2 * Copyright (c) 2008-2009 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include <asm/unaligned.h>
19 #include <linux/pci.h>
24 #define ATH9K_CLOCK_RATE_CCK 22
25 #define ATH9K_CLOCK_RATE_5GHZ_OFDM 40
26 #define ATH9K_CLOCK_RATE_2GHZ_OFDM 44
28 static bool ath9k_hw_set_reset_reg(struct ath_hw
*ah
, u32 type
);
29 static void ath9k_hw_set_regs(struct ath_hw
*ah
, struct ath9k_channel
*chan
,
30 enum ath9k_ht_macmode macmode
);
31 static u32
ath9k_hw_ini_fixup(struct ath_hw
*ah
,
32 struct ar5416_eeprom_def
*pEepData
,
34 static void ath9k_hw_9280_spur_mitigate(struct ath_hw
*ah
, struct ath9k_channel
*chan
);
35 static void ath9k_hw_spur_mitigate(struct ath_hw
*ah
, struct ath9k_channel
*chan
);
37 /********************/
38 /* Helper Functions */
39 /********************/
41 static u32
ath9k_hw_mac_usec(struct ath_hw
*ah
, u32 clks
)
43 struct ieee80211_conf
*conf
= &ah
->ah_sc
->hw
->conf
;
45 if (!ah
->curchan
) /* should really check for CCK instead */
46 return clks
/ ATH9K_CLOCK_RATE_CCK
;
47 if (conf
->channel
->band
== IEEE80211_BAND_2GHZ
)
48 return clks
/ ATH9K_CLOCK_RATE_2GHZ_OFDM
;
50 return clks
/ ATH9K_CLOCK_RATE_5GHZ_OFDM
;
53 static u32
ath9k_hw_mac_to_usec(struct ath_hw
*ah
, u32 clks
)
55 struct ieee80211_conf
*conf
= &ah
->ah_sc
->hw
->conf
;
57 if (conf_is_ht40(conf
))
58 return ath9k_hw_mac_usec(ah
, clks
) / 2;
60 return ath9k_hw_mac_usec(ah
, clks
);
63 static u32
ath9k_hw_mac_clks(struct ath_hw
*ah
, u32 usecs
)
65 struct ieee80211_conf
*conf
= &ah
->ah_sc
->hw
->conf
;
67 if (!ah
->curchan
) /* should really check for CCK instead */
68 return usecs
*ATH9K_CLOCK_RATE_CCK
;
69 if (conf
->channel
->band
== IEEE80211_BAND_2GHZ
)
70 return usecs
*ATH9K_CLOCK_RATE_2GHZ_OFDM
;
71 return usecs
*ATH9K_CLOCK_RATE_5GHZ_OFDM
;
74 static u32
ath9k_hw_mac_to_clks(struct ath_hw
*ah
, u32 usecs
)
76 struct ieee80211_conf
*conf
= &ah
->ah_sc
->hw
->conf
;
78 if (conf_is_ht40(conf
))
79 return ath9k_hw_mac_clks(ah
, usecs
) * 2;
81 return ath9k_hw_mac_clks(ah
, usecs
);
85 * Read and write, they both share the same lock. We do this to serialize
86 * reads and writes on Atheros 802.11n PCI devices only. This is required
87 * as the FIFO on these devices can only accept sanely 2 requests. After
88 * that the device goes bananas. Serializing the reads/writes prevents this
92 void ath9k_iowrite32(struct ath_hw
*ah
, u32 reg_offset
, u32 val
)
94 if (ah
->config
.serialize_regmode
== SER_REG_MODE_ON
) {
96 spin_lock_irqsave(&ah
->ah_sc
->sc_serial_rw
, flags
);
97 iowrite32(val
, ah
->ah_sc
->mem
+ reg_offset
);
98 spin_unlock_irqrestore(&ah
->ah_sc
->sc_serial_rw
, flags
);
100 iowrite32(val
, ah
->ah_sc
->mem
+ reg_offset
);
103 unsigned int ath9k_ioread32(struct ath_hw
*ah
, u32 reg_offset
)
106 if (ah
->config
.serialize_regmode
== SER_REG_MODE_ON
) {
108 spin_lock_irqsave(&ah
->ah_sc
->sc_serial_rw
, flags
);
109 val
= ioread32(ah
->ah_sc
->mem
+ reg_offset
);
110 spin_unlock_irqrestore(&ah
->ah_sc
->sc_serial_rw
, flags
);
112 val
= ioread32(ah
->ah_sc
->mem
+ reg_offset
);
116 bool ath9k_hw_wait(struct ath_hw
*ah
, u32 reg
, u32 mask
, u32 val
, u32 timeout
)
120 BUG_ON(timeout
< AH_TIME_QUANTUM
);
122 for (i
= 0; i
< (timeout
/ AH_TIME_QUANTUM
); i
++) {
123 if ((REG_READ(ah
, reg
) & mask
) == val
)
126 udelay(AH_TIME_QUANTUM
);
129 DPRINTF(ah
->ah_sc
, ATH_DBG_ANY
,
130 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
131 timeout
, reg
, REG_READ(ah
, reg
), mask
, val
);
136 u32
ath9k_hw_reverse_bits(u32 val
, u32 n
)
141 for (i
= 0, retval
= 0; i
< n
; i
++) {
142 retval
= (retval
<< 1) | (val
& 1);
148 bool ath9k_get_channel_edges(struct ath_hw
*ah
,
152 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
154 if (flags
& CHANNEL_5GHZ
) {
155 *low
= pCap
->low_5ghz_chan
;
156 *high
= pCap
->high_5ghz_chan
;
159 if ((flags
& CHANNEL_2GHZ
)) {
160 *low
= pCap
->low_2ghz_chan
;
161 *high
= pCap
->high_2ghz_chan
;
167 u16
ath9k_hw_computetxtime(struct ath_hw
*ah
,
168 const struct ath_rate_table
*rates
,
169 u32 frameLen
, u16 rateix
,
172 u32 bitsPerSymbol
, numBits
, numSymbols
, phyTime
, txTime
;
175 kbps
= rates
->info
[rateix
].ratekbps
;
180 switch (rates
->info
[rateix
].phy
) {
181 case WLAN_RC_PHY_CCK
:
182 phyTime
= CCK_PREAMBLE_BITS
+ CCK_PLCP_BITS
;
183 if (shortPreamble
&& rates
->info
[rateix
].short_preamble
)
185 numBits
= frameLen
<< 3;
186 txTime
= CCK_SIFS_TIME
+ phyTime
+ ((numBits
* 1000) / kbps
);
188 case WLAN_RC_PHY_OFDM
:
189 if (ah
->curchan
&& IS_CHAN_QUARTER_RATE(ah
->curchan
)) {
190 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME_QUARTER
) / 1000;
191 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
192 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
193 txTime
= OFDM_SIFS_TIME_QUARTER
194 + OFDM_PREAMBLE_TIME_QUARTER
195 + (numSymbols
* OFDM_SYMBOL_TIME_QUARTER
);
196 } else if (ah
->curchan
&&
197 IS_CHAN_HALF_RATE(ah
->curchan
)) {
198 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME_HALF
) / 1000;
199 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
200 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
201 txTime
= OFDM_SIFS_TIME_HALF
+
202 OFDM_PREAMBLE_TIME_HALF
203 + (numSymbols
* OFDM_SYMBOL_TIME_HALF
);
205 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME
) / 1000;
206 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
207 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
208 txTime
= OFDM_SIFS_TIME
+ OFDM_PREAMBLE_TIME
209 + (numSymbols
* OFDM_SYMBOL_TIME
);
213 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
214 "Unknown phy %u (rate ix %u)\n",
215 rates
->info
[rateix
].phy
, rateix
);
223 void ath9k_hw_get_channel_centers(struct ath_hw
*ah
,
224 struct ath9k_channel
*chan
,
225 struct chan_centers
*centers
)
229 if (!IS_CHAN_HT40(chan
)) {
230 centers
->ctl_center
= centers
->ext_center
=
231 centers
->synth_center
= chan
->channel
;
235 if ((chan
->chanmode
== CHANNEL_A_HT40PLUS
) ||
236 (chan
->chanmode
== CHANNEL_G_HT40PLUS
)) {
237 centers
->synth_center
=
238 chan
->channel
+ HT40_CHANNEL_CENTER_SHIFT
;
241 centers
->synth_center
=
242 chan
->channel
- HT40_CHANNEL_CENTER_SHIFT
;
246 centers
->ctl_center
=
247 centers
->synth_center
- (extoff
* HT40_CHANNEL_CENTER_SHIFT
);
248 centers
->ext_center
=
249 centers
->synth_center
+ (extoff
*
250 ((ah
->extprotspacing
== ATH9K_HT_EXTPROTSPACING_20
) ?
251 HT40_CHANNEL_CENTER_SHIFT
: 15));
258 static void ath9k_hw_read_revisions(struct ath_hw
*ah
)
262 val
= REG_READ(ah
, AR_SREV
) & AR_SREV_ID
;
265 val
= REG_READ(ah
, AR_SREV
);
266 ah
->hw_version
.macVersion
=
267 (val
& AR_SREV_VERSION2
) >> AR_SREV_TYPE2_S
;
268 ah
->hw_version
.macRev
= MS(val
, AR_SREV_REVISION2
);
269 ah
->is_pciexpress
= (val
& AR_SREV_TYPE2_HOST_MODE
) ? 0 : 1;
271 if (!AR_SREV_9100(ah
))
272 ah
->hw_version
.macVersion
= MS(val
, AR_SREV_VERSION
);
274 ah
->hw_version
.macRev
= val
& AR_SREV_REVISION
;
276 if (ah
->hw_version
.macVersion
== AR_SREV_VERSION_5416_PCIE
)
277 ah
->is_pciexpress
= true;
281 static int ath9k_hw_get_radiorev(struct ath_hw
*ah
)
286 REG_WRITE(ah
, AR_PHY(0x36), 0x00007058);
288 for (i
= 0; i
< 8; i
++)
289 REG_WRITE(ah
, AR_PHY(0x20), 0x00010000);
290 val
= (REG_READ(ah
, AR_PHY(256)) >> 24) & 0xff;
291 val
= ((val
& 0xf0) >> 4) | ((val
& 0x0f) << 4);
293 return ath9k_hw_reverse_bits(val
, 8);
296 /************************************/
297 /* HW Attach, Detach, Init Routines */
298 /************************************/
300 static void ath9k_hw_disablepcie(struct ath_hw
*ah
)
302 if (AR_SREV_9100(ah
))
305 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x9248fc00);
306 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x24924924);
307 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x28000029);
308 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x57160824);
309 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x25980579);
310 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x00000000);
311 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x1aaabe40);
312 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xbe105554);
313 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x000e1007);
315 REG_WRITE(ah
, AR_PCIE_SERDES2
, 0x00000000);
318 static bool ath9k_hw_chip_test(struct ath_hw
*ah
)
320 u32 regAddr
[2] = { AR_STA_ID0
, AR_PHY_BASE
+ (8 << 2) };
322 u32 patternData
[4] = { 0x55555555,
328 for (i
= 0; i
< 2; i
++) {
329 u32 addr
= regAddr
[i
];
332 regHold
[i
] = REG_READ(ah
, addr
);
333 for (j
= 0; j
< 0x100; j
++) {
334 wrData
= (j
<< 16) | j
;
335 REG_WRITE(ah
, addr
, wrData
);
336 rdData
= REG_READ(ah
, addr
);
337 if (rdData
!= wrData
) {
338 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
339 "address test failed "
340 "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
341 addr
, wrData
, rdData
);
345 for (j
= 0; j
< 4; j
++) {
346 wrData
= patternData
[j
];
347 REG_WRITE(ah
, addr
, wrData
);
348 rdData
= REG_READ(ah
, addr
);
349 if (wrData
!= rdData
) {
350 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
351 "address test failed "
352 "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
353 addr
, wrData
, rdData
);
357 REG_WRITE(ah
, regAddr
[i
], regHold
[i
]);
364 static const char *ath9k_hw_devname(u16 devid
)
367 case AR5416_DEVID_PCI
:
368 return "Atheros 5416";
369 case AR5416_DEVID_PCIE
:
370 return "Atheros 5418";
371 case AR9160_DEVID_PCI
:
372 return "Atheros 9160";
373 case AR5416_AR9100_DEVID
:
374 return "Atheros 9100";
375 case AR9280_DEVID_PCI
:
376 case AR9280_DEVID_PCIE
:
377 return "Atheros 9280";
378 case AR9285_DEVID_PCIE
:
379 return "Atheros 9285";
380 case AR5416_DEVID_AR9287_PCI
:
381 case AR5416_DEVID_AR9287_PCIE
:
382 return "Atheros 9287";
388 static void ath9k_hw_init_config(struct ath_hw
*ah
)
392 ah
->config
.dma_beacon_response_time
= 2;
393 ah
->config
.sw_beacon_response_time
= 10;
394 ah
->config
.additional_swba_backoff
= 0;
395 ah
->config
.ack_6mb
= 0x0;
396 ah
->config
.cwm_ignore_extcca
= 0;
397 ah
->config
.pcie_powersave_enable
= 0;
398 ah
->config
.pcie_clock_req
= 0;
399 ah
->config
.pcie_waen
= 0;
400 ah
->config
.analog_shiftreg
= 1;
401 ah
->config
.ofdm_trig_low
= 200;
402 ah
->config
.ofdm_trig_high
= 500;
403 ah
->config
.cck_trig_high
= 200;
404 ah
->config
.cck_trig_low
= 100;
405 ah
->config
.enable_ani
= 1;
406 ah
->config
.diversity_control
= ATH9K_ANT_VARIABLE
;
407 ah
->config
.antenna_switch_swap
= 0;
409 for (i
= 0; i
< AR_EEPROM_MODAL_SPURS
; i
++) {
410 ah
->config
.spurchans
[i
][0] = AR_NO_SPUR
;
411 ah
->config
.spurchans
[i
][1] = AR_NO_SPUR
;
414 if (ah
->hw_version
.devid
!= AR2427_DEVID_PCIE
)
415 ah
->config
.ht_enable
= 1;
417 ah
->config
.ht_enable
= 0;
419 ah
->config
.intr_mitigation
= true;
422 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
423 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
424 * This means we use it for all AR5416 devices, and the few
425 * minor PCI AR9280 devices out there.
427 * Serialization is required because these devices do not handle
428 * well the case of two concurrent reads/writes due to the latency
429 * involved. During one read/write another read/write can be issued
430 * on another CPU while the previous read/write may still be working
431 * on our hardware, if we hit this case the hardware poops in a loop.
432 * We prevent this by serializing reads and writes.
434 * This issue is not present on PCI-Express devices or pre-AR5416
435 * devices (legacy, 802.11abg).
437 if (num_possible_cpus() > 1)
438 ah
->config
.serialize_regmode
= SER_REG_MODE_AUTO
;
441 static void ath9k_hw_init_defaults(struct ath_hw
*ah
)
443 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
445 regulatory
->country_code
= CTRY_DEFAULT
;
446 regulatory
->power_limit
= MAX_RATE_POWER
;
447 regulatory
->tp_scale
= ATH9K_TP_SCALE_MAX
;
449 ah
->hw_version
.magic
= AR5416_MAGIC
;
450 ah
->hw_version
.subvendorid
= 0;
453 if (ah
->hw_version
.devid
== AR5416_AR9100_DEVID
)
454 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9100
;
455 if (!AR_SREV_9100(ah
))
456 ah
->ah_flags
= AH_USE_EEPROM
;
459 ah
->sta_id1_defaults
= AR_STA_ID1_CRPT_MIC_ENABLE
;
460 ah
->beacon_interval
= 100;
461 ah
->enable_32kHz_clock
= DONT_USE_32KHZ
;
462 ah
->slottime
= (u32
) -1;
463 ah
->acktimeout
= (u32
) -1;
464 ah
->ctstimeout
= (u32
) -1;
465 ah
->globaltxtimeout
= (u32
) -1;
467 ah
->gbeacon_rate
= 0;
469 ah
->power_mode
= ATH9K_PM_UNDEFINED
;
472 static int ath9k_hw_rfattach(struct ath_hw
*ah
)
474 bool rfStatus
= false;
477 rfStatus
= ath9k_hw_init_rf(ah
, &ecode
);
479 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
480 "RF setup failed, status: %u\n", ecode
);
487 static int ath9k_hw_rf_claim(struct ath_hw
*ah
)
491 REG_WRITE(ah
, AR_PHY(0), 0x00000007);
493 val
= ath9k_hw_get_radiorev(ah
);
494 switch (val
& AR_RADIO_SREV_MAJOR
) {
496 val
= AR_RAD5133_SREV_MAJOR
;
498 case AR_RAD5133_SREV_MAJOR
:
499 case AR_RAD5122_SREV_MAJOR
:
500 case AR_RAD2133_SREV_MAJOR
:
501 case AR_RAD2122_SREV_MAJOR
:
504 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
505 "Radio Chip Rev 0x%02X not supported\n",
506 val
& AR_RADIO_SREV_MAJOR
);
510 ah
->hw_version
.analog5GhzRev
= val
;
515 static int ath9k_hw_init_macaddr(struct ath_hw
*ah
)
522 for (i
= 0; i
< 3; i
++) {
523 eeval
= ah
->eep_ops
->get_eeprom(ah
, AR_EEPROM_MAC(i
));
525 ah
->macaddr
[2 * i
] = eeval
>> 8;
526 ah
->macaddr
[2 * i
+ 1] = eeval
& 0xff;
528 if (sum
== 0 || sum
== 0xffff * 3)
529 return -EADDRNOTAVAIL
;
534 static void ath9k_hw_init_rxgain_ini(struct ath_hw
*ah
)
538 if (ah
->eep_ops
->get_eeprom(ah
, EEP_MINOR_REV
) >= AR5416_EEP_MINOR_VER_17
) {
539 rxgain_type
= ah
->eep_ops
->get_eeprom(ah
, EEP_RXGAIN_TYPE
);
541 if (rxgain_type
== AR5416_EEP_RXGAIN_13DB_BACKOFF
)
542 INIT_INI_ARRAY(&ah
->iniModesRxGain
,
543 ar9280Modes_backoff_13db_rxgain_9280_2
,
544 ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2
), 6);
545 else if (rxgain_type
== AR5416_EEP_RXGAIN_23DB_BACKOFF
)
546 INIT_INI_ARRAY(&ah
->iniModesRxGain
,
547 ar9280Modes_backoff_23db_rxgain_9280_2
,
548 ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2
), 6);
550 INIT_INI_ARRAY(&ah
->iniModesRxGain
,
551 ar9280Modes_original_rxgain_9280_2
,
552 ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2
), 6);
554 INIT_INI_ARRAY(&ah
->iniModesRxGain
,
555 ar9280Modes_original_rxgain_9280_2
,
556 ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2
), 6);
560 static void ath9k_hw_init_txgain_ini(struct ath_hw
*ah
)
564 if (ah
->eep_ops
->get_eeprom(ah
, EEP_MINOR_REV
) >= AR5416_EEP_MINOR_VER_19
) {
565 txgain_type
= ah
->eep_ops
->get_eeprom(ah
, EEP_TXGAIN_TYPE
);
567 if (txgain_type
== AR5416_EEP_TXGAIN_HIGH_POWER
)
568 INIT_INI_ARRAY(&ah
->iniModesTxGain
,
569 ar9280Modes_high_power_tx_gain_9280_2
,
570 ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2
), 6);
572 INIT_INI_ARRAY(&ah
->iniModesTxGain
,
573 ar9280Modes_original_tx_gain_9280_2
,
574 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2
), 6);
576 INIT_INI_ARRAY(&ah
->iniModesTxGain
,
577 ar9280Modes_original_tx_gain_9280_2
,
578 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2
), 6);
582 static int ath9k_hw_post_init(struct ath_hw
*ah
)
586 if (!ath9k_hw_chip_test(ah
))
589 ecode
= ath9k_hw_rf_claim(ah
);
593 ecode
= ath9k_hw_eeprom_init(ah
);
597 DPRINTF(ah
->ah_sc
, ATH_DBG_CONFIG
, "Eeprom VER: %d, REV: %d\n",
598 ah
->eep_ops
->get_eeprom_ver(ah
), ah
->eep_ops
->get_eeprom_rev(ah
));
600 ecode
= ath9k_hw_rfattach(ah
);
604 if (!AR_SREV_9100(ah
)) {
605 ath9k_hw_ani_setup(ah
);
606 ath9k_hw_ani_init(ah
);
612 static bool ath9k_hw_devid_supported(u16 devid
)
615 case AR5416_DEVID_PCI
:
616 case AR5416_DEVID_PCIE
:
617 case AR5416_AR9100_DEVID
:
618 case AR9160_DEVID_PCI
:
619 case AR9280_DEVID_PCI
:
620 case AR9280_DEVID_PCIE
:
621 case AR9285_DEVID_PCIE
:
622 case AR5416_DEVID_AR9287_PCI
:
623 case AR5416_DEVID_AR9287_PCIE
:
624 case AR2427_DEVID_PCIE
:
632 static bool ath9k_hw_macversion_supported(u32 macversion
)
634 switch (macversion
) {
635 case AR_SREV_VERSION_5416_PCI
:
636 case AR_SREV_VERSION_5416_PCIE
:
637 case AR_SREV_VERSION_9160
:
638 case AR_SREV_VERSION_9100
:
639 case AR_SREV_VERSION_9280
:
640 case AR_SREV_VERSION_9285
:
641 case AR_SREV_VERSION_9287
:
644 case AR_SREV_VERSION_9271
:
651 static void ath9k_hw_init_cal_settings(struct ath_hw
*ah
)
653 if (AR_SREV_9160_10_OR_LATER(ah
)) {
654 if (AR_SREV_9280_10_OR_LATER(ah
)) {
655 ah
->iq_caldata
.calData
= &iq_cal_single_sample
;
656 ah
->adcgain_caldata
.calData
=
657 &adc_gain_cal_single_sample
;
658 ah
->adcdc_caldata
.calData
=
659 &adc_dc_cal_single_sample
;
660 ah
->adcdc_calinitdata
.calData
=
663 ah
->iq_caldata
.calData
= &iq_cal_multi_sample
;
664 ah
->adcgain_caldata
.calData
=
665 &adc_gain_cal_multi_sample
;
666 ah
->adcdc_caldata
.calData
=
667 &adc_dc_cal_multi_sample
;
668 ah
->adcdc_calinitdata
.calData
=
671 ah
->supp_cals
= ADC_GAIN_CAL
| ADC_DC_CAL
| IQ_MISMATCH_CAL
;
675 static void ath9k_hw_init_mode_regs(struct ath_hw
*ah
)
677 if (AR_SREV_9271(ah
)) {
678 INIT_INI_ARRAY(&ah
->iniModes
, ar9271Modes_9271_1_0
,
679 ARRAY_SIZE(ar9271Modes_9271_1_0
), 6);
680 INIT_INI_ARRAY(&ah
->iniCommon
, ar9271Common_9271_1_0
,
681 ARRAY_SIZE(ar9271Common_9271_1_0
), 2);
685 if (AR_SREV_9287_11_OR_LATER(ah
)) {
686 INIT_INI_ARRAY(&ah
->iniModes
, ar9287Modes_9287_1_1
,
687 ARRAY_SIZE(ar9287Modes_9287_1_1
), 6);
688 INIT_INI_ARRAY(&ah
->iniCommon
, ar9287Common_9287_1_1
,
689 ARRAY_SIZE(ar9287Common_9287_1_1
), 2);
690 if (ah
->config
.pcie_clock_req
)
691 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
692 ar9287PciePhy_clkreq_off_L1_9287_1_1
,
693 ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1
), 2);
695 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
696 ar9287PciePhy_clkreq_always_on_L1_9287_1_1
,
697 ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1
),
699 } else if (AR_SREV_9287_10_OR_LATER(ah
)) {
700 INIT_INI_ARRAY(&ah
->iniModes
, ar9287Modes_9287_1_0
,
701 ARRAY_SIZE(ar9287Modes_9287_1_0
), 6);
702 INIT_INI_ARRAY(&ah
->iniCommon
, ar9287Common_9287_1_0
,
703 ARRAY_SIZE(ar9287Common_9287_1_0
), 2);
705 if (ah
->config
.pcie_clock_req
)
706 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
707 ar9287PciePhy_clkreq_off_L1_9287_1_0
,
708 ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0
), 2);
710 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
711 ar9287PciePhy_clkreq_always_on_L1_9287_1_0
,
712 ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0
),
714 } else if (AR_SREV_9285_12_OR_LATER(ah
)) {
717 INIT_INI_ARRAY(&ah
->iniModes
, ar9285Modes_9285_1_2
,
718 ARRAY_SIZE(ar9285Modes_9285_1_2
), 6);
719 INIT_INI_ARRAY(&ah
->iniCommon
, ar9285Common_9285_1_2
,
720 ARRAY_SIZE(ar9285Common_9285_1_2
), 2);
722 if (ah
->config
.pcie_clock_req
) {
723 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
724 ar9285PciePhy_clkreq_off_L1_9285_1_2
,
725 ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2
), 2);
727 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
728 ar9285PciePhy_clkreq_always_on_L1_9285_1_2
,
729 ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2
),
732 } else if (AR_SREV_9285_10_OR_LATER(ah
)) {
733 INIT_INI_ARRAY(&ah
->iniModes
, ar9285Modes_9285
,
734 ARRAY_SIZE(ar9285Modes_9285
), 6);
735 INIT_INI_ARRAY(&ah
->iniCommon
, ar9285Common_9285
,
736 ARRAY_SIZE(ar9285Common_9285
), 2);
738 if (ah
->config
.pcie_clock_req
) {
739 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
740 ar9285PciePhy_clkreq_off_L1_9285
,
741 ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285
), 2);
743 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
744 ar9285PciePhy_clkreq_always_on_L1_9285
,
745 ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285
), 2);
747 } else if (AR_SREV_9280_20_OR_LATER(ah
)) {
748 INIT_INI_ARRAY(&ah
->iniModes
, ar9280Modes_9280_2
,
749 ARRAY_SIZE(ar9280Modes_9280_2
), 6);
750 INIT_INI_ARRAY(&ah
->iniCommon
, ar9280Common_9280_2
,
751 ARRAY_SIZE(ar9280Common_9280_2
), 2);
753 if (ah
->config
.pcie_clock_req
) {
754 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
755 ar9280PciePhy_clkreq_off_L1_9280
,
756 ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280
),2);
758 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
759 ar9280PciePhy_clkreq_always_on_L1_9280
,
760 ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280
), 2);
762 INIT_INI_ARRAY(&ah
->iniModesAdditional
,
763 ar9280Modes_fast_clock_9280_2
,
764 ARRAY_SIZE(ar9280Modes_fast_clock_9280_2
), 3);
765 } else if (AR_SREV_9280_10_OR_LATER(ah
)) {
766 INIT_INI_ARRAY(&ah
->iniModes
, ar9280Modes_9280
,
767 ARRAY_SIZE(ar9280Modes_9280
), 6);
768 INIT_INI_ARRAY(&ah
->iniCommon
, ar9280Common_9280
,
769 ARRAY_SIZE(ar9280Common_9280
), 2);
770 } else if (AR_SREV_9160_10_OR_LATER(ah
)) {
771 INIT_INI_ARRAY(&ah
->iniModes
, ar5416Modes_9160
,
772 ARRAY_SIZE(ar5416Modes_9160
), 6);
773 INIT_INI_ARRAY(&ah
->iniCommon
, ar5416Common_9160
,
774 ARRAY_SIZE(ar5416Common_9160
), 2);
775 INIT_INI_ARRAY(&ah
->iniBank0
, ar5416Bank0_9160
,
776 ARRAY_SIZE(ar5416Bank0_9160
), 2);
777 INIT_INI_ARRAY(&ah
->iniBB_RfGain
, ar5416BB_RfGain_9160
,
778 ARRAY_SIZE(ar5416BB_RfGain_9160
), 3);
779 INIT_INI_ARRAY(&ah
->iniBank1
, ar5416Bank1_9160
,
780 ARRAY_SIZE(ar5416Bank1_9160
), 2);
781 INIT_INI_ARRAY(&ah
->iniBank2
, ar5416Bank2_9160
,
782 ARRAY_SIZE(ar5416Bank2_9160
), 2);
783 INIT_INI_ARRAY(&ah
->iniBank3
, ar5416Bank3_9160
,
784 ARRAY_SIZE(ar5416Bank3_9160
), 3);
785 INIT_INI_ARRAY(&ah
->iniBank6
, ar5416Bank6_9160
,
786 ARRAY_SIZE(ar5416Bank6_9160
), 3);
787 INIT_INI_ARRAY(&ah
->iniBank6TPC
, ar5416Bank6TPC_9160
,
788 ARRAY_SIZE(ar5416Bank6TPC_9160
), 3);
789 INIT_INI_ARRAY(&ah
->iniBank7
, ar5416Bank7_9160
,
790 ARRAY_SIZE(ar5416Bank7_9160
), 2);
791 if (AR_SREV_9160_11(ah
)) {
792 INIT_INI_ARRAY(&ah
->iniAddac
,
794 ARRAY_SIZE(ar5416Addac_91601_1
), 2);
796 INIT_INI_ARRAY(&ah
->iniAddac
, ar5416Addac_9160
,
797 ARRAY_SIZE(ar5416Addac_9160
), 2);
799 } else if (AR_SREV_9100_OR_LATER(ah
)) {
800 INIT_INI_ARRAY(&ah
->iniModes
, ar5416Modes_9100
,
801 ARRAY_SIZE(ar5416Modes_9100
), 6);
802 INIT_INI_ARRAY(&ah
->iniCommon
, ar5416Common_9100
,
803 ARRAY_SIZE(ar5416Common_9100
), 2);
804 INIT_INI_ARRAY(&ah
->iniBank0
, ar5416Bank0_9100
,
805 ARRAY_SIZE(ar5416Bank0_9100
), 2);
806 INIT_INI_ARRAY(&ah
->iniBB_RfGain
, ar5416BB_RfGain_9100
,
807 ARRAY_SIZE(ar5416BB_RfGain_9100
), 3);
808 INIT_INI_ARRAY(&ah
->iniBank1
, ar5416Bank1_9100
,
809 ARRAY_SIZE(ar5416Bank1_9100
), 2);
810 INIT_INI_ARRAY(&ah
->iniBank2
, ar5416Bank2_9100
,
811 ARRAY_SIZE(ar5416Bank2_9100
), 2);
812 INIT_INI_ARRAY(&ah
->iniBank3
, ar5416Bank3_9100
,
813 ARRAY_SIZE(ar5416Bank3_9100
), 3);
814 INIT_INI_ARRAY(&ah
->iniBank6
, ar5416Bank6_9100
,
815 ARRAY_SIZE(ar5416Bank6_9100
), 3);
816 INIT_INI_ARRAY(&ah
->iniBank6TPC
, ar5416Bank6TPC_9100
,
817 ARRAY_SIZE(ar5416Bank6TPC_9100
), 3);
818 INIT_INI_ARRAY(&ah
->iniBank7
, ar5416Bank7_9100
,
819 ARRAY_SIZE(ar5416Bank7_9100
), 2);
820 INIT_INI_ARRAY(&ah
->iniAddac
, ar5416Addac_9100
,
821 ARRAY_SIZE(ar5416Addac_9100
), 2);
823 INIT_INI_ARRAY(&ah
->iniModes
, ar5416Modes
,
824 ARRAY_SIZE(ar5416Modes
), 6);
825 INIT_INI_ARRAY(&ah
->iniCommon
, ar5416Common
,
826 ARRAY_SIZE(ar5416Common
), 2);
827 INIT_INI_ARRAY(&ah
->iniBank0
, ar5416Bank0
,
828 ARRAY_SIZE(ar5416Bank0
), 2);
829 INIT_INI_ARRAY(&ah
->iniBB_RfGain
, ar5416BB_RfGain
,
830 ARRAY_SIZE(ar5416BB_RfGain
), 3);
831 INIT_INI_ARRAY(&ah
->iniBank1
, ar5416Bank1
,
832 ARRAY_SIZE(ar5416Bank1
), 2);
833 INIT_INI_ARRAY(&ah
->iniBank2
, ar5416Bank2
,
834 ARRAY_SIZE(ar5416Bank2
), 2);
835 INIT_INI_ARRAY(&ah
->iniBank3
, ar5416Bank3
,
836 ARRAY_SIZE(ar5416Bank3
), 3);
837 INIT_INI_ARRAY(&ah
->iniBank6
, ar5416Bank6
,
838 ARRAY_SIZE(ar5416Bank6
), 3);
839 INIT_INI_ARRAY(&ah
->iniBank6TPC
, ar5416Bank6TPC
,
840 ARRAY_SIZE(ar5416Bank6TPC
), 3);
841 INIT_INI_ARRAY(&ah
->iniBank7
, ar5416Bank7
,
842 ARRAY_SIZE(ar5416Bank7
), 2);
843 INIT_INI_ARRAY(&ah
->iniAddac
, ar5416Addac
,
844 ARRAY_SIZE(ar5416Addac
), 2);
848 static void ath9k_hw_init_mode_gain_regs(struct ath_hw
*ah
)
850 if (AR_SREV_9287_11_OR_LATER(ah
))
851 INIT_INI_ARRAY(&ah
->iniModesRxGain
,
852 ar9287Modes_rx_gain_9287_1_1
,
853 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1
), 6);
854 else if (AR_SREV_9287_10(ah
))
855 INIT_INI_ARRAY(&ah
->iniModesRxGain
,
856 ar9287Modes_rx_gain_9287_1_0
,
857 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0
), 6);
858 else if (AR_SREV_9280_20(ah
))
859 ath9k_hw_init_rxgain_ini(ah
);
861 if (AR_SREV_9287_11_OR_LATER(ah
)) {
862 INIT_INI_ARRAY(&ah
->iniModesTxGain
,
863 ar9287Modes_tx_gain_9287_1_1
,
864 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1
), 6);
865 } else if (AR_SREV_9287_10(ah
)) {
866 INIT_INI_ARRAY(&ah
->iniModesTxGain
,
867 ar9287Modes_tx_gain_9287_1_0
,
868 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0
), 6);
869 } else if (AR_SREV_9280_20(ah
)) {
870 ath9k_hw_init_txgain_ini(ah
);
871 } else if (AR_SREV_9285_12_OR_LATER(ah
)) {
872 u32 txgain_type
= ah
->eep_ops
->get_eeprom(ah
, EEP_TXGAIN_TYPE
);
875 if (txgain_type
== AR5416_EEP_TXGAIN_HIGH_POWER
) {
876 INIT_INI_ARRAY(&ah
->iniModesTxGain
,
877 ar9285Modes_high_power_tx_gain_9285_1_2
,
878 ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2
), 6);
880 INIT_INI_ARRAY(&ah
->iniModesTxGain
,
881 ar9285Modes_original_tx_gain_9285_1_2
,
882 ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2
), 6);
888 static void ath9k_hw_init_eeprom_fix(struct ath_hw
*ah
)
892 if (ah
->hw_version
.devid
== AR9280_DEVID_PCI
) {
895 for (i
= 0; i
< ah
->iniModes
.ia_rows
; i
++) {
896 u32 reg
= INI_RA(&ah
->iniModes
, i
, 0);
898 for (j
= 1; j
< ah
->iniModes
.ia_columns
; j
++) {
899 u32 val
= INI_RA(&ah
->iniModes
, i
, j
);
901 INI_RA(&ah
->iniModes
, i
, j
) =
902 ath9k_hw_ini_fixup(ah
,
910 int ath9k_hw_init(struct ath_hw
*ah
)
914 if (!ath9k_hw_devid_supported(ah
->hw_version
.devid
))
917 ath9k_hw_init_defaults(ah
);
918 ath9k_hw_init_config(ah
);
920 ath9k_hw_read_revisions(ah
);
922 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_POWER_ON
)) {
923 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
, "Couldn't reset chip\n");
927 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
)) {
928 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
, "Couldn't wakeup chip\n");
932 if (ah
->config
.serialize_regmode
== SER_REG_MODE_AUTO
) {
933 if (ah
->hw_version
.macVersion
== AR_SREV_VERSION_5416_PCI
||
934 ((AR_SREV_9160(ah
) || AR_SREV_9280(ah
)) &&
935 !ah
->is_pciexpress
)) {
936 ah
->config
.serialize_regmode
=
939 ah
->config
.serialize_regmode
=
944 DPRINTF(ah
->ah_sc
, ATH_DBG_RESET
, "serialize_regmode is %d\n",
945 ah
->config
.serialize_regmode
);
947 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
))
948 ah
->config
.max_txtrig_level
= MAX_TX_FIFO_THRESHOLD
>> 1;
950 ah
->config
.max_txtrig_level
= MAX_TX_FIFO_THRESHOLD
;
952 if (!ath9k_hw_macversion_supported(ah
->hw_version
.macVersion
)) {
953 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
954 "Mac Chip Rev 0x%02x.%x is not supported by "
955 "this driver\n", ah
->hw_version
.macVersion
,
956 ah
->hw_version
.macRev
);
960 if (AR_SREV_9100(ah
)) {
961 ah
->iq_caldata
.calData
= &iq_cal_multi_sample
;
962 ah
->supp_cals
= IQ_MISMATCH_CAL
;
963 ah
->is_pciexpress
= false;
966 if (AR_SREV_9271(ah
))
967 ah
->is_pciexpress
= false;
969 ah
->hw_version
.phyRev
= REG_READ(ah
, AR_PHY_CHIP_ID
);
971 ath9k_hw_init_cal_settings(ah
);
973 ah
->ani_function
= ATH9K_ANI_ALL
;
974 if (AR_SREV_9280_10_OR_LATER(ah
))
975 ah
->ani_function
&= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL
;
977 ath9k_hw_init_mode_regs(ah
);
979 if (ah
->is_pciexpress
)
980 ath9k_hw_configpcipowersave(ah
, 0, 0);
982 ath9k_hw_disablepcie(ah
);
984 r
= ath9k_hw_post_init(ah
);
988 ath9k_hw_init_mode_gain_regs(ah
);
989 ath9k_hw_fill_cap_info(ah
);
990 ath9k_hw_init_eeprom_fix(ah
);
992 r
= ath9k_hw_init_macaddr(ah
);
994 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
995 "Failed to initialize MAC address\n");
999 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
))
1000 ah
->tx_trig_level
= (AR_FTRIG_256B
>> AR_FTRIG_S
);
1002 ah
->tx_trig_level
= (AR_FTRIG_512B
>> AR_FTRIG_S
);
1004 ath9k_init_nfcal_hist_buffer(ah
);
1009 static void ath9k_hw_init_bb(struct ath_hw
*ah
,
1010 struct ath9k_channel
*chan
)
1014 synthDelay
= REG_READ(ah
, AR_PHY_RX_DELAY
) & AR_PHY_RX_DELAY_DELAY
;
1015 if (IS_CHAN_B(chan
))
1016 synthDelay
= (4 * synthDelay
) / 22;
1020 REG_WRITE(ah
, AR_PHY_ACTIVE
, AR_PHY_ACTIVE_EN
);
1022 udelay(synthDelay
+ BASE_ACTIVATE_DELAY
);
1025 static void ath9k_hw_init_qos(struct ath_hw
*ah
)
1027 REG_WRITE(ah
, AR_MIC_QOS_CONTROL
, 0x100aa);
1028 REG_WRITE(ah
, AR_MIC_QOS_SELECT
, 0x3210);
1030 REG_WRITE(ah
, AR_QOS_NO_ACK
,
1031 SM(2, AR_QOS_NO_ACK_TWO_BIT
) |
1032 SM(5, AR_QOS_NO_ACK_BIT_OFF
) |
1033 SM(0, AR_QOS_NO_ACK_BYTE_OFF
));
1035 REG_WRITE(ah
, AR_TXOP_X
, AR_TXOP_X_VAL
);
1036 REG_WRITE(ah
, AR_TXOP_0_3
, 0xFFFFFFFF);
1037 REG_WRITE(ah
, AR_TXOP_4_7
, 0xFFFFFFFF);
1038 REG_WRITE(ah
, AR_TXOP_8_11
, 0xFFFFFFFF);
1039 REG_WRITE(ah
, AR_TXOP_12_15
, 0xFFFFFFFF);
1042 static void ath9k_hw_init_pll(struct ath_hw
*ah
,
1043 struct ath9k_channel
*chan
)
1047 if (AR_SREV_9100(ah
)) {
1048 if (chan
&& IS_CHAN_5GHZ(chan
))
1053 if (AR_SREV_9280_10_OR_LATER(ah
)) {
1054 pll
= SM(0x5, AR_RTC_9160_PLL_REFDIV
);
1056 if (chan
&& IS_CHAN_HALF_RATE(chan
))
1057 pll
|= SM(0x1, AR_RTC_9160_PLL_CLKSEL
);
1058 else if (chan
&& IS_CHAN_QUARTER_RATE(chan
))
1059 pll
|= SM(0x2, AR_RTC_9160_PLL_CLKSEL
);
1061 if (chan
&& IS_CHAN_5GHZ(chan
)) {
1062 pll
|= SM(0x28, AR_RTC_9160_PLL_DIV
);
1065 if (AR_SREV_9280_20(ah
)) {
1066 if (((chan
->channel
% 20) == 0)
1067 || ((chan
->channel
% 10) == 0))
1073 pll
|= SM(0x2c, AR_RTC_9160_PLL_DIV
);
1076 } else if (AR_SREV_9160_10_OR_LATER(ah
)) {
1078 pll
= SM(0x5, AR_RTC_9160_PLL_REFDIV
);
1080 if (chan
&& IS_CHAN_HALF_RATE(chan
))
1081 pll
|= SM(0x1, AR_RTC_9160_PLL_CLKSEL
);
1082 else if (chan
&& IS_CHAN_QUARTER_RATE(chan
))
1083 pll
|= SM(0x2, AR_RTC_9160_PLL_CLKSEL
);
1085 if (chan
&& IS_CHAN_5GHZ(chan
))
1086 pll
|= SM(0x50, AR_RTC_9160_PLL_DIV
);
1088 pll
|= SM(0x58, AR_RTC_9160_PLL_DIV
);
1090 pll
= AR_RTC_PLL_REFDIV_5
| AR_RTC_PLL_DIV2
;
1092 if (chan
&& IS_CHAN_HALF_RATE(chan
))
1093 pll
|= SM(0x1, AR_RTC_PLL_CLKSEL
);
1094 else if (chan
&& IS_CHAN_QUARTER_RATE(chan
))
1095 pll
|= SM(0x2, AR_RTC_PLL_CLKSEL
);
1097 if (chan
&& IS_CHAN_5GHZ(chan
))
1098 pll
|= SM(0xa, AR_RTC_PLL_DIV
);
1100 pll
|= SM(0xb, AR_RTC_PLL_DIV
);
1103 REG_WRITE(ah
, AR_RTC_PLL_CONTROL
, pll
);
1105 udelay(RTC_PLL_SETTLE_DELAY
);
1107 REG_WRITE(ah
, AR_RTC_SLEEP_CLK
, AR_RTC_FORCE_DERIVED_CLK
);
1110 static void ath9k_hw_init_chain_masks(struct ath_hw
*ah
)
1112 int rx_chainmask
, tx_chainmask
;
1114 rx_chainmask
= ah
->rxchainmask
;
1115 tx_chainmask
= ah
->txchainmask
;
1117 switch (rx_chainmask
) {
1119 REG_SET_BIT(ah
, AR_PHY_ANALOG_SWAP
,
1120 AR_PHY_SWAP_ALT_CHAIN
);
1122 if (((ah
)->hw_version
.macVersion
<= AR_SREV_VERSION_9160
)) {
1123 REG_WRITE(ah
, AR_PHY_RX_CHAINMASK
, 0x7);
1124 REG_WRITE(ah
, AR_PHY_CAL_CHAINMASK
, 0x7);
1130 REG_WRITE(ah
, AR_PHY_RX_CHAINMASK
, rx_chainmask
);
1131 REG_WRITE(ah
, AR_PHY_CAL_CHAINMASK
, rx_chainmask
);
1137 REG_WRITE(ah
, AR_SELFGEN_MASK
, tx_chainmask
);
1138 if (tx_chainmask
== 0x5) {
1139 REG_SET_BIT(ah
, AR_PHY_ANALOG_SWAP
,
1140 AR_PHY_SWAP_ALT_CHAIN
);
1142 if (AR_SREV_9100(ah
))
1143 REG_WRITE(ah
, AR_PHY_ANALOG_SWAP
,
1144 REG_READ(ah
, AR_PHY_ANALOG_SWAP
) | 0x00000001);
1147 static void ath9k_hw_init_interrupt_masks(struct ath_hw
*ah
,
1148 enum nl80211_iftype opmode
)
1150 ah
->mask_reg
= AR_IMR_TXERR
|
1156 if (ah
->config
.intr_mitigation
)
1157 ah
->mask_reg
|= AR_IMR_RXINTM
| AR_IMR_RXMINTR
;
1159 ah
->mask_reg
|= AR_IMR_RXOK
;
1161 ah
->mask_reg
|= AR_IMR_TXOK
;
1163 if (opmode
== NL80211_IFTYPE_AP
)
1164 ah
->mask_reg
|= AR_IMR_MIB
;
1166 REG_WRITE(ah
, AR_IMR
, ah
->mask_reg
);
1167 REG_WRITE(ah
, AR_IMR_S2
, REG_READ(ah
, AR_IMR_S2
) | AR_IMR_S2_GTT
);
1169 if (!AR_SREV_9100(ah
)) {
1170 REG_WRITE(ah
, AR_INTR_SYNC_CAUSE
, 0xFFFFFFFF);
1171 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, AR_INTR_SYNC_DEFAULT
);
1172 REG_WRITE(ah
, AR_INTR_SYNC_MASK
, 0);
1176 static bool ath9k_hw_set_ack_timeout(struct ath_hw
*ah
, u32 us
)
1178 if (us
> ath9k_hw_mac_to_usec(ah
, MS(0xffffffff, AR_TIME_OUT_ACK
))) {
1179 DPRINTF(ah
->ah_sc
, ATH_DBG_RESET
, "bad ack timeout %u\n", us
);
1180 ah
->acktimeout
= (u32
) -1;
1183 REG_RMW_FIELD(ah
, AR_TIME_OUT
,
1184 AR_TIME_OUT_ACK
, ath9k_hw_mac_to_clks(ah
, us
));
1185 ah
->acktimeout
= us
;
1190 static bool ath9k_hw_set_cts_timeout(struct ath_hw
*ah
, u32 us
)
1192 if (us
> ath9k_hw_mac_to_usec(ah
, MS(0xffffffff, AR_TIME_OUT_CTS
))) {
1193 DPRINTF(ah
->ah_sc
, ATH_DBG_RESET
, "bad cts timeout %u\n", us
);
1194 ah
->ctstimeout
= (u32
) -1;
1197 REG_RMW_FIELD(ah
, AR_TIME_OUT
,
1198 AR_TIME_OUT_CTS
, ath9k_hw_mac_to_clks(ah
, us
));
1199 ah
->ctstimeout
= us
;
1204 static bool ath9k_hw_set_global_txtimeout(struct ath_hw
*ah
, u32 tu
)
1207 DPRINTF(ah
->ah_sc
, ATH_DBG_XMIT
,
1208 "bad global tx timeout %u\n", tu
);
1209 ah
->globaltxtimeout
= (u32
) -1;
1212 REG_RMW_FIELD(ah
, AR_GTXTO
, AR_GTXTO_TIMEOUT_LIMIT
, tu
);
1213 ah
->globaltxtimeout
= tu
;
1218 static void ath9k_hw_init_user_settings(struct ath_hw
*ah
)
1220 DPRINTF(ah
->ah_sc
, ATH_DBG_RESET
, "ah->misc_mode 0x%x\n",
1223 if (ah
->misc_mode
!= 0)
1224 REG_WRITE(ah
, AR_PCU_MISC
,
1225 REG_READ(ah
, AR_PCU_MISC
) | ah
->misc_mode
);
1226 if (ah
->slottime
!= (u32
) -1)
1227 ath9k_hw_setslottime(ah
, ah
->slottime
);
1228 if (ah
->acktimeout
!= (u32
) -1)
1229 ath9k_hw_set_ack_timeout(ah
, ah
->acktimeout
);
1230 if (ah
->ctstimeout
!= (u32
) -1)
1231 ath9k_hw_set_cts_timeout(ah
, ah
->ctstimeout
);
1232 if (ah
->globaltxtimeout
!= (u32
) -1)
1233 ath9k_hw_set_global_txtimeout(ah
, ah
->globaltxtimeout
);
1236 const char *ath9k_hw_probe(u16 vendorid
, u16 devid
)
1238 return vendorid
== ATHEROS_VENDOR_ID
?
1239 ath9k_hw_devname(devid
) : NULL
;
1242 void ath9k_hw_detach(struct ath_hw
*ah
)
1244 if (!AR_SREV_9100(ah
))
1245 ath9k_hw_ani_disable(ah
);
1247 ath9k_hw_rf_free(ah
);
1248 ath9k_hw_setpower(ah
, ATH9K_PM_FULL_SLEEP
);
1257 static void ath9k_hw_override_ini(struct ath_hw
*ah
,
1258 struct ath9k_channel
*chan
)
1262 if (AR_SREV_9271(ah
)) {
1264 * Enable spectral scan to solution for issues with stuck
1265 * beacons on AR9271 1.0. The beacon stuck issue is not seeon on
1268 if (AR_SREV_9271_10(ah
)) {
1269 val
= REG_READ(ah
, AR_PHY_SPECTRAL_SCAN
) | AR_PHY_SPECTRAL_SCAN_ENABLE
;
1270 REG_WRITE(ah
, AR_PHY_SPECTRAL_SCAN
, val
);
1272 else if (AR_SREV_9271_11(ah
))
1274 * change AR_PHY_RF_CTL3 setting to fix MAC issue
1275 * present on AR9271 1.1
1277 REG_WRITE(ah
, AR_PHY_RF_CTL3
, 0x3a020001);
1282 * Set the RX_ABORT and RX_DIS and clear if off only after
1283 * RXE is set for MAC. This prevents frames with corrupted
1284 * descriptor status.
1286 REG_SET_BIT(ah
, AR_DIAG_SW
, (AR_DIAG_RX_DIS
| AR_DIAG_RX_ABORT
));
1288 if (AR_SREV_9280_10_OR_LATER(ah
)) {
1289 val
= REG_READ(ah
, AR_PCU_MISC_MODE2
) &
1290 (~AR_PCU_MISC_MODE2_HWWAR1
);
1292 if (AR_SREV_9287_10_OR_LATER(ah
))
1293 val
= val
& (~AR_PCU_MISC_MODE2_HWWAR2
);
1295 REG_WRITE(ah
, AR_PCU_MISC_MODE2
, val
);
1298 if (!AR_SREV_5416_20_OR_LATER(ah
) ||
1299 AR_SREV_9280_10_OR_LATER(ah
))
1302 * Disable BB clock gating
1303 * Necessary to avoid issues on AR5416 2.0
1305 REG_WRITE(ah
, 0x9800 + (651 << 2), 0x11);
1308 * Disable RIFS search on some chips to avoid baseband
1311 if (AR_SREV_9100(ah
) || AR_SREV_9160(ah
)) {
1312 val
= REG_READ(ah
, AR_PHY_HEAVY_CLIP_FACTOR_RIFS
);
1313 val
&= ~AR_PHY_RIFS_INIT_DELAY
;
1314 REG_WRITE(ah
, AR_PHY_HEAVY_CLIP_FACTOR_RIFS
, val
);
1318 static u32
ath9k_hw_def_ini_fixup(struct ath_hw
*ah
,
1319 struct ar5416_eeprom_def
*pEepData
,
1322 struct base_eep_header
*pBase
= &(pEepData
->baseEepHeader
);
1324 switch (ah
->hw_version
.devid
) {
1325 case AR9280_DEVID_PCI
:
1326 if (reg
== 0x7894) {
1327 DPRINTF(ah
->ah_sc
, ATH_DBG_EEPROM
,
1328 "ini VAL: %x EEPROM: %x\n", value
,
1329 (pBase
->version
& 0xff));
1331 if ((pBase
->version
& 0xff) > 0x0a) {
1332 DPRINTF(ah
->ah_sc
, ATH_DBG_EEPROM
,
1335 value
&= ~AR_AN_TOP2_PWDCLKIND
;
1336 value
|= AR_AN_TOP2_PWDCLKIND
&
1337 (pBase
->pwdclkind
<< AR_AN_TOP2_PWDCLKIND_S
);
1339 DPRINTF(ah
->ah_sc
, ATH_DBG_EEPROM
,
1340 "PWDCLKIND Earlier Rev\n");
1343 DPRINTF(ah
->ah_sc
, ATH_DBG_EEPROM
,
1344 "final ini VAL: %x\n", value
);
1352 static u32
ath9k_hw_ini_fixup(struct ath_hw
*ah
,
1353 struct ar5416_eeprom_def
*pEepData
,
1356 if (ah
->eep_map
== EEP_MAP_4KBITS
)
1359 return ath9k_hw_def_ini_fixup(ah
, pEepData
, reg
, value
);
1362 static void ath9k_olc_init(struct ath_hw
*ah
)
1366 if (OLC_FOR_AR9287_10_LATER
) {
1367 REG_SET_BIT(ah
, AR_PHY_TX_PWRCTRL9
,
1368 AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL
);
1369 ath9k_hw_analog_shift_rmw(ah
, AR9287_AN_TXPC0
,
1370 AR9287_AN_TXPC0_TXPCMODE
,
1371 AR9287_AN_TXPC0_TXPCMODE_S
,
1372 AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE
);
1375 for (i
= 0; i
< AR9280_TX_GAIN_TABLE_SIZE
; i
++)
1376 ah
->originalGain
[i
] =
1377 MS(REG_READ(ah
, AR_PHY_TX_GAIN_TBL1
+ i
* 4),
1383 static u32
ath9k_regd_get_ctl(struct ath_regulatory
*reg
,
1384 struct ath9k_channel
*chan
)
1386 u32 ctl
= ath_regd_get_band_ctl(reg
, chan
->chan
->band
);
1388 if (IS_CHAN_B(chan
))
1390 else if (IS_CHAN_G(chan
))
1398 static int ath9k_hw_process_ini(struct ath_hw
*ah
,
1399 struct ath9k_channel
*chan
,
1400 enum ath9k_ht_macmode macmode
)
1402 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
1403 int i
, regWrites
= 0;
1404 struct ieee80211_channel
*channel
= chan
->chan
;
1405 u32 modesIndex
, freqIndex
;
1407 switch (chan
->chanmode
) {
1409 case CHANNEL_A_HT20
:
1413 case CHANNEL_A_HT40PLUS
:
1414 case CHANNEL_A_HT40MINUS
:
1419 case CHANNEL_G_HT20
:
1424 case CHANNEL_G_HT40PLUS
:
1425 case CHANNEL_G_HT40MINUS
:
1434 REG_WRITE(ah
, AR_PHY(0), 0x00000007);
1435 REG_WRITE(ah
, AR_PHY_ADC_SERIAL_CTL
, AR_PHY_SEL_EXTERNAL_RADIO
);
1436 ah
->eep_ops
->set_addac(ah
, chan
);
1438 if (AR_SREV_5416_22_OR_LATER(ah
)) {
1439 REG_WRITE_ARRAY(&ah
->iniAddac
, 1, regWrites
);
1441 struct ar5416IniArray temp
;
1443 sizeof(u32
) * ah
->iniAddac
.ia_rows
*
1444 ah
->iniAddac
.ia_columns
;
1446 memcpy(ah
->addac5416_21
,
1447 ah
->iniAddac
.ia_array
, addacSize
);
1449 (ah
->addac5416_21
)[31 * ah
->iniAddac
.ia_columns
+ 1] = 0;
1451 temp
.ia_array
= ah
->addac5416_21
;
1452 temp
.ia_columns
= ah
->iniAddac
.ia_columns
;
1453 temp
.ia_rows
= ah
->iniAddac
.ia_rows
;
1454 REG_WRITE_ARRAY(&temp
, 1, regWrites
);
1457 REG_WRITE(ah
, AR_PHY_ADC_SERIAL_CTL
, AR_PHY_SEL_INTERNAL_ADDAC
);
1459 for (i
= 0; i
< ah
->iniModes
.ia_rows
; i
++) {
1460 u32 reg
= INI_RA(&ah
->iniModes
, i
, 0);
1461 u32 val
= INI_RA(&ah
->iniModes
, i
, modesIndex
);
1463 REG_WRITE(ah
, reg
, val
);
1465 if (reg
>= 0x7800 && reg
< 0x78a0
1466 && ah
->config
.analog_shiftreg
) {
1470 DO_DELAY(regWrites
);
1473 if (AR_SREV_9280(ah
) || AR_SREV_9287_10_OR_LATER(ah
))
1474 REG_WRITE_ARRAY(&ah
->iniModesRxGain
, modesIndex
, regWrites
);
1476 if (AR_SREV_9280(ah
) || AR_SREV_9285_12_OR_LATER(ah
) ||
1477 AR_SREV_9287_10_OR_LATER(ah
))
1478 REG_WRITE_ARRAY(&ah
->iniModesTxGain
, modesIndex
, regWrites
);
1480 for (i
= 0; i
< ah
->iniCommon
.ia_rows
; i
++) {
1481 u32 reg
= INI_RA(&ah
->iniCommon
, i
, 0);
1482 u32 val
= INI_RA(&ah
->iniCommon
, i
, 1);
1484 REG_WRITE(ah
, reg
, val
);
1486 if (reg
>= 0x7800 && reg
< 0x78a0
1487 && ah
->config
.analog_shiftreg
) {
1491 DO_DELAY(regWrites
);
1494 ath9k_hw_write_regs(ah
, modesIndex
, freqIndex
, regWrites
);
1496 if (AR_SREV_9280_20(ah
) && IS_CHAN_A_5MHZ_SPACED(chan
)) {
1497 REG_WRITE_ARRAY(&ah
->iniModesAdditional
, modesIndex
,
1501 ath9k_hw_override_ini(ah
, chan
);
1502 ath9k_hw_set_regs(ah
, chan
, macmode
);
1503 ath9k_hw_init_chain_masks(ah
);
1505 if (OLC_FOR_AR9280_20_LATER
)
1508 ah
->eep_ops
->set_txpower(ah
, chan
,
1509 ath9k_regd_get_ctl(regulatory
, chan
),
1510 channel
->max_antenna_gain
* 2,
1511 channel
->max_power
* 2,
1512 min((u32
) MAX_RATE_POWER
,
1513 (u32
) regulatory
->power_limit
));
1515 if (!ath9k_hw_set_rf_regs(ah
, chan
, freqIndex
)) {
1516 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
1517 "ar5416SetRfRegs failed\n");
1524 /****************************************/
1525 /* Reset and Channel Switching Routines */
1526 /****************************************/
1528 static void ath9k_hw_set_rfmode(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
1535 rfMode
|= (IS_CHAN_B(chan
) || IS_CHAN_G(chan
))
1536 ? AR_PHY_MODE_DYNAMIC
: AR_PHY_MODE_OFDM
;
1538 if (!AR_SREV_9280_10_OR_LATER(ah
))
1539 rfMode
|= (IS_CHAN_5GHZ(chan
)) ?
1540 AR_PHY_MODE_RF5GHZ
: AR_PHY_MODE_RF2GHZ
;
1542 if (AR_SREV_9280_20(ah
) && IS_CHAN_A_5MHZ_SPACED(chan
))
1543 rfMode
|= (AR_PHY_MODE_DYNAMIC
| AR_PHY_MODE_DYN_CCK_DISABLE
);
1545 REG_WRITE(ah
, AR_PHY_MODE
, rfMode
);
1548 static void ath9k_hw_mark_phy_inactive(struct ath_hw
*ah
)
1550 REG_WRITE(ah
, AR_PHY_ACTIVE
, AR_PHY_ACTIVE_DIS
);
1553 static inline void ath9k_hw_set_dma(struct ath_hw
*ah
)
1558 * set AHB_MODE not to do cacheline prefetches
1560 regval
= REG_READ(ah
, AR_AHB_MODE
);
1561 REG_WRITE(ah
, AR_AHB_MODE
, regval
| AR_AHB_PREFETCH_RD_EN
);
1564 * let mac dma reads be in 128 byte chunks
1566 regval
= REG_READ(ah
, AR_TXCFG
) & ~AR_TXCFG_DMASZ_MASK
;
1567 REG_WRITE(ah
, AR_TXCFG
, regval
| AR_TXCFG_DMASZ_128B
);
1570 * Restore TX Trigger Level to its pre-reset value.
1571 * The initial value depends on whether aggregation is enabled, and is
1572 * adjusted whenever underruns are detected.
1574 REG_RMW_FIELD(ah
, AR_TXCFG
, AR_FTRIG
, ah
->tx_trig_level
);
1577 * let mac dma writes be in 128 byte chunks
1579 regval
= REG_READ(ah
, AR_RXCFG
) & ~AR_RXCFG_DMASZ_MASK
;
1580 REG_WRITE(ah
, AR_RXCFG
, regval
| AR_RXCFG_DMASZ_128B
);
1583 * Setup receive FIFO threshold to hold off TX activities
1585 REG_WRITE(ah
, AR_RXFIFO_CFG
, 0x200);
1588 * reduce the number of usable entries in PCU TXBUF to avoid
1589 * wrap around issues.
1591 if (AR_SREV_9285(ah
)) {
1592 /* For AR9285 the number of Fifos are reduced to half.
1593 * So set the usable tx buf size also to half to
1594 * avoid data/delimiter underruns
1596 REG_WRITE(ah
, AR_PCU_TXBUF_CTRL
,
1597 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE
);
1598 } else if (!AR_SREV_9271(ah
)) {
1599 REG_WRITE(ah
, AR_PCU_TXBUF_CTRL
,
1600 AR_PCU_TXBUF_CTRL_USABLE_SIZE
);
1604 static void ath9k_hw_set_operating_mode(struct ath_hw
*ah
, int opmode
)
1608 val
= REG_READ(ah
, AR_STA_ID1
);
1609 val
&= ~(AR_STA_ID1_STA_AP
| AR_STA_ID1_ADHOC
);
1611 case NL80211_IFTYPE_AP
:
1612 REG_WRITE(ah
, AR_STA_ID1
, val
| AR_STA_ID1_STA_AP
1613 | AR_STA_ID1_KSRCH_MODE
);
1614 REG_CLR_BIT(ah
, AR_CFG
, AR_CFG_AP_ADHOC_INDICATION
);
1616 case NL80211_IFTYPE_ADHOC
:
1617 case NL80211_IFTYPE_MESH_POINT
:
1618 REG_WRITE(ah
, AR_STA_ID1
, val
| AR_STA_ID1_ADHOC
1619 | AR_STA_ID1_KSRCH_MODE
);
1620 REG_SET_BIT(ah
, AR_CFG
, AR_CFG_AP_ADHOC_INDICATION
);
1622 case NL80211_IFTYPE_STATION
:
1623 case NL80211_IFTYPE_MONITOR
:
1624 REG_WRITE(ah
, AR_STA_ID1
, val
| AR_STA_ID1_KSRCH_MODE
);
1629 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw
*ah
,
1634 u32 coef_exp
, coef_man
;
1636 for (coef_exp
= 31; coef_exp
> 0; coef_exp
--)
1637 if ((coef_scaled
>> coef_exp
) & 0x1)
1640 coef_exp
= 14 - (coef_exp
- COEF_SCALE_S
);
1642 coef_man
= coef_scaled
+ (1 << (COEF_SCALE_S
- coef_exp
- 1));
1644 *coef_mantissa
= coef_man
>> (COEF_SCALE_S
- coef_exp
);
1645 *coef_exponent
= coef_exp
- 16;
1648 static void ath9k_hw_set_delta_slope(struct ath_hw
*ah
,
1649 struct ath9k_channel
*chan
)
1651 u32 coef_scaled
, ds_coef_exp
, ds_coef_man
;
1652 u32 clockMhzScaled
= 0x64000000;
1653 struct chan_centers centers
;
1655 if (IS_CHAN_HALF_RATE(chan
))
1656 clockMhzScaled
= clockMhzScaled
>> 1;
1657 else if (IS_CHAN_QUARTER_RATE(chan
))
1658 clockMhzScaled
= clockMhzScaled
>> 2;
1660 ath9k_hw_get_channel_centers(ah
, chan
, ¢ers
);
1661 coef_scaled
= clockMhzScaled
/ centers
.synth_center
;
1663 ath9k_hw_get_delta_slope_vals(ah
, coef_scaled
, &ds_coef_man
,
1666 REG_RMW_FIELD(ah
, AR_PHY_TIMING3
,
1667 AR_PHY_TIMING3_DSC_MAN
, ds_coef_man
);
1668 REG_RMW_FIELD(ah
, AR_PHY_TIMING3
,
1669 AR_PHY_TIMING3_DSC_EXP
, ds_coef_exp
);
1671 coef_scaled
= (9 * coef_scaled
) / 10;
1673 ath9k_hw_get_delta_slope_vals(ah
, coef_scaled
, &ds_coef_man
,
1676 REG_RMW_FIELD(ah
, AR_PHY_HALFGI
,
1677 AR_PHY_HALFGI_DSC_MAN
, ds_coef_man
);
1678 REG_RMW_FIELD(ah
, AR_PHY_HALFGI
,
1679 AR_PHY_HALFGI_DSC_EXP
, ds_coef_exp
);
1682 static bool ath9k_hw_set_reset(struct ath_hw
*ah
, int type
)
1687 if (AR_SREV_9100(ah
)) {
1688 u32 val
= REG_READ(ah
, AR_RTC_DERIVED_CLK
);
1689 val
&= ~AR_RTC_DERIVED_CLK_PERIOD
;
1690 val
|= SM(1, AR_RTC_DERIVED_CLK_PERIOD
);
1691 REG_WRITE(ah
, AR_RTC_DERIVED_CLK
, val
);
1692 (void)REG_READ(ah
, AR_RTC_DERIVED_CLK
);
1695 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
|
1696 AR_RTC_FORCE_WAKE_ON_INT
);
1698 if (AR_SREV_9100(ah
)) {
1699 rst_flags
= AR_RTC_RC_MAC_WARM
| AR_RTC_RC_MAC_COLD
|
1700 AR_RTC_RC_COLD_RESET
| AR_RTC_RC_WARM_RESET
;
1702 tmpReg
= REG_READ(ah
, AR_INTR_SYNC_CAUSE
);
1704 (AR_INTR_SYNC_LOCAL_TIMEOUT
|
1705 AR_INTR_SYNC_RADM_CPL_TIMEOUT
)) {
1706 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, 0);
1707 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
| AR_RC_HOSTIF
);
1709 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
);
1712 rst_flags
= AR_RTC_RC_MAC_WARM
;
1713 if (type
== ATH9K_RESET_COLD
)
1714 rst_flags
|= AR_RTC_RC_MAC_COLD
;
1717 REG_WRITE(ah
, AR_RTC_RC
, rst_flags
);
1720 REG_WRITE(ah
, AR_RTC_RC
, 0);
1721 if (!ath9k_hw_wait(ah
, AR_RTC_RC
, AR_RTC_RC_M
, 0, AH_WAIT_TIMEOUT
)) {
1722 DPRINTF(ah
->ah_sc
, ATH_DBG_RESET
,
1723 "RTC stuck in MAC reset\n");
1727 if (!AR_SREV_9100(ah
))
1728 REG_WRITE(ah
, AR_RC
, 0);
1730 ath9k_hw_init_pll(ah
, NULL
);
1732 if (AR_SREV_9100(ah
))
1738 static bool ath9k_hw_set_reset_power_on(struct ath_hw
*ah
)
1740 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
|
1741 AR_RTC_FORCE_WAKE_ON_INT
);
1743 if (!AR_SREV_9100(ah
))
1744 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
);
1746 REG_WRITE(ah
, AR_RTC_RESET
, 0);
1749 if (!AR_SREV_9100(ah
))
1750 REG_WRITE(ah
, AR_RC
, 0);
1752 REG_WRITE(ah
, AR_RTC_RESET
, 1);
1754 if (!ath9k_hw_wait(ah
,
1759 DPRINTF(ah
->ah_sc
, ATH_DBG_RESET
, "RTC not waking up\n");
1763 return ath9k_hw_set_reset(ah
, ATH9K_RESET_WARM
);
1766 static bool ath9k_hw_set_reset_reg(struct ath_hw
*ah
, u32 type
)
1768 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
,
1769 AR_RTC_FORCE_WAKE_EN
| AR_RTC_FORCE_WAKE_ON_INT
);
1772 case ATH9K_RESET_POWER_ON
:
1773 return ath9k_hw_set_reset_power_on(ah
);
1774 case ATH9K_RESET_WARM
:
1775 case ATH9K_RESET_COLD
:
1776 return ath9k_hw_set_reset(ah
, type
);
1782 static void ath9k_hw_set_regs(struct ath_hw
*ah
, struct ath9k_channel
*chan
,
1783 enum ath9k_ht_macmode macmode
)
1786 u32 enableDacFifo
= 0;
1788 if (AR_SREV_9285_10_OR_LATER(ah
))
1789 enableDacFifo
= (REG_READ(ah
, AR_PHY_TURBO
) &
1790 AR_PHY_FC_ENABLE_DAC_FIFO
);
1792 phymode
= AR_PHY_FC_HT_EN
| AR_PHY_FC_SHORT_GI_40
1793 | AR_PHY_FC_SINGLE_HT_LTF1
| AR_PHY_FC_WALSH
| enableDacFifo
;
1795 if (IS_CHAN_HT40(chan
)) {
1796 phymode
|= AR_PHY_FC_DYN2040_EN
;
1798 if ((chan
->chanmode
== CHANNEL_A_HT40PLUS
) ||
1799 (chan
->chanmode
== CHANNEL_G_HT40PLUS
))
1800 phymode
|= AR_PHY_FC_DYN2040_PRI_CH
;
1802 if (ah
->extprotspacing
== ATH9K_HT_EXTPROTSPACING_25
)
1803 phymode
|= AR_PHY_FC_DYN2040_EXT_CH
;
1805 REG_WRITE(ah
, AR_PHY_TURBO
, phymode
);
1807 ath9k_hw_set11nmac2040(ah
, macmode
);
1809 REG_WRITE(ah
, AR_GTXTO
, 25 << AR_GTXTO_TIMEOUT_LIMIT_S
);
1810 REG_WRITE(ah
, AR_CST
, 0xF << AR_CST_TIMEOUT_LIMIT_S
);
1813 static bool ath9k_hw_chip_reset(struct ath_hw
*ah
,
1814 struct ath9k_channel
*chan
)
1816 if (AR_SREV_9280(ah
) && ah
->eep_ops
->get_eeprom(ah
, EEP_OL_PWRCTRL
)) {
1817 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_POWER_ON
))
1819 } else if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_WARM
))
1822 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
1825 ah
->chip_fullsleep
= false;
1826 ath9k_hw_init_pll(ah
, chan
);
1827 ath9k_hw_set_rfmode(ah
, chan
);
1832 static bool ath9k_hw_channel_change(struct ath_hw
*ah
,
1833 struct ath9k_channel
*chan
,
1834 enum ath9k_ht_macmode macmode
)
1836 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
1837 struct ieee80211_channel
*channel
= chan
->chan
;
1838 u32 synthDelay
, qnum
;
1840 for (qnum
= 0; qnum
< AR_NUM_QCU
; qnum
++) {
1841 if (ath9k_hw_numtxpending(ah
, qnum
)) {
1842 DPRINTF(ah
->ah_sc
, ATH_DBG_QUEUE
,
1843 "Transmit frames pending on queue %d\n", qnum
);
1848 REG_WRITE(ah
, AR_PHY_RFBUS_REQ
, AR_PHY_RFBUS_REQ_EN
);
1849 if (!ath9k_hw_wait(ah
, AR_PHY_RFBUS_GRANT
, AR_PHY_RFBUS_GRANT_EN
,
1850 AR_PHY_RFBUS_GRANT_EN
, AH_WAIT_TIMEOUT
)) {
1851 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
1852 "Could not kill baseband RX\n");
1856 ath9k_hw_set_regs(ah
, chan
, macmode
);
1858 if (AR_SREV_9280_10_OR_LATER(ah
)) {
1859 ath9k_hw_ar9280_set_channel(ah
, chan
);
1861 if (!(ath9k_hw_set_channel(ah
, chan
))) {
1862 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
1863 "Failed to set channel\n");
1868 ah
->eep_ops
->set_txpower(ah
, chan
,
1869 ath9k_regd_get_ctl(regulatory
, chan
),
1870 channel
->max_antenna_gain
* 2,
1871 channel
->max_power
* 2,
1872 min((u32
) MAX_RATE_POWER
,
1873 (u32
) regulatory
->power_limit
));
1875 synthDelay
= REG_READ(ah
, AR_PHY_RX_DELAY
) & AR_PHY_RX_DELAY_DELAY
;
1876 if (IS_CHAN_B(chan
))
1877 synthDelay
= (4 * synthDelay
) / 22;
1881 udelay(synthDelay
+ BASE_ACTIVATE_DELAY
);
1883 REG_WRITE(ah
, AR_PHY_RFBUS_REQ
, 0);
1885 if (IS_CHAN_OFDM(chan
) || IS_CHAN_HT(chan
))
1886 ath9k_hw_set_delta_slope(ah
, chan
);
1888 if (AR_SREV_9280_10_OR_LATER(ah
))
1889 ath9k_hw_9280_spur_mitigate(ah
, chan
);
1891 ath9k_hw_spur_mitigate(ah
, chan
);
1893 if (!chan
->oneTimeCalsDone
)
1894 chan
->oneTimeCalsDone
= true;
1899 static void ath9k_hw_9280_spur_mitigate(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
1901 int bb_spur
= AR_NO_SPUR
;
1904 int bb_spur_off
, spur_subchannel_sd
;
1906 int spur_delta_phase
;
1908 int upper
, lower
, cur_vit_mask
;
1911 int pilot_mask_reg
[4] = { AR_PHY_TIMING7
, AR_PHY_TIMING8
,
1912 AR_PHY_PILOT_MASK_01_30
, AR_PHY_PILOT_MASK_31_60
1914 int chan_mask_reg
[4] = { AR_PHY_TIMING9
, AR_PHY_TIMING10
,
1915 AR_PHY_CHANNEL_MASK_01_30
, AR_PHY_CHANNEL_MASK_31_60
1917 int inc
[4] = { 0, 100, 0, 0 };
1918 struct chan_centers centers
;
1925 bool is2GHz
= IS_CHAN_2GHZ(chan
);
1927 memset(&mask_m
, 0, sizeof(int8_t) * 123);
1928 memset(&mask_p
, 0, sizeof(int8_t) * 123);
1930 ath9k_hw_get_channel_centers(ah
, chan
, ¢ers
);
1931 freq
= centers
.synth_center
;
1933 ah
->config
.spurmode
= SPUR_ENABLE_EEPROM
;
1934 for (i
= 0; i
< AR_EEPROM_MODAL_SPURS
; i
++) {
1935 cur_bb_spur
= ah
->eep_ops
->get_spur_channel(ah
, i
, is2GHz
);
1938 cur_bb_spur
= (cur_bb_spur
/ 10) + AR_BASE_FREQ_2GHZ
;
1940 cur_bb_spur
= (cur_bb_spur
/ 10) + AR_BASE_FREQ_5GHZ
;
1942 if (AR_NO_SPUR
== cur_bb_spur
)
1944 cur_bb_spur
= cur_bb_spur
- freq
;
1946 if (IS_CHAN_HT40(chan
)) {
1947 if ((cur_bb_spur
> -AR_SPUR_FEEQ_BOUND_HT40
) &&
1948 (cur_bb_spur
< AR_SPUR_FEEQ_BOUND_HT40
)) {
1949 bb_spur
= cur_bb_spur
;
1952 } else if ((cur_bb_spur
> -AR_SPUR_FEEQ_BOUND_HT20
) &&
1953 (cur_bb_spur
< AR_SPUR_FEEQ_BOUND_HT20
)) {
1954 bb_spur
= cur_bb_spur
;
1959 if (AR_NO_SPUR
== bb_spur
) {
1960 REG_CLR_BIT(ah
, AR_PHY_FORCE_CLKEN_CCK
,
1961 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX
);
1964 REG_CLR_BIT(ah
, AR_PHY_FORCE_CLKEN_CCK
,
1965 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX
);
1968 bin
= bb_spur
* 320;
1970 tmp
= REG_READ(ah
, AR_PHY_TIMING_CTRL4(0));
1972 newVal
= tmp
| (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI
|
1973 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER
|
1974 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK
|
1975 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK
);
1976 REG_WRITE(ah
, AR_PHY_TIMING_CTRL4(0), newVal
);
1978 newVal
= (AR_PHY_SPUR_REG_MASK_RATE_CNTL
|
1979 AR_PHY_SPUR_REG_ENABLE_MASK_PPM
|
1980 AR_PHY_SPUR_REG_MASK_RATE_SELECT
|
1981 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI
|
1982 SM(SPUR_RSSI_THRESH
, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH
));
1983 REG_WRITE(ah
, AR_PHY_SPUR_REG
, newVal
);
1985 if (IS_CHAN_HT40(chan
)) {
1987 spur_subchannel_sd
= 1;
1988 bb_spur_off
= bb_spur
+ 10;
1990 spur_subchannel_sd
= 0;
1991 bb_spur_off
= bb_spur
- 10;
1994 spur_subchannel_sd
= 0;
1995 bb_spur_off
= bb_spur
;
1998 if (IS_CHAN_HT40(chan
))
2000 ((bb_spur
* 262144) /
2001 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE
;
2004 ((bb_spur
* 524288) /
2005 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE
;
2007 denominator
= IS_CHAN_2GHZ(chan
) ? 44 : 40;
2008 spur_freq_sd
= ((bb_spur_off
* 2048) / denominator
) & 0x3ff;
2010 newVal
= (AR_PHY_TIMING11_USE_SPUR_IN_AGC
|
2011 SM(spur_freq_sd
, AR_PHY_TIMING11_SPUR_FREQ_SD
) |
2012 SM(spur_delta_phase
, AR_PHY_TIMING11_SPUR_DELTA_PHASE
));
2013 REG_WRITE(ah
, AR_PHY_TIMING11
, newVal
);
2015 newVal
= spur_subchannel_sd
<< AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S
;
2016 REG_WRITE(ah
, AR_PHY_SFCORR_EXT
, newVal
);
2022 for (i
= 0; i
< 4; i
++) {
2026 for (bp
= 0; bp
< 30; bp
++) {
2027 if ((cur_bin
> lower
) && (cur_bin
< upper
)) {
2028 pilot_mask
= pilot_mask
| 0x1 << bp
;
2029 chan_mask
= chan_mask
| 0x1 << bp
;
2034 REG_WRITE(ah
, pilot_mask_reg
[i
], pilot_mask
);
2035 REG_WRITE(ah
, chan_mask_reg
[i
], chan_mask
);
2038 cur_vit_mask
= 6100;
2042 for (i
= 0; i
< 123; i
++) {
2043 if ((cur_vit_mask
> lower
) && (cur_vit_mask
< upper
)) {
2045 /* workaround for gcc bug #37014 */
2046 volatile int tmp_v
= abs(cur_vit_mask
- bin
);
2052 if (cur_vit_mask
< 0)
2053 mask_m
[abs(cur_vit_mask
/ 100)] = mask_amt
;
2055 mask_p
[cur_vit_mask
/ 100] = mask_amt
;
2057 cur_vit_mask
-= 100;
2060 tmp_mask
= (mask_m
[46] << 30) | (mask_m
[47] << 28)
2061 | (mask_m
[48] << 26) | (mask_m
[49] << 24)
2062 | (mask_m
[50] << 22) | (mask_m
[51] << 20)
2063 | (mask_m
[52] << 18) | (mask_m
[53] << 16)
2064 | (mask_m
[54] << 14) | (mask_m
[55] << 12)
2065 | (mask_m
[56] << 10) | (mask_m
[57] << 8)
2066 | (mask_m
[58] << 6) | (mask_m
[59] << 4)
2067 | (mask_m
[60] << 2) | (mask_m
[61] << 0);
2068 REG_WRITE(ah
, AR_PHY_BIN_MASK_1
, tmp_mask
);
2069 REG_WRITE(ah
, AR_PHY_VIT_MASK2_M_46_61
, tmp_mask
);
2071 tmp_mask
= (mask_m
[31] << 28)
2072 | (mask_m
[32] << 26) | (mask_m
[33] << 24)
2073 | (mask_m
[34] << 22) | (mask_m
[35] << 20)
2074 | (mask_m
[36] << 18) | (mask_m
[37] << 16)
2075 | (mask_m
[48] << 14) | (mask_m
[39] << 12)
2076 | (mask_m
[40] << 10) | (mask_m
[41] << 8)
2077 | (mask_m
[42] << 6) | (mask_m
[43] << 4)
2078 | (mask_m
[44] << 2) | (mask_m
[45] << 0);
2079 REG_WRITE(ah
, AR_PHY_BIN_MASK_2
, tmp_mask
);
2080 REG_WRITE(ah
, AR_PHY_MASK2_M_31_45
, tmp_mask
);
2082 tmp_mask
= (mask_m
[16] << 30) | (mask_m
[16] << 28)
2083 | (mask_m
[18] << 26) | (mask_m
[18] << 24)
2084 | (mask_m
[20] << 22) | (mask_m
[20] << 20)
2085 | (mask_m
[22] << 18) | (mask_m
[22] << 16)
2086 | (mask_m
[24] << 14) | (mask_m
[24] << 12)
2087 | (mask_m
[25] << 10) | (mask_m
[26] << 8)
2088 | (mask_m
[27] << 6) | (mask_m
[28] << 4)
2089 | (mask_m
[29] << 2) | (mask_m
[30] << 0);
2090 REG_WRITE(ah
, AR_PHY_BIN_MASK_3
, tmp_mask
);
2091 REG_WRITE(ah
, AR_PHY_MASK2_M_16_30
, tmp_mask
);
2093 tmp_mask
= (mask_m
[0] << 30) | (mask_m
[1] << 28)
2094 | (mask_m
[2] << 26) | (mask_m
[3] << 24)
2095 | (mask_m
[4] << 22) | (mask_m
[5] << 20)
2096 | (mask_m
[6] << 18) | (mask_m
[7] << 16)
2097 | (mask_m
[8] << 14) | (mask_m
[9] << 12)
2098 | (mask_m
[10] << 10) | (mask_m
[11] << 8)
2099 | (mask_m
[12] << 6) | (mask_m
[13] << 4)
2100 | (mask_m
[14] << 2) | (mask_m
[15] << 0);
2101 REG_WRITE(ah
, AR_PHY_MASK_CTL
, tmp_mask
);
2102 REG_WRITE(ah
, AR_PHY_MASK2_M_00_15
, tmp_mask
);
2104 tmp_mask
= (mask_p
[15] << 28)
2105 | (mask_p
[14] << 26) | (mask_p
[13] << 24)
2106 | (mask_p
[12] << 22) | (mask_p
[11] << 20)
2107 | (mask_p
[10] << 18) | (mask_p
[9] << 16)
2108 | (mask_p
[8] << 14) | (mask_p
[7] << 12)
2109 | (mask_p
[6] << 10) | (mask_p
[5] << 8)
2110 | (mask_p
[4] << 6) | (mask_p
[3] << 4)
2111 | (mask_p
[2] << 2) | (mask_p
[1] << 0);
2112 REG_WRITE(ah
, AR_PHY_BIN_MASK2_1
, tmp_mask
);
2113 REG_WRITE(ah
, AR_PHY_MASK2_P_15_01
, tmp_mask
);
2115 tmp_mask
= (mask_p
[30] << 28)
2116 | (mask_p
[29] << 26) | (mask_p
[28] << 24)
2117 | (mask_p
[27] << 22) | (mask_p
[26] << 20)
2118 | (mask_p
[25] << 18) | (mask_p
[24] << 16)
2119 | (mask_p
[23] << 14) | (mask_p
[22] << 12)
2120 | (mask_p
[21] << 10) | (mask_p
[20] << 8)
2121 | (mask_p
[19] << 6) | (mask_p
[18] << 4)
2122 | (mask_p
[17] << 2) | (mask_p
[16] << 0);
2123 REG_WRITE(ah
, AR_PHY_BIN_MASK2_2
, tmp_mask
);
2124 REG_WRITE(ah
, AR_PHY_MASK2_P_30_16
, tmp_mask
);
2126 tmp_mask
= (mask_p
[45] << 28)
2127 | (mask_p
[44] << 26) | (mask_p
[43] << 24)
2128 | (mask_p
[42] << 22) | (mask_p
[41] << 20)
2129 | (mask_p
[40] << 18) | (mask_p
[39] << 16)
2130 | (mask_p
[38] << 14) | (mask_p
[37] << 12)
2131 | (mask_p
[36] << 10) | (mask_p
[35] << 8)
2132 | (mask_p
[34] << 6) | (mask_p
[33] << 4)
2133 | (mask_p
[32] << 2) | (mask_p
[31] << 0);
2134 REG_WRITE(ah
, AR_PHY_BIN_MASK2_3
, tmp_mask
);
2135 REG_WRITE(ah
, AR_PHY_MASK2_P_45_31
, tmp_mask
);
2137 tmp_mask
= (mask_p
[61] << 30) | (mask_p
[60] << 28)
2138 | (mask_p
[59] << 26) | (mask_p
[58] << 24)
2139 | (mask_p
[57] << 22) | (mask_p
[56] << 20)
2140 | (mask_p
[55] << 18) | (mask_p
[54] << 16)
2141 | (mask_p
[53] << 14) | (mask_p
[52] << 12)
2142 | (mask_p
[51] << 10) | (mask_p
[50] << 8)
2143 | (mask_p
[49] << 6) | (mask_p
[48] << 4)
2144 | (mask_p
[47] << 2) | (mask_p
[46] << 0);
2145 REG_WRITE(ah
, AR_PHY_BIN_MASK2_4
, tmp_mask
);
2146 REG_WRITE(ah
, AR_PHY_MASK2_P_61_45
, tmp_mask
);
2149 static void ath9k_hw_spur_mitigate(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
2151 int bb_spur
= AR_NO_SPUR
;
2154 int spur_delta_phase
;
2156 int upper
, lower
, cur_vit_mask
;
2159 int pilot_mask_reg
[4] = { AR_PHY_TIMING7
, AR_PHY_TIMING8
,
2160 AR_PHY_PILOT_MASK_01_30
, AR_PHY_PILOT_MASK_31_60
2162 int chan_mask_reg
[4] = { AR_PHY_TIMING9
, AR_PHY_TIMING10
,
2163 AR_PHY_CHANNEL_MASK_01_30
, AR_PHY_CHANNEL_MASK_31_60
2165 int inc
[4] = { 0, 100, 0, 0 };
2172 bool is2GHz
= IS_CHAN_2GHZ(chan
);
2174 memset(&mask_m
, 0, sizeof(int8_t) * 123);
2175 memset(&mask_p
, 0, sizeof(int8_t) * 123);
2177 for (i
= 0; i
< AR_EEPROM_MODAL_SPURS
; i
++) {
2178 cur_bb_spur
= ah
->eep_ops
->get_spur_channel(ah
, i
, is2GHz
);
2179 if (AR_NO_SPUR
== cur_bb_spur
)
2181 cur_bb_spur
= cur_bb_spur
- (chan
->channel
* 10);
2182 if ((cur_bb_spur
> -95) && (cur_bb_spur
< 95)) {
2183 bb_spur
= cur_bb_spur
;
2188 if (AR_NO_SPUR
== bb_spur
)
2193 tmp
= REG_READ(ah
, AR_PHY_TIMING_CTRL4(0));
2194 new = tmp
| (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI
|
2195 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER
|
2196 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK
|
2197 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK
);
2199 REG_WRITE(ah
, AR_PHY_TIMING_CTRL4(0), new);
2201 new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL
|
2202 AR_PHY_SPUR_REG_ENABLE_MASK_PPM
|
2203 AR_PHY_SPUR_REG_MASK_RATE_SELECT
|
2204 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI
|
2205 SM(SPUR_RSSI_THRESH
, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH
));
2206 REG_WRITE(ah
, AR_PHY_SPUR_REG
, new);
2208 spur_delta_phase
= ((bb_spur
* 524288) / 100) &
2209 AR_PHY_TIMING11_SPUR_DELTA_PHASE
;
2211 denominator
= IS_CHAN_2GHZ(chan
) ? 440 : 400;
2212 spur_freq_sd
= ((bb_spur
* 2048) / denominator
) & 0x3ff;
2214 new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC
|
2215 SM(spur_freq_sd
, AR_PHY_TIMING11_SPUR_FREQ_SD
) |
2216 SM(spur_delta_phase
, AR_PHY_TIMING11_SPUR_DELTA_PHASE
));
2217 REG_WRITE(ah
, AR_PHY_TIMING11
, new);
2223 for (i
= 0; i
< 4; i
++) {
2227 for (bp
= 0; bp
< 30; bp
++) {
2228 if ((cur_bin
> lower
) && (cur_bin
< upper
)) {
2229 pilot_mask
= pilot_mask
| 0x1 << bp
;
2230 chan_mask
= chan_mask
| 0x1 << bp
;
2235 REG_WRITE(ah
, pilot_mask_reg
[i
], pilot_mask
);
2236 REG_WRITE(ah
, chan_mask_reg
[i
], chan_mask
);
2239 cur_vit_mask
= 6100;
2243 for (i
= 0; i
< 123; i
++) {
2244 if ((cur_vit_mask
> lower
) && (cur_vit_mask
< upper
)) {
2246 /* workaround for gcc bug #37014 */
2247 volatile int tmp_v
= abs(cur_vit_mask
- bin
);
2253 if (cur_vit_mask
< 0)
2254 mask_m
[abs(cur_vit_mask
/ 100)] = mask_amt
;
2256 mask_p
[cur_vit_mask
/ 100] = mask_amt
;
2258 cur_vit_mask
-= 100;
2261 tmp_mask
= (mask_m
[46] << 30) | (mask_m
[47] << 28)
2262 | (mask_m
[48] << 26) | (mask_m
[49] << 24)
2263 | (mask_m
[50] << 22) | (mask_m
[51] << 20)
2264 | (mask_m
[52] << 18) | (mask_m
[53] << 16)
2265 | (mask_m
[54] << 14) | (mask_m
[55] << 12)
2266 | (mask_m
[56] << 10) | (mask_m
[57] << 8)
2267 | (mask_m
[58] << 6) | (mask_m
[59] << 4)
2268 | (mask_m
[60] << 2) | (mask_m
[61] << 0);
2269 REG_WRITE(ah
, AR_PHY_BIN_MASK_1
, tmp_mask
);
2270 REG_WRITE(ah
, AR_PHY_VIT_MASK2_M_46_61
, tmp_mask
);
2272 tmp_mask
= (mask_m
[31] << 28)
2273 | (mask_m
[32] << 26) | (mask_m
[33] << 24)
2274 | (mask_m
[34] << 22) | (mask_m
[35] << 20)
2275 | (mask_m
[36] << 18) | (mask_m
[37] << 16)
2276 | (mask_m
[48] << 14) | (mask_m
[39] << 12)
2277 | (mask_m
[40] << 10) | (mask_m
[41] << 8)
2278 | (mask_m
[42] << 6) | (mask_m
[43] << 4)
2279 | (mask_m
[44] << 2) | (mask_m
[45] << 0);
2280 REG_WRITE(ah
, AR_PHY_BIN_MASK_2
, tmp_mask
);
2281 REG_WRITE(ah
, AR_PHY_MASK2_M_31_45
, tmp_mask
);
2283 tmp_mask
= (mask_m
[16] << 30) | (mask_m
[16] << 28)
2284 | (mask_m
[18] << 26) | (mask_m
[18] << 24)
2285 | (mask_m
[20] << 22) | (mask_m
[20] << 20)
2286 | (mask_m
[22] << 18) | (mask_m
[22] << 16)
2287 | (mask_m
[24] << 14) | (mask_m
[24] << 12)
2288 | (mask_m
[25] << 10) | (mask_m
[26] << 8)
2289 | (mask_m
[27] << 6) | (mask_m
[28] << 4)
2290 | (mask_m
[29] << 2) | (mask_m
[30] << 0);
2291 REG_WRITE(ah
, AR_PHY_BIN_MASK_3
, tmp_mask
);
2292 REG_WRITE(ah
, AR_PHY_MASK2_M_16_30
, tmp_mask
);
2294 tmp_mask
= (mask_m
[0] << 30) | (mask_m
[1] << 28)
2295 | (mask_m
[2] << 26) | (mask_m
[3] << 24)
2296 | (mask_m
[4] << 22) | (mask_m
[5] << 20)
2297 | (mask_m
[6] << 18) | (mask_m
[7] << 16)
2298 | (mask_m
[8] << 14) | (mask_m
[9] << 12)
2299 | (mask_m
[10] << 10) | (mask_m
[11] << 8)
2300 | (mask_m
[12] << 6) | (mask_m
[13] << 4)
2301 | (mask_m
[14] << 2) | (mask_m
[15] << 0);
2302 REG_WRITE(ah
, AR_PHY_MASK_CTL
, tmp_mask
);
2303 REG_WRITE(ah
, AR_PHY_MASK2_M_00_15
, tmp_mask
);
2305 tmp_mask
= (mask_p
[15] << 28)
2306 | (mask_p
[14] << 26) | (mask_p
[13] << 24)
2307 | (mask_p
[12] << 22) | (mask_p
[11] << 20)
2308 | (mask_p
[10] << 18) | (mask_p
[9] << 16)
2309 | (mask_p
[8] << 14) | (mask_p
[7] << 12)
2310 | (mask_p
[6] << 10) | (mask_p
[5] << 8)
2311 | (mask_p
[4] << 6) | (mask_p
[3] << 4)
2312 | (mask_p
[2] << 2) | (mask_p
[1] << 0);
2313 REG_WRITE(ah
, AR_PHY_BIN_MASK2_1
, tmp_mask
);
2314 REG_WRITE(ah
, AR_PHY_MASK2_P_15_01
, tmp_mask
);
2316 tmp_mask
= (mask_p
[30] << 28)
2317 | (mask_p
[29] << 26) | (mask_p
[28] << 24)
2318 | (mask_p
[27] << 22) | (mask_p
[26] << 20)
2319 | (mask_p
[25] << 18) | (mask_p
[24] << 16)
2320 | (mask_p
[23] << 14) | (mask_p
[22] << 12)
2321 | (mask_p
[21] << 10) | (mask_p
[20] << 8)
2322 | (mask_p
[19] << 6) | (mask_p
[18] << 4)
2323 | (mask_p
[17] << 2) | (mask_p
[16] << 0);
2324 REG_WRITE(ah
, AR_PHY_BIN_MASK2_2
, tmp_mask
);
2325 REG_WRITE(ah
, AR_PHY_MASK2_P_30_16
, tmp_mask
);
2327 tmp_mask
= (mask_p
[45] << 28)
2328 | (mask_p
[44] << 26) | (mask_p
[43] << 24)
2329 | (mask_p
[42] << 22) | (mask_p
[41] << 20)
2330 | (mask_p
[40] << 18) | (mask_p
[39] << 16)
2331 | (mask_p
[38] << 14) | (mask_p
[37] << 12)
2332 | (mask_p
[36] << 10) | (mask_p
[35] << 8)
2333 | (mask_p
[34] << 6) | (mask_p
[33] << 4)
2334 | (mask_p
[32] << 2) | (mask_p
[31] << 0);
2335 REG_WRITE(ah
, AR_PHY_BIN_MASK2_3
, tmp_mask
);
2336 REG_WRITE(ah
, AR_PHY_MASK2_P_45_31
, tmp_mask
);
2338 tmp_mask
= (mask_p
[61] << 30) | (mask_p
[60] << 28)
2339 | (mask_p
[59] << 26) | (mask_p
[58] << 24)
2340 | (mask_p
[57] << 22) | (mask_p
[56] << 20)
2341 | (mask_p
[55] << 18) | (mask_p
[54] << 16)
2342 | (mask_p
[53] << 14) | (mask_p
[52] << 12)
2343 | (mask_p
[51] << 10) | (mask_p
[50] << 8)
2344 | (mask_p
[49] << 6) | (mask_p
[48] << 4)
2345 | (mask_p
[47] << 2) | (mask_p
[46] << 0);
2346 REG_WRITE(ah
, AR_PHY_BIN_MASK2_4
, tmp_mask
);
2347 REG_WRITE(ah
, AR_PHY_MASK2_P_61_45
, tmp_mask
);
2350 static void ath9k_enable_rfkill(struct ath_hw
*ah
)
2352 REG_SET_BIT(ah
, AR_GPIO_INPUT_EN_VAL
,
2353 AR_GPIO_INPUT_EN_VAL_RFSILENT_BB
);
2355 REG_CLR_BIT(ah
, AR_GPIO_INPUT_MUX2
,
2356 AR_GPIO_INPUT_MUX2_RFSILENT
);
2358 ath9k_hw_cfg_gpio_input(ah
, ah
->rfkill_gpio
);
2359 REG_SET_BIT(ah
, AR_PHY_TEST
, RFSILENT_BB
);
2362 int ath9k_hw_reset(struct ath_hw
*ah
, struct ath9k_channel
*chan
,
2363 bool bChannelChange
)
2366 struct ath_softc
*sc
= ah
->ah_sc
;
2367 struct ath9k_channel
*curchan
= ah
->curchan
;
2371 int i
, rx_chainmask
, r
;
2373 ah
->extprotspacing
= sc
->ht_extprotspacing
;
2374 ah
->txchainmask
= sc
->tx_chainmask
;
2375 ah
->rxchainmask
= sc
->rx_chainmask
;
2377 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
2380 if (curchan
&& !ah
->chip_fullsleep
)
2381 ath9k_hw_getnf(ah
, curchan
);
2383 if (bChannelChange
&&
2384 (ah
->chip_fullsleep
!= true) &&
2385 (ah
->curchan
!= NULL
) &&
2386 (chan
->channel
!= ah
->curchan
->channel
) &&
2387 ((chan
->channelFlags
& CHANNEL_ALL
) ==
2388 (ah
->curchan
->channelFlags
& CHANNEL_ALL
)) &&
2389 !(AR_SREV_9280(ah
) || IS_CHAN_A_5MHZ_SPACED(chan
) ||
2390 IS_CHAN_A_5MHZ_SPACED(ah
->curchan
))) {
2392 if (ath9k_hw_channel_change(ah
, chan
, sc
->tx_chan_width
)) {
2393 ath9k_hw_loadnf(ah
, ah
->curchan
);
2394 ath9k_hw_start_nfcal(ah
);
2399 saveDefAntenna
= REG_READ(ah
, AR_DEF_ANTENNA
);
2400 if (saveDefAntenna
== 0)
2403 macStaId1
= REG_READ(ah
, AR_STA_ID1
) & AR_STA_ID1_BASE_RATE_11B
;
2405 /* For chips on which RTC reset is done, save TSF before it gets cleared */
2406 if (AR_SREV_9100(ah
) ||
2407 (AR_SREV_9280(ah
) && ah
->eep_ops
->get_eeprom(ah
, EEP_OL_PWRCTRL
)))
2408 tsf
= ath9k_hw_gettsf64(ah
);
2410 saveLedState
= REG_READ(ah
, AR_CFG_LED
) &
2411 (AR_CFG_LED_ASSOC_CTL
| AR_CFG_LED_MODE_SEL
|
2412 AR_CFG_LED_BLINK_THRESH_SEL
| AR_CFG_LED_BLINK_SLOW
);
2414 ath9k_hw_mark_phy_inactive(ah
);
2416 if (AR_SREV_9271(ah
) && ah
->htc_reset_init
) {
2418 AR9271_RESET_POWER_DOWN_CONTROL
,
2419 AR9271_RADIO_RF_RST
);
2423 if (!ath9k_hw_chip_reset(ah
, chan
)) {
2424 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
, "Chip reset failed\n");
2428 if (AR_SREV_9271(ah
) && ah
->htc_reset_init
) {
2429 ah
->htc_reset_init
= false;
2431 AR9271_RESET_POWER_DOWN_CONTROL
,
2432 AR9271_GATE_MAC_CTL
);
2438 ath9k_hw_settsf64(ah
, tsf
);
2440 if (AR_SREV_9280_10_OR_LATER(ah
))
2441 REG_SET_BIT(ah
, AR_GPIO_INPUT_EN_VAL
, AR_GPIO_JTAG_DISABLE
);
2443 if (AR_SREV_9287_12_OR_LATER(ah
)) {
2444 /* Enable ASYNC FIFO */
2445 REG_SET_BIT(ah
, AR_MAC_PCU_ASYNC_FIFO_REG3
,
2446 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL
);
2447 REG_SET_BIT(ah
, AR_PHY_MODE
, AR_PHY_MODE_ASYNCFIFO
);
2448 REG_CLR_BIT(ah
, AR_MAC_PCU_ASYNC_FIFO_REG3
,
2449 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET
);
2450 REG_SET_BIT(ah
, AR_MAC_PCU_ASYNC_FIFO_REG3
,
2451 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET
);
2453 r
= ath9k_hw_process_ini(ah
, chan
, sc
->tx_chan_width
);
2458 * Some AR91xx SoC devices frequently fail to accept TSF writes
2459 * right after the chip reset. When that happens, write a new
2460 * value after the initvals have been applied, with an offset
2461 * based on measured time difference
2463 if (AR_SREV_9100(ah
) && (ath9k_hw_gettsf64(ah
) < tsf
)) {
2465 ath9k_hw_settsf64(ah
, tsf
);
2468 /* Setup MFP options for CCMP */
2469 if (AR_SREV_9280_20_OR_LATER(ah
)) {
2470 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2471 * frames when constructing CCMP AAD. */
2472 REG_RMW_FIELD(ah
, AR_AES_MUTE_MASK1
, AR_AES_MUTE_MASK1_FC_MGMT
,
2474 ah
->sw_mgmt_crypto
= false;
2475 } else if (AR_SREV_9160_10_OR_LATER(ah
)) {
2476 /* Disable hardware crypto for management frames */
2477 REG_CLR_BIT(ah
, AR_PCU_MISC_MODE2
,
2478 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE
);
2479 REG_SET_BIT(ah
, AR_PCU_MISC_MODE2
,
2480 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT
);
2481 ah
->sw_mgmt_crypto
= true;
2483 ah
->sw_mgmt_crypto
= true;
2485 if (IS_CHAN_OFDM(chan
) || IS_CHAN_HT(chan
))
2486 ath9k_hw_set_delta_slope(ah
, chan
);
2488 if (AR_SREV_9280_10_OR_LATER(ah
))
2489 ath9k_hw_9280_spur_mitigate(ah
, chan
);
2491 ath9k_hw_spur_mitigate(ah
, chan
);
2493 ah
->eep_ops
->set_board_values(ah
, chan
);
2495 ath9k_hw_decrease_chain_power(ah
, chan
);
2497 REG_WRITE(ah
, AR_STA_ID0
, get_unaligned_le32(ah
->macaddr
));
2498 REG_WRITE(ah
, AR_STA_ID1
, get_unaligned_le16(ah
->macaddr
+ 4)
2500 | AR_STA_ID1_RTS_USE_DEF
2502 ack_6mb
? AR_STA_ID1_ACKCTS_6MB
: 0)
2503 | ah
->sta_id1_defaults
);
2504 ath9k_hw_set_operating_mode(ah
, ah
->opmode
);
2506 REG_WRITE(ah
, AR_BSSMSKL
, get_unaligned_le32(sc
->bssidmask
));
2507 REG_WRITE(ah
, AR_BSSMSKU
, get_unaligned_le16(sc
->bssidmask
+ 4));
2509 REG_WRITE(ah
, AR_DEF_ANTENNA
, saveDefAntenna
);
2511 REG_WRITE(ah
, AR_BSS_ID0
, get_unaligned_le32(sc
->curbssid
));
2512 REG_WRITE(ah
, AR_BSS_ID1
, get_unaligned_le16(sc
->curbssid
+ 4) |
2513 ((sc
->curaid
& 0x3fff) << AR_BSS_ID1_AID_S
));
2515 REG_WRITE(ah
, AR_ISR
, ~0);
2517 REG_WRITE(ah
, AR_RSSI_THR
, INIT_RSSI_THR
);
2519 if (AR_SREV_9280_10_OR_LATER(ah
))
2520 ath9k_hw_ar9280_set_channel(ah
, chan
);
2522 if (!(ath9k_hw_set_channel(ah
, chan
)))
2525 for (i
= 0; i
< AR_NUM_DCU
; i
++)
2526 REG_WRITE(ah
, AR_DQCUMASK(i
), 1 << i
);
2529 for (i
= 0; i
< ah
->caps
.total_queues
; i
++)
2530 ath9k_hw_resettxqueue(ah
, i
);
2532 ath9k_hw_init_interrupt_masks(ah
, ah
->opmode
);
2533 ath9k_hw_init_qos(ah
);
2535 if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_RFSILENT
)
2536 ath9k_enable_rfkill(ah
);
2538 ath9k_hw_init_user_settings(ah
);
2540 if (AR_SREV_9287_12_OR_LATER(ah
)) {
2541 REG_WRITE(ah
, AR_D_GBL_IFS_SIFS
,
2542 AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR
);
2543 REG_WRITE(ah
, AR_D_GBL_IFS_SLOT
,
2544 AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR
);
2545 REG_WRITE(ah
, AR_D_GBL_IFS_EIFS
,
2546 AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR
);
2548 REG_WRITE(ah
, AR_TIME_OUT
, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR
);
2549 REG_WRITE(ah
, AR_USEC
, AR_USEC_ASYNC_FIFO_DUR
);
2551 REG_SET_BIT(ah
, AR_MAC_PCU_LOGIC_ANALYZER
,
2552 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768
);
2553 REG_RMW_FIELD(ah
, AR_AHB_MODE
, AR_AHB_CUSTOM_BURST_EN
,
2554 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL
);
2556 if (AR_SREV_9287_12_OR_LATER(ah
)) {
2557 REG_SET_BIT(ah
, AR_PCU_MISC_MODE2
,
2558 AR_PCU_MISC_MODE2_ENABLE_AGGWEP
);
2561 REG_WRITE(ah
, AR_STA_ID1
,
2562 REG_READ(ah
, AR_STA_ID1
) | AR_STA_ID1_PRESERVE_SEQNUM
);
2564 ath9k_hw_set_dma(ah
);
2566 REG_WRITE(ah
, AR_OBS
, 8);
2568 if (ah
->config
.intr_mitigation
) {
2569 REG_RMW_FIELD(ah
, AR_RIMT
, AR_RIMT_LAST
, 500);
2570 REG_RMW_FIELD(ah
, AR_RIMT
, AR_RIMT_FIRST
, 2000);
2573 ath9k_hw_init_bb(ah
, chan
);
2575 if (!ath9k_hw_init_cal(ah
, chan
))
2578 rx_chainmask
= ah
->rxchainmask
;
2579 if ((rx_chainmask
== 0x5) || (rx_chainmask
== 0x3)) {
2580 REG_WRITE(ah
, AR_PHY_RX_CHAINMASK
, rx_chainmask
);
2581 REG_WRITE(ah
, AR_PHY_CAL_CHAINMASK
, rx_chainmask
);
2584 REG_WRITE(ah
, AR_CFG_LED
, saveLedState
| AR_CFG_SCLK_32KHZ
);
2587 * For big endian systems turn on swapping for descriptors
2589 if (AR_SREV_9100(ah
)) {
2591 mask
= REG_READ(ah
, AR_CFG
);
2592 if (mask
& (AR_CFG_SWRB
| AR_CFG_SWTB
| AR_CFG_SWRG
)) {
2593 DPRINTF(ah
->ah_sc
, ATH_DBG_RESET
,
2594 "CFG Byte Swap Set 0x%x\n", mask
);
2597 INIT_CONFIG_STATUS
| AR_CFG_SWRB
| AR_CFG_SWTB
;
2598 REG_WRITE(ah
, AR_CFG
, mask
);
2599 DPRINTF(ah
->ah_sc
, ATH_DBG_RESET
,
2600 "Setting CFG 0x%x\n", REG_READ(ah
, AR_CFG
));
2603 /* Configure AR9271 target WLAN */
2604 if (AR_SREV_9271(ah
))
2605 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWRB
| AR_CFG_SWTB
);
2608 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWTD
| AR_CFG_SWRD
);
2612 if (ah
->ah_sc
->sc_flags
& SC_OP_BTCOEX_ENABLED
)
2613 ath9k_hw_btcoex_enable(ah
);
2618 /************************/
2619 /* Key Cache Management */
2620 /************************/
2622 bool ath9k_hw_keyreset(struct ath_hw
*ah
, u16 entry
)
2626 if (entry
>= ah
->caps
.keycache_size
) {
2627 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
2628 "keychache entry %u out of range\n", entry
);
2632 keyType
= REG_READ(ah
, AR_KEYTABLE_TYPE(entry
));
2634 REG_WRITE(ah
, AR_KEYTABLE_KEY0(entry
), 0);
2635 REG_WRITE(ah
, AR_KEYTABLE_KEY1(entry
), 0);
2636 REG_WRITE(ah
, AR_KEYTABLE_KEY2(entry
), 0);
2637 REG_WRITE(ah
, AR_KEYTABLE_KEY3(entry
), 0);
2638 REG_WRITE(ah
, AR_KEYTABLE_KEY4(entry
), 0);
2639 REG_WRITE(ah
, AR_KEYTABLE_TYPE(entry
), AR_KEYTABLE_TYPE_CLR
);
2640 REG_WRITE(ah
, AR_KEYTABLE_MAC0(entry
), 0);
2641 REG_WRITE(ah
, AR_KEYTABLE_MAC1(entry
), 0);
2643 if (keyType
== AR_KEYTABLE_TYPE_TKIP
&& ATH9K_IS_MIC_ENABLED(ah
)) {
2644 u16 micentry
= entry
+ 64;
2646 REG_WRITE(ah
, AR_KEYTABLE_KEY0(micentry
), 0);
2647 REG_WRITE(ah
, AR_KEYTABLE_KEY1(micentry
), 0);
2648 REG_WRITE(ah
, AR_KEYTABLE_KEY2(micentry
), 0);
2649 REG_WRITE(ah
, AR_KEYTABLE_KEY3(micentry
), 0);
2656 bool ath9k_hw_keysetmac(struct ath_hw
*ah
, u16 entry
, const u8
*mac
)
2660 if (entry
>= ah
->caps
.keycache_size
) {
2661 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
2662 "keychache entry %u out of range\n", entry
);
2667 macHi
= (mac
[5] << 8) | mac
[4];
2668 macLo
= (mac
[3] << 24) |
2673 macLo
|= (macHi
& 1) << 31;
2678 REG_WRITE(ah
, AR_KEYTABLE_MAC0(entry
), macLo
);
2679 REG_WRITE(ah
, AR_KEYTABLE_MAC1(entry
), macHi
| AR_KEYTABLE_VALID
);
2684 bool ath9k_hw_set_keycache_entry(struct ath_hw
*ah
, u16 entry
,
2685 const struct ath9k_keyval
*k
,
2688 const struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
2689 u32 key0
, key1
, key2
, key3
, key4
;
2692 if (entry
>= pCap
->keycache_size
) {
2693 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
2694 "keycache entry %u out of range\n", entry
);
2698 switch (k
->kv_type
) {
2699 case ATH9K_CIPHER_AES_OCB
:
2700 keyType
= AR_KEYTABLE_TYPE_AES
;
2702 case ATH9K_CIPHER_AES_CCM
:
2703 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_CIPHER_AESCCM
)) {
2704 DPRINTF(ah
->ah_sc
, ATH_DBG_ANY
,
2705 "AES-CCM not supported by mac rev 0x%x\n",
2706 ah
->hw_version
.macRev
);
2709 keyType
= AR_KEYTABLE_TYPE_CCM
;
2711 case ATH9K_CIPHER_TKIP
:
2712 keyType
= AR_KEYTABLE_TYPE_TKIP
;
2713 if (ATH9K_IS_MIC_ENABLED(ah
)
2714 && entry
+ 64 >= pCap
->keycache_size
) {
2715 DPRINTF(ah
->ah_sc
, ATH_DBG_ANY
,
2716 "entry %u inappropriate for TKIP\n", entry
);
2720 case ATH9K_CIPHER_WEP
:
2721 if (k
->kv_len
< WLAN_KEY_LEN_WEP40
) {
2722 DPRINTF(ah
->ah_sc
, ATH_DBG_ANY
,
2723 "WEP key length %u too small\n", k
->kv_len
);
2726 if (k
->kv_len
<= WLAN_KEY_LEN_WEP40
)
2727 keyType
= AR_KEYTABLE_TYPE_40
;
2728 else if (k
->kv_len
<= WLAN_KEY_LEN_WEP104
)
2729 keyType
= AR_KEYTABLE_TYPE_104
;
2731 keyType
= AR_KEYTABLE_TYPE_128
;
2733 case ATH9K_CIPHER_CLR
:
2734 keyType
= AR_KEYTABLE_TYPE_CLR
;
2737 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
2738 "cipher %u not supported\n", k
->kv_type
);
2742 key0
= get_unaligned_le32(k
->kv_val
+ 0);
2743 key1
= get_unaligned_le16(k
->kv_val
+ 4);
2744 key2
= get_unaligned_le32(k
->kv_val
+ 6);
2745 key3
= get_unaligned_le16(k
->kv_val
+ 10);
2746 key4
= get_unaligned_le32(k
->kv_val
+ 12);
2747 if (k
->kv_len
<= WLAN_KEY_LEN_WEP104
)
2751 * Note: Key cache registers access special memory area that requires
2752 * two 32-bit writes to actually update the values in the internal
2753 * memory. Consequently, the exact order and pairs used here must be
2757 if (keyType
== AR_KEYTABLE_TYPE_TKIP
&& ATH9K_IS_MIC_ENABLED(ah
)) {
2758 u16 micentry
= entry
+ 64;
2761 * Write inverted key[47:0] first to avoid Michael MIC errors
2762 * on frames that could be sent or received at the same time.
2763 * The correct key will be written in the end once everything
2766 REG_WRITE(ah
, AR_KEYTABLE_KEY0(entry
), ~key0
);
2767 REG_WRITE(ah
, AR_KEYTABLE_KEY1(entry
), ~key1
);
2769 /* Write key[95:48] */
2770 REG_WRITE(ah
, AR_KEYTABLE_KEY2(entry
), key2
);
2771 REG_WRITE(ah
, AR_KEYTABLE_KEY3(entry
), key3
);
2773 /* Write key[127:96] and key type */
2774 REG_WRITE(ah
, AR_KEYTABLE_KEY4(entry
), key4
);
2775 REG_WRITE(ah
, AR_KEYTABLE_TYPE(entry
), keyType
);
2777 /* Write MAC address for the entry */
2778 (void) ath9k_hw_keysetmac(ah
, entry
, mac
);
2780 if (ah
->misc_mode
& AR_PCU_MIC_NEW_LOC_ENA
) {
2782 * TKIP uses two key cache entries:
2783 * Michael MIC TX/RX keys in the same key cache entry
2784 * (idx = main index + 64):
2785 * key0 [31:0] = RX key [31:0]
2786 * key1 [15:0] = TX key [31:16]
2787 * key1 [31:16] = reserved
2788 * key2 [31:0] = RX key [63:32]
2789 * key3 [15:0] = TX key [15:0]
2790 * key3 [31:16] = reserved
2791 * key4 [31:0] = TX key [63:32]
2793 u32 mic0
, mic1
, mic2
, mic3
, mic4
;
2795 mic0
= get_unaligned_le32(k
->kv_mic
+ 0);
2796 mic2
= get_unaligned_le32(k
->kv_mic
+ 4);
2797 mic1
= get_unaligned_le16(k
->kv_txmic
+ 2) & 0xffff;
2798 mic3
= get_unaligned_le16(k
->kv_txmic
+ 0) & 0xffff;
2799 mic4
= get_unaligned_le32(k
->kv_txmic
+ 4);
2801 /* Write RX[31:0] and TX[31:16] */
2802 REG_WRITE(ah
, AR_KEYTABLE_KEY0(micentry
), mic0
);
2803 REG_WRITE(ah
, AR_KEYTABLE_KEY1(micentry
), mic1
);
2805 /* Write RX[63:32] and TX[15:0] */
2806 REG_WRITE(ah
, AR_KEYTABLE_KEY2(micentry
), mic2
);
2807 REG_WRITE(ah
, AR_KEYTABLE_KEY3(micentry
), mic3
);
2809 /* Write TX[63:32] and keyType(reserved) */
2810 REG_WRITE(ah
, AR_KEYTABLE_KEY4(micentry
), mic4
);
2811 REG_WRITE(ah
, AR_KEYTABLE_TYPE(micentry
),
2812 AR_KEYTABLE_TYPE_CLR
);
2816 * TKIP uses four key cache entries (two for group
2818 * Michael MIC TX/RX keys are in different key cache
2819 * entries (idx = main index + 64 for TX and
2820 * main index + 32 + 96 for RX):
2821 * key0 [31:0] = TX/RX MIC key [31:0]
2822 * key1 [31:0] = reserved
2823 * key2 [31:0] = TX/RX MIC key [63:32]
2824 * key3 [31:0] = reserved
2825 * key4 [31:0] = reserved
2827 * Upper layer code will call this function separately
2828 * for TX and RX keys when these registers offsets are
2833 mic0
= get_unaligned_le32(k
->kv_mic
+ 0);
2834 mic2
= get_unaligned_le32(k
->kv_mic
+ 4);
2836 /* Write MIC key[31:0] */
2837 REG_WRITE(ah
, AR_KEYTABLE_KEY0(micentry
), mic0
);
2838 REG_WRITE(ah
, AR_KEYTABLE_KEY1(micentry
), 0);
2840 /* Write MIC key[63:32] */
2841 REG_WRITE(ah
, AR_KEYTABLE_KEY2(micentry
), mic2
);
2842 REG_WRITE(ah
, AR_KEYTABLE_KEY3(micentry
), 0);
2844 /* Write TX[63:32] and keyType(reserved) */
2845 REG_WRITE(ah
, AR_KEYTABLE_KEY4(micentry
), 0);
2846 REG_WRITE(ah
, AR_KEYTABLE_TYPE(micentry
),
2847 AR_KEYTABLE_TYPE_CLR
);
2850 /* MAC address registers are reserved for the MIC entry */
2851 REG_WRITE(ah
, AR_KEYTABLE_MAC0(micentry
), 0);
2852 REG_WRITE(ah
, AR_KEYTABLE_MAC1(micentry
), 0);
2855 * Write the correct (un-inverted) key[47:0] last to enable
2856 * TKIP now that all other registers are set with correct
2859 REG_WRITE(ah
, AR_KEYTABLE_KEY0(entry
), key0
);
2860 REG_WRITE(ah
, AR_KEYTABLE_KEY1(entry
), key1
);
2862 /* Write key[47:0] */
2863 REG_WRITE(ah
, AR_KEYTABLE_KEY0(entry
), key0
);
2864 REG_WRITE(ah
, AR_KEYTABLE_KEY1(entry
), key1
);
2866 /* Write key[95:48] */
2867 REG_WRITE(ah
, AR_KEYTABLE_KEY2(entry
), key2
);
2868 REG_WRITE(ah
, AR_KEYTABLE_KEY3(entry
), key3
);
2870 /* Write key[127:96] and key type */
2871 REG_WRITE(ah
, AR_KEYTABLE_KEY4(entry
), key4
);
2872 REG_WRITE(ah
, AR_KEYTABLE_TYPE(entry
), keyType
);
2874 /* Write MAC address for the entry */
2875 (void) ath9k_hw_keysetmac(ah
, entry
, mac
);
2881 bool ath9k_hw_keyisvalid(struct ath_hw
*ah
, u16 entry
)
2883 if (entry
< ah
->caps
.keycache_size
) {
2884 u32 val
= REG_READ(ah
, AR_KEYTABLE_MAC1(entry
));
2885 if (val
& AR_KEYTABLE_VALID
)
2891 /******************************/
2892 /* Power Management (Chipset) */
2893 /******************************/
2895 static void ath9k_set_power_sleep(struct ath_hw
*ah
, int setChip
)
2897 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
2899 REG_CLR_BIT(ah
, AR_RTC_FORCE_WAKE
,
2900 AR_RTC_FORCE_WAKE_EN
);
2901 if (!AR_SREV_9100(ah
))
2902 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
| AR_RC_HOSTIF
);
2904 REG_CLR_BIT(ah
, (AR_RTC_RESET
),
2909 static void ath9k_set_power_network_sleep(struct ath_hw
*ah
, int setChip
)
2911 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
2913 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
2915 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)) {
2916 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
,
2917 AR_RTC_FORCE_WAKE_ON_INT
);
2919 REG_CLR_BIT(ah
, AR_RTC_FORCE_WAKE
,
2920 AR_RTC_FORCE_WAKE_EN
);
2925 static bool ath9k_hw_set_power_awake(struct ath_hw
*ah
, int setChip
)
2931 if ((REG_READ(ah
, AR_RTC_STATUS
) &
2932 AR_RTC_STATUS_M
) == AR_RTC_STATUS_SHUTDOWN
) {
2933 if (ath9k_hw_set_reset_reg(ah
,
2934 ATH9K_RESET_POWER_ON
) != true) {
2938 if (AR_SREV_9100(ah
))
2939 REG_SET_BIT(ah
, AR_RTC_RESET
,
2942 REG_SET_BIT(ah
, AR_RTC_FORCE_WAKE
,
2943 AR_RTC_FORCE_WAKE_EN
);
2946 for (i
= POWER_UP_TIME
/ 50; i
> 0; i
--) {
2947 val
= REG_READ(ah
, AR_RTC_STATUS
) & AR_RTC_STATUS_M
;
2948 if (val
== AR_RTC_STATUS_ON
)
2951 REG_SET_BIT(ah
, AR_RTC_FORCE_WAKE
,
2952 AR_RTC_FORCE_WAKE_EN
);
2955 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
2956 "Failed to wakeup in %uus\n", POWER_UP_TIME
/ 20);
2961 REG_CLR_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
2966 static bool ath9k_hw_setpower_nolock(struct ath_hw
*ah
,
2967 enum ath9k_power_mode mode
)
2969 int status
= true, setChip
= true;
2970 static const char *modes
[] = {
2977 if (ah
->power_mode
== mode
)
2980 DPRINTF(ah
->ah_sc
, ATH_DBG_RESET
, "%s -> %s\n",
2981 modes
[ah
->power_mode
], modes
[mode
]);
2984 case ATH9K_PM_AWAKE
:
2985 status
= ath9k_hw_set_power_awake(ah
, setChip
);
2987 case ATH9K_PM_FULL_SLEEP
:
2988 ath9k_set_power_sleep(ah
, setChip
);
2989 ah
->chip_fullsleep
= true;
2991 case ATH9K_PM_NETWORK_SLEEP
:
2992 ath9k_set_power_network_sleep(ah
, setChip
);
2995 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
2996 "Unknown power mode %u\n", mode
);
2999 ah
->power_mode
= mode
;
3004 bool ath9k_hw_setpower(struct ath_hw
*ah
, enum ath9k_power_mode mode
)
3006 unsigned long flags
;
3009 spin_lock_irqsave(&ah
->ah_sc
->sc_pm_lock
, flags
);
3010 ret
= ath9k_hw_setpower_nolock(ah
, mode
);
3011 spin_unlock_irqrestore(&ah
->ah_sc
->sc_pm_lock
, flags
);
3016 void ath9k_ps_wakeup(struct ath_softc
*sc
)
3018 unsigned long flags
;
3020 spin_lock_irqsave(&sc
->sc_pm_lock
, flags
);
3021 if (++sc
->ps_usecount
!= 1)
3024 ath9k_hw_setpower_nolock(sc
->sc_ah
, ATH9K_PM_AWAKE
);
3027 spin_unlock_irqrestore(&sc
->sc_pm_lock
, flags
);
3030 void ath9k_ps_restore(struct ath_softc
*sc
)
3032 unsigned long flags
;
3034 spin_lock_irqsave(&sc
->sc_pm_lock
, flags
);
3035 if (--sc
->ps_usecount
!= 0)
3038 if (sc
->ps_enabled
&&
3039 !(sc
->sc_flags
& (SC_OP_WAIT_FOR_BEACON
|
3040 SC_OP_WAIT_FOR_CAB
|
3041 SC_OP_WAIT_FOR_PSPOLL_DATA
|
3042 SC_OP_WAIT_FOR_TX_ACK
)))
3043 ath9k_hw_setpower_nolock(sc
->sc_ah
, ATH9K_PM_NETWORK_SLEEP
);
3046 spin_unlock_irqrestore(&sc
->sc_pm_lock
, flags
);
3050 * Helper for ASPM support.
3052 * Disable PLL when in L0s as well as receiver clock when in L1.
3053 * This power saving option must be enabled through the SerDes.
3055 * Programming the SerDes must go through the same 288 bit serial shift
3056 * register as the other analog registers. Hence the 9 writes.
3058 void ath9k_hw_configpcipowersave(struct ath_hw
*ah
, int restore
, int power_off
)
3063 if (ah
->is_pciexpress
!= true)
3066 /* Do not touch SerDes registers */
3067 if (ah
->config
.pcie_powersave_enable
== 2)
3070 /* Nothing to do on restore for 11N */
3072 if (AR_SREV_9280_20_OR_LATER(ah
)) {
3074 * AR9280 2.0 or later chips use SerDes values from the
3075 * initvals.h initialized depending on chipset during
3078 for (i
= 0; i
< ah
->iniPcieSerdes
.ia_rows
; i
++) {
3079 REG_WRITE(ah
, INI_RA(&ah
->iniPcieSerdes
, i
, 0),
3080 INI_RA(&ah
->iniPcieSerdes
, i
, 1));
3082 } else if (AR_SREV_9280(ah
) &&
3083 (ah
->hw_version
.macRev
== AR_SREV_REVISION_9280_10
)) {
3084 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x9248fd00);
3085 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x24924924);
3087 /* RX shut off when elecidle is asserted */
3088 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xa8000019);
3089 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x13160820);
3090 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xe5980560);
3092 /* Shut off CLKREQ active in L1 */
3093 if (ah
->config
.pcie_clock_req
)
3094 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x401deffc);
3096 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x401deffd);
3098 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x1aaabe40);
3099 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xbe105554);
3100 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x00043007);
3102 /* Load the new settings */
3103 REG_WRITE(ah
, AR_PCIE_SERDES2
, 0x00000000);
3106 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x9248fc00);
3107 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x24924924);
3109 /* RX shut off when elecidle is asserted */
3110 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x28000039);
3111 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x53160824);
3112 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xe5980579);
3115 * Ignore ah->ah_config.pcie_clock_req setting for
3118 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x001defff);
3120 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x1aaabe40);
3121 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xbe105554);
3122 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x000e3007);
3124 /* Load the new settings */
3125 REG_WRITE(ah
, AR_PCIE_SERDES2
, 0x00000000);
3130 /* set bit 19 to allow forcing of pcie core into L1 state */
3131 REG_SET_BIT(ah
, AR_PCIE_PM_CTRL
, AR_PCIE_PM_CTRL_ENA
);
3133 /* Several PCIe massages to ensure proper behaviour */
3134 if (ah
->config
.pcie_waen
) {
3135 val
= ah
->config
.pcie_waen
;
3137 val
&= (~AR_WA_D3_L1_DISABLE
);
3139 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
) ||
3141 val
= AR9285_WA_DEFAULT
;
3143 val
&= (~AR_WA_D3_L1_DISABLE
);
3144 } else if (AR_SREV_9280(ah
)) {
3146 * On AR9280 chips bit 22 of 0x4004 needs to be
3147 * set otherwise card may disappear.
3149 val
= AR9280_WA_DEFAULT
;
3151 val
&= (~AR_WA_D3_L1_DISABLE
);
3153 val
= AR_WA_DEFAULT
;
3156 REG_WRITE(ah
, AR_WA
, val
);
3161 * Set PCIe workaround bits
3162 * bit 14 in WA register (disable L1) should only
3163 * be set when device enters D3 and be cleared
3164 * when device comes back to D0.
3166 if (ah
->config
.pcie_waen
) {
3167 if (ah
->config
.pcie_waen
& AR_WA_D3_L1_DISABLE
)
3168 REG_SET_BIT(ah
, AR_WA
, AR_WA_D3_L1_DISABLE
);
3170 if (((AR_SREV_9285(ah
) || AR_SREV_9271(ah
) ||
3171 AR_SREV_9287(ah
)) &&
3172 (AR9285_WA_DEFAULT
& AR_WA_D3_L1_DISABLE
)) ||
3173 (AR_SREV_9280(ah
) &&
3174 (AR9280_WA_DEFAULT
& AR_WA_D3_L1_DISABLE
))) {
3175 REG_SET_BIT(ah
, AR_WA
, AR_WA_D3_L1_DISABLE
);
3181 /**********************/
3182 /* Interrupt Handling */
3183 /**********************/
3185 bool ath9k_hw_intrpend(struct ath_hw
*ah
)
3189 if (AR_SREV_9100(ah
))
3192 host_isr
= REG_READ(ah
, AR_INTR_ASYNC_CAUSE
);
3193 if ((host_isr
& AR_INTR_MAC_IRQ
) && (host_isr
!= AR_INTR_SPURIOUS
))
3196 host_isr
= REG_READ(ah
, AR_INTR_SYNC_CAUSE
);
3197 if ((host_isr
& AR_INTR_SYNC_DEFAULT
)
3198 && (host_isr
!= AR_INTR_SPURIOUS
))
3204 bool ath9k_hw_getisr(struct ath_hw
*ah
, enum ath9k_int
*masked
)
3208 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
3210 bool fatal_int
= false;
3212 if (!AR_SREV_9100(ah
)) {
3213 if (REG_READ(ah
, AR_INTR_ASYNC_CAUSE
) & AR_INTR_MAC_IRQ
) {
3214 if ((REG_READ(ah
, AR_RTC_STATUS
) & AR_RTC_STATUS_M
)
3215 == AR_RTC_STATUS_ON
) {
3216 isr
= REG_READ(ah
, AR_ISR
);
3220 sync_cause
= REG_READ(ah
, AR_INTR_SYNC_CAUSE
) &
3221 AR_INTR_SYNC_DEFAULT
;
3225 if (!isr
&& !sync_cause
)
3229 isr
= REG_READ(ah
, AR_ISR
);
3233 if (isr
& AR_ISR_BCNMISC
) {
3235 isr2
= REG_READ(ah
, AR_ISR_S2
);
3236 if (isr2
& AR_ISR_S2_TIM
)
3237 mask2
|= ATH9K_INT_TIM
;
3238 if (isr2
& AR_ISR_S2_DTIM
)
3239 mask2
|= ATH9K_INT_DTIM
;
3240 if (isr2
& AR_ISR_S2_DTIMSYNC
)
3241 mask2
|= ATH9K_INT_DTIMSYNC
;
3242 if (isr2
& (AR_ISR_S2_CABEND
))
3243 mask2
|= ATH9K_INT_CABEND
;
3244 if (isr2
& AR_ISR_S2_GTT
)
3245 mask2
|= ATH9K_INT_GTT
;
3246 if (isr2
& AR_ISR_S2_CST
)
3247 mask2
|= ATH9K_INT_CST
;
3248 if (isr2
& AR_ISR_S2_TSFOOR
)
3249 mask2
|= ATH9K_INT_TSFOOR
;
3252 isr
= REG_READ(ah
, AR_ISR_RAC
);
3253 if (isr
== 0xffffffff) {
3258 *masked
= isr
& ATH9K_INT_COMMON
;
3260 if (ah
->config
.intr_mitigation
) {
3261 if (isr
& (AR_ISR_RXMINTR
| AR_ISR_RXINTM
))
3262 *masked
|= ATH9K_INT_RX
;
3265 if (isr
& (AR_ISR_RXOK
| AR_ISR_RXERR
))
3266 *masked
|= ATH9K_INT_RX
;
3268 (AR_ISR_TXOK
| AR_ISR_TXDESC
| AR_ISR_TXERR
|
3272 *masked
|= ATH9K_INT_TX
;
3274 s0_s
= REG_READ(ah
, AR_ISR_S0_S
);
3275 ah
->intr_txqs
|= MS(s0_s
, AR_ISR_S0_QCU_TXOK
);
3276 ah
->intr_txqs
|= MS(s0_s
, AR_ISR_S0_QCU_TXDESC
);
3278 s1_s
= REG_READ(ah
, AR_ISR_S1_S
);
3279 ah
->intr_txqs
|= MS(s1_s
, AR_ISR_S1_QCU_TXERR
);
3280 ah
->intr_txqs
|= MS(s1_s
, AR_ISR_S1_QCU_TXEOL
);
3283 if (isr
& AR_ISR_RXORN
) {
3284 DPRINTF(ah
->ah_sc
, ATH_DBG_INTERRUPT
,
3285 "receive FIFO overrun interrupt\n");
3288 if (!AR_SREV_9100(ah
)) {
3289 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)) {
3290 u32 isr5
= REG_READ(ah
, AR_ISR_S5_S
);
3291 if (isr5
& AR_ISR_S5_TIM_TIMER
)
3292 *masked
|= ATH9K_INT_TIM_TIMER
;
3299 if (AR_SREV_9100(ah
))
3302 if (isr
& AR_ISR_GENTMR
) {
3305 s5_s
= REG_READ(ah
, AR_ISR_S5_S
);
3306 if (isr
& AR_ISR_GENTMR
) {
3307 ah
->intr_gen_timer_trigger
=
3308 MS(s5_s
, AR_ISR_S5_GENTIMER_TRIG
);
3310 ah
->intr_gen_timer_thresh
=
3311 MS(s5_s
, AR_ISR_S5_GENTIMER_THRESH
);
3313 if (ah
->intr_gen_timer_trigger
)
3314 *masked
|= ATH9K_INT_GENTIMER
;
3322 (AR_INTR_SYNC_HOST1_FATAL
| AR_INTR_SYNC_HOST1_PERR
))
3326 if (sync_cause
& AR_INTR_SYNC_HOST1_FATAL
) {
3327 DPRINTF(ah
->ah_sc
, ATH_DBG_ANY
,
3328 "received PCI FATAL interrupt\n");
3330 if (sync_cause
& AR_INTR_SYNC_HOST1_PERR
) {
3331 DPRINTF(ah
->ah_sc
, ATH_DBG_ANY
,
3332 "received PCI PERR interrupt\n");
3334 *masked
|= ATH9K_INT_FATAL
;
3336 if (sync_cause
& AR_INTR_SYNC_RADM_CPL_TIMEOUT
) {
3337 DPRINTF(ah
->ah_sc
, ATH_DBG_INTERRUPT
,
3338 "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
3339 REG_WRITE(ah
, AR_RC
, AR_RC_HOSTIF
);
3340 REG_WRITE(ah
, AR_RC
, 0);
3341 *masked
|= ATH9K_INT_FATAL
;
3343 if (sync_cause
& AR_INTR_SYNC_LOCAL_TIMEOUT
) {
3344 DPRINTF(ah
->ah_sc
, ATH_DBG_INTERRUPT
,
3345 "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
3348 REG_WRITE(ah
, AR_INTR_SYNC_CAUSE_CLR
, sync_cause
);
3349 (void) REG_READ(ah
, AR_INTR_SYNC_CAUSE_CLR
);
3355 enum ath9k_int
ath9k_hw_set_interrupts(struct ath_hw
*ah
, enum ath9k_int ints
)
3357 u32 omask
= ah
->mask_reg
;
3359 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
3361 DPRINTF(ah
->ah_sc
, ATH_DBG_INTERRUPT
, "0x%x => 0x%x\n", omask
, ints
);
3363 if (omask
& ATH9K_INT_GLOBAL
) {
3364 DPRINTF(ah
->ah_sc
, ATH_DBG_INTERRUPT
, "disable IER\n");
3365 REG_WRITE(ah
, AR_IER
, AR_IER_DISABLE
);
3366 (void) REG_READ(ah
, AR_IER
);
3367 if (!AR_SREV_9100(ah
)) {
3368 REG_WRITE(ah
, AR_INTR_ASYNC_ENABLE
, 0);
3369 (void) REG_READ(ah
, AR_INTR_ASYNC_ENABLE
);
3371 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, 0);
3372 (void) REG_READ(ah
, AR_INTR_SYNC_ENABLE
);
3376 mask
= ints
& ATH9K_INT_COMMON
;
3379 if (ints
& ATH9K_INT_TX
) {
3380 if (ah
->txok_interrupt_mask
)
3381 mask
|= AR_IMR_TXOK
;
3382 if (ah
->txdesc_interrupt_mask
)
3383 mask
|= AR_IMR_TXDESC
;
3384 if (ah
->txerr_interrupt_mask
)
3385 mask
|= AR_IMR_TXERR
;
3386 if (ah
->txeol_interrupt_mask
)
3387 mask
|= AR_IMR_TXEOL
;
3389 if (ints
& ATH9K_INT_RX
) {
3390 mask
|= AR_IMR_RXERR
;
3391 if (ah
->config
.intr_mitigation
)
3392 mask
|= AR_IMR_RXMINTR
| AR_IMR_RXINTM
;
3394 mask
|= AR_IMR_RXOK
| AR_IMR_RXDESC
;
3395 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
))
3396 mask
|= AR_IMR_GENTMR
;
3399 if (ints
& (ATH9K_INT_BMISC
)) {
3400 mask
|= AR_IMR_BCNMISC
;
3401 if (ints
& ATH9K_INT_TIM
)
3402 mask2
|= AR_IMR_S2_TIM
;
3403 if (ints
& ATH9K_INT_DTIM
)
3404 mask2
|= AR_IMR_S2_DTIM
;
3405 if (ints
& ATH9K_INT_DTIMSYNC
)
3406 mask2
|= AR_IMR_S2_DTIMSYNC
;
3407 if (ints
& ATH9K_INT_CABEND
)
3408 mask2
|= AR_IMR_S2_CABEND
;
3409 if (ints
& ATH9K_INT_TSFOOR
)
3410 mask2
|= AR_IMR_S2_TSFOOR
;
3413 if (ints
& (ATH9K_INT_GTT
| ATH9K_INT_CST
)) {
3414 mask
|= AR_IMR_BCNMISC
;
3415 if (ints
& ATH9K_INT_GTT
)
3416 mask2
|= AR_IMR_S2_GTT
;
3417 if (ints
& ATH9K_INT_CST
)
3418 mask2
|= AR_IMR_S2_CST
;
3421 DPRINTF(ah
->ah_sc
, ATH_DBG_INTERRUPT
, "new IMR 0x%x\n", mask
);
3422 REG_WRITE(ah
, AR_IMR
, mask
);
3423 mask
= REG_READ(ah
, AR_IMR_S2
) & ~(AR_IMR_S2_TIM
|
3425 AR_IMR_S2_DTIMSYNC
|
3429 AR_IMR_S2_GTT
| AR_IMR_S2_CST
);
3430 REG_WRITE(ah
, AR_IMR_S2
, mask
| mask2
);
3431 ah
->mask_reg
= ints
;
3433 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)) {
3434 if (ints
& ATH9K_INT_TIM_TIMER
)
3435 REG_SET_BIT(ah
, AR_IMR_S5
, AR_IMR_S5_TIM_TIMER
);
3437 REG_CLR_BIT(ah
, AR_IMR_S5
, AR_IMR_S5_TIM_TIMER
);
3440 if (ints
& ATH9K_INT_GLOBAL
) {
3441 DPRINTF(ah
->ah_sc
, ATH_DBG_INTERRUPT
, "enable IER\n");
3442 REG_WRITE(ah
, AR_IER
, AR_IER_ENABLE
);
3443 if (!AR_SREV_9100(ah
)) {
3444 REG_WRITE(ah
, AR_INTR_ASYNC_ENABLE
,
3446 REG_WRITE(ah
, AR_INTR_ASYNC_MASK
, AR_INTR_MAC_IRQ
);
3449 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
,
3450 AR_INTR_SYNC_DEFAULT
);
3451 REG_WRITE(ah
, AR_INTR_SYNC_MASK
,
3452 AR_INTR_SYNC_DEFAULT
);
3454 DPRINTF(ah
->ah_sc
, ATH_DBG_INTERRUPT
, "AR_IMR 0x%x IER 0x%x\n",
3455 REG_READ(ah
, AR_IMR
), REG_READ(ah
, AR_IER
));
3461 /*******************/
3462 /* Beacon Handling */
3463 /*******************/
3465 void ath9k_hw_beaconinit(struct ath_hw
*ah
, u32 next_beacon
, u32 beacon_period
)
3469 ah
->beacon_interval
= beacon_period
;
3471 switch (ah
->opmode
) {
3472 case NL80211_IFTYPE_STATION
:
3473 case NL80211_IFTYPE_MONITOR
:
3474 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, TU_TO_USEC(next_beacon
));
3475 REG_WRITE(ah
, AR_NEXT_DMA_BEACON_ALERT
, 0xffff);
3476 REG_WRITE(ah
, AR_NEXT_SWBA
, 0x7ffff);
3477 flags
|= AR_TBTT_TIMER_EN
;
3479 case NL80211_IFTYPE_ADHOC
:
3480 case NL80211_IFTYPE_MESH_POINT
:
3481 REG_SET_BIT(ah
, AR_TXCFG
,
3482 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY
);
3483 REG_WRITE(ah
, AR_NEXT_NDP_TIMER
,
3484 TU_TO_USEC(next_beacon
+
3485 (ah
->atim_window
? ah
->
3487 flags
|= AR_NDP_TIMER_EN
;
3488 case NL80211_IFTYPE_AP
:
3489 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, TU_TO_USEC(next_beacon
));
3490 REG_WRITE(ah
, AR_NEXT_DMA_BEACON_ALERT
,
3491 TU_TO_USEC(next_beacon
-
3493 dma_beacon_response_time
));
3494 REG_WRITE(ah
, AR_NEXT_SWBA
,
3495 TU_TO_USEC(next_beacon
-
3497 sw_beacon_response_time
));
3499 AR_TBTT_TIMER_EN
| AR_DBA_TIMER_EN
| AR_SWBA_TIMER_EN
;
3502 DPRINTF(ah
->ah_sc
, ATH_DBG_BEACON
,
3503 "%s: unsupported opmode: %d\n",
3504 __func__
, ah
->opmode
);
3509 REG_WRITE(ah
, AR_BEACON_PERIOD
, TU_TO_USEC(beacon_period
));
3510 REG_WRITE(ah
, AR_DMA_BEACON_PERIOD
, TU_TO_USEC(beacon_period
));
3511 REG_WRITE(ah
, AR_SWBA_PERIOD
, TU_TO_USEC(beacon_period
));
3512 REG_WRITE(ah
, AR_NDP_PERIOD
, TU_TO_USEC(beacon_period
));
3514 beacon_period
&= ~ATH9K_BEACON_ENA
;
3515 if (beacon_period
& ATH9K_BEACON_RESET_TSF
) {
3516 beacon_period
&= ~ATH9K_BEACON_RESET_TSF
;
3517 ath9k_hw_reset_tsf(ah
);
3520 REG_SET_BIT(ah
, AR_TIMER_MODE
, flags
);
3523 void ath9k_hw_set_sta_beacon_timers(struct ath_hw
*ah
,
3524 const struct ath9k_beacon_state
*bs
)
3526 u32 nextTbtt
, beaconintval
, dtimperiod
, beacontimeout
;
3527 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
3529 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, TU_TO_USEC(bs
->bs_nexttbtt
));
3531 REG_WRITE(ah
, AR_BEACON_PERIOD
,
3532 TU_TO_USEC(bs
->bs_intval
& ATH9K_BEACON_PERIOD
));
3533 REG_WRITE(ah
, AR_DMA_BEACON_PERIOD
,
3534 TU_TO_USEC(bs
->bs_intval
& ATH9K_BEACON_PERIOD
));
3536 REG_RMW_FIELD(ah
, AR_RSSI_THR
,
3537 AR_RSSI_THR_BM_THR
, bs
->bs_bmissthreshold
);
3539 beaconintval
= bs
->bs_intval
& ATH9K_BEACON_PERIOD
;
3541 if (bs
->bs_sleepduration
> beaconintval
)
3542 beaconintval
= bs
->bs_sleepduration
;
3544 dtimperiod
= bs
->bs_dtimperiod
;
3545 if (bs
->bs_sleepduration
> dtimperiod
)
3546 dtimperiod
= bs
->bs_sleepduration
;
3548 if (beaconintval
== dtimperiod
)
3549 nextTbtt
= bs
->bs_nextdtim
;
3551 nextTbtt
= bs
->bs_nexttbtt
;
3553 DPRINTF(ah
->ah_sc
, ATH_DBG_BEACON
, "next DTIM %d\n", bs
->bs_nextdtim
);
3554 DPRINTF(ah
->ah_sc
, ATH_DBG_BEACON
, "next beacon %d\n", nextTbtt
);
3555 DPRINTF(ah
->ah_sc
, ATH_DBG_BEACON
, "beacon period %d\n", beaconintval
);
3556 DPRINTF(ah
->ah_sc
, ATH_DBG_BEACON
, "DTIM period %d\n", dtimperiod
);
3558 REG_WRITE(ah
, AR_NEXT_DTIM
,
3559 TU_TO_USEC(bs
->bs_nextdtim
- SLEEP_SLOP
));
3560 REG_WRITE(ah
, AR_NEXT_TIM
, TU_TO_USEC(nextTbtt
- SLEEP_SLOP
));
3562 REG_WRITE(ah
, AR_SLEEP1
,
3563 SM((CAB_TIMEOUT_VAL
<< 3), AR_SLEEP1_CAB_TIMEOUT
)
3564 | AR_SLEEP1_ASSUME_DTIM
);
3566 if (pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)
3567 beacontimeout
= (BEACON_TIMEOUT_VAL
<< 3);
3569 beacontimeout
= MIN_BEACON_TIMEOUT_VAL
;
3571 REG_WRITE(ah
, AR_SLEEP2
,
3572 SM(beacontimeout
, AR_SLEEP2_BEACON_TIMEOUT
));
3574 REG_WRITE(ah
, AR_TIM_PERIOD
, TU_TO_USEC(beaconintval
));
3575 REG_WRITE(ah
, AR_DTIM_PERIOD
, TU_TO_USEC(dtimperiod
));
3577 REG_SET_BIT(ah
, AR_TIMER_MODE
,
3578 AR_TBTT_TIMER_EN
| AR_TIM_TIMER_EN
|
3581 /* TSF Out of Range Threshold */
3582 REG_WRITE(ah
, AR_TSFOOR_THRESHOLD
, bs
->bs_tsfoor_threshold
);
3585 /*******************/
3586 /* HW Capabilities */
3587 /*******************/
3589 void ath9k_hw_fill_cap_info(struct ath_hw
*ah
)
3591 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
3592 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
3593 struct ath_btcoex_info
*btcoex_info
= &ah
->ah_sc
->btcoex_info
;
3595 u16 capField
= 0, eeval
;
3597 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_REG_0
);
3598 regulatory
->current_rd
= eeval
;
3600 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_REG_1
);
3601 if (AR_SREV_9285_10_OR_LATER(ah
))
3602 eeval
|= AR9285_RDEXT_DEFAULT
;
3603 regulatory
->current_rd_ext
= eeval
;
3605 capField
= ah
->eep_ops
->get_eeprom(ah
, EEP_OP_CAP
);
3607 if (ah
->opmode
!= NL80211_IFTYPE_AP
&&
3608 ah
->hw_version
.subvendorid
== AR_SUBVENDOR_ID_NEW_A
) {
3609 if (regulatory
->current_rd
== 0x64 ||
3610 regulatory
->current_rd
== 0x65)
3611 regulatory
->current_rd
+= 5;
3612 else if (regulatory
->current_rd
== 0x41)
3613 regulatory
->current_rd
= 0x43;
3614 DPRINTF(ah
->ah_sc
, ATH_DBG_REGULATORY
,
3615 "regdomain mapped to 0x%x\n", regulatory
->current_rd
);
3618 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_OP_MODE
);
3619 bitmap_zero(pCap
->wireless_modes
, ATH9K_MODE_MAX
);
3621 if (eeval
& AR5416_OPFLAGS_11A
) {
3622 set_bit(ATH9K_MODE_11A
, pCap
->wireless_modes
);
3623 if (ah
->config
.ht_enable
) {
3624 if (!(eeval
& AR5416_OPFLAGS_N_5G_HT20
))
3625 set_bit(ATH9K_MODE_11NA_HT20
,
3626 pCap
->wireless_modes
);
3627 if (!(eeval
& AR5416_OPFLAGS_N_5G_HT40
)) {
3628 set_bit(ATH9K_MODE_11NA_HT40PLUS
,
3629 pCap
->wireless_modes
);
3630 set_bit(ATH9K_MODE_11NA_HT40MINUS
,
3631 pCap
->wireless_modes
);
3636 if (eeval
& AR5416_OPFLAGS_11G
) {
3637 set_bit(ATH9K_MODE_11G
, pCap
->wireless_modes
);
3638 if (ah
->config
.ht_enable
) {
3639 if (!(eeval
& AR5416_OPFLAGS_N_2G_HT20
))
3640 set_bit(ATH9K_MODE_11NG_HT20
,
3641 pCap
->wireless_modes
);
3642 if (!(eeval
& AR5416_OPFLAGS_N_2G_HT40
)) {
3643 set_bit(ATH9K_MODE_11NG_HT40PLUS
,
3644 pCap
->wireless_modes
);
3645 set_bit(ATH9K_MODE_11NG_HT40MINUS
,
3646 pCap
->wireless_modes
);
3651 pCap
->tx_chainmask
= ah
->eep_ops
->get_eeprom(ah
, EEP_TX_MASK
);
3653 * For AR9271 we will temporarilly uses the rx chainmax as read from
3656 if ((ah
->hw_version
.devid
== AR5416_DEVID_PCI
) &&
3657 !(eeval
& AR5416_OPFLAGS_11A
) &&
3658 !(AR_SREV_9271(ah
)))
3659 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
3660 pCap
->rx_chainmask
= ath9k_hw_gpio_get(ah
, 0) ? 0x5 : 0x7;
3662 /* Use rx_chainmask from EEPROM. */
3663 pCap
->rx_chainmask
= ah
->eep_ops
->get_eeprom(ah
, EEP_RX_MASK
);
3665 if (!(AR_SREV_9280(ah
) && (ah
->hw_version
.macRev
== 0)))
3666 ah
->misc_mode
|= AR_PCU_MIC_NEW_LOC_ENA
;
3668 pCap
->low_2ghz_chan
= 2312;
3669 pCap
->high_2ghz_chan
= 2732;
3671 pCap
->low_5ghz_chan
= 4920;
3672 pCap
->high_5ghz_chan
= 6100;
3674 pCap
->hw_caps
&= ~ATH9K_HW_CAP_CIPHER_CKIP
;
3675 pCap
->hw_caps
|= ATH9K_HW_CAP_CIPHER_TKIP
;
3676 pCap
->hw_caps
|= ATH9K_HW_CAP_CIPHER_AESCCM
;
3678 pCap
->hw_caps
&= ~ATH9K_HW_CAP_MIC_CKIP
;
3679 pCap
->hw_caps
|= ATH9K_HW_CAP_MIC_TKIP
;
3680 pCap
->hw_caps
|= ATH9K_HW_CAP_MIC_AESCCM
;
3682 if (ah
->config
.ht_enable
)
3683 pCap
->hw_caps
|= ATH9K_HW_CAP_HT
;
3685 pCap
->hw_caps
&= ~ATH9K_HW_CAP_HT
;
3687 pCap
->hw_caps
|= ATH9K_HW_CAP_GTT
;
3688 pCap
->hw_caps
|= ATH9K_HW_CAP_VEOL
;
3689 pCap
->hw_caps
|= ATH9K_HW_CAP_BSSIDMASK
;
3690 pCap
->hw_caps
&= ~ATH9K_HW_CAP_MCAST_KEYSEARCH
;
3692 if (capField
& AR_EEPROM_EEPCAP_MAXQCU
)
3693 pCap
->total_queues
=
3694 MS(capField
, AR_EEPROM_EEPCAP_MAXQCU
);
3696 pCap
->total_queues
= ATH9K_NUM_TX_QUEUES
;
3698 if (capField
& AR_EEPROM_EEPCAP_KC_ENTRIES
)
3699 pCap
->keycache_size
=
3700 1 << MS(capField
, AR_EEPROM_EEPCAP_KC_ENTRIES
);
3702 pCap
->keycache_size
= AR_KEYTABLE_SIZE
;
3704 pCap
->hw_caps
|= ATH9K_HW_CAP_FASTCC
;
3706 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
))
3707 pCap
->tx_triglevel_max
= MAX_TX_FIFO_THRESHOLD
>> 1;
3709 pCap
->tx_triglevel_max
= MAX_TX_FIFO_THRESHOLD
;
3711 if (AR_SREV_9285_10_OR_LATER(ah
))
3712 pCap
->num_gpio_pins
= AR9285_NUM_GPIO
;
3713 else if (AR_SREV_9280_10_OR_LATER(ah
))
3714 pCap
->num_gpio_pins
= AR928X_NUM_GPIO
;
3716 pCap
->num_gpio_pins
= AR_NUM_GPIO
;
3718 if (AR_SREV_9160_10_OR_LATER(ah
) || AR_SREV_9100(ah
)) {
3719 pCap
->hw_caps
|= ATH9K_HW_CAP_CST
;
3720 pCap
->rts_aggr_limit
= ATH_AMPDU_LIMIT_MAX
;
3722 pCap
->rts_aggr_limit
= (8 * 1024);
3725 pCap
->hw_caps
|= ATH9K_HW_CAP_ENHANCEDPM
;
3727 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3728 ah
->rfsilent
= ah
->eep_ops
->get_eeprom(ah
, EEP_RF_SILENT
);
3729 if (ah
->rfsilent
& EEP_RFSILENT_ENABLED
) {
3731 MS(ah
->rfsilent
, EEP_RFSILENT_GPIO_SEL
);
3732 ah
->rfkill_polarity
=
3733 MS(ah
->rfsilent
, EEP_RFSILENT_POLARITY
);
3735 pCap
->hw_caps
|= ATH9K_HW_CAP_RFSILENT
;
3739 pCap
->hw_caps
&= ~ATH9K_HW_CAP_AUTOSLEEP
;
3741 if (AR_SREV_9280(ah
) || AR_SREV_9285(ah
))
3742 pCap
->hw_caps
&= ~ATH9K_HW_CAP_4KB_SPLITTRANS
;
3744 pCap
->hw_caps
|= ATH9K_HW_CAP_4KB_SPLITTRANS
;
3746 if (regulatory
->current_rd_ext
& (1 << REG_EXT_JAPAN_MIDBAND
)) {
3748 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A
|
3749 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN
|
3750 AR_EEPROM_EEREGCAP_EN_KK_U2
|
3751 AR_EEPROM_EEREGCAP_EN_KK_MIDBAND
;
3754 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A
|
3755 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN
;
3758 pCap
->reg_cap
|= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND
;
3760 pCap
->num_antcfg_5ghz
=
3761 ah
->eep_ops
->get_num_ant_config(ah
, ATH9K_HAL_FREQ_BAND_5GHZ
);
3762 pCap
->num_antcfg_2ghz
=
3763 ah
->eep_ops
->get_num_ant_config(ah
, ATH9K_HAL_FREQ_BAND_2GHZ
);
3765 if (AR_SREV_9280_10_OR_LATER(ah
) &&
3766 ath_btcoex_supported(ah
->hw_version
.subsysid
)) {
3767 btcoex_info
->btactive_gpio
= ATH_BTACTIVE_GPIO
;
3768 btcoex_info
->wlanactive_gpio
= ATH_WLANACTIVE_GPIO
;
3770 if (AR_SREV_9285(ah
)) {
3771 btcoex_info
->btcoex_scheme
= ATH_BTCOEX_CFG_3WIRE
;
3772 btcoex_info
->btpriority_gpio
= ATH_BTPRIORITY_GPIO
;
3774 btcoex_info
->btcoex_scheme
= ATH_BTCOEX_CFG_2WIRE
;
3777 btcoex_info
->btcoex_scheme
= ATH_BTCOEX_CFG_NONE
;
3781 bool ath9k_hw_getcapability(struct ath_hw
*ah
, enum ath9k_capability_type type
,
3782 u32 capability
, u32
*result
)
3784 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
3786 case ATH9K_CAP_CIPHER
:
3787 switch (capability
) {
3788 case ATH9K_CIPHER_AES_CCM
:
3789 case ATH9K_CIPHER_AES_OCB
:
3790 case ATH9K_CIPHER_TKIP
:
3791 case ATH9K_CIPHER_WEP
:
3792 case ATH9K_CIPHER_MIC
:
3793 case ATH9K_CIPHER_CLR
:
3798 case ATH9K_CAP_TKIP_MIC
:
3799 switch (capability
) {
3803 return (ah
->sta_id1_defaults
&
3804 AR_STA_ID1_CRPT_MIC_ENABLE
) ? true :
3807 case ATH9K_CAP_TKIP_SPLIT
:
3808 return (ah
->misc_mode
& AR_PCU_MIC_NEW_LOC_ENA
) ?
3810 case ATH9K_CAP_DIVERSITY
:
3811 return (REG_READ(ah
, AR_PHY_CCK_DETECT
) &
3812 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV
) ?
3814 case ATH9K_CAP_MCAST_KEYSRCH
:
3815 switch (capability
) {
3819 if (REG_READ(ah
, AR_STA_ID1
) & AR_STA_ID1_ADHOC
) {
3822 return (ah
->sta_id1_defaults
&
3823 AR_STA_ID1_MCAST_KSRCH
) ? true :
3828 case ATH9K_CAP_TXPOW
:
3829 switch (capability
) {
3833 *result
= regulatory
->power_limit
;
3836 *result
= regulatory
->max_power_level
;
3839 *result
= regulatory
->tp_scale
;
3844 return (AR_SREV_9280_20_OR_LATER(ah
) &&
3845 (ah
->eep_ops
->get_eeprom(ah
, EEP_RC_CHAIN_MASK
) == 1))
3852 bool ath9k_hw_setcapability(struct ath_hw
*ah
, enum ath9k_capability_type type
,
3853 u32 capability
, u32 setting
, int *status
)
3858 case ATH9K_CAP_TKIP_MIC
:
3860 ah
->sta_id1_defaults
|=
3861 AR_STA_ID1_CRPT_MIC_ENABLE
;
3863 ah
->sta_id1_defaults
&=
3864 ~AR_STA_ID1_CRPT_MIC_ENABLE
;
3866 case ATH9K_CAP_DIVERSITY
:
3867 v
= REG_READ(ah
, AR_PHY_CCK_DETECT
);
3869 v
|= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV
;
3871 v
&= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV
;
3872 REG_WRITE(ah
, AR_PHY_CCK_DETECT
, v
);
3874 case ATH9K_CAP_MCAST_KEYSRCH
:
3876 ah
->sta_id1_defaults
|= AR_STA_ID1_MCAST_KSRCH
;
3878 ah
->sta_id1_defaults
&= ~AR_STA_ID1_MCAST_KSRCH
;
3885 /****************************/
3886 /* GPIO / RFKILL / Antennae */
3887 /****************************/
3889 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw
*ah
,
3893 u32 gpio_shift
, tmp
;
3896 addr
= AR_GPIO_OUTPUT_MUX3
;
3898 addr
= AR_GPIO_OUTPUT_MUX2
;
3900 addr
= AR_GPIO_OUTPUT_MUX1
;
3902 gpio_shift
= (gpio
% 6) * 5;
3904 if (AR_SREV_9280_20_OR_LATER(ah
)
3905 || (addr
!= AR_GPIO_OUTPUT_MUX1
)) {
3906 REG_RMW(ah
, addr
, (type
<< gpio_shift
),
3907 (0x1f << gpio_shift
));
3909 tmp
= REG_READ(ah
, addr
);
3910 tmp
= ((tmp
& 0x1F0) << 1) | (tmp
& ~0x1F0);
3911 tmp
&= ~(0x1f << gpio_shift
);
3912 tmp
|= (type
<< gpio_shift
);
3913 REG_WRITE(ah
, addr
, tmp
);
3917 void ath9k_hw_cfg_gpio_input(struct ath_hw
*ah
, u32 gpio
)
3921 ASSERT(gpio
< ah
->caps
.num_gpio_pins
);
3923 gpio_shift
= gpio
<< 1;
3927 (AR_GPIO_OE_OUT_DRV_NO
<< gpio_shift
),
3928 (AR_GPIO_OE_OUT_DRV
<< gpio_shift
));
3931 u32
ath9k_hw_gpio_get(struct ath_hw
*ah
, u32 gpio
)
3933 #define MS_REG_READ(x, y) \
3934 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3936 if (gpio
>= ah
->caps
.num_gpio_pins
)
3939 if (AR_SREV_9287_10_OR_LATER(ah
))
3940 return MS_REG_READ(AR9287
, gpio
) != 0;
3941 else if (AR_SREV_9285_10_OR_LATER(ah
))
3942 return MS_REG_READ(AR9285
, gpio
) != 0;
3943 else if (AR_SREV_9280_10_OR_LATER(ah
))
3944 return MS_REG_READ(AR928X
, gpio
) != 0;
3946 return MS_REG_READ(AR
, gpio
) != 0;
3949 void ath9k_hw_cfg_output(struct ath_hw
*ah
, u32 gpio
,
3954 ath9k_hw_gpio_cfg_output_mux(ah
, gpio
, ah_signal_type
);
3956 gpio_shift
= 2 * gpio
;
3960 (AR_GPIO_OE_OUT_DRV_ALL
<< gpio_shift
),
3961 (AR_GPIO_OE_OUT_DRV
<< gpio_shift
));
3964 void ath9k_hw_set_gpio(struct ath_hw
*ah
, u32 gpio
, u32 val
)
3966 REG_RMW(ah
, AR_GPIO_IN_OUT
, ((val
& 1) << gpio
),
3970 u32
ath9k_hw_getdefantenna(struct ath_hw
*ah
)
3972 return REG_READ(ah
, AR_DEF_ANTENNA
) & 0x7;
3975 void ath9k_hw_setantenna(struct ath_hw
*ah
, u32 antenna
)
3977 REG_WRITE(ah
, AR_DEF_ANTENNA
, (antenna
& 0x7));
3980 bool ath9k_hw_setantennaswitch(struct ath_hw
*ah
,
3981 enum ath9k_ant_setting settings
,
3982 struct ath9k_channel
*chan
,
3987 static u8 tx_chainmask_cfg
, rx_chainmask_cfg
;
3989 if (AR_SREV_9280(ah
)) {
3990 if (!tx_chainmask_cfg
) {
3992 tx_chainmask_cfg
= *tx_chainmask
;
3993 rx_chainmask_cfg
= *rx_chainmask
;
3997 case ATH9K_ANT_FIXED_A
:
3998 *tx_chainmask
= ATH9K_ANTENNA0_CHAINMASK
;
3999 *rx_chainmask
= ATH9K_ANTENNA0_CHAINMASK
;
4000 *antenna_cfgd
= true;
4002 case ATH9K_ANT_FIXED_B
:
4003 if (ah
->caps
.tx_chainmask
>
4004 ATH9K_ANTENNA1_CHAINMASK
) {
4005 *tx_chainmask
= ATH9K_ANTENNA1_CHAINMASK
;
4007 *rx_chainmask
= ATH9K_ANTENNA1_CHAINMASK
;
4008 *antenna_cfgd
= true;
4010 case ATH9K_ANT_VARIABLE
:
4011 *tx_chainmask
= tx_chainmask_cfg
;
4012 *rx_chainmask
= rx_chainmask_cfg
;
4013 *antenna_cfgd
= true;
4019 ah
->config
.diversity_control
= settings
;
4025 /*********************/
4026 /* General Operation */
4027 /*********************/
4029 u32
ath9k_hw_getrxfilter(struct ath_hw
*ah
)
4031 u32 bits
= REG_READ(ah
, AR_RX_FILTER
);
4032 u32 phybits
= REG_READ(ah
, AR_PHY_ERR
);
4034 if (phybits
& AR_PHY_ERR_RADAR
)
4035 bits
|= ATH9K_RX_FILTER_PHYRADAR
;
4036 if (phybits
& (AR_PHY_ERR_OFDM_TIMING
| AR_PHY_ERR_CCK_TIMING
))
4037 bits
|= ATH9K_RX_FILTER_PHYERR
;
4042 void ath9k_hw_setrxfilter(struct ath_hw
*ah
, u32 bits
)
4046 REG_WRITE(ah
, AR_RX_FILTER
, bits
);
4049 if (bits
& ATH9K_RX_FILTER_PHYRADAR
)
4050 phybits
|= AR_PHY_ERR_RADAR
;
4051 if (bits
& ATH9K_RX_FILTER_PHYERR
)
4052 phybits
|= AR_PHY_ERR_OFDM_TIMING
| AR_PHY_ERR_CCK_TIMING
;
4053 REG_WRITE(ah
, AR_PHY_ERR
, phybits
);
4056 REG_WRITE(ah
, AR_RXCFG
,
4057 REG_READ(ah
, AR_RXCFG
) | AR_RXCFG_ZLFDMA
);
4059 REG_WRITE(ah
, AR_RXCFG
,
4060 REG_READ(ah
, AR_RXCFG
) & ~AR_RXCFG_ZLFDMA
);
4063 bool ath9k_hw_phy_disable(struct ath_hw
*ah
)
4065 return ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_WARM
);
4068 bool ath9k_hw_disable(struct ath_hw
*ah
)
4070 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
4073 return ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_COLD
);
4076 void ath9k_hw_set_txpowerlimit(struct ath_hw
*ah
, u32 limit
)
4078 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
4079 struct ath9k_channel
*chan
= ah
->curchan
;
4080 struct ieee80211_channel
*channel
= chan
->chan
;
4082 regulatory
->power_limit
= min(limit
, (u32
) MAX_RATE_POWER
);
4084 ah
->eep_ops
->set_txpower(ah
, chan
,
4085 ath9k_regd_get_ctl(regulatory
, chan
),
4086 channel
->max_antenna_gain
* 2,
4087 channel
->max_power
* 2,
4088 min((u32
) MAX_RATE_POWER
,
4089 (u32
) regulatory
->power_limit
));
4092 void ath9k_hw_setmac(struct ath_hw
*ah
, const u8
*mac
)
4094 memcpy(ah
->macaddr
, mac
, ETH_ALEN
);
4097 void ath9k_hw_setopmode(struct ath_hw
*ah
)
4099 ath9k_hw_set_operating_mode(ah
, ah
->opmode
);
4102 void ath9k_hw_setmcastfilter(struct ath_hw
*ah
, u32 filter0
, u32 filter1
)
4104 REG_WRITE(ah
, AR_MCAST_FIL0
, filter0
);
4105 REG_WRITE(ah
, AR_MCAST_FIL1
, filter1
);
4108 void ath9k_hw_setbssidmask(struct ath_softc
*sc
)
4110 REG_WRITE(sc
->sc_ah
, AR_BSSMSKL
, get_unaligned_le32(sc
->bssidmask
));
4111 REG_WRITE(sc
->sc_ah
, AR_BSSMSKU
, get_unaligned_le16(sc
->bssidmask
+ 4));
4114 void ath9k_hw_write_associd(struct ath_softc
*sc
)
4116 REG_WRITE(sc
->sc_ah
, AR_BSS_ID0
, get_unaligned_le32(sc
->curbssid
));
4117 REG_WRITE(sc
->sc_ah
, AR_BSS_ID1
, get_unaligned_le16(sc
->curbssid
+ 4) |
4118 ((sc
->curaid
& 0x3fff) << AR_BSS_ID1_AID_S
));
4121 u64
ath9k_hw_gettsf64(struct ath_hw
*ah
)
4125 tsf
= REG_READ(ah
, AR_TSF_U32
);
4126 tsf
= (tsf
<< 32) | REG_READ(ah
, AR_TSF_L32
);
4131 void ath9k_hw_settsf64(struct ath_hw
*ah
, u64 tsf64
)
4133 REG_WRITE(ah
, AR_TSF_L32
, tsf64
& 0xffffffff);
4134 REG_WRITE(ah
, AR_TSF_U32
, (tsf64
>> 32) & 0xffffffff);
4137 void ath9k_hw_reset_tsf(struct ath_hw
*ah
)
4139 ath9k_ps_wakeup(ah
->ah_sc
);
4140 if (!ath9k_hw_wait(ah
, AR_SLP32_MODE
, AR_SLP32_TSF_WRITE_STATUS
, 0,
4141 AH_TSF_WRITE_TIMEOUT
))
4142 DPRINTF(ah
->ah_sc
, ATH_DBG_RESET
,
4143 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
4145 REG_WRITE(ah
, AR_RESET_TSF
, AR_RESET_TSF_ONCE
);
4146 ath9k_ps_restore(ah
->ah_sc
);
4149 void ath9k_hw_set_tsfadjust(struct ath_hw
*ah
, u32 setting
)
4152 ah
->misc_mode
|= AR_PCU_TX_ADD_TSF
;
4154 ah
->misc_mode
&= ~AR_PCU_TX_ADD_TSF
;
4157 bool ath9k_hw_setslottime(struct ath_hw
*ah
, u32 us
)
4159 if (us
< ATH9K_SLOT_TIME_9
|| us
> ath9k_hw_mac_to_usec(ah
, 0xffff)) {
4160 DPRINTF(ah
->ah_sc
, ATH_DBG_RESET
, "bad slot time %u\n", us
);
4161 ah
->slottime
= (u32
) -1;
4164 REG_WRITE(ah
, AR_D_GBL_IFS_SLOT
, ath9k_hw_mac_to_clks(ah
, us
));
4170 void ath9k_hw_set11nmac2040(struct ath_hw
*ah
, enum ath9k_ht_macmode mode
)
4174 if (mode
== ATH9K_HT_MACMODE_2040
&&
4175 !ah
->config
.cwm_ignore_extcca
)
4176 macmode
= AR_2040_JOINED_RX_CLEAR
;
4180 REG_WRITE(ah
, AR_2040_MODE
, macmode
);
4183 /* HW Generic timers configuration */
4185 static const struct ath_gen_timer_configuration gen_tmr_configuration
[] =
4187 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
4188 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
4189 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
4190 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
4191 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
4192 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
4193 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
4194 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
4195 {AR_NEXT_NDP2_TIMER
, AR_NDP2_PERIOD
, AR_NDP2_TIMER_MODE
, 0x0001},
4196 {AR_NEXT_NDP2_TIMER
+ 1*4, AR_NDP2_PERIOD
+ 1*4,
4197 AR_NDP2_TIMER_MODE
, 0x0002},
4198 {AR_NEXT_NDP2_TIMER
+ 2*4, AR_NDP2_PERIOD
+ 2*4,
4199 AR_NDP2_TIMER_MODE
, 0x0004},
4200 {AR_NEXT_NDP2_TIMER
+ 3*4, AR_NDP2_PERIOD
+ 3*4,
4201 AR_NDP2_TIMER_MODE
, 0x0008},
4202 {AR_NEXT_NDP2_TIMER
+ 4*4, AR_NDP2_PERIOD
+ 4*4,
4203 AR_NDP2_TIMER_MODE
, 0x0010},
4204 {AR_NEXT_NDP2_TIMER
+ 5*4, AR_NDP2_PERIOD
+ 5*4,
4205 AR_NDP2_TIMER_MODE
, 0x0020},
4206 {AR_NEXT_NDP2_TIMER
+ 6*4, AR_NDP2_PERIOD
+ 6*4,
4207 AR_NDP2_TIMER_MODE
, 0x0040},
4208 {AR_NEXT_NDP2_TIMER
+ 7*4, AR_NDP2_PERIOD
+ 7*4,
4209 AR_NDP2_TIMER_MODE
, 0x0080}
4212 /* HW generic timer primitives */
4214 /* compute and clear index of rightmost 1 */
4215 static u32
rightmost_index(struct ath_gen_timer_table
*timer_table
, u32
*mask
)
4225 return timer_table
->gen_timer_index
[b
];
4228 u32
ath9k_hw_gettsf32(struct ath_hw
*ah
)
4230 return REG_READ(ah
, AR_TSF_L32
);
4233 struct ath_gen_timer
*ath_gen_timer_alloc(struct ath_hw
*ah
,
4234 void (*trigger
)(void *),
4235 void (*overflow
)(void *),
4239 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
4240 struct ath_gen_timer
*timer
;
4242 timer
= kzalloc(sizeof(struct ath_gen_timer
), GFP_KERNEL
);
4244 if (timer
== NULL
) {
4245 printk(KERN_DEBUG
"Failed to allocate memory"
4246 "for hw timer[%d]\n", timer_index
);
4250 /* allocate a hardware generic timer slot */
4251 timer_table
->timers
[timer_index
] = timer
;
4252 timer
->index
= timer_index
;
4253 timer
->trigger
= trigger
;
4254 timer
->overflow
= overflow
;
4260 void ath_gen_timer_start(struct ath_hw
*ah
,
4261 struct ath_gen_timer
*timer
,
4262 u32 timer_next
, u32 timer_period
)
4264 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
4267 BUG_ON(!timer_period
);
4269 set_bit(timer
->index
, &timer_table
->timer_mask
.timer_bits
);
4271 tsf
= ath9k_hw_gettsf32(ah
);
4273 DPRINTF(ah
->ah_sc
, ATH_DBG_HWTIMER
, "curent tsf %x period %x"
4274 "timer_next %x\n", tsf
, timer_period
, timer_next
);
4277 * Pull timer_next forward if the current TSF already passed it
4278 * because of software latency
4280 if (timer_next
< tsf
)
4281 timer_next
= tsf
+ timer_period
;
4284 * Program generic timer registers
4286 REG_WRITE(ah
, gen_tmr_configuration
[timer
->index
].next_addr
,
4288 REG_WRITE(ah
, gen_tmr_configuration
[timer
->index
].period_addr
,
4290 REG_SET_BIT(ah
, gen_tmr_configuration
[timer
->index
].mode_addr
,
4291 gen_tmr_configuration
[timer
->index
].mode_mask
);
4293 /* Enable both trigger and thresh interrupt masks */
4294 REG_SET_BIT(ah
, AR_IMR_S5
,
4295 (SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_THRESH
) |
4296 SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_TRIG
)));
4298 if ((ah
->ah_sc
->imask
& ATH9K_INT_GENTIMER
) == 0) {
4299 ath9k_hw_set_interrupts(ah
, 0);
4300 ah
->ah_sc
->imask
|= ATH9K_INT_GENTIMER
;
4301 ath9k_hw_set_interrupts(ah
, ah
->ah_sc
->imask
);
4305 void ath_gen_timer_stop(struct ath_hw
*ah
, struct ath_gen_timer
*timer
)
4307 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
4309 if ((timer
->index
< AR_FIRST_NDP_TIMER
) ||
4310 (timer
->index
>= ATH_MAX_GEN_TIMER
)) {
4314 /* Clear generic timer enable bits. */
4315 REG_CLR_BIT(ah
, gen_tmr_configuration
[timer
->index
].mode_addr
,
4316 gen_tmr_configuration
[timer
->index
].mode_mask
);
4318 /* Disable both trigger and thresh interrupt masks */
4319 REG_CLR_BIT(ah
, AR_IMR_S5
,
4320 (SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_THRESH
) |
4321 SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_TRIG
)));
4323 clear_bit(timer
->index
, &timer_table
->timer_mask
.timer_bits
);
4325 /* if no timer is enabled, turn off interrupt mask */
4326 if (timer_table
->timer_mask
.val
== 0) {
4327 ath9k_hw_set_interrupts(ah
, 0);
4328 ah
->ah_sc
->imask
&= ~ATH9K_INT_GENTIMER
;
4329 ath9k_hw_set_interrupts(ah
, ah
->ah_sc
->imask
);
4333 void ath_gen_timer_free(struct ath_hw
*ah
, struct ath_gen_timer
*timer
)
4335 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
4337 /* free the hardware generic timer slot */
4338 timer_table
->timers
[timer
->index
] = NULL
;
4343 * Generic Timer Interrupts handling
4345 void ath_gen_timer_isr(struct ath_hw
*ah
)
4347 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
4348 struct ath_gen_timer
*timer
;
4349 u32 trigger_mask
, thresh_mask
, index
;
4351 /* get hardware generic timer interrupt status */
4352 trigger_mask
= ah
->intr_gen_timer_trigger
;
4353 thresh_mask
= ah
->intr_gen_timer_thresh
;
4354 trigger_mask
&= timer_table
->timer_mask
.val
;
4355 thresh_mask
&= timer_table
->timer_mask
.val
;
4357 trigger_mask
&= ~thresh_mask
;
4359 while (thresh_mask
) {
4360 index
= rightmost_index(timer_table
, &thresh_mask
);
4361 timer
= timer_table
->timers
[index
];
4363 DPRINTF(ah
->ah_sc
, ATH_DBG_HWTIMER
,
4364 "TSF overflow for Gen timer %d\n", index
);
4365 timer
->overflow(timer
->arg
);
4368 while (trigger_mask
) {
4369 index
= rightmost_index(timer_table
, &trigger_mask
);
4370 timer
= timer_table
->timers
[index
];
4372 DPRINTF(ah
->ah_sc
, ATH_DBG_HWTIMER
,
4373 "Gen timer[%d] trigger\n", index
);
4374 timer
->trigger(timer
->arg
);
4379 * Primitive to disable ASPM
4381 void ath_pcie_aspm_disable(struct ath_softc
*sc
)
4383 struct pci_dev
*pdev
= to_pci_dev(sc
->dev
);
4386 pci_read_config_byte(pdev
, ATH_PCIE_CAP_LINK_CTRL
, &aspm
);
4387 aspm
&= ~(ATH_PCIE_CAP_LINK_L0S
| ATH_PCIE_CAP_LINK_L1
);
4388 pci_write_config_byte(pdev
, ATH_PCIE_CAP_LINK_CTRL
, aspm
);