1 /* bnx2.c: Broadcom NX2 network driver.
3 * Copyright (c) 2004-2009 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Written by: Michael Chan (mchan@broadcom.com)
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
16 #include <linux/kernel.h>
17 #include <linux/timer.h>
18 #include <linux/errno.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/interrupt.h>
23 #include <linux/pci.h>
24 #include <linux/init.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/bitops.h>
32 #include <linux/delay.h>
33 #include <asm/byteorder.h>
35 #include <linux/time.h>
36 #include <linux/ethtool.h>
37 #include <linux/mii.h>
38 #include <linux/if_vlan.h>
39 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
44 #include <net/checksum.h>
45 #include <linux/workqueue.h>
46 #include <linux/crc32.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/firmware.h>
50 #include <linux/log2.h>
51 #include <linux/list.h>
53 #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
60 #define DRV_MODULE_NAME "bnx2"
61 #define PFX DRV_MODULE_NAME ": "
62 #define DRV_MODULE_VERSION "2.0.2"
63 #define DRV_MODULE_RELDATE "Aug 21, 2009"
64 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-5.0.0.j3.fw"
65 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-5.0.0.j3.fw"
66 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-5.0.0.j3.fw"
67 #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-5.0.0.j3.fw"
68 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-5.0.0.j3.fw"
70 #define RUN_AT(x) (jiffies + (x))
72 /* Time in jiffies before concluding the transmitter is hung. */
73 #define TX_TIMEOUT (5*HZ)
75 static char version
[] __devinitdata
=
76 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME
" v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
78 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
79 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
80 MODULE_LICENSE("GPL");
81 MODULE_VERSION(DRV_MODULE_VERSION
);
82 MODULE_FIRMWARE(FW_MIPS_FILE_06
);
83 MODULE_FIRMWARE(FW_RV2P_FILE_06
);
84 MODULE_FIRMWARE(FW_MIPS_FILE_09
);
85 MODULE_FIRMWARE(FW_RV2P_FILE_09
);
86 MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax
);
88 static int disable_msi
= 0;
90 module_param(disable_msi
, int, 0);
91 MODULE_PARM_DESC(disable_msi
, "Disable Message Signaled Interrupt (MSI)");
107 /* indexed by board_t, above */
110 } board_info
[] __devinitdata
= {
111 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
112 { "HP NC370T Multifunction Gigabit Server Adapter" },
113 { "HP NC370i Multifunction Gigabit Server Adapter" },
114 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
115 { "HP NC370F Multifunction Gigabit Server Adapter" },
116 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
117 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
118 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
119 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
120 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
121 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
124 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl
) = {
125 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
126 PCI_VENDOR_ID_HP
, 0x3101, 0, 0, NC370T
},
127 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
128 PCI_VENDOR_ID_HP
, 0x3106, 0, 0, NC370I
},
129 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
130 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706
},
131 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708
,
132 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708
},
133 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
134 PCI_VENDOR_ID_HP
, 0x3102, 0, 0, NC370F
},
135 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
136 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706S
},
137 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708S
,
138 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708S
},
139 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709
,
140 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709
},
141 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709S
,
142 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709S
},
143 { PCI_VENDOR_ID_BROADCOM
, 0x163b,
144 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716
},
145 { PCI_VENDOR_ID_BROADCOM
, 0x163c,
146 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716S
},
150 static const struct flash_spec flash_table
[] =
152 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
153 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
155 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
156 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
157 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
159 /* Expansion entry 0001 */
160 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
161 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
162 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
164 /* Saifun SA25F010 (non-buffered flash) */
165 /* strap, cfg1, & write1 need updates */
166 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
167 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
168 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*2,
169 "Non-buffered flash (128kB)"},
170 /* Saifun SA25F020 (non-buffered flash) */
171 /* strap, cfg1, & write1 need updates */
172 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
173 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
174 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*4,
175 "Non-buffered flash (256kB)"},
176 /* Expansion entry 0100 */
177 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
178 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
179 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
181 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
182 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
183 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
184 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*2,
185 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
186 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
187 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
188 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
189 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*4,
190 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
191 /* Saifun SA25F005 (non-buffered flash) */
192 /* strap, cfg1, & write1 need updates */
193 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
194 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
195 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
,
196 "Non-buffered flash (64kB)"},
198 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
199 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
200 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
202 /* Expansion entry 1001 */
203 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
204 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
205 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
207 /* Expansion entry 1010 */
208 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
209 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
210 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
212 /* ATMEL AT45DB011B (buffered flash) */
213 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
214 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
215 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
,
216 "Buffered flash (128kB)"},
217 /* Expansion entry 1100 */
218 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
219 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
220 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
222 /* Expansion entry 1101 */
223 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
224 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
225 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
227 /* Ateml Expansion entry 1110 */
228 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
229 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
230 BUFFERED_FLASH_BYTE_ADDR_MASK
, 0,
231 "Entry 1110 (Atmel)"},
232 /* ATMEL AT45DB021B (buffered flash) */
233 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
234 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
235 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
*2,
236 "Buffered flash (256kB)"},
239 static const struct flash_spec flash_5709
= {
240 .flags
= BNX2_NV_BUFFERED
,
241 .page_bits
= BCM5709_FLASH_PAGE_BITS
,
242 .page_size
= BCM5709_FLASH_PAGE_SIZE
,
243 .addr_mask
= BCM5709_FLASH_BYTE_ADDR_MASK
,
244 .total_size
= BUFFERED_FLASH_TOTAL_SIZE
*2,
245 .name
= "5709 Buffered flash (256kB)",
248 MODULE_DEVICE_TABLE(pci
, bnx2_pci_tbl
);
250 static void bnx2_init_napi(struct bnx2
*bp
);
251 static void bnx2_del_napi(struct bnx2
*bp
);
253 static inline u32
bnx2_tx_avail(struct bnx2
*bp
, struct bnx2_tx_ring_info
*txr
)
259 /* The ring uses 256 indices for 255 entries, one of them
260 * needs to be skipped.
262 diff
= txr
->tx_prod
- txr
->tx_cons
;
263 if (unlikely(diff
>= TX_DESC_CNT
)) {
265 if (diff
== TX_DESC_CNT
)
266 diff
= MAX_TX_DESC_CNT
;
268 return (bp
->tx_ring_size
- diff
);
272 bnx2_reg_rd_ind(struct bnx2
*bp
, u32 offset
)
276 spin_lock_bh(&bp
->indirect_lock
);
277 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
278 val
= REG_RD(bp
, BNX2_PCICFG_REG_WINDOW
);
279 spin_unlock_bh(&bp
->indirect_lock
);
284 bnx2_reg_wr_ind(struct bnx2
*bp
, u32 offset
, u32 val
)
286 spin_lock_bh(&bp
->indirect_lock
);
287 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
288 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, val
);
289 spin_unlock_bh(&bp
->indirect_lock
);
293 bnx2_shmem_wr(struct bnx2
*bp
, u32 offset
, u32 val
)
295 bnx2_reg_wr_ind(bp
, bp
->shmem_base
+ offset
, val
);
299 bnx2_shmem_rd(struct bnx2
*bp
, u32 offset
)
301 return (bnx2_reg_rd_ind(bp
, bp
->shmem_base
+ offset
));
305 bnx2_ctx_wr(struct bnx2
*bp
, u32 cid_addr
, u32 offset
, u32 val
)
308 spin_lock_bh(&bp
->indirect_lock
);
309 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
312 REG_WR(bp
, BNX2_CTX_CTX_DATA
, val
);
313 REG_WR(bp
, BNX2_CTX_CTX_CTRL
,
314 offset
| BNX2_CTX_CTX_CTRL_WRITE_REQ
);
315 for (i
= 0; i
< 5; i
++) {
316 val
= REG_RD(bp
, BNX2_CTX_CTX_CTRL
);
317 if ((val
& BNX2_CTX_CTX_CTRL_WRITE_REQ
) == 0)
322 REG_WR(bp
, BNX2_CTX_DATA_ADR
, offset
);
323 REG_WR(bp
, BNX2_CTX_DATA
, val
);
325 spin_unlock_bh(&bp
->indirect_lock
);
330 bnx2_drv_ctl(struct net_device
*dev
, struct drv_ctl_info
*info
)
332 struct bnx2
*bp
= netdev_priv(dev
);
333 struct drv_ctl_io
*io
= &info
->data
.io
;
336 case DRV_CTL_IO_WR_CMD
:
337 bnx2_reg_wr_ind(bp
, io
->offset
, io
->data
);
339 case DRV_CTL_IO_RD_CMD
:
340 io
->data
= bnx2_reg_rd_ind(bp
, io
->offset
);
342 case DRV_CTL_CTX_WR_CMD
:
343 bnx2_ctx_wr(bp
, io
->cid_addr
, io
->offset
, io
->data
);
351 static void bnx2_setup_cnic_irq_info(struct bnx2
*bp
)
353 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
354 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
357 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
358 cp
->drv_state
|= CNIC_DRV_STATE_USING_MSIX
;
359 bnapi
->cnic_present
= 0;
360 sb_id
= bp
->irq_nvecs
;
361 cp
->irq_arr
[0].irq_flags
|= CNIC_IRQ_FL_MSIX
;
363 cp
->drv_state
&= ~CNIC_DRV_STATE_USING_MSIX
;
364 bnapi
->cnic_tag
= bnapi
->last_status_idx
;
365 bnapi
->cnic_present
= 1;
367 cp
->irq_arr
[0].irq_flags
&= ~CNIC_IRQ_FL_MSIX
;
370 cp
->irq_arr
[0].vector
= bp
->irq_tbl
[sb_id
].vector
;
371 cp
->irq_arr
[0].status_blk
= (void *)
372 ((unsigned long) bnapi
->status_blk
.msi
+
373 (BNX2_SBLK_MSIX_ALIGN_SIZE
* sb_id
));
374 cp
->irq_arr
[0].status_blk_num
= sb_id
;
378 static int bnx2_register_cnic(struct net_device
*dev
, struct cnic_ops
*ops
,
381 struct bnx2
*bp
= netdev_priv(dev
);
382 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
387 if (cp
->drv_state
& CNIC_DRV_STATE_REGD
)
390 bp
->cnic_data
= data
;
391 rcu_assign_pointer(bp
->cnic_ops
, ops
);
394 cp
->drv_state
= CNIC_DRV_STATE_REGD
;
396 bnx2_setup_cnic_irq_info(bp
);
401 static int bnx2_unregister_cnic(struct net_device
*dev
)
403 struct bnx2
*bp
= netdev_priv(dev
);
404 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
405 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
407 mutex_lock(&bp
->cnic_lock
);
409 bnapi
->cnic_present
= 0;
410 rcu_assign_pointer(bp
->cnic_ops
, NULL
);
411 mutex_unlock(&bp
->cnic_lock
);
416 struct cnic_eth_dev
*bnx2_cnic_probe(struct net_device
*dev
)
418 struct bnx2
*bp
= netdev_priv(dev
);
419 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
421 cp
->drv_owner
= THIS_MODULE
;
422 cp
->chip_id
= bp
->chip_id
;
424 cp
->io_base
= bp
->regview
;
425 cp
->drv_ctl
= bnx2_drv_ctl
;
426 cp
->drv_register_cnic
= bnx2_register_cnic
;
427 cp
->drv_unregister_cnic
= bnx2_unregister_cnic
;
431 EXPORT_SYMBOL(bnx2_cnic_probe
);
434 bnx2_cnic_stop(struct bnx2
*bp
)
436 struct cnic_ops
*c_ops
;
437 struct cnic_ctl_info info
;
439 mutex_lock(&bp
->cnic_lock
);
440 c_ops
= bp
->cnic_ops
;
442 info
.cmd
= CNIC_CTL_STOP_CMD
;
443 c_ops
->cnic_ctl(bp
->cnic_data
, &info
);
445 mutex_unlock(&bp
->cnic_lock
);
449 bnx2_cnic_start(struct bnx2
*bp
)
451 struct cnic_ops
*c_ops
;
452 struct cnic_ctl_info info
;
454 mutex_lock(&bp
->cnic_lock
);
455 c_ops
= bp
->cnic_ops
;
457 if (!(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
458 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
460 bnapi
->cnic_tag
= bnapi
->last_status_idx
;
462 info
.cmd
= CNIC_CTL_START_CMD
;
463 c_ops
->cnic_ctl(bp
->cnic_data
, &info
);
465 mutex_unlock(&bp
->cnic_lock
);
471 bnx2_cnic_stop(struct bnx2
*bp
)
476 bnx2_cnic_start(struct bnx2
*bp
)
483 bnx2_read_phy(struct bnx2
*bp
, u32 reg
, u32
*val
)
488 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
489 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
490 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
492 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
493 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
498 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) |
499 BNX2_EMAC_MDIO_COMM_COMMAND_READ
| BNX2_EMAC_MDIO_COMM_DISEXT
|
500 BNX2_EMAC_MDIO_COMM_START_BUSY
;
501 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
503 for (i
= 0; i
< 50; i
++) {
506 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
507 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
510 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
511 val1
&= BNX2_EMAC_MDIO_COMM_DATA
;
517 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
) {
526 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
527 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
528 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
530 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
531 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
540 bnx2_write_phy(struct bnx2
*bp
, u32 reg
, u32 val
)
545 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
546 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
547 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
549 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
550 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
555 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) | val
|
556 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE
|
557 BNX2_EMAC_MDIO_COMM_START_BUSY
| BNX2_EMAC_MDIO_COMM_DISEXT
;
558 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
560 for (i
= 0; i
< 50; i
++) {
563 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
564 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
570 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)
575 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
576 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
577 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
579 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
580 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
589 bnx2_disable_int(struct bnx2
*bp
)
592 struct bnx2_napi
*bnapi
;
594 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
595 bnapi
= &bp
->bnx2_napi
[i
];
596 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
597 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
599 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
603 bnx2_enable_int(struct bnx2
*bp
)
606 struct bnx2_napi
*bnapi
;
608 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
609 bnapi
= &bp
->bnx2_napi
[i
];
611 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
612 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
613 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
614 bnapi
->last_status_idx
);
616 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
617 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
618 bnapi
->last_status_idx
);
620 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
624 bnx2_disable_int_sync(struct bnx2
*bp
)
628 atomic_inc(&bp
->intr_sem
);
629 if (!netif_running(bp
->dev
))
632 bnx2_disable_int(bp
);
633 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
634 synchronize_irq(bp
->irq_tbl
[i
].vector
);
638 bnx2_napi_disable(struct bnx2
*bp
)
642 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
643 napi_disable(&bp
->bnx2_napi
[i
].napi
);
647 bnx2_napi_enable(struct bnx2
*bp
)
651 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
652 napi_enable(&bp
->bnx2_napi
[i
].napi
);
656 bnx2_netif_stop(struct bnx2
*bp
)
659 bnx2_disable_int_sync(bp
);
660 if (netif_running(bp
->dev
)) {
661 bnx2_napi_disable(bp
);
662 netif_tx_disable(bp
->dev
);
663 bp
->dev
->trans_start
= jiffies
; /* prevent tx timeout */
668 bnx2_netif_start(struct bnx2
*bp
)
670 if (atomic_dec_and_test(&bp
->intr_sem
)) {
671 if (netif_running(bp
->dev
)) {
672 netif_tx_wake_all_queues(bp
->dev
);
673 bnx2_napi_enable(bp
);
681 bnx2_free_tx_mem(struct bnx2
*bp
)
685 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
686 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
687 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
689 if (txr
->tx_desc_ring
) {
690 pci_free_consistent(bp
->pdev
, TXBD_RING_SIZE
,
692 txr
->tx_desc_mapping
);
693 txr
->tx_desc_ring
= NULL
;
695 kfree(txr
->tx_buf_ring
);
696 txr
->tx_buf_ring
= NULL
;
701 bnx2_free_rx_mem(struct bnx2
*bp
)
705 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
706 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
707 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
710 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
711 if (rxr
->rx_desc_ring
[j
])
712 pci_free_consistent(bp
->pdev
, RXBD_RING_SIZE
,
713 rxr
->rx_desc_ring
[j
],
714 rxr
->rx_desc_mapping
[j
]);
715 rxr
->rx_desc_ring
[j
] = NULL
;
717 vfree(rxr
->rx_buf_ring
);
718 rxr
->rx_buf_ring
= NULL
;
720 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
721 if (rxr
->rx_pg_desc_ring
[j
])
722 pci_free_consistent(bp
->pdev
, RXBD_RING_SIZE
,
723 rxr
->rx_pg_desc_ring
[j
],
724 rxr
->rx_pg_desc_mapping
[j
]);
725 rxr
->rx_pg_desc_ring
[j
] = NULL
;
727 vfree(rxr
->rx_pg_ring
);
728 rxr
->rx_pg_ring
= NULL
;
733 bnx2_alloc_tx_mem(struct bnx2
*bp
)
737 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
738 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
739 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
741 txr
->tx_buf_ring
= kzalloc(SW_TXBD_RING_SIZE
, GFP_KERNEL
);
742 if (txr
->tx_buf_ring
== NULL
)
746 pci_alloc_consistent(bp
->pdev
, TXBD_RING_SIZE
,
747 &txr
->tx_desc_mapping
);
748 if (txr
->tx_desc_ring
== NULL
)
755 bnx2_alloc_rx_mem(struct bnx2
*bp
)
759 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
760 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
761 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
765 vmalloc(SW_RXBD_RING_SIZE
* bp
->rx_max_ring
);
766 if (rxr
->rx_buf_ring
== NULL
)
769 memset(rxr
->rx_buf_ring
, 0,
770 SW_RXBD_RING_SIZE
* bp
->rx_max_ring
);
772 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
773 rxr
->rx_desc_ring
[j
] =
774 pci_alloc_consistent(bp
->pdev
, RXBD_RING_SIZE
,
775 &rxr
->rx_desc_mapping
[j
]);
776 if (rxr
->rx_desc_ring
[j
] == NULL
)
781 if (bp
->rx_pg_ring_size
) {
782 rxr
->rx_pg_ring
= vmalloc(SW_RXPG_RING_SIZE
*
784 if (rxr
->rx_pg_ring
== NULL
)
787 memset(rxr
->rx_pg_ring
, 0, SW_RXPG_RING_SIZE
*
791 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
792 rxr
->rx_pg_desc_ring
[j
] =
793 pci_alloc_consistent(bp
->pdev
, RXBD_RING_SIZE
,
794 &rxr
->rx_pg_desc_mapping
[j
]);
795 if (rxr
->rx_pg_desc_ring
[j
] == NULL
)
804 bnx2_free_mem(struct bnx2
*bp
)
807 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
809 bnx2_free_tx_mem(bp
);
810 bnx2_free_rx_mem(bp
);
812 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
813 if (bp
->ctx_blk
[i
]) {
814 pci_free_consistent(bp
->pdev
, BCM_PAGE_SIZE
,
816 bp
->ctx_blk_mapping
[i
]);
817 bp
->ctx_blk
[i
] = NULL
;
820 if (bnapi
->status_blk
.msi
) {
821 pci_free_consistent(bp
->pdev
, bp
->status_stats_size
,
822 bnapi
->status_blk
.msi
,
823 bp
->status_blk_mapping
);
824 bnapi
->status_blk
.msi
= NULL
;
825 bp
->stats_blk
= NULL
;
830 bnx2_alloc_mem(struct bnx2
*bp
)
832 int i
, status_blk_size
, err
;
833 struct bnx2_napi
*bnapi
;
836 /* Combine status and statistics blocks into one allocation. */
837 status_blk_size
= L1_CACHE_ALIGN(sizeof(struct status_block
));
838 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
)
839 status_blk_size
= L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC
*
840 BNX2_SBLK_MSIX_ALIGN_SIZE
);
841 bp
->status_stats_size
= status_blk_size
+
842 sizeof(struct statistics_block
);
844 status_blk
= pci_alloc_consistent(bp
->pdev
, bp
->status_stats_size
,
845 &bp
->status_blk_mapping
);
846 if (status_blk
== NULL
)
849 memset(status_blk
, 0, bp
->status_stats_size
);
851 bnapi
= &bp
->bnx2_napi
[0];
852 bnapi
->status_blk
.msi
= status_blk
;
853 bnapi
->hw_tx_cons_ptr
=
854 &bnapi
->status_blk
.msi
->status_tx_quick_consumer_index0
;
855 bnapi
->hw_rx_cons_ptr
=
856 &bnapi
->status_blk
.msi
->status_rx_quick_consumer_index0
;
857 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
) {
858 for (i
= 1; i
< BNX2_MAX_MSIX_VEC
; i
++) {
859 struct status_block_msix
*sblk
;
861 bnapi
= &bp
->bnx2_napi
[i
];
863 sblk
= (void *) (status_blk
+
864 BNX2_SBLK_MSIX_ALIGN_SIZE
* i
);
865 bnapi
->status_blk
.msix
= sblk
;
866 bnapi
->hw_tx_cons_ptr
=
867 &sblk
->status_tx_quick_consumer_index
;
868 bnapi
->hw_rx_cons_ptr
=
869 &sblk
->status_rx_quick_consumer_index
;
870 bnapi
->int_num
= i
<< 24;
874 bp
->stats_blk
= status_blk
+ status_blk_size
;
876 bp
->stats_blk_mapping
= bp
->status_blk_mapping
+ status_blk_size
;
878 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
879 bp
->ctx_pages
= 0x2000 / BCM_PAGE_SIZE
;
880 if (bp
->ctx_pages
== 0)
882 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
883 bp
->ctx_blk
[i
] = pci_alloc_consistent(bp
->pdev
,
885 &bp
->ctx_blk_mapping
[i
]);
886 if (bp
->ctx_blk
[i
] == NULL
)
891 err
= bnx2_alloc_rx_mem(bp
);
895 err
= bnx2_alloc_tx_mem(bp
);
907 bnx2_report_fw_link(struct bnx2
*bp
)
909 u32 fw_link_status
= 0;
911 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
917 switch (bp
->line_speed
) {
919 if (bp
->duplex
== DUPLEX_HALF
)
920 fw_link_status
= BNX2_LINK_STATUS_10HALF
;
922 fw_link_status
= BNX2_LINK_STATUS_10FULL
;
925 if (bp
->duplex
== DUPLEX_HALF
)
926 fw_link_status
= BNX2_LINK_STATUS_100HALF
;
928 fw_link_status
= BNX2_LINK_STATUS_100FULL
;
931 if (bp
->duplex
== DUPLEX_HALF
)
932 fw_link_status
= BNX2_LINK_STATUS_1000HALF
;
934 fw_link_status
= BNX2_LINK_STATUS_1000FULL
;
937 if (bp
->duplex
== DUPLEX_HALF
)
938 fw_link_status
= BNX2_LINK_STATUS_2500HALF
;
940 fw_link_status
= BNX2_LINK_STATUS_2500FULL
;
944 fw_link_status
|= BNX2_LINK_STATUS_LINK_UP
;
947 fw_link_status
|= BNX2_LINK_STATUS_AN_ENABLED
;
949 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
950 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
952 if (!(bmsr
& BMSR_ANEGCOMPLETE
) ||
953 bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)
954 fw_link_status
|= BNX2_LINK_STATUS_PARALLEL_DET
;
956 fw_link_status
|= BNX2_LINK_STATUS_AN_COMPLETE
;
960 fw_link_status
= BNX2_LINK_STATUS_LINK_DOWN
;
962 bnx2_shmem_wr(bp
, BNX2_LINK_STATUS
, fw_link_status
);
966 bnx2_xceiver_str(struct bnx2
*bp
)
968 return ((bp
->phy_port
== PORT_FIBRE
) ? "SerDes" :
969 ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) ? "Remote Copper" :
974 bnx2_report_link(struct bnx2
*bp
)
977 netif_carrier_on(bp
->dev
);
978 printk(KERN_INFO PFX
"%s NIC %s Link is Up, ", bp
->dev
->name
,
979 bnx2_xceiver_str(bp
));
981 printk("%d Mbps ", bp
->line_speed
);
983 if (bp
->duplex
== DUPLEX_FULL
)
984 printk("full duplex");
986 printk("half duplex");
989 if (bp
->flow_ctrl
& FLOW_CTRL_RX
) {
990 printk(", receive ");
991 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
992 printk("& transmit ");
995 printk(", transmit ");
997 printk("flow control ON");
1002 netif_carrier_off(bp
->dev
);
1003 printk(KERN_ERR PFX
"%s NIC %s Link is Down\n", bp
->dev
->name
,
1004 bnx2_xceiver_str(bp
));
1007 bnx2_report_fw_link(bp
);
1011 bnx2_resolve_flow_ctrl(struct bnx2
*bp
)
1013 u32 local_adv
, remote_adv
;
1016 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
1017 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
1019 if (bp
->duplex
== DUPLEX_FULL
) {
1020 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
1025 if (bp
->duplex
!= DUPLEX_FULL
) {
1029 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1030 (CHIP_NUM(bp
) == CHIP_NUM_5708
)) {
1033 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
1034 if (val
& BCM5708S_1000X_STAT1_TX_PAUSE
)
1035 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
1036 if (val
& BCM5708S_1000X_STAT1_RX_PAUSE
)
1037 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
1041 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1042 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1044 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1045 u32 new_local_adv
= 0;
1046 u32 new_remote_adv
= 0;
1048 if (local_adv
& ADVERTISE_1000XPAUSE
)
1049 new_local_adv
|= ADVERTISE_PAUSE_CAP
;
1050 if (local_adv
& ADVERTISE_1000XPSE_ASYM
)
1051 new_local_adv
|= ADVERTISE_PAUSE_ASYM
;
1052 if (remote_adv
& ADVERTISE_1000XPAUSE
)
1053 new_remote_adv
|= ADVERTISE_PAUSE_CAP
;
1054 if (remote_adv
& ADVERTISE_1000XPSE_ASYM
)
1055 new_remote_adv
|= ADVERTISE_PAUSE_ASYM
;
1057 local_adv
= new_local_adv
;
1058 remote_adv
= new_remote_adv
;
1061 /* See Table 28B-3 of 802.3ab-1999 spec. */
1062 if (local_adv
& ADVERTISE_PAUSE_CAP
) {
1063 if(local_adv
& ADVERTISE_PAUSE_ASYM
) {
1064 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
1065 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
1067 else if (remote_adv
& ADVERTISE_PAUSE_ASYM
) {
1068 bp
->flow_ctrl
= FLOW_CTRL_RX
;
1072 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
1073 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
1077 else if (local_adv
& ADVERTISE_PAUSE_ASYM
) {
1078 if ((remote_adv
& ADVERTISE_PAUSE_CAP
) &&
1079 (remote_adv
& ADVERTISE_PAUSE_ASYM
)) {
1081 bp
->flow_ctrl
= FLOW_CTRL_TX
;
1087 bnx2_5709s_linkup(struct bnx2
*bp
)
1093 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_GP_STATUS
);
1094 bnx2_read_phy(bp
, MII_BNX2_GP_TOP_AN_STATUS1
, &val
);
1095 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1097 if ((bp
->autoneg
& AUTONEG_SPEED
) == 0) {
1098 bp
->line_speed
= bp
->req_line_speed
;
1099 bp
->duplex
= bp
->req_duplex
;
1102 speed
= val
& MII_BNX2_GP_TOP_AN_SPEED_MSK
;
1104 case MII_BNX2_GP_TOP_AN_SPEED_10
:
1105 bp
->line_speed
= SPEED_10
;
1107 case MII_BNX2_GP_TOP_AN_SPEED_100
:
1108 bp
->line_speed
= SPEED_100
;
1110 case MII_BNX2_GP_TOP_AN_SPEED_1G
:
1111 case MII_BNX2_GP_TOP_AN_SPEED_1GKV
:
1112 bp
->line_speed
= SPEED_1000
;
1114 case MII_BNX2_GP_TOP_AN_SPEED_2_5G
:
1115 bp
->line_speed
= SPEED_2500
;
1118 if (val
& MII_BNX2_GP_TOP_AN_FD
)
1119 bp
->duplex
= DUPLEX_FULL
;
1121 bp
->duplex
= DUPLEX_HALF
;
1126 bnx2_5708s_linkup(struct bnx2
*bp
)
1131 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
1132 switch (val
& BCM5708S_1000X_STAT1_SPEED_MASK
) {
1133 case BCM5708S_1000X_STAT1_SPEED_10
:
1134 bp
->line_speed
= SPEED_10
;
1136 case BCM5708S_1000X_STAT1_SPEED_100
:
1137 bp
->line_speed
= SPEED_100
;
1139 case BCM5708S_1000X_STAT1_SPEED_1G
:
1140 bp
->line_speed
= SPEED_1000
;
1142 case BCM5708S_1000X_STAT1_SPEED_2G5
:
1143 bp
->line_speed
= SPEED_2500
;
1146 if (val
& BCM5708S_1000X_STAT1_FD
)
1147 bp
->duplex
= DUPLEX_FULL
;
1149 bp
->duplex
= DUPLEX_HALF
;
1155 bnx2_5706s_linkup(struct bnx2
*bp
)
1157 u32 bmcr
, local_adv
, remote_adv
, common
;
1160 bp
->line_speed
= SPEED_1000
;
1162 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1163 if (bmcr
& BMCR_FULLDPLX
) {
1164 bp
->duplex
= DUPLEX_FULL
;
1167 bp
->duplex
= DUPLEX_HALF
;
1170 if (!(bmcr
& BMCR_ANENABLE
)) {
1174 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1175 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1177 common
= local_adv
& remote_adv
;
1178 if (common
& (ADVERTISE_1000XHALF
| ADVERTISE_1000XFULL
)) {
1180 if (common
& ADVERTISE_1000XFULL
) {
1181 bp
->duplex
= DUPLEX_FULL
;
1184 bp
->duplex
= DUPLEX_HALF
;
1192 bnx2_copper_linkup(struct bnx2
*bp
)
1196 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1197 if (bmcr
& BMCR_ANENABLE
) {
1198 u32 local_adv
, remote_adv
, common
;
1200 bnx2_read_phy(bp
, MII_CTRL1000
, &local_adv
);
1201 bnx2_read_phy(bp
, MII_STAT1000
, &remote_adv
);
1203 common
= local_adv
& (remote_adv
>> 2);
1204 if (common
& ADVERTISE_1000FULL
) {
1205 bp
->line_speed
= SPEED_1000
;
1206 bp
->duplex
= DUPLEX_FULL
;
1208 else if (common
& ADVERTISE_1000HALF
) {
1209 bp
->line_speed
= SPEED_1000
;
1210 bp
->duplex
= DUPLEX_HALF
;
1213 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1214 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1216 common
= local_adv
& remote_adv
;
1217 if (common
& ADVERTISE_100FULL
) {
1218 bp
->line_speed
= SPEED_100
;
1219 bp
->duplex
= DUPLEX_FULL
;
1221 else if (common
& ADVERTISE_100HALF
) {
1222 bp
->line_speed
= SPEED_100
;
1223 bp
->duplex
= DUPLEX_HALF
;
1225 else if (common
& ADVERTISE_10FULL
) {
1226 bp
->line_speed
= SPEED_10
;
1227 bp
->duplex
= DUPLEX_FULL
;
1229 else if (common
& ADVERTISE_10HALF
) {
1230 bp
->line_speed
= SPEED_10
;
1231 bp
->duplex
= DUPLEX_HALF
;
1240 if (bmcr
& BMCR_SPEED100
) {
1241 bp
->line_speed
= SPEED_100
;
1244 bp
->line_speed
= SPEED_10
;
1246 if (bmcr
& BMCR_FULLDPLX
) {
1247 bp
->duplex
= DUPLEX_FULL
;
1250 bp
->duplex
= DUPLEX_HALF
;
1258 bnx2_init_rx_context(struct bnx2
*bp
, u32 cid
)
1260 u32 val
, rx_cid_addr
= GET_CID_ADDR(cid
);
1262 val
= BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE
;
1263 val
|= BNX2_L2CTX_CTX_TYPE_SIZE_L2
;
1266 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1267 u32 lo_water
, hi_water
;
1269 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1270 lo_water
= BNX2_L2CTX_LO_WATER_MARK_DEFAULT
;
1272 lo_water
= BNX2_L2CTX_LO_WATER_MARK_DIS
;
1273 if (lo_water
>= bp
->rx_ring_size
)
1276 hi_water
= bp
->rx_ring_size
/ 4;
1278 if (hi_water
<= lo_water
)
1281 hi_water
/= BNX2_L2CTX_HI_WATER_MARK_SCALE
;
1282 lo_water
/= BNX2_L2CTX_LO_WATER_MARK_SCALE
;
1286 else if (hi_water
== 0)
1288 val
|= lo_water
| (hi_water
<< BNX2_L2CTX_HI_WATER_MARK_SHIFT
);
1290 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_CTX_TYPE
, val
);
1294 bnx2_init_all_rx_contexts(struct bnx2
*bp
)
1299 for (i
= 0, cid
= RX_CID
; i
< bp
->num_rx_rings
; i
++, cid
++) {
1302 bnx2_init_rx_context(bp
, cid
);
1307 bnx2_set_mac_link(struct bnx2
*bp
)
1311 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x2620);
1312 if (bp
->link_up
&& (bp
->line_speed
== SPEED_1000
) &&
1313 (bp
->duplex
== DUPLEX_HALF
)) {
1314 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x26ff);
1317 /* Configure the EMAC mode register. */
1318 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
1320 val
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
1321 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
1322 BNX2_EMAC_MODE_25G_MODE
);
1325 switch (bp
->line_speed
) {
1327 if (CHIP_NUM(bp
) != CHIP_NUM_5706
) {
1328 val
|= BNX2_EMAC_MODE_PORT_MII_10M
;
1333 val
|= BNX2_EMAC_MODE_PORT_MII
;
1336 val
|= BNX2_EMAC_MODE_25G_MODE
;
1339 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1344 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1347 /* Set the MAC to operate in the appropriate duplex mode. */
1348 if (bp
->duplex
== DUPLEX_HALF
)
1349 val
|= BNX2_EMAC_MODE_HALF_DUPLEX
;
1350 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
1352 /* Enable/disable rx PAUSE. */
1353 bp
->rx_mode
&= ~BNX2_EMAC_RX_MODE_FLOW_EN
;
1355 if (bp
->flow_ctrl
& FLOW_CTRL_RX
)
1356 bp
->rx_mode
|= BNX2_EMAC_RX_MODE_FLOW_EN
;
1357 REG_WR(bp
, BNX2_EMAC_RX_MODE
, bp
->rx_mode
);
1359 /* Enable/disable tx PAUSE. */
1360 val
= REG_RD(bp
, BNX2_EMAC_TX_MODE
);
1361 val
&= ~BNX2_EMAC_TX_MODE_FLOW_EN
;
1363 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1364 val
|= BNX2_EMAC_TX_MODE_FLOW_EN
;
1365 REG_WR(bp
, BNX2_EMAC_TX_MODE
, val
);
1367 /* Acknowledge the interrupt. */
1368 REG_WR(bp
, BNX2_EMAC_STATUS
, BNX2_EMAC_STATUS_LINK_CHANGE
);
1370 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1371 bnx2_init_all_rx_contexts(bp
);
1375 bnx2_enable_bmsr1(struct bnx2
*bp
)
1377 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1378 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1379 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1380 MII_BNX2_BLK_ADDR_GP_STATUS
);
1384 bnx2_disable_bmsr1(struct bnx2
*bp
)
1386 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1387 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1388 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1389 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1393 bnx2_test_and_enable_2g5(struct bnx2
*bp
)
1398 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1401 if (bp
->autoneg
& AUTONEG_SPEED
)
1402 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1404 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1405 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1407 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1408 if (!(up1
& BCM5708S_UP1_2G5
)) {
1409 up1
|= BCM5708S_UP1_2G5
;
1410 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1414 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1415 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1416 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1422 bnx2_test_and_disable_2g5(struct bnx2
*bp
)
1427 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1430 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1431 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1433 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1434 if (up1
& BCM5708S_UP1_2G5
) {
1435 up1
&= ~BCM5708S_UP1_2G5
;
1436 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1440 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1441 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1442 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1448 bnx2_enable_forced_2g5(struct bnx2
*bp
)
1452 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1455 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1458 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1459 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1460 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
);
1461 val
&= ~MII_BNX2_SD_MISC1_FORCE_MSK
;
1462 val
|= MII_BNX2_SD_MISC1_FORCE
| MII_BNX2_SD_MISC1_FORCE_2_5G
;
1463 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1465 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1466 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1467 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1469 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1470 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1471 bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1474 if (bp
->autoneg
& AUTONEG_SPEED
) {
1475 bmcr
&= ~BMCR_ANENABLE
;
1476 if (bp
->req_duplex
== DUPLEX_FULL
)
1477 bmcr
|= BMCR_FULLDPLX
;
1479 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1483 bnx2_disable_forced_2g5(struct bnx2
*bp
)
1487 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1490 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1493 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1494 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1495 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
);
1496 val
&= ~MII_BNX2_SD_MISC1_FORCE
;
1497 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1499 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1500 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1501 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1503 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1504 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1505 bmcr
&= ~BCM5708S_BMCR_FORCE_2500
;
1508 if (bp
->autoneg
& AUTONEG_SPEED
)
1509 bmcr
|= BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_ANRESTART
;
1510 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1514 bnx2_5706s_force_link_dn(struct bnx2
*bp
, int start
)
1518 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_SERDES_CTL
);
1519 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
1521 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
& 0xff0f);
1523 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
| 0xc0);
1527 bnx2_set_link(struct bnx2
*bp
)
1532 if (bp
->loopback
== MAC_LOOPBACK
|| bp
->loopback
== PHY_LOOPBACK
) {
1537 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1540 link_up
= bp
->link_up
;
1542 bnx2_enable_bmsr1(bp
);
1543 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1544 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1545 bnx2_disable_bmsr1(bp
);
1547 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1548 (CHIP_NUM(bp
) == CHIP_NUM_5706
)) {
1551 if (bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
) {
1552 bnx2_5706s_force_link_dn(bp
, 0);
1553 bp
->phy_flags
&= ~BNX2_PHY_FLAG_FORCED_DOWN
;
1555 val
= REG_RD(bp
, BNX2_EMAC_STATUS
);
1557 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
1558 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1559 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1561 if ((val
& BNX2_EMAC_STATUS_LINK
) &&
1562 !(an_dbg
& MISC_SHDW_AN_DBG_NOSYNC
))
1563 bmsr
|= BMSR_LSTATUS
;
1565 bmsr
&= ~BMSR_LSTATUS
;
1568 if (bmsr
& BMSR_LSTATUS
) {
1571 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1572 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
1573 bnx2_5706s_linkup(bp
);
1574 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
1575 bnx2_5708s_linkup(bp
);
1576 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1577 bnx2_5709s_linkup(bp
);
1580 bnx2_copper_linkup(bp
);
1582 bnx2_resolve_flow_ctrl(bp
);
1585 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1586 (bp
->autoneg
& AUTONEG_SPEED
))
1587 bnx2_disable_forced_2g5(bp
);
1589 if (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
) {
1592 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1593 bmcr
|= BMCR_ANENABLE
;
1594 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1596 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
1601 if (bp
->link_up
!= link_up
) {
1602 bnx2_report_link(bp
);
1605 bnx2_set_mac_link(bp
);
1611 bnx2_reset_phy(struct bnx2
*bp
)
1616 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_RESET
);
1618 #define PHY_RESET_MAX_WAIT 100
1619 for (i
= 0; i
< PHY_RESET_MAX_WAIT
; i
++) {
1622 bnx2_read_phy(bp
, bp
->mii_bmcr
, ®
);
1623 if (!(reg
& BMCR_RESET
)) {
1628 if (i
== PHY_RESET_MAX_WAIT
) {
1635 bnx2_phy_get_pause_adv(struct bnx2
*bp
)
1639 if ((bp
->req_flow_ctrl
& (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) ==
1640 (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) {
1642 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1643 adv
= ADVERTISE_1000XPAUSE
;
1646 adv
= ADVERTISE_PAUSE_CAP
;
1649 else if (bp
->req_flow_ctrl
& FLOW_CTRL_TX
) {
1650 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1651 adv
= ADVERTISE_1000XPSE_ASYM
;
1654 adv
= ADVERTISE_PAUSE_ASYM
;
1657 else if (bp
->req_flow_ctrl
& FLOW_CTRL_RX
) {
1658 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1659 adv
= ADVERTISE_1000XPAUSE
| ADVERTISE_1000XPSE_ASYM
;
1662 adv
= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1668 static int bnx2_fw_sync(struct bnx2
*, u32
, int, int);
1671 bnx2_setup_remote_phy(struct bnx2
*bp
, u8 port
)
1672 __releases(&bp
->phy_lock
)
1673 __acquires(&bp
->phy_lock
)
1675 u32 speed_arg
= 0, pause_adv
;
1677 pause_adv
= bnx2_phy_get_pause_adv(bp
);
1679 if (bp
->autoneg
& AUTONEG_SPEED
) {
1680 speed_arg
|= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
;
1681 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
1682 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1683 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
1684 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1685 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
1686 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1687 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
1688 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1689 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1690 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1691 if (bp
->advertising
& ADVERTISED_2500baseX_Full
)
1692 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1694 if (bp
->req_line_speed
== SPEED_2500
)
1695 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1696 else if (bp
->req_line_speed
== SPEED_1000
)
1697 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1698 else if (bp
->req_line_speed
== SPEED_100
) {
1699 if (bp
->req_duplex
== DUPLEX_FULL
)
1700 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1702 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1703 } else if (bp
->req_line_speed
== SPEED_10
) {
1704 if (bp
->req_duplex
== DUPLEX_FULL
)
1705 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1707 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1711 if (pause_adv
& (ADVERTISE_1000XPAUSE
| ADVERTISE_PAUSE_CAP
))
1712 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE
;
1713 if (pause_adv
& (ADVERTISE_1000XPSE_ASYM
| ADVERTISE_PAUSE_ASYM
))
1714 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE
;
1716 if (port
== PORT_TP
)
1717 speed_arg
|= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE
|
1718 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED
;
1720 bnx2_shmem_wr(bp
, BNX2_DRV_MB_ARG0
, speed_arg
);
1722 spin_unlock_bh(&bp
->phy_lock
);
1723 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_CMD_SET_LINK
, 1, 0);
1724 spin_lock_bh(&bp
->phy_lock
);
1730 bnx2_setup_serdes_phy(struct bnx2
*bp
, u8 port
)
1731 __releases(&bp
->phy_lock
)
1732 __acquires(&bp
->phy_lock
)
1737 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1738 return (bnx2_setup_remote_phy(bp
, port
));
1740 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
1742 int force_link_down
= 0;
1744 if (bp
->req_line_speed
== SPEED_2500
) {
1745 if (!bnx2_test_and_enable_2g5(bp
))
1746 force_link_down
= 1;
1747 } else if (bp
->req_line_speed
== SPEED_1000
) {
1748 if (bnx2_test_and_disable_2g5(bp
))
1749 force_link_down
= 1;
1751 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1752 adv
&= ~(ADVERTISE_1000XFULL
| ADVERTISE_1000XHALF
);
1754 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1755 new_bmcr
= bmcr
& ~BMCR_ANENABLE
;
1756 new_bmcr
|= BMCR_SPEED1000
;
1758 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1759 if (bp
->req_line_speed
== SPEED_2500
)
1760 bnx2_enable_forced_2g5(bp
);
1761 else if (bp
->req_line_speed
== SPEED_1000
) {
1762 bnx2_disable_forced_2g5(bp
);
1763 new_bmcr
&= ~0x2000;
1766 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1767 if (bp
->req_line_speed
== SPEED_2500
)
1768 new_bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1770 new_bmcr
= bmcr
& ~BCM5708S_BMCR_FORCE_2500
;
1773 if (bp
->req_duplex
== DUPLEX_FULL
) {
1774 adv
|= ADVERTISE_1000XFULL
;
1775 new_bmcr
|= BMCR_FULLDPLX
;
1778 adv
|= ADVERTISE_1000XHALF
;
1779 new_bmcr
&= ~BMCR_FULLDPLX
;
1781 if ((new_bmcr
!= bmcr
) || (force_link_down
)) {
1782 /* Force a link down visible on the other side */
1784 bnx2_write_phy(bp
, bp
->mii_adv
, adv
&
1785 ~(ADVERTISE_1000XFULL
|
1786 ADVERTISE_1000XHALF
));
1787 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
|
1788 BMCR_ANRESTART
| BMCR_ANENABLE
);
1791 netif_carrier_off(bp
->dev
);
1792 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1793 bnx2_report_link(bp
);
1795 bnx2_write_phy(bp
, bp
->mii_adv
, adv
);
1796 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1798 bnx2_resolve_flow_ctrl(bp
);
1799 bnx2_set_mac_link(bp
);
1804 bnx2_test_and_enable_2g5(bp
);
1806 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1807 new_adv
|= ADVERTISE_1000XFULL
;
1809 new_adv
|= bnx2_phy_get_pause_adv(bp
);
1811 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1812 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1814 bp
->serdes_an_pending
= 0;
1815 if ((adv
!= new_adv
) || ((bmcr
& BMCR_ANENABLE
) == 0)) {
1816 /* Force a link down visible on the other side */
1818 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
1819 spin_unlock_bh(&bp
->phy_lock
);
1821 spin_lock_bh(&bp
->phy_lock
);
1824 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
1825 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
|
1827 /* Speed up link-up time when the link partner
1828 * does not autonegotiate which is very common
1829 * in blade servers. Some blade servers use
1830 * IPMI for kerboard input and it's important
1831 * to minimize link disruptions. Autoneg. involves
1832 * exchanging base pages plus 3 next pages and
1833 * normally completes in about 120 msec.
1835 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
1836 bp
->serdes_an_pending
= 1;
1837 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
1839 bnx2_resolve_flow_ctrl(bp
);
1840 bnx2_set_mac_link(bp
);
1846 #define ETHTOOL_ALL_FIBRE_SPEED \
1847 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1848 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1849 (ADVERTISED_1000baseT_Full)
1851 #define ETHTOOL_ALL_COPPER_SPEED \
1852 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1853 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1854 ADVERTISED_1000baseT_Full)
1856 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1857 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1859 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1862 bnx2_set_default_remote_link(struct bnx2
*bp
)
1866 if (bp
->phy_port
== PORT_TP
)
1867 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_COPPER_LINK
);
1869 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_SERDES_LINK
);
1871 if (link
& BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
) {
1872 bp
->req_line_speed
= 0;
1873 bp
->autoneg
|= AUTONEG_SPEED
;
1874 bp
->advertising
= ADVERTISED_Autoneg
;
1875 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1876 bp
->advertising
|= ADVERTISED_10baseT_Half
;
1877 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10FULL
)
1878 bp
->advertising
|= ADVERTISED_10baseT_Full
;
1879 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1880 bp
->advertising
|= ADVERTISED_100baseT_Half
;
1881 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100FULL
)
1882 bp
->advertising
|= ADVERTISED_100baseT_Full
;
1883 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1884 bp
->advertising
|= ADVERTISED_1000baseT_Full
;
1885 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1886 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1889 bp
->advertising
= 0;
1890 bp
->req_duplex
= DUPLEX_FULL
;
1891 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10
) {
1892 bp
->req_line_speed
= SPEED_10
;
1893 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1894 bp
->req_duplex
= DUPLEX_HALF
;
1896 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100
) {
1897 bp
->req_line_speed
= SPEED_100
;
1898 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1899 bp
->req_duplex
= DUPLEX_HALF
;
1901 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1902 bp
->req_line_speed
= SPEED_1000
;
1903 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1904 bp
->req_line_speed
= SPEED_2500
;
1909 bnx2_set_default_link(struct bnx2
*bp
)
1911 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
1912 bnx2_set_default_remote_link(bp
);
1916 bp
->autoneg
= AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
;
1917 bp
->req_line_speed
= 0;
1918 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1921 bp
->advertising
= ETHTOOL_ALL_FIBRE_SPEED
| ADVERTISED_Autoneg
;
1923 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
);
1924 reg
&= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK
;
1925 if (reg
== BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G
) {
1927 bp
->req_line_speed
= bp
->line_speed
= SPEED_1000
;
1928 bp
->req_duplex
= DUPLEX_FULL
;
1931 bp
->advertising
= ETHTOOL_ALL_COPPER_SPEED
| ADVERTISED_Autoneg
;
1935 bnx2_send_heart_beat(struct bnx2
*bp
)
1940 spin_lock(&bp
->indirect_lock
);
1941 msg
= (u32
) (++bp
->fw_drv_pulse_wr_seq
& BNX2_DRV_PULSE_SEQ_MASK
);
1942 addr
= bp
->shmem_base
+ BNX2_DRV_PULSE_MB
;
1943 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, addr
);
1944 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, msg
);
1945 spin_unlock(&bp
->indirect_lock
);
1949 bnx2_remote_phy_event(struct bnx2
*bp
)
1952 u8 link_up
= bp
->link_up
;
1955 msg
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
1957 if (msg
& BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
)
1958 bnx2_send_heart_beat(bp
);
1960 msg
&= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
;
1962 if ((msg
& BNX2_LINK_STATUS_LINK_UP
) == BNX2_LINK_STATUS_LINK_DOWN
)
1968 speed
= msg
& BNX2_LINK_STATUS_SPEED_MASK
;
1969 bp
->duplex
= DUPLEX_FULL
;
1971 case BNX2_LINK_STATUS_10HALF
:
1972 bp
->duplex
= DUPLEX_HALF
;
1973 case BNX2_LINK_STATUS_10FULL
:
1974 bp
->line_speed
= SPEED_10
;
1976 case BNX2_LINK_STATUS_100HALF
:
1977 bp
->duplex
= DUPLEX_HALF
;
1978 case BNX2_LINK_STATUS_100BASE_T4
:
1979 case BNX2_LINK_STATUS_100FULL
:
1980 bp
->line_speed
= SPEED_100
;
1982 case BNX2_LINK_STATUS_1000HALF
:
1983 bp
->duplex
= DUPLEX_HALF
;
1984 case BNX2_LINK_STATUS_1000FULL
:
1985 bp
->line_speed
= SPEED_1000
;
1987 case BNX2_LINK_STATUS_2500HALF
:
1988 bp
->duplex
= DUPLEX_HALF
;
1989 case BNX2_LINK_STATUS_2500FULL
:
1990 bp
->line_speed
= SPEED_2500
;
1998 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
1999 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
2000 if (bp
->duplex
== DUPLEX_FULL
)
2001 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
2003 if (msg
& BNX2_LINK_STATUS_TX_FC_ENABLED
)
2004 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
2005 if (msg
& BNX2_LINK_STATUS_RX_FC_ENABLED
)
2006 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
2009 old_port
= bp
->phy_port
;
2010 if (msg
& BNX2_LINK_STATUS_SERDES_LINK
)
2011 bp
->phy_port
= PORT_FIBRE
;
2013 bp
->phy_port
= PORT_TP
;
2015 if (old_port
!= bp
->phy_port
)
2016 bnx2_set_default_link(bp
);
2019 if (bp
->link_up
!= link_up
)
2020 bnx2_report_link(bp
);
2022 bnx2_set_mac_link(bp
);
2026 bnx2_set_remote_link(struct bnx2
*bp
)
2030 evt_code
= bnx2_shmem_rd(bp
, BNX2_FW_EVT_CODE_MB
);
2032 case BNX2_FW_EVT_CODE_LINK_EVENT
:
2033 bnx2_remote_phy_event(bp
);
2035 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT
:
2037 bnx2_send_heart_beat(bp
);
2044 bnx2_setup_copper_phy(struct bnx2
*bp
)
2045 __releases(&bp
->phy_lock
)
2046 __acquires(&bp
->phy_lock
)
2051 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
2053 if (bp
->autoneg
& AUTONEG_SPEED
) {
2054 u32 adv_reg
, adv1000_reg
;
2055 u32 new_adv_reg
= 0;
2056 u32 new_adv1000_reg
= 0;
2058 bnx2_read_phy(bp
, bp
->mii_adv
, &adv_reg
);
2059 adv_reg
&= (PHY_ALL_10_100_SPEED
| ADVERTISE_PAUSE_CAP
|
2060 ADVERTISE_PAUSE_ASYM
);
2062 bnx2_read_phy(bp
, MII_CTRL1000
, &adv1000_reg
);
2063 adv1000_reg
&= PHY_ALL_1000_SPEED
;
2065 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
2066 new_adv_reg
|= ADVERTISE_10HALF
;
2067 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
2068 new_adv_reg
|= ADVERTISE_10FULL
;
2069 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
2070 new_adv_reg
|= ADVERTISE_100HALF
;
2071 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
2072 new_adv_reg
|= ADVERTISE_100FULL
;
2073 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
2074 new_adv1000_reg
|= ADVERTISE_1000FULL
;
2076 new_adv_reg
|= ADVERTISE_CSMA
;
2078 new_adv_reg
|= bnx2_phy_get_pause_adv(bp
);
2080 if ((adv1000_reg
!= new_adv1000_reg
) ||
2081 (adv_reg
!= new_adv_reg
) ||
2082 ((bmcr
& BMCR_ANENABLE
) == 0)) {
2084 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv_reg
);
2085 bnx2_write_phy(bp
, MII_CTRL1000
, new_adv1000_reg
);
2086 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_ANRESTART
|
2089 else if (bp
->link_up
) {
2090 /* Flow ctrl may have changed from auto to forced */
2091 /* or vice-versa. */
2093 bnx2_resolve_flow_ctrl(bp
);
2094 bnx2_set_mac_link(bp
);
2100 if (bp
->req_line_speed
== SPEED_100
) {
2101 new_bmcr
|= BMCR_SPEED100
;
2103 if (bp
->req_duplex
== DUPLEX_FULL
) {
2104 new_bmcr
|= BMCR_FULLDPLX
;
2106 if (new_bmcr
!= bmcr
) {
2109 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2110 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2112 if (bmsr
& BMSR_LSTATUS
) {
2113 /* Force link down */
2114 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
2115 spin_unlock_bh(&bp
->phy_lock
);
2117 spin_lock_bh(&bp
->phy_lock
);
2119 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2120 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2123 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
2125 /* Normally, the new speed is setup after the link has
2126 * gone down and up again. In some cases, link will not go
2127 * down so we need to set up the new speed here.
2129 if (bmsr
& BMSR_LSTATUS
) {
2130 bp
->line_speed
= bp
->req_line_speed
;
2131 bp
->duplex
= bp
->req_duplex
;
2132 bnx2_resolve_flow_ctrl(bp
);
2133 bnx2_set_mac_link(bp
);
2136 bnx2_resolve_flow_ctrl(bp
);
2137 bnx2_set_mac_link(bp
);
2143 bnx2_setup_phy(struct bnx2
*bp
, u8 port
)
2144 __releases(&bp
->phy_lock
)
2145 __acquires(&bp
->phy_lock
)
2147 if (bp
->loopback
== MAC_LOOPBACK
)
2150 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2151 return (bnx2_setup_serdes_phy(bp
, port
));
2154 return (bnx2_setup_copper_phy(bp
));
2159 bnx2_init_5709s_phy(struct bnx2
*bp
, int reset_phy
)
2163 bp
->mii_bmcr
= MII_BMCR
+ 0x10;
2164 bp
->mii_bmsr
= MII_BMSR
+ 0x10;
2165 bp
->mii_bmsr1
= MII_BNX2_GP_TOP_AN_STATUS1
;
2166 bp
->mii_adv
= MII_ADVERTISE
+ 0x10;
2167 bp
->mii_lpa
= MII_LPA
+ 0x10;
2168 bp
->mii_up1
= MII_BNX2_OVER1G_UP1
;
2170 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_AER
);
2171 bnx2_write_phy(bp
, MII_BNX2_AER_AER
, MII_BNX2_AER_AER_AN_MMD
);
2173 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2177 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_SERDES_DIG
);
2179 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, &val
);
2180 val
&= ~MII_BNX2_SD_1000XCTL1_AUTODET
;
2181 val
|= MII_BNX2_SD_1000XCTL1_FIBER
;
2182 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, val
);
2184 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
2185 bnx2_read_phy(bp
, MII_BNX2_OVER1G_UP1
, &val
);
2186 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
2187 val
|= BCM5708S_UP1_2G5
;
2189 val
&= ~BCM5708S_UP1_2G5
;
2190 bnx2_write_phy(bp
, MII_BNX2_OVER1G_UP1
, val
);
2192 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_BAM_NXTPG
);
2193 bnx2_read_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, &val
);
2194 val
|= MII_BNX2_NXTPG_CTL_T2
| MII_BNX2_NXTPG_CTL_BAM
;
2195 bnx2_write_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, val
);
2197 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_CL73_USERB0
);
2199 val
= MII_BNX2_CL73_BAM_EN
| MII_BNX2_CL73_BAM_STA_MGR_EN
|
2200 MII_BNX2_CL73_BAM_NP_AFT_BP_EN
;
2201 bnx2_write_phy(bp
, MII_BNX2_CL73_BAM_CTL1
, val
);
2203 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2209 bnx2_init_5708s_phy(struct bnx2
*bp
, int reset_phy
)
2216 bp
->mii_up1
= BCM5708S_UP1
;
2218 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG3
);
2219 bnx2_write_phy(bp
, BCM5708S_DIG_3_0
, BCM5708S_DIG_3_0_USE_IEEE
);
2220 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2222 bnx2_read_phy(bp
, BCM5708S_1000X_CTL1
, &val
);
2223 val
|= BCM5708S_1000X_CTL1_FIBER_MODE
| BCM5708S_1000X_CTL1_AUTODET_EN
;
2224 bnx2_write_phy(bp
, BCM5708S_1000X_CTL1
, val
);
2226 bnx2_read_phy(bp
, BCM5708S_1000X_CTL2
, &val
);
2227 val
|= BCM5708S_1000X_CTL2_PLLEL_DET_EN
;
2228 bnx2_write_phy(bp
, BCM5708S_1000X_CTL2
, val
);
2230 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) {
2231 bnx2_read_phy(bp
, BCM5708S_UP1
, &val
);
2232 val
|= BCM5708S_UP1_2G5
;
2233 bnx2_write_phy(bp
, BCM5708S_UP1
, val
);
2236 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
2237 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
2238 (CHIP_ID(bp
) == CHIP_ID_5708_B1
)) {
2239 /* increase tx signal amplitude */
2240 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2241 BCM5708S_BLK_ADDR_TX_MISC
);
2242 bnx2_read_phy(bp
, BCM5708S_TX_ACTL1
, &val
);
2243 val
&= ~BCM5708S_TX_ACTL1_DRIVER_VCM
;
2244 bnx2_write_phy(bp
, BCM5708S_TX_ACTL1
, val
);
2245 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2248 val
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
) &
2249 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK
;
2254 is_backplane
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
2255 if (is_backplane
& BNX2_SHARED_HW_CFG_PHY_BACKPLANE
) {
2256 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2257 BCM5708S_BLK_ADDR_TX_MISC
);
2258 bnx2_write_phy(bp
, BCM5708S_TX_ACTL3
, val
);
2259 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2260 BCM5708S_BLK_ADDR_DIG
);
2267 bnx2_init_5706s_phy(struct bnx2
*bp
, int reset_phy
)
2272 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
2274 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
2275 REG_WR(bp
, BNX2_MISC_GP_HW_CTL0
, 0x300);
2277 if (bp
->dev
->mtu
> 1500) {
2280 /* Set extended packet length bit */
2281 bnx2_write_phy(bp
, 0x18, 0x7);
2282 bnx2_read_phy(bp
, 0x18, &val
);
2283 bnx2_write_phy(bp
, 0x18, (val
& 0xfff8) | 0x4000);
2285 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2286 bnx2_read_phy(bp
, 0x1c, &val
);
2287 bnx2_write_phy(bp
, 0x1c, (val
& 0x3ff) | 0xec02);
2292 bnx2_write_phy(bp
, 0x18, 0x7);
2293 bnx2_read_phy(bp
, 0x18, &val
);
2294 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2296 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2297 bnx2_read_phy(bp
, 0x1c, &val
);
2298 bnx2_write_phy(bp
, 0x1c, (val
& 0x3fd) | 0xec00);
2305 bnx2_init_copper_phy(struct bnx2
*bp
, int reset_phy
)
2312 if (bp
->phy_flags
& BNX2_PHY_FLAG_CRC_FIX
) {
2313 bnx2_write_phy(bp
, 0x18, 0x0c00);
2314 bnx2_write_phy(bp
, 0x17, 0x000a);
2315 bnx2_write_phy(bp
, 0x15, 0x310b);
2316 bnx2_write_phy(bp
, 0x17, 0x201f);
2317 bnx2_write_phy(bp
, 0x15, 0x9506);
2318 bnx2_write_phy(bp
, 0x17, 0x401f);
2319 bnx2_write_phy(bp
, 0x15, 0x14e2);
2320 bnx2_write_phy(bp
, 0x18, 0x0400);
2323 if (bp
->phy_flags
& BNX2_PHY_FLAG_DIS_EARLY_DAC
) {
2324 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
,
2325 MII_BNX2_DSP_EXPAND_REG
| 0x8);
2326 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
2328 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
);
2331 if (bp
->dev
->mtu
> 1500) {
2332 /* Set extended packet length bit */
2333 bnx2_write_phy(bp
, 0x18, 0x7);
2334 bnx2_read_phy(bp
, 0x18, &val
);
2335 bnx2_write_phy(bp
, 0x18, val
| 0x4000);
2337 bnx2_read_phy(bp
, 0x10, &val
);
2338 bnx2_write_phy(bp
, 0x10, val
| 0x1);
2341 bnx2_write_phy(bp
, 0x18, 0x7);
2342 bnx2_read_phy(bp
, 0x18, &val
);
2343 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2345 bnx2_read_phy(bp
, 0x10, &val
);
2346 bnx2_write_phy(bp
, 0x10, val
& ~0x1);
2349 /* ethernet@wirespeed */
2350 bnx2_write_phy(bp
, 0x18, 0x7007);
2351 bnx2_read_phy(bp
, 0x18, &val
);
2352 bnx2_write_phy(bp
, 0x18, val
| (1 << 15) | (1 << 4));
2358 bnx2_init_phy(struct bnx2
*bp
, int reset_phy
)
2359 __releases(&bp
->phy_lock
)
2360 __acquires(&bp
->phy_lock
)
2365 bp
->phy_flags
&= ~BNX2_PHY_FLAG_INT_MODE_MASK
;
2366 bp
->phy_flags
|= BNX2_PHY_FLAG_INT_MODE_LINK_READY
;
2368 bp
->mii_bmcr
= MII_BMCR
;
2369 bp
->mii_bmsr
= MII_BMSR
;
2370 bp
->mii_bmsr1
= MII_BMSR
;
2371 bp
->mii_adv
= MII_ADVERTISE
;
2372 bp
->mii_lpa
= MII_LPA
;
2374 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
2376 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
2379 bnx2_read_phy(bp
, MII_PHYSID1
, &val
);
2380 bp
->phy_id
= val
<< 16;
2381 bnx2_read_phy(bp
, MII_PHYSID2
, &val
);
2382 bp
->phy_id
|= val
& 0xffff;
2384 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2385 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
2386 rc
= bnx2_init_5706s_phy(bp
, reset_phy
);
2387 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
2388 rc
= bnx2_init_5708s_phy(bp
, reset_phy
);
2389 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
2390 rc
= bnx2_init_5709s_phy(bp
, reset_phy
);
2393 rc
= bnx2_init_copper_phy(bp
, reset_phy
);
2398 rc
= bnx2_setup_phy(bp
, bp
->phy_port
);
2404 bnx2_set_mac_loopback(struct bnx2
*bp
)
2408 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2409 mac_mode
&= ~BNX2_EMAC_MODE_PORT
;
2410 mac_mode
|= BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
;
2411 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2416 static int bnx2_test_link(struct bnx2
*);
2419 bnx2_set_phy_loopback(struct bnx2
*bp
)
2424 spin_lock_bh(&bp
->phy_lock
);
2425 rc
= bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
| BMCR_FULLDPLX
|
2427 spin_unlock_bh(&bp
->phy_lock
);
2431 for (i
= 0; i
< 10; i
++) {
2432 if (bnx2_test_link(bp
) == 0)
2437 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2438 mac_mode
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
2439 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
2440 BNX2_EMAC_MODE_25G_MODE
);
2442 mac_mode
|= BNX2_EMAC_MODE_PORT_GMII
;
2443 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2449 bnx2_fw_sync(struct bnx2
*bp
, u32 msg_data
, int ack
, int silent
)
2455 msg_data
|= bp
->fw_wr_seq
;
2457 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2462 /* wait for an acknowledgement. */
2463 for (i
= 0; i
< (BNX2_FW_ACK_TIME_OUT_MS
/ 10); i
++) {
2466 val
= bnx2_shmem_rd(bp
, BNX2_FW_MB
);
2468 if ((val
& BNX2_FW_MSG_ACK
) == (msg_data
& BNX2_DRV_MSG_SEQ
))
2471 if ((msg_data
& BNX2_DRV_MSG_DATA
) == BNX2_DRV_MSG_DATA_WAIT0
)
2474 /* If we timed out, inform the firmware that this is the case. */
2475 if ((val
& BNX2_FW_MSG_ACK
) != (msg_data
& BNX2_DRV_MSG_SEQ
)) {
2477 printk(KERN_ERR PFX
"fw sync timeout, reset code = "
2480 msg_data
&= ~BNX2_DRV_MSG_CODE
;
2481 msg_data
|= BNX2_DRV_MSG_CODE_FW_TIMEOUT
;
2483 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2488 if ((val
& BNX2_FW_MSG_STATUS_MASK
) != BNX2_FW_MSG_STATUS_OK
)
2495 bnx2_init_5709_context(struct bnx2
*bp
)
2500 val
= BNX2_CTX_COMMAND_ENABLED
| BNX2_CTX_COMMAND_MEM_INIT
| (1 << 12);
2501 val
|= (BCM_PAGE_BITS
- 8) << 16;
2502 REG_WR(bp
, BNX2_CTX_COMMAND
, val
);
2503 for (i
= 0; i
< 10; i
++) {
2504 val
= REG_RD(bp
, BNX2_CTX_COMMAND
);
2505 if (!(val
& BNX2_CTX_COMMAND_MEM_INIT
))
2509 if (val
& BNX2_CTX_COMMAND_MEM_INIT
)
2512 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
2516 memset(bp
->ctx_blk
[i
], 0, BCM_PAGE_SIZE
);
2520 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA0
,
2521 (bp
->ctx_blk_mapping
[i
] & 0xffffffff) |
2522 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID
);
2523 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA1
,
2524 (u64
) bp
->ctx_blk_mapping
[i
] >> 32);
2525 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
, i
|
2526 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
);
2527 for (j
= 0; j
< 10; j
++) {
2529 val
= REG_RD(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
);
2530 if (!(val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
))
2534 if (val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
) {
2543 bnx2_init_context(struct bnx2
*bp
)
2549 u32 vcid_addr
, pcid_addr
, offset
;
2554 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
2557 vcid_addr
= GET_PCID_ADDR(vcid
);
2559 new_vcid
= 0x60 + (vcid
& 0xf0) + (vcid
& 0x7);
2564 pcid_addr
= GET_PCID_ADDR(new_vcid
);
2567 vcid_addr
= GET_CID_ADDR(vcid
);
2568 pcid_addr
= vcid_addr
;
2571 for (i
= 0; i
< (CTX_SIZE
/ PHY_CTX_SIZE
); i
++) {
2572 vcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2573 pcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2575 REG_WR(bp
, BNX2_CTX_VIRT_ADDR
, vcid_addr
);
2576 REG_WR(bp
, BNX2_CTX_PAGE_TBL
, pcid_addr
);
2578 /* Zero out the context. */
2579 for (offset
= 0; offset
< PHY_CTX_SIZE
; offset
+= 4)
2580 bnx2_ctx_wr(bp
, vcid_addr
, offset
, 0);
2586 bnx2_alloc_bad_rbuf(struct bnx2
*bp
)
2592 good_mbuf
= kmalloc(512 * sizeof(u16
), GFP_KERNEL
);
2593 if (good_mbuf
== NULL
) {
2594 printk(KERN_ERR PFX
"Failed to allocate memory in "
2595 "bnx2_alloc_bad_rbuf\n");
2599 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
2600 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE
);
2604 /* Allocate a bunch of mbufs and save the good ones in an array. */
2605 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2606 while (val
& BNX2_RBUF_STATUS1_FREE_COUNT
) {
2607 bnx2_reg_wr_ind(bp
, BNX2_RBUF_COMMAND
,
2608 BNX2_RBUF_COMMAND_ALLOC_REQ
);
2610 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_FW_BUF_ALLOC
);
2612 val
&= BNX2_RBUF_FW_BUF_ALLOC_VALUE
;
2614 /* The addresses with Bit 9 set are bad memory blocks. */
2615 if (!(val
& (1 << 9))) {
2616 good_mbuf
[good_mbuf_cnt
] = (u16
) val
;
2620 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2623 /* Free the good ones back to the mbuf pool thus discarding
2624 * all the bad ones. */
2625 while (good_mbuf_cnt
) {
2628 val
= good_mbuf
[good_mbuf_cnt
];
2629 val
= (val
<< 9) | val
| 1;
2631 bnx2_reg_wr_ind(bp
, BNX2_RBUF_FW_BUF_FREE
, val
);
2638 bnx2_set_mac_addr(struct bnx2
*bp
, u8
*mac_addr
, u32 pos
)
2642 val
= (mac_addr
[0] << 8) | mac_addr
[1];
2644 REG_WR(bp
, BNX2_EMAC_MAC_MATCH0
+ (pos
* 8), val
);
2646 val
= (mac_addr
[2] << 24) | (mac_addr
[3] << 16) |
2647 (mac_addr
[4] << 8) | mac_addr
[5];
2649 REG_WR(bp
, BNX2_EMAC_MAC_MATCH1
+ (pos
* 8), val
);
2653 bnx2_alloc_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2656 struct sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2657 struct rx_bd
*rxbd
=
2658 &rxr
->rx_pg_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2659 struct page
*page
= alloc_page(GFP_ATOMIC
);
2663 mapping
= pci_map_page(bp
->pdev
, page
, 0, PAGE_SIZE
,
2664 PCI_DMA_FROMDEVICE
);
2665 if (pci_dma_mapping_error(bp
->pdev
, mapping
)) {
2671 pci_unmap_addr_set(rx_pg
, mapping
, mapping
);
2672 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2673 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2678 bnx2_free_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2680 struct sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2681 struct page
*page
= rx_pg
->page
;
2686 pci_unmap_page(bp
->pdev
, pci_unmap_addr(rx_pg
, mapping
), PAGE_SIZE
,
2687 PCI_DMA_FROMDEVICE
);
2694 bnx2_alloc_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2696 struct sk_buff
*skb
;
2697 struct sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[index
];
2699 struct rx_bd
*rxbd
= &rxr
->rx_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2700 unsigned long align
;
2702 skb
= netdev_alloc_skb(bp
->dev
, bp
->rx_buf_size
);
2707 if (unlikely((align
= (unsigned long) skb
->data
& (BNX2_RX_ALIGN
- 1))))
2708 skb_reserve(skb
, BNX2_RX_ALIGN
- align
);
2710 mapping
= pci_map_single(bp
->pdev
, skb
->data
, bp
->rx_buf_use_size
,
2711 PCI_DMA_FROMDEVICE
);
2712 if (pci_dma_mapping_error(bp
->pdev
, mapping
)) {
2718 pci_unmap_addr_set(rx_buf
, mapping
, mapping
);
2720 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2721 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2723 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2729 bnx2_phy_event_is_set(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, u32 event
)
2731 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
2732 u32 new_link_state
, old_link_state
;
2735 new_link_state
= sblk
->status_attn_bits
& event
;
2736 old_link_state
= sblk
->status_attn_bits_ack
& event
;
2737 if (new_link_state
!= old_link_state
) {
2739 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_SET_CMD
, event
);
2741 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD
, event
);
2749 bnx2_phy_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
2751 spin_lock(&bp
->phy_lock
);
2753 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_LINK_STATE
))
2755 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_TIMER_ABORT
))
2756 bnx2_set_remote_link(bp
);
2758 spin_unlock(&bp
->phy_lock
);
2763 bnx2_get_hw_tx_cons(struct bnx2_napi
*bnapi
)
2767 /* Tell compiler that status block fields can change. */
2769 cons
= *bnapi
->hw_tx_cons_ptr
;
2771 if (unlikely((cons
& MAX_TX_DESC_CNT
) == MAX_TX_DESC_CNT
))
2777 bnx2_tx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
2779 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
2780 u16 hw_cons
, sw_cons
, sw_ring_cons
;
2781 int tx_pkt
= 0, index
;
2782 struct netdev_queue
*txq
;
2784 index
= (bnapi
- bp
->bnx2_napi
);
2785 txq
= netdev_get_tx_queue(bp
->dev
, index
);
2787 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2788 sw_cons
= txr
->tx_cons
;
2790 while (sw_cons
!= hw_cons
) {
2791 struct sw_tx_bd
*tx_buf
;
2792 struct sk_buff
*skb
;
2795 sw_ring_cons
= TX_RING_IDX(sw_cons
);
2797 tx_buf
= &txr
->tx_buf_ring
[sw_ring_cons
];
2800 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2801 prefetch(&skb
->end
);
2803 /* partial BD completions possible with TSO packets */
2804 if (tx_buf
->is_gso
) {
2805 u16 last_idx
, last_ring_idx
;
2807 last_idx
= sw_cons
+ tx_buf
->nr_frags
+ 1;
2808 last_ring_idx
= sw_ring_cons
+ tx_buf
->nr_frags
+ 1;
2809 if (unlikely(last_ring_idx
>= MAX_TX_DESC_CNT
)) {
2812 if (((s16
) ((s16
) last_idx
- (s16
) hw_cons
)) > 0) {
2817 skb_dma_unmap(&bp
->pdev
->dev
, skb
, DMA_TO_DEVICE
);
2820 last
= tx_buf
->nr_frags
;
2822 for (i
= 0; i
< last
; i
++) {
2823 sw_cons
= NEXT_TX_BD(sw_cons
);
2826 sw_cons
= NEXT_TX_BD(sw_cons
);
2830 if (tx_pkt
== budget
)
2833 if (hw_cons
== sw_cons
)
2834 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2837 txr
->hw_tx_cons
= hw_cons
;
2838 txr
->tx_cons
= sw_cons
;
2840 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2841 * before checking for netif_tx_queue_stopped(). Without the
2842 * memory barrier, there is a small possibility that bnx2_start_xmit()
2843 * will miss it and cause the queue to be stopped forever.
2847 if (unlikely(netif_tx_queue_stopped(txq
)) &&
2848 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)) {
2849 __netif_tx_lock(txq
, smp_processor_id());
2850 if ((netif_tx_queue_stopped(txq
)) &&
2851 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
))
2852 netif_tx_wake_queue(txq
);
2853 __netif_tx_unlock(txq
);
2860 bnx2_reuse_rx_skb_pages(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2861 struct sk_buff
*skb
, int count
)
2863 struct sw_pg
*cons_rx_pg
, *prod_rx_pg
;
2864 struct rx_bd
*cons_bd
, *prod_bd
;
2867 u16 cons
= rxr
->rx_pg_cons
;
2869 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2871 /* The caller was unable to allocate a new page to replace the
2872 * last one in the frags array, so we need to recycle that page
2873 * and then free the skb.
2877 struct skb_shared_info
*shinfo
;
2879 shinfo
= skb_shinfo(skb
);
2881 page
= shinfo
->frags
[shinfo
->nr_frags
].page
;
2882 shinfo
->frags
[shinfo
->nr_frags
].page
= NULL
;
2884 cons_rx_pg
->page
= page
;
2888 hw_prod
= rxr
->rx_pg_prod
;
2890 for (i
= 0; i
< count
; i
++) {
2891 prod
= RX_PG_RING_IDX(hw_prod
);
2893 prod_rx_pg
= &rxr
->rx_pg_ring
[prod
];
2894 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2895 cons_bd
= &rxr
->rx_pg_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2896 prod_bd
= &rxr
->rx_pg_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2899 prod_rx_pg
->page
= cons_rx_pg
->page
;
2900 cons_rx_pg
->page
= NULL
;
2901 pci_unmap_addr_set(prod_rx_pg
, mapping
,
2902 pci_unmap_addr(cons_rx_pg
, mapping
));
2904 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2905 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2908 cons
= RX_PG_RING_IDX(NEXT_RX_BD(cons
));
2909 hw_prod
= NEXT_RX_BD(hw_prod
);
2911 rxr
->rx_pg_prod
= hw_prod
;
2912 rxr
->rx_pg_cons
= cons
;
2916 bnx2_reuse_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2917 struct sk_buff
*skb
, u16 cons
, u16 prod
)
2919 struct sw_bd
*cons_rx_buf
, *prod_rx_buf
;
2920 struct rx_bd
*cons_bd
, *prod_bd
;
2922 cons_rx_buf
= &rxr
->rx_buf_ring
[cons
];
2923 prod_rx_buf
= &rxr
->rx_buf_ring
[prod
];
2925 pci_dma_sync_single_for_device(bp
->pdev
,
2926 pci_unmap_addr(cons_rx_buf
, mapping
),
2927 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
, PCI_DMA_FROMDEVICE
);
2929 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2931 prod_rx_buf
->skb
= skb
;
2936 pci_unmap_addr_set(prod_rx_buf
, mapping
,
2937 pci_unmap_addr(cons_rx_buf
, mapping
));
2939 cons_bd
= &rxr
->rx_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2940 prod_bd
= &rxr
->rx_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2941 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2942 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2946 bnx2_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, struct sk_buff
*skb
,
2947 unsigned int len
, unsigned int hdr_len
, dma_addr_t dma_addr
,
2951 u16 prod
= ring_idx
& 0xffff;
2953 err
= bnx2_alloc_rx_skb(bp
, rxr
, prod
);
2954 if (unlikely(err
)) {
2955 bnx2_reuse_rx_skb(bp
, rxr
, skb
, (u16
) (ring_idx
>> 16), prod
);
2957 unsigned int raw_len
= len
+ 4;
2958 int pages
= PAGE_ALIGN(raw_len
- hdr_len
) >> PAGE_SHIFT
;
2960 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
2965 skb_reserve(skb
, BNX2_RX_OFFSET
);
2966 pci_unmap_single(bp
->pdev
, dma_addr
, bp
->rx_buf_use_size
,
2967 PCI_DMA_FROMDEVICE
);
2973 unsigned int i
, frag_len
, frag_size
, pages
;
2974 struct sw_pg
*rx_pg
;
2975 u16 pg_cons
= rxr
->rx_pg_cons
;
2976 u16 pg_prod
= rxr
->rx_pg_prod
;
2978 frag_size
= len
+ 4 - hdr_len
;
2979 pages
= PAGE_ALIGN(frag_size
) >> PAGE_SHIFT
;
2980 skb_put(skb
, hdr_len
);
2982 for (i
= 0; i
< pages
; i
++) {
2983 dma_addr_t mapping_old
;
2985 frag_len
= min(frag_size
, (unsigned int) PAGE_SIZE
);
2986 if (unlikely(frag_len
<= 4)) {
2987 unsigned int tail
= 4 - frag_len
;
2989 rxr
->rx_pg_cons
= pg_cons
;
2990 rxr
->rx_pg_prod
= pg_prod
;
2991 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
,
2998 &skb_shinfo(skb
)->frags
[i
- 1];
3000 skb
->data_len
-= tail
;
3001 skb
->truesize
-= tail
;
3005 rx_pg
= &rxr
->rx_pg_ring
[pg_cons
];
3007 /* Don't unmap yet. If we're unable to allocate a new
3008 * page, we need to recycle the page and the DMA addr.
3010 mapping_old
= pci_unmap_addr(rx_pg
, mapping
);
3014 skb_fill_page_desc(skb
, i
, rx_pg
->page
, 0, frag_len
);
3017 err
= bnx2_alloc_rx_page(bp
, rxr
,
3018 RX_PG_RING_IDX(pg_prod
));
3019 if (unlikely(err
)) {
3020 rxr
->rx_pg_cons
= pg_cons
;
3021 rxr
->rx_pg_prod
= pg_prod
;
3022 bnx2_reuse_rx_skb_pages(bp
, rxr
, skb
,
3027 pci_unmap_page(bp
->pdev
, mapping_old
,
3028 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
3030 frag_size
-= frag_len
;
3031 skb
->data_len
+= frag_len
;
3032 skb
->truesize
+= frag_len
;
3033 skb
->len
+= frag_len
;
3035 pg_prod
= NEXT_RX_BD(pg_prod
);
3036 pg_cons
= RX_PG_RING_IDX(NEXT_RX_BD(pg_cons
));
3038 rxr
->rx_pg_prod
= pg_prod
;
3039 rxr
->rx_pg_cons
= pg_cons
;
3045 bnx2_get_hw_rx_cons(struct bnx2_napi
*bnapi
)
3049 /* Tell compiler that status block fields can change. */
3051 cons
= *bnapi
->hw_rx_cons_ptr
;
3053 if (unlikely((cons
& MAX_RX_DESC_CNT
) == MAX_RX_DESC_CNT
))
3059 bnx2_rx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
3061 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3062 u16 hw_cons
, sw_cons
, sw_ring_cons
, sw_prod
, sw_ring_prod
;
3063 struct l2_fhdr
*rx_hdr
;
3064 int rx_pkt
= 0, pg_ring_used
= 0;
3066 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3067 sw_cons
= rxr
->rx_cons
;
3068 sw_prod
= rxr
->rx_prod
;
3070 /* Memory barrier necessary as speculative reads of the rx
3071 * buffer can be ahead of the index in the status block
3074 while (sw_cons
!= hw_cons
) {
3075 unsigned int len
, hdr_len
;
3077 struct sw_bd
*rx_buf
;
3078 struct sk_buff
*skb
;
3079 dma_addr_t dma_addr
;
3081 int hw_vlan __maybe_unused
= 0;
3083 sw_ring_cons
= RX_RING_IDX(sw_cons
);
3084 sw_ring_prod
= RX_RING_IDX(sw_prod
);
3086 rx_buf
= &rxr
->rx_buf_ring
[sw_ring_cons
];
3091 dma_addr
= pci_unmap_addr(rx_buf
, mapping
);
3093 pci_dma_sync_single_for_cpu(bp
->pdev
, dma_addr
,
3094 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
,
3095 PCI_DMA_FROMDEVICE
);
3097 rx_hdr
= (struct l2_fhdr
*) skb
->data
;
3098 len
= rx_hdr
->l2_fhdr_pkt_len
;
3099 status
= rx_hdr
->l2_fhdr_status
;
3102 if (status
& L2_FHDR_STATUS_SPLIT
) {
3103 hdr_len
= rx_hdr
->l2_fhdr_ip_xsum
;
3105 } else if (len
> bp
->rx_jumbo_thresh
) {
3106 hdr_len
= bp
->rx_jumbo_thresh
;
3110 if (unlikely(status
& (L2_FHDR_ERRORS_BAD_CRC
|
3111 L2_FHDR_ERRORS_PHY_DECODE
|
3112 L2_FHDR_ERRORS_ALIGNMENT
|
3113 L2_FHDR_ERRORS_TOO_SHORT
|
3114 L2_FHDR_ERRORS_GIANT_FRAME
))) {
3116 bnx2_reuse_rx_skb(bp
, rxr
, skb
, sw_ring_cons
,
3121 pages
= PAGE_ALIGN(len
- hdr_len
) >> PAGE_SHIFT
;
3123 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
3130 if (len
<= bp
->rx_copy_thresh
) {
3131 struct sk_buff
*new_skb
;
3133 new_skb
= netdev_alloc_skb(bp
->dev
, len
+ 6);
3134 if (new_skb
== NULL
) {
3135 bnx2_reuse_rx_skb(bp
, rxr
, skb
, sw_ring_cons
,
3141 skb_copy_from_linear_data_offset(skb
,
3143 new_skb
->data
, len
+ 6);
3144 skb_reserve(new_skb
, 6);
3145 skb_put(new_skb
, len
);
3147 bnx2_reuse_rx_skb(bp
, rxr
, skb
,
3148 sw_ring_cons
, sw_ring_prod
);
3151 } else if (unlikely(bnx2_rx_skb(bp
, rxr
, skb
, len
, hdr_len
,
3152 dma_addr
, (sw_ring_cons
<< 16) | sw_ring_prod
)))
3155 if ((status
& L2_FHDR_STATUS_L2_VLAN_TAG
) &&
3156 !(bp
->rx_mode
& BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
)) {
3157 vtag
= rx_hdr
->l2_fhdr_vlan_tag
;
3164 struct vlan_ethhdr
*ve
= (struct vlan_ethhdr
*)
3167 memmove(ve
, skb
->data
+ 4, ETH_ALEN
* 2);
3168 ve
->h_vlan_proto
= htons(ETH_P_8021Q
);
3169 ve
->h_vlan_TCI
= htons(vtag
);
3174 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
3176 if ((len
> (bp
->dev
->mtu
+ ETH_HLEN
)) &&
3177 (ntohs(skb
->protocol
) != 0x8100)) {
3184 skb
->ip_summed
= CHECKSUM_NONE
;
3186 (status
& (L2_FHDR_STATUS_TCP_SEGMENT
|
3187 L2_FHDR_STATUS_UDP_DATAGRAM
))) {
3189 if (likely((status
& (L2_FHDR_ERRORS_TCP_XSUM
|
3190 L2_FHDR_ERRORS_UDP_XSUM
)) == 0))
3191 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3194 skb_record_rx_queue(skb
, bnapi
- &bp
->bnx2_napi
[0]);
3198 vlan_hwaccel_receive_skb(skb
, bp
->vlgrp
, vtag
);
3201 netif_receive_skb(skb
);
3206 sw_cons
= NEXT_RX_BD(sw_cons
);
3207 sw_prod
= NEXT_RX_BD(sw_prod
);
3209 if ((rx_pkt
== budget
))
3212 /* Refresh hw_cons to see if there is new work */
3213 if (sw_cons
== hw_cons
) {
3214 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3218 rxr
->rx_cons
= sw_cons
;
3219 rxr
->rx_prod
= sw_prod
;
3222 REG_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
3224 REG_WR16(bp
, rxr
->rx_bidx_addr
, sw_prod
);
3226 REG_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
3234 /* MSI ISR - The only difference between this and the INTx ISR
3235 * is that the MSI interrupt is always serviced.
3238 bnx2_msi(int irq
, void *dev_instance
)
3240 struct bnx2_napi
*bnapi
= dev_instance
;
3241 struct bnx2
*bp
= bnapi
->bp
;
3243 prefetch(bnapi
->status_blk
.msi
);
3244 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3245 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3246 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3248 /* Return here if interrupt is disabled. */
3249 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3252 napi_schedule(&bnapi
->napi
);
3258 bnx2_msi_1shot(int irq
, void *dev_instance
)
3260 struct bnx2_napi
*bnapi
= dev_instance
;
3261 struct bnx2
*bp
= bnapi
->bp
;
3263 prefetch(bnapi
->status_blk
.msi
);
3265 /* Return here if interrupt is disabled. */
3266 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3269 napi_schedule(&bnapi
->napi
);
3275 bnx2_interrupt(int irq
, void *dev_instance
)
3277 struct bnx2_napi
*bnapi
= dev_instance
;
3278 struct bnx2
*bp
= bnapi
->bp
;
3279 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3281 /* When using INTx, it is possible for the interrupt to arrive
3282 * at the CPU before the status block posted prior to the
3283 * interrupt. Reading a register will flush the status block.
3284 * When using MSI, the MSI message will always complete after
3285 * the status block write.
3287 if ((sblk
->status_idx
== bnapi
->last_status_idx
) &&
3288 (REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
) &
3289 BNX2_PCICFG_MISC_STATUS_INTA_VALUE
))
3292 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3293 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3294 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3296 /* Read back to deassert IRQ immediately to avoid too many
3297 * spurious interrupts.
3299 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
3301 /* Return here if interrupt is shared and is disabled. */
3302 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3305 if (napi_schedule_prep(&bnapi
->napi
)) {
3306 bnapi
->last_status_idx
= sblk
->status_idx
;
3307 __napi_schedule(&bnapi
->napi
);
3314 bnx2_has_fast_work(struct bnx2_napi
*bnapi
)
3316 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3317 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3319 if ((bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
) ||
3320 (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
))
3325 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3326 STATUS_ATTN_BITS_TIMER_ABORT)
3329 bnx2_has_work(struct bnx2_napi
*bnapi
)
3331 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3333 if (bnx2_has_fast_work(bnapi
))
3337 if (bnapi
->cnic_present
&& (bnapi
->cnic_tag
!= sblk
->status_idx
))
3341 if ((sblk
->status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3342 (sblk
->status_attn_bits_ack
& STATUS_ATTN_EVENTS
))
3349 bnx2_chk_missed_msi(struct bnx2
*bp
)
3351 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
3354 if (bnx2_has_work(bnapi
)) {
3355 msi_ctrl
= REG_RD(bp
, BNX2_PCICFG_MSI_CONTROL
);
3356 if (!(msi_ctrl
& BNX2_PCICFG_MSI_CONTROL_ENABLE
))
3359 if (bnapi
->last_status_idx
== bp
->idle_chk_status_idx
) {
3360 REG_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
&
3361 ~BNX2_PCICFG_MSI_CONTROL_ENABLE
);
3362 REG_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
);
3363 bnx2_msi(bp
->irq_tbl
[0].vector
, bnapi
);
3367 bp
->idle_chk_status_idx
= bnapi
->last_status_idx
;
3371 static void bnx2_poll_cnic(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3373 struct cnic_ops
*c_ops
;
3375 if (!bnapi
->cnic_present
)
3379 c_ops
= rcu_dereference(bp
->cnic_ops
);
3381 bnapi
->cnic_tag
= c_ops
->cnic_handler(bp
->cnic_data
,
3382 bnapi
->status_blk
.msi
);
3387 static void bnx2_poll_link(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3389 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3390 u32 status_attn_bits
= sblk
->status_attn_bits
;
3391 u32 status_attn_bits_ack
= sblk
->status_attn_bits_ack
;
3393 if ((status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3394 (status_attn_bits_ack
& STATUS_ATTN_EVENTS
)) {
3396 bnx2_phy_int(bp
, bnapi
);
3398 /* This is needed to take care of transient status
3399 * during link changes.
3401 REG_WR(bp
, BNX2_HC_COMMAND
,
3402 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
3403 REG_RD(bp
, BNX2_HC_COMMAND
);
3407 static int bnx2_poll_work(struct bnx2
*bp
, struct bnx2_napi
*bnapi
,
3408 int work_done
, int budget
)
3410 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3411 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3413 if (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
)
3414 bnx2_tx_int(bp
, bnapi
, 0);
3416 if (bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
)
3417 work_done
+= bnx2_rx_int(bp
, bnapi
, budget
- work_done
);
3422 static int bnx2_poll_msix(struct napi_struct
*napi
, int budget
)
3424 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3425 struct bnx2
*bp
= bnapi
->bp
;
3427 struct status_block_msix
*sblk
= bnapi
->status_blk
.msix
;
3430 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3431 if (unlikely(work_done
>= budget
))
3434 bnapi
->last_status_idx
= sblk
->status_idx
;
3435 /* status idx must be read before checking for more work. */
3437 if (likely(!bnx2_has_fast_work(bnapi
))) {
3439 napi_complete(napi
);
3440 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
3441 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3442 bnapi
->last_status_idx
);
3449 static int bnx2_poll(struct napi_struct
*napi
, int budget
)
3451 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3452 struct bnx2
*bp
= bnapi
->bp
;
3454 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3457 bnx2_poll_link(bp
, bnapi
);
3459 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3462 bnx2_poll_cnic(bp
, bnapi
);
3465 /* bnapi->last_status_idx is used below to tell the hw how
3466 * much work has been processed, so we must read it before
3467 * checking for more work.
3469 bnapi
->last_status_idx
= sblk
->status_idx
;
3471 if (unlikely(work_done
>= budget
))
3475 if (likely(!bnx2_has_work(bnapi
))) {
3476 napi_complete(napi
);
3477 if (likely(bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)) {
3478 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3479 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3480 bnapi
->last_status_idx
);
3483 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3484 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3485 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
3486 bnapi
->last_status_idx
);
3488 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3489 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3490 bnapi
->last_status_idx
);
3498 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3499 * from set_multicast.
3502 bnx2_set_rx_mode(struct net_device
*dev
)
3504 struct bnx2
*bp
= netdev_priv(dev
);
3505 u32 rx_mode
, sort_mode
;
3506 struct netdev_hw_addr
*ha
;
3509 if (!netif_running(dev
))
3512 spin_lock_bh(&bp
->phy_lock
);
3514 rx_mode
= bp
->rx_mode
& ~(BNX2_EMAC_RX_MODE_PROMISCUOUS
|
3515 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
);
3516 sort_mode
= 1 | BNX2_RPM_SORT_USER0_BC_EN
;
3518 if (!bp
->vlgrp
&& (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
))
3519 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
3521 if (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
)
3522 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
3524 if (dev
->flags
& IFF_PROMISC
) {
3525 /* Promiscuous mode. */
3526 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3527 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3528 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3530 else if (dev
->flags
& IFF_ALLMULTI
) {
3531 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3532 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3535 sort_mode
|= BNX2_RPM_SORT_USER0_MC_EN
;
3538 /* Accept one or more multicast(s). */
3539 struct dev_mc_list
*mclist
;
3540 u32 mc_filter
[NUM_MC_HASH_REGISTERS
];
3545 memset(mc_filter
, 0, 4 * NUM_MC_HASH_REGISTERS
);
3547 for (i
= 0, mclist
= dev
->mc_list
; mclist
&& i
< dev
->mc_count
;
3548 i
++, mclist
= mclist
->next
) {
3550 crc
= ether_crc_le(ETH_ALEN
, mclist
->dmi_addr
);
3552 regidx
= (bit
& 0xe0) >> 5;
3554 mc_filter
[regidx
] |= (1 << bit
);
3557 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3558 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3562 sort_mode
|= BNX2_RPM_SORT_USER0_MC_HSH_EN
;
3565 if (dev
->uc
.count
> BNX2_MAX_UNICAST_ADDRESSES
) {
3566 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3567 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3568 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3569 } else if (!(dev
->flags
& IFF_PROMISC
)) {
3570 /* Add all entries into to the match filter list */
3572 list_for_each_entry(ha
, &dev
->uc
.list
, list
) {
3573 bnx2_set_mac_addr(bp
, ha
->addr
,
3574 i
+ BNX2_START_UNICAST_ADDRESS_INDEX
);
3576 (i
+ BNX2_START_UNICAST_ADDRESS_INDEX
));
3582 if (rx_mode
!= bp
->rx_mode
) {
3583 bp
->rx_mode
= rx_mode
;
3584 REG_WR(bp
, BNX2_EMAC_RX_MODE
, rx_mode
);
3587 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3588 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
);
3589 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
| BNX2_RPM_SORT_USER0_ENA
);
3591 spin_unlock_bh(&bp
->phy_lock
);
3594 static int __devinit
3595 check_fw_section(const struct firmware
*fw
,
3596 const struct bnx2_fw_file_section
*section
,
3597 u32 alignment
, bool non_empty
)
3599 u32 offset
= be32_to_cpu(section
->offset
);
3600 u32 len
= be32_to_cpu(section
->len
);
3602 if ((offset
== 0 && len
!= 0) || offset
>= fw
->size
|| offset
& 3)
3604 if ((non_empty
&& len
== 0) || len
> fw
->size
- offset
||
3605 len
& (alignment
- 1))
3610 static int __devinit
3611 check_mips_fw_entry(const struct firmware
*fw
,
3612 const struct bnx2_mips_fw_file_entry
*entry
)
3614 if (check_fw_section(fw
, &entry
->text
, 4, true) ||
3615 check_fw_section(fw
, &entry
->data
, 4, false) ||
3616 check_fw_section(fw
, &entry
->rodata
, 4, false))
3621 static int __devinit
3622 bnx2_request_firmware(struct bnx2
*bp
)
3624 const char *mips_fw_file
, *rv2p_fw_file
;
3625 const struct bnx2_mips_fw_file
*mips_fw
;
3626 const struct bnx2_rv2p_fw_file
*rv2p_fw
;
3629 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3630 mips_fw_file
= FW_MIPS_FILE_09
;
3631 if ((CHIP_ID(bp
) == CHIP_ID_5709_A0
) ||
3632 (CHIP_ID(bp
) == CHIP_ID_5709_A1
))
3633 rv2p_fw_file
= FW_RV2P_FILE_09_Ax
;
3635 rv2p_fw_file
= FW_RV2P_FILE_09
;
3637 mips_fw_file
= FW_MIPS_FILE_06
;
3638 rv2p_fw_file
= FW_RV2P_FILE_06
;
3641 rc
= request_firmware(&bp
->mips_firmware
, mips_fw_file
, &bp
->pdev
->dev
);
3643 printk(KERN_ERR PFX
"Can't load firmware file \"%s\"\n",
3648 rc
= request_firmware(&bp
->rv2p_firmware
, rv2p_fw_file
, &bp
->pdev
->dev
);
3650 printk(KERN_ERR PFX
"Can't load firmware file \"%s\"\n",
3654 mips_fw
= (const struct bnx2_mips_fw_file
*) bp
->mips_firmware
->data
;
3655 rv2p_fw
= (const struct bnx2_rv2p_fw_file
*) bp
->rv2p_firmware
->data
;
3656 if (bp
->mips_firmware
->size
< sizeof(*mips_fw
) ||
3657 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->com
) ||
3658 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->cp
) ||
3659 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->rxp
) ||
3660 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->tpat
) ||
3661 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->txp
)) {
3662 printk(KERN_ERR PFX
"Firmware file \"%s\" is invalid\n",
3666 if (bp
->rv2p_firmware
->size
< sizeof(*rv2p_fw
) ||
3667 check_fw_section(bp
->rv2p_firmware
, &rv2p_fw
->proc1
.rv2p
, 8, true) ||
3668 check_fw_section(bp
->rv2p_firmware
, &rv2p_fw
->proc2
.rv2p
, 8, true)) {
3669 printk(KERN_ERR PFX
"Firmware file \"%s\" is invalid\n",
3678 rv2p_fw_fixup(u32 rv2p_proc
, int idx
, u32 loc
, u32 rv2p_code
)
3681 case RV2P_P1_FIXUP_PAGE_SIZE_IDX
:
3682 rv2p_code
&= ~RV2P_BD_PAGE_SIZE_MSK
;
3683 rv2p_code
|= RV2P_BD_PAGE_SIZE
;
3690 load_rv2p_fw(struct bnx2
*bp
, u32 rv2p_proc
,
3691 const struct bnx2_rv2p_fw_file_entry
*fw_entry
)
3693 u32 rv2p_code_len
, file_offset
;
3698 rv2p_code_len
= be32_to_cpu(fw_entry
->rv2p
.len
);
3699 file_offset
= be32_to_cpu(fw_entry
->rv2p
.offset
);
3701 rv2p_code
= (__be32
*)(bp
->rv2p_firmware
->data
+ file_offset
);
3703 if (rv2p_proc
== RV2P_PROC1
) {
3704 cmd
= BNX2_RV2P_PROC1_ADDR_CMD_RDWR
;
3705 addr
= BNX2_RV2P_PROC1_ADDR_CMD
;
3707 cmd
= BNX2_RV2P_PROC2_ADDR_CMD_RDWR
;
3708 addr
= BNX2_RV2P_PROC2_ADDR_CMD
;
3711 for (i
= 0; i
< rv2p_code_len
; i
+= 8) {
3712 REG_WR(bp
, BNX2_RV2P_INSTR_HIGH
, be32_to_cpu(*rv2p_code
));
3714 REG_WR(bp
, BNX2_RV2P_INSTR_LOW
, be32_to_cpu(*rv2p_code
));
3717 val
= (i
/ 8) | cmd
;
3718 REG_WR(bp
, addr
, val
);
3721 rv2p_code
= (__be32
*)(bp
->rv2p_firmware
->data
+ file_offset
);
3722 for (i
= 0; i
< 8; i
++) {
3725 loc
= be32_to_cpu(fw_entry
->fixup
[i
]);
3726 if (loc
&& ((loc
* 4) < rv2p_code_len
)) {
3727 code
= be32_to_cpu(*(rv2p_code
+ loc
- 1));
3728 REG_WR(bp
, BNX2_RV2P_INSTR_HIGH
, code
);
3729 code
= be32_to_cpu(*(rv2p_code
+ loc
));
3730 code
= rv2p_fw_fixup(rv2p_proc
, i
, loc
, code
);
3731 REG_WR(bp
, BNX2_RV2P_INSTR_LOW
, code
);
3733 val
= (loc
/ 2) | cmd
;
3734 REG_WR(bp
, addr
, val
);
3738 /* Reset the processor, un-stall is done later. */
3739 if (rv2p_proc
== RV2P_PROC1
) {
3740 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC1_RESET
);
3743 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC2_RESET
);
3750 load_cpu_fw(struct bnx2
*bp
, const struct cpu_reg
*cpu_reg
,
3751 const struct bnx2_mips_fw_file_entry
*fw_entry
)
3753 u32 addr
, len
, file_offset
;
3759 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3760 val
|= cpu_reg
->mode_value_halt
;
3761 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3762 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3764 /* Load the Text area. */
3765 addr
= be32_to_cpu(fw_entry
->text
.addr
);
3766 len
= be32_to_cpu(fw_entry
->text
.len
);
3767 file_offset
= be32_to_cpu(fw_entry
->text
.offset
);
3768 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3770 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3774 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3775 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3778 /* Load the Data area. */
3779 addr
= be32_to_cpu(fw_entry
->data
.addr
);
3780 len
= be32_to_cpu(fw_entry
->data
.len
);
3781 file_offset
= be32_to_cpu(fw_entry
->data
.offset
);
3782 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3784 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3788 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3789 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3792 /* Load the Read-Only area. */
3793 addr
= be32_to_cpu(fw_entry
->rodata
.addr
);
3794 len
= be32_to_cpu(fw_entry
->rodata
.len
);
3795 file_offset
= be32_to_cpu(fw_entry
->rodata
.offset
);
3796 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3798 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3802 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3803 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3806 /* Clear the pre-fetch instruction. */
3807 bnx2_reg_wr_ind(bp
, cpu_reg
->inst
, 0);
3809 val
= be32_to_cpu(fw_entry
->start_addr
);
3810 bnx2_reg_wr_ind(bp
, cpu_reg
->pc
, val
);
3812 /* Start the CPU. */
3813 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3814 val
&= ~cpu_reg
->mode_value_halt
;
3815 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3816 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3822 bnx2_init_cpus(struct bnx2
*bp
)
3824 const struct bnx2_mips_fw_file
*mips_fw
=
3825 (const struct bnx2_mips_fw_file
*) bp
->mips_firmware
->data
;
3826 const struct bnx2_rv2p_fw_file
*rv2p_fw
=
3827 (const struct bnx2_rv2p_fw_file
*) bp
->rv2p_firmware
->data
;
3830 /* Initialize the RV2P processor. */
3831 load_rv2p_fw(bp
, RV2P_PROC1
, &rv2p_fw
->proc1
);
3832 load_rv2p_fw(bp
, RV2P_PROC2
, &rv2p_fw
->proc2
);
3834 /* Initialize the RX Processor. */
3835 rc
= load_cpu_fw(bp
, &cpu_reg_rxp
, &mips_fw
->rxp
);
3839 /* Initialize the TX Processor. */
3840 rc
= load_cpu_fw(bp
, &cpu_reg_txp
, &mips_fw
->txp
);
3844 /* Initialize the TX Patch-up Processor. */
3845 rc
= load_cpu_fw(bp
, &cpu_reg_tpat
, &mips_fw
->tpat
);
3849 /* Initialize the Completion Processor. */
3850 rc
= load_cpu_fw(bp
, &cpu_reg_com
, &mips_fw
->com
);
3854 /* Initialize the Command Processor. */
3855 rc
= load_cpu_fw(bp
, &cpu_reg_cp
, &mips_fw
->cp
);
3862 bnx2_set_power_state(struct bnx2
*bp
, pci_power_t state
)
3866 pci_read_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
3872 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
3873 (pmcsr
& ~PCI_PM_CTRL_STATE_MASK
) |
3874 PCI_PM_CTRL_PME_STATUS
);
3876 if (pmcsr
& PCI_PM_CTRL_STATE_MASK
)
3877 /* delay required during transition out of D3hot */
3880 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3881 val
|= BNX2_EMAC_MODE_MPKT_RCVD
| BNX2_EMAC_MODE_ACPI_RCVD
;
3882 val
&= ~BNX2_EMAC_MODE_MPKT
;
3883 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3885 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
3886 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3887 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
3898 autoneg
= bp
->autoneg
;
3899 advertising
= bp
->advertising
;
3901 if (bp
->phy_port
== PORT_TP
) {
3902 bp
->autoneg
= AUTONEG_SPEED
;
3903 bp
->advertising
= ADVERTISED_10baseT_Half
|
3904 ADVERTISED_10baseT_Full
|
3905 ADVERTISED_100baseT_Half
|
3906 ADVERTISED_100baseT_Full
|
3910 spin_lock_bh(&bp
->phy_lock
);
3911 bnx2_setup_phy(bp
, bp
->phy_port
);
3912 spin_unlock_bh(&bp
->phy_lock
);
3914 bp
->autoneg
= autoneg
;
3915 bp
->advertising
= advertising
;
3917 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
3919 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3921 /* Enable port mode. */
3922 val
&= ~BNX2_EMAC_MODE_PORT
;
3923 val
|= BNX2_EMAC_MODE_MPKT_RCVD
|
3924 BNX2_EMAC_MODE_ACPI_RCVD
|
3925 BNX2_EMAC_MODE_MPKT
;
3926 if (bp
->phy_port
== PORT_TP
)
3927 val
|= BNX2_EMAC_MODE_PORT_MII
;
3929 val
|= BNX2_EMAC_MODE_PORT_GMII
;
3930 if (bp
->line_speed
== SPEED_2500
)
3931 val
|= BNX2_EMAC_MODE_25G_MODE
;
3934 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3936 /* receive all multicast */
3937 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3938 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3941 REG_WR(bp
, BNX2_EMAC_RX_MODE
,
3942 BNX2_EMAC_RX_MODE_SORT_MODE
);
3944 val
= 1 | BNX2_RPM_SORT_USER0_BC_EN
|
3945 BNX2_RPM_SORT_USER0_MC_EN
;
3946 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3947 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
);
3948 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
|
3949 BNX2_RPM_SORT_USER0_ENA
);
3951 /* Need to enable EMAC and RPM for WOL. */
3952 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
3953 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE
|
3954 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE
|
3955 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE
);
3957 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
3958 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3959 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
3961 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
3964 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
3967 if (!(bp
->flags
& BNX2_FLAG_NO_WOL
))
3968 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT3
| wol_msg
,
3971 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
3972 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
3973 (CHIP_ID(bp
) == CHIP_ID_5706_A1
)) {
3982 pmcsr
|= PCI_PM_CTRL_PME_ENABLE
;
3984 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
3987 /* No more memory access after this point until
3988 * device is brought back to D0.
4000 bnx2_acquire_nvram_lock(struct bnx2
*bp
)
4005 /* Request access to the flash interface. */
4006 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_SET2
);
4007 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4008 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
4009 if (val
& BNX2_NVM_SW_ARB_ARB_ARB2
)
4015 if (j
>= NVRAM_TIMEOUT_COUNT
)
4022 bnx2_release_nvram_lock(struct bnx2
*bp
)
4027 /* Relinquish nvram interface. */
4028 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_CLR2
);
4030 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4031 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
4032 if (!(val
& BNX2_NVM_SW_ARB_ARB_ARB2
))
4038 if (j
>= NVRAM_TIMEOUT_COUNT
)
4046 bnx2_enable_nvram_write(struct bnx2
*bp
)
4050 val
= REG_RD(bp
, BNX2_MISC_CFG
);
4051 REG_WR(bp
, BNX2_MISC_CFG
, val
| BNX2_MISC_CFG_NVM_WR_EN_PCI
);
4053 if (bp
->flash_info
->flags
& BNX2_NV_WREN
) {
4056 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4057 REG_WR(bp
, BNX2_NVM_COMMAND
,
4058 BNX2_NVM_COMMAND_WREN
| BNX2_NVM_COMMAND_DOIT
);
4060 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4063 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
4064 if (val
& BNX2_NVM_COMMAND_DONE
)
4068 if (j
>= NVRAM_TIMEOUT_COUNT
)
4075 bnx2_disable_nvram_write(struct bnx2
*bp
)
4079 val
= REG_RD(bp
, BNX2_MISC_CFG
);
4080 REG_WR(bp
, BNX2_MISC_CFG
, val
& ~BNX2_MISC_CFG_NVM_WR_EN
);
4085 bnx2_enable_nvram_access(struct bnx2
*bp
)
4089 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
4090 /* Enable both bits, even on read. */
4091 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
4092 val
| BNX2_NVM_ACCESS_ENABLE_EN
| BNX2_NVM_ACCESS_ENABLE_WR_EN
);
4096 bnx2_disable_nvram_access(struct bnx2
*bp
)
4100 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
4101 /* Disable both bits, even after read. */
4102 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
4103 val
& ~(BNX2_NVM_ACCESS_ENABLE_EN
|
4104 BNX2_NVM_ACCESS_ENABLE_WR_EN
));
4108 bnx2_nvram_erase_page(struct bnx2
*bp
, u32 offset
)
4113 if (bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)
4114 /* Buffered flash, no erase needed */
4117 /* Build an erase command */
4118 cmd
= BNX2_NVM_COMMAND_ERASE
| BNX2_NVM_COMMAND_WR
|
4119 BNX2_NVM_COMMAND_DOIT
;
4121 /* Need to clear DONE bit separately. */
4122 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4124 /* Address of the NVRAM to read from. */
4125 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4127 /* Issue an erase command. */
4128 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4130 /* Wait for completion. */
4131 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4136 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
4137 if (val
& BNX2_NVM_COMMAND_DONE
)
4141 if (j
>= NVRAM_TIMEOUT_COUNT
)
4148 bnx2_nvram_read_dword(struct bnx2
*bp
, u32 offset
, u8
*ret_val
, u32 cmd_flags
)
4153 /* Build the command word. */
4154 cmd
= BNX2_NVM_COMMAND_DOIT
| cmd_flags
;
4156 /* Calculate an offset of a buffered flash, not needed for 5709. */
4157 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
4158 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
4159 bp
->flash_info
->page_bits
) +
4160 (offset
% bp
->flash_info
->page_size
);
4163 /* Need to clear DONE bit separately. */
4164 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4166 /* Address of the NVRAM to read from. */
4167 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4169 /* Issue a read command. */
4170 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4172 /* Wait for completion. */
4173 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4178 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
4179 if (val
& BNX2_NVM_COMMAND_DONE
) {
4180 __be32 v
= cpu_to_be32(REG_RD(bp
, BNX2_NVM_READ
));
4181 memcpy(ret_val
, &v
, 4);
4185 if (j
>= NVRAM_TIMEOUT_COUNT
)
4193 bnx2_nvram_write_dword(struct bnx2
*bp
, u32 offset
, u8
*val
, u32 cmd_flags
)
4199 /* Build the command word. */
4200 cmd
= BNX2_NVM_COMMAND_DOIT
| BNX2_NVM_COMMAND_WR
| cmd_flags
;
4202 /* Calculate an offset of a buffered flash, not needed for 5709. */
4203 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
4204 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
4205 bp
->flash_info
->page_bits
) +
4206 (offset
% bp
->flash_info
->page_size
);
4209 /* Need to clear DONE bit separately. */
4210 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4212 memcpy(&val32
, val
, 4);
4214 /* Write the data. */
4215 REG_WR(bp
, BNX2_NVM_WRITE
, be32_to_cpu(val32
));
4217 /* Address of the NVRAM to write to. */
4218 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4220 /* Issue the write command. */
4221 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4223 /* Wait for completion. */
4224 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4227 if (REG_RD(bp
, BNX2_NVM_COMMAND
) & BNX2_NVM_COMMAND_DONE
)
4230 if (j
>= NVRAM_TIMEOUT_COUNT
)
4237 bnx2_init_nvram(struct bnx2
*bp
)
4240 int j
, entry_count
, rc
= 0;
4241 const struct flash_spec
*flash
;
4243 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4244 bp
->flash_info
= &flash_5709
;
4245 goto get_flash_size
;
4248 /* Determine the selected interface. */
4249 val
= REG_RD(bp
, BNX2_NVM_CFG1
);
4251 entry_count
= ARRAY_SIZE(flash_table
);
4253 if (val
& 0x40000000) {
4255 /* Flash interface has been reconfigured */
4256 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4258 if ((val
& FLASH_BACKUP_STRAP_MASK
) ==
4259 (flash
->config1
& FLASH_BACKUP_STRAP_MASK
)) {
4260 bp
->flash_info
= flash
;
4267 /* Not yet been reconfigured */
4269 if (val
& (1 << 23))
4270 mask
= FLASH_BACKUP_STRAP_MASK
;
4272 mask
= FLASH_STRAP_MASK
;
4274 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4277 if ((val
& mask
) == (flash
->strapping
& mask
)) {
4278 bp
->flash_info
= flash
;
4280 /* Request access to the flash interface. */
4281 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4284 /* Enable access to flash interface */
4285 bnx2_enable_nvram_access(bp
);
4287 /* Reconfigure the flash interface */
4288 REG_WR(bp
, BNX2_NVM_CFG1
, flash
->config1
);
4289 REG_WR(bp
, BNX2_NVM_CFG2
, flash
->config2
);
4290 REG_WR(bp
, BNX2_NVM_CFG3
, flash
->config3
);
4291 REG_WR(bp
, BNX2_NVM_WRITE1
, flash
->write1
);
4293 /* Disable access to flash interface */
4294 bnx2_disable_nvram_access(bp
);
4295 bnx2_release_nvram_lock(bp
);
4300 } /* if (val & 0x40000000) */
4302 if (j
== entry_count
) {
4303 bp
->flash_info
= NULL
;
4304 printk(KERN_ALERT PFX
"Unknown flash/EEPROM type.\n");
4309 val
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG2
);
4310 val
&= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK
;
4312 bp
->flash_size
= val
;
4314 bp
->flash_size
= bp
->flash_info
->total_size
;
4320 bnx2_nvram_read(struct bnx2
*bp
, u32 offset
, u8
*ret_buf
,
4324 u32 cmd_flags
, offset32
, len32
, extra
;
4329 /* Request access to the flash interface. */
4330 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4333 /* Enable access to flash interface */
4334 bnx2_enable_nvram_access(bp
);
4347 pre_len
= 4 - (offset
& 3);
4349 if (pre_len
>= len32
) {
4351 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4352 BNX2_NVM_COMMAND_LAST
;
4355 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4358 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4363 memcpy(ret_buf
, buf
+ (offset
& 3), pre_len
);
4370 extra
= 4 - (len32
& 3);
4371 len32
= (len32
+ 4) & ~3;
4378 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4380 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4381 BNX2_NVM_COMMAND_LAST
;
4383 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4385 memcpy(ret_buf
, buf
, 4 - extra
);
4387 else if (len32
> 0) {
4390 /* Read the first word. */
4394 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4396 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, cmd_flags
);
4398 /* Advance to the next dword. */
4403 while (len32
> 4 && rc
== 0) {
4404 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, 0);
4406 /* Advance to the next dword. */
4415 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4416 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4418 memcpy(ret_buf
, buf
, 4 - extra
);
4421 /* Disable access to flash interface */
4422 bnx2_disable_nvram_access(bp
);
4424 bnx2_release_nvram_lock(bp
);
4430 bnx2_nvram_write(struct bnx2
*bp
, u32 offset
, u8
*data_buf
,
4433 u32 written
, offset32
, len32
;
4434 u8
*buf
, start
[4], end
[4], *align_buf
= NULL
, *flash_buffer
= NULL
;
4436 int align_start
, align_end
;
4441 align_start
= align_end
= 0;
4443 if ((align_start
= (offset32
& 3))) {
4445 len32
+= align_start
;
4448 if ((rc
= bnx2_nvram_read(bp
, offset32
, start
, 4)))
4453 align_end
= 4 - (len32
& 3);
4455 if ((rc
= bnx2_nvram_read(bp
, offset32
+ len32
- 4, end
, 4)))
4459 if (align_start
|| align_end
) {
4460 align_buf
= kmalloc(len32
, GFP_KERNEL
);
4461 if (align_buf
== NULL
)
4464 memcpy(align_buf
, start
, 4);
4467 memcpy(align_buf
+ len32
- 4, end
, 4);
4469 memcpy(align_buf
+ align_start
, data_buf
, buf_size
);
4473 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4474 flash_buffer
= kmalloc(264, GFP_KERNEL
);
4475 if (flash_buffer
== NULL
) {
4477 goto nvram_write_end
;
4482 while ((written
< len32
) && (rc
== 0)) {
4483 u32 page_start
, page_end
, data_start
, data_end
;
4484 u32 addr
, cmd_flags
;
4487 /* Find the page_start addr */
4488 page_start
= offset32
+ written
;
4489 page_start
-= (page_start
% bp
->flash_info
->page_size
);
4490 /* Find the page_end addr */
4491 page_end
= page_start
+ bp
->flash_info
->page_size
;
4492 /* Find the data_start addr */
4493 data_start
= (written
== 0) ? offset32
: page_start
;
4494 /* Find the data_end addr */
4495 data_end
= (page_end
> offset32
+ len32
) ?
4496 (offset32
+ len32
) : page_end
;
4498 /* Request access to the flash interface. */
4499 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4500 goto nvram_write_end
;
4502 /* Enable access to flash interface */
4503 bnx2_enable_nvram_access(bp
);
4505 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4506 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4509 /* Read the whole page into the buffer
4510 * (non-buffer flash only) */
4511 for (j
= 0; j
< bp
->flash_info
->page_size
; j
+= 4) {
4512 if (j
== (bp
->flash_info
->page_size
- 4)) {
4513 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4515 rc
= bnx2_nvram_read_dword(bp
,
4521 goto nvram_write_end
;
4527 /* Enable writes to flash interface (unlock write-protect) */
4528 if ((rc
= bnx2_enable_nvram_write(bp
)) != 0)
4529 goto nvram_write_end
;
4531 /* Loop to write back the buffer data from page_start to
4534 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4535 /* Erase the page */
4536 if ((rc
= bnx2_nvram_erase_page(bp
, page_start
)) != 0)
4537 goto nvram_write_end
;
4539 /* Re-enable the write again for the actual write */
4540 bnx2_enable_nvram_write(bp
);
4542 for (addr
= page_start
; addr
< data_start
;
4543 addr
+= 4, i
+= 4) {
4545 rc
= bnx2_nvram_write_dword(bp
, addr
,
4546 &flash_buffer
[i
], cmd_flags
);
4549 goto nvram_write_end
;
4555 /* Loop to write the new data from data_start to data_end */
4556 for (addr
= data_start
; addr
< data_end
; addr
+= 4, i
+= 4) {
4557 if ((addr
== page_end
- 4) ||
4558 ((bp
->flash_info
->flags
& BNX2_NV_BUFFERED
) &&
4559 (addr
== data_end
- 4))) {
4561 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4563 rc
= bnx2_nvram_write_dword(bp
, addr
, buf
,
4567 goto nvram_write_end
;
4573 /* Loop to write back the buffer data from data_end
4575 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4576 for (addr
= data_end
; addr
< page_end
;
4577 addr
+= 4, i
+= 4) {
4579 if (addr
== page_end
-4) {
4580 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4582 rc
= bnx2_nvram_write_dword(bp
, addr
,
4583 &flash_buffer
[i
], cmd_flags
);
4586 goto nvram_write_end
;
4592 /* Disable writes to flash interface (lock write-protect) */
4593 bnx2_disable_nvram_write(bp
);
4595 /* Disable access to flash interface */
4596 bnx2_disable_nvram_access(bp
);
4597 bnx2_release_nvram_lock(bp
);
4599 /* Increment written */
4600 written
+= data_end
- data_start
;
4604 kfree(flash_buffer
);
4610 bnx2_init_fw_cap(struct bnx2
*bp
)
4614 bp
->phy_flags
&= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4615 bp
->flags
&= ~BNX2_FLAG_CAN_KEEP_VLAN
;
4617 if (!(bp
->flags
& BNX2_FLAG_ASF_ENABLE
))
4618 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4620 val
= bnx2_shmem_rd(bp
, BNX2_FW_CAP_MB
);
4621 if ((val
& BNX2_FW_CAP_SIGNATURE_MASK
) != BNX2_FW_CAP_SIGNATURE
)
4624 if ((val
& BNX2_FW_CAP_CAN_KEEP_VLAN
) == BNX2_FW_CAP_CAN_KEEP_VLAN
) {
4625 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4626 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
| BNX2_FW_CAP_CAN_KEEP_VLAN
;
4629 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
4630 (val
& BNX2_FW_CAP_REMOTE_PHY_CAPABLE
)) {
4633 bp
->phy_flags
|= BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4635 link
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
4636 if (link
& BNX2_LINK_STATUS_SERDES_LINK
)
4637 bp
->phy_port
= PORT_FIBRE
;
4639 bp
->phy_port
= PORT_TP
;
4641 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
|
4642 BNX2_FW_CAP_REMOTE_PHY_CAPABLE
;
4645 if (netif_running(bp
->dev
) && sig
)
4646 bnx2_shmem_wr(bp
, BNX2_DRV_ACK_CAP_MB
, sig
);
4650 bnx2_setup_msix_tbl(struct bnx2
*bp
)
4652 REG_WR(bp
, BNX2_PCI_GRC_WINDOW_ADDR
, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN
);
4654 REG_WR(bp
, BNX2_PCI_GRC_WINDOW2_ADDR
, BNX2_MSIX_TABLE_ADDR
);
4655 REG_WR(bp
, BNX2_PCI_GRC_WINDOW3_ADDR
, BNX2_MSIX_PBA_ADDR
);
4659 bnx2_reset_chip(struct bnx2
*bp
, u32 reset_code
)
4665 /* Wait for the current PCI transaction to complete before
4666 * issuing a reset. */
4667 REG_WR(bp
, BNX2_MISC_ENABLE_CLR_BITS
,
4668 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE
|
4669 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE
|
4670 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE
|
4671 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE
);
4672 val
= REG_RD(bp
, BNX2_MISC_ENABLE_CLR_BITS
);
4675 /* Wait for the firmware to tell us it is ok to issue a reset. */
4676 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT0
| reset_code
, 1, 1);
4678 /* Deposit a driver reset signature so the firmware knows that
4679 * this is a soft reset. */
4680 bnx2_shmem_wr(bp
, BNX2_DRV_RESET_SIGNATURE
,
4681 BNX2_DRV_RESET_SIGNATURE_MAGIC
);
4683 /* Do a dummy read to force the chip to complete all current transaction
4684 * before we issue a reset. */
4685 val
= REG_RD(bp
, BNX2_MISC_ID
);
4687 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4688 REG_WR(bp
, BNX2_MISC_COMMAND
, BNX2_MISC_COMMAND_SW_RESET
);
4689 REG_RD(bp
, BNX2_MISC_COMMAND
);
4692 val
= BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4693 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4695 pci_write_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
, val
);
4698 val
= BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4699 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4700 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4703 REG_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
4705 /* Reading back any register after chip reset will hang the
4706 * bus on 5706 A0 and A1. The msleep below provides plenty
4707 * of margin for write posting.
4709 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
4710 (CHIP_ID(bp
) == CHIP_ID_5706_A1
))
4713 /* Reset takes approximate 30 usec */
4714 for (i
= 0; i
< 10; i
++) {
4715 val
= REG_RD(bp
, BNX2_PCICFG_MISC_CONFIG
);
4716 if ((val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4717 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) == 0)
4722 if (val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4723 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) {
4724 printk(KERN_ERR PFX
"Chip reset did not complete\n");
4729 /* Make sure byte swapping is properly configured. */
4730 val
= REG_RD(bp
, BNX2_PCI_SWAP_DIAG0
);
4731 if (val
!= 0x01020304) {
4732 printk(KERN_ERR PFX
"Chip not in correct endian mode\n");
4736 /* Wait for the firmware to finish its initialization. */
4737 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT1
| reset_code
, 1, 0);
4741 spin_lock_bh(&bp
->phy_lock
);
4742 old_port
= bp
->phy_port
;
4743 bnx2_init_fw_cap(bp
);
4744 if ((bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) &&
4745 old_port
!= bp
->phy_port
)
4746 bnx2_set_default_remote_link(bp
);
4747 spin_unlock_bh(&bp
->phy_lock
);
4749 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4750 /* Adjust the voltage regular to two steps lower. The default
4751 * of this register is 0x0000000e. */
4752 REG_WR(bp
, BNX2_MISC_VREG_CONTROL
, 0x000000fa);
4754 /* Remove bad rbuf memory from the free pool. */
4755 rc
= bnx2_alloc_bad_rbuf(bp
);
4758 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
4759 bnx2_setup_msix_tbl(bp
);
4760 /* Prevent MSIX table reads and write from timing out */
4761 REG_WR(bp
, BNX2_MISC_ECO_HW_CTL
,
4762 BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN
);
4769 bnx2_init_chip(struct bnx2
*bp
)
4774 /* Make sure the interrupt is not active. */
4775 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
4777 val
= BNX2_DMA_CONFIG_DATA_BYTE_SWAP
|
4778 BNX2_DMA_CONFIG_DATA_WORD_SWAP
|
4780 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP
|
4782 BNX2_DMA_CONFIG_CNTL_WORD_SWAP
|
4783 DMA_READ_CHANS
<< 12 |
4784 DMA_WRITE_CHANS
<< 16;
4786 val
|= (0x2 << 20) | (1 << 11);
4788 if ((bp
->flags
& BNX2_FLAG_PCIX
) && (bp
->bus_speed_mhz
== 133))
4791 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) &&
4792 (CHIP_ID(bp
) != CHIP_ID_5706_A0
) && !(bp
->flags
& BNX2_FLAG_PCIX
))
4793 val
|= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA
;
4795 REG_WR(bp
, BNX2_DMA_CONFIG
, val
);
4797 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4798 val
= REG_RD(bp
, BNX2_TDMA_CONFIG
);
4799 val
|= BNX2_TDMA_CONFIG_ONE_DMA
;
4800 REG_WR(bp
, BNX2_TDMA_CONFIG
, val
);
4803 if (bp
->flags
& BNX2_FLAG_PCIX
) {
4806 pci_read_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4808 pci_write_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4809 val16
& ~PCI_X_CMD_ERO
);
4812 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
4813 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE
|
4814 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE
|
4815 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE
);
4817 /* Initialize context mapping and zero out the quick contexts. The
4818 * context block must have already been enabled. */
4819 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4820 rc
= bnx2_init_5709_context(bp
);
4824 bnx2_init_context(bp
);
4826 if ((rc
= bnx2_init_cpus(bp
)) != 0)
4829 bnx2_init_nvram(bp
);
4831 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
4833 val
= REG_RD(bp
, BNX2_MQ_CONFIG
);
4834 val
&= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE
;
4835 val
|= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256
;
4836 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4837 val
|= BNX2_MQ_CONFIG_BIN_MQ_MODE
;
4838 if (CHIP_REV(bp
) == CHIP_REV_Ax
)
4839 val
|= BNX2_MQ_CONFIG_HALT_DIS
;
4842 REG_WR(bp
, BNX2_MQ_CONFIG
, val
);
4844 val
= 0x10000 + (MAX_CID_CNT
* MB_KERNEL_CTX_SIZE
);
4845 REG_WR(bp
, BNX2_MQ_KNL_BYP_WIND_START
, val
);
4846 REG_WR(bp
, BNX2_MQ_KNL_WIND_END
, val
);
4848 val
= (BCM_PAGE_BITS
- 8) << 24;
4849 REG_WR(bp
, BNX2_RV2P_CONFIG
, val
);
4851 /* Configure page size. */
4852 val
= REG_RD(bp
, BNX2_TBDR_CONFIG
);
4853 val
&= ~BNX2_TBDR_CONFIG_PAGE_SIZE
;
4854 val
|= (BCM_PAGE_BITS
- 8) << 24 | 0x40;
4855 REG_WR(bp
, BNX2_TBDR_CONFIG
, val
);
4857 val
= bp
->mac_addr
[0] +
4858 (bp
->mac_addr
[1] << 8) +
4859 (bp
->mac_addr
[2] << 16) +
4861 (bp
->mac_addr
[4] << 8) +
4862 (bp
->mac_addr
[5] << 16);
4863 REG_WR(bp
, BNX2_EMAC_BACKOFF_SEED
, val
);
4865 /* Program the MTU. Also include 4 bytes for CRC32. */
4867 val
= mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
4868 if (val
> (MAX_ETHERNET_PACKET_SIZE
+ 4))
4869 val
|= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA
;
4870 REG_WR(bp
, BNX2_EMAC_RX_MTU_SIZE
, val
);
4875 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG
, BNX2_RBUF_CONFIG_VAL(mtu
));
4876 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG2
, BNX2_RBUF_CONFIG2_VAL(mtu
));
4877 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG3
, BNX2_RBUF_CONFIG3_VAL(mtu
));
4879 memset(bp
->bnx2_napi
[0].status_blk
.msi
, 0, bp
->status_stats_size
);
4880 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++)
4881 bp
->bnx2_napi
[i
].last_status_idx
= 0;
4883 bp
->idle_chk_status_idx
= 0xffff;
4885 bp
->rx_mode
= BNX2_EMAC_RX_MODE_SORT_MODE
;
4887 /* Set up how to generate a link change interrupt. */
4888 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
4890 REG_WR(bp
, BNX2_HC_STATUS_ADDR_L
,
4891 (u64
) bp
->status_blk_mapping
& 0xffffffff);
4892 REG_WR(bp
, BNX2_HC_STATUS_ADDR_H
, (u64
) bp
->status_blk_mapping
>> 32);
4894 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_L
,
4895 (u64
) bp
->stats_blk_mapping
& 0xffffffff);
4896 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_H
,
4897 (u64
) bp
->stats_blk_mapping
>> 32);
4899 REG_WR(bp
, BNX2_HC_TX_QUICK_CONS_TRIP
,
4900 (bp
->tx_quick_cons_trip_int
<< 16) | bp
->tx_quick_cons_trip
);
4902 REG_WR(bp
, BNX2_HC_RX_QUICK_CONS_TRIP
,
4903 (bp
->rx_quick_cons_trip_int
<< 16) | bp
->rx_quick_cons_trip
);
4905 REG_WR(bp
, BNX2_HC_COMP_PROD_TRIP
,
4906 (bp
->comp_prod_trip_int
<< 16) | bp
->comp_prod_trip
);
4908 REG_WR(bp
, BNX2_HC_TX_TICKS
, (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
4910 REG_WR(bp
, BNX2_HC_RX_TICKS
, (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
4912 REG_WR(bp
, BNX2_HC_COM_TICKS
,
4913 (bp
->com_ticks_int
<< 16) | bp
->com_ticks
);
4915 REG_WR(bp
, BNX2_HC_CMD_TICKS
,
4916 (bp
->cmd_ticks_int
<< 16) | bp
->cmd_ticks
);
4918 if (bp
->flags
& BNX2_FLAG_BROKEN_STATS
)
4919 REG_WR(bp
, BNX2_HC_STATS_TICKS
, 0);
4921 REG_WR(bp
, BNX2_HC_STATS_TICKS
, bp
->stats_ticks
);
4922 REG_WR(bp
, BNX2_HC_STAT_COLLECT_TICKS
, 0xbb8); /* 3ms */
4924 if (CHIP_ID(bp
) == CHIP_ID_5706_A1
)
4925 val
= BNX2_HC_CONFIG_COLLECT_STATS
;
4927 val
= BNX2_HC_CONFIG_RX_TMR_MODE
| BNX2_HC_CONFIG_TX_TMR_MODE
|
4928 BNX2_HC_CONFIG_COLLECT_STATS
;
4931 if (bp
->irq_nvecs
> 1) {
4932 REG_WR(bp
, BNX2_HC_MSIX_BIT_VECTOR
,
4933 BNX2_HC_MSIX_BIT_VECTOR_VAL
);
4935 val
|= BNX2_HC_CONFIG_SB_ADDR_INC_128B
;
4938 if (bp
->flags
& BNX2_FLAG_ONE_SHOT_MSI
)
4939 val
|= BNX2_HC_CONFIG_ONE_SHOT
| BNX2_HC_CONFIG_USE_INT_PARAM
;
4941 REG_WR(bp
, BNX2_HC_CONFIG
, val
);
4943 for (i
= 1; i
< bp
->irq_nvecs
; i
++) {
4944 u32 base
= ((i
- 1) * BNX2_HC_SB_CONFIG_SIZE
) +
4945 BNX2_HC_SB_CONFIG_1
;
4948 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE
|
4949 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE
|
4950 BNX2_HC_SB_CONFIG_1_ONE_SHOT
);
4952 REG_WR(bp
, base
+ BNX2_HC_TX_QUICK_CONS_TRIP_OFF
,
4953 (bp
->tx_quick_cons_trip_int
<< 16) |
4954 bp
->tx_quick_cons_trip
);
4956 REG_WR(bp
, base
+ BNX2_HC_TX_TICKS_OFF
,
4957 (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
4959 REG_WR(bp
, base
+ BNX2_HC_RX_QUICK_CONS_TRIP_OFF
,
4960 (bp
->rx_quick_cons_trip_int
<< 16) |
4961 bp
->rx_quick_cons_trip
);
4963 REG_WR(bp
, base
+ BNX2_HC_RX_TICKS_OFF
,
4964 (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
4967 /* Clear internal stats counters. */
4968 REG_WR(bp
, BNX2_HC_COMMAND
, BNX2_HC_COMMAND_CLR_STAT_NOW
);
4970 REG_WR(bp
, BNX2_HC_ATTN_BITS_ENABLE
, STATUS_ATTN_EVENTS
);
4972 /* Initialize the receive filter. */
4973 bnx2_set_rx_mode(bp
->dev
);
4975 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4976 val
= REG_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4977 val
|= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE
;
4978 REG_WR(bp
, BNX2_MISC_NEW_CORE_CTL
, val
);
4980 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT2
| BNX2_DRV_MSG_CODE_RESET
,
4983 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
, BNX2_MISC_ENABLE_DEFAULT
);
4984 REG_RD(bp
, BNX2_MISC_ENABLE_SET_BITS
);
4988 bp
->hc_cmd
= REG_RD(bp
, BNX2_HC_COMMAND
);
4994 bnx2_clear_ring_states(struct bnx2
*bp
)
4996 struct bnx2_napi
*bnapi
;
4997 struct bnx2_tx_ring_info
*txr
;
4998 struct bnx2_rx_ring_info
*rxr
;
5001 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
5002 bnapi
= &bp
->bnx2_napi
[i
];
5003 txr
= &bnapi
->tx_ring
;
5004 rxr
= &bnapi
->rx_ring
;
5007 txr
->hw_tx_cons
= 0;
5008 rxr
->rx_prod_bseq
= 0;
5011 rxr
->rx_pg_prod
= 0;
5012 rxr
->rx_pg_cons
= 0;
5017 bnx2_init_tx_context(struct bnx2
*bp
, u32 cid
, struct bnx2_tx_ring_info
*txr
)
5019 u32 val
, offset0
, offset1
, offset2
, offset3
;
5020 u32 cid_addr
= GET_CID_ADDR(cid
);
5022 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
5023 offset0
= BNX2_L2CTX_TYPE_XI
;
5024 offset1
= BNX2_L2CTX_CMD_TYPE_XI
;
5025 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI_XI
;
5026 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO_XI
;
5028 offset0
= BNX2_L2CTX_TYPE
;
5029 offset1
= BNX2_L2CTX_CMD_TYPE
;
5030 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI
;
5031 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO
;
5033 val
= BNX2_L2CTX_TYPE_TYPE_L2
| BNX2_L2CTX_TYPE_SIZE_L2
;
5034 bnx2_ctx_wr(bp
, cid_addr
, offset0
, val
);
5036 val
= BNX2_L2CTX_CMD_TYPE_TYPE_L2
| (8 << 16);
5037 bnx2_ctx_wr(bp
, cid_addr
, offset1
, val
);
5039 val
= (u64
) txr
->tx_desc_mapping
>> 32;
5040 bnx2_ctx_wr(bp
, cid_addr
, offset2
, val
);
5042 val
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
5043 bnx2_ctx_wr(bp
, cid_addr
, offset3
, val
);
5047 bnx2_init_tx_ring(struct bnx2
*bp
, int ring_num
)
5051 struct bnx2_napi
*bnapi
;
5052 struct bnx2_tx_ring_info
*txr
;
5054 bnapi
= &bp
->bnx2_napi
[ring_num
];
5055 txr
= &bnapi
->tx_ring
;
5060 cid
= TX_TSS_CID
+ ring_num
- 1;
5062 bp
->tx_wake_thresh
= bp
->tx_ring_size
/ 2;
5064 txbd
= &txr
->tx_desc_ring
[MAX_TX_DESC_CNT
];
5066 txbd
->tx_bd_haddr_hi
= (u64
) txr
->tx_desc_mapping
>> 32;
5067 txbd
->tx_bd_haddr_lo
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
5070 txr
->tx_prod_bseq
= 0;
5072 txr
->tx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BIDX
;
5073 txr
->tx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BSEQ
;
5075 bnx2_init_tx_context(bp
, cid
, txr
);
5079 bnx2_init_rxbd_rings(struct rx_bd
*rx_ring
[], dma_addr_t dma
[], u32 buf_size
,
5085 for (i
= 0; i
< num_rings
; i
++) {
5088 rxbd
= &rx_ring
[i
][0];
5089 for (j
= 0; j
< MAX_RX_DESC_CNT
; j
++, rxbd
++) {
5090 rxbd
->rx_bd_len
= buf_size
;
5091 rxbd
->rx_bd_flags
= RX_BD_FLAGS_START
| RX_BD_FLAGS_END
;
5093 if (i
== (num_rings
- 1))
5097 rxbd
->rx_bd_haddr_hi
= (u64
) dma
[j
] >> 32;
5098 rxbd
->rx_bd_haddr_lo
= (u64
) dma
[j
] & 0xffffffff;
5103 bnx2_init_rx_ring(struct bnx2
*bp
, int ring_num
)
5106 u16 prod
, ring_prod
;
5107 u32 cid
, rx_cid_addr
, val
;
5108 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[ring_num
];
5109 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5114 cid
= RX_RSS_CID
+ ring_num
- 1;
5116 rx_cid_addr
= GET_CID_ADDR(cid
);
5118 bnx2_init_rxbd_rings(rxr
->rx_desc_ring
, rxr
->rx_desc_mapping
,
5119 bp
->rx_buf_use_size
, bp
->rx_max_ring
);
5121 bnx2_init_rx_context(bp
, cid
);
5123 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
5124 val
= REG_RD(bp
, BNX2_MQ_MAP_L2_5
);
5125 REG_WR(bp
, BNX2_MQ_MAP_L2_5
, val
| BNX2_MQ_MAP_L2_5_ARM
);
5128 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, 0);
5129 if (bp
->rx_pg_ring_size
) {
5130 bnx2_init_rxbd_rings(rxr
->rx_pg_desc_ring
,
5131 rxr
->rx_pg_desc_mapping
,
5132 PAGE_SIZE
, bp
->rx_max_pg_ring
);
5133 val
= (bp
->rx_buf_use_size
<< 16) | PAGE_SIZE
;
5134 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, val
);
5135 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_RBDC_KEY
,
5136 BNX2_L2CTX_RBDC_JUMBO_KEY
- ring_num
);
5138 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] >> 32;
5139 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_HI
, val
);
5141 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] & 0xffffffff;
5142 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_LO
, val
);
5144 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5145 REG_WR(bp
, BNX2_MQ_MAP_L2_3
, BNX2_MQ_MAP_L2_3_DEFAULT
);
5148 val
= (u64
) rxr
->rx_desc_mapping
[0] >> 32;
5149 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_HI
, val
);
5151 val
= (u64
) rxr
->rx_desc_mapping
[0] & 0xffffffff;
5152 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_LO
, val
);
5154 ring_prod
= prod
= rxr
->rx_pg_prod
;
5155 for (i
= 0; i
< bp
->rx_pg_ring_size
; i
++) {
5156 if (bnx2_alloc_rx_page(bp
, rxr
, ring_prod
) < 0)
5158 prod
= NEXT_RX_BD(prod
);
5159 ring_prod
= RX_PG_RING_IDX(prod
);
5161 rxr
->rx_pg_prod
= prod
;
5163 ring_prod
= prod
= rxr
->rx_prod
;
5164 for (i
= 0; i
< bp
->rx_ring_size
; i
++) {
5165 if (bnx2_alloc_rx_skb(bp
, rxr
, ring_prod
) < 0)
5167 prod
= NEXT_RX_BD(prod
);
5168 ring_prod
= RX_RING_IDX(prod
);
5170 rxr
->rx_prod
= prod
;
5172 rxr
->rx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BDIDX
;
5173 rxr
->rx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BSEQ
;
5174 rxr
->rx_pg_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_PG_BDIDX
;
5176 REG_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
5177 REG_WR16(bp
, rxr
->rx_bidx_addr
, prod
);
5179 REG_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
5183 bnx2_init_all_rings(struct bnx2
*bp
)
5188 bnx2_clear_ring_states(bp
);
5190 REG_WR(bp
, BNX2_TSCH_TSS_CFG
, 0);
5191 for (i
= 0; i
< bp
->num_tx_rings
; i
++)
5192 bnx2_init_tx_ring(bp
, i
);
5194 if (bp
->num_tx_rings
> 1)
5195 REG_WR(bp
, BNX2_TSCH_TSS_CFG
, ((bp
->num_tx_rings
- 1) << 24) |
5198 REG_WR(bp
, BNX2_RLUP_RSS_CONFIG
, 0);
5199 bnx2_reg_wr_ind(bp
, BNX2_RXP_SCRATCH_RSS_TBL_SZ
, 0);
5201 for (i
= 0; i
< bp
->num_rx_rings
; i
++)
5202 bnx2_init_rx_ring(bp
, i
);
5204 if (bp
->num_rx_rings
> 1) {
5206 u8
*tbl
= (u8
*) &tbl_32
;
5208 bnx2_reg_wr_ind(bp
, BNX2_RXP_SCRATCH_RSS_TBL_SZ
,
5209 BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES
);
5211 for (i
= 0; i
< BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES
; i
++) {
5212 tbl
[i
% 4] = i
% (bp
->num_rx_rings
- 1);
5215 BNX2_RXP_SCRATCH_RSS_TBL
+ i
,
5216 cpu_to_be32(tbl_32
));
5219 val
= BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI
|
5220 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI
;
5222 REG_WR(bp
, BNX2_RLUP_RSS_CONFIG
, val
);
5227 static u32
bnx2_find_max_ring(u32 ring_size
, u32 max_size
)
5229 u32 max
, num_rings
= 1;
5231 while (ring_size
> MAX_RX_DESC_CNT
) {
5232 ring_size
-= MAX_RX_DESC_CNT
;
5235 /* round to next power of 2 */
5237 while ((max
& num_rings
) == 0)
5240 if (num_rings
!= max
)
5247 bnx2_set_rx_ring_size(struct bnx2
*bp
, u32 size
)
5249 u32 rx_size
, rx_space
, jumbo_size
;
5251 /* 8 for CRC and VLAN */
5252 rx_size
= bp
->dev
->mtu
+ ETH_HLEN
+ BNX2_RX_OFFSET
+ 8;
5254 rx_space
= SKB_DATA_ALIGN(rx_size
+ BNX2_RX_ALIGN
) + NET_SKB_PAD
+
5255 sizeof(struct skb_shared_info
);
5257 bp
->rx_copy_thresh
= BNX2_RX_COPY_THRESH
;
5258 bp
->rx_pg_ring_size
= 0;
5259 bp
->rx_max_pg_ring
= 0;
5260 bp
->rx_max_pg_ring_idx
= 0;
5261 if ((rx_space
> PAGE_SIZE
) && !(bp
->flags
& BNX2_FLAG_JUMBO_BROKEN
)) {
5262 int pages
= PAGE_ALIGN(bp
->dev
->mtu
- 40) >> PAGE_SHIFT
;
5264 jumbo_size
= size
* pages
;
5265 if (jumbo_size
> MAX_TOTAL_RX_PG_DESC_CNT
)
5266 jumbo_size
= MAX_TOTAL_RX_PG_DESC_CNT
;
5268 bp
->rx_pg_ring_size
= jumbo_size
;
5269 bp
->rx_max_pg_ring
= bnx2_find_max_ring(jumbo_size
,
5271 bp
->rx_max_pg_ring_idx
= (bp
->rx_max_pg_ring
* RX_DESC_CNT
) - 1;
5272 rx_size
= BNX2_RX_COPY_THRESH
+ BNX2_RX_OFFSET
;
5273 bp
->rx_copy_thresh
= 0;
5276 bp
->rx_buf_use_size
= rx_size
;
5278 bp
->rx_buf_size
= bp
->rx_buf_use_size
+ BNX2_RX_ALIGN
;
5279 bp
->rx_jumbo_thresh
= rx_size
- BNX2_RX_OFFSET
;
5280 bp
->rx_ring_size
= size
;
5281 bp
->rx_max_ring
= bnx2_find_max_ring(size
, MAX_RX_RINGS
);
5282 bp
->rx_max_ring_idx
= (bp
->rx_max_ring
* RX_DESC_CNT
) - 1;
5286 bnx2_free_tx_skbs(struct bnx2
*bp
)
5290 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
5291 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5292 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5295 if (txr
->tx_buf_ring
== NULL
)
5298 for (j
= 0; j
< TX_DESC_CNT
; ) {
5299 struct sw_tx_bd
*tx_buf
= &txr
->tx_buf_ring
[j
];
5300 struct sk_buff
*skb
= tx_buf
->skb
;
5307 skb_dma_unmap(&bp
->pdev
->dev
, skb
, DMA_TO_DEVICE
);
5311 j
+= skb_shinfo(skb
)->nr_frags
+ 1;
5318 bnx2_free_rx_skbs(struct bnx2
*bp
)
5322 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
5323 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5324 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5327 if (rxr
->rx_buf_ring
== NULL
)
5330 for (j
= 0; j
< bp
->rx_max_ring_idx
; j
++) {
5331 struct sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[j
];
5332 struct sk_buff
*skb
= rx_buf
->skb
;
5337 pci_unmap_single(bp
->pdev
,
5338 pci_unmap_addr(rx_buf
, mapping
),
5339 bp
->rx_buf_use_size
,
5340 PCI_DMA_FROMDEVICE
);
5346 for (j
= 0; j
< bp
->rx_max_pg_ring_idx
; j
++)
5347 bnx2_free_rx_page(bp
, rxr
, j
);
5352 bnx2_free_skbs(struct bnx2
*bp
)
5354 bnx2_free_tx_skbs(bp
);
5355 bnx2_free_rx_skbs(bp
);
5359 bnx2_reset_nic(struct bnx2
*bp
, u32 reset_code
)
5363 rc
= bnx2_reset_chip(bp
, reset_code
);
5368 if ((rc
= bnx2_init_chip(bp
)) != 0)
5371 bnx2_init_all_rings(bp
);
5376 bnx2_init_nic(struct bnx2
*bp
, int reset_phy
)
5380 if ((rc
= bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
)) != 0)
5383 spin_lock_bh(&bp
->phy_lock
);
5384 bnx2_init_phy(bp
, reset_phy
);
5386 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5387 bnx2_remote_phy_event(bp
);
5388 spin_unlock_bh(&bp
->phy_lock
);
5393 bnx2_shutdown_chip(struct bnx2
*bp
)
5397 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
5398 reset_code
= BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN
;
5400 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
5402 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
5404 return bnx2_reset_chip(bp
, reset_code
);
5408 bnx2_test_registers(struct bnx2
*bp
)
5412 static const struct {
5415 #define BNX2_FL_NOT_5709 1
5419 { 0x006c, 0, 0x00000000, 0x0000003f },
5420 { 0x0090, 0, 0xffffffff, 0x00000000 },
5421 { 0x0094, 0, 0x00000000, 0x00000000 },
5423 { 0x0404, BNX2_FL_NOT_5709
, 0x00003f00, 0x00000000 },
5424 { 0x0418, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5425 { 0x041c, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5426 { 0x0420, BNX2_FL_NOT_5709
, 0x00000000, 0x80ffffff },
5427 { 0x0424, BNX2_FL_NOT_5709
, 0x00000000, 0x00000000 },
5428 { 0x0428, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5429 { 0x0450, BNX2_FL_NOT_5709
, 0x00000000, 0x0000ffff },
5430 { 0x0454, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5431 { 0x0458, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5433 { 0x0808, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5434 { 0x0854, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5435 { 0x0868, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5436 { 0x086c, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5437 { 0x0870, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5438 { 0x0874, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5440 { 0x0c00, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5441 { 0x0c04, BNX2_FL_NOT_5709
, 0x00000000, 0x03ff0001 },
5442 { 0x0c08, BNX2_FL_NOT_5709
, 0x0f0ff073, 0x00000000 },
5444 { 0x1000, 0, 0x00000000, 0x00000001 },
5445 { 0x1004, BNX2_FL_NOT_5709
, 0x00000000, 0x000f0001 },
5447 { 0x1408, 0, 0x01c00800, 0x00000000 },
5448 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5449 { 0x14a8, 0, 0x00000000, 0x000001ff },
5450 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5451 { 0x14b0, 0, 0x00000002, 0x00000001 },
5452 { 0x14b8, 0, 0x00000000, 0x00000000 },
5453 { 0x14c0, 0, 0x00000000, 0x00000009 },
5454 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5455 { 0x14cc, 0, 0x00000000, 0x00000001 },
5456 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5458 { 0x1800, 0, 0x00000000, 0x00000001 },
5459 { 0x1804, 0, 0x00000000, 0x00000003 },
5461 { 0x2800, 0, 0x00000000, 0x00000001 },
5462 { 0x2804, 0, 0x00000000, 0x00003f01 },
5463 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5464 { 0x2810, 0, 0xffff0000, 0x00000000 },
5465 { 0x2814, 0, 0xffff0000, 0x00000000 },
5466 { 0x2818, 0, 0xffff0000, 0x00000000 },
5467 { 0x281c, 0, 0xffff0000, 0x00000000 },
5468 { 0x2834, 0, 0xffffffff, 0x00000000 },
5469 { 0x2840, 0, 0x00000000, 0xffffffff },
5470 { 0x2844, 0, 0x00000000, 0xffffffff },
5471 { 0x2848, 0, 0xffffffff, 0x00000000 },
5472 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5474 { 0x2c00, 0, 0x00000000, 0x00000011 },
5475 { 0x2c04, 0, 0x00000000, 0x00030007 },
5477 { 0x3c00, 0, 0x00000000, 0x00000001 },
5478 { 0x3c04, 0, 0x00000000, 0x00070000 },
5479 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5480 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5481 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5482 { 0x3c14, 0, 0x00000000, 0xffffffff },
5483 { 0x3c18, 0, 0x00000000, 0xffffffff },
5484 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5485 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5487 { 0x5004, 0, 0x00000000, 0x0000007f },
5488 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5490 { 0x5c00, 0, 0x00000000, 0x00000001 },
5491 { 0x5c04, 0, 0x00000000, 0x0003000f },
5492 { 0x5c08, 0, 0x00000003, 0x00000000 },
5493 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5494 { 0x5c10, 0, 0x00000000, 0xffffffff },
5495 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5496 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5497 { 0x5c88, 0, 0x00000000, 0x00077373 },
5498 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5500 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5501 { 0x680c, 0, 0xffffffff, 0x00000000 },
5502 { 0x6810, 0, 0xffffffff, 0x00000000 },
5503 { 0x6814, 0, 0xffffffff, 0x00000000 },
5504 { 0x6818, 0, 0xffffffff, 0x00000000 },
5505 { 0x681c, 0, 0xffffffff, 0x00000000 },
5506 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5507 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5508 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5509 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5510 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5511 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5512 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5513 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5514 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5515 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5516 { 0x684c, 0, 0xffffffff, 0x00000000 },
5517 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5518 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5519 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5520 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5521 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5522 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5524 { 0xffff, 0, 0x00000000, 0x00000000 },
5529 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5532 for (i
= 0; reg_tbl
[i
].offset
!= 0xffff; i
++) {
5533 u32 offset
, rw_mask
, ro_mask
, save_val
, val
;
5534 u16 flags
= reg_tbl
[i
].flags
;
5536 if (is_5709
&& (flags
& BNX2_FL_NOT_5709
))
5539 offset
= (u32
) reg_tbl
[i
].offset
;
5540 rw_mask
= reg_tbl
[i
].rw_mask
;
5541 ro_mask
= reg_tbl
[i
].ro_mask
;
5543 save_val
= readl(bp
->regview
+ offset
);
5545 writel(0, bp
->regview
+ offset
);
5547 val
= readl(bp
->regview
+ offset
);
5548 if ((val
& rw_mask
) != 0) {
5552 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5556 writel(0xffffffff, bp
->regview
+ offset
);
5558 val
= readl(bp
->regview
+ offset
);
5559 if ((val
& rw_mask
) != rw_mask
) {
5563 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5567 writel(save_val
, bp
->regview
+ offset
);
5571 writel(save_val
, bp
->regview
+ offset
);
5579 bnx2_do_mem_test(struct bnx2
*bp
, u32 start
, u32 size
)
5581 static const u32 test_pattern
[] = { 0x00000000, 0xffffffff, 0x55555555,
5582 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5585 for (i
= 0; i
< sizeof(test_pattern
) / 4; i
++) {
5588 for (offset
= 0; offset
< size
; offset
+= 4) {
5590 bnx2_reg_wr_ind(bp
, start
+ offset
, test_pattern
[i
]);
5592 if (bnx2_reg_rd_ind(bp
, start
+ offset
) !=
5602 bnx2_test_memory(struct bnx2
*bp
)
5606 static struct mem_entry
{
5609 } mem_tbl_5706
[] = {
5610 { 0x60000, 0x4000 },
5611 { 0xa0000, 0x3000 },
5612 { 0xe0000, 0x4000 },
5613 { 0x120000, 0x4000 },
5614 { 0x1a0000, 0x4000 },
5615 { 0x160000, 0x4000 },
5619 { 0x60000, 0x4000 },
5620 { 0xa0000, 0x3000 },
5621 { 0xe0000, 0x4000 },
5622 { 0x120000, 0x4000 },
5623 { 0x1a0000, 0x4000 },
5626 struct mem_entry
*mem_tbl
;
5628 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5629 mem_tbl
= mem_tbl_5709
;
5631 mem_tbl
= mem_tbl_5706
;
5633 for (i
= 0; mem_tbl
[i
].offset
!= 0xffffffff; i
++) {
5634 if ((ret
= bnx2_do_mem_test(bp
, mem_tbl
[i
].offset
,
5635 mem_tbl
[i
].len
)) != 0) {
5643 #define BNX2_MAC_LOOPBACK 0
5644 #define BNX2_PHY_LOOPBACK 1
5647 bnx2_run_loopback(struct bnx2
*bp
, int loopback_mode
)
5649 unsigned int pkt_size
, num_pkts
, i
;
5650 struct sk_buff
*skb
, *rx_skb
;
5651 unsigned char *packet
;
5652 u16 rx_start_idx
, rx_idx
;
5655 struct sw_bd
*rx_buf
;
5656 struct l2_fhdr
*rx_hdr
;
5658 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0], *tx_napi
;
5659 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5660 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5664 txr
= &tx_napi
->tx_ring
;
5665 rxr
= &bnapi
->rx_ring
;
5666 if (loopback_mode
== BNX2_MAC_LOOPBACK
) {
5667 bp
->loopback
= MAC_LOOPBACK
;
5668 bnx2_set_mac_loopback(bp
);
5670 else if (loopback_mode
== BNX2_PHY_LOOPBACK
) {
5671 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5674 bp
->loopback
= PHY_LOOPBACK
;
5675 bnx2_set_phy_loopback(bp
);
5680 pkt_size
= min(bp
->dev
->mtu
+ ETH_HLEN
, bp
->rx_jumbo_thresh
- 4);
5681 skb
= netdev_alloc_skb(bp
->dev
, pkt_size
);
5684 packet
= skb_put(skb
, pkt_size
);
5685 memcpy(packet
, bp
->dev
->dev_addr
, 6);
5686 memset(packet
+ 6, 0x0, 8);
5687 for (i
= 14; i
< pkt_size
; i
++)
5688 packet
[i
] = (unsigned char) (i
& 0xff);
5690 if (skb_dma_map(&bp
->pdev
->dev
, skb
, DMA_TO_DEVICE
)) {
5694 map
= skb_shinfo(skb
)->dma_head
;
5696 REG_WR(bp
, BNX2_HC_COMMAND
,
5697 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5699 REG_RD(bp
, BNX2_HC_COMMAND
);
5702 rx_start_idx
= bnx2_get_hw_rx_cons(bnapi
);
5706 txbd
= &txr
->tx_desc_ring
[TX_RING_IDX(txr
->tx_prod
)];
5708 txbd
->tx_bd_haddr_hi
= (u64
) map
>> 32;
5709 txbd
->tx_bd_haddr_lo
= (u64
) map
& 0xffffffff;
5710 txbd
->tx_bd_mss_nbytes
= pkt_size
;
5711 txbd
->tx_bd_vlan_tag_flags
= TX_BD_FLAGS_START
| TX_BD_FLAGS_END
;
5714 txr
->tx_prod
= NEXT_TX_BD(txr
->tx_prod
);
5715 txr
->tx_prod_bseq
+= pkt_size
;
5717 REG_WR16(bp
, txr
->tx_bidx_addr
, txr
->tx_prod
);
5718 REG_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
5722 REG_WR(bp
, BNX2_HC_COMMAND
,
5723 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5725 REG_RD(bp
, BNX2_HC_COMMAND
);
5729 skb_dma_unmap(&bp
->pdev
->dev
, skb
, DMA_TO_DEVICE
);
5732 if (bnx2_get_hw_tx_cons(tx_napi
) != txr
->tx_prod
)
5733 goto loopback_test_done
;
5735 rx_idx
= bnx2_get_hw_rx_cons(bnapi
);
5736 if (rx_idx
!= rx_start_idx
+ num_pkts
) {
5737 goto loopback_test_done
;
5740 rx_buf
= &rxr
->rx_buf_ring
[rx_start_idx
];
5741 rx_skb
= rx_buf
->skb
;
5743 rx_hdr
= (struct l2_fhdr
*) rx_skb
->data
;
5744 skb_reserve(rx_skb
, BNX2_RX_OFFSET
);
5746 pci_dma_sync_single_for_cpu(bp
->pdev
,
5747 pci_unmap_addr(rx_buf
, mapping
),
5748 bp
->rx_buf_size
, PCI_DMA_FROMDEVICE
);
5750 if (rx_hdr
->l2_fhdr_status
&
5751 (L2_FHDR_ERRORS_BAD_CRC
|
5752 L2_FHDR_ERRORS_PHY_DECODE
|
5753 L2_FHDR_ERRORS_ALIGNMENT
|
5754 L2_FHDR_ERRORS_TOO_SHORT
|
5755 L2_FHDR_ERRORS_GIANT_FRAME
)) {
5757 goto loopback_test_done
;
5760 if ((rx_hdr
->l2_fhdr_pkt_len
- 4) != pkt_size
) {
5761 goto loopback_test_done
;
5764 for (i
= 14; i
< pkt_size
; i
++) {
5765 if (*(rx_skb
->data
+ i
) != (unsigned char) (i
& 0xff)) {
5766 goto loopback_test_done
;
5777 #define BNX2_MAC_LOOPBACK_FAILED 1
5778 #define BNX2_PHY_LOOPBACK_FAILED 2
5779 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5780 BNX2_PHY_LOOPBACK_FAILED)
5783 bnx2_test_loopback(struct bnx2
*bp
)
5787 if (!netif_running(bp
->dev
))
5788 return BNX2_LOOPBACK_FAILED
;
5790 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
5791 spin_lock_bh(&bp
->phy_lock
);
5792 bnx2_init_phy(bp
, 1);
5793 spin_unlock_bh(&bp
->phy_lock
);
5794 if (bnx2_run_loopback(bp
, BNX2_MAC_LOOPBACK
))
5795 rc
|= BNX2_MAC_LOOPBACK_FAILED
;
5796 if (bnx2_run_loopback(bp
, BNX2_PHY_LOOPBACK
))
5797 rc
|= BNX2_PHY_LOOPBACK_FAILED
;
5801 #define NVRAM_SIZE 0x200
5802 #define CRC32_RESIDUAL 0xdebb20e3
5805 bnx2_test_nvram(struct bnx2
*bp
)
5807 __be32 buf
[NVRAM_SIZE
/ 4];
5808 u8
*data
= (u8
*) buf
;
5812 if ((rc
= bnx2_nvram_read(bp
, 0, data
, 4)) != 0)
5813 goto test_nvram_done
;
5815 magic
= be32_to_cpu(buf
[0]);
5816 if (magic
!= 0x669955aa) {
5818 goto test_nvram_done
;
5821 if ((rc
= bnx2_nvram_read(bp
, 0x100, data
, NVRAM_SIZE
)) != 0)
5822 goto test_nvram_done
;
5824 csum
= ether_crc_le(0x100, data
);
5825 if (csum
!= CRC32_RESIDUAL
) {
5827 goto test_nvram_done
;
5830 csum
= ether_crc_le(0x100, data
+ 0x100);
5831 if (csum
!= CRC32_RESIDUAL
) {
5840 bnx2_test_link(struct bnx2
*bp
)
5844 if (!netif_running(bp
->dev
))
5847 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
5852 spin_lock_bh(&bp
->phy_lock
);
5853 bnx2_enable_bmsr1(bp
);
5854 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5855 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5856 bnx2_disable_bmsr1(bp
);
5857 spin_unlock_bh(&bp
->phy_lock
);
5859 if (bmsr
& BMSR_LSTATUS
) {
5866 bnx2_test_intr(struct bnx2
*bp
)
5871 if (!netif_running(bp
->dev
))
5874 status_idx
= REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff;
5876 /* This register is not touched during run-time. */
5877 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
5878 REG_RD(bp
, BNX2_HC_COMMAND
);
5880 for (i
= 0; i
< 10; i
++) {
5881 if ((REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff) !=
5887 msleep_interruptible(10);
5895 /* Determining link for parallel detection. */
5897 bnx2_5706_serdes_has_link(struct bnx2
*bp
)
5899 u32 mode_ctl
, an_dbg
, exp
;
5901 if (bp
->phy_flags
& BNX2_PHY_FLAG_NO_PARALLEL
)
5904 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_MODE_CTL
);
5905 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &mode_ctl
);
5907 if (!(mode_ctl
& MISC_SHDW_MODE_CTL_SIG_DET
))
5910 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
5911 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
5912 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
5914 if (an_dbg
& (MISC_SHDW_AN_DBG_NOSYNC
| MISC_SHDW_AN_DBG_RUDI_INVALID
))
5917 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_REG1
);
5918 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
5919 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
5921 if (exp
& MII_EXPAND_REG1_RUDI_C
) /* receiving CONFIG */
5928 bnx2_5706_serdes_timer(struct bnx2
*bp
)
5932 spin_lock(&bp
->phy_lock
);
5933 if (bp
->serdes_an_pending
) {
5934 bp
->serdes_an_pending
--;
5936 } else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
5939 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
5941 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5943 if (bmcr
& BMCR_ANENABLE
) {
5944 if (bnx2_5706_serdes_has_link(bp
)) {
5945 bmcr
&= ~BMCR_ANENABLE
;
5946 bmcr
|= BMCR_SPEED1000
| BMCR_FULLDPLX
;
5947 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
5948 bp
->phy_flags
|= BNX2_PHY_FLAG_PARALLEL_DETECT
;
5952 else if ((bp
->link_up
) && (bp
->autoneg
& AUTONEG_SPEED
) &&
5953 (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)) {
5956 bnx2_write_phy(bp
, 0x17, 0x0f01);
5957 bnx2_read_phy(bp
, 0x15, &phy2
);
5961 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5962 bmcr
|= BMCR_ANENABLE
;
5963 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
5965 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
5968 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
5973 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
5974 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
5975 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
5977 if (bp
->link_up
&& (val
& MISC_SHDW_AN_DBG_NOSYNC
)) {
5978 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
)) {
5979 bnx2_5706s_force_link_dn(bp
, 1);
5980 bp
->phy_flags
|= BNX2_PHY_FLAG_FORCED_DOWN
;
5983 } else if (!bp
->link_up
&& !(val
& MISC_SHDW_AN_DBG_NOSYNC
))
5986 spin_unlock(&bp
->phy_lock
);
5990 bnx2_5708_serdes_timer(struct bnx2
*bp
)
5992 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5995 if ((bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) == 0) {
5996 bp
->serdes_an_pending
= 0;
6000 spin_lock(&bp
->phy_lock
);
6001 if (bp
->serdes_an_pending
)
6002 bp
->serdes_an_pending
--;
6003 else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
6006 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6007 if (bmcr
& BMCR_ANENABLE
) {
6008 bnx2_enable_forced_2g5(bp
);
6009 bp
->current_interval
= BNX2_SERDES_FORCED_TIMEOUT
;
6011 bnx2_disable_forced_2g5(bp
);
6012 bp
->serdes_an_pending
= 2;
6013 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6017 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6019 spin_unlock(&bp
->phy_lock
);
6023 bnx2_timer(unsigned long data
)
6025 struct bnx2
*bp
= (struct bnx2
*) data
;
6027 if (!netif_running(bp
->dev
))
6030 if (atomic_read(&bp
->intr_sem
) != 0)
6031 goto bnx2_restart_timer
;
6033 if ((bp
->flags
& (BNX2_FLAG_USING_MSI
| BNX2_FLAG_ONE_SHOT_MSI
)) ==
6034 BNX2_FLAG_USING_MSI
)
6035 bnx2_chk_missed_msi(bp
);
6037 bnx2_send_heart_beat(bp
);
6039 bp
->stats_blk
->stat_FwRxDrop
=
6040 bnx2_reg_rd_ind(bp
, BNX2_FW_RX_DROP_COUNT
);
6042 /* workaround occasional corrupted counters */
6043 if ((bp
->flags
& BNX2_FLAG_BROKEN_STATS
) && bp
->stats_ticks
)
6044 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
|
6045 BNX2_HC_COMMAND_STATS_NOW
);
6047 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
6048 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
6049 bnx2_5706_serdes_timer(bp
);
6051 bnx2_5708_serdes_timer(bp
);
6055 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6059 bnx2_request_irq(struct bnx2
*bp
)
6061 unsigned long flags
;
6062 struct bnx2_irq
*irq
;
6065 if (bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)
6068 flags
= IRQF_SHARED
;
6070 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
6071 irq
= &bp
->irq_tbl
[i
];
6072 rc
= request_irq(irq
->vector
, irq
->handler
, flags
, irq
->name
,
6082 bnx2_free_irq(struct bnx2
*bp
)
6084 struct bnx2_irq
*irq
;
6087 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
6088 irq
= &bp
->irq_tbl
[i
];
6090 free_irq(irq
->vector
, &bp
->bnx2_napi
[i
]);
6093 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
6094 pci_disable_msi(bp
->pdev
);
6095 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6096 pci_disable_msix(bp
->pdev
);
6098 bp
->flags
&= ~(BNX2_FLAG_USING_MSI_OR_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
);
6102 bnx2_enable_msix(struct bnx2
*bp
, int msix_vecs
)
6105 struct msix_entry msix_ent
[BNX2_MAX_MSIX_VEC
];
6106 struct net_device
*dev
= bp
->dev
;
6107 const int len
= sizeof(bp
->irq_tbl
[0].name
);
6109 bnx2_setup_msix_tbl(bp
);
6110 REG_WR(bp
, BNX2_PCI_MSIX_CONTROL
, BNX2_MAX_MSIX_HW_VEC
- 1);
6111 REG_WR(bp
, BNX2_PCI_MSIX_TBL_OFF_BIR
, BNX2_PCI_GRC_WINDOW2_BASE
);
6112 REG_WR(bp
, BNX2_PCI_MSIX_PBA_OFF_BIT
, BNX2_PCI_GRC_WINDOW3_BASE
);
6114 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
6115 msix_ent
[i
].entry
= i
;
6116 msix_ent
[i
].vector
= 0;
6119 rc
= pci_enable_msix(bp
->pdev
, msix_ent
, BNX2_MAX_MSIX_VEC
);
6123 bp
->irq_nvecs
= msix_vecs
;
6124 bp
->flags
|= BNX2_FLAG_USING_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
;
6125 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
6126 bp
->irq_tbl
[i
].vector
= msix_ent
[i
].vector
;
6127 snprintf(bp
->irq_tbl
[i
].name
, len
, "%s-%d", dev
->name
, i
);
6128 bp
->irq_tbl
[i
].handler
= bnx2_msi_1shot
;
6133 bnx2_setup_int_mode(struct bnx2
*bp
, int dis_msi
)
6135 int cpus
= num_online_cpus();
6136 int msix_vecs
= min(cpus
+ 1, RX_MAX_RINGS
);
6138 bp
->irq_tbl
[0].handler
= bnx2_interrupt
;
6139 strcpy(bp
->irq_tbl
[0].name
, bp
->dev
->name
);
6141 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
6143 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !dis_msi
&& cpus
> 1)
6144 bnx2_enable_msix(bp
, msix_vecs
);
6146 if ((bp
->flags
& BNX2_FLAG_MSI_CAP
) && !dis_msi
&&
6147 !(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
6148 if (pci_enable_msi(bp
->pdev
) == 0) {
6149 bp
->flags
|= BNX2_FLAG_USING_MSI
;
6150 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
6151 bp
->flags
|= BNX2_FLAG_ONE_SHOT_MSI
;
6152 bp
->irq_tbl
[0].handler
= bnx2_msi_1shot
;
6154 bp
->irq_tbl
[0].handler
= bnx2_msi
;
6156 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
6160 bp
->num_tx_rings
= rounddown_pow_of_two(bp
->irq_nvecs
);
6161 bp
->dev
->real_num_tx_queues
= bp
->num_tx_rings
;
6163 bp
->num_rx_rings
= bp
->irq_nvecs
;
6166 /* Called with rtnl_lock */
6168 bnx2_open(struct net_device
*dev
)
6170 struct bnx2
*bp
= netdev_priv(dev
);
6173 netif_carrier_off(dev
);
6175 bnx2_set_power_state(bp
, PCI_D0
);
6176 bnx2_disable_int(bp
);
6178 bnx2_setup_int_mode(bp
, disable_msi
);
6180 bnx2_napi_enable(bp
);
6181 rc
= bnx2_alloc_mem(bp
);
6185 rc
= bnx2_request_irq(bp
);
6189 rc
= bnx2_init_nic(bp
, 1);
6193 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6195 atomic_set(&bp
->intr_sem
, 0);
6197 bnx2_enable_int(bp
);
6199 if (bp
->flags
& BNX2_FLAG_USING_MSI
) {
6200 /* Test MSI to make sure it is working
6201 * If MSI test fails, go back to INTx mode
6203 if (bnx2_test_intr(bp
) != 0) {
6204 printk(KERN_WARNING PFX
"%s: No interrupt was generated"
6205 " using MSI, switching to INTx mode. Please"
6206 " report this failure to the PCI maintainer"
6207 " and include system chipset information.\n",
6210 bnx2_disable_int(bp
);
6213 bnx2_setup_int_mode(bp
, 1);
6215 rc
= bnx2_init_nic(bp
, 0);
6218 rc
= bnx2_request_irq(bp
);
6221 del_timer_sync(&bp
->timer
);
6224 bnx2_enable_int(bp
);
6227 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
6228 printk(KERN_INFO PFX
"%s: using MSI\n", dev
->name
);
6229 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6230 printk(KERN_INFO PFX
"%s: using MSIX\n", dev
->name
);
6232 netif_tx_start_all_queues(dev
);
6237 bnx2_napi_disable(bp
);
6246 bnx2_reset_task(struct work_struct
*work
)
6248 struct bnx2
*bp
= container_of(work
, struct bnx2
, reset_task
);
6250 if (!netif_running(bp
->dev
))
6253 bnx2_netif_stop(bp
);
6255 bnx2_init_nic(bp
, 1);
6257 atomic_set(&bp
->intr_sem
, 1);
6258 bnx2_netif_start(bp
);
6262 bnx2_tx_timeout(struct net_device
*dev
)
6264 struct bnx2
*bp
= netdev_priv(dev
);
6266 /* This allows the netif to be shutdown gracefully before resetting */
6267 schedule_work(&bp
->reset_task
);
6271 /* Called with rtnl_lock */
6273 bnx2_vlan_rx_register(struct net_device
*dev
, struct vlan_group
*vlgrp
)
6275 struct bnx2
*bp
= netdev_priv(dev
);
6277 if (netif_running(dev
))
6278 bnx2_netif_stop(bp
);
6282 if (!netif_running(dev
))
6285 bnx2_set_rx_mode(dev
);
6286 if (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
)
6287 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE
, 0, 1);
6289 bnx2_netif_start(bp
);
6293 /* Called with netif_tx_lock.
6294 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6295 * netif_wake_queue().
6298 bnx2_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
6300 struct bnx2
*bp
= netdev_priv(dev
);
6303 struct sw_tx_bd
*tx_buf
;
6304 u32 len
, vlan_tag_flags
, last_frag
, mss
;
6305 u16 prod
, ring_prod
;
6307 struct bnx2_napi
*bnapi
;
6308 struct bnx2_tx_ring_info
*txr
;
6309 struct netdev_queue
*txq
;
6310 struct skb_shared_info
*sp
;
6312 /* Determine which tx ring we will be placed on */
6313 i
= skb_get_queue_mapping(skb
);
6314 bnapi
= &bp
->bnx2_napi
[i
];
6315 txr
= &bnapi
->tx_ring
;
6316 txq
= netdev_get_tx_queue(dev
, i
);
6318 if (unlikely(bnx2_tx_avail(bp
, txr
) <
6319 (skb_shinfo(skb
)->nr_frags
+ 1))) {
6320 netif_tx_stop_queue(txq
);
6321 printk(KERN_ERR PFX
"%s: BUG! Tx ring full when queue awake!\n",
6324 return NETDEV_TX_BUSY
;
6326 len
= skb_headlen(skb
);
6327 prod
= txr
->tx_prod
;
6328 ring_prod
= TX_RING_IDX(prod
);
6331 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
6332 vlan_tag_flags
|= TX_BD_FLAGS_TCP_UDP_CKSUM
;
6336 if (bp
->vlgrp
&& vlan_tx_tag_present(skb
)) {
6338 (TX_BD_FLAGS_VLAN_TAG
| (vlan_tx_tag_get(skb
) << 16));
6341 if ((mss
= skb_shinfo(skb
)->gso_size
)) {
6345 vlan_tag_flags
|= TX_BD_FLAGS_SW_LSO
;
6347 tcp_opt_len
= tcp_optlen(skb
);
6349 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
) {
6350 u32 tcp_off
= skb_transport_offset(skb
) -
6351 sizeof(struct ipv6hdr
) - ETH_HLEN
;
6353 vlan_tag_flags
|= ((tcp_opt_len
>> 2) << 8) |
6354 TX_BD_FLAGS_SW_FLAGS
;
6355 if (likely(tcp_off
== 0))
6356 vlan_tag_flags
&= ~TX_BD_FLAGS_TCP6_OFF0_MSK
;
6359 vlan_tag_flags
|= ((tcp_off
& 0x3) <<
6360 TX_BD_FLAGS_TCP6_OFF0_SHL
) |
6361 ((tcp_off
& 0x10) <<
6362 TX_BD_FLAGS_TCP6_OFF4_SHL
);
6363 mss
|= (tcp_off
& 0xc) << TX_BD_TCP6_OFF2_SHL
;
6367 if (tcp_opt_len
|| (iph
->ihl
> 5)) {
6368 vlan_tag_flags
|= ((iph
->ihl
- 5) +
6369 (tcp_opt_len
>> 2)) << 8;
6375 if (skb_dma_map(&bp
->pdev
->dev
, skb
, DMA_TO_DEVICE
)) {
6377 return NETDEV_TX_OK
;
6380 sp
= skb_shinfo(skb
);
6381 mapping
= sp
->dma_head
;
6383 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6386 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6388 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6389 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6390 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6391 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
| TX_BD_FLAGS_START
;
6393 last_frag
= skb_shinfo(skb
)->nr_frags
;
6394 tx_buf
->nr_frags
= last_frag
;
6395 tx_buf
->is_gso
= skb_is_gso(skb
);
6397 for (i
= 0; i
< last_frag
; i
++) {
6398 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
6400 prod
= NEXT_TX_BD(prod
);
6401 ring_prod
= TX_RING_IDX(prod
);
6402 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6405 mapping
= sp
->dma_maps
[i
];
6407 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6408 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6409 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6410 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
;
6413 txbd
->tx_bd_vlan_tag_flags
|= TX_BD_FLAGS_END
;
6415 prod
= NEXT_TX_BD(prod
);
6416 txr
->tx_prod_bseq
+= skb
->len
;
6418 REG_WR16(bp
, txr
->tx_bidx_addr
, prod
);
6419 REG_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
6423 txr
->tx_prod
= prod
;
6425 if (unlikely(bnx2_tx_avail(bp
, txr
) <= MAX_SKB_FRAGS
)) {
6426 netif_tx_stop_queue(txq
);
6427 if (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)
6428 netif_tx_wake_queue(txq
);
6431 return NETDEV_TX_OK
;
6434 /* Called with rtnl_lock */
6436 bnx2_close(struct net_device
*dev
)
6438 struct bnx2
*bp
= netdev_priv(dev
);
6440 cancel_work_sync(&bp
->reset_task
);
6442 bnx2_disable_int_sync(bp
);
6443 bnx2_napi_disable(bp
);
6444 del_timer_sync(&bp
->timer
);
6445 bnx2_shutdown_chip(bp
);
6451 netif_carrier_off(bp
->dev
);
6452 bnx2_set_power_state(bp
, PCI_D3hot
);
6456 #define GET_NET_STATS64(ctr) \
6457 (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
6458 (unsigned long) (ctr##_lo)
6460 #define GET_NET_STATS32(ctr) \
6463 #if (BITS_PER_LONG == 64)
6464 #define GET_NET_STATS GET_NET_STATS64
6466 #define GET_NET_STATS GET_NET_STATS32
6469 static struct net_device_stats
*
6470 bnx2_get_stats(struct net_device
*dev
)
6472 struct bnx2
*bp
= netdev_priv(dev
);
6473 struct statistics_block
*stats_blk
= bp
->stats_blk
;
6474 struct net_device_stats
*net_stats
= &dev
->stats
;
6476 if (bp
->stats_blk
== NULL
) {
6479 net_stats
->rx_packets
=
6480 GET_NET_STATS(stats_blk
->stat_IfHCInUcastPkts
) +
6481 GET_NET_STATS(stats_blk
->stat_IfHCInMulticastPkts
) +
6482 GET_NET_STATS(stats_blk
->stat_IfHCInBroadcastPkts
);
6484 net_stats
->tx_packets
=
6485 GET_NET_STATS(stats_blk
->stat_IfHCOutUcastPkts
) +
6486 GET_NET_STATS(stats_blk
->stat_IfHCOutMulticastPkts
) +
6487 GET_NET_STATS(stats_blk
->stat_IfHCOutBroadcastPkts
);
6489 net_stats
->rx_bytes
=
6490 GET_NET_STATS(stats_blk
->stat_IfHCInOctets
);
6492 net_stats
->tx_bytes
=
6493 GET_NET_STATS(stats_blk
->stat_IfHCOutOctets
);
6495 net_stats
->multicast
=
6496 GET_NET_STATS(stats_blk
->stat_IfHCOutMulticastPkts
);
6498 net_stats
->collisions
=
6499 (unsigned long) stats_blk
->stat_EtherStatsCollisions
;
6501 net_stats
->rx_length_errors
=
6502 (unsigned long) (stats_blk
->stat_EtherStatsUndersizePkts
+
6503 stats_blk
->stat_EtherStatsOverrsizePkts
);
6505 net_stats
->rx_over_errors
=
6506 (unsigned long) (stats_blk
->stat_IfInFTQDiscards
+
6507 stats_blk
->stat_IfInMBUFDiscards
);
6509 net_stats
->rx_frame_errors
=
6510 (unsigned long) stats_blk
->stat_Dot3StatsAlignmentErrors
;
6512 net_stats
->rx_crc_errors
=
6513 (unsigned long) stats_blk
->stat_Dot3StatsFCSErrors
;
6515 net_stats
->rx_errors
= net_stats
->rx_length_errors
+
6516 net_stats
->rx_over_errors
+ net_stats
->rx_frame_errors
+
6517 net_stats
->rx_crc_errors
;
6519 net_stats
->tx_aborted_errors
=
6520 (unsigned long) (stats_blk
->stat_Dot3StatsExcessiveCollisions
+
6521 stats_blk
->stat_Dot3StatsLateCollisions
);
6523 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) ||
6524 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
6525 net_stats
->tx_carrier_errors
= 0;
6527 net_stats
->tx_carrier_errors
=
6529 stats_blk
->stat_Dot3StatsCarrierSenseErrors
;
6532 net_stats
->tx_errors
=
6534 stats_blk
->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
6536 net_stats
->tx_aborted_errors
+
6537 net_stats
->tx_carrier_errors
;
6539 net_stats
->rx_missed_errors
=
6540 (unsigned long) (stats_blk
->stat_IfInFTQDiscards
+
6541 stats_blk
->stat_IfInMBUFDiscards
+ stats_blk
->stat_FwRxDrop
);
6546 /* All ethtool functions called with rtnl_lock */
6549 bnx2_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6551 struct bnx2
*bp
= netdev_priv(dev
);
6552 int support_serdes
= 0, support_copper
= 0;
6554 cmd
->supported
= SUPPORTED_Autoneg
;
6555 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6558 } else if (bp
->phy_port
== PORT_FIBRE
)
6563 if (support_serdes
) {
6564 cmd
->supported
|= SUPPORTED_1000baseT_Full
|
6566 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
6567 cmd
->supported
|= SUPPORTED_2500baseX_Full
;
6570 if (support_copper
) {
6571 cmd
->supported
|= SUPPORTED_10baseT_Half
|
6572 SUPPORTED_10baseT_Full
|
6573 SUPPORTED_100baseT_Half
|
6574 SUPPORTED_100baseT_Full
|
6575 SUPPORTED_1000baseT_Full
|
6580 spin_lock_bh(&bp
->phy_lock
);
6581 cmd
->port
= bp
->phy_port
;
6582 cmd
->advertising
= bp
->advertising
;
6584 if (bp
->autoneg
& AUTONEG_SPEED
) {
6585 cmd
->autoneg
= AUTONEG_ENABLE
;
6588 cmd
->autoneg
= AUTONEG_DISABLE
;
6591 if (netif_carrier_ok(dev
)) {
6592 cmd
->speed
= bp
->line_speed
;
6593 cmd
->duplex
= bp
->duplex
;
6599 spin_unlock_bh(&bp
->phy_lock
);
6601 cmd
->transceiver
= XCVR_INTERNAL
;
6602 cmd
->phy_address
= bp
->phy_addr
;
6608 bnx2_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6610 struct bnx2
*bp
= netdev_priv(dev
);
6611 u8 autoneg
= bp
->autoneg
;
6612 u8 req_duplex
= bp
->req_duplex
;
6613 u16 req_line_speed
= bp
->req_line_speed
;
6614 u32 advertising
= bp
->advertising
;
6617 spin_lock_bh(&bp
->phy_lock
);
6619 if (cmd
->port
!= PORT_TP
&& cmd
->port
!= PORT_FIBRE
)
6620 goto err_out_unlock
;
6622 if (cmd
->port
!= bp
->phy_port
&&
6623 !(bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
))
6624 goto err_out_unlock
;
6626 /* If device is down, we can store the settings only if the user
6627 * is setting the currently active port.
6629 if (!netif_running(dev
) && cmd
->port
!= bp
->phy_port
)
6630 goto err_out_unlock
;
6632 if (cmd
->autoneg
== AUTONEG_ENABLE
) {
6633 autoneg
|= AUTONEG_SPEED
;
6635 cmd
->advertising
&= ETHTOOL_ALL_COPPER_SPEED
;
6637 /* allow advertising 1 speed */
6638 if ((cmd
->advertising
== ADVERTISED_10baseT_Half
) ||
6639 (cmd
->advertising
== ADVERTISED_10baseT_Full
) ||
6640 (cmd
->advertising
== ADVERTISED_100baseT_Half
) ||
6641 (cmd
->advertising
== ADVERTISED_100baseT_Full
)) {
6643 if (cmd
->port
== PORT_FIBRE
)
6644 goto err_out_unlock
;
6646 advertising
= cmd
->advertising
;
6648 } else if (cmd
->advertising
== ADVERTISED_2500baseX_Full
) {
6649 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) ||
6650 (cmd
->port
== PORT_TP
))
6651 goto err_out_unlock
;
6652 } else if (cmd
->advertising
== ADVERTISED_1000baseT_Full
)
6653 advertising
= cmd
->advertising
;
6654 else if (cmd
->advertising
== ADVERTISED_1000baseT_Half
)
6655 goto err_out_unlock
;
6657 if (cmd
->port
== PORT_FIBRE
)
6658 advertising
= ETHTOOL_ALL_FIBRE_SPEED
;
6660 advertising
= ETHTOOL_ALL_COPPER_SPEED
;
6662 advertising
|= ADVERTISED_Autoneg
;
6665 if (cmd
->port
== PORT_FIBRE
) {
6666 if ((cmd
->speed
!= SPEED_1000
&&
6667 cmd
->speed
!= SPEED_2500
) ||
6668 (cmd
->duplex
!= DUPLEX_FULL
))
6669 goto err_out_unlock
;
6671 if (cmd
->speed
== SPEED_2500
&&
6672 !(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
6673 goto err_out_unlock
;
6675 else if (cmd
->speed
== SPEED_1000
|| cmd
->speed
== SPEED_2500
)
6676 goto err_out_unlock
;
6678 autoneg
&= ~AUTONEG_SPEED
;
6679 req_line_speed
= cmd
->speed
;
6680 req_duplex
= cmd
->duplex
;
6684 bp
->autoneg
= autoneg
;
6685 bp
->advertising
= advertising
;
6686 bp
->req_line_speed
= req_line_speed
;
6687 bp
->req_duplex
= req_duplex
;
6690 /* If device is down, the new settings will be picked up when it is
6693 if (netif_running(dev
))
6694 err
= bnx2_setup_phy(bp
, cmd
->port
);
6697 spin_unlock_bh(&bp
->phy_lock
);
6703 bnx2_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
6705 struct bnx2
*bp
= netdev_priv(dev
);
6707 strcpy(info
->driver
, DRV_MODULE_NAME
);
6708 strcpy(info
->version
, DRV_MODULE_VERSION
);
6709 strcpy(info
->bus_info
, pci_name(bp
->pdev
));
6710 strcpy(info
->fw_version
, bp
->fw_version
);
6713 #define BNX2_REGDUMP_LEN (32 * 1024)
6716 bnx2_get_regs_len(struct net_device
*dev
)
6718 return BNX2_REGDUMP_LEN
;
6722 bnx2_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
, void *_p
)
6724 u32
*p
= _p
, i
, offset
;
6726 struct bnx2
*bp
= netdev_priv(dev
);
6727 u32 reg_boundaries
[] = { 0x0000, 0x0098, 0x0400, 0x045c,
6728 0x0800, 0x0880, 0x0c00, 0x0c10,
6729 0x0c30, 0x0d08, 0x1000, 0x101c,
6730 0x1040, 0x1048, 0x1080, 0x10a4,
6731 0x1400, 0x1490, 0x1498, 0x14f0,
6732 0x1500, 0x155c, 0x1580, 0x15dc,
6733 0x1600, 0x1658, 0x1680, 0x16d8,
6734 0x1800, 0x1820, 0x1840, 0x1854,
6735 0x1880, 0x1894, 0x1900, 0x1984,
6736 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6737 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6738 0x2000, 0x2030, 0x23c0, 0x2400,
6739 0x2800, 0x2820, 0x2830, 0x2850,
6740 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6741 0x3c00, 0x3c94, 0x4000, 0x4010,
6742 0x4080, 0x4090, 0x43c0, 0x4458,
6743 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6744 0x4fc0, 0x5010, 0x53c0, 0x5444,
6745 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6746 0x5fc0, 0x6000, 0x6400, 0x6428,
6747 0x6800, 0x6848, 0x684c, 0x6860,
6748 0x6888, 0x6910, 0x8000 };
6752 memset(p
, 0, BNX2_REGDUMP_LEN
);
6754 if (!netif_running(bp
->dev
))
6758 offset
= reg_boundaries
[0];
6760 while (offset
< BNX2_REGDUMP_LEN
) {
6761 *p
++ = REG_RD(bp
, offset
);
6763 if (offset
== reg_boundaries
[i
+ 1]) {
6764 offset
= reg_boundaries
[i
+ 2];
6765 p
= (u32
*) (orig_p
+ offset
);
6772 bnx2_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
6774 struct bnx2
*bp
= netdev_priv(dev
);
6776 if (bp
->flags
& BNX2_FLAG_NO_WOL
) {
6781 wol
->supported
= WAKE_MAGIC
;
6783 wol
->wolopts
= WAKE_MAGIC
;
6787 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
6791 bnx2_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
6793 struct bnx2
*bp
= netdev_priv(dev
);
6795 if (wol
->wolopts
& ~WAKE_MAGIC
)
6798 if (wol
->wolopts
& WAKE_MAGIC
) {
6799 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
6811 bnx2_nway_reset(struct net_device
*dev
)
6813 struct bnx2
*bp
= netdev_priv(dev
);
6816 if (!netif_running(dev
))
6819 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
6823 spin_lock_bh(&bp
->phy_lock
);
6825 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6828 rc
= bnx2_setup_remote_phy(bp
, bp
->phy_port
);
6829 spin_unlock_bh(&bp
->phy_lock
);
6833 /* Force a link down visible on the other side */
6834 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
6835 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
6836 spin_unlock_bh(&bp
->phy_lock
);
6840 spin_lock_bh(&bp
->phy_lock
);
6842 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
6843 bp
->serdes_an_pending
= 1;
6844 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6847 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6848 bmcr
&= ~BMCR_LOOPBACK
;
6849 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
| BMCR_ANENABLE
);
6851 spin_unlock_bh(&bp
->phy_lock
);
6857 bnx2_get_link(struct net_device
*dev
)
6859 struct bnx2
*bp
= netdev_priv(dev
);
6865 bnx2_get_eeprom_len(struct net_device
*dev
)
6867 struct bnx2
*bp
= netdev_priv(dev
);
6869 if (bp
->flash_info
== NULL
)
6872 return (int) bp
->flash_size
;
6876 bnx2_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
6879 struct bnx2
*bp
= netdev_priv(dev
);
6882 if (!netif_running(dev
))
6885 /* parameters already validated in ethtool_get_eeprom */
6887 rc
= bnx2_nvram_read(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
6893 bnx2_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
6896 struct bnx2
*bp
= netdev_priv(dev
);
6899 if (!netif_running(dev
))
6902 /* parameters already validated in ethtool_set_eeprom */
6904 rc
= bnx2_nvram_write(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
6910 bnx2_get_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
6912 struct bnx2
*bp
= netdev_priv(dev
);
6914 memset(coal
, 0, sizeof(struct ethtool_coalesce
));
6916 coal
->rx_coalesce_usecs
= bp
->rx_ticks
;
6917 coal
->rx_max_coalesced_frames
= bp
->rx_quick_cons_trip
;
6918 coal
->rx_coalesce_usecs_irq
= bp
->rx_ticks_int
;
6919 coal
->rx_max_coalesced_frames_irq
= bp
->rx_quick_cons_trip_int
;
6921 coal
->tx_coalesce_usecs
= bp
->tx_ticks
;
6922 coal
->tx_max_coalesced_frames
= bp
->tx_quick_cons_trip
;
6923 coal
->tx_coalesce_usecs_irq
= bp
->tx_ticks_int
;
6924 coal
->tx_max_coalesced_frames_irq
= bp
->tx_quick_cons_trip_int
;
6926 coal
->stats_block_coalesce_usecs
= bp
->stats_ticks
;
6932 bnx2_set_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
6934 struct bnx2
*bp
= netdev_priv(dev
);
6936 bp
->rx_ticks
= (u16
) coal
->rx_coalesce_usecs
;
6937 if (bp
->rx_ticks
> 0x3ff) bp
->rx_ticks
= 0x3ff;
6939 bp
->rx_quick_cons_trip
= (u16
) coal
->rx_max_coalesced_frames
;
6940 if (bp
->rx_quick_cons_trip
> 0xff) bp
->rx_quick_cons_trip
= 0xff;
6942 bp
->rx_ticks_int
= (u16
) coal
->rx_coalesce_usecs_irq
;
6943 if (bp
->rx_ticks_int
> 0x3ff) bp
->rx_ticks_int
= 0x3ff;
6945 bp
->rx_quick_cons_trip_int
= (u16
) coal
->rx_max_coalesced_frames_irq
;
6946 if (bp
->rx_quick_cons_trip_int
> 0xff)
6947 bp
->rx_quick_cons_trip_int
= 0xff;
6949 bp
->tx_ticks
= (u16
) coal
->tx_coalesce_usecs
;
6950 if (bp
->tx_ticks
> 0x3ff) bp
->tx_ticks
= 0x3ff;
6952 bp
->tx_quick_cons_trip
= (u16
) coal
->tx_max_coalesced_frames
;
6953 if (bp
->tx_quick_cons_trip
> 0xff) bp
->tx_quick_cons_trip
= 0xff;
6955 bp
->tx_ticks_int
= (u16
) coal
->tx_coalesce_usecs_irq
;
6956 if (bp
->tx_ticks_int
> 0x3ff) bp
->tx_ticks_int
= 0x3ff;
6958 bp
->tx_quick_cons_trip_int
= (u16
) coal
->tx_max_coalesced_frames_irq
;
6959 if (bp
->tx_quick_cons_trip_int
> 0xff) bp
->tx_quick_cons_trip_int
=
6962 bp
->stats_ticks
= coal
->stats_block_coalesce_usecs
;
6963 if (bp
->flags
& BNX2_FLAG_BROKEN_STATS
) {
6964 if (bp
->stats_ticks
!= 0 && bp
->stats_ticks
!= USEC_PER_SEC
)
6965 bp
->stats_ticks
= USEC_PER_SEC
;
6967 if (bp
->stats_ticks
> BNX2_HC_STATS_TICKS_HC_STAT_TICKS
)
6968 bp
->stats_ticks
= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
6969 bp
->stats_ticks
&= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
6971 if (netif_running(bp
->dev
)) {
6972 bnx2_netif_stop(bp
);
6973 bnx2_init_nic(bp
, 0);
6974 bnx2_netif_start(bp
);
6981 bnx2_get_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
6983 struct bnx2
*bp
= netdev_priv(dev
);
6985 ering
->rx_max_pending
= MAX_TOTAL_RX_DESC_CNT
;
6986 ering
->rx_mini_max_pending
= 0;
6987 ering
->rx_jumbo_max_pending
= MAX_TOTAL_RX_PG_DESC_CNT
;
6989 ering
->rx_pending
= bp
->rx_ring_size
;
6990 ering
->rx_mini_pending
= 0;
6991 ering
->rx_jumbo_pending
= bp
->rx_pg_ring_size
;
6993 ering
->tx_max_pending
= MAX_TX_DESC_CNT
;
6994 ering
->tx_pending
= bp
->tx_ring_size
;
6998 bnx2_change_ring_size(struct bnx2
*bp
, u32 rx
, u32 tx
)
7000 if (netif_running(bp
->dev
)) {
7001 bnx2_netif_stop(bp
);
7002 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_RESET
);
7007 bnx2_set_rx_ring_size(bp
, rx
);
7008 bp
->tx_ring_size
= tx
;
7010 if (netif_running(bp
->dev
)) {
7013 rc
= bnx2_alloc_mem(bp
);
7015 rc
= bnx2_init_nic(bp
, 0);
7018 bnx2_napi_enable(bp
);
7022 bnx2_netif_start(bp
);
7028 bnx2_set_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
7030 struct bnx2
*bp
= netdev_priv(dev
);
7033 if ((ering
->rx_pending
> MAX_TOTAL_RX_DESC_CNT
) ||
7034 (ering
->tx_pending
> MAX_TX_DESC_CNT
) ||
7035 (ering
->tx_pending
<= MAX_SKB_FRAGS
)) {
7039 rc
= bnx2_change_ring_size(bp
, ering
->rx_pending
, ering
->tx_pending
);
7044 bnx2_get_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
7046 struct bnx2
*bp
= netdev_priv(dev
);
7048 epause
->autoneg
= ((bp
->autoneg
& AUTONEG_FLOW_CTRL
) != 0);
7049 epause
->rx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_RX
) != 0);
7050 epause
->tx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_TX
) != 0);
7054 bnx2_set_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
7056 struct bnx2
*bp
= netdev_priv(dev
);
7058 bp
->req_flow_ctrl
= 0;
7059 if (epause
->rx_pause
)
7060 bp
->req_flow_ctrl
|= FLOW_CTRL_RX
;
7061 if (epause
->tx_pause
)
7062 bp
->req_flow_ctrl
|= FLOW_CTRL_TX
;
7064 if (epause
->autoneg
) {
7065 bp
->autoneg
|= AUTONEG_FLOW_CTRL
;
7068 bp
->autoneg
&= ~AUTONEG_FLOW_CTRL
;
7071 if (netif_running(dev
)) {
7072 spin_lock_bh(&bp
->phy_lock
);
7073 bnx2_setup_phy(bp
, bp
->phy_port
);
7074 spin_unlock_bh(&bp
->phy_lock
);
7081 bnx2_get_rx_csum(struct net_device
*dev
)
7083 struct bnx2
*bp
= netdev_priv(dev
);
7089 bnx2_set_rx_csum(struct net_device
*dev
, u32 data
)
7091 struct bnx2
*bp
= netdev_priv(dev
);
7098 bnx2_set_tso(struct net_device
*dev
, u32 data
)
7100 struct bnx2
*bp
= netdev_priv(dev
);
7103 dev
->features
|= NETIF_F_TSO
| NETIF_F_TSO_ECN
;
7104 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7105 dev
->features
|= NETIF_F_TSO6
;
7107 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
|
7113 char string
[ETH_GSTRING_LEN
];
7114 } bnx2_stats_str_arr
[] = {
7116 { "rx_error_bytes" },
7118 { "tx_error_bytes" },
7119 { "rx_ucast_packets" },
7120 { "rx_mcast_packets" },
7121 { "rx_bcast_packets" },
7122 { "tx_ucast_packets" },
7123 { "tx_mcast_packets" },
7124 { "tx_bcast_packets" },
7125 { "tx_mac_errors" },
7126 { "tx_carrier_errors" },
7127 { "rx_crc_errors" },
7128 { "rx_align_errors" },
7129 { "tx_single_collisions" },
7130 { "tx_multi_collisions" },
7132 { "tx_excess_collisions" },
7133 { "tx_late_collisions" },
7134 { "tx_total_collisions" },
7137 { "rx_undersize_packets" },
7138 { "rx_oversize_packets" },
7139 { "rx_64_byte_packets" },
7140 { "rx_65_to_127_byte_packets" },
7141 { "rx_128_to_255_byte_packets" },
7142 { "rx_256_to_511_byte_packets" },
7143 { "rx_512_to_1023_byte_packets" },
7144 { "rx_1024_to_1522_byte_packets" },
7145 { "rx_1523_to_9022_byte_packets" },
7146 { "tx_64_byte_packets" },
7147 { "tx_65_to_127_byte_packets" },
7148 { "tx_128_to_255_byte_packets" },
7149 { "tx_256_to_511_byte_packets" },
7150 { "tx_512_to_1023_byte_packets" },
7151 { "tx_1024_to_1522_byte_packets" },
7152 { "tx_1523_to_9022_byte_packets" },
7153 { "rx_xon_frames" },
7154 { "rx_xoff_frames" },
7155 { "tx_xon_frames" },
7156 { "tx_xoff_frames" },
7157 { "rx_mac_ctrl_frames" },
7158 { "rx_filtered_packets" },
7159 { "rx_ftq_discards" },
7161 { "rx_fw_discards" },
7164 #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
7165 sizeof(bnx2_stats_str_arr[0]))
7167 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
7169 static const unsigned long bnx2_stats_offset_arr
[BNX2_NUM_STATS
] = {
7170 STATS_OFFSET32(stat_IfHCInOctets_hi
),
7171 STATS_OFFSET32(stat_IfHCInBadOctets_hi
),
7172 STATS_OFFSET32(stat_IfHCOutOctets_hi
),
7173 STATS_OFFSET32(stat_IfHCOutBadOctets_hi
),
7174 STATS_OFFSET32(stat_IfHCInUcastPkts_hi
),
7175 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi
),
7176 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi
),
7177 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi
),
7178 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi
),
7179 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi
),
7180 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
),
7181 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors
),
7182 STATS_OFFSET32(stat_Dot3StatsFCSErrors
),
7183 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors
),
7184 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames
),
7185 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames
),
7186 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions
),
7187 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions
),
7188 STATS_OFFSET32(stat_Dot3StatsLateCollisions
),
7189 STATS_OFFSET32(stat_EtherStatsCollisions
),
7190 STATS_OFFSET32(stat_EtherStatsFragments
),
7191 STATS_OFFSET32(stat_EtherStatsJabbers
),
7192 STATS_OFFSET32(stat_EtherStatsUndersizePkts
),
7193 STATS_OFFSET32(stat_EtherStatsOverrsizePkts
),
7194 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets
),
7195 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets
),
7196 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets
),
7197 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets
),
7198 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets
),
7199 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets
),
7200 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets
),
7201 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets
),
7202 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets
),
7203 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets
),
7204 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets
),
7205 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets
),
7206 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets
),
7207 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets
),
7208 STATS_OFFSET32(stat_XonPauseFramesReceived
),
7209 STATS_OFFSET32(stat_XoffPauseFramesReceived
),
7210 STATS_OFFSET32(stat_OutXonSent
),
7211 STATS_OFFSET32(stat_OutXoffSent
),
7212 STATS_OFFSET32(stat_MacControlFramesReceived
),
7213 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards
),
7214 STATS_OFFSET32(stat_IfInFTQDiscards
),
7215 STATS_OFFSET32(stat_IfInMBUFDiscards
),
7216 STATS_OFFSET32(stat_FwRxDrop
),
7219 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
7220 * skipped because of errata.
7222 static u8 bnx2_5706_stats_len_arr
[BNX2_NUM_STATS
] = {
7223 8,0,8,8,8,8,8,8,8,8,
7224 4,0,4,4,4,4,4,4,4,4,
7225 4,4,4,4,4,4,4,4,4,4,
7226 4,4,4,4,4,4,4,4,4,4,
7230 static u8 bnx2_5708_stats_len_arr
[BNX2_NUM_STATS
] = {
7231 8,0,8,8,8,8,8,8,8,8,
7232 4,4,4,4,4,4,4,4,4,4,
7233 4,4,4,4,4,4,4,4,4,4,
7234 4,4,4,4,4,4,4,4,4,4,
7238 #define BNX2_NUM_TESTS 6
7241 char string
[ETH_GSTRING_LEN
];
7242 } bnx2_tests_str_arr
[BNX2_NUM_TESTS
] = {
7243 { "register_test (offline)" },
7244 { "memory_test (offline)" },
7245 { "loopback_test (offline)" },
7246 { "nvram_test (online)" },
7247 { "interrupt_test (online)" },
7248 { "link_test (online)" },
7252 bnx2_get_sset_count(struct net_device
*dev
, int sset
)
7256 return BNX2_NUM_TESTS
;
7258 return BNX2_NUM_STATS
;
7265 bnx2_self_test(struct net_device
*dev
, struct ethtool_test
*etest
, u64
*buf
)
7267 struct bnx2
*bp
= netdev_priv(dev
);
7269 bnx2_set_power_state(bp
, PCI_D0
);
7271 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_TESTS
);
7272 if (etest
->flags
& ETH_TEST_FL_OFFLINE
) {
7275 bnx2_netif_stop(bp
);
7276 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_DIAG
);
7279 if (bnx2_test_registers(bp
) != 0) {
7281 etest
->flags
|= ETH_TEST_FL_FAILED
;
7283 if (bnx2_test_memory(bp
) != 0) {
7285 etest
->flags
|= ETH_TEST_FL_FAILED
;
7287 if ((buf
[2] = bnx2_test_loopback(bp
)) != 0)
7288 etest
->flags
|= ETH_TEST_FL_FAILED
;
7290 if (!netif_running(bp
->dev
))
7291 bnx2_shutdown_chip(bp
);
7293 bnx2_init_nic(bp
, 1);
7294 bnx2_netif_start(bp
);
7297 /* wait for link up */
7298 for (i
= 0; i
< 7; i
++) {
7301 msleep_interruptible(1000);
7305 if (bnx2_test_nvram(bp
) != 0) {
7307 etest
->flags
|= ETH_TEST_FL_FAILED
;
7309 if (bnx2_test_intr(bp
) != 0) {
7311 etest
->flags
|= ETH_TEST_FL_FAILED
;
7314 if (bnx2_test_link(bp
) != 0) {
7316 etest
->flags
|= ETH_TEST_FL_FAILED
;
7319 if (!netif_running(bp
->dev
))
7320 bnx2_set_power_state(bp
, PCI_D3hot
);
7324 bnx2_get_strings(struct net_device
*dev
, u32 stringset
, u8
*buf
)
7326 switch (stringset
) {
7328 memcpy(buf
, bnx2_stats_str_arr
,
7329 sizeof(bnx2_stats_str_arr
));
7332 memcpy(buf
, bnx2_tests_str_arr
,
7333 sizeof(bnx2_tests_str_arr
));
7339 bnx2_get_ethtool_stats(struct net_device
*dev
,
7340 struct ethtool_stats
*stats
, u64
*buf
)
7342 struct bnx2
*bp
= netdev_priv(dev
);
7344 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
7345 u8
*stats_len_arr
= NULL
;
7347 if (hw_stats
== NULL
) {
7348 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_STATS
);
7352 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
7353 (CHIP_ID(bp
) == CHIP_ID_5706_A1
) ||
7354 (CHIP_ID(bp
) == CHIP_ID_5706_A2
) ||
7355 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
7356 stats_len_arr
= bnx2_5706_stats_len_arr
;
7358 stats_len_arr
= bnx2_5708_stats_len_arr
;
7360 for (i
= 0; i
< BNX2_NUM_STATS
; i
++) {
7361 if (stats_len_arr
[i
] == 0) {
7362 /* skip this counter */
7366 if (stats_len_arr
[i
] == 4) {
7367 /* 4-byte counter */
7369 *(hw_stats
+ bnx2_stats_offset_arr
[i
]);
7372 /* 8-byte counter */
7373 buf
[i
] = (((u64
) *(hw_stats
+
7374 bnx2_stats_offset_arr
[i
])) << 32) +
7375 *(hw_stats
+ bnx2_stats_offset_arr
[i
] + 1);
7380 bnx2_phys_id(struct net_device
*dev
, u32 data
)
7382 struct bnx2
*bp
= netdev_priv(dev
);
7386 bnx2_set_power_state(bp
, PCI_D0
);
7391 save
= REG_RD(bp
, BNX2_MISC_CFG
);
7392 REG_WR(bp
, BNX2_MISC_CFG
, BNX2_MISC_CFG_LEDMODE_MAC
);
7394 for (i
= 0; i
< (data
* 2); i
++) {
7396 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
);
7399 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
|
7400 BNX2_EMAC_LED_1000MB_OVERRIDE
|
7401 BNX2_EMAC_LED_100MB_OVERRIDE
|
7402 BNX2_EMAC_LED_10MB_OVERRIDE
|
7403 BNX2_EMAC_LED_TRAFFIC_OVERRIDE
|
7404 BNX2_EMAC_LED_TRAFFIC
);
7406 msleep_interruptible(500);
7407 if (signal_pending(current
))
7410 REG_WR(bp
, BNX2_EMAC_LED
, 0);
7411 REG_WR(bp
, BNX2_MISC_CFG
, save
);
7413 if (!netif_running(dev
))
7414 bnx2_set_power_state(bp
, PCI_D3hot
);
7420 bnx2_set_tx_csum(struct net_device
*dev
, u32 data
)
7422 struct bnx2
*bp
= netdev_priv(dev
);
7424 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7425 return (ethtool_op_set_tx_ipv6_csum(dev
, data
));
7427 return (ethtool_op_set_tx_csum(dev
, data
));
7430 static const struct ethtool_ops bnx2_ethtool_ops
= {
7431 .get_settings
= bnx2_get_settings
,
7432 .set_settings
= bnx2_set_settings
,
7433 .get_drvinfo
= bnx2_get_drvinfo
,
7434 .get_regs_len
= bnx2_get_regs_len
,
7435 .get_regs
= bnx2_get_regs
,
7436 .get_wol
= bnx2_get_wol
,
7437 .set_wol
= bnx2_set_wol
,
7438 .nway_reset
= bnx2_nway_reset
,
7439 .get_link
= bnx2_get_link
,
7440 .get_eeprom_len
= bnx2_get_eeprom_len
,
7441 .get_eeprom
= bnx2_get_eeprom
,
7442 .set_eeprom
= bnx2_set_eeprom
,
7443 .get_coalesce
= bnx2_get_coalesce
,
7444 .set_coalesce
= bnx2_set_coalesce
,
7445 .get_ringparam
= bnx2_get_ringparam
,
7446 .set_ringparam
= bnx2_set_ringparam
,
7447 .get_pauseparam
= bnx2_get_pauseparam
,
7448 .set_pauseparam
= bnx2_set_pauseparam
,
7449 .get_rx_csum
= bnx2_get_rx_csum
,
7450 .set_rx_csum
= bnx2_set_rx_csum
,
7451 .set_tx_csum
= bnx2_set_tx_csum
,
7452 .set_sg
= ethtool_op_set_sg
,
7453 .set_tso
= bnx2_set_tso
,
7454 .self_test
= bnx2_self_test
,
7455 .get_strings
= bnx2_get_strings
,
7456 .phys_id
= bnx2_phys_id
,
7457 .get_ethtool_stats
= bnx2_get_ethtool_stats
,
7458 .get_sset_count
= bnx2_get_sset_count
,
7461 /* Called with rtnl_lock */
7463 bnx2_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
7465 struct mii_ioctl_data
*data
= if_mii(ifr
);
7466 struct bnx2
*bp
= netdev_priv(dev
);
7471 data
->phy_id
= bp
->phy_addr
;
7477 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7480 if (!netif_running(dev
))
7483 spin_lock_bh(&bp
->phy_lock
);
7484 err
= bnx2_read_phy(bp
, data
->reg_num
& 0x1f, &mii_regval
);
7485 spin_unlock_bh(&bp
->phy_lock
);
7487 data
->val_out
= mii_regval
;
7493 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7496 if (!netif_running(dev
))
7499 spin_lock_bh(&bp
->phy_lock
);
7500 err
= bnx2_write_phy(bp
, data
->reg_num
& 0x1f, data
->val_in
);
7501 spin_unlock_bh(&bp
->phy_lock
);
7512 /* Called with rtnl_lock */
7514 bnx2_change_mac_addr(struct net_device
*dev
, void *p
)
7516 struct sockaddr
*addr
= p
;
7517 struct bnx2
*bp
= netdev_priv(dev
);
7519 if (!is_valid_ether_addr(addr
->sa_data
))
7522 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
7523 if (netif_running(dev
))
7524 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
7529 /* Called with rtnl_lock */
7531 bnx2_change_mtu(struct net_device
*dev
, int new_mtu
)
7533 struct bnx2
*bp
= netdev_priv(dev
);
7535 if (((new_mtu
+ ETH_HLEN
) > MAX_ETHERNET_JUMBO_PACKET_SIZE
) ||
7536 ((new_mtu
+ ETH_HLEN
) < MIN_ETHERNET_PACKET_SIZE
))
7540 return (bnx2_change_ring_size(bp
, bp
->rx_ring_size
, bp
->tx_ring_size
));
7543 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
7545 poll_bnx2(struct net_device
*dev
)
7547 struct bnx2
*bp
= netdev_priv(dev
);
7550 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
7551 disable_irq(bp
->irq_tbl
[i
].vector
);
7552 bnx2_interrupt(bp
->irq_tbl
[i
].vector
, &bp
->bnx2_napi
[i
]);
7553 enable_irq(bp
->irq_tbl
[i
].vector
);
7558 static void __devinit
7559 bnx2_get_5709_media(struct bnx2
*bp
)
7561 u32 val
= REG_RD(bp
, BNX2_MISC_DUAL_MEDIA_CTRL
);
7562 u32 bond_id
= val
& BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID
;
7565 if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C
)
7567 else if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S
) {
7568 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7572 if (val
& BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE
)
7573 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL
) >> 21;
7575 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP
) >> 8;
7577 if (PCI_FUNC(bp
->pdev
->devfn
) == 0) {
7582 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7590 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7596 static void __devinit
7597 bnx2_get_pci_speed(struct bnx2
*bp
)
7601 reg
= REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
);
7602 if (reg
& BNX2_PCICFG_MISC_STATUS_PCIX_DET
) {
7605 bp
->flags
|= BNX2_FLAG_PCIX
;
7607 clkreg
= REG_RD(bp
, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS
);
7609 clkreg
&= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET
;
7611 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ
:
7612 bp
->bus_speed_mhz
= 133;
7615 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ
:
7616 bp
->bus_speed_mhz
= 100;
7619 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ
:
7620 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ
:
7621 bp
->bus_speed_mhz
= 66;
7624 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ
:
7625 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ
:
7626 bp
->bus_speed_mhz
= 50;
7629 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW
:
7630 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ
:
7631 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ
:
7632 bp
->bus_speed_mhz
= 33;
7637 if (reg
& BNX2_PCICFG_MISC_STATUS_M66EN
)
7638 bp
->bus_speed_mhz
= 66;
7640 bp
->bus_speed_mhz
= 33;
7643 if (reg
& BNX2_PCICFG_MISC_STATUS_32BIT_DET
)
7644 bp
->flags
|= BNX2_FLAG_PCI_32BIT
;
7648 static int __devinit
7649 bnx2_init_board(struct pci_dev
*pdev
, struct net_device
*dev
)
7652 unsigned long mem_len
;
7655 u64 dma_mask
, persist_dma_mask
;
7657 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7658 bp
= netdev_priv(dev
);
7663 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7664 rc
= pci_enable_device(pdev
);
7666 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting.\n");
7670 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
7672 "Cannot find PCI device base address, aborting.\n");
7674 goto err_out_disable
;
7677 rc
= pci_request_regions(pdev
, DRV_MODULE_NAME
);
7679 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting.\n");
7680 goto err_out_disable
;
7683 pci_set_master(pdev
);
7684 pci_save_state(pdev
);
7686 bp
->pm_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
7687 if (bp
->pm_cap
== 0) {
7689 "Cannot find power management capability, aborting.\n");
7691 goto err_out_release
;
7697 spin_lock_init(&bp
->phy_lock
);
7698 spin_lock_init(&bp
->indirect_lock
);
7700 mutex_init(&bp
->cnic_lock
);
7702 INIT_WORK(&bp
->reset_task
, bnx2_reset_task
);
7704 dev
->base_addr
= dev
->mem_start
= pci_resource_start(pdev
, 0);
7705 mem_len
= MB_GET_CID_ADDR(TX_TSS_CID
+ TX_MAX_TSS_RINGS
+ 1);
7706 dev
->mem_end
= dev
->mem_start
+ mem_len
;
7707 dev
->irq
= pdev
->irq
;
7709 bp
->regview
= ioremap_nocache(dev
->base_addr
, mem_len
);
7712 dev_err(&pdev
->dev
, "Cannot map register space, aborting.\n");
7714 goto err_out_release
;
7717 /* Configure byte swap and enable write to the reg_window registers.
7718 * Rely on CPU to do target byte swapping on big endian systems
7719 * The chip's target access swapping will not swap all accesses
7721 pci_write_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
,
7722 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
7723 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
);
7725 bnx2_set_power_state(bp
, PCI_D0
);
7727 bp
->chip_id
= REG_RD(bp
, BNX2_MISC_ID
);
7729 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
7730 if (pci_find_capability(pdev
, PCI_CAP_ID_EXP
) == 0) {
7732 "Cannot find PCIE capability, aborting.\n");
7736 bp
->flags
|= BNX2_FLAG_PCIE
;
7737 if (CHIP_REV(bp
) == CHIP_REV_Ax
)
7738 bp
->flags
|= BNX2_FLAG_JUMBO_BROKEN
;
7740 bp
->pcix_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PCIX
);
7741 if (bp
->pcix_cap
== 0) {
7743 "Cannot find PCIX capability, aborting.\n");
7747 bp
->flags
|= BNX2_FLAG_BROKEN_STATS
;
7750 if (CHIP_NUM(bp
) == CHIP_NUM_5709
&& CHIP_REV(bp
) != CHIP_REV_Ax
) {
7751 if (pci_find_capability(pdev
, PCI_CAP_ID_MSIX
))
7752 bp
->flags
|= BNX2_FLAG_MSIX_CAP
;
7755 if (CHIP_ID(bp
) != CHIP_ID_5706_A0
&& CHIP_ID(bp
) != CHIP_ID_5706_A1
) {
7756 if (pci_find_capability(pdev
, PCI_CAP_ID_MSI
))
7757 bp
->flags
|= BNX2_FLAG_MSI_CAP
;
7760 /* 5708 cannot support DMA addresses > 40-bit. */
7761 if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
7762 persist_dma_mask
= dma_mask
= DMA_BIT_MASK(40);
7764 persist_dma_mask
= dma_mask
= DMA_BIT_MASK(64);
7766 /* Configure DMA attributes. */
7767 if (pci_set_dma_mask(pdev
, dma_mask
) == 0) {
7768 dev
->features
|= NETIF_F_HIGHDMA
;
7769 rc
= pci_set_consistent_dma_mask(pdev
, persist_dma_mask
);
7772 "pci_set_consistent_dma_mask failed, aborting.\n");
7775 } else if ((rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))) != 0) {
7776 dev_err(&pdev
->dev
, "System does not support DMA, aborting.\n");
7780 if (!(bp
->flags
& BNX2_FLAG_PCIE
))
7781 bnx2_get_pci_speed(bp
);
7783 /* 5706A0 may falsely detect SERR and PERR. */
7784 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
7785 reg
= REG_RD(bp
, PCI_COMMAND
);
7786 reg
&= ~(PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
7787 REG_WR(bp
, PCI_COMMAND
, reg
);
7789 else if ((CHIP_ID(bp
) == CHIP_ID_5706_A1
) &&
7790 !(bp
->flags
& BNX2_FLAG_PCIX
)) {
7793 "5706 A1 can only be used in a PCIX bus, aborting.\n");
7797 bnx2_init_nvram(bp
);
7799 reg
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_SIGNATURE
);
7801 if ((reg
& BNX2_SHM_HDR_SIGNATURE_SIG_MASK
) ==
7802 BNX2_SHM_HDR_SIGNATURE_SIG
) {
7803 u32 off
= PCI_FUNC(pdev
->devfn
) << 2;
7805 bp
->shmem_base
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_ADDR_0
+ off
);
7807 bp
->shmem_base
= HOST_VIEW_SHMEM_BASE
;
7809 /* Get the permanent MAC address. First we need to make sure the
7810 * firmware is actually running.
7812 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_SIGNATURE
);
7814 if ((reg
& BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK
) !=
7815 BNX2_DEV_INFO_SIGNATURE_MAGIC
) {
7816 dev_err(&pdev
->dev
, "Firmware not running, aborting.\n");
7821 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_BC_REV
);
7822 for (i
= 0, j
= 0; i
< 3; i
++) {
7825 num
= (u8
) (reg
>> (24 - (i
* 8)));
7826 for (k
= 100, skip0
= 1; k
>= 1; num
%= k
, k
/= 10) {
7827 if (num
>= k
|| !skip0
|| k
== 1) {
7828 bp
->fw_version
[j
++] = (num
/ k
) + '0';
7833 bp
->fw_version
[j
++] = '.';
7835 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_FEATURE
);
7836 if (reg
& BNX2_PORT_FEATURE_WOL_ENABLED
)
7839 if (reg
& BNX2_PORT_FEATURE_ASF_ENABLED
) {
7840 bp
->flags
|= BNX2_FLAG_ASF_ENABLE
;
7842 for (i
= 0; i
< 30; i
++) {
7843 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
7844 if (reg
& BNX2_CONDITION_MFW_RUN_MASK
)
7849 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
7850 reg
&= BNX2_CONDITION_MFW_RUN_MASK
;
7851 if (reg
!= BNX2_CONDITION_MFW_RUN_UNKNOWN
&&
7852 reg
!= BNX2_CONDITION_MFW_RUN_NONE
) {
7853 u32 addr
= bnx2_shmem_rd(bp
, BNX2_MFW_VER_PTR
);
7855 bp
->fw_version
[j
++] = ' ';
7856 for (i
= 0; i
< 3; i
++) {
7857 reg
= bnx2_reg_rd_ind(bp
, addr
+ i
* 4);
7859 memcpy(&bp
->fw_version
[j
], ®
, 4);
7864 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_UPPER
);
7865 bp
->mac_addr
[0] = (u8
) (reg
>> 8);
7866 bp
->mac_addr
[1] = (u8
) reg
;
7868 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_LOWER
);
7869 bp
->mac_addr
[2] = (u8
) (reg
>> 24);
7870 bp
->mac_addr
[3] = (u8
) (reg
>> 16);
7871 bp
->mac_addr
[4] = (u8
) (reg
>> 8);
7872 bp
->mac_addr
[5] = (u8
) reg
;
7874 bp
->tx_ring_size
= MAX_TX_DESC_CNT
;
7875 bnx2_set_rx_ring_size(bp
, 255);
7879 bp
->tx_quick_cons_trip_int
= 2;
7880 bp
->tx_quick_cons_trip
= 20;
7881 bp
->tx_ticks_int
= 18;
7884 bp
->rx_quick_cons_trip_int
= 2;
7885 bp
->rx_quick_cons_trip
= 12;
7886 bp
->rx_ticks_int
= 18;
7889 bp
->stats_ticks
= USEC_PER_SEC
& BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7891 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
7895 /* Disable WOL support if we are running on a SERDES chip. */
7896 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7897 bnx2_get_5709_media(bp
);
7898 else if (CHIP_BOND_ID(bp
) & CHIP_BOND_ID_SERDES_BIT
)
7899 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7901 bp
->phy_port
= PORT_TP
;
7902 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
7903 bp
->phy_port
= PORT_FIBRE
;
7904 reg
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
7905 if (!(reg
& BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX
)) {
7906 bp
->flags
|= BNX2_FLAG_NO_WOL
;
7909 if (CHIP_NUM(bp
) == CHIP_NUM_5706
) {
7910 /* Don't do parallel detect on this board because of
7911 * some board problems. The link will not go down
7912 * if we do parallel detect.
7914 if (pdev
->subsystem_vendor
== PCI_VENDOR_ID_HP
&&
7915 pdev
->subsystem_device
== 0x310c)
7916 bp
->phy_flags
|= BNX2_PHY_FLAG_NO_PARALLEL
;
7919 if (reg
& BNX2_SHARED_HW_CFG_PHY_2_5G
)
7920 bp
->phy_flags
|= BNX2_PHY_FLAG_2_5G_CAPABLE
;
7922 } else if (CHIP_NUM(bp
) == CHIP_NUM_5706
||
7923 CHIP_NUM(bp
) == CHIP_NUM_5708
)
7924 bp
->phy_flags
|= BNX2_PHY_FLAG_CRC_FIX
;
7925 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
&&
7926 (CHIP_REV(bp
) == CHIP_REV_Ax
||
7927 CHIP_REV(bp
) == CHIP_REV_Bx
))
7928 bp
->phy_flags
|= BNX2_PHY_FLAG_DIS_EARLY_DAC
;
7930 bnx2_init_fw_cap(bp
);
7932 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
7933 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
7934 (CHIP_ID(bp
) == CHIP_ID_5708_B1
) ||
7935 !(REG_RD(bp
, BNX2_PCI_CONFIG_3
) & BNX2_PCI_CONFIG_3_VAUX_PRESET
)) {
7936 bp
->flags
|= BNX2_FLAG_NO_WOL
;
7940 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
7941 bp
->tx_quick_cons_trip_int
=
7942 bp
->tx_quick_cons_trip
;
7943 bp
->tx_ticks_int
= bp
->tx_ticks
;
7944 bp
->rx_quick_cons_trip_int
=
7945 bp
->rx_quick_cons_trip
;
7946 bp
->rx_ticks_int
= bp
->rx_ticks
;
7947 bp
->comp_prod_trip_int
= bp
->comp_prod_trip
;
7948 bp
->com_ticks_int
= bp
->com_ticks
;
7949 bp
->cmd_ticks_int
= bp
->cmd_ticks
;
7952 /* Disable MSI on 5706 if AMD 8132 bridge is found.
7954 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
7955 * with byte enables disabled on the unused 32-bit word. This is legal
7956 * but causes problems on the AMD 8132 which will eventually stop
7957 * responding after a while.
7959 * AMD believes this incompatibility is unique to the 5706, and
7960 * prefers to locally disable MSI rather than globally disabling it.
7962 if (CHIP_NUM(bp
) == CHIP_NUM_5706
&& disable_msi
== 0) {
7963 struct pci_dev
*amd_8132
= NULL
;
7965 while ((amd_8132
= pci_get_device(PCI_VENDOR_ID_AMD
,
7966 PCI_DEVICE_ID_AMD_8132_BRIDGE
,
7969 if (amd_8132
->revision
>= 0x10 &&
7970 amd_8132
->revision
<= 0x13) {
7972 pci_dev_put(amd_8132
);
7978 bnx2_set_default_link(bp
);
7979 bp
->req_flow_ctrl
= FLOW_CTRL_RX
| FLOW_CTRL_TX
;
7981 init_timer(&bp
->timer
);
7982 bp
->timer
.expires
= RUN_AT(BNX2_TIMER_INTERVAL
);
7983 bp
->timer
.data
= (unsigned long) bp
;
7984 bp
->timer
.function
= bnx2_timer
;
7990 iounmap(bp
->regview
);
7995 pci_release_regions(pdev
);
7998 pci_disable_device(pdev
);
7999 pci_set_drvdata(pdev
, NULL
);
8005 static char * __devinit
8006 bnx2_bus_string(struct bnx2
*bp
, char *str
)
8010 if (bp
->flags
& BNX2_FLAG_PCIE
) {
8011 s
+= sprintf(s
, "PCI Express");
8013 s
+= sprintf(s
, "PCI");
8014 if (bp
->flags
& BNX2_FLAG_PCIX
)
8015 s
+= sprintf(s
, "-X");
8016 if (bp
->flags
& BNX2_FLAG_PCI_32BIT
)
8017 s
+= sprintf(s
, " 32-bit");
8019 s
+= sprintf(s
, " 64-bit");
8020 s
+= sprintf(s
, " %dMHz", bp
->bus_speed_mhz
);
8026 bnx2_del_napi(struct bnx2
*bp
)
8030 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
8031 netif_napi_del(&bp
->bnx2_napi
[i
].napi
);
8035 bnx2_init_napi(struct bnx2
*bp
)
8039 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
8040 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
8041 int (*poll
)(struct napi_struct
*, int);
8046 poll
= bnx2_poll_msix
;
8048 netif_napi_add(bp
->dev
, &bp
->bnx2_napi
[i
].napi
, poll
, 64);
8053 static const struct net_device_ops bnx2_netdev_ops
= {
8054 .ndo_open
= bnx2_open
,
8055 .ndo_start_xmit
= bnx2_start_xmit
,
8056 .ndo_stop
= bnx2_close
,
8057 .ndo_get_stats
= bnx2_get_stats
,
8058 .ndo_set_rx_mode
= bnx2_set_rx_mode
,
8059 .ndo_do_ioctl
= bnx2_ioctl
,
8060 .ndo_validate_addr
= eth_validate_addr
,
8061 .ndo_set_mac_address
= bnx2_change_mac_addr
,
8062 .ndo_change_mtu
= bnx2_change_mtu
,
8063 .ndo_tx_timeout
= bnx2_tx_timeout
,
8065 .ndo_vlan_rx_register
= bnx2_vlan_rx_register
,
8067 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
8068 .ndo_poll_controller
= poll_bnx2
,
8072 static void inline vlan_features_add(struct net_device
*dev
, unsigned long flags
)
8075 dev
->vlan_features
|= flags
;
8079 static int __devinit
8080 bnx2_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
8082 static int version_printed
= 0;
8083 struct net_device
*dev
= NULL
;
8088 if (version_printed
++ == 0)
8089 printk(KERN_INFO
"%s", version
);
8091 /* dev zeroed in init_etherdev */
8092 dev
= alloc_etherdev_mq(sizeof(*bp
), TX_MAX_RINGS
);
8097 rc
= bnx2_init_board(pdev
, dev
);
8103 dev
->netdev_ops
= &bnx2_netdev_ops
;
8104 dev
->watchdog_timeo
= TX_TIMEOUT
;
8105 dev
->ethtool_ops
= &bnx2_ethtool_ops
;
8107 bp
= netdev_priv(dev
);
8109 pci_set_drvdata(pdev
, dev
);
8111 rc
= bnx2_request_firmware(bp
);
8115 memcpy(dev
->dev_addr
, bp
->mac_addr
, 6);
8116 memcpy(dev
->perm_addr
, bp
->mac_addr
, 6);
8118 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
;
8119 vlan_features_add(dev
, NETIF_F_IP_CSUM
| NETIF_F_SG
);
8120 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
8121 dev
->features
|= NETIF_F_IPV6_CSUM
;
8122 vlan_features_add(dev
, NETIF_F_IPV6_CSUM
);
8125 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
8127 dev
->features
|= NETIF_F_TSO
| NETIF_F_TSO_ECN
;
8128 vlan_features_add(dev
, NETIF_F_TSO
| NETIF_F_TSO_ECN
);
8129 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
8130 dev
->features
|= NETIF_F_TSO6
;
8131 vlan_features_add(dev
, NETIF_F_TSO6
);
8133 if ((rc
= register_netdev(dev
))) {
8134 dev_err(&pdev
->dev
, "Cannot register net device\n");
8138 printk(KERN_INFO
"%s: %s (%c%d) %s found at mem %lx, "
8139 "IRQ %d, node addr %pM\n",
8141 board_info
[ent
->driver_data
].name
,
8142 ((CHIP_ID(bp
) & 0xf000) >> 12) + 'A',
8143 ((CHIP_ID(bp
) & 0x0ff0) >> 4),
8144 bnx2_bus_string(bp
, str
),
8146 bp
->pdev
->irq
, dev
->dev_addr
);
8151 if (bp
->mips_firmware
)
8152 release_firmware(bp
->mips_firmware
);
8153 if (bp
->rv2p_firmware
)
8154 release_firmware(bp
->rv2p_firmware
);
8157 iounmap(bp
->regview
);
8158 pci_release_regions(pdev
);
8159 pci_disable_device(pdev
);
8160 pci_set_drvdata(pdev
, NULL
);
8165 static void __devexit
8166 bnx2_remove_one(struct pci_dev
*pdev
)
8168 struct net_device
*dev
= pci_get_drvdata(pdev
);
8169 struct bnx2
*bp
= netdev_priv(dev
);
8171 flush_scheduled_work();
8173 unregister_netdev(dev
);
8175 if (bp
->mips_firmware
)
8176 release_firmware(bp
->mips_firmware
);
8177 if (bp
->rv2p_firmware
)
8178 release_firmware(bp
->rv2p_firmware
);
8181 iounmap(bp
->regview
);
8184 pci_release_regions(pdev
);
8185 pci_disable_device(pdev
);
8186 pci_set_drvdata(pdev
, NULL
);
8190 bnx2_suspend(struct pci_dev
*pdev
, pm_message_t state
)
8192 struct net_device
*dev
= pci_get_drvdata(pdev
);
8193 struct bnx2
*bp
= netdev_priv(dev
);
8195 /* PCI register 4 needs to be saved whether netif_running() or not.
8196 * MSI address and data need to be saved if using MSI and
8199 pci_save_state(pdev
);
8200 if (!netif_running(dev
))
8203 flush_scheduled_work();
8204 bnx2_netif_stop(bp
);
8205 netif_device_detach(dev
);
8206 del_timer_sync(&bp
->timer
);
8207 bnx2_shutdown_chip(bp
);
8209 bnx2_set_power_state(bp
, pci_choose_state(pdev
, state
));
8214 bnx2_resume(struct pci_dev
*pdev
)
8216 struct net_device
*dev
= pci_get_drvdata(pdev
);
8217 struct bnx2
*bp
= netdev_priv(dev
);
8219 pci_restore_state(pdev
);
8220 if (!netif_running(dev
))
8223 bnx2_set_power_state(bp
, PCI_D0
);
8224 netif_device_attach(dev
);
8225 bnx2_init_nic(bp
, 1);
8226 bnx2_netif_start(bp
);
8231 * bnx2_io_error_detected - called when PCI error is detected
8232 * @pdev: Pointer to PCI device
8233 * @state: The current pci connection state
8235 * This function is called after a PCI bus error affecting
8236 * this device has been detected.
8238 static pci_ers_result_t
bnx2_io_error_detected(struct pci_dev
*pdev
,
8239 pci_channel_state_t state
)
8241 struct net_device
*dev
= pci_get_drvdata(pdev
);
8242 struct bnx2
*bp
= netdev_priv(dev
);
8245 netif_device_detach(dev
);
8247 if (state
== pci_channel_io_perm_failure
) {
8249 return PCI_ERS_RESULT_DISCONNECT
;
8252 if (netif_running(dev
)) {
8253 bnx2_netif_stop(bp
);
8254 del_timer_sync(&bp
->timer
);
8255 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
8258 pci_disable_device(pdev
);
8261 /* Request a slot slot reset. */
8262 return PCI_ERS_RESULT_NEED_RESET
;
8266 * bnx2_io_slot_reset - called after the pci bus has been reset.
8267 * @pdev: Pointer to PCI device
8269 * Restart the card from scratch, as if from a cold-boot.
8271 static pci_ers_result_t
bnx2_io_slot_reset(struct pci_dev
*pdev
)
8273 struct net_device
*dev
= pci_get_drvdata(pdev
);
8274 struct bnx2
*bp
= netdev_priv(dev
);
8277 if (pci_enable_device(pdev
)) {
8279 "Cannot re-enable PCI device after reset.\n");
8281 return PCI_ERS_RESULT_DISCONNECT
;
8283 pci_set_master(pdev
);
8284 pci_restore_state(pdev
);
8286 if (netif_running(dev
)) {
8287 bnx2_set_power_state(bp
, PCI_D0
);
8288 bnx2_init_nic(bp
, 1);
8292 return PCI_ERS_RESULT_RECOVERED
;
8296 * bnx2_io_resume - called when traffic can start flowing again.
8297 * @pdev: Pointer to PCI device
8299 * This callback is called when the error recovery driver tells us that
8300 * its OK to resume normal operation.
8302 static void bnx2_io_resume(struct pci_dev
*pdev
)
8304 struct net_device
*dev
= pci_get_drvdata(pdev
);
8305 struct bnx2
*bp
= netdev_priv(dev
);
8308 if (netif_running(dev
))
8309 bnx2_netif_start(bp
);
8311 netif_device_attach(dev
);
8315 static struct pci_error_handlers bnx2_err_handler
= {
8316 .error_detected
= bnx2_io_error_detected
,
8317 .slot_reset
= bnx2_io_slot_reset
,
8318 .resume
= bnx2_io_resume
,
8321 static struct pci_driver bnx2_pci_driver
= {
8322 .name
= DRV_MODULE_NAME
,
8323 .id_table
= bnx2_pci_tbl
,
8324 .probe
= bnx2_init_one
,
8325 .remove
= __devexit_p(bnx2_remove_one
),
8326 .suspend
= bnx2_suspend
,
8327 .resume
= bnx2_resume
,
8328 .err_handler
= &bnx2_err_handler
,
8331 static int __init
bnx2_init(void)
8333 return pci_register_driver(&bnx2_pci_driver
);
8336 static void __exit
bnx2_cleanup(void)
8338 pci_unregister_driver(&bnx2_pci_driver
);
8341 module_init(bnx2_init
);
8342 module_exit(bnx2_cleanup
);