printk_ratelimit())
1689 printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1690 " another mirror\n",
1691 bdevname(rdev->bdev,b),
1692 (unsigned long long)r1_bio->sector);
1693 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1694 bio->bi_bdev = rdev->bdev;
1695 bio->bi_end_io = raid1_end_read_request;
1696 bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
1697 bio->bi_private = r1_bio;
1698 unplug = 1;
1699 generic_make_request(bio);
1702 cond_resched();
1704 if (unplug)
1705 unplug_slaves(mddev);
1709 static int init_resync(conf_t *conf)
1711 int buffs;
1713 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1714 BUG_ON(conf->r1buf_pool);
1715 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1716 conf->poolinfo);
1717 if (!conf->r1buf_pool)
1718 return -ENOMEM;
1719 conf->next_resync = 0;
1720 return 0;
1724 * perform a "sync" on one "block"
1726 * We need to make sure that no normal I/O request - particularly write
1727 * requests - conflict with active sync requests.
1729 * This is achieved by tracking pending requests and a 'barrier' concept
1730 * that can be installed to exclude normal IO requests.
1733 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1735 conf_t *conf = mddev->private;
1736 r1bio_t *r1_bio;
1737 struct bio *bio;
1738 sector_t max_sector, nr_sectors;
1739 int disk = -1;
1740 int i;
1741 int wonly = -1;
1742 int write_targets = 0, read_targets = 0;
1743 int sync_blocks;
1744 int still_degraded = 0;
1746 if (!conf->r1buf_pool)
1749 printk("sync start - bitmap %p\n", mddev->bitmap);
1751 if (init_resync(conf))
1752 return 0;
1755 max_sector = mddev->dev_sectors;
1756 if (sector_nr >= max_sector) {
1757 /* If we aborted, we need to abort the
1758 * sync on the 'current' bitmap chunk (there will
1759 * only be one in raid1 resync.
1760 * We can find the current addess in mddev->curr_resync
1762 if (mddev->curr_resync < max_sector) /* aborted */
1763 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1764 &sync_blocks, 1);
1765 else /* completed sync */
1766 conf->fullsync = 0;
1768 bitmap_close_sync(mddev->bitmap);
1769 close_sync(conf);
1770 return 0;
1773 if (mddev->bitmap == NULL &&
1774 mddev->recovery_cp == MaxSector &&
1775 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1776 conf->fullsync == 0) {
1777 *skipped = 1;
1778 return max_sector - sector_nr;
1780 /* before building a request, check if we can skip these blocks..
1781 * This call the bitmap_start_sync doesn't actually record anything
1783 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1784 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1785 /* We can skip this block, and probably several more */
1786 *skipped = 1;
1787 return sync_blocks;
1790 * If there is non-resync activity waiting for a turn,
1791 * and resync is going fast enough,
1792 * then let it though before starting on this new sync request.
1794 if (!go_faster && conf->nr_waiting)
1795 msleep_interruptible(1000);
1797 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1798 raise_barrier(conf);
1800 conf->next_resync = sector_nr;
1802 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1803 rcu_read_lock();
1805 * If we get a correctably read error during resync or recovery,
1806 * we might want to read from a different device. So we
1807 * flag all drives that could conceivably be read from for READ,
1808 * and any others (which will be non-In_sync devices) for WRITE.
1809 * If a read fails, we try reading from something else for which READ
1810 * is OK.
1813 r1_bio->mddev = mddev;
1814 r1_bio->sector = sector_nr;
1815 r1_bio->state = 0;
1816 set_bit(R1BIO_IsSync, &r1_bio->state);
1818 for (i=0; i < conf->raid_disks; i++) {
1819 mdk_rdev_t *rdev;
1820 bio = r1_bio->bios[i];
1822 /* take from bio_init */
1823 bio->bi_next = NULL;
1824 bio->bi_flags |= 1 << BIO_UPTODATE;
1825 bio->bi_rw = READ;
1826 bio->bi_vcnt = 0;
1827 bio->bi_idx = 0;
1828 bio->bi_phys_segments = 0;
1829 bio->bi_size = 0;
1830 bio->bi_end_io = NULL;
1831 bio->bi_private = NULL;
1833 rdev = rcu_dereference(conf->mirrors[i].rdev);
1834 if (rdev == NULL ||
1835 test_bit(Faulty, &rdev->flags)) {
1836 still_degraded = 1;
1837 continue;
1838 } else if (!test_bit(In_sync, &rdev->flags)) {
1839 bio->bi_rw = WRITE;
1840 bio->bi_end_io = end_sync_write;
1841 write_targets ++;
1842 } else {
1843 /* may need to read from here */
1844 bio->bi_rw = READ;
1845 bio->bi_end_io = end_sync_read;
1846 if (test_bit(WriteMostly, &rdev->flags)) {
1847 if (wonly < 0)
1848 wonly = i;
1849 } else {
1850 if (disk < 0)
1851 disk = i;
1853 read_targets++;
1855 atomic_inc(&rdev->nr_pending);
1856 bio->bi_sector = sector_nr + rdev->data_offset;
1857 bio->bi_bdev = rdev->bdev;
1858 bio->bi_private = r1_bio;
1860 rcu_read_unlock();
1861 if (disk < 0)
1862 disk = wonly;
1863 r1_bio->read_disk = disk;
1865 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1866 /* extra read targets are also write targets */
1867 write_targets += read_targets-1;
1869 if (write_targets == 0 || read_targets == 0) {
1870 /* There is nowhere to write, so all non-sync
1871 * drives must be failed - so we are finished
1873 sector_t rv = max_sector - sector_nr;
1874 *skipped = 1;
1875 put_buf(r1_bio);
1876 return rv;
1879 if (max_sector > mddev->resync_max)
1880 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1881 nr_sectors = 0;
1882 sync_blocks = 0;
1883 do {
1884 struct page *page;
1885 int len = PAGE_SIZE;
1886 if (sector_nr + (len>>9) > max_sector)
1887 len = (max_sector - sector_nr) << 9;
1888 if (len == 0)
1889 break;
1890 if (sync_blocks == 0) {
1891 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1892 &sync_blocks, still_degraded) &&
1893 !conf->fullsync &&
1894 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1895 break;
1896 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1897 if (len > (sync_blocks<<9))
1898 len = sync_blocks<<9;
1901 for (i=0 ; i < conf->raid_disks; i++) {
1902 bio = r1_bio->bios[i];
1903 if (bio->bi_end_io) {
1904 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1905 if (bio_add_page(bio, page, len, 0) == 0) {
1906 /* stop here */
1907 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1908 while (i > 0) {
1909 i--;
1910 bio = r1_bio->bios[i];
1911 if (bio->bi_end_io==NULL)
1912 continue;
1913 /* remove last page from this bio */
1914 bio->bi_vcnt--;
1915 bio->bi_size -= len;
1916 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1918 goto bio_full;
1922 nr_sectors += len>>9;
1923 sector_nr += len>>9;
1924 sync_blocks -= (len>>9);
1925 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1926 bio_full:
1927 r1_bio->sectors = nr_sectors;
1929 /* For a user-requested sync, we read all readable devices and do a
1930 * compare
1932 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1933 atomic_set(&r1_bio->remaining, read_targets);
1934 for (i=0; i<conf->raid_disks; i++) {
1935 bio = r1_bio->bios[i];
1936 if (bio->bi_end_io == end_sync_read) {
1937 md_sync_acct(bio->bi_bdev, nr_sectors);
1938 generic_make_request(bio);
1941 } else {
1942 atomic_set(&r1_bio->remaining, 1);
1943 bio = r1_bio->bios[r1_bio->read_disk];
1944 md_sync_acct(bio->bi_bdev, nr_sectors);
1945 generic_make_request(bio);
1948 return nr_sectors;
1951 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
1953 if (sectors)
1954 return sectors;
1956 return mddev->dev_sectors;
1959 static int run(mddev_t *mddev)
1961 conf_t *conf;
1962 int i, j, disk_idx;
1963 mirror_info_t *disk;
1964 mdk_rdev_t *rdev;
1966 if (mddev->level != 1) {
1967 printk("raid1: %s: raid level not set to mirroring (%d)\n",
1968 mdname(mddev), mddev->level);
1969 goto out;
1971 if (mddev->reshape_position != MaxSector) {
1972 printk("raid1: %s: reshape_position set but not supported\n",
1973 mdname(mddev));
1974 goto out;
1977 * copy the already verified devices into our private RAID1
1978 * bookkeeping area. [whatever we allocate in run(),
1979 * should be freed in stop()]
1981 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1982 mddev->private = conf;
1983 if (!conf)
1984 goto out_no_mem;
1986 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1987 GFP_KERNEL);
1988 if (!conf->mirrors)
1989 goto out_no_mem;
1991 conf->tmppage = alloc_page(GFP_KERNEL);
1992 if (!conf->tmppage)
1993 goto out_no_mem;
1995 conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1996 if (!conf->poolinfo)
1997 goto out_no_mem;
1998 conf->poolinfo->mddev = NULL;
1999 conf->poolinfo->raid_disks = mddev->raid_disks;
2000 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2001 r1bio_pool_free,
2002 conf->poolinfo);
2003 if (!conf->r1bio_pool)
2004 goto out_no_mem;
2005 conf->poolinfo->mddev = mddev;
2007 spin_lock_init(&conf->device_lock);
2008 mddev->queue->queue_lock = &conf->device_lock;
2010 list_for_each_entry(rdev, &mddev->disks, same_set) {
2011 disk_idx = rdev->raid_disk;
2012 if (disk_idx >= mddev->raid_disks
2013 || disk_idx < 0)
2014 continue;
2015 disk = conf->mirrors + disk_idx;
2017 disk->rdev = rdev;
2018 disk_stack_limits(mddev->gendisk, rdev->bdev,
2019 rdev->data_offset << 9);
2020 /* as we don't honour merge_bvec_fn, we must never risk
2021 * violating it, so limit ->max_sector to one PAGE, as
2022 * a one page request is never in violation.
2024 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2025 queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9))
2026 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
2028 disk->head_position = 0;
2030 conf->raid_disks = mddev->raid_disks;
2031 conf->mddev = mddev;
2032 INIT_LIST_HEAD(&conf->retry_list);
2034 spin_lock_init(&conf->resync_lock);
2035 init_waitqueue_head(&conf->wait_barrier);
2037 bio_list_init(&conf->pending_bio_list);
2038 bio_list_init(&conf->flushing_bio_list);
2041 mddev->degraded = 0;
2042 for (i = 0; i < conf->raid_disks; i++) {
2044 disk = conf->mirrors + i;
2046 if (!disk->rdev ||
2047 !test_bit(In_sync, &disk->rdev->flags)) {
2048 disk->head_position = 0;
2049 mddev->degraded++;
2050 if (disk->rdev)
2051 conf->fullsync = 1;
2054 if (mddev->degraded == conf->raid_disks) {
2055 printk(KERN_ERR "raid1: no operational mirrors for %s\n",
2056 mdname(mddev));
2057 goto out_free_conf;
2059 if (conf->raid_disks - mddev->degraded == 1)
2060 mddev->recovery_cp = MaxSector;
2063 * find the first working one and use it as a starting point
2064 * to read balancing.
2066 for (j = 0; j < conf->raid_disks &&
2067 (!conf->mirrors[j].rdev ||
2068 !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++)
2069 /* nothing */;
2070 conf->last_used = j;
2073 mddev->thread = md_register_thread(raid1d, mddev, NULL);
2074 if (!mddev->thread) {
2075 printk(KERN_ERR
2076 "raid1: couldn't allocate thread for %s\n",
2077 mdname(mddev));
2078 goto out_free_conf;
2081 if (mddev->recovery_cp != MaxSector)
2082 printk(KERN_NOTICE "raid1: %s is not clean"
2083 " -- starting background reconstruction\n",
2084 mdname(mddev));
2085 printk(KERN_INFO
2086 "raid1: raid set %s active with %d out of %d mirrors\n",
2087 mdname(mddev), mddev->raid_disks - mddev->degraded,
2088 mddev->raid_disks);
2090 * Ok, everything is just fine now
2092 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2094 mddev->queue->unplug_fn = raid1_unplug;
2095 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2096 mddev->queue->backing_dev_info.congested_data = mddev;
2097 md_integrity_register(mddev);
2098 return 0;
2100 out_no_mem:
2101 printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
2102 mdname(mddev));
2104 out_free_conf:
2105 if (conf) {
2106 if (conf->r1bio_pool)
2107 mempool_destroy(conf->r1bio_pool);
2108 kfree(conf->mirrors);
2109 safe_put_page(conf->tmppage);
2110 kfree(conf->poolinfo);
2111 kfree(conf);
2112 mddev->private = NULL;
2114 out:
2115 return -EIO;
2118 static int stop(mddev_t *mddev)
2120 conf_t *conf = mddev->private;
2121 struct bitmap *bitmap = mddev->bitmap;
2123 /* wait for behind writes to complete */
2124 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2125 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop.\n", mdname(mddev));
2126 /* need to kick something here to make sure I/O goes? */
2127 wait_event(bitmap->behind_wait,
2128 atomic_read(&bitmap->behind_writes) == 0);
2131 raise_barrier(conf);
2132 lower_barrier(conf);
2134 md_unregister_thread(mddev->thread);
2135 mddev->thread = NULL;
2136 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2137 if (conf->r1bio_pool)
2138 mempool_destroy(conf->r1bio_pool);
2139 kfree(conf->mirrors);
2140 kfree(conf->poolinfo);
2141 kfree(conf);
2142 mddev->private = NULL;
2143 return 0;
2146 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2148 /* no resync is happening, and there is enough space
2149 * on all devices, so we can resize.
2150 * We need to make sure resync covers any new space.
2151 * If the array is shrinking we should possibly wait until
2152 * any io in the removed space completes, but it hardly seems
2153 * worth it.
2155 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2156 if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2157 return -EINVAL;
2158 set_capacity(mddev->gendisk, mddev->array_sectors);
2159 mddev->changed = 1;
2160 revalidate_disk(mddev->gendisk);
2161 if (sectors > mddev->dev_sectors &&
2162 mddev->recovery_cp == MaxSector) {
2163 mddev->recovery_cp = mddev->dev_sectors;
2164 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2166 mddev->dev_sectors = sectors;
2167 mddev->resync_max_sectors = sectors;
2168 return 0;
2171 static int raid1_reshape(mddev_t *mddev)
2173 /* We need to:
2174 * 1/ resize the r1bio_pool
2175 * 2/ resize conf->mirrors
2177 * We allocate a new r1bio_pool if we can.
2178 * Then raise a device barrier and wait until all IO stops.
2179 * Then resize conf->mirrors and swap in the new r1bio pool.
2181 * At the same time, we "pack" the devices so that all the missing
2182 * devices have the higher raid_disk numbers.
2184 mempool_t *newpool, *oldpool;
2185 struct pool_info *newpoolinfo;
2186 mirror_info_t *newmirrors;
2187 conf_t *conf = mddev->private;
2188 int cnt, raid_disks;
2189 unsigned long flags;
2190 int d, d2, err;
2192 /* Cannot change chunk_size, layout, or level */
2193 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2194 mddev->layout != mddev->new_layout ||
2195 mddev->level != mddev->new_level) {
2196 mddev->new_chunk_sectors = mddev->chunk_sectors;
2197 mddev->new_layout = mddev->layout;
2198 mddev->new_level = mddev->level;
2199 return -EINVAL;
2202 err = md_allow_write(mddev);
2203 if (err)
2204 return err;
2206 raid_disks = mddev->raid_disks + mddev->delta_disks;
2208 if (raid_disks < conf->raid_disks) {
2209 cnt=0;
2210 for (d= 0; d < conf->raid_disks; d++)
2211 if (conf->mirrors[d].rdev)
2212 cnt++;
2213 if (cnt > raid_disks)
2214 return -EBUSY;
2217 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2218 if (!newpoolinfo)
2219 return -ENOMEM;
2220 newpoolinfo->mddev = mddev;
2221 newpoolinfo->raid_disks = raid_disks;
2223 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2224 r1bio_pool_free, newpoolinfo);
2225 if (!newpool) {
2226 kfree(newpoolinfo);
2227 return -ENOMEM;
2229 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2230 if (!newmirrors) {
2231 kfree(newpoolinfo);
2232 mempool_destroy(newpool);
2233 return -ENOMEM;
2236 raise_barrier(conf);
2238 /* ok, everything is stopped */
2239 oldpool = conf->r1bio_pool;
2240 conf->r1bio_pool = newpool;
2242 for (d = d2 = 0; d < conf->raid_disks; d++) {
2243 mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2244 if (rdev && rdev->raid_disk != d2) {
2245 char nm[20];
2246 sprintf(nm, "rd%d", rdev->raid_disk);
2247 sysfs_remove_link(&mddev->kobj, nm);
2248 rdev->raid_disk = d2;
2249 sprintf(nm, "rd%d", rdev->raid_disk);
2250 sysfs_remove_link(&mddev->kobj, nm);
2251 if (sysfs_create_link(&mddev->kobj,
2252 &rdev->kobj, nm))
2253 printk(KERN_WARNING
2254 "md/raid1: cannot register "
2255 "%s for %s\n",
2256 nm, mdname(mddev));
2258 if (rdev)
2259 newmirrors[d2++].rdev = rdev;
2261 kfree(conf->mirrors);
2262 conf->mirrors = newmirrors;
2263 kfree(conf->poolinfo);
2264 conf->poolinfo = newpoolinfo;
2266 spin_lock_irqsave(&conf->device_lock, flags);
2267 mddev->degraded += (raid_disks - conf->raid_disks);
2268 spin_unlock_irqrestore(&conf->device_lock, flags);
2269 conf->raid_disks = mddev->raid_disks = raid_disks;
2270 mddev->delta_disks = 0;
2272 conf->last_used = 0; /* just make sure it is in-range */
2273 lower_barrier(conf);
2275 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2276 md_wakeup_thread(mddev->thread);
2278 mempool_destroy(oldpool);
2279 return 0;
2282 static void raid1_quiesce(mddev_t *mddev, int state)
2284 conf_t *conf = mddev->private;
2286 switch(state) {
2287 case 1:
2288 raise_barrier(conf);
2289 break;
2290 case 0:
2291 lower_barrier(conf);
2292 break;
2297 static struct mdk_personality raid1_personality =
2299 .name = "raid1",
2300 .level = 1,
2301 .owner = THIS_MODULE,
2302 .make_request = make_request,
2303 .run = run,
2304 .stop = stop,
2305 .status = status,
2306 .error_handler = error,
2307 .hot_add_disk = raid1_add_disk,
2308 .hot_remove_disk= raid1_remove_disk,
2309 .spare_active = raid1_spare_active,
2310 .sync_request = sync_request,
2311 .resize = raid1_resize,
2312 .size = raid1_size,
2313 .check_reshape = raid1_reshape,
2314 .quiesce = raid1_quiesce,
2317 static int __init raid_init(void)
2319 return register_md_personality(&raid1_personality);
2322 static void raid_exit(void)
2324 unregister_md_personality(&raid1_personality);
2327 module_init(raid_init);
2328 module_exit(raid_exit);
2329 MODULE_LICENSE("GPL");
2330 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2331 MODULE_ALIAS("md-raid1");
2332 MODULE_ALIAS("md-level-1");