init from v2.6.32.60
[mach-moxart.git] / drivers / scsi / scsi_lib.c
blobe28f9b0a33f8e73a3aa8bff5e4ab6942fc97220d
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE 2
38 struct scsi_host_sg_pool {
39 size_t size;
40 char *name;
41 struct kmem_cache *slab;
42 mempool_t *pool;
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 SP(8),
51 SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53 SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55 SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57 SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64 SP(SCSI_MAX_SG_SEGMENTS)
66 #undef SP
68 struct kmem_cache *scsi_sdb_cache;
70 static void scsi_run_queue(struct request_queue *q);
73 * Function: scsi_unprep_request()
75 * Purpose: Remove all preparation done for a request, including its
76 * associated scsi_cmnd, so that it can be requeued.
78 * Arguments: req - request to unprepare
80 * Lock status: Assumed that no locks are held upon entry.
82 * Returns: Nothing.
84 static void scsi_unprep_request(struct request *req)
86 struct scsi_cmnd *cmd = req->special;
88 req->cmd_flags &= ~REQ_DONTPREP;
89 req->special = NULL;
91 scsi_put_command(cmd);
94 /**
95 * __scsi_queue_insert - private queue insertion
96 * @cmd: The SCSI command being requeued
97 * @reason: The reason for the requeue
98 * @unbusy: Whether the queue should be unbusied
100 * This is a private queue insertion. The public interface
101 * scsi_queue_insert() always assumes the queue should be unbusied
102 * because it's always called before the completion. This function is
103 * for a requeue after completion, which should only occur in this
104 * file.
106 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
108 struct Scsi_Host *host = cmd->device->host;
109 struct scsi_device *device = cmd->device;
110 struct scsi_target *starget = scsi_target(device);
111 struct request_queue *q = device->request_queue;
112 unsigned long flags;
114 SCSI_LOG_MLQUEUE(1,
115 printk("Inserting command %p into mlqueue\n", cmd));
118 * Set the appropriate busy bit for the device/host.
120 * If the host/device isn't busy, assume that something actually
121 * completed, and that we should be able to queue a command now.
123 * Note that the prior mid-layer assumption that any host could
124 * always queue at least one command is now broken. The mid-layer
125 * will implement a user specifiable stall (see
126 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
127 * if a command is requeued with no other commands outstanding
128 * either for the device or for the host.
130 switch (reason) {
131 case SCSI_MLQUEUE_HOST_BUSY:
132 host->host_blocked = host->max_host_blocked;
133 break;
134 case SCSI_MLQUEUE_DEVICE_BUSY:
135 device->device_blocked = device->max_device_blocked;
136 break;
137 case SCSI_MLQUEUE_TARGET_BUSY:
138 starget->target_blocked = starget->max_target_blocked;
139 break;
143 * Decrement the counters, since these commands are no longer
144 * active on the host/device.
146 if (unbusy)
147 scsi_device_unbusy(device);
150 * Requeue this command. It will go before all other commands
151 * that are already in the queue.
153 * NOTE: there is magic here about the way the queue is plugged if
154 * we have no outstanding commands.
156 * Although we *don't* plug the queue, we call the request
157 * function. The SCSI request function detects the blocked condition
158 * and plugs the queue appropriately.
160 spin_lock_irqsave(q->queue_lock, flags);
161 blk_requeue_request(q, cmd->request);
162 spin_unlock_irqrestore(q->queue_lock, flags);
164 scsi_run_queue(q);
166 return 0;
170 * Function: scsi_queue_insert()
172 * Purpose: Insert a command in the midlevel queue.
174 * Arguments: cmd - command that we are adding to queue.
175 * reason - why we are inserting command to queue.
177 * Lock status: Assumed that lock is not held upon entry.
179 * Returns: Nothing.
181 * Notes: We do this for one of two cases. Either the host is busy
182 * and it cannot accept any more commands for the time being,
183 * or the device returned QUEUE_FULL and can accept no more
184 * commands.
185 * Notes: This could be called either from an interrupt context or a
186 * normal process context.
188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
190 return __scsi_queue_insert(cmd, reason, 1);
193 * scsi_execute - insert request and wait for the result
194 * @sdev: scsi device
195 * @cmd: scsi command
196 * @data_direction: data direction
197 * @buffer: data buffer
198 * @bufflen: len of buffer
199 * @sense: optional sense buffer
200 * @timeout: request timeout in seconds
201 * @retries: number of times to retry request
202 * @flags: or into request flags;
203 * @resid: optional residual length
205 * returns the req->errors value which is the scsi_cmnd result
206 * field.
208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209 int data_direction, void *buffer, unsigned bufflen,
210 unsigned char *sense, int timeout, int retries, int flags,
211 int *resid)
213 struct request *req;
214 int write = (data_direction == DMA_TO_DEVICE);
215 int ret = DRIVER_ERROR << 24;
217 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
219 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
220 buffer, bufflen, __GFP_WAIT))
221 goto out;
223 req->cmd_len = COMMAND_SIZE(cmd[0]);
224 memcpy(req->cmd, cmd, req->cmd_len);
225 req->sense = sense;
226 req->sense_len = 0;
227 req->retries = retries;
228 req->timeout = timeout;
229 req->cmd_type = REQ_TYPE_BLOCK_PC;
230 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
233 * head injection *required* here otherwise quiesce won't work
235 blk_execute_rq(req->q, NULL, req, 1);
238 * Some devices (USB mass-storage in particular) may transfer
239 * garbage data together with a residue indicating that the data
240 * is invalid. Prevent the garbage from being misinterpreted
241 * and prevent security leaks by zeroing out the excess data.
243 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
244 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
246 if (resid)
247 *resid = req->resid_len;
248 ret = req->errors;
249 out:
250 blk_put_request(req);
252 return ret;
254 EXPORT_SYMBOL(scsi_execute);
257 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
258 int data_direction, void *buffer, unsigned bufflen,
259 struct scsi_sense_hdr *sshdr, int timeout, int retries,
260 int *resid)
262 char *sense = NULL;
263 int result;
265 if (sshdr) {
266 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267 if (!sense)
268 return DRIVER_ERROR << 24;
270 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271 sense, timeout, retries, 0, resid);
272 if (sshdr)
273 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
275 kfree(sense);
276 return result;
278 EXPORT_SYMBOL(scsi_execute_req);
281 * Function: scsi_init_cmd_errh()
283 * Purpose: Initialize cmd fields related to error handling.
285 * Arguments: cmd - command that is ready to be queued.
287 * Notes: This function has the job of initializing a number of
288 * fields related to error handling. Typically this will
289 * be called once for each command, as required.
291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
293 cmd->serial_number = 0;
294 scsi_set_resid(cmd, 0);
295 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
296 if (cmd->cmd_len == 0)
297 cmd->cmd_len = scsi_command_size(cmd->cmnd);
300 void scsi_device_unbusy(struct scsi_device *sdev)
302 struct Scsi_Host *shost = sdev->host;
303 struct scsi_target *starget = scsi_target(sdev);
304 unsigned long flags;
306 spin_lock_irqsave(shost->host_lock, flags);
307 shost->host_busy--;
308 starget->target_busy--;
309 if (unlikely(scsi_host_in_recovery(shost) &&
310 (shost->host_failed || shost->host_eh_scheduled)))
311 scsi_eh_wakeup(shost);
312 spin_unlock(shost->host_lock);
313 spin_lock(sdev->request_queue->queue_lock);
314 sdev->device_busy--;
315 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
319 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320 * and call blk_run_queue for all the scsi_devices on the target -
321 * including current_sdev first.
323 * Called with *no* scsi locks held.
325 static void scsi_single_lun_run(struct scsi_device *current_sdev)
327 struct Scsi_Host *shost = current_sdev->host;
328 struct scsi_device *sdev, *tmp;
329 struct scsi_target *starget = scsi_target(current_sdev);
330 unsigned long flags;
332 spin_lock_irqsave(shost->host_lock, flags);
333 starget->starget_sdev_user = NULL;
334 spin_unlock_irqrestore(shost->host_lock, flags);
337 * Call blk_run_queue for all LUNs on the target, starting with
338 * current_sdev. We race with others (to set starget_sdev_user),
339 * but in most cases, we will be first. Ideally, each LU on the
340 * target would get some limited time or requests on the target.
342 blk_run_queue(current_sdev->request_queue);
344 spin_lock_irqsave(shost->host_lock, flags);
345 if (starget->starget_sdev_user)
346 goto out;
347 list_for_each_entry_safe(sdev, tmp, &starget->devices,
348 same_target_siblings) {
349 if (sdev == current_sdev)
350 continue;
351 if (scsi_device_get(sdev))
352 continue;
354 spin_unlock_irqrestore(shost->host_lock, flags);
355 blk_run_queue(sdev->request_queue);
356 spin_lock_irqsave(shost->host_lock, flags);
358 scsi_device_put(sdev);
360 out:
361 spin_unlock_irqrestore(shost->host_lock, flags);
364 static inline int scsi_device_is_busy(struct scsi_device *sdev)
366 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
367 return 1;
369 return 0;
372 static inline int scsi_target_is_busy(struct scsi_target *starget)
374 return ((starget->can_queue > 0 &&
375 starget->target_busy >= starget->can_queue) ||
376 starget->target_blocked);
379 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
381 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
382 shost->host_blocked || shost->host_self_blocked)
383 return 1;
385 return 0;
389 * Function: scsi_run_queue()
391 * Purpose: Select a proper request queue to serve next
393 * Arguments: q - last request's queue
395 * Returns: Nothing
397 * Notes: The previous command was completely finished, start
398 * a new one if possible.
400 static void scsi_run_queue(struct request_queue *q)
402 struct scsi_device *sdev = q->queuedata;
403 struct Scsi_Host *shost;
404 LIST_HEAD(starved_list);
405 unsigned long flags;
407 /* if the device is dead, sdev will be NULL, so no queue to run */
408 if (!sdev)
409 return;
411 shost = sdev->host;
412 if (scsi_target(sdev)->single_lun)
413 scsi_single_lun_run(sdev);
415 spin_lock_irqsave(shost->host_lock, flags);
416 list_splice_init(&shost->starved_list, &starved_list);
418 while (!list_empty(&starved_list)) {
419 int flagset;
422 * As long as shost is accepting commands and we have
423 * starved queues, call blk_run_queue. scsi_request_fn
424 * drops the queue_lock and can add us back to the
425 * starved_list.
427 * host_lock protects the starved_list and starved_entry.
428 * scsi_request_fn must get the host_lock before checking
429 * or modifying starved_list or starved_entry.
431 if (scsi_host_is_busy(shost))
432 break;
434 sdev = list_entry(starved_list.next,
435 struct scsi_device, starved_entry);
436 list_del_init(&sdev->starved_entry);
437 if (scsi_target_is_busy(scsi_target(sdev))) {
438 list_move_tail(&sdev->starved_entry,
439 &shost->starved_list);
440 continue;
443 spin_unlock(shost->host_lock);
445 spin_lock(sdev->request_queue->queue_lock);
446 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
447 !test_bit(QUEUE_FLAG_REENTER,
448 &sdev->request_queue->queue_flags);
449 if (flagset)
450 queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
451 __blk_run_queue(sdev->request_queue);
452 if (flagset)
453 queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
454 spin_unlock(sdev->request_queue->queue_lock);
456 spin_lock(shost->host_lock);
458 /* put any unprocessed entries back */
459 list_splice(&starved_list, &shost->starved_list);
460 spin_unlock_irqrestore(shost->host_lock, flags);
462 blk_run_queue(q);
466 * Function: scsi_requeue_command()
468 * Purpose: Handle post-processing of completed commands.
470 * Arguments: q - queue to operate on
471 * cmd - command that may need to be requeued.
473 * Returns: Nothing
475 * Notes: After command completion, there may be blocks left
476 * over which weren't finished by the previous command
477 * this can be for a number of reasons - the main one is
478 * I/O errors in the middle of the request, in which case
479 * we need to request the blocks that come after the bad
480 * sector.
481 * Notes: Upon return, cmd is a stale pointer.
483 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
485 struct scsi_device *sdev = cmd->device;
486 struct request *req = cmd->request;
487 unsigned long flags;
490 * We need to hold a reference on the device to avoid the queue being
491 * killed after the unlock and before scsi_run_queue is invoked which
492 * may happen because scsi_unprep_request() puts the command which
493 * releases its reference on the device.
495 get_device(&sdev->sdev_gendev);
497 spin_lock_irqsave(q->queue_lock, flags);
498 scsi_unprep_request(req);
499 blk_requeue_request(q, req);
500 spin_unlock_irqrestore(q->queue_lock, flags);
502 scsi_run_queue(q);
504 put_device(&sdev->sdev_gendev);
507 void scsi_next_command(struct scsi_cmnd *cmd)
509 struct scsi_device *sdev = cmd->device;
510 struct request_queue *q = sdev->request_queue;
512 /* need to hold a reference on the device before we let go of the cmd */
513 get_device(&sdev->sdev_gendev);
515 scsi_put_command(cmd);
516 scsi_run_queue(q);
518 /* ok to remove device now */
519 put_device(&sdev->sdev_gendev);
522 void scsi_run_host_queues(struct Scsi_Host *shost)
524 struct scsi_device *sdev;
526 shost_for_each_device(sdev, shost)
527 scsi_run_queue(sdev->request_queue);
530 static void __scsi_release_buffers(struct scsi_cmnd *, int);
533 * Function: scsi_end_request()
535 * Purpose: Post-processing of completed commands (usually invoked at end
536 * of upper level post-processing and scsi_io_completion).
538 * Arguments: cmd - command that is complete.
539 * error - 0 if I/O indicates success, < 0 for I/O error.
540 * bytes - number of bytes of completed I/O
541 * requeue - indicates whether we should requeue leftovers.
543 * Lock status: Assumed that lock is not held upon entry.
545 * Returns: cmd if requeue required, NULL otherwise.
547 * Notes: This is called for block device requests in order to
548 * mark some number of sectors as complete.
550 * We are guaranteeing that the request queue will be goosed
551 * at some point during this call.
552 * Notes: If cmd was requeued, upon return it will be a stale pointer.
554 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
555 int bytes, int requeue)
557 struct request_queue *q = cmd->device->request_queue;
558 struct request *req = cmd->request;
561 * If there are blocks left over at the end, set up the command
562 * to queue the remainder of them.
564 if (blk_end_request(req, error, bytes)) {
565 /* kill remainder if no retrys */
566 if (error && scsi_noretry_cmd(cmd))
567 blk_end_request_all(req, error);
568 else {
569 if (requeue) {
571 * Bleah. Leftovers again. Stick the
572 * leftovers in the front of the
573 * queue, and goose the queue again.
575 scsi_release_buffers(cmd);
576 scsi_requeue_command(q, cmd);
577 cmd = NULL;
579 return cmd;
584 * This will goose the queue request function at the end, so we don't
585 * need to worry about launching another command.
587 __scsi_release_buffers(cmd, 0);
588 scsi_next_command(cmd);
589 return NULL;
592 static inline unsigned int scsi_sgtable_index(unsigned short nents)
594 unsigned int index;
596 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
598 if (nents <= 8)
599 index = 0;
600 else
601 index = get_count_order(nents) - 3;
603 return index;
606 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
608 struct scsi_host_sg_pool *sgp;
610 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
611 mempool_free(sgl, sgp->pool);
614 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
616 struct scsi_host_sg_pool *sgp;
618 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
619 return mempool_alloc(sgp->pool, gfp_mask);
622 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
623 gfp_t gfp_mask)
625 int ret;
627 BUG_ON(!nents);
629 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
630 gfp_mask, scsi_sg_alloc);
631 if (unlikely(ret))
632 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
633 scsi_sg_free);
635 return ret;
638 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
640 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
643 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
646 if (cmd->sdb.table.nents)
647 scsi_free_sgtable(&cmd->sdb);
649 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
651 if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
652 struct scsi_data_buffer *bidi_sdb =
653 cmd->request->next_rq->special;
654 scsi_free_sgtable(bidi_sdb);
655 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
656 cmd->request->next_rq->special = NULL;
659 if (scsi_prot_sg_count(cmd))
660 scsi_free_sgtable(cmd->prot_sdb);
664 * Function: scsi_release_buffers()
666 * Purpose: Completion processing for block device I/O requests.
668 * Arguments: cmd - command that we are bailing.
670 * Lock status: Assumed that no lock is held upon entry.
672 * Returns: Nothing
674 * Notes: In the event that an upper level driver rejects a
675 * command, we must release resources allocated during
676 * the __init_io() function. Primarily this would involve
677 * the scatter-gather table, and potentially any bounce
678 * buffers.
680 void scsi_release_buffers(struct scsi_cmnd *cmd)
682 __scsi_release_buffers(cmd, 1);
684 EXPORT_SYMBOL(scsi_release_buffers);
687 * Function: scsi_io_completion()
689 * Purpose: Completion processing for block device I/O requests.
691 * Arguments: cmd - command that is finished.
693 * Lock status: Assumed that no lock is held upon entry.
695 * Returns: Nothing
697 * Notes: This function is matched in terms of capabilities to
698 * the function that created the scatter-gather list.
699 * In other words, if there are no bounce buffers
700 * (the normal case for most drivers), we don't need
701 * the logic to deal with cleaning up afterwards.
703 * We must call scsi_end_request(). This will finish off
704 * the specified number of sectors. If we are done, the
705 * command block will be released and the queue function
706 * will be goosed. If we are not done then we have to
707 * figure out what to do next:
709 * a) We can call scsi_requeue_command(). The request
710 * will be unprepared and put back on the queue. Then
711 * a new command will be created for it. This should
712 * be used if we made forward progress, or if we want
713 * to switch from READ(10) to READ(6) for example.
715 * b) We can call scsi_queue_insert(). The request will
716 * be put back on the queue and retried using the same
717 * command as before, possibly after a delay.
719 * c) We can call blk_end_request() with -EIO to fail
720 * the remainder of the request.
722 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
724 int result = cmd->result;
725 struct request_queue *q = cmd->device->request_queue;
726 struct request *req = cmd->request;
727 int error = 0;
728 struct scsi_sense_hdr sshdr;
729 int sense_valid = 0;
730 int sense_deferred = 0;
731 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
732 ACTION_DELAYED_RETRY} action;
733 char *description = NULL;
735 if (result) {
736 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
737 if (sense_valid)
738 sense_deferred = scsi_sense_is_deferred(&sshdr);
741 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
742 req->errors = result;
743 if (result) {
744 if (sense_valid && req->sense) {
746 * SG_IO wants current and deferred errors
748 int len = 8 + cmd->sense_buffer[7];
750 if (len > SCSI_SENSE_BUFFERSIZE)
751 len = SCSI_SENSE_BUFFERSIZE;
752 memcpy(req->sense, cmd->sense_buffer, len);
753 req->sense_len = len;
755 if (!sense_deferred)
756 error = -EIO;
759 req->resid_len = scsi_get_resid(cmd);
761 if (scsi_bidi_cmnd(cmd)) {
763 * Bidi commands Must be complete as a whole,
764 * both sides at once.
766 req->next_rq->resid_len = scsi_in(cmd)->resid;
768 scsi_release_buffers(cmd);
769 blk_end_request_all(req, 0);
771 scsi_next_command(cmd);
772 return;
776 BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
779 * Next deal with any sectors which we were able to correctly
780 * handle.
782 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
783 "%d bytes done.\n",
784 blk_rq_sectors(req), good_bytes));
787 * Recovered errors need reporting, but they're always treated
788 * as success, so fiddle the result code here. For BLOCK_PC
789 * we already took a copy of the original into rq->errors which
790 * is what gets returned to the user
792 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
793 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
794 * print since caller wants ATA registers. Only occurs on
795 * SCSI ATA PASS_THROUGH commands when CK_COND=1
797 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
799 else if (!(req->cmd_flags & REQ_QUIET))
800 scsi_print_sense("", cmd);
801 result = 0;
802 /* BLOCK_PC may have set error */
803 error = 0;
807 * A number of bytes were successfully read. If there
808 * are leftovers and there is some kind of error
809 * (result != 0), retry the rest.
811 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
812 return;
814 error = -EIO;
816 if (host_byte(result) == DID_RESET) {
817 /* Third party bus reset or reset for error recovery
818 * reasons. Just retry the command and see what
819 * happens.
821 action = ACTION_RETRY;
822 } else if (sense_valid && !sense_deferred) {
823 switch (sshdr.sense_key) {
824 case UNIT_ATTENTION:
825 if (cmd->device->removable) {
826 /* Detected disc change. Set a bit
827 * and quietly refuse further access.
829 cmd->device->changed = 1;
830 description = "Media Changed";
831 action = ACTION_FAIL;
832 } else {
833 /* Must have been a power glitch, or a
834 * bus reset. Could not have been a
835 * media change, so we just retry the
836 * command and see what happens.
838 action = ACTION_RETRY;
840 break;
841 case ILLEGAL_REQUEST:
842 /* If we had an ILLEGAL REQUEST returned, then
843 * we may have performed an unsupported
844 * command. The only thing this should be
845 * would be a ten byte read where only a six
846 * byte read was supported. Also, on a system
847 * where READ CAPACITY failed, we may have
848 * read past the end of the disk.
850 if ((cmd->device->use_10_for_rw &&
851 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
852 (cmd->cmnd[0] == READ_10 ||
853 cmd->cmnd[0] == WRITE_10)) {
854 /* This will issue a new 6-byte command. */
855 cmd->device->use_10_for_rw = 0;
856 action = ACTION_REPREP;
857 } else if (sshdr.asc == 0x10) /* DIX */ {
858 description = "Host Data Integrity Failure";
859 action = ACTION_FAIL;
860 error = -EILSEQ;
861 } else
862 action = ACTION_FAIL;
863 break;
864 case ABORTED_COMMAND:
865 action = ACTION_FAIL;
866 if (sshdr.asc == 0x10) { /* DIF */
867 description = "Target Data Integrity Failure";
868 error = -EILSEQ;
870 break;
871 case NOT_READY:
872 /* If the device is in the process of becoming
873 * ready, or has a temporary blockage, retry.
875 if (sshdr.asc == 0x04) {
876 switch (sshdr.ascq) {
877 case 0x01: /* becoming ready */
878 case 0x04: /* format in progress */
879 case 0x05: /* rebuild in progress */
880 case 0x06: /* recalculation in progress */
881 case 0x07: /* operation in progress */
882 case 0x08: /* Long write in progress */
883 case 0x09: /* self test in progress */
884 action = ACTION_DELAYED_RETRY;
885 break;
886 default:
887 description = "Device not ready";
888 action = ACTION_FAIL;
889 break;
891 } else {
892 description = "Device not ready";
893 action = ACTION_FAIL;
895 break;
896 case VOLUME_OVERFLOW:
897 /* See SSC3rXX or current. */
898 action = ACTION_FAIL;
899 break;
900 default:
901 description = "Unhandled sense code";
902 action = ACTION_FAIL;
903 break;
905 } else {
906 description = "Unhandled error code";
907 action = ACTION_FAIL;
910 switch (action) {
911 case ACTION_FAIL:
912 /* Give up and fail the remainder of the request */
913 scsi_release_buffers(cmd);
914 if (!(req->cmd_flags & REQ_QUIET)) {
915 if (description)
916 scmd_printk(KERN_INFO, cmd, "%s\n",
917 description);
918 scsi_print_result(cmd);
919 if (driver_byte(result) & DRIVER_SENSE)
920 scsi_print_sense("", cmd);
921 scsi_print_command(cmd);
923 if (blk_end_request_err(req, -EIO))
924 scsi_requeue_command(q, cmd);
925 else
926 scsi_next_command(cmd);
927 break;
928 case ACTION_REPREP:
929 /* Unprep the request and put it back at the head of the queue.
930 * A new command will be prepared and issued.
932 scsi_release_buffers(cmd);
933 scsi_requeue_command(q, cmd);
934 break;
935 case ACTION_RETRY:
936 /* Retry the same command immediately */
937 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
938 break;
939 case ACTION_DELAYED_RETRY:
940 /* Retry the same command after a delay */
941 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
942 break;
946 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
947 gfp_t gfp_mask)
949 int count;
952 * If sg table allocation fails, requeue request later.
954 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
955 gfp_mask))) {
956 return BLKPREP_DEFER;
959 req->buffer = NULL;
962 * Next, walk the list, and fill in the addresses and sizes of
963 * each segment.
965 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
966 BUG_ON(count > sdb->table.nents);
967 sdb->table.nents = count;
968 sdb->length = blk_rq_bytes(req);
969 return BLKPREP_OK;
973 * Function: scsi_init_io()
975 * Purpose: SCSI I/O initialize function.
977 * Arguments: cmd - Command descriptor we wish to initialize
979 * Returns: 0 on success
980 * BLKPREP_DEFER if the failure is retryable
981 * BLKPREP_KILL if the failure is fatal
983 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
985 int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
986 if (error)
987 goto err_exit;
989 if (blk_bidi_rq(cmd->request)) {
990 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
991 scsi_sdb_cache, GFP_ATOMIC);
992 if (!bidi_sdb) {
993 error = BLKPREP_DEFER;
994 goto err_exit;
997 cmd->request->next_rq->special = bidi_sdb;
998 error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
999 GFP_ATOMIC);
1000 if (error)
1001 goto err_exit;
1004 if (blk_integrity_rq(cmd->request)) {
1005 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1006 int ivecs, count;
1008 BUG_ON(prot_sdb == NULL);
1009 ivecs = blk_rq_count_integrity_sg(cmd->request);
1011 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1012 error = BLKPREP_DEFER;
1013 goto err_exit;
1016 count = blk_rq_map_integrity_sg(cmd->request,
1017 prot_sdb->table.sgl);
1018 BUG_ON(unlikely(count > ivecs));
1020 cmd->prot_sdb = prot_sdb;
1021 cmd->prot_sdb->table.nents = count;
1024 return BLKPREP_OK ;
1026 err_exit:
1027 scsi_release_buffers(cmd);
1028 if (error == BLKPREP_KILL)
1029 scsi_put_command(cmd);
1030 else /* BLKPREP_DEFER */
1031 scsi_unprep_request(cmd->request);
1033 return error;
1035 EXPORT_SYMBOL(scsi_init_io);
1037 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1038 struct request *req)
1040 struct scsi_cmnd *cmd;
1042 if (!req->special) {
1043 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1044 if (unlikely(!cmd))
1045 return NULL;
1046 req->special = cmd;
1047 } else {
1048 cmd = req->special;
1051 /* pull a tag out of the request if we have one */
1052 cmd->tag = req->tag;
1053 cmd->request = req;
1055 cmd->cmnd = req->cmd;
1057 return cmd;
1060 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1062 struct scsi_cmnd *cmd;
1063 int ret = scsi_prep_state_check(sdev, req);
1065 if (ret != BLKPREP_OK)
1066 return ret;
1068 cmd = scsi_get_cmd_from_req(sdev, req);
1069 if (unlikely(!cmd))
1070 return BLKPREP_DEFER;
1073 * BLOCK_PC requests may transfer data, in which case they must
1074 * a bio attached to them. Or they might contain a SCSI command
1075 * that does not transfer data, in which case they may optionally
1076 * submit a request without an attached bio.
1078 if (req->bio) {
1079 int ret;
1081 BUG_ON(!req->nr_phys_segments);
1083 ret = scsi_init_io(cmd, GFP_ATOMIC);
1084 if (unlikely(ret))
1085 return ret;
1086 } else {
1087 BUG_ON(blk_rq_bytes(req));
1089 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1090 req->buffer = NULL;
1093 cmd->cmd_len = req->cmd_len;
1094 if (!blk_rq_bytes(req))
1095 cmd->sc_data_direction = DMA_NONE;
1096 else if (rq_data_dir(req) == WRITE)
1097 cmd->sc_data_direction = DMA_TO_DEVICE;
1098 else
1099 cmd->sc_data_direction = DMA_FROM_DEVICE;
1101 cmd->transfersize = blk_rq_bytes(req);
1102 cmd->allowed = req->retries;
1103 return BLKPREP_OK;
1105 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1108 * Setup a REQ_TYPE_FS command. These are simple read/write request
1109 * from filesystems that still need to be translated to SCSI CDBs from
1110 * the ULD.
1112 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1114 struct scsi_cmnd *cmd;
1115 int ret = scsi_prep_state_check(sdev, req);
1117 if (ret != BLKPREP_OK)
1118 return ret;
1120 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1121 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1122 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1123 if (ret != BLKPREP_OK)
1124 return ret;
1128 * Filesystem requests must transfer data.
1130 BUG_ON(!req->nr_phys_segments);
1132 cmd = scsi_get_cmd_from_req(sdev, req);
1133 if (unlikely(!cmd))
1134 return BLKPREP_DEFER;
1136 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1137 return scsi_init_io(cmd, GFP_ATOMIC);
1139 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1141 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1143 int ret = BLKPREP_OK;
1146 * If the device is not in running state we will reject some
1147 * or all commands.
1149 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1150 switch (sdev->sdev_state) {
1151 case SDEV_OFFLINE:
1153 * If the device is offline we refuse to process any
1154 * commands. The device must be brought online
1155 * before trying any recovery commands.
1157 sdev_printk(KERN_ERR, sdev,
1158 "rejecting I/O to offline device\n");
1159 ret = BLKPREP_KILL;
1160 break;
1161 case SDEV_DEL:
1163 * If the device is fully deleted, we refuse to
1164 * process any commands as well.
1166 sdev_printk(KERN_ERR, sdev,
1167 "rejecting I/O to dead device\n");
1168 ret = BLKPREP_KILL;
1169 break;
1170 case SDEV_QUIESCE:
1171 case SDEV_BLOCK:
1172 case SDEV_CREATED_BLOCK:
1174 * If the devices is blocked we defer normal commands.
1176 if (!(req->cmd_flags & REQ_PREEMPT))
1177 ret = BLKPREP_DEFER;
1178 break;
1179 default:
1181 * For any other not fully online state we only allow
1182 * special commands. In particular any user initiated
1183 * command is not allowed.
1185 if (!(req->cmd_flags & REQ_PREEMPT))
1186 ret = BLKPREP_KILL;
1187 break;
1190 return ret;
1192 EXPORT_SYMBOL(scsi_prep_state_check);
1194 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1196 struct scsi_device *sdev = q->queuedata;
1198 switch (ret) {
1199 case BLKPREP_KILL:
1200 req->errors = DID_NO_CONNECT << 16;
1201 /* release the command and kill it */
1202 if (req->special) {
1203 struct scsi_cmnd *cmd = req->special;
1204 scsi_release_buffers(cmd);
1205 scsi_put_command(cmd);
1206 req->special = NULL;
1208 break;
1209 case BLKPREP_DEFER:
1211 * If we defer, the blk_peek_request() returns NULL, but the
1212 * queue must be restarted, so we plug here if no returning
1213 * command will automatically do that.
1215 if (sdev->device_busy == 0)
1216 blk_plug_device(q);
1217 break;
1218 default:
1219 req->cmd_flags |= REQ_DONTPREP;
1222 return ret;
1224 EXPORT_SYMBOL(scsi_prep_return);
1226 int scsi_prep_fn(struct request_queue *q, struct request *req)
1228 struct scsi_device *sdev = q->queuedata;
1229 int ret = BLKPREP_KILL;
1231 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1232 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1233 return scsi_prep_return(q, req, ret);
1235 EXPORT_SYMBOL(scsi_prep_fn);
1238 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1239 * return 0.
1241 * Called with the queue_lock held.
1243 static inline int scsi_dev_queue_ready(struct request_queue *q,
1244 struct scsi_device *sdev)
1246 if (sdev->device_busy == 0 && sdev->device_blocked) {
1248 * unblock after device_blocked iterates to zero
1250 if (--sdev->device_blocked == 0) {
1251 SCSI_LOG_MLQUEUE(3,
1252 sdev_printk(KERN_INFO, sdev,
1253 "unblocking device at zero depth\n"));
1254 } else {
1255 blk_plug_device(q);
1256 return 0;
1259 if (scsi_device_is_busy(sdev))
1260 return 0;
1262 return 1;
1267 * scsi_target_queue_ready: checks if there we can send commands to target
1268 * @sdev: scsi device on starget to check.
1270 * Called with the host lock held.
1272 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1273 struct scsi_device *sdev)
1275 struct scsi_target *starget = scsi_target(sdev);
1277 if (starget->single_lun) {
1278 if (starget->starget_sdev_user &&
1279 starget->starget_sdev_user != sdev)
1280 return 0;
1281 starget->starget_sdev_user = sdev;
1284 if (starget->target_busy == 0 && starget->target_blocked) {
1286 * unblock after target_blocked iterates to zero
1288 if (--starget->target_blocked == 0) {
1289 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1290 "unblocking target at zero depth\n"));
1291 } else
1292 return 0;
1295 if (scsi_target_is_busy(starget)) {
1296 if (list_empty(&sdev->starved_entry)) {
1297 list_add_tail(&sdev->starved_entry,
1298 &shost->starved_list);
1299 return 0;
1303 /* We're OK to process the command, so we can't be starved */
1304 if (!list_empty(&sdev->starved_entry))
1305 list_del_init(&sdev->starved_entry);
1306 return 1;
1310 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1311 * return 0. We must end up running the queue again whenever 0 is
1312 * returned, else IO can hang.
1314 * Called with host_lock held.
1316 static inline int scsi_host_queue_ready(struct request_queue *q,
1317 struct Scsi_Host *shost,
1318 struct scsi_device *sdev)
1320 if (scsi_host_in_recovery(shost))
1321 return 0;
1322 if (shost->host_busy == 0 && shost->host_blocked) {
1324 * unblock after host_blocked iterates to zero
1326 if (--shost->host_blocked == 0) {
1327 SCSI_LOG_MLQUEUE(3,
1328 printk("scsi%d unblocking host at zero depth\n",
1329 shost->host_no));
1330 } else {
1331 return 0;
1334 if (scsi_host_is_busy(shost)) {
1335 if (list_empty(&sdev->starved_entry))
1336 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1337 return 0;
1340 /* We're OK to process the command, so we can't be starved */
1341 if (!list_empty(&sdev->starved_entry))
1342 list_del_init(&sdev->starved_entry);
1344 return 1;
1348 * Busy state exporting function for request stacking drivers.
1350 * For efficiency, no lock is taken to check the busy state of
1351 * shost/starget/sdev, since the returned value is not guaranteed and
1352 * may be changed after request stacking drivers call the function,
1353 * regardless of taking lock or not.
1355 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1356 * (e.g. !sdev), scsi needs to return 'not busy'.
1357 * Otherwise, request stacking drivers may hold requests forever.
1359 static int scsi_lld_busy(struct request_queue *q)
1361 struct scsi_device *sdev = q->queuedata;
1362 struct Scsi_Host *shost;
1363 struct scsi_target *starget;
1365 if (!sdev)
1366 return 0;
1368 shost = sdev->host;
1369 starget = scsi_target(sdev);
1371 if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1372 scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1373 return 1;
1375 return 0;
1379 * Kill a request for a dead device
1381 static void scsi_kill_request(struct request *req, struct request_queue *q)
1383 struct scsi_cmnd *cmd = req->special;
1384 struct scsi_device *sdev;
1385 struct scsi_target *starget;
1386 struct Scsi_Host *shost;
1388 blk_start_request(req);
1390 if (unlikely(cmd == NULL)) {
1391 printk(KERN_CRIT "impossible request in %s.\n",
1392 __func__);
1393 BUG();
1396 scmd_printk(KERN_INFO, cmd, "killing request\n");
1398 sdev = cmd->device;
1399 starget = scsi_target(sdev);
1400 shost = sdev->host;
1401 scsi_init_cmd_errh(cmd);
1402 cmd->result = DID_NO_CONNECT << 16;
1403 atomic_inc(&cmd->device->iorequest_cnt);
1406 * SCSI request completion path will do scsi_device_unbusy(),
1407 * bump busy counts. To bump the counters, we need to dance
1408 * with the locks as normal issue path does.
1410 sdev->device_busy++;
1411 spin_unlock(sdev->request_queue->queue_lock);
1412 spin_lock(shost->host_lock);
1413 shost->host_busy++;
1414 starget->target_busy++;
1415 spin_unlock(shost->host_lock);
1416 spin_lock(sdev->request_queue->queue_lock);
1418 blk_complete_request(req);
1421 static void scsi_softirq_done(struct request *rq)
1423 struct scsi_cmnd *cmd = rq->special;
1424 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1425 int disposition;
1427 INIT_LIST_HEAD(&cmd->eh_entry);
1430 * Set the serial numbers back to zero
1432 cmd->serial_number = 0;
1434 atomic_inc(&cmd->device->iodone_cnt);
1435 if (cmd->result)
1436 atomic_inc(&cmd->device->ioerr_cnt);
1438 disposition = scsi_decide_disposition(cmd);
1439 if (disposition != SUCCESS &&
1440 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1441 sdev_printk(KERN_ERR, cmd->device,
1442 "timing out command, waited %lus\n",
1443 wait_for/HZ);
1444 disposition = SUCCESS;
1447 scsi_log_completion(cmd, disposition);
1449 switch (disposition) {
1450 case SUCCESS:
1451 scsi_finish_command(cmd);
1452 break;
1453 case NEEDS_RETRY:
1454 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1455 break;
1456 case ADD_TO_MLQUEUE:
1457 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1458 break;
1459 default:
1460 if (!scsi_eh_scmd_add(cmd, 0))
1461 scsi_finish_command(cmd);
1466 * Function: scsi_request_fn()
1468 * Purpose: Main strategy routine for SCSI.
1470 * Arguments: q - Pointer to actual queue.
1472 * Returns: Nothing
1474 * Lock status: IO request lock assumed to be held when called.
1476 static void scsi_request_fn(struct request_queue *q)
1478 struct scsi_device *sdev = q->queuedata;
1479 struct Scsi_Host *shost;
1480 struct scsi_cmnd *cmd;
1481 struct request *req;
1483 if (!sdev) {
1484 while ((req = blk_peek_request(q)) != NULL)
1485 scsi_kill_request(req, q);
1486 return;
1489 if(!get_device(&sdev->sdev_gendev))
1490 /* We must be tearing the block queue down already */
1491 return;
1494 * To start with, we keep looping until the queue is empty, or until
1495 * the host is no longer able to accept any more requests.
1497 shost = sdev->host;
1498 while (!blk_queue_plugged(q)) {
1499 int rtn;
1501 * get next queueable request. We do this early to make sure
1502 * that the request is fully prepared even if we cannot
1503 * accept it.
1505 req = blk_peek_request(q);
1506 if (!req || !scsi_dev_queue_ready(q, sdev))
1507 break;
1509 if (unlikely(!scsi_device_online(sdev))) {
1510 sdev_printk(KERN_ERR, sdev,
1511 "rejecting I/O to offline device\n");
1512 scsi_kill_request(req, q);
1513 continue;
1518 * Remove the request from the request list.
1520 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1521 blk_start_request(req);
1522 sdev->device_busy++;
1524 spin_unlock(q->queue_lock);
1525 cmd = req->special;
1526 if (unlikely(cmd == NULL)) {
1527 printk(KERN_CRIT "impossible request in %s.\n"
1528 "please mail a stack trace to "
1529 "linux-scsi@vger.kernel.org\n",
1530 __func__);
1531 blk_dump_rq_flags(req, "foo");
1532 BUG();
1534 spin_lock(shost->host_lock);
1537 * We hit this when the driver is using a host wide
1538 * tag map. For device level tag maps the queue_depth check
1539 * in the device ready fn would prevent us from trying
1540 * to allocate a tag. Since the map is a shared host resource
1541 * we add the dev to the starved list so it eventually gets
1542 * a run when a tag is freed.
1544 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1545 if (list_empty(&sdev->starved_entry))
1546 list_add_tail(&sdev->starved_entry,
1547 &shost->starved_list);
1548 goto not_ready;
1551 if (!scsi_target_queue_ready(shost, sdev))
1552 goto not_ready;
1554 if (!scsi_host_queue_ready(q, shost, sdev))
1555 goto not_ready;
1557 scsi_target(sdev)->target_busy++;
1558 shost->host_busy++;
1561 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1562 * take the lock again.
1564 spin_unlock_irq(shost->host_lock);
1567 * Finally, initialize any error handling parameters, and set up
1568 * the timers for timeouts.
1570 scsi_init_cmd_errh(cmd);
1573 * Dispatch the command to the low-level driver.
1575 rtn = scsi_dispatch_cmd(cmd);
1576 spin_lock_irq(q->queue_lock);
1577 if(rtn) {
1578 /* we're refusing the command; because of
1579 * the way locks get dropped, we need to
1580 * check here if plugging is required */
1581 if(sdev->device_busy == 0)
1582 blk_plug_device(q);
1584 break;
1588 goto out;
1590 not_ready:
1591 spin_unlock_irq(shost->host_lock);
1594 * lock q, handle tag, requeue req, and decrement device_busy. We
1595 * must return with queue_lock held.
1597 * Decrementing device_busy without checking it is OK, as all such
1598 * cases (host limits or settings) should run the queue at some
1599 * later time.
1601 spin_lock_irq(q->queue_lock);
1602 blk_requeue_request(q, req);
1603 sdev->device_busy--;
1604 if(sdev->device_busy == 0)
1605 blk_plug_device(q);
1606 out:
1607 /* must be careful here...if we trigger the ->remove() function
1608 * we cannot be holding the q lock */
1609 spin_unlock_irq(q->queue_lock);
1610 put_device(&sdev->sdev_gendev);
1611 spin_lock_irq(q->queue_lock);
1614 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1616 struct device *host_dev;
1617 u64 bounce_limit = 0xffffffff;
1619 if (shost->unchecked_isa_dma)
1620 return BLK_BOUNCE_ISA;
1622 * Platforms with virtual-DMA translation
1623 * hardware have no practical limit.
1625 if (!PCI_DMA_BUS_IS_PHYS)
1626 return BLK_BOUNCE_ANY;
1628 host_dev = scsi_get_device(shost);
1629 if (host_dev && host_dev->dma_mask)
1630 bounce_limit = *host_dev->dma_mask;
1632 return bounce_limit;
1634 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1636 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1637 request_fn_proc *request_fn)
1639 struct request_queue *q;
1640 struct device *dev = shost->shost_gendev.parent;
1642 q = blk_init_queue(request_fn, NULL);
1643 if (!q)
1644 return NULL;
1647 * this limit is imposed by hardware restrictions
1649 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1650 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1652 blk_queue_max_sectors(q, shost->max_sectors);
1653 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1654 blk_queue_segment_boundary(q, shost->dma_boundary);
1655 dma_set_seg_boundary(dev, shost->dma_boundary);
1657 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1659 if (!shost->use_clustering)
1660 q->limits.cluster = 0;
1663 * set a reasonable default alignment on word boundaries: the
1664 * host and device may alter it using
1665 * blk_queue_update_dma_alignment() later.
1667 blk_queue_dma_alignment(q, 0x03);
1669 return q;
1671 EXPORT_SYMBOL(__scsi_alloc_queue);
1673 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1675 struct request_queue *q;
1677 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1678 if (!q)
1679 return NULL;
1681 blk_queue_prep_rq(q, scsi_prep_fn);
1682 blk_queue_softirq_done(q, scsi_softirq_done);
1683 blk_queue_rq_timed_out(q, scsi_times_out);
1684 blk_queue_lld_busy(q, scsi_lld_busy);
1685 return q;
1688 void scsi_free_queue(struct request_queue *q)
1690 unsigned long flags;
1692 WARN_ON(q->queuedata);
1694 /* cause scsi_request_fn() to kill all non-finished requests */
1695 spin_lock_irqsave(q->queue_lock, flags);
1696 q->request_fn(q);
1697 spin_unlock_irqrestore(q->queue_lock, flags);
1699 blk_cleanup_queue(q);
1703 * Function: scsi_block_requests()
1705 * Purpose: Utility function used by low-level drivers to prevent further
1706 * commands from being queued to the device.
1708 * Arguments: shost - Host in question
1710 * Returns: Nothing
1712 * Lock status: No locks are assumed held.
1714 * Notes: There is no timer nor any other means by which the requests
1715 * get unblocked other than the low-level driver calling
1716 * scsi_unblock_requests().
1718 void scsi_block_requests(struct Scsi_Host *shost)
1720 shost->host_self_blocked = 1;
1722 EXPORT_SYMBOL(scsi_block_requests);
1725 * Function: scsi_unblock_requests()
1727 * Purpose: Utility function used by low-level drivers to allow further
1728 * commands from being queued to the device.
1730 * Arguments: shost - Host in question
1732 * Returns: Nothing
1734 * Lock status: No locks are assumed held.
1736 * Notes: There is no timer nor any other means by which the requests
1737 * get unblocked other than the low-level driver calling
1738 * scsi_unblock_requests().
1740 * This is done as an API function so that changes to the
1741 * internals of the scsi mid-layer won't require wholesale
1742 * changes to drivers that use this feature.
1744 void scsi_unblock_requests(struct Scsi_Host *shost)
1746 shost->host_self_blocked = 0;
1747 scsi_run_host_queues(shost);
1749 EXPORT_SYMBOL(scsi_unblock_requests);
1751 int __init scsi_init_queue(void)
1753 int i;
1755 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1756 sizeof(struct scsi_data_buffer),
1757 0, 0, NULL);
1758 if (!scsi_sdb_cache) {
1759 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1760 return -ENOMEM;
1763 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1764 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1765 int size = sgp->size * sizeof(struct scatterlist);
1767 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1768 SLAB_HWCACHE_ALIGN, NULL);
1769 if (!sgp->slab) {
1770 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1771 sgp->name);
1772 goto cleanup_sdb;
1775 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1776 sgp->slab);
1777 if (!sgp->pool) {
1778 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1779 sgp->name);
1780 goto cleanup_sdb;
1784 return 0;
1786 cleanup_sdb:
1787 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1788 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1789 if (sgp->pool)
1790 mempool_destroy(sgp->pool);
1791 if (sgp->slab)
1792 kmem_cache_destroy(sgp->slab);
1794 kmem_cache_destroy(scsi_sdb_cache);
1796 return -ENOMEM;
1799 void scsi_exit_queue(void)
1801 int i;
1803 kmem_cache_destroy(scsi_sdb_cache);
1805 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1806 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1807 mempool_destroy(sgp->pool);
1808 kmem_cache_destroy(sgp->slab);
1813 * scsi_mode_select - issue a mode select
1814 * @sdev: SCSI device to be queried
1815 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1816 * @sp: Save page bit (0 == don't save, 1 == save)
1817 * @modepage: mode page being requested
1818 * @buffer: request buffer (may not be smaller than eight bytes)
1819 * @len: length of request buffer.
1820 * @timeout: command timeout
1821 * @retries: number of retries before failing
1822 * @data: returns a structure abstracting the mode header data
1823 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1824 * must be SCSI_SENSE_BUFFERSIZE big.
1826 * Returns zero if successful; negative error number or scsi
1827 * status on error
1831 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1832 unsigned char *buffer, int len, int timeout, int retries,
1833 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1835 unsigned char cmd[10];
1836 unsigned char *real_buffer;
1837 int ret;
1839 memset(cmd, 0, sizeof(cmd));
1840 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1842 if (sdev->use_10_for_ms) {
1843 if (len > 65535)
1844 return -EINVAL;
1845 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1846 if (!real_buffer)
1847 return -ENOMEM;
1848 memcpy(real_buffer + 8, buffer, len);
1849 len += 8;
1850 real_buffer[0] = 0;
1851 real_buffer[1] = 0;
1852 real_buffer[2] = data->medium_type;
1853 real_buffer[3] = data->device_specific;
1854 real_buffer[4] = data->longlba ? 0x01 : 0;
1855 real_buffer[5] = 0;
1856 real_buffer[6] = data->block_descriptor_length >> 8;
1857 real_buffer[7] = data->block_descriptor_length;
1859 cmd[0] = MODE_SELECT_10;
1860 cmd[7] = len >> 8;
1861 cmd[8] = len;
1862 } else {
1863 if (len > 255 || data->block_descriptor_length > 255 ||
1864 data->longlba)
1865 return -EINVAL;
1867 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1868 if (!real_buffer)
1869 return -ENOMEM;
1870 memcpy(real_buffer + 4, buffer, len);
1871 len += 4;
1872 real_buffer[0] = 0;
1873 real_buffer[1] = data->medium_type;
1874 real_buffer[2] = data->device_specific;
1875 real_buffer[3] = data->block_descriptor_length;
1878 cmd[0] = MODE_SELECT;
1879 cmd[4] = len;
1882 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1883 sshdr, timeout, retries, NULL);
1884 kfree(real_buffer);
1885 return ret;
1887 EXPORT_SYMBOL_GPL(scsi_mode_select);
1890 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1891 * @sdev: SCSI device to be queried
1892 * @dbd: set if mode sense will allow block descriptors to be returned
1893 * @modepage: mode page being requested
1894 * @buffer: request buffer (may not be smaller than eight bytes)
1895 * @len: length of request buffer.
1896 * @timeout: command timeout
1897 * @retries: number of retries before failing
1898 * @data: returns a structure abstracting the mode header data
1899 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1900 * must be SCSI_SENSE_BUFFERSIZE big.
1902 * Returns zero if unsuccessful, or the header offset (either 4
1903 * or 8 depending on whether a six or ten byte command was
1904 * issued) if successful.
1907 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1908 unsigned char *buffer, int len, int timeout, int retries,
1909 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1911 unsigned char cmd[12];
1912 int use_10_for_ms;
1913 int header_length;
1914 int result;
1915 struct scsi_sense_hdr my_sshdr;
1917 memset(data, 0, sizeof(*data));
1918 memset(&cmd[0], 0, 12);
1919 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1920 cmd[2] = modepage;
1922 /* caller might not be interested in sense, but we need it */
1923 if (!sshdr)
1924 sshdr = &my_sshdr;
1926 retry:
1927 use_10_for_ms = sdev->use_10_for_ms;
1929 if (use_10_for_ms) {
1930 if (len < 8)
1931 len = 8;
1933 cmd[0] = MODE_SENSE_10;
1934 cmd[8] = len;
1935 header_length = 8;
1936 } else {
1937 if (len < 4)
1938 len = 4;
1940 cmd[0] = MODE_SENSE;
1941 cmd[4] = len;
1942 header_length = 4;
1945 memset(buffer, 0, len);
1947 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1948 sshdr, timeout, retries, NULL);
1950 /* This code looks awful: what it's doing is making sure an
1951 * ILLEGAL REQUEST sense return identifies the actual command
1952 * byte as the problem. MODE_SENSE commands can return
1953 * ILLEGAL REQUEST if the code page isn't supported */
1955 if (use_10_for_ms && !scsi_status_is_good(result) &&
1956 (driver_byte(result) & DRIVER_SENSE)) {
1957 if (scsi_sense_valid(sshdr)) {
1958 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1959 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1961 * Invalid command operation code
1963 sdev->use_10_for_ms = 0;
1964 goto retry;
1969 if(scsi_status_is_good(result)) {
1970 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1971 (modepage == 6 || modepage == 8))) {
1972 /* Initio breakage? */
1973 header_length = 0;
1974 data->length = 13;
1975 data->medium_type = 0;
1976 data->device_specific = 0;
1977 data->longlba = 0;
1978 data->block_descriptor_length = 0;
1979 } else if(use_10_for_ms) {
1980 data->length = buffer[0]*256 + buffer[1] + 2;
1981 data->medium_type = buffer[2];
1982 data->device_specific = buffer[3];
1983 data->longlba = buffer[4] & 0x01;
1984 data->block_descriptor_length = buffer[6]*256
1985 + buffer[7];
1986 } else {
1987 data->length = buffer[0] + 1;
1988 data->medium_type = buffer[1];
1989 data->device_specific = buffer[2];
1990 data->block_descriptor_length = buffer[3];
1992 data->header_length = header_length;
1995 return result;
1997 EXPORT_SYMBOL(scsi_mode_sense);
2000 * scsi_test_unit_ready - test if unit is ready
2001 * @sdev: scsi device to change the state of.
2002 * @timeout: command timeout
2003 * @retries: number of retries before failing
2004 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2005 * returning sense. Make sure that this is cleared before passing
2006 * in.
2008 * Returns zero if unsuccessful or an error if TUR failed. For
2009 * removable media, a return of NOT_READY or UNIT_ATTENTION is
2010 * translated to success, with the ->changed flag updated.
2013 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2014 struct scsi_sense_hdr *sshdr_external)
2016 char cmd[] = {
2017 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2019 struct scsi_sense_hdr *sshdr;
2020 int result;
2022 if (!sshdr_external)
2023 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2024 else
2025 sshdr = sshdr_external;
2027 /* try to eat the UNIT_ATTENTION if there are enough retries */
2028 do {
2029 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2030 timeout, retries, NULL);
2031 if (sdev->removable && scsi_sense_valid(sshdr) &&
2032 sshdr->sense_key == UNIT_ATTENTION)
2033 sdev->changed = 1;
2034 } while (scsi_sense_valid(sshdr) &&
2035 sshdr->sense_key == UNIT_ATTENTION && --retries);
2037 if (!sshdr)
2038 /* could not allocate sense buffer, so can't process it */
2039 return result;
2041 if (sdev->removable && scsi_sense_valid(sshdr) &&
2042 (sshdr->sense_key == UNIT_ATTENTION ||
2043 sshdr->sense_key == NOT_READY)) {
2044 sdev->changed = 1;
2045 result = 0;
2047 if (!sshdr_external)
2048 kfree(sshdr);
2049 return result;
2051 EXPORT_SYMBOL(scsi_test_unit_ready);
2054 * scsi_device_set_state - Take the given device through the device state model.
2055 * @sdev: scsi device to change the state of.
2056 * @state: state to change to.
2058 * Returns zero if unsuccessful or an error if the requested
2059 * transition is illegal.
2062 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2064 enum scsi_device_state oldstate = sdev->sdev_state;
2066 if (state == oldstate)
2067 return 0;
2069 switch (state) {
2070 case SDEV_CREATED:
2071 switch (oldstate) {
2072 case SDEV_CREATED_BLOCK:
2073 break;
2074 default:
2075 goto illegal;
2077 break;
2079 case SDEV_RUNNING:
2080 switch (oldstate) {
2081 case SDEV_CREATED:
2082 case SDEV_OFFLINE:
2083 case SDEV_QUIESCE:
2084 case SDEV_BLOCK:
2085 break;
2086 default:
2087 goto illegal;
2089 break;
2091 case SDEV_QUIESCE:
2092 switch (oldstate) {
2093 case SDEV_RUNNING:
2094 case SDEV_OFFLINE:
2095 break;
2096 default:
2097 goto illegal;
2099 break;
2101 case SDEV_OFFLINE:
2102 switch (oldstate) {
2103 case SDEV_CREATED:
2104 case SDEV_RUNNING:
2105 case SDEV_QUIESCE:
2106 case SDEV_BLOCK:
2107 break;
2108 default:
2109 goto illegal;
2111 break;
2113 case SDEV_BLOCK:
2114 switch (oldstate) {
2115 case SDEV_RUNNING:
2116 case SDEV_CREATED_BLOCK:
2117 break;
2118 default:
2119 goto illegal;
2121 break;
2123 case SDEV_CREATED_BLOCK:
2124 switch (oldstate) {
2125 case SDEV_CREATED:
2126 break;
2127 default:
2128 goto illegal;
2130 break;
2132 case SDEV_CANCEL:
2133 switch (oldstate) {
2134 case SDEV_CREATED:
2135 case SDEV_RUNNING:
2136 case SDEV_QUIESCE:
2137 case SDEV_OFFLINE:
2138 case SDEV_BLOCK:
2139 break;
2140 default:
2141 goto illegal;
2143 break;
2145 case SDEV_DEL:
2146 switch (oldstate) {
2147 case SDEV_CREATED:
2148 case SDEV_RUNNING:
2149 case SDEV_OFFLINE:
2150 case SDEV_CANCEL:
2151 break;
2152 default:
2153 goto illegal;
2155 break;
2158 sdev->sdev_state = state;
2159 return 0;
2161 illegal:
2162 SCSI_LOG_ERROR_RECOVERY(1,
2163 sdev_printk(KERN_ERR, sdev,
2164 "Illegal state transition %s->%s\n",
2165 scsi_device_state_name(oldstate),
2166 scsi_device_state_name(state))
2168 return -EINVAL;
2170 EXPORT_SYMBOL(scsi_device_set_state);
2173 * sdev_evt_emit - emit a single SCSI device uevent
2174 * @sdev: associated SCSI device
2175 * @evt: event to emit
2177 * Send a single uevent (scsi_event) to the associated scsi_device.
2179 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2181 int idx = 0;
2182 char *envp[3];
2184 switch (evt->evt_type) {
2185 case SDEV_EVT_MEDIA_CHANGE:
2186 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2187 break;
2189 default:
2190 /* do nothing */
2191 break;
2194 envp[idx++] = NULL;
2196 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2200 * sdev_evt_thread - send a uevent for each scsi event
2201 * @work: work struct for scsi_device
2203 * Dispatch queued events to their associated scsi_device kobjects
2204 * as uevents.
2206 void scsi_evt_thread(struct work_struct *work)
2208 struct scsi_device *sdev;
2209 LIST_HEAD(event_list);
2211 sdev = container_of(work, struct scsi_device, event_work);
2213 while (1) {
2214 struct scsi_event *evt;
2215 struct list_head *this, *tmp;
2216 unsigned long flags;
2218 spin_lock_irqsave(&sdev->list_lock, flags);
2219 list_splice_init(&sdev->event_list, &event_list);
2220 spin_unlock_irqrestore(&sdev->list_lock, flags);
2222 if (list_empty(&event_list))
2223 break;
2225 list_for_each_safe(this, tmp, &event_list) {
2226 evt = list_entry(this, struct scsi_event, node);
2227 list_del(&evt->node);
2228 scsi_evt_emit(sdev, evt);
2229 kfree(evt);
2235 * sdev_evt_send - send asserted event to uevent thread
2236 * @sdev: scsi_device event occurred on
2237 * @evt: event to send
2239 * Assert scsi device event asynchronously.
2241 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2243 unsigned long flags;
2245 #if 0
2246 /* FIXME: currently this check eliminates all media change events
2247 * for polled devices. Need to update to discriminate between AN
2248 * and polled events */
2249 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2250 kfree(evt);
2251 return;
2253 #endif
2255 spin_lock_irqsave(&sdev->list_lock, flags);
2256 list_add_tail(&evt->node, &sdev->event_list);
2257 schedule_work(&sdev->event_work);
2258 spin_unlock_irqrestore(&sdev->list_lock, flags);
2260 EXPORT_SYMBOL_GPL(sdev_evt_send);
2263 * sdev_evt_alloc - allocate a new scsi event
2264 * @evt_type: type of event to allocate
2265 * @gfpflags: GFP flags for allocation
2267 * Allocates and returns a new scsi_event.
2269 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2270 gfp_t gfpflags)
2272 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2273 if (!evt)
2274 return NULL;
2276 evt->evt_type = evt_type;
2277 INIT_LIST_HEAD(&evt->node);
2279 /* evt_type-specific initialization, if any */
2280 switch (evt_type) {
2281 case SDEV_EVT_MEDIA_CHANGE:
2282 default:
2283 /* do nothing */
2284 break;
2287 return evt;
2289 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2292 * sdev_evt_send_simple - send asserted event to uevent thread
2293 * @sdev: scsi_device event occurred on
2294 * @evt_type: type of event to send
2295 * @gfpflags: GFP flags for allocation
2297 * Assert scsi device event asynchronously, given an event type.
2299 void sdev_evt_send_simple(struct scsi_device *sdev,
2300 enum scsi_device_event evt_type, gfp_t gfpflags)
2302 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2303 if (!evt) {
2304 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2305 evt_type);
2306 return;
2309 sdev_evt_send(sdev, evt);
2311 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2314 * scsi_device_quiesce - Block user issued commands.
2315 * @sdev: scsi device to quiesce.
2317 * This works by trying to transition to the SDEV_QUIESCE state
2318 * (which must be a legal transition). When the device is in this
2319 * state, only special requests will be accepted, all others will
2320 * be deferred. Since special requests may also be requeued requests,
2321 * a successful return doesn't guarantee the device will be
2322 * totally quiescent.
2324 * Must be called with user context, may sleep.
2326 * Returns zero if unsuccessful or an error if not.
2329 scsi_device_quiesce(struct scsi_device *sdev)
2331 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2332 if (err)
2333 return err;
2335 scsi_run_queue(sdev->request_queue);
2336 while (sdev->device_busy) {
2337 msleep_interruptible(200);
2338 scsi_run_queue(sdev->request_queue);
2340 return 0;
2342 EXPORT_SYMBOL(scsi_device_quiesce);
2345 * scsi_device_resume - Restart user issued commands to a quiesced device.
2346 * @sdev: scsi device to resume.
2348 * Moves the device from quiesced back to running and restarts the
2349 * queues.
2351 * Must be called with user context, may sleep.
2353 void
2354 scsi_device_resume(struct scsi_device *sdev)
2356 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2357 return;
2358 scsi_run_queue(sdev->request_queue);
2360 EXPORT_SYMBOL(scsi_device_resume);
2362 static void
2363 device_quiesce_fn(struct scsi_device *sdev, void *data)
2365 scsi_device_quiesce(sdev);
2368 void
2369 scsi_target_quiesce(struct scsi_target *starget)
2371 starget_for_each_device(starget, NULL, device_quiesce_fn);
2373 EXPORT_SYMBOL(scsi_target_quiesce);
2375 static void
2376 device_resume_fn(struct scsi_device *sdev, void *data)
2378 scsi_device_resume(sdev);
2381 void
2382 scsi_target_resume(struct scsi_target *starget)
2384 starget_for_each_device(starget, NULL, device_resume_fn);
2386 EXPORT_SYMBOL(scsi_target_resume);
2389 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2390 * @sdev: device to block
2392 * Block request made by scsi lld's to temporarily stop all
2393 * scsi commands on the specified device. Called from interrupt
2394 * or normal process context.
2396 * Returns zero if successful or error if not
2398 * Notes:
2399 * This routine transitions the device to the SDEV_BLOCK state
2400 * (which must be a legal transition). When the device is in this
2401 * state, all commands are deferred until the scsi lld reenables
2402 * the device with scsi_device_unblock or device_block_tmo fires.
2403 * This routine assumes the host_lock is held on entry.
2406 scsi_internal_device_block(struct scsi_device *sdev)
2408 struct request_queue *q = sdev->request_queue;
2409 unsigned long flags;
2410 int err = 0;
2412 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2413 if (err) {
2414 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2416 if (err)
2417 return err;
2421 * The device has transitioned to SDEV_BLOCK. Stop the
2422 * block layer from calling the midlayer with this device's
2423 * request queue.
2425 spin_lock_irqsave(q->queue_lock, flags);
2426 blk_stop_queue(q);
2427 spin_unlock_irqrestore(q->queue_lock, flags);
2429 return 0;
2431 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2434 * scsi_internal_device_unblock - resume a device after a block request
2435 * @sdev: device to resume
2437 * Called by scsi lld's or the midlayer to restart the device queue
2438 * for the previously suspended scsi device. Called from interrupt or
2439 * normal process context.
2441 * Returns zero if successful or error if not.
2443 * Notes:
2444 * This routine transitions the device to the SDEV_RUNNING state
2445 * (which must be a legal transition) allowing the midlayer to
2446 * goose the queue for this device. This routine assumes the
2447 * host_lock is held upon entry.
2450 scsi_internal_device_unblock(struct scsi_device *sdev)
2452 struct request_queue *q = sdev->request_queue;
2453 unsigned long flags;
2456 * Try to transition the scsi device to SDEV_RUNNING
2457 * and goose the device queue if successful.
2459 if (sdev->sdev_state == SDEV_BLOCK)
2460 sdev->sdev_state = SDEV_RUNNING;
2461 else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2462 sdev->sdev_state = SDEV_CREATED;
2463 else if (sdev->sdev_state != SDEV_CANCEL &&
2464 sdev->sdev_state != SDEV_OFFLINE)
2465 return -EINVAL;
2467 spin_lock_irqsave(q->queue_lock, flags);
2468 blk_start_queue(q);
2469 spin_unlock_irqrestore(q->queue_lock, flags);
2471 return 0;
2473 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2475 static void
2476 device_block(struct scsi_device *sdev, void *data)
2478 scsi_internal_device_block(sdev);
2481 static int
2482 target_block(struct device *dev, void *data)
2484 if (scsi_is_target_device(dev))
2485 starget_for_each_device(to_scsi_target(dev), NULL,
2486 device_block);
2487 return 0;
2490 void
2491 scsi_target_block(struct device *dev)
2493 if (scsi_is_target_device(dev))
2494 starget_for_each_device(to_scsi_target(dev), NULL,
2495 device_block);
2496 else
2497 device_for_each_child(dev, NULL, target_block);
2499 EXPORT_SYMBOL_GPL(scsi_target_block);
2501 static void
2502 device_unblock(struct scsi_device *sdev, void *data)
2504 scsi_internal_device_unblock(sdev);
2507 static int
2508 target_unblock(struct device *dev, void *data)
2510 if (scsi_is_target_device(dev))
2511 starget_for_each_device(to_scsi_target(dev), NULL,
2512 device_unblock);
2513 return 0;
2516 void
2517 scsi_target_unblock(struct device *dev)
2519 if (scsi_is_target_device(dev))
2520 starget_for_each_device(to_scsi_target(dev), NULL,
2521 device_unblock);
2522 else
2523 device_for_each_child(dev, NULL, target_unblock);
2525 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2528 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2529 * @sgl: scatter-gather list
2530 * @sg_count: number of segments in sg
2531 * @offset: offset in bytes into sg, on return offset into the mapped area
2532 * @len: bytes to map, on return number of bytes mapped
2534 * Returns virtual address of the start of the mapped page
2536 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2537 size_t *offset, size_t *len)
2539 int i;
2540 size_t sg_len = 0, len_complete = 0;
2541 struct scatterlist *sg;
2542 struct page *page;
2544 WARN_ON(!irqs_disabled());
2546 for_each_sg(sgl, sg, sg_count, i) {
2547 len_complete = sg_len; /* Complete sg-entries */
2548 sg_len += sg->length;
2549 if (sg_len > *offset)
2550 break;
2553 if (unlikely(i == sg_count)) {
2554 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2555 "elements %d\n",
2556 __func__, sg_len, *offset, sg_count);
2557 WARN_ON(1);
2558 return NULL;
2561 /* Offset starting from the beginning of first page in this sg-entry */
2562 *offset = *offset - len_complete + sg->offset;
2564 /* Assumption: contiguous pages can be accessed as "page + i" */
2565 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2566 *offset &= ~PAGE_MASK;
2568 /* Bytes in this sg-entry from *offset to the end of the page */
2569 sg_len = PAGE_SIZE - *offset;
2570 if (*len > sg_len)
2571 *len = sg_len;
2573 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2575 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2578 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2579 * @virt: virtual address to be unmapped
2581 void scsi_kunmap_atomic_sg(void *virt)
2583 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2585 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);