2 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
28 #include "sas_internal.h"
30 #include <scsi/scsi_transport.h>
31 #include <scsi/scsi_transport_sas.h>
32 #include "../scsi_sas_internal.h"
34 static int sas_discover_expander(struct domain_device
*dev
);
35 static int sas_configure_routing(struct domain_device
*dev
, u8
*sas_addr
);
36 static int sas_configure_phy(struct domain_device
*dev
, int phy_id
,
37 u8
*sas_addr
, int include
);
38 static int sas_disable_routing(struct domain_device
*dev
, u8
*sas_addr
);
40 /* ---------- SMP task management ---------- */
42 static void smp_task_timedout(unsigned long _task
)
44 struct sas_task
*task
= (void *) _task
;
47 spin_lock_irqsave(&task
->task_state_lock
, flags
);
48 if (!(task
->task_state_flags
& SAS_TASK_STATE_DONE
))
49 task
->task_state_flags
|= SAS_TASK_STATE_ABORTED
;
50 spin_unlock_irqrestore(&task
->task_state_lock
, flags
);
52 complete(&task
->completion
);
55 static void smp_task_done(struct sas_task
*task
)
57 if (!del_timer(&task
->timer
))
59 complete(&task
->completion
);
62 /* Give it some long enough timeout. In seconds. */
63 #define SMP_TIMEOUT 10
65 static int smp_execute_task(struct domain_device
*dev
, void *req
, int req_size
,
66 void *resp
, int resp_size
)
69 struct sas_task
*task
= NULL
;
70 struct sas_internal
*i
=
71 to_sas_internal(dev
->port
->ha
->core
.shost
->transportt
);
73 for (retry
= 0; retry
< 3; retry
++) {
74 task
= sas_alloc_task(GFP_KERNEL
);
79 task
->task_proto
= dev
->tproto
;
80 sg_init_one(&task
->smp_task
.smp_req
, req
, req_size
);
81 sg_init_one(&task
->smp_task
.smp_resp
, resp
, resp_size
);
83 task
->task_done
= smp_task_done
;
85 task
->timer
.data
= (unsigned long) task
;
86 task
->timer
.function
= smp_task_timedout
;
87 task
->timer
.expires
= jiffies
+ SMP_TIMEOUT
*HZ
;
88 add_timer(&task
->timer
);
90 res
= i
->dft
->lldd_execute_task(task
, 1, GFP_KERNEL
);
93 del_timer(&task
->timer
);
94 SAS_DPRINTK("executing SMP task failed:%d\n", res
);
98 wait_for_completion(&task
->completion
);
100 if ((task
->task_state_flags
& SAS_TASK_STATE_ABORTED
)) {
101 SAS_DPRINTK("smp task timed out or aborted\n");
102 i
->dft
->lldd_abort_task(task
);
103 if (!(task
->task_state_flags
& SAS_TASK_STATE_DONE
)) {
104 SAS_DPRINTK("SMP task aborted and not done\n");
108 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
109 task
->task_status
.stat
== SAM_GOOD
) {
112 } if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
113 task
->task_status
.stat
== SAS_DATA_UNDERRUN
) {
114 /* no error, but return the number of bytes of
116 res
= task
->task_status
.residual
;
118 } if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
119 task
->task_status
.stat
== SAS_DATA_OVERRUN
) {
123 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
124 "status 0x%x\n", __func__
,
125 SAS_ADDR(dev
->sas_addr
),
126 task
->task_status
.resp
,
127 task
->task_status
.stat
);
133 BUG_ON(retry
== 3 && task
!= NULL
);
140 /* ---------- Allocations ---------- */
142 static inline void *alloc_smp_req(int size
)
144 u8
*p
= kzalloc(size
, GFP_KERNEL
);
150 static inline void *alloc_smp_resp(int size
)
152 return kzalloc(size
, GFP_KERNEL
);
155 /* ---------- Expander configuration ---------- */
157 static void sas_set_ex_phy(struct domain_device
*dev
, int phy_id
,
160 struct expander_device
*ex
= &dev
->ex_dev
;
161 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
162 struct smp_resp
*resp
= disc_resp
;
163 struct discover_resp
*dr
= &resp
->disc
;
164 struct sas_rphy
*rphy
= dev
->rphy
;
165 int rediscover
= (phy
->phy
!= NULL
);
168 phy
->phy
= sas_phy_alloc(&rphy
->dev
, phy_id
);
170 /* FIXME: error_handling */
174 switch (resp
->result
) {
175 case SMP_RESP_PHY_VACANT
:
176 phy
->phy_state
= PHY_VACANT
;
179 phy
->phy_state
= PHY_NOT_PRESENT
;
181 case SMP_RESP_FUNC_ACC
:
182 phy
->phy_state
= PHY_EMPTY
; /* do not know yet */
186 phy
->phy_id
= phy_id
;
187 phy
->attached_dev_type
= dr
->attached_dev_type
;
188 phy
->linkrate
= dr
->linkrate
;
189 phy
->attached_sata_host
= dr
->attached_sata_host
;
190 phy
->attached_sata_dev
= dr
->attached_sata_dev
;
191 phy
->attached_sata_ps
= dr
->attached_sata_ps
;
192 phy
->attached_iproto
= dr
->iproto
<< 1;
193 phy
->attached_tproto
= dr
->tproto
<< 1;
194 memcpy(phy
->attached_sas_addr
, dr
->attached_sas_addr
, SAS_ADDR_SIZE
);
195 phy
->attached_phy_id
= dr
->attached_phy_id
;
196 phy
->phy_change_count
= dr
->change_count
;
197 phy
->routing_attr
= dr
->routing_attr
;
198 phy
->virtual = dr
->virtual;
199 phy
->last_da_index
= -1;
201 phy
->phy
->identify
.sas_address
= SAS_ADDR(phy
->attached_sas_addr
);
202 phy
->phy
->identify
.device_type
= phy
->attached_dev_type
;
203 phy
->phy
->identify
.initiator_port_protocols
= phy
->attached_iproto
;
204 phy
->phy
->identify
.target_port_protocols
= phy
->attached_tproto
;
205 phy
->phy
->identify
.phy_identifier
= phy_id
;
206 phy
->phy
->minimum_linkrate_hw
= dr
->hmin_linkrate
;
207 phy
->phy
->maximum_linkrate_hw
= dr
->hmax_linkrate
;
208 phy
->phy
->minimum_linkrate
= dr
->pmin_linkrate
;
209 phy
->phy
->maximum_linkrate
= dr
->pmax_linkrate
;
210 phy
->phy
->negotiated_linkrate
= phy
->linkrate
;
213 sas_phy_add(phy
->phy
);
215 SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
216 SAS_ADDR(dev
->sas_addr
), phy
->phy_id
,
217 phy
->routing_attr
== TABLE_ROUTING
? 'T' :
218 phy
->routing_attr
== DIRECT_ROUTING
? 'D' :
219 phy
->routing_attr
== SUBTRACTIVE_ROUTING
? 'S' : '?',
220 SAS_ADDR(phy
->attached_sas_addr
));
225 #define DISCOVER_REQ_SIZE 16
226 #define DISCOVER_RESP_SIZE 56
228 static int sas_ex_phy_discover_helper(struct domain_device
*dev
, u8
*disc_req
,
229 u8
*disc_resp
, int single
)
233 disc_req
[9] = single
;
234 for (i
= 1 ; i
< 3; i
++) {
235 struct discover_resp
*dr
;
237 res
= smp_execute_task(dev
, disc_req
, DISCOVER_REQ_SIZE
,
238 disc_resp
, DISCOVER_RESP_SIZE
);
241 /* This is detecting a failure to transmit inital
242 * dev to host FIS as described in section G.5 of
244 dr
= &((struct smp_resp
*)disc_resp
)->disc
;
245 if (!(dr
->attached_dev_type
== 0 &&
246 dr
->attached_sata_dev
))
248 /* In order to generate the dev to host FIS, we
249 * send a link reset to the expander port */
250 sas_smp_phy_control(dev
, single
, PHY_FUNC_LINK_RESET
, NULL
);
251 /* Wait for the reset to trigger the negotiation */
254 sas_set_ex_phy(dev
, single
, disc_resp
);
258 static int sas_ex_phy_discover(struct domain_device
*dev
, int single
)
260 struct expander_device
*ex
= &dev
->ex_dev
;
265 disc_req
= alloc_smp_req(DISCOVER_REQ_SIZE
);
269 disc_resp
= alloc_smp_req(DISCOVER_RESP_SIZE
);
275 disc_req
[1] = SMP_DISCOVER
;
277 if (0 <= single
&& single
< ex
->num_phys
) {
278 res
= sas_ex_phy_discover_helper(dev
, disc_req
, disc_resp
, single
);
282 for (i
= 0; i
< ex
->num_phys
; i
++) {
283 res
= sas_ex_phy_discover_helper(dev
, disc_req
,
295 static int sas_expander_discover(struct domain_device
*dev
)
297 struct expander_device
*ex
= &dev
->ex_dev
;
300 ex
->ex_phy
= kzalloc(sizeof(*ex
->ex_phy
)*ex
->num_phys
, GFP_KERNEL
);
304 res
= sas_ex_phy_discover(dev
, -1);
315 #define MAX_EXPANDER_PHYS 128
317 static void ex_assign_report_general(struct domain_device
*dev
,
318 struct smp_resp
*resp
)
320 struct report_general_resp
*rg
= &resp
->rg
;
322 dev
->ex_dev
.ex_change_count
= be16_to_cpu(rg
->change_count
);
323 dev
->ex_dev
.max_route_indexes
= be16_to_cpu(rg
->route_indexes
);
324 dev
->ex_dev
.num_phys
= min(rg
->num_phys
, (u8
)MAX_EXPANDER_PHYS
);
325 dev
->ex_dev
.conf_route_table
= rg
->conf_route_table
;
326 dev
->ex_dev
.configuring
= rg
->configuring
;
327 memcpy(dev
->ex_dev
.enclosure_logical_id
, rg
->enclosure_logical_id
, 8);
330 #define RG_REQ_SIZE 8
331 #define RG_RESP_SIZE 32
333 static int sas_ex_general(struct domain_device
*dev
)
336 struct smp_resp
*rg_resp
;
340 rg_req
= alloc_smp_req(RG_REQ_SIZE
);
344 rg_resp
= alloc_smp_resp(RG_RESP_SIZE
);
350 rg_req
[1] = SMP_REPORT_GENERAL
;
352 for (i
= 0; i
< 5; i
++) {
353 res
= smp_execute_task(dev
, rg_req
, RG_REQ_SIZE
, rg_resp
,
357 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
358 SAS_ADDR(dev
->sas_addr
), res
);
360 } else if (rg_resp
->result
!= SMP_RESP_FUNC_ACC
) {
361 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
362 SAS_ADDR(dev
->sas_addr
), rg_resp
->result
);
363 res
= rg_resp
->result
;
367 ex_assign_report_general(dev
, rg_resp
);
369 if (dev
->ex_dev
.configuring
) {
370 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
371 SAS_ADDR(dev
->sas_addr
));
372 schedule_timeout_interruptible(5*HZ
);
382 static void ex_assign_manuf_info(struct domain_device
*dev
, void
385 u8
*mi_resp
= _mi_resp
;
386 struct sas_rphy
*rphy
= dev
->rphy
;
387 struct sas_expander_device
*edev
= rphy_to_expander_device(rphy
);
389 memcpy(edev
->vendor_id
, mi_resp
+ 12, SAS_EXPANDER_VENDOR_ID_LEN
);
390 memcpy(edev
->product_id
, mi_resp
+ 20, SAS_EXPANDER_PRODUCT_ID_LEN
);
391 memcpy(edev
->product_rev
, mi_resp
+ 36,
392 SAS_EXPANDER_PRODUCT_REV_LEN
);
394 if (mi_resp
[8] & 1) {
395 memcpy(edev
->component_vendor_id
, mi_resp
+ 40,
396 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN
);
397 edev
->component_id
= mi_resp
[48] << 8 | mi_resp
[49];
398 edev
->component_revision_id
= mi_resp
[50];
402 #define MI_REQ_SIZE 8
403 #define MI_RESP_SIZE 64
405 static int sas_ex_manuf_info(struct domain_device
*dev
)
411 mi_req
= alloc_smp_req(MI_REQ_SIZE
);
415 mi_resp
= alloc_smp_resp(MI_RESP_SIZE
);
421 mi_req
[1] = SMP_REPORT_MANUF_INFO
;
423 res
= smp_execute_task(dev
, mi_req
, MI_REQ_SIZE
, mi_resp
,MI_RESP_SIZE
);
425 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
426 SAS_ADDR(dev
->sas_addr
), res
);
428 } else if (mi_resp
[2] != SMP_RESP_FUNC_ACC
) {
429 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
430 SAS_ADDR(dev
->sas_addr
), mi_resp
[2]);
434 ex_assign_manuf_info(dev
, mi_resp
);
441 #define PC_REQ_SIZE 44
442 #define PC_RESP_SIZE 8
444 int sas_smp_phy_control(struct domain_device
*dev
, int phy_id
,
445 enum phy_func phy_func
,
446 struct sas_phy_linkrates
*rates
)
452 pc_req
= alloc_smp_req(PC_REQ_SIZE
);
456 pc_resp
= alloc_smp_resp(PC_RESP_SIZE
);
462 pc_req
[1] = SMP_PHY_CONTROL
;
464 pc_req
[10]= phy_func
;
466 pc_req
[32] = rates
->minimum_linkrate
<< 4;
467 pc_req
[33] = rates
->maximum_linkrate
<< 4;
470 res
= smp_execute_task(dev
, pc_req
, PC_REQ_SIZE
, pc_resp
,PC_RESP_SIZE
);
477 static void sas_ex_disable_phy(struct domain_device
*dev
, int phy_id
)
479 struct expander_device
*ex
= &dev
->ex_dev
;
480 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
482 sas_smp_phy_control(dev
, phy_id
, PHY_FUNC_DISABLE
, NULL
);
483 phy
->linkrate
= SAS_PHY_DISABLED
;
486 static void sas_ex_disable_port(struct domain_device
*dev
, u8
*sas_addr
)
488 struct expander_device
*ex
= &dev
->ex_dev
;
491 for (i
= 0; i
< ex
->num_phys
; i
++) {
492 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
494 if (phy
->phy_state
== PHY_VACANT
||
495 phy
->phy_state
== PHY_NOT_PRESENT
)
498 if (SAS_ADDR(phy
->attached_sas_addr
) == SAS_ADDR(sas_addr
))
499 sas_ex_disable_phy(dev
, i
);
503 static int sas_dev_present_in_domain(struct asd_sas_port
*port
,
506 struct domain_device
*dev
;
508 if (SAS_ADDR(port
->sas_addr
) == SAS_ADDR(sas_addr
))
510 list_for_each_entry(dev
, &port
->dev_list
, dev_list_node
) {
511 if (SAS_ADDR(dev
->sas_addr
) == SAS_ADDR(sas_addr
))
517 #define RPEL_REQ_SIZE 16
518 #define RPEL_RESP_SIZE 32
519 int sas_smp_get_phy_events(struct sas_phy
*phy
)
524 struct sas_rphy
*rphy
= dev_to_rphy(phy
->dev
.parent
);
525 struct domain_device
*dev
= sas_find_dev_by_rphy(rphy
);
527 req
= alloc_smp_req(RPEL_REQ_SIZE
);
531 resp
= alloc_smp_resp(RPEL_RESP_SIZE
);
537 req
[1] = SMP_REPORT_PHY_ERR_LOG
;
538 req
[9] = phy
->number
;
540 res
= smp_execute_task(dev
, req
, RPEL_REQ_SIZE
,
541 resp
, RPEL_RESP_SIZE
);
546 phy
->invalid_dword_count
= scsi_to_u32(&resp
[12]);
547 phy
->running_disparity_error_count
= scsi_to_u32(&resp
[16]);
548 phy
->loss_of_dword_sync_count
= scsi_to_u32(&resp
[20]);
549 phy
->phy_reset_problem_count
= scsi_to_u32(&resp
[24]);
557 #ifdef CONFIG_SCSI_SAS_ATA
559 #define RPS_REQ_SIZE 16
560 #define RPS_RESP_SIZE 60
562 static int sas_get_report_phy_sata(struct domain_device
*dev
,
564 struct smp_resp
*rps_resp
)
567 u8
*rps_req
= alloc_smp_req(RPS_REQ_SIZE
);
568 u8
*resp
= (u8
*)rps_resp
;
573 rps_req
[1] = SMP_REPORT_PHY_SATA
;
576 res
= smp_execute_task(dev
, rps_req
, RPS_REQ_SIZE
,
577 rps_resp
, RPS_RESP_SIZE
);
579 /* 0x34 is the FIS type for the D2H fis. There's a potential
580 * standards cockup here. sas-2 explicitly specifies the FIS
581 * should be encoded so that FIS type is in resp[24].
582 * However, some expanders endian reverse this. Undo the
584 if (!res
&& resp
[27] == 0x34 && resp
[24] != 0x34) {
587 for (i
= 0; i
< 5; i
++) {
592 resp
[j
+ 0] = resp
[j
+ 3];
593 resp
[j
+ 1] = resp
[j
+ 2];
604 static void sas_ex_get_linkrate(struct domain_device
*parent
,
605 struct domain_device
*child
,
606 struct ex_phy
*parent_phy
)
608 struct expander_device
*parent_ex
= &parent
->ex_dev
;
609 struct sas_port
*port
;
614 port
= parent_phy
->port
;
616 for (i
= 0; i
< parent_ex
->num_phys
; i
++) {
617 struct ex_phy
*phy
= &parent_ex
->ex_phy
[i
];
619 if (phy
->phy_state
== PHY_VACANT
||
620 phy
->phy_state
== PHY_NOT_PRESENT
)
623 if (SAS_ADDR(phy
->attached_sas_addr
) ==
624 SAS_ADDR(child
->sas_addr
)) {
626 child
->min_linkrate
= min(parent
->min_linkrate
,
628 child
->max_linkrate
= max(parent
->max_linkrate
,
631 sas_port_add_phy(port
, phy
->phy
);
634 child
->linkrate
= min(parent_phy
->linkrate
, child
->max_linkrate
);
635 child
->pathways
= min(child
->pathways
, parent
->pathways
);
638 static struct domain_device
*sas_ex_discover_end_dev(
639 struct domain_device
*parent
, int phy_id
)
641 struct expander_device
*parent_ex
= &parent
->ex_dev
;
642 struct ex_phy
*phy
= &parent_ex
->ex_phy
[phy_id
];
643 struct domain_device
*child
= NULL
;
644 struct sas_rphy
*rphy
;
647 if (phy
->attached_sata_host
|| phy
->attached_sata_ps
)
650 child
= kzalloc(sizeof(*child
), GFP_KERNEL
);
654 child
->parent
= parent
;
655 child
->port
= parent
->port
;
656 child
->iproto
= phy
->attached_iproto
;
657 memcpy(child
->sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
658 sas_hash_addr(child
->hashed_sas_addr
, child
->sas_addr
);
660 phy
->port
= sas_port_alloc(&parent
->rphy
->dev
, phy_id
);
661 if (unlikely(!phy
->port
))
663 if (unlikely(sas_port_add(phy
->port
) != 0)) {
664 sas_port_free(phy
->port
);
668 sas_ex_get_linkrate(parent
, child
, phy
);
670 #ifdef CONFIG_SCSI_SAS_ATA
671 if ((phy
->attached_tproto
& SAS_PROTOCOL_STP
) || phy
->attached_sata_dev
) {
672 child
->dev_type
= SATA_DEV
;
673 if (phy
->attached_tproto
& SAS_PROTOCOL_STP
)
674 child
->tproto
= phy
->attached_tproto
;
675 if (phy
->attached_sata_dev
)
676 child
->tproto
|= SATA_DEV
;
677 res
= sas_get_report_phy_sata(parent
, phy_id
,
678 &child
->sata_dev
.rps_resp
);
680 SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
681 "0x%x\n", SAS_ADDR(parent
->sas_addr
),
685 memcpy(child
->frame_rcvd
, &child
->sata_dev
.rps_resp
.rps
.fis
,
686 sizeof(struct dev_to_host_fis
));
688 rphy
= sas_end_device_alloc(phy
->port
);
696 spin_lock_irq(&parent
->port
->dev_list_lock
);
697 list_add_tail(&child
->dev_list_node
, &parent
->port
->dev_list
);
698 spin_unlock_irq(&parent
->port
->dev_list_lock
);
700 res
= sas_discover_sata(child
);
702 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
703 "%016llx:0x%x returned 0x%x\n",
704 SAS_ADDR(child
->sas_addr
),
705 SAS_ADDR(parent
->sas_addr
), phy_id
, res
);
710 if (phy
->attached_tproto
& SAS_PROTOCOL_SSP
) {
711 child
->dev_type
= SAS_END_DEV
;
712 rphy
= sas_end_device_alloc(phy
->port
);
713 /* FIXME: error handling */
716 child
->tproto
= phy
->attached_tproto
;
720 sas_fill_in_rphy(child
, rphy
);
722 spin_lock_irq(&parent
->port
->dev_list_lock
);
723 list_add_tail(&child
->dev_list_node
, &parent
->port
->dev_list
);
724 spin_unlock_irq(&parent
->port
->dev_list_lock
);
726 res
= sas_discover_end_dev(child
);
728 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
729 "at %016llx:0x%x returned 0x%x\n",
730 SAS_ADDR(child
->sas_addr
),
731 SAS_ADDR(parent
->sas_addr
), phy_id
, res
);
735 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
736 phy
->attached_tproto
, SAS_ADDR(parent
->sas_addr
),
741 list_add_tail(&child
->siblings
, &parent_ex
->children
);
745 sas_rphy_free(child
->rphy
);
747 list_del(&child
->dev_list_node
);
749 sas_port_delete(phy
->port
);
756 /* See if this phy is part of a wide port */
757 static bool sas_ex_join_wide_port(struct domain_device
*parent
, int phy_id
)
759 struct ex_phy
*phy
= &parent
->ex_dev
.ex_phy
[phy_id
];
762 for (i
= 0; i
< parent
->ex_dev
.num_phys
; i
++) {
763 struct ex_phy
*ephy
= &parent
->ex_dev
.ex_phy
[i
];
768 if (!memcmp(phy
->attached_sas_addr
, ephy
->attached_sas_addr
,
769 SAS_ADDR_SIZE
) && ephy
->port
) {
770 sas_port_add_phy(ephy
->port
, phy
->phy
);
771 phy
->port
= ephy
->port
;
772 phy
->phy_state
= PHY_DEVICE_DISCOVERED
;
780 static struct domain_device
*sas_ex_discover_expander(
781 struct domain_device
*parent
, int phy_id
)
783 struct sas_expander_device
*parent_ex
= rphy_to_expander_device(parent
->rphy
);
784 struct ex_phy
*phy
= &parent
->ex_dev
.ex_phy
[phy_id
];
785 struct domain_device
*child
= NULL
;
786 struct sas_rphy
*rphy
;
787 struct sas_expander_device
*edev
;
788 struct asd_sas_port
*port
;
791 if (phy
->routing_attr
== DIRECT_ROUTING
) {
792 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
794 SAS_ADDR(parent
->sas_addr
), phy_id
,
795 SAS_ADDR(phy
->attached_sas_addr
),
796 phy
->attached_phy_id
);
799 child
= kzalloc(sizeof(*child
), GFP_KERNEL
);
803 phy
->port
= sas_port_alloc(&parent
->rphy
->dev
, phy_id
);
804 /* FIXME: better error handling */
805 BUG_ON(sas_port_add(phy
->port
) != 0);
808 switch (phy
->attached_dev_type
) {
810 rphy
= sas_expander_alloc(phy
->port
,
811 SAS_EDGE_EXPANDER_DEVICE
);
814 rphy
= sas_expander_alloc(phy
->port
,
815 SAS_FANOUT_EXPANDER_DEVICE
);
818 rphy
= NULL
; /* shut gcc up */
823 edev
= rphy_to_expander_device(rphy
);
824 child
->dev_type
= phy
->attached_dev_type
;
825 child
->parent
= parent
;
827 child
->iproto
= phy
->attached_iproto
;
828 child
->tproto
= phy
->attached_tproto
;
829 memcpy(child
->sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
830 sas_hash_addr(child
->hashed_sas_addr
, child
->sas_addr
);
831 sas_ex_get_linkrate(parent
, child
, phy
);
832 edev
->level
= parent_ex
->level
+ 1;
833 parent
->port
->disc
.max_level
= max(parent
->port
->disc
.max_level
,
836 sas_fill_in_rphy(child
, rphy
);
839 spin_lock_irq(&parent
->port
->dev_list_lock
);
840 list_add_tail(&child
->dev_list_node
, &parent
->port
->dev_list
);
841 spin_unlock_irq(&parent
->port
->dev_list_lock
);
843 res
= sas_discover_expander(child
);
845 spin_lock_irq(&parent
->port
->dev_list_lock
);
846 list_del(&child
->dev_list_node
);
847 spin_unlock_irq(&parent
->port
->dev_list_lock
);
851 list_add_tail(&child
->siblings
, &parent
->ex_dev
.children
);
855 static int sas_ex_discover_dev(struct domain_device
*dev
, int phy_id
)
857 struct expander_device
*ex
= &dev
->ex_dev
;
858 struct ex_phy
*ex_phy
= &ex
->ex_phy
[phy_id
];
859 struct domain_device
*child
= NULL
;
863 if (ex_phy
->linkrate
== SAS_SATA_SPINUP_HOLD
) {
864 if (!sas_smp_phy_control(dev
, phy_id
, PHY_FUNC_LINK_RESET
, NULL
))
865 res
= sas_ex_phy_discover(dev
, phy_id
);
870 /* Parent and domain coherency */
871 if (!dev
->parent
&& (SAS_ADDR(ex_phy
->attached_sas_addr
) ==
872 SAS_ADDR(dev
->port
->sas_addr
))) {
873 sas_add_parent_port(dev
, phy_id
);
876 if (dev
->parent
&& (SAS_ADDR(ex_phy
->attached_sas_addr
) ==
877 SAS_ADDR(dev
->parent
->sas_addr
))) {
878 sas_add_parent_port(dev
, phy_id
);
879 if (ex_phy
->routing_attr
== TABLE_ROUTING
)
880 sas_configure_phy(dev
, phy_id
, dev
->port
->sas_addr
, 1);
884 if (sas_dev_present_in_domain(dev
->port
, ex_phy
->attached_sas_addr
))
885 sas_ex_disable_port(dev
, ex_phy
->attached_sas_addr
);
887 if (ex_phy
->attached_dev_type
== NO_DEVICE
) {
888 if (ex_phy
->routing_attr
== DIRECT_ROUTING
) {
889 memset(ex_phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
890 sas_configure_routing(dev
, ex_phy
->attached_sas_addr
);
893 } else if (ex_phy
->linkrate
== SAS_LINK_RATE_UNKNOWN
)
896 if (ex_phy
->attached_dev_type
!= SAS_END_DEV
&&
897 ex_phy
->attached_dev_type
!= FANOUT_DEV
&&
898 ex_phy
->attached_dev_type
!= EDGE_DEV
) {
899 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
900 "phy 0x%x\n", ex_phy
->attached_dev_type
,
901 SAS_ADDR(dev
->sas_addr
),
906 res
= sas_configure_routing(dev
, ex_phy
->attached_sas_addr
);
908 SAS_DPRINTK("configure routing for dev %016llx "
909 "reported 0x%x. Forgotten\n",
910 SAS_ADDR(ex_phy
->attached_sas_addr
), res
);
911 sas_disable_routing(dev
, ex_phy
->attached_sas_addr
);
915 if (sas_ex_join_wide_port(dev
, phy_id
)) {
916 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
917 phy_id
, SAS_ADDR(ex_phy
->attached_sas_addr
));
921 switch (ex_phy
->attached_dev_type
) {
923 child
= sas_ex_discover_end_dev(dev
, phy_id
);
926 if (SAS_ADDR(dev
->port
->disc
.fanout_sas_addr
)) {
927 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
928 "attached to ex %016llx phy 0x%x\n",
929 SAS_ADDR(ex_phy
->attached_sas_addr
),
930 ex_phy
->attached_phy_id
,
931 SAS_ADDR(dev
->sas_addr
),
933 sas_ex_disable_phy(dev
, phy_id
);
936 memcpy(dev
->port
->disc
.fanout_sas_addr
,
937 ex_phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
940 child
= sas_ex_discover_expander(dev
, phy_id
);
949 for (i
= 0; i
< ex
->num_phys
; i
++) {
950 if (ex
->ex_phy
[i
].phy_state
== PHY_VACANT
||
951 ex
->ex_phy
[i
].phy_state
== PHY_NOT_PRESENT
)
954 * Due to races, the phy might not get added to the
955 * wide port, so we add the phy to the wide port here.
957 if (SAS_ADDR(ex
->ex_phy
[i
].attached_sas_addr
) ==
958 SAS_ADDR(child
->sas_addr
)) {
959 ex
->ex_phy
[i
].phy_state
= PHY_DEVICE_DISCOVERED
;
960 if (sas_ex_join_wide_port(dev
, i
))
961 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
962 i
, SAS_ADDR(ex
->ex_phy
[i
].attached_sas_addr
));
971 static int sas_find_sub_addr(struct domain_device
*dev
, u8
*sub_addr
)
973 struct expander_device
*ex
= &dev
->ex_dev
;
976 for (i
= 0; i
< ex
->num_phys
; i
++) {
977 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
979 if (phy
->phy_state
== PHY_VACANT
||
980 phy
->phy_state
== PHY_NOT_PRESENT
)
983 if ((phy
->attached_dev_type
== EDGE_DEV
||
984 phy
->attached_dev_type
== FANOUT_DEV
) &&
985 phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
987 memcpy(sub_addr
, phy
->attached_sas_addr
,SAS_ADDR_SIZE
);
995 static int sas_check_level_subtractive_boundary(struct domain_device
*dev
)
997 struct expander_device
*ex
= &dev
->ex_dev
;
998 struct domain_device
*child
;
999 u8 sub_addr
[8] = {0, };
1001 list_for_each_entry(child
, &ex
->children
, siblings
) {
1002 if (child
->dev_type
!= EDGE_DEV
&&
1003 child
->dev_type
!= FANOUT_DEV
)
1005 if (sub_addr
[0] == 0) {
1006 sas_find_sub_addr(child
, sub_addr
);
1011 if (sas_find_sub_addr(child
, s2
) &&
1012 (SAS_ADDR(sub_addr
) != SAS_ADDR(s2
))) {
1014 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1015 "diverges from subtractive "
1016 "boundary %016llx\n",
1017 SAS_ADDR(dev
->sas_addr
),
1018 SAS_ADDR(child
->sas_addr
),
1020 SAS_ADDR(sub_addr
));
1022 sas_ex_disable_port(child
, s2
);
1029 * sas_ex_discover_devices -- discover devices attached to this expander
1030 * dev: pointer to the expander domain device
1031 * single: if you want to do a single phy, else set to -1;
1033 * Configure this expander for use with its devices and register the
1034 * devices of this expander.
1036 static int sas_ex_discover_devices(struct domain_device
*dev
, int single
)
1038 struct expander_device
*ex
= &dev
->ex_dev
;
1039 int i
= 0, end
= ex
->num_phys
;
1042 if (0 <= single
&& single
< end
) {
1047 for ( ; i
< end
; i
++) {
1048 struct ex_phy
*ex_phy
= &ex
->ex_phy
[i
];
1050 if (ex_phy
->phy_state
== PHY_VACANT
||
1051 ex_phy
->phy_state
== PHY_NOT_PRESENT
||
1052 ex_phy
->phy_state
== PHY_DEVICE_DISCOVERED
)
1055 switch (ex_phy
->linkrate
) {
1056 case SAS_PHY_DISABLED
:
1057 case SAS_PHY_RESET_PROBLEM
:
1058 case SAS_SATA_PORT_SELECTOR
:
1061 res
= sas_ex_discover_dev(dev
, i
);
1069 sas_check_level_subtractive_boundary(dev
);
1074 static int sas_check_ex_subtractive_boundary(struct domain_device
*dev
)
1076 struct expander_device
*ex
= &dev
->ex_dev
;
1078 u8
*sub_sas_addr
= NULL
;
1080 if (dev
->dev_type
!= EDGE_DEV
)
1083 for (i
= 0; i
< ex
->num_phys
; i
++) {
1084 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
1086 if (phy
->phy_state
== PHY_VACANT
||
1087 phy
->phy_state
== PHY_NOT_PRESENT
)
1090 if ((phy
->attached_dev_type
== FANOUT_DEV
||
1091 phy
->attached_dev_type
== EDGE_DEV
) &&
1092 phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1095 sub_sas_addr
= &phy
->attached_sas_addr
[0];
1096 else if (SAS_ADDR(sub_sas_addr
) !=
1097 SAS_ADDR(phy
->attached_sas_addr
)) {
1099 SAS_DPRINTK("ex %016llx phy 0x%x "
1100 "diverges(%016llx) on subtractive "
1101 "boundary(%016llx). Disabled\n",
1102 SAS_ADDR(dev
->sas_addr
), i
,
1103 SAS_ADDR(phy
->attached_sas_addr
),
1104 SAS_ADDR(sub_sas_addr
));
1105 sas_ex_disable_phy(dev
, i
);
1112 static void sas_print_parent_topology_bug(struct domain_device
*child
,
1113 struct ex_phy
*parent_phy
,
1114 struct ex_phy
*child_phy
)
1116 static const char ra_char
[] = {
1117 [DIRECT_ROUTING
] = 'D',
1118 [SUBTRACTIVE_ROUTING
] = 'S',
1119 [TABLE_ROUTING
] = 'T',
1121 static const char *ex_type
[] = {
1122 [EDGE_DEV
] = "edge",
1123 [FANOUT_DEV
] = "fanout",
1125 struct domain_device
*parent
= child
->parent
;
1127 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1128 "has %c:%c routing link!\n",
1130 ex_type
[parent
->dev_type
],
1131 SAS_ADDR(parent
->sas_addr
),
1134 ex_type
[child
->dev_type
],
1135 SAS_ADDR(child
->sas_addr
),
1138 ra_char
[parent_phy
->routing_attr
],
1139 ra_char
[child_phy
->routing_attr
]);
1142 static int sas_check_eeds(struct domain_device
*child
,
1143 struct ex_phy
*parent_phy
,
1144 struct ex_phy
*child_phy
)
1147 struct domain_device
*parent
= child
->parent
;
1149 if (SAS_ADDR(parent
->port
->disc
.fanout_sas_addr
) != 0) {
1151 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1152 "phy S:0x%x, while there is a fanout ex %016llx\n",
1153 SAS_ADDR(parent
->sas_addr
),
1155 SAS_ADDR(child
->sas_addr
),
1157 SAS_ADDR(parent
->port
->disc
.fanout_sas_addr
));
1158 } else if (SAS_ADDR(parent
->port
->disc
.eeds_a
) == 0) {
1159 memcpy(parent
->port
->disc
.eeds_a
, parent
->sas_addr
,
1161 memcpy(parent
->port
->disc
.eeds_b
, child
->sas_addr
,
1163 } else if (((SAS_ADDR(parent
->port
->disc
.eeds_a
) ==
1164 SAS_ADDR(parent
->sas_addr
)) ||
1165 (SAS_ADDR(parent
->port
->disc
.eeds_a
) ==
1166 SAS_ADDR(child
->sas_addr
)))
1168 ((SAS_ADDR(parent
->port
->disc
.eeds_b
) ==
1169 SAS_ADDR(parent
->sas_addr
)) ||
1170 (SAS_ADDR(parent
->port
->disc
.eeds_b
) ==
1171 SAS_ADDR(child
->sas_addr
))))
1175 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1176 "phy 0x%x link forms a third EEDS!\n",
1177 SAS_ADDR(parent
->sas_addr
),
1179 SAS_ADDR(child
->sas_addr
),
1186 /* Here we spill over 80 columns. It is intentional.
1188 static int sas_check_parent_topology(struct domain_device
*child
)
1190 struct expander_device
*child_ex
= &child
->ex_dev
;
1191 struct expander_device
*parent_ex
;
1198 if (child
->parent
->dev_type
!= EDGE_DEV
&&
1199 child
->parent
->dev_type
!= FANOUT_DEV
)
1202 parent_ex
= &child
->parent
->ex_dev
;
1204 for (i
= 0; i
< parent_ex
->num_phys
; i
++) {
1205 struct ex_phy
*parent_phy
= &parent_ex
->ex_phy
[i
];
1206 struct ex_phy
*child_phy
;
1208 if (parent_phy
->phy_state
== PHY_VACANT
||
1209 parent_phy
->phy_state
== PHY_NOT_PRESENT
)
1212 if (SAS_ADDR(parent_phy
->attached_sas_addr
) != SAS_ADDR(child
->sas_addr
))
1215 child_phy
= &child_ex
->ex_phy
[parent_phy
->attached_phy_id
];
1217 switch (child
->parent
->dev_type
) {
1219 if (child
->dev_type
== FANOUT_DEV
) {
1220 if (parent_phy
->routing_attr
!= SUBTRACTIVE_ROUTING
||
1221 child_phy
->routing_attr
!= TABLE_ROUTING
) {
1222 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1225 } else if (parent_phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1226 if (child_phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1227 res
= sas_check_eeds(child
, parent_phy
, child_phy
);
1228 } else if (child_phy
->routing_attr
!= TABLE_ROUTING
) {
1229 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1232 } else if (parent_phy
->routing_attr
== TABLE_ROUTING
&&
1233 child_phy
->routing_attr
!= SUBTRACTIVE_ROUTING
) {
1234 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1239 if (parent_phy
->routing_attr
!= TABLE_ROUTING
||
1240 child_phy
->routing_attr
!= SUBTRACTIVE_ROUTING
) {
1241 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1253 #define RRI_REQ_SIZE 16
1254 #define RRI_RESP_SIZE 44
1256 static int sas_configure_present(struct domain_device
*dev
, int phy_id
,
1257 u8
*sas_addr
, int *index
, int *present
)
1260 struct expander_device
*ex
= &dev
->ex_dev
;
1261 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
1268 rri_req
= alloc_smp_req(RRI_REQ_SIZE
);
1272 rri_resp
= alloc_smp_resp(RRI_RESP_SIZE
);
1278 rri_req
[1] = SMP_REPORT_ROUTE_INFO
;
1279 rri_req
[9] = phy_id
;
1281 for (i
= 0; i
< ex
->max_route_indexes
; i
++) {
1282 *(__be16
*)(rri_req
+6) = cpu_to_be16(i
);
1283 res
= smp_execute_task(dev
, rri_req
, RRI_REQ_SIZE
, rri_resp
,
1288 if (res
== SMP_RESP_NO_INDEX
) {
1289 SAS_DPRINTK("overflow of indexes: dev %016llx "
1290 "phy 0x%x index 0x%x\n",
1291 SAS_ADDR(dev
->sas_addr
), phy_id
, i
);
1293 } else if (res
!= SMP_RESP_FUNC_ACC
) {
1294 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1295 "result 0x%x\n", __func__
,
1296 SAS_ADDR(dev
->sas_addr
), phy_id
, i
, res
);
1299 if (SAS_ADDR(sas_addr
) != 0) {
1300 if (SAS_ADDR(rri_resp
+16) == SAS_ADDR(sas_addr
)) {
1302 if ((rri_resp
[12] & 0x80) == 0x80)
1307 } else if (SAS_ADDR(rri_resp
+16) == 0) {
1312 } else if (SAS_ADDR(rri_resp
+16) == 0 &&
1313 phy
->last_da_index
< i
) {
1314 phy
->last_da_index
= i
;
1327 #define CRI_REQ_SIZE 44
1328 #define CRI_RESP_SIZE 8
1330 static int sas_configure_set(struct domain_device
*dev
, int phy_id
,
1331 u8
*sas_addr
, int index
, int include
)
1337 cri_req
= alloc_smp_req(CRI_REQ_SIZE
);
1341 cri_resp
= alloc_smp_resp(CRI_RESP_SIZE
);
1347 cri_req
[1] = SMP_CONF_ROUTE_INFO
;
1348 *(__be16
*)(cri_req
+6) = cpu_to_be16(index
);
1349 cri_req
[9] = phy_id
;
1350 if (SAS_ADDR(sas_addr
) == 0 || !include
)
1351 cri_req
[12] |= 0x80;
1352 memcpy(cri_req
+16, sas_addr
, SAS_ADDR_SIZE
);
1354 res
= smp_execute_task(dev
, cri_req
, CRI_REQ_SIZE
, cri_resp
,
1359 if (res
== SMP_RESP_NO_INDEX
) {
1360 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1362 SAS_ADDR(dev
->sas_addr
), phy_id
, index
);
1370 static int sas_configure_phy(struct domain_device
*dev
, int phy_id
,
1371 u8
*sas_addr
, int include
)
1377 res
= sas_configure_present(dev
, phy_id
, sas_addr
, &index
, &present
);
1380 if (include
^ present
)
1381 return sas_configure_set(dev
, phy_id
, sas_addr
, index
,include
);
1387 * sas_configure_parent -- configure routing table of parent
1388 * parent: parent expander
1389 * child: child expander
1390 * sas_addr: SAS port identifier of device directly attached to child
1392 static int sas_configure_parent(struct domain_device
*parent
,
1393 struct domain_device
*child
,
1394 u8
*sas_addr
, int include
)
1396 struct expander_device
*ex_parent
= &parent
->ex_dev
;
1400 if (parent
->parent
) {
1401 res
= sas_configure_parent(parent
->parent
, parent
, sas_addr
,
1407 if (ex_parent
->conf_route_table
== 0) {
1408 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1409 SAS_ADDR(parent
->sas_addr
));
1413 for (i
= 0; i
< ex_parent
->num_phys
; i
++) {
1414 struct ex_phy
*phy
= &ex_parent
->ex_phy
[i
];
1416 if ((phy
->routing_attr
== TABLE_ROUTING
) &&
1417 (SAS_ADDR(phy
->attached_sas_addr
) ==
1418 SAS_ADDR(child
->sas_addr
))) {
1419 res
= sas_configure_phy(parent
, i
, sas_addr
, include
);
1429 * sas_configure_routing -- configure routing
1430 * dev: expander device
1431 * sas_addr: port identifier of device directly attached to the expander device
1433 static int sas_configure_routing(struct domain_device
*dev
, u8
*sas_addr
)
1436 return sas_configure_parent(dev
->parent
, dev
, sas_addr
, 1);
1440 static int sas_disable_routing(struct domain_device
*dev
, u8
*sas_addr
)
1443 return sas_configure_parent(dev
->parent
, dev
, sas_addr
, 0);
1448 * sas_discover_expander -- expander discovery
1449 * @ex: pointer to expander domain device
1451 * See comment in sas_discover_sata().
1453 static int sas_discover_expander(struct domain_device
*dev
)
1457 res
= sas_notify_lldd_dev_found(dev
);
1461 res
= sas_ex_general(dev
);
1464 res
= sas_ex_manuf_info(dev
);
1468 res
= sas_expander_discover(dev
);
1470 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1471 SAS_ADDR(dev
->sas_addr
), res
);
1475 sas_check_ex_subtractive_boundary(dev
);
1476 res
= sas_check_parent_topology(dev
);
1481 sas_notify_lldd_dev_gone(dev
);
1485 static int sas_ex_level_discovery(struct asd_sas_port
*port
, const int level
)
1488 struct domain_device
*dev
;
1490 list_for_each_entry(dev
, &port
->dev_list
, dev_list_node
) {
1491 if (dev
->dev_type
== EDGE_DEV
||
1492 dev
->dev_type
== FANOUT_DEV
) {
1493 struct sas_expander_device
*ex
=
1494 rphy_to_expander_device(dev
->rphy
);
1496 if (level
== ex
->level
)
1497 res
= sas_ex_discover_devices(dev
, -1);
1499 res
= sas_ex_discover_devices(port
->port_dev
, -1);
1507 static int sas_ex_bfs_disc(struct asd_sas_port
*port
)
1513 level
= port
->disc
.max_level
;
1514 res
= sas_ex_level_discovery(port
, level
);
1516 } while (level
< port
->disc
.max_level
);
1521 int sas_discover_root_expander(struct domain_device
*dev
)
1524 struct sas_expander_device
*ex
= rphy_to_expander_device(dev
->rphy
);
1526 res
= sas_rphy_add(dev
->rphy
);
1530 ex
->level
= dev
->port
->disc
.max_level
; /* 0 */
1531 res
= sas_discover_expander(dev
);
1535 sas_ex_bfs_disc(dev
->port
);
1540 sas_rphy_remove(dev
->rphy
);
1545 /* ---------- Domain revalidation ---------- */
1547 static int sas_get_phy_discover(struct domain_device
*dev
,
1548 int phy_id
, struct smp_resp
*disc_resp
)
1553 disc_req
= alloc_smp_req(DISCOVER_REQ_SIZE
);
1557 disc_req
[1] = SMP_DISCOVER
;
1558 disc_req
[9] = phy_id
;
1560 res
= smp_execute_task(dev
, disc_req
, DISCOVER_REQ_SIZE
,
1561 disc_resp
, DISCOVER_RESP_SIZE
);
1564 else if (disc_resp
->result
!= SMP_RESP_FUNC_ACC
) {
1565 res
= disc_resp
->result
;
1573 static int sas_get_phy_change_count(struct domain_device
*dev
,
1574 int phy_id
, int *pcc
)
1577 struct smp_resp
*disc_resp
;
1579 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
1583 res
= sas_get_phy_discover(dev
, phy_id
, disc_resp
);
1585 *pcc
= disc_resp
->disc
.change_count
;
1591 static int sas_get_phy_attached_sas_addr(struct domain_device
*dev
,
1592 int phy_id
, u8
*attached_sas_addr
)
1595 struct smp_resp
*disc_resp
;
1596 struct discover_resp
*dr
;
1598 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
1601 dr
= &disc_resp
->disc
;
1603 res
= sas_get_phy_discover(dev
, phy_id
, disc_resp
);
1605 memcpy(attached_sas_addr
,disc_resp
->disc
.attached_sas_addr
,8);
1606 if (dr
->attached_dev_type
== 0)
1607 memset(attached_sas_addr
, 0, 8);
1613 static int sas_find_bcast_phy(struct domain_device
*dev
, int *phy_id
,
1614 int from_phy
, bool update
)
1616 struct expander_device
*ex
= &dev
->ex_dev
;
1620 for (i
= from_phy
; i
< ex
->num_phys
; i
++) {
1621 int phy_change_count
= 0;
1623 res
= sas_get_phy_change_count(dev
, i
, &phy_change_count
);
1626 else if (phy_change_count
!= ex
->ex_phy
[i
].phy_change_count
) {
1628 ex
->ex_phy
[i
].phy_change_count
=
1638 static int sas_get_ex_change_count(struct domain_device
*dev
, int *ecc
)
1642 struct smp_resp
*rg_resp
;
1644 rg_req
= alloc_smp_req(RG_REQ_SIZE
);
1648 rg_resp
= alloc_smp_resp(RG_RESP_SIZE
);
1654 rg_req
[1] = SMP_REPORT_GENERAL
;
1656 res
= smp_execute_task(dev
, rg_req
, RG_REQ_SIZE
, rg_resp
,
1660 if (rg_resp
->result
!= SMP_RESP_FUNC_ACC
) {
1661 res
= rg_resp
->result
;
1665 *ecc
= be16_to_cpu(rg_resp
->rg
.change_count
);
1672 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1673 * @dev:domain device to be detect.
1674 * @src_dev: the device which originated BROADCAST(CHANGE).
1676 * Add self-configuration expander suport. Suppose two expander cascading,
1677 * when the first level expander is self-configuring, hotplug the disks in
1678 * second level expander, BROADCAST(CHANGE) will not only be originated
1679 * in the second level expander, but also be originated in the first level
1680 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1681 * expander changed count in two level expanders will all increment at least
1682 * once, but the phy which chang count has changed is the source device which
1686 static int sas_find_bcast_dev(struct domain_device
*dev
,
1687 struct domain_device
**src_dev
)
1689 struct expander_device
*ex
= &dev
->ex_dev
;
1690 int ex_change_count
= -1;
1693 struct domain_device
*ch
;
1695 res
= sas_get_ex_change_count(dev
, &ex_change_count
);
1698 if (ex_change_count
!= -1 && ex_change_count
!= ex
->ex_change_count
) {
1699 /* Just detect if this expander phys phy change count changed,
1700 * in order to determine if this expander originate BROADCAST,
1701 * and do not update phy change count field in our structure.
1703 res
= sas_find_bcast_phy(dev
, &phy_id
, 0, false);
1706 ex
->ex_change_count
= ex_change_count
;
1707 SAS_DPRINTK("Expander phy change count has changed\n");
1710 SAS_DPRINTK("Expander phys DID NOT change\n");
1712 list_for_each_entry(ch
, &ex
->children
, siblings
) {
1713 if (ch
->dev_type
== EDGE_DEV
|| ch
->dev_type
== FANOUT_DEV
) {
1714 res
= sas_find_bcast_dev(ch
, src_dev
);
1723 static void sas_unregister_ex_tree(struct domain_device
*dev
)
1725 struct expander_device
*ex
= &dev
->ex_dev
;
1726 struct domain_device
*child
, *n
;
1728 list_for_each_entry_safe(child
, n
, &ex
->children
, siblings
) {
1729 if (child
->dev_type
== EDGE_DEV
||
1730 child
->dev_type
== FANOUT_DEV
)
1731 sas_unregister_ex_tree(child
);
1733 sas_unregister_dev(child
);
1735 sas_unregister_dev(dev
);
1738 static void sas_unregister_devs_sas_addr(struct domain_device
*parent
,
1739 int phy_id
, bool last
)
1741 struct expander_device
*ex_dev
= &parent
->ex_dev
;
1742 struct ex_phy
*phy
= &ex_dev
->ex_phy
[phy_id
];
1743 struct domain_device
*child
, *n
;
1745 list_for_each_entry_safe(child
, n
,
1746 &ex_dev
->children
, siblings
) {
1747 if (SAS_ADDR(child
->sas_addr
) ==
1748 SAS_ADDR(phy
->attached_sas_addr
)) {
1749 if (child
->dev_type
== EDGE_DEV
||
1750 child
->dev_type
== FANOUT_DEV
)
1751 sas_unregister_ex_tree(child
);
1753 sas_unregister_dev(child
);
1757 sas_disable_routing(parent
, phy
->attached_sas_addr
);
1759 memset(phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
1761 sas_port_delete_phy(phy
->port
, phy
->phy
);
1762 if (phy
->port
->num_phys
== 0)
1763 sas_port_delete(phy
->port
);
1768 static int sas_discover_bfs_by_root_level(struct domain_device
*root
,
1771 struct expander_device
*ex_root
= &root
->ex_dev
;
1772 struct domain_device
*child
;
1775 list_for_each_entry(child
, &ex_root
->children
, siblings
) {
1776 if (child
->dev_type
== EDGE_DEV
||
1777 child
->dev_type
== FANOUT_DEV
) {
1778 struct sas_expander_device
*ex
=
1779 rphy_to_expander_device(child
->rphy
);
1781 if (level
> ex
->level
)
1782 res
= sas_discover_bfs_by_root_level(child
,
1784 else if (level
== ex
->level
)
1785 res
= sas_ex_discover_devices(child
, -1);
1791 static int sas_discover_bfs_by_root(struct domain_device
*dev
)
1794 struct sas_expander_device
*ex
= rphy_to_expander_device(dev
->rphy
);
1795 int level
= ex
->level
+1;
1797 res
= sas_ex_discover_devices(dev
, -1);
1801 res
= sas_discover_bfs_by_root_level(dev
, level
);
1804 } while (level
<= dev
->port
->disc
.max_level
);
1809 static int sas_discover_new(struct domain_device
*dev
, int phy_id
)
1811 struct ex_phy
*ex_phy
= &dev
->ex_dev
.ex_phy
[phy_id
];
1812 struct domain_device
*child
;
1815 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1816 SAS_ADDR(dev
->sas_addr
), phy_id
);
1817 res
= sas_ex_phy_discover(dev
, phy_id
);
1821 if (sas_ex_join_wide_port(dev
, phy_id
))
1824 res
= sas_ex_discover_devices(dev
, phy_id
);
1827 list_for_each_entry(child
, &dev
->ex_dev
.children
, siblings
) {
1828 if (SAS_ADDR(child
->sas_addr
) ==
1829 SAS_ADDR(ex_phy
->attached_sas_addr
)) {
1830 if (child
->dev_type
== EDGE_DEV
||
1831 child
->dev_type
== FANOUT_DEV
)
1832 res
= sas_discover_bfs_by_root(child
);
1839 static int sas_rediscover_dev(struct domain_device
*dev
, int phy_id
, bool last
)
1841 struct expander_device
*ex
= &dev
->ex_dev
;
1842 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
1843 u8 attached_sas_addr
[8];
1846 res
= sas_get_phy_attached_sas_addr(dev
, phy_id
, attached_sas_addr
);
1848 case SMP_RESP_NO_PHY
:
1849 phy
->phy_state
= PHY_NOT_PRESENT
;
1850 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
1852 case SMP_RESP_PHY_VACANT
:
1853 phy
->phy_state
= PHY_VACANT
;
1854 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
1856 case SMP_RESP_FUNC_ACC
:
1860 if (SAS_ADDR(attached_sas_addr
) == 0) {
1861 phy
->phy_state
= PHY_EMPTY
;
1862 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
1863 } else if (SAS_ADDR(attached_sas_addr
) ==
1864 SAS_ADDR(phy
->attached_sas_addr
)) {
1865 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1866 SAS_ADDR(dev
->sas_addr
), phy_id
);
1867 sas_ex_phy_discover(dev
, phy_id
);
1869 res
= sas_discover_new(dev
, phy_id
);
1875 * sas_rediscover - revalidate the domain.
1876 * @dev:domain device to be detect.
1877 * @phy_id: the phy id will be detected.
1879 * NOTE: this process _must_ quit (return) as soon as any connection
1880 * errors are encountered. Connection recovery is done elsewhere.
1881 * Discover process only interrogates devices in order to discover the
1882 * domain.For plugging out, we un-register the device only when it is
1883 * the last phy in the port, for other phys in this port, we just delete it
1884 * from the port.For inserting, we do discovery when it is the
1885 * first phy,for other phys in this port, we add it to the port to
1886 * forming the wide-port.
1888 static int sas_rediscover(struct domain_device
*dev
, const int phy_id
)
1890 struct expander_device
*ex
= &dev
->ex_dev
;
1891 struct ex_phy
*changed_phy
= &ex
->ex_phy
[phy_id
];
1894 bool last
= true; /* is this the last phy of the port */
1896 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1897 SAS_ADDR(dev
->sas_addr
), phy_id
);
1899 if (SAS_ADDR(changed_phy
->attached_sas_addr
) != 0) {
1900 for (i
= 0; i
< ex
->num_phys
; i
++) {
1901 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
1905 if (SAS_ADDR(phy
->attached_sas_addr
) ==
1906 SAS_ADDR(changed_phy
->attached_sas_addr
)) {
1907 SAS_DPRINTK("phy%d part of wide port with "
1908 "phy%d\n", phy_id
, i
);
1913 res
= sas_rediscover_dev(dev
, phy_id
, last
);
1915 res
= sas_discover_new(dev
, phy_id
);
1920 * sas_revalidate_domain -- revalidate the domain
1921 * @port: port to the domain of interest
1923 * NOTE: this process _must_ quit (return) as soon as any connection
1924 * errors are encountered. Connection recovery is done elsewhere.
1925 * Discover process only interrogates devices in order to discover the
1928 int sas_ex_revalidate_domain(struct domain_device
*port_dev
)
1931 struct domain_device
*dev
= NULL
;
1933 res
= sas_find_bcast_dev(port_dev
, &dev
);
1934 while (res
== 0 && dev
) {
1935 struct expander_device
*ex
= &dev
->ex_dev
;
1940 res
= sas_find_bcast_phy(dev
, &phy_id
, i
, true);
1943 res
= sas_rediscover(dev
, phy_id
);
1945 } while (i
< ex
->num_phys
);
1948 res
= sas_find_bcast_dev(port_dev
, &dev
);
1953 int sas_smp_handler(struct Scsi_Host
*shost
, struct sas_rphy
*rphy
,
1954 struct request
*req
)
1956 struct domain_device
*dev
;
1958 struct request
*rsp
= req
->next_rq
;
1961 printk("%s: space for a smp response is missing\n",
1966 /* no rphy means no smp target support (ie aic94xx host) */
1968 return sas_smp_host_handler(shost
, req
, rsp
);
1970 type
= rphy
->identify
.device_type
;
1972 if (type
!= SAS_EDGE_EXPANDER_DEVICE
&&
1973 type
!= SAS_FANOUT_EXPANDER_DEVICE
) {
1974 printk("%s: can we send a smp request to a device?\n",
1979 dev
= sas_find_dev_by_rphy(rphy
);
1981 printk("%s: fail to find a domain_device?\n", __func__
);
1985 /* do we need to support multiple segments? */
1986 if (req
->bio
->bi_vcnt
> 1 || rsp
->bio
->bi_vcnt
> 1) {
1987 printk("%s: multiple segments req %u %u, rsp %u %u\n",
1988 __func__
, req
->bio
->bi_vcnt
, blk_rq_bytes(req
),
1989 rsp
->bio
->bi_vcnt
, blk_rq_bytes(rsp
));
1993 ret
= smp_execute_task(dev
, bio_data(req
->bio
), blk_rq_bytes(req
),
1994 bio_data(rsp
->bio
), blk_rq_bytes(rsp
));
1996 /* positive number is the untransferred residual */
1997 rsp
->resid_len
= ret
;
2000 } else if (ret
== 0) {