3 Sensoray s626 Comedi driver
5 COMEDI - Linux Control and Measurement Device Interface
6 Copyright (C) 2000 David A. Schleef <ds@schleef.org>
8 Based on Sensoray Model 626 Linux driver Version 0.2
9 Copyright (C) 2002-2004 Sensoray Co., Inc.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
29 Description: Sensoray 626 driver
30 Devices: [Sensoray] 626 (s626)
31 Authors: Gianluca Palli <gpalli@deis.unibo.it>,
32 Updated: Fri, 15 Feb 2008 10:28:42 +0000
35 Configuration options:
36 [0] - PCI bus of device (optional)
37 [1] - PCI slot of device (optional)
38 If bus/slot is not specified, the first supported
39 PCI device found will be used.
41 INSN_CONFIG instructions:
49 s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
50 supported configuration options:
56 Every channel must be configured before reading.
60 insn.insn=INSN_CONFIG; //configuration instruction
61 insn.n=1; //number of operation (must be 1)
62 insn.data=&initialvalue; //initial value loaded into encoder
63 //during configuration
64 insn.subdev=5; //encoder subdevice
65 insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
68 comedi_do_insn(cf,&insn); //executing configuration
71 #include <linux/interrupt.h>
72 #include <linux/kernel.h>
73 #include <linux/types.h>
75 #include "../comedidev.h"
77 #include "comedi_pci.h"
79 #include "comedi_fc.h"
82 MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
83 MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
84 MODULE_LICENSE("GPL");
97 static const struct s626_board s626_boards
[] = {
100 .ai_chans
= S626_ADC_CHANNELS
,
102 .ao_chans
= S626_DAC_CHANNELS
,
104 .dio_chans
= S626_DIO_CHANNELS
,
105 .dio_banks
= S626_DIO_BANKS
,
106 .enc_chans
= S626_ENCODER_CHANNELS
,
110 #define thisboard ((const struct s626_board *)dev->board_ptr)
111 #define PCI_VENDOR_ID_S626 0x1131
112 #define PCI_DEVICE_ID_S626 0x7146
115 * For devices with vendor:device id == 0x1131:0x7146 you must specify
116 * also subvendor:subdevice ids, because otherwise it will conflict with
117 * Philips SAA7146 media/dvb based cards.
119 static DEFINE_PCI_DEVICE_TABLE(s626_pci_table
) = {
120 {PCI_VENDOR_ID_S626
, PCI_DEVICE_ID_S626
, 0x6000, 0x0272, 0, 0, 0},
124 MODULE_DEVICE_TABLE(pci
, s626_pci_table
);
126 static int s626_attach(struct comedi_device
*dev
, struct comedi_devconfig
*it
);
127 static int s626_detach(struct comedi_device
*dev
);
129 static struct comedi_driver driver_s626
= {
130 .driver_name
= "s626",
131 .module
= THIS_MODULE
,
132 .attach
= s626_attach
,
133 .detach
= s626_detach
,
136 struct s626_private
{
137 struct pci_dev
*pdev
;
141 uint8_t ai_cmd_running
; /* ai_cmd is running */
142 uint8_t ai_continous
; /* continous aquisition */
143 int ai_sample_count
; /* number of samples to aquire */
144 unsigned int ai_sample_timer
;
145 /* time between samples in units of the timer */
146 int ai_convert_count
; /* conversion counter */
147 unsigned int ai_convert_timer
;
148 /* time between conversion in units of the timer */
149 uint16_t CounterIntEnabs
;
150 /* Counter interrupt enable mask for MISC2 register. */
151 uint8_t AdcItems
; /* Number of items in ADC poll list. */
152 struct bufferDMA RPSBuf
; /* DMA buffer used to hold ADC (RPS1) program. */
153 struct bufferDMA ANABuf
;
154 /* DMA buffer used to receive ADC data and hold DAC data. */
156 /* Pointer to logical adrs of DMA buffer used to hold DAC data. */
157 uint16_t Dacpol
; /* Image of DAC polarity register. */
158 uint8_t TrimSetpoint
[12]; /* Images of TrimDAC setpoints */
159 uint16_t ChargeEnabled
; /* Image of MISC2 Battery */
160 /* Charge Enabled (0 or WRMISC2_CHARGE_ENABLE). */
161 uint16_t WDInterval
; /* Image of MISC2 watchdog interval control bits. */
163 /* I2C device address for onboard EEPROM (board rev dependent). */
165 unsigned int ao_readback
[S626_DAC_CHANNELS
];
180 static struct dio_private dio_private_A
= {
182 .WRDOut
= LP_WRDOUTA
,
183 .RDEdgSel
= LP_RDEDGSELA
,
184 .WREdgSel
= LP_WREDGSELA
,
185 .RDCapSel
= LP_RDCAPSELA
,
186 .WRCapSel
= LP_WRCAPSELA
,
187 .RDCapFlg
= LP_RDCAPFLGA
,
188 .RDIntSel
= LP_RDINTSELA
,
189 .WRIntSel
= LP_WRINTSELA
,
192 static struct dio_private dio_private_B
= {
194 .WRDOut
= LP_WRDOUTB
,
195 .RDEdgSel
= LP_RDEDGSELB
,
196 .WREdgSel
= LP_WREDGSELB
,
197 .RDCapSel
= LP_RDCAPSELB
,
198 .WRCapSel
= LP_WRCAPSELB
,
199 .RDCapFlg
= LP_RDCAPFLGB
,
200 .RDIntSel
= LP_RDINTSELB
,
201 .WRIntSel
= LP_WRINTSELB
,
204 static struct dio_private dio_private_C
= {
206 .WRDOut
= LP_WRDOUTC
,
207 .RDEdgSel
= LP_RDEDGSELC
,
208 .WREdgSel
= LP_WREDGSELC
,
209 .RDCapSel
= LP_RDCAPSELC
,
210 .WRCapSel
= LP_WRCAPSELC
,
211 .RDCapFlg
= LP_RDCAPFLGC
,
212 .RDIntSel
= LP_RDINTSELC
,
213 .WRIntSel
= LP_WRINTSELC
,
216 /* to group dio devices (48 bits mask and data are not allowed ???)
217 static struct dio_private *dio_private_word[]={
224 #define devpriv ((struct s626_private *)dev->private)
225 #define diopriv ((struct dio_private *)s->private)
227 COMEDI_PCI_INITCLEANUP_NOMODULE(driver_s626
, s626_pci_table
);
230 static int s626_ai_insn_config(struct comedi_device
*dev
,
231 struct comedi_subdevice
*s
,
232 struct comedi_insn
*insn
, unsigned int *data
);
233 /* static int s626_ai_rinsn(struct comedi_device *dev,struct comedi_subdevice *s,struct comedi_insn *insn,unsigned int *data); */
234 static int s626_ai_insn_read(struct comedi_device
*dev
,
235 struct comedi_subdevice
*s
,
236 struct comedi_insn
*insn
, unsigned int *data
);
237 static int s626_ai_cmd(struct comedi_device
*dev
, struct comedi_subdevice
*s
);
238 static int s626_ai_cmdtest(struct comedi_device
*dev
,
239 struct comedi_subdevice
*s
, struct comedi_cmd
*cmd
);
240 static int s626_ai_cancel(struct comedi_device
*dev
,
241 struct comedi_subdevice
*s
);
242 static int s626_ao_winsn(struct comedi_device
*dev
, struct comedi_subdevice
*s
,
243 struct comedi_insn
*insn
, unsigned int *data
);
244 static int s626_ao_rinsn(struct comedi_device
*dev
, struct comedi_subdevice
*s
,
245 struct comedi_insn
*insn
, unsigned int *data
);
246 static int s626_dio_insn_bits(struct comedi_device
*dev
,
247 struct comedi_subdevice
*s
,
248 struct comedi_insn
*insn
, unsigned int *data
);
249 static int s626_dio_insn_config(struct comedi_device
*dev
,
250 struct comedi_subdevice
*s
,
251 struct comedi_insn
*insn
, unsigned int *data
);
252 static int s626_dio_set_irq(struct comedi_device
*dev
, unsigned int chan
);
253 static int s626_dio_reset_irq(struct comedi_device
*dev
, unsigned int gruop
,
255 static int s626_dio_clear_irq(struct comedi_device
*dev
);
256 static int s626_enc_insn_config(struct comedi_device
*dev
,
257 struct comedi_subdevice
*s
,
258 struct comedi_insn
*insn
, unsigned int *data
);
259 static int s626_enc_insn_read(struct comedi_device
*dev
,
260 struct comedi_subdevice
*s
,
261 struct comedi_insn
*insn
, unsigned int *data
);
262 static int s626_enc_insn_write(struct comedi_device
*dev
,
263 struct comedi_subdevice
*s
,
264 struct comedi_insn
*insn
, unsigned int *data
);
265 static int s626_ns_to_timer(int *nanosec
, int round_mode
);
266 static int s626_ai_load_polllist(uint8_t * ppl
, struct comedi_cmd
*cmd
);
267 static int s626_ai_inttrig(struct comedi_device
*dev
,
268 struct comedi_subdevice
*s
, unsigned int trignum
);
269 static irqreturn_t
s626_irq_handler(int irq
, void *d
);
270 static unsigned int s626_ai_reg_to_uint(int data
);
271 /* static unsigned int s626_uint_to_reg(struct comedi_subdevice *s, int data); */
273 /* end ioctl routines */
275 /* internal routines */
276 static void s626_dio_init(struct comedi_device
*dev
);
277 static void ResetADC(struct comedi_device
*dev
, uint8_t * ppl
);
278 static void LoadTrimDACs(struct comedi_device
*dev
);
279 static void WriteTrimDAC(struct comedi_device
*dev
, uint8_t LogicalChan
,
281 static uint8_t I2Cread(struct comedi_device
*dev
, uint8_t addr
);
282 static uint32_t I2Chandshake(struct comedi_device
*dev
, uint32_t val
);
283 static void SetDAC(struct comedi_device
*dev
, uint16_t chan
, short dacdata
);
284 static void SendDAC(struct comedi_device
*dev
, uint32_t val
);
285 static void WriteMISC2(struct comedi_device
*dev
, uint16_t NewImage
);
286 static void DEBItransfer(struct comedi_device
*dev
);
287 static uint16_t DEBIread(struct comedi_device
*dev
, uint16_t addr
);
288 static void DEBIwrite(struct comedi_device
*dev
, uint16_t addr
, uint16_t wdata
);
289 static void DEBIreplace(struct comedi_device
*dev
, uint16_t addr
, uint16_t mask
,
291 static void CloseDMAB(struct comedi_device
*dev
, struct bufferDMA
*pdma
,
294 /* COUNTER OBJECT ------------------------------------------------ */
296 /* Pointers to functions that differ for A and B counters: */
297 uint16_t(*GetEnable
) (struct comedi_device
* dev
, struct enc_private
*); /* Return clock enable. */
298 uint16_t(*GetIntSrc
) (struct comedi_device
* dev
, struct enc_private
*); /* Return interrupt source. */
299 uint16_t(*GetLoadTrig
) (struct comedi_device
* dev
, struct enc_private
*); /* Return preload trigger source. */
300 uint16_t(*GetMode
) (struct comedi_device
* dev
, struct enc_private
*); /* Return standardized operating mode. */
301 void (*PulseIndex
) (struct comedi_device
* dev
, struct enc_private
*); /* Generate soft index strobe. */
302 void (*SetEnable
) (struct comedi_device
* dev
, struct enc_private
*, uint16_t enab
); /* Program clock enable. */
303 void (*SetIntSrc
) (struct comedi_device
* dev
, struct enc_private
*, uint16_t IntSource
); /* Program interrupt source. */
304 void (*SetLoadTrig
) (struct comedi_device
* dev
, struct enc_private
*, uint16_t Trig
); /* Program preload trigger source. */
305 void (*SetMode
) (struct comedi_device
* dev
, struct enc_private
*, uint16_t Setup
, uint16_t DisableIntSrc
); /* Program standardized operating mode. */
306 void (*ResetCapFlags
) (struct comedi_device
* dev
, struct enc_private
*); /* Reset event capture flags. */
308 uint16_t MyCRA
; /* Address of CRA register. */
309 uint16_t MyCRB
; /* Address of CRB register. */
310 uint16_t MyLatchLsw
; /* Address of Latch least-significant-word */
312 uint16_t MyEventBits
[4]; /* Bit translations for IntSrc -->RDMISC2. */
315 #define encpriv ((struct enc_private *)(dev->subdevices+5)->private)
317 /* counters routines */
318 static void s626_timer_load(struct comedi_device
*dev
, struct enc_private
*k
,
320 static uint32_t ReadLatch(struct comedi_device
*dev
, struct enc_private
*k
);
321 static void ResetCapFlags_A(struct comedi_device
*dev
, struct enc_private
*k
);
322 static void ResetCapFlags_B(struct comedi_device
*dev
, struct enc_private
*k
);
323 static uint16_t GetMode_A(struct comedi_device
*dev
, struct enc_private
*k
);
324 static uint16_t GetMode_B(struct comedi_device
*dev
, struct enc_private
*k
);
325 static void SetMode_A(struct comedi_device
*dev
, struct enc_private
*k
,
326 uint16_t Setup
, uint16_t DisableIntSrc
);
327 static void SetMode_B(struct comedi_device
*dev
, struct enc_private
*k
,
328 uint16_t Setup
, uint16_t DisableIntSrc
);
329 static void SetEnable_A(struct comedi_device
*dev
, struct enc_private
*k
,
331 static void SetEnable_B(struct comedi_device
*dev
, struct enc_private
*k
,
333 static uint16_t GetEnable_A(struct comedi_device
*dev
, struct enc_private
*k
);
334 static uint16_t GetEnable_B(struct comedi_device
*dev
, struct enc_private
*k
);
335 static void SetLatchSource(struct comedi_device
*dev
, struct enc_private
*k
,
337 /* static uint16_t GetLatchSource(struct comedi_device *dev, struct enc_private *k ); */
338 static void SetLoadTrig_A(struct comedi_device
*dev
, struct enc_private
*k
,
340 static void SetLoadTrig_B(struct comedi_device
*dev
, struct enc_private
*k
,
342 static uint16_t GetLoadTrig_A(struct comedi_device
*dev
, struct enc_private
*k
);
343 static uint16_t GetLoadTrig_B(struct comedi_device
*dev
, struct enc_private
*k
);
344 static void SetIntSrc_B(struct comedi_device
*dev
, struct enc_private
*k
,
346 static void SetIntSrc_A(struct comedi_device
*dev
, struct enc_private
*k
,
348 static uint16_t GetIntSrc_A(struct comedi_device
*dev
, struct enc_private
*k
);
349 static uint16_t GetIntSrc_B(struct comedi_device
*dev
, struct enc_private
*k
);
350 /* static void SetClkMult(struct comedi_device *dev, struct enc_private *k, uint16_t value ) ; */
351 /* static uint16_t GetClkMult(struct comedi_device *dev, struct enc_private *k ) ; */
352 /* static void SetIndexPol(struct comedi_device *dev, struct enc_private *k, uint16_t value ); */
353 /* static uint16_t GetClkPol(struct comedi_device *dev, struct enc_private *k ) ; */
354 /* static void SetIndexSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value ); */
355 /* static uint16_t GetClkSrc( struct comedi_device *dev,struct enc_private *k ); */
356 /* static void SetIndexSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value ); */
357 /* static uint16_t GetIndexSrc( struct comedi_device *dev,struct enc_private *k ); */
358 static void PulseIndex_A(struct comedi_device
*dev
, struct enc_private
*k
);
359 static void PulseIndex_B(struct comedi_device
*dev
, struct enc_private
*k
);
360 static void Preload(struct comedi_device
*dev
, struct enc_private
*k
,
362 static void CountersInit(struct comedi_device
*dev
);
363 /* end internal routines */
365 /* Counter objects constructor. */
367 /* Counter overflow/index event flag masks for RDMISC2. */
368 #define INDXMASK(C) (1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 + 4)))
369 #define OVERMASK(C) (1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))
370 #define EVBITS(C) { 0, OVERMASK(C), INDXMASK(C), OVERMASK(C) | INDXMASK(C) }
372 /* Translation table to map IntSrc into equivalent RDMISC2 event flag bits. */
373 /* static const uint16_t EventBits[][4] = { EVBITS(0), EVBITS(1), EVBITS(2), EVBITS(3), EVBITS(4), EVBITS(5) }; */
375 /* struct enc_private; */
376 static struct enc_private enc_private_data
[] = {
378 .GetEnable
= GetEnable_A
,
379 .GetIntSrc
= GetIntSrc_A
,
380 .GetLoadTrig
= GetLoadTrig_A
,
381 .GetMode
= GetMode_A
,
382 .PulseIndex
= PulseIndex_A
,
383 .SetEnable
= SetEnable_A
,
384 .SetIntSrc
= SetIntSrc_A
,
385 .SetLoadTrig
= SetLoadTrig_A
,
386 .SetMode
= SetMode_A
,
387 .ResetCapFlags
= ResetCapFlags_A
,
390 .MyLatchLsw
= LP_CNTR0ALSW
,
391 .MyEventBits
= EVBITS(0),
394 .GetEnable
= GetEnable_A
,
395 .GetIntSrc
= GetIntSrc_A
,
396 .GetLoadTrig
= GetLoadTrig_A
,
397 .GetMode
= GetMode_A
,
398 .PulseIndex
= PulseIndex_A
,
399 .SetEnable
= SetEnable_A
,
400 .SetIntSrc
= SetIntSrc_A
,
401 .SetLoadTrig
= SetLoadTrig_A
,
402 .SetMode
= SetMode_A
,
403 .ResetCapFlags
= ResetCapFlags_A
,
406 .MyLatchLsw
= LP_CNTR1ALSW
,
407 .MyEventBits
= EVBITS(1),
410 .GetEnable
= GetEnable_A
,
411 .GetIntSrc
= GetIntSrc_A
,
412 .GetLoadTrig
= GetLoadTrig_A
,
413 .GetMode
= GetMode_A
,
414 .PulseIndex
= PulseIndex_A
,
415 .SetEnable
= SetEnable_A
,
416 .SetIntSrc
= SetIntSrc_A
,
417 .SetLoadTrig
= SetLoadTrig_A
,
418 .SetMode
= SetMode_A
,
419 .ResetCapFlags
= ResetCapFlags_A
,
422 .MyLatchLsw
= LP_CNTR2ALSW
,
423 .MyEventBits
= EVBITS(2),
426 .GetEnable
= GetEnable_B
,
427 .GetIntSrc
= GetIntSrc_B
,
428 .GetLoadTrig
= GetLoadTrig_B
,
429 .GetMode
= GetMode_B
,
430 .PulseIndex
= PulseIndex_B
,
431 .SetEnable
= SetEnable_B
,
432 .SetIntSrc
= SetIntSrc_B
,
433 .SetLoadTrig
= SetLoadTrig_B
,
434 .SetMode
= SetMode_B
,
435 .ResetCapFlags
= ResetCapFlags_B
,
438 .MyLatchLsw
= LP_CNTR0BLSW
,
439 .MyEventBits
= EVBITS(3),
442 .GetEnable
= GetEnable_B
,
443 .GetIntSrc
= GetIntSrc_B
,
444 .GetLoadTrig
= GetLoadTrig_B
,
445 .GetMode
= GetMode_B
,
446 .PulseIndex
= PulseIndex_B
,
447 .SetEnable
= SetEnable_B
,
448 .SetIntSrc
= SetIntSrc_B
,
449 .SetLoadTrig
= SetLoadTrig_B
,
450 .SetMode
= SetMode_B
,
451 .ResetCapFlags
= ResetCapFlags_B
,
454 .MyLatchLsw
= LP_CNTR1BLSW
,
455 .MyEventBits
= EVBITS(4),
458 .GetEnable
= GetEnable_B
,
459 .GetIntSrc
= GetIntSrc_B
,
460 .GetLoadTrig
= GetLoadTrig_B
,
461 .GetMode
= GetMode_B
,
462 .PulseIndex
= PulseIndex_B
,
463 .SetEnable
= SetEnable_B
,
464 .SetIntSrc
= SetIntSrc_B
,
465 .SetLoadTrig
= SetLoadTrig_B
,
466 .SetMode
= SetMode_B
,
467 .ResetCapFlags
= ResetCapFlags_B
,
470 .MyLatchLsw
= LP_CNTR2BLSW
,
471 .MyEventBits
= EVBITS(5),
475 /* enab/disable a function or test status bit(s) that are accessed */
476 /* through Main Control Registers 1 or 2. */
477 #define MC_ENABLE(REGADRS, CTRLWORD) writel(((uint32_t)(CTRLWORD) << 16) | (uint32_t)(CTRLWORD), devpriv->base_addr+(REGADRS))
479 #define MC_DISABLE(REGADRS, CTRLWORD) writel((uint32_t)(CTRLWORD) << 16 , devpriv->base_addr+(REGADRS))
481 #define MC_TEST(REGADRS, CTRLWORD) ((readl(devpriv->base_addr+(REGADRS)) & CTRLWORD) != 0)
483 /* #define WR7146(REGARDS,CTRLWORD)
484 writel(CTRLWORD,(uint32_t)(devpriv->base_addr+(REGARDS))) */
485 #define WR7146(REGARDS, CTRLWORD) writel(CTRLWORD, devpriv->base_addr+(REGARDS))
487 /* #define RR7146(REGARDS)
488 readl((uint32_t)(devpriv->base_addr+(REGARDS))) */
489 #define RR7146(REGARDS) readl(devpriv->base_addr+(REGARDS))
491 #define BUGFIX_STREG(REGADRS) (REGADRS - 4)
493 /* Write a time slot control record to TSL2. */
494 #define VECTPORT(VECTNUM) (P_TSL2 + ((VECTNUM) << 2))
495 #define SETVECT(VECTNUM, VECTVAL) WR7146(VECTPORT(VECTNUM), (VECTVAL))
497 /* Code macros used for constructing I2C command bytes. */
498 #define I2C_B2(ATTR, VAL) (((ATTR) << 6) | ((VAL) << 24))
499 #define I2C_B1(ATTR, VAL) (((ATTR) << 4) | ((VAL) << 16))
500 #define I2C_B0(ATTR, VAL) (((ATTR) << 2) | ((VAL) << 8))
502 static const struct comedi_lrange s626_range_table
= { 2, {
508 static int s626_attach(struct comedi_device
*dev
, struct comedi_devconfig
*it
)
510 /* uint8_t PollList; */
511 /* uint16_t AdcData; */
512 /* uint16_t StartVal; */
513 /* uint16_t index; */
514 /* unsigned int data[16]; */
518 resource_size_t resourceStart
;
520 struct comedi_subdevice
*s
;
521 const struct pci_device_id
*ids
;
522 struct pci_dev
*pdev
= NULL
;
524 if (alloc_private(dev
, sizeof(struct s626_private
)) < 0)
527 for (i
= 0; i
< (ARRAY_SIZE(s626_pci_table
) - 1) && !pdev
; i
++) {
528 ids
= &s626_pci_table
[i
];
530 pdev
= pci_get_subsys(ids
->vendor
, ids
->device
,
531 ids
->subvendor
, ids
->subdevice
,
534 if ((it
->options
[0] || it
->options
[1]) && pdev
) {
535 /* matches requested bus/slot */
536 if (pdev
->bus
->number
== it
->options
[0] &&
537 PCI_SLOT(pdev
->devfn
) == it
->options
[1])
543 devpriv
->pdev
= pdev
;
546 printk("s626_attach: Board not present!!!\n");
550 result
= comedi_pci_enable(pdev
, "s626");
552 printk("s626_attach: comedi_pci_enable fails\n");
555 devpriv
->got_regions
= 1;
557 resourceStart
= pci_resource_start(devpriv
->pdev
, 0);
559 devpriv
->base_addr
= ioremap(resourceStart
, SIZEOF_ADDRESS_SPACE
);
560 if (devpriv
->base_addr
== NULL
) {
561 printk("s626_attach: IOREMAP failed\n");
565 if (devpriv
->base_addr
) {
566 /* disable master interrupt */
567 writel(0, devpriv
->base_addr
+ P_IER
);
570 writel(MC1_SOFT_RESET
, devpriv
->base_addr
+ P_MC1
);
572 /* DMA FIXME DMA// */
573 DEBUG("s626_attach: DMA ALLOCATION\n");
575 /* adc buffer allocation */
576 devpriv
->allocatedBuf
= 0;
578 devpriv
->ANABuf
.LogicalBase
=
579 pci_alloc_consistent(devpriv
->pdev
, DMABUF_SIZE
, &appdma
);
581 if (devpriv
->ANABuf
.LogicalBase
== NULL
) {
582 printk("s626_attach: DMA Memory mapping error\n");
586 devpriv
->ANABuf
.PhysicalBase
= appdma
;
589 ("s626_attach: AllocDMAB ADC Logical=%p, bsize=%d, Physical=0x%x\n",
590 devpriv
->ANABuf
.LogicalBase
, DMABUF_SIZE
,
591 (uint32_t) devpriv
->ANABuf
.PhysicalBase
);
593 devpriv
->allocatedBuf
++;
595 devpriv
->RPSBuf
.LogicalBase
=
596 pci_alloc_consistent(devpriv
->pdev
, DMABUF_SIZE
, &appdma
);
598 if (devpriv
->RPSBuf
.LogicalBase
== NULL
) {
599 printk("s626_attach: DMA Memory mapping error\n");
603 devpriv
->RPSBuf
.PhysicalBase
= appdma
;
606 ("s626_attach: AllocDMAB RPS Logical=%p, bsize=%d, Physical=0x%x\n",
607 devpriv
->RPSBuf
.LogicalBase
, DMABUF_SIZE
,
608 (uint32_t) devpriv
->RPSBuf
.PhysicalBase
);
610 devpriv
->allocatedBuf
++;
614 dev
->board_ptr
= s626_boards
;
615 dev
->board_name
= thisboard
->name
;
617 if (alloc_subdevices(dev
, 6) < 0)
620 dev
->iobase
= (unsigned long)devpriv
->base_addr
;
621 dev
->irq
= devpriv
->pdev
->irq
;
623 /* set up interrupt handler */
625 printk(" unknown irq (bad)\n");
627 ret
= request_irq(dev
->irq
, s626_irq_handler
, IRQF_SHARED
,
631 printk(" irq not available\n");
636 DEBUG("s626_attach: -- it opts %d,%d -- \n",
637 it
->options
[0], it
->options
[1]);
639 s
= dev
->subdevices
+ 0;
640 /* analog input subdevice */
641 dev
->read_subdev
= s
;
642 /* we support single-ended (ground) and differential */
643 s
->type
= COMEDI_SUBD_AI
;
644 s
->subdev_flags
= SDF_READABLE
| SDF_DIFF
| SDF_CMD_READ
;
645 s
->n_chan
= thisboard
->ai_chans
;
646 s
->maxdata
= (0xffff >> 2);
647 s
->range_table
= &s626_range_table
;
648 s
->len_chanlist
= thisboard
->ai_chans
; /* This is the maximum chanlist
649 length that the board can
651 s
->insn_config
= s626_ai_insn_config
;
652 s
->insn_read
= s626_ai_insn_read
;
653 s
->do_cmd
= s626_ai_cmd
;
654 s
->do_cmdtest
= s626_ai_cmdtest
;
655 s
->cancel
= s626_ai_cancel
;
657 s
= dev
->subdevices
+ 1;
658 /* analog output subdevice */
659 s
->type
= COMEDI_SUBD_AO
;
660 s
->subdev_flags
= SDF_WRITABLE
| SDF_READABLE
;
661 s
->n_chan
= thisboard
->ao_chans
;
662 s
->maxdata
= (0x3fff);
663 s
->range_table
= &range_bipolar10
;
664 s
->insn_write
= s626_ao_winsn
;
665 s
->insn_read
= s626_ao_rinsn
;
667 s
= dev
->subdevices
+ 2;
668 /* digital I/O subdevice */
669 s
->type
= COMEDI_SUBD_DIO
;
670 s
->subdev_flags
= SDF_WRITABLE
| SDF_READABLE
;
671 s
->n_chan
= S626_DIO_CHANNELS
;
674 s
->private = &dio_private_A
;
675 s
->range_table
= &range_digital
;
676 s
->insn_config
= s626_dio_insn_config
;
677 s
->insn_bits
= s626_dio_insn_bits
;
679 s
= dev
->subdevices
+ 3;
680 /* digital I/O subdevice */
681 s
->type
= COMEDI_SUBD_DIO
;
682 s
->subdev_flags
= SDF_WRITABLE
| SDF_READABLE
;
686 s
->private = &dio_private_B
;
687 s
->range_table
= &range_digital
;
688 s
->insn_config
= s626_dio_insn_config
;
689 s
->insn_bits
= s626_dio_insn_bits
;
691 s
= dev
->subdevices
+ 4;
692 /* digital I/O subdevice */
693 s
->type
= COMEDI_SUBD_DIO
;
694 s
->subdev_flags
= SDF_WRITABLE
| SDF_READABLE
;
698 s
->private = &dio_private_C
;
699 s
->range_table
= &range_digital
;
700 s
->insn_config
= s626_dio_insn_config
;
701 s
->insn_bits
= s626_dio_insn_bits
;
703 s
= dev
->subdevices
+ 5;
704 /* encoder (counter) subdevice */
705 s
->type
= COMEDI_SUBD_COUNTER
;
706 s
->subdev_flags
= SDF_WRITABLE
| SDF_READABLE
| SDF_LSAMPL
;
707 s
->n_chan
= thisboard
->enc_chans
;
708 s
->private = enc_private_data
;
709 s
->insn_config
= s626_enc_insn_config
;
710 s
->insn_read
= s626_enc_insn_read
;
711 s
->insn_write
= s626_enc_insn_write
;
712 s
->maxdata
= 0xffffff;
713 s
->range_table
= &range_unknown
;
715 /* stop ai_command */
716 devpriv
->ai_cmd_running
= 0;
718 if (devpriv
->base_addr
&& (devpriv
->allocatedBuf
== 2)) {
722 /* enab DEBI and audio pins, enable I2C interface. */
723 MC_ENABLE(P_MC1
, MC1_DEBI
| MC1_AUDIO
| MC1_I2C
);
724 /* Configure DEBI operating mode. */
725 WR7146(P_DEBICFG
, DEBI_CFG_SLAVE16
/* Local bus is 16 */
727 | (DEBI_TOUT
<< DEBI_CFG_TOUT_BIT
)
730 /* transfer timeout */
732 |DEBI_SWAP
/* Set up byte lane */
734 | DEBI_CFG_INTEL
); /* Intel-compatible */
735 /* local bus (DEBI */
736 /* never times out). */
737 DEBUG("s626_attach: %d debi init -- %d\n",
738 DEBI_CFG_SLAVE16
| (DEBI_TOUT
<< DEBI_CFG_TOUT_BIT
) |
739 DEBI_SWAP
| DEBI_CFG_INTEL
,
740 DEBI_CFG_INTEL
| DEBI_CFG_TOQ
| DEBI_CFG_INCQ
|
743 /* DEBI INIT S626 WR7146( P_DEBICFG, DEBI_CFG_INTEL | DEBI_CFG_TOQ */
744 /* | DEBI_CFG_INCQ| DEBI_CFG_16Q); //end */
746 /* Paging is disabled. */
747 WR7146(P_DEBIPAGE
, DEBI_PAGE_DISABLE
); /* Disable MMU paging. */
749 /* Init GPIO so that ADC Start* is negated. */
750 WR7146(P_GPIO
, GPIO_BASE
| GPIO1_HI
);
752 /* IsBoardRevA is a boolean that indicates whether the board is RevA.
754 * VERSION 2.01 CHANGE: REV A & B BOARDS NOW SUPPORTED BY DYNAMIC
755 * EEPROM ADDRESS SELECTION. Initialize the I2C interface, which
756 * is used to access the onboard serial EEPROM. The EEPROM's I2C
757 * DeviceAddress is hardwired to a value that is dependent on the
758 * 626 board revision. On all board revisions, the EEPROM stores
759 * TrimDAC calibration constants for analog I/O. On RevB and
760 * higher boards, the DeviceAddress is hardwired to 0 to enable
761 * the EEPROM to also store the PCI SubVendorID and SubDeviceID;
762 * this is the address at which the SAA7146 expects a
763 * configuration EEPROM to reside. On RevA boards, the EEPROM
764 * device address, which is hardwired to 4, prevents the SAA7146
765 * from retrieving PCI sub-IDs, so the SAA7146 uses its built-in
766 * default values, instead.
769 /* devpriv->I2Cards= IsBoardRevA ? 0xA8 : 0xA0; // Set I2C EEPROM */
770 /* DeviceType (0xA0) */
771 /* and DeviceAddress<<1. */
773 devpriv
->I2CAdrs
= 0xA0; /* I2C device address for onboard */
776 /* Issue an I2C ABORT command to halt any I2C operation in */
777 /* progress and reset BUSY flag. */
778 WR7146(P_I2CSTAT
, I2C_CLKSEL
| I2C_ABORT
);
779 /* Write I2C control: abort any I2C activity. */
780 MC_ENABLE(P_MC2
, MC2_UPLD_IIC
);
781 /* Invoke command upload */
782 while ((RR7146(P_MC2
) & MC2_UPLD_IIC
) == 0) ;
783 /* and wait for upload to complete. */
785 /* Per SAA7146 data sheet, write to STATUS reg twice to
786 * reset all I2C error flags. */
787 for (i
= 0; i
< 2; i
++) {
788 WR7146(P_I2CSTAT
, I2C_CLKSEL
);
789 /* Write I2C control: reset error flags. */
790 MC_ENABLE(P_MC2
, MC2_UPLD_IIC
); /* Invoke command upload */
791 while (!MC_TEST(P_MC2
, MC2_UPLD_IIC
)) ;
792 /* and wait for upload to complete. */
795 /* Init audio interface functional attributes: set DAC/ADC
796 * serial clock rates, invert DAC serial clock so that
797 * DAC data setup times are satisfied, enable DAC serial
801 WR7146(P_ACON2
, ACON2_INIT
);
803 /* Set up TSL1 slot list, which is used to control the
804 * accumulation of ADC data: RSD1 = shift data in on SD1.
805 * SIB_A1 = store data uint8_t at next available location in
806 * FB BUFFER1 register. */
807 WR7146(P_TSL1
, RSD1
| SIB_A1
);
808 /* Fetch ADC high data uint8_t. */
809 WR7146(P_TSL1
+ 4, RSD1
| SIB_A1
| EOS
);
810 /* Fetch ADC low data uint8_t; end of TSL1. */
812 /* enab TSL1 slot list so that it executes all the time. */
813 WR7146(P_ACON1
, ACON1_ADCSTART
);
815 /* Initialize RPS registers used for ADC. */
817 /* Physical start of RPS program. */
818 WR7146(P_RPSADDR1
, (uint32_t) devpriv
->RPSBuf
.PhysicalBase
);
820 WR7146(P_RPSPAGE1
, 0);
821 /* RPS program performs no explicit mem writes. */
822 WR7146(P_RPS1_TOUT
, 0); /* Disable RPS timeouts. */
824 /* SAA7146 BUG WORKAROUND. Initialize SAA7146 ADC interface
825 * to a known state by invoking ADCs until FB BUFFER 1
826 * register shows that it is correctly receiving ADC data.
827 * This is necessary because the SAA7146 ADC interface does
828 * not start up in a defined state after a PCI reset.
831 /* PollList = EOPL; // Create a simple polling */
832 /* // list for analog input */
834 /* ResetADC( dev, &PollList ); */
836 /* s626_ai_rinsn(dev,dev->subdevices,NULL,data); //( &AdcData ); // */
837 /* //Get initial ADC */
840 /* StartVal = data[0]; */
842 /* // VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED EXECUTION. */
843 /* // Invoke ADCs until the new ADC value differs from the initial */
844 /* // value or a timeout occurs. The timeout protects against the */
845 /* // possibility that the driver is restarting and the ADC data is a */
846 /* // fixed value resulting from the applied ADC analog input being */
847 /* // unusually quiet or at the rail. */
849 /* for ( index = 0; index < 500; index++ ) */
851 /* s626_ai_rinsn(dev,dev->subdevices,NULL,data); */
852 /* AdcData = data[0]; //ReadADC( &AdcData ); */
853 /* if ( AdcData != StartVal ) */
859 /* init the DAC interface */
861 /* Init Audio2's output DMAC attributes: burst length = 1
862 * DWORD, threshold = 1 DWORD.
864 WR7146(P_PCI_BT_A
, 0);
866 /* Init Audio2's output DMA physical addresses. The protection
867 * address is set to 1 DWORD past the base address so that a
868 * single DWORD will be transferred each time a DMA transfer is
872 devpriv
->ANABuf
.PhysicalBase
+
873 (DAC_WDMABUF_OS
* sizeof(uint32_t));
875 WR7146(P_BASEA2_OUT
, (uint32_t) pPhysBuf
); /* Buffer base adrs. */
876 WR7146(P_PROTA2_OUT
, (uint32_t) (pPhysBuf
+ sizeof(uint32_t))); /* Protection address. */
878 /* Cache Audio2's output DMA buffer logical address. This is
879 * where DAC data is buffered for A2 output DMA transfers. */
881 (uint32_t *) devpriv
->ANABuf
.LogicalBase
+ DAC_WDMABUF_OS
;
883 /* Audio2's output channels does not use paging. The protection
884 * violation handling bit is set so that the DMAC will
885 * automatically halt and its PCI address pointer will be reset
886 * when the protection address is reached. */
888 WR7146(P_PAGEA2_OUT
, 8);
890 /* Initialize time slot list 2 (TSL2), which is used to control
891 * the clock generation for and serialization of data to be sent
892 * to the DAC devices. Slot 0 is a NOP that is used to trap TSL
893 * execution; this permits other slots to be safely modified
894 * without first turning off the TSL sequencer (which is
895 * apparently impossible to do). Also, SD3 (which is driven by a
896 * pull-up resistor) is shifted in and stored to the MSB of
897 * FB_BUFFER2 to be used as evidence that the slot sequence has
898 * not yet finished executing.
901 SETVECT(0, XSD2
| RSD3
| SIB_A2
| EOS
);
902 /* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2. */
904 /* Initialize slot 1, which is constant. Slot 1 causes a
905 * DWORD to be transferred from audio channel 2's output FIFO
906 * to the FIFO's output buffer so that it can be serialized
907 * and sent to the DAC during subsequent slots. All remaining
908 * slots are dynamically populated as required by the target
912 /* Slot 1: Fetch DWORD from Audio2's output FIFO. */
914 /* Start DAC's audio interface (TSL2) running. */
915 WR7146(P_ACON1
, ACON1_DACSTART
);
917 /* end init DAC interface */
919 /* Init Trim DACs to calibrated values. Do it twice because the
920 * SAA7146 audio channel does not always reset properly and
921 * sometimes causes the first few TrimDAC writes to malfunction.
925 LoadTrimDACs(dev
); /* Insurance. */
927 /* Manually init all gate array hardware in case this is a soft
928 * reset (we have no way of determining whether this is a warm
929 * or cold start). This is necessary because the gate array will
930 * reset only in response to a PCI hard reset; there is no soft
933 /* Init all DAC outputs to 0V and init all DAC setpoint and
936 for (chan
= 0; chan
< S626_DAC_CHANNELS
; chan
++)
937 SetDAC(dev
, chan
, 0);
939 /* Init image of WRMISC2 Battery Charger Enabled control bit.
940 * This image is used when the state of the charger control bit,
941 * which has no direct hardware readback mechanism, is queried.
943 devpriv
->ChargeEnabled
= 0;
945 /* Init image of watchdog timer interval in WRMISC2. This image
946 * maintains the value of the control bits of MISC2 are
947 * continuously reset to zero as long as the WD timer is disabled.
949 devpriv
->WDInterval
= 0;
951 /* Init Counter Interrupt enab mask for RDMISC2. This mask is
952 * applied against MISC2 when testing to determine which timer
953 * events are requesting interrupt service.
955 devpriv
->CounterIntEnabs
= 0;
960 /* Without modifying the state of the Battery Backup enab, disable
961 * the watchdog timer, set DIO channels 0-5 to operate in the
962 * standard DIO (vs. counter overflow) mode, disable the battery
963 * charger, and reset the watchdog interval selector to zero.
965 WriteMISC2(dev
, (uint16_t) (DEBIread(dev
,
969 /* Initialize the digital I/O subsystem. */
972 /* enable interrupt test */
973 /* writel(IRQ_GPIO3 | IRQ_RPS1,devpriv->base_addr+P_IER); */
976 DEBUG("s626_attach: comedi%d s626 attached %04x\n", dev
->minor
,
977 (uint32_t) devpriv
->base_addr
);
982 static unsigned int s626_ai_reg_to_uint(int data
)
984 unsigned int tempdata
;
986 tempdata
= (data
>> 18);
987 if (tempdata
& 0x2000)
990 tempdata
+= (1 << 13);
995 /* static unsigned int s626_uint_to_reg(struct comedi_subdevice *s, int data){ */
999 static irqreturn_t
s626_irq_handler(int irq
, void *d
)
1001 struct comedi_device
*dev
= d
;
1002 struct comedi_subdevice
*s
;
1003 struct comedi_cmd
*cmd
;
1004 struct enc_private
*k
;
1005 unsigned long flags
;
1007 uint32_t irqtype
, irqstatus
;
1013 DEBUG("s626_irq_handler: interrupt request recieved!!!\n");
1015 if (dev
->attached
== 0)
1017 /* lock to avoid race with comedi_poll */
1018 spin_lock_irqsave(&dev
->spinlock
, flags
);
1020 /* save interrupt enable register state */
1021 irqstatus
= readl(devpriv
->base_addr
+ P_IER
);
1023 /* read interrupt type */
1024 irqtype
= readl(devpriv
->base_addr
+ P_ISR
);
1026 /* disable master interrupt */
1027 writel(0, devpriv
->base_addr
+ P_IER
);
1029 /* clear interrupt */
1030 writel(irqtype
, devpriv
->base_addr
+ P_ISR
);
1033 DEBUG("s626_irq_handler: interrupt type %d\n", irqtype
);
1036 case IRQ_RPS1
: /* end_of_scan occurs */
1038 DEBUG("s626_irq_handler: RPS1 irq detected\n");
1040 /* manage ai subdevice */
1041 s
= dev
->subdevices
;
1042 cmd
= &(s
->async
->cmd
);
1044 /* Init ptr to DMA buffer that holds new ADC data. We skip the
1045 * first uint16_t in the buffer because it contains junk data from
1046 * the final ADC of the previous poll list scan.
1048 readaddr
= (int32_t *) devpriv
->ANABuf
.LogicalBase
+ 1;
1050 /* get the data and hand it over to comedi */
1051 for (i
= 0; i
< (s
->async
->cmd
.chanlist_len
); i
++) {
1052 /* Convert ADC data to 16-bit integer values and copy to application */
1054 tempdata
= s626_ai_reg_to_uint((int)*readaddr
);
1057 /* put data into read buffer */
1058 /* comedi_buf_put(s->async, tempdata); */
1059 if (cfc_write_to_buffer(s
, tempdata
) == 0)
1061 ("s626_irq_handler: cfc_write_to_buffer error!\n");
1063 DEBUG("s626_irq_handler: ai channel %d acquired: %d\n",
1067 /* end of scan occurs */
1068 s
->async
->events
|= COMEDI_CB_EOS
;
1070 if (!(devpriv
->ai_continous
))
1071 devpriv
->ai_sample_count
--;
1072 if (devpriv
->ai_sample_count
<= 0) {
1073 devpriv
->ai_cmd_running
= 0;
1075 /* Stop RPS program. */
1076 MC_DISABLE(P_MC1
, MC1_ERPS1
);
1078 /* send end of acquisition */
1079 s
->async
->events
|= COMEDI_CB_EOA
;
1081 /* disable master interrupt */
1085 if (devpriv
->ai_cmd_running
&& cmd
->scan_begin_src
== TRIG_EXT
) {
1087 ("s626_irq_handler: enable interrupt on dio channel %d\n",
1088 cmd
->scan_begin_arg
);
1090 s626_dio_set_irq(dev
, cmd
->scan_begin_arg
);
1092 DEBUG("s626_irq_handler: External trigger is set!!!\n");
1094 /* tell comedi that data is there */
1095 DEBUG("s626_irq_handler: events %d\n", s
->async
->events
);
1096 comedi_event(dev
, s
);
1098 case IRQ_GPIO3
: /* check dio and conter interrupt */
1100 DEBUG("s626_irq_handler: GPIO3 irq detected\n");
1102 /* manage ai subdevice */
1103 s
= dev
->subdevices
;
1104 cmd
= &(s
->async
->cmd
);
1106 /* s626_dio_clear_irq(dev); */
1108 for (group
= 0; group
< S626_DIO_BANKS
; group
++) {
1110 /* read interrupt type */
1111 irqbit
= DEBIread(dev
,
1112 ((struct dio_private
*)(dev
->
1116 private)->RDCapFlg
);
1118 /* check if interrupt is generated from dio channels */
1120 s626_dio_reset_irq(dev
, group
, irqbit
);
1122 ("s626_irq_handler: check interrupt on dio group %d %d\n",
1124 if (devpriv
->ai_cmd_running
) {
1125 /* check if interrupt is an ai acquisition start trigger */
1126 if ((irqbit
>> (cmd
->start_arg
-
1128 == 1 && cmd
->start_src
== TRIG_EXT
) {
1130 ("s626_irq_handler: Edge capture interrupt recieved from channel %d\n",
1133 /* Start executing the RPS program. */
1134 MC_ENABLE(P_MC1
, MC1_ERPS1
);
1137 ("s626_irq_handler: aquisition start triggered!!!\n");
1139 if (cmd
->scan_begin_src
==
1142 ("s626_ai_cmd: enable interrupt on dio channel %d\n",
1146 s626_dio_set_irq(dev
,
1147 cmd
->scan_begin_arg
);
1150 ("s626_irq_handler: External scan trigger is set!!!\n");
1153 if ((irqbit
>> (cmd
->scan_begin_arg
-
1156 && cmd
->scan_begin_src
==
1159 ("s626_irq_handler: Edge capture interrupt recieved from channel %d\n",
1160 cmd
->scan_begin_arg
);
1162 /* Trigger ADC scan loop start by setting RPS Signal 0. */
1163 MC_ENABLE(P_MC2
, MC2_ADC_RPS
);
1166 ("s626_irq_handler: scan triggered!!! %d\n",
1167 devpriv
->ai_sample_count
);
1168 if (cmd
->convert_src
==
1172 ("s626_ai_cmd: enable interrupt on dio channel %d group %d\n",
1177 devpriv
->ai_convert_count
1178 = cmd
->chanlist_len
;
1180 s626_dio_set_irq(dev
,
1184 ("s626_irq_handler: External convert trigger is set!!!\n");
1187 if (cmd
->convert_src
==
1190 devpriv
->ai_convert_count
1191 = cmd
->chanlist_len
;
1192 k
->SetEnable(dev
, k
,
1196 if ((irqbit
>> (cmd
->convert_arg
-
1199 && cmd
->convert_src
== TRIG_EXT
) {
1201 ("s626_irq_handler: Edge capture interrupt recieved from channel %d\n",
1204 /* Trigger ADC scan loop start by setting RPS Signal 0. */
1205 MC_ENABLE(P_MC2
, MC2_ADC_RPS
);
1208 ("s626_irq_handler: adc convert triggered!!!\n");
1210 devpriv
->ai_convert_count
--;
1212 if (devpriv
->ai_convert_count
>
1216 ("s626_ai_cmd: enable interrupt on dio channel %d group %d\n",
1221 s626_dio_set_irq(dev
,
1225 ("s626_irq_handler: External trigger is set!!!\n");
1233 /* read interrupt type */
1234 irqbit
= DEBIread(dev
, LP_RDMISC2
);
1236 /* check interrupt on counters */
1237 DEBUG("s626_irq_handler: check counters interrupt %d\n",
1240 if (irqbit
& IRQ_COINT1A
) {
1242 ("s626_irq_handler: interrupt on counter 1A overflow\n");
1245 /* clear interrupt capture flag */
1246 k
->ResetCapFlags(dev
, k
);
1248 if (irqbit
& IRQ_COINT2A
) {
1250 ("s626_irq_handler: interrupt on counter 2A overflow\n");
1253 /* clear interrupt capture flag */
1254 k
->ResetCapFlags(dev
, k
);
1256 if (irqbit
& IRQ_COINT3A
) {
1258 ("s626_irq_handler: interrupt on counter 3A overflow\n");
1261 /* clear interrupt capture flag */
1262 k
->ResetCapFlags(dev
, k
);
1264 if (irqbit
& IRQ_COINT1B
) {
1266 ("s626_irq_handler: interrupt on counter 1B overflow\n");
1269 /* clear interrupt capture flag */
1270 k
->ResetCapFlags(dev
, k
);
1272 if (irqbit
& IRQ_COINT2B
) {
1274 ("s626_irq_handler: interrupt on counter 2B overflow\n");
1277 /* clear interrupt capture flag */
1278 k
->ResetCapFlags(dev
, k
);
1280 if (devpriv
->ai_convert_count
> 0) {
1281 devpriv
->ai_convert_count
--;
1282 if (devpriv
->ai_convert_count
== 0)
1283 k
->SetEnable(dev
, k
, CLKENAB_INDEX
);
1285 if (cmd
->convert_src
== TRIG_TIMER
) {
1287 ("s626_irq_handler: conver timer trigger!!! %d\n",
1288 devpriv
->ai_convert_count
);
1290 /* Trigger ADC scan loop start by setting RPS Signal 0. */
1291 MC_ENABLE(P_MC2
, MC2_ADC_RPS
);
1295 if (irqbit
& IRQ_COINT3B
) {
1297 ("s626_irq_handler: interrupt on counter 3B overflow\n");
1300 /* clear interrupt capture flag */
1301 k
->ResetCapFlags(dev
, k
);
1303 if (cmd
->scan_begin_src
== TRIG_TIMER
) {
1305 ("s626_irq_handler: scan timer trigger!!!\n");
1307 /* Trigger ADC scan loop start by setting RPS Signal 0. */
1308 MC_ENABLE(P_MC2
, MC2_ADC_RPS
);
1311 if (cmd
->convert_src
== TRIG_TIMER
) {
1313 ("s626_irq_handler: convert timer trigger is set\n");
1315 devpriv
->ai_convert_count
= cmd
->chanlist_len
;
1316 k
->SetEnable(dev
, k
, CLKENAB_ALWAYS
);
1321 /* enable interrupt */
1322 writel(irqstatus
, devpriv
->base_addr
+ P_IER
);
1324 DEBUG("s626_irq_handler: exit interrupt service routine.\n");
1326 spin_unlock_irqrestore(&dev
->spinlock
, flags
);
1330 static int s626_detach(struct comedi_device
*dev
)
1333 /* stop ai_command */
1334 devpriv
->ai_cmd_running
= 0;
1336 if (devpriv
->base_addr
) {
1337 /* interrupt mask */
1338 WR7146(P_IER
, 0); /* Disable master interrupt. */
1339 WR7146(P_ISR
, IRQ_GPIO3
| IRQ_RPS1
); /* Clear board's IRQ status flag. */
1341 /* Disable the watchdog timer and battery charger. */
1344 /* Close all interfaces on 7146 device. */
1345 WR7146(P_MC1
, MC1_SHUTDOWN
);
1346 WR7146(P_ACON1
, ACON1_BASE
);
1348 CloseDMAB(dev
, &devpriv
->RPSBuf
, DMABUF_SIZE
);
1349 CloseDMAB(dev
, &devpriv
->ANABuf
, DMABUF_SIZE
);
1353 free_irq(dev
->irq
, dev
);
1355 if (devpriv
->base_addr
)
1356 iounmap(devpriv
->base_addr
);
1358 if (devpriv
->pdev
) {
1359 if (devpriv
->got_regions
)
1360 comedi_pci_disable(devpriv
->pdev
);
1361 pci_dev_put(devpriv
->pdev
);
1365 DEBUG("s626_detach: S626 detached!\n");
1371 * this functions build the RPS program for hardware driven acquistion
1373 void ResetADC(struct comedi_device
*dev
, uint8_t * ppl
)
1375 register uint32_t *pRPS
;
1380 struct comedi_cmd
*cmd
= &(dev
->subdevices
->async
->cmd
);
1382 /* Stop RPS program in case it is currently running. */
1383 MC_DISABLE(P_MC1
, MC1_ERPS1
);
1385 /* Set starting logical address to write RPS commands. */
1386 pRPS
= (uint32_t *) devpriv
->RPSBuf
.LogicalBase
;
1388 /* Initialize RPS instruction pointer. */
1389 WR7146(P_RPSADDR1
, (uint32_t) devpriv
->RPSBuf
.PhysicalBase
);
1391 /* Construct RPS program in RPSBuf DMA buffer */
1393 if (cmd
!= NULL
&& cmd
->scan_begin_src
!= TRIG_FOLLOW
) {
1394 DEBUG("ResetADC: scan_begin pause inserted\n");
1395 /* Wait for Start trigger. */
1396 *pRPS
++ = RPS_PAUSE
| RPS_SIGADC
;
1397 *pRPS
++ = RPS_CLRSIGNAL
| RPS_SIGADC
;
1400 /* SAA7146 BUG WORKAROUND Do a dummy DEBI Write. This is necessary
1401 * because the first RPS DEBI Write following a non-RPS DEBI write
1402 * seems to always fail. If we don't do this dummy write, the ADC
1403 * gain might not be set to the value required for the first slot in
1404 * the poll list; the ADC gain would instead remain unchanged from
1405 * the previously programmed value.
1407 *pRPS
++ = RPS_LDREG
| (P_DEBICMD
>> 2);
1408 /* Write DEBI Write command and address to shadow RAM. */
1410 *pRPS
++ = DEBI_CMD_WRWORD
| LP_GSEL
;
1411 *pRPS
++ = RPS_LDREG
| (P_DEBIAD
>> 2);
1412 /* Write DEBI immediate data to shadow RAM: */
1414 *pRPS
++ = GSEL_BIPOLAR5V
;
1415 /* arbitrary immediate data value. */
1417 *pRPS
++ = RPS_CLRSIGNAL
| RPS_DEBI
;
1418 /* Reset "shadow RAM uploaded" flag. */
1419 *pRPS
++ = RPS_UPLOAD
| RPS_DEBI
; /* Invoke shadow RAM upload. */
1420 *pRPS
++ = RPS_PAUSE
| RPS_DEBI
; /* Wait for shadow upload to finish. */
1422 /* Digitize all slots in the poll list. This is implemented as a
1423 * for loop to limit the slot count to 16 in case the application
1424 * forgot to set the EOPL flag in the final slot.
1426 for (devpriv
->AdcItems
= 0; devpriv
->AdcItems
< 16; devpriv
->AdcItems
++) {
1427 /* Convert application's poll list item to private board class
1428 * format. Each app poll list item is an uint8_t with form
1429 * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
1430 * +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
1433 (*ppl
<< 8) | (*ppl
& 0x10 ? GSEL_BIPOLAR5V
:
1436 /* Switch ADC analog gain. */
1437 *pRPS
++ = RPS_LDREG
| (P_DEBICMD
>> 2); /* Write DEBI command */
1438 /* and address to */
1440 *pRPS
++ = DEBI_CMD_WRWORD
| LP_GSEL
;
1441 *pRPS
++ = RPS_LDREG
| (P_DEBIAD
>> 2); /* Write DEBI */
1442 /* immediate data to */
1445 *pRPS
++ = RPS_CLRSIGNAL
| RPS_DEBI
; /* Reset "shadow RAM uploaded" */
1447 *pRPS
++ = RPS_UPLOAD
| RPS_DEBI
; /* Invoke shadow RAM upload. */
1448 *pRPS
++ = RPS_PAUSE
| RPS_DEBI
; /* Wait for shadow upload to */
1451 /* Select ADC analog input channel. */
1452 *pRPS
++ = RPS_LDREG
| (P_DEBICMD
>> 2);
1453 /* Write DEBI command and address to shadow RAM. */
1454 *pRPS
++ = DEBI_CMD_WRWORD
| LP_ISEL
;
1455 *pRPS
++ = RPS_LDREG
| (P_DEBIAD
>> 2);
1456 /* Write DEBI immediate data to shadow RAM. */
1458 *pRPS
++ = RPS_CLRSIGNAL
| RPS_DEBI
;
1459 /* Reset "shadow RAM uploaded" flag. */
1461 *pRPS
++ = RPS_UPLOAD
| RPS_DEBI
;
1462 /* Invoke shadow RAM upload. */
1464 *pRPS
++ = RPS_PAUSE
| RPS_DEBI
;
1465 /* Wait for shadow upload to finish. */
1467 /* Delay at least 10 microseconds for analog input settling.
1468 * Instead of padding with NOPs, we use RPS_JUMP instructions
1469 * here; this allows us to produce a longer delay than is
1470 * possible with NOPs because each RPS_JUMP flushes the RPS'
1471 * instruction prefetch pipeline.
1474 (uint32_t) devpriv
->RPSBuf
.PhysicalBase
+
1475 (uint32_t) ((unsigned long)pRPS
-
1476 (unsigned long)devpriv
->RPSBuf
.LogicalBase
);
1477 for (i
= 0; i
< (10 * RPSCLK_PER_US
/ 2); i
++) {
1478 JmpAdrs
+= 8; /* Repeat to implement time delay: */
1479 *pRPS
++ = RPS_JUMP
; /* Jump to next RPS instruction. */
1483 if (cmd
!= NULL
&& cmd
->convert_src
!= TRIG_NOW
) {
1484 DEBUG("ResetADC: convert pause inserted\n");
1485 /* Wait for Start trigger. */
1486 *pRPS
++ = RPS_PAUSE
| RPS_SIGADC
;
1487 *pRPS
++ = RPS_CLRSIGNAL
| RPS_SIGADC
;
1489 /* Start ADC by pulsing GPIO1. */
1490 *pRPS
++ = RPS_LDREG
| (P_GPIO
>> 2); /* Begin ADC Start pulse. */
1491 *pRPS
++ = GPIO_BASE
| GPIO1_LO
;
1493 /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1494 *pRPS
++ = RPS_LDREG
| (P_GPIO
>> 2); /* End ADC Start pulse. */
1495 *pRPS
++ = GPIO_BASE
| GPIO1_HI
;
1497 /* Wait for ADC to complete (GPIO2 is asserted high when ADC not
1498 * busy) and for data from previous conversion to shift into FB
1499 * BUFFER 1 register.
1501 *pRPS
++ = RPS_PAUSE
| RPS_GPIO2
; /* Wait for ADC done. */
1503 /* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
1504 *pRPS
++ = RPS_STREG
| (BUGFIX_STREG(P_FB_BUFFER1
) >> 2);
1506 (uint32_t) devpriv
->ANABuf
.PhysicalBase
+
1507 (devpriv
->AdcItems
<< 2);
1509 /* If this slot's EndOfPollList flag is set, all channels have */
1510 /* now been processed. */
1511 if (*ppl
++ & EOPL
) {
1512 devpriv
->AdcItems
++; /* Adjust poll list item count. */
1513 break; /* Exit poll list processing loop. */
1516 DEBUG("ResetADC: ADC items %d \n", devpriv
->AdcItems
);
1518 /* VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US. Allow the
1519 * ADC to stabilize for 2 microseconds before starting the final
1520 * (dummy) conversion. This delay is necessary to allow sufficient
1521 * time between last conversion finished and the start of the dummy
1522 * conversion. Without this delay, the last conversion's data value
1523 * is sometimes set to the previous conversion's data value.
1525 for (n
= 0; n
< (2 * RPSCLK_PER_US
); n
++)
1528 /* Start a dummy conversion to cause the data from the last
1529 * conversion of interest to be shifted in.
1531 *pRPS
++ = RPS_LDREG
| (P_GPIO
>> 2); /* Begin ADC Start pulse. */
1532 *pRPS
++ = GPIO_BASE
| GPIO1_LO
;
1534 /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1535 *pRPS
++ = RPS_LDREG
| (P_GPIO
>> 2); /* End ADC Start pulse. */
1536 *pRPS
++ = GPIO_BASE
| GPIO1_HI
;
1538 /* Wait for the data from the last conversion of interest to arrive
1539 * in FB BUFFER 1 register.
1541 *pRPS
++ = RPS_PAUSE
| RPS_GPIO2
; /* Wait for ADC done. */
1543 /* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
1544 *pRPS
++ = RPS_STREG
| (BUGFIX_STREG(P_FB_BUFFER1
) >> 2); /* */
1546 (uint32_t) devpriv
->ANABuf
.PhysicalBase
+ (devpriv
->AdcItems
<< 2);
1548 /* Indicate ADC scan loop is finished. */
1549 /* *pRPS++= RPS_CLRSIGNAL | RPS_SIGADC ; // Signal ReadADC() that scan is done. */
1551 /* invoke interrupt */
1552 if (devpriv
->ai_cmd_running
== 1) {
1553 DEBUG("ResetADC: insert irq in ADC RPS task\n");
1556 /* Restart RPS program at its beginning. */
1557 *pRPS
++ = RPS_JUMP
; /* Branch to start of RPS program. */
1558 *pRPS
++ = (uint32_t) devpriv
->RPSBuf
.PhysicalBase
;
1560 /* End of RPS program build */
1563 /* TO COMPLETE, IF NECESSARY */
1564 static int s626_ai_insn_config(struct comedi_device
*dev
,
1565 struct comedi_subdevice
*s
,
1566 struct comedi_insn
*insn
, unsigned int *data
)
1572 /* static int s626_ai_rinsn(struct comedi_device *dev,struct comedi_subdevice *s,struct comedi_insn *insn,unsigned int *data) */
1574 /* register uint8_t i; */
1575 /* register int32_t *readaddr; */
1577 /* DEBUG("as626_ai_rinsn: ai_rinsn enter \n"); */
1579 /* Trigger ADC scan loop start by setting RPS Signal 0. */
1580 /* MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
1582 /* Wait until ADC scan loop is finished (RPS Signal 0 reset). */
1583 /* while ( MC_TEST( P_MC2, MC2_ADC_RPS ) ); */
1585 /* Init ptr to DMA buffer that holds new ADC data. We skip the
1586 * first uint16_t in the buffer because it contains junk data from
1587 * the final ADC of the previous poll list scan.
1589 /* readaddr = (uint32_t *)devpriv->ANABuf.LogicalBase + 1; */
1591 /* Convert ADC data to 16-bit integer values and copy to application buffer. */
1592 /* for ( i = 0; i < devpriv->AdcItems; i++ ) { */
1593 /* *data = s626_ai_reg_to_uint( *readaddr++ ); */
1594 /* DEBUG("s626_ai_rinsn: data %d \n",*data); */
1598 /* DEBUG("s626_ai_rinsn: ai_rinsn escape \n"); */
1602 static int s626_ai_insn_read(struct comedi_device
*dev
,
1603 struct comedi_subdevice
*s
,
1604 struct comedi_insn
*insn
, unsigned int *data
)
1606 uint16_t chan
= CR_CHAN(insn
->chanspec
);
1607 uint16_t range
= CR_RANGE(insn
->chanspec
);
1608 uint16_t AdcSpec
= 0;
1612 /* interrupt call test */
1613 /* writel(IRQ_GPIO3,devpriv->base_addr+P_PSR); */
1614 /* Writing a logical 1 into any of the RPS_PSR bits causes the
1615 * corresponding interrupt to be generated if enabled
1618 DEBUG("s626_ai_insn_read: entering\n");
1620 /* Convert application's ADC specification into form
1621 * appropriate for register programming.
1624 AdcSpec
= (chan
<< 8) | (GSEL_BIPOLAR5V
);
1626 AdcSpec
= (chan
<< 8) | (GSEL_BIPOLAR10V
);
1628 /* Switch ADC analog gain. */
1629 DEBIwrite(dev
, LP_GSEL
, AdcSpec
); /* Set gain. */
1631 /* Select ADC analog input channel. */
1632 DEBIwrite(dev
, LP_ISEL
, AdcSpec
); /* Select channel. */
1634 for (n
= 0; n
< insn
->n
; n
++) {
1636 /* Delay 10 microseconds for analog input settling. */
1639 /* Start ADC by pulsing GPIO1 low. */
1640 GpioImage
= RR7146(P_GPIO
);
1641 /* Assert ADC Start command */
1642 WR7146(P_GPIO
, GpioImage
& ~GPIO1_HI
);
1643 /* and stretch it out. */
1644 WR7146(P_GPIO
, GpioImage
& ~GPIO1_HI
);
1645 WR7146(P_GPIO
, GpioImage
& ~GPIO1_HI
);
1646 /* Negate ADC Start command. */
1647 WR7146(P_GPIO
, GpioImage
| GPIO1_HI
);
1649 /* Wait for ADC to complete (GPIO2 is asserted high when */
1650 /* ADC not busy) and for data from previous conversion to */
1651 /* shift into FB BUFFER 1 register. */
1653 /* Wait for ADC done. */
1654 while (!(RR7146(P_PSR
) & PSR_GPIO2
)) ;
1656 /* Fetch ADC data. */
1658 data
[n
- 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1
));
1660 /* Allow the ADC to stabilize for 4 microseconds before
1661 * starting the next (final) conversion. This delay is
1662 * necessary to allow sufficient time between last
1663 * conversion finished and the start of the next
1664 * conversion. Without this delay, the last conversion's
1665 * data value is sometimes set to the previous
1666 * conversion's data value.
1671 /* Start a dummy conversion to cause the data from the
1672 * previous conversion to be shifted in. */
1673 GpioImage
= RR7146(P_GPIO
);
1675 /* Assert ADC Start command */
1676 WR7146(P_GPIO
, GpioImage
& ~GPIO1_HI
);
1677 /* and stretch it out. */
1678 WR7146(P_GPIO
, GpioImage
& ~GPIO1_HI
);
1679 WR7146(P_GPIO
, GpioImage
& ~GPIO1_HI
);
1680 /* Negate ADC Start command. */
1681 WR7146(P_GPIO
, GpioImage
| GPIO1_HI
);
1683 /* Wait for the data to arrive in FB BUFFER 1 register. */
1685 /* Wait for ADC done. */
1686 while (!(RR7146(P_PSR
) & PSR_GPIO2
)) ;
1688 /* Fetch ADC data from audio interface's input shift register. */
1690 /* Fetch ADC data. */
1692 data
[n
- 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1
));
1694 DEBUG("s626_ai_insn_read: samples %d, data %d\n", n
, data
[n
- 1]);
1699 static int s626_ai_load_polllist(uint8_t * ppl
, struct comedi_cmd
*cmd
)
1704 for (n
= 0; n
< cmd
->chanlist_len
; n
++) {
1705 if (CR_RANGE((cmd
->chanlist
)[n
]) == 0)
1706 ppl
[n
] = (CR_CHAN((cmd
->chanlist
)[n
])) | (RANGE_5V
);
1708 ppl
[n
] = (CR_CHAN((cmd
->chanlist
)[n
])) | (RANGE_10V
);
1716 static int s626_ai_inttrig(struct comedi_device
*dev
,
1717 struct comedi_subdevice
*s
, unsigned int trignum
)
1722 DEBUG("s626_ai_inttrig: trigger adc start...");
1724 /* Start executing the RPS program. */
1725 MC_ENABLE(P_MC1
, MC1_ERPS1
);
1727 s
->async
->inttrig
= NULL
;
1735 static int s626_ai_cmd(struct comedi_device
*dev
, struct comedi_subdevice
*s
)
1739 struct comedi_cmd
*cmd
= &s
->async
->cmd
;
1740 struct enc_private
*k
;
1743 DEBUG("s626_ai_cmd: entering command function\n");
1745 if (devpriv
->ai_cmd_running
) {
1746 printk("s626_ai_cmd: Another ai_cmd is running %d\n",
1750 /* disable interrupt */
1751 writel(0, devpriv
->base_addr
+ P_IER
);
1753 /* clear interrupt request */
1754 writel(IRQ_RPS1
| IRQ_GPIO3
, devpriv
->base_addr
+ P_ISR
);
1756 /* clear any pending interrupt */
1757 s626_dio_clear_irq(dev
);
1758 /* s626_enc_clear_irq(dev); */
1760 /* reset ai_cmd_running flag */
1761 devpriv
->ai_cmd_running
= 0;
1763 /* test if cmd is valid */
1765 DEBUG("s626_ai_cmd: NULL command\n");
1768 DEBUG("s626_ai_cmd: command recieved!!!\n");
1771 if (dev
->irq
== 0) {
1773 "s626_ai_cmd: cannot run command without an irq");
1777 s626_ai_load_polllist(ppl
, cmd
);
1778 devpriv
->ai_cmd_running
= 1;
1779 devpriv
->ai_convert_count
= 0;
1781 switch (cmd
->scan_begin_src
) {
1785 /* set a conter to generate adc trigger at scan_begin_arg interval */
1787 tick
= s626_ns_to_timer((int *)&cmd
->scan_begin_arg
,
1788 cmd
->flags
& TRIG_ROUND_MASK
);
1790 /* load timer value and enable interrupt */
1791 s626_timer_load(dev
, k
, tick
);
1792 k
->SetEnable(dev
, k
, CLKENAB_ALWAYS
);
1794 DEBUG("s626_ai_cmd: scan trigger timer is set with value %d\n",
1799 /* set the digital line and interrupt for scan trigger */
1800 if (cmd
->start_src
!= TRIG_EXT
)
1801 s626_dio_set_irq(dev
, cmd
->scan_begin_arg
);
1803 DEBUG("s626_ai_cmd: External scan trigger is set!!!\n");
1808 switch (cmd
->convert_src
) {
1812 /* set a conter to generate adc trigger at convert_arg interval */
1814 tick
= s626_ns_to_timer((int *)&cmd
->convert_arg
,
1815 cmd
->flags
& TRIG_ROUND_MASK
);
1817 /* load timer value and enable interrupt */
1818 s626_timer_load(dev
, k
, tick
);
1819 k
->SetEnable(dev
, k
, CLKENAB_INDEX
);
1822 ("s626_ai_cmd: convert trigger timer is set with value %d\n",
1826 /* set the digital line and interrupt for convert trigger */
1827 if (cmd
->scan_begin_src
!= TRIG_EXT
1828 && cmd
->start_src
== TRIG_EXT
)
1829 s626_dio_set_irq(dev
, cmd
->convert_arg
);
1831 DEBUG("s626_ai_cmd: External convert trigger is set!!!\n");
1836 switch (cmd
->stop_src
) {
1838 /* data arrives as one packet */
1839 devpriv
->ai_sample_count
= cmd
->stop_arg
;
1840 devpriv
->ai_continous
= 0;
1843 /* continous aquisition */
1844 devpriv
->ai_continous
= 1;
1845 devpriv
->ai_sample_count
= 0;
1851 switch (cmd
->start_src
) {
1853 /* Trigger ADC scan loop start by setting RPS Signal 0. */
1854 /* MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
1856 /* Start executing the RPS program. */
1857 MC_ENABLE(P_MC1
, MC1_ERPS1
);
1859 DEBUG("s626_ai_cmd: ADC triggered\n");
1860 s
->async
->inttrig
= NULL
;
1863 /* configure DIO channel for acquisition trigger */
1864 s626_dio_set_irq(dev
, cmd
->start_arg
);
1866 DEBUG("s626_ai_cmd: External start trigger is set!!!\n");
1868 s
->async
->inttrig
= NULL
;
1871 s
->async
->inttrig
= s626_ai_inttrig
;
1875 /* enable interrupt */
1876 writel(IRQ_GPIO3
| IRQ_RPS1
, devpriv
->base_addr
+ P_IER
);
1878 DEBUG("s626_ai_cmd: command function terminated\n");
1883 static int s626_ai_cmdtest(struct comedi_device
*dev
,
1884 struct comedi_subdevice
*s
, struct comedi_cmd
*cmd
)
1889 /* cmdtest tests a particular command to see if it is valid. Using
1890 * the cmdtest ioctl, a user can create a valid cmd and then have it
1891 * executes by the cmd ioctl.
1893 * cmdtest returns 1,2,3,4 or 0, depending on which tests the
1894 * command passes. */
1896 /* step 1: make sure trigger sources are trivially valid */
1898 tmp
= cmd
->start_src
;
1899 cmd
->start_src
&= TRIG_NOW
| TRIG_INT
| TRIG_EXT
;
1900 if (!cmd
->start_src
|| tmp
!= cmd
->start_src
)
1903 tmp
= cmd
->scan_begin_src
;
1904 cmd
->scan_begin_src
&= TRIG_TIMER
| TRIG_EXT
| TRIG_FOLLOW
;
1905 if (!cmd
->scan_begin_src
|| tmp
!= cmd
->scan_begin_src
)
1908 tmp
= cmd
->convert_src
;
1909 cmd
->convert_src
&= TRIG_TIMER
| TRIG_EXT
| TRIG_NOW
;
1910 if (!cmd
->convert_src
|| tmp
!= cmd
->convert_src
)
1913 tmp
= cmd
->scan_end_src
;
1914 cmd
->scan_end_src
&= TRIG_COUNT
;
1915 if (!cmd
->scan_end_src
|| tmp
!= cmd
->scan_end_src
)
1918 tmp
= cmd
->stop_src
;
1919 cmd
->stop_src
&= TRIG_COUNT
| TRIG_NONE
;
1920 if (!cmd
->stop_src
|| tmp
!= cmd
->stop_src
)
1926 /* step 2: make sure trigger sources are unique and mutually
1929 /* note that mutual compatiblity is not an issue here */
1930 if (cmd
->scan_begin_src
!= TRIG_TIMER
&&
1931 cmd
->scan_begin_src
!= TRIG_EXT
1932 && cmd
->scan_begin_src
!= TRIG_FOLLOW
)
1934 if (cmd
->convert_src
!= TRIG_TIMER
&&
1935 cmd
->convert_src
!= TRIG_EXT
&& cmd
->convert_src
!= TRIG_NOW
)
1937 if (cmd
->stop_src
!= TRIG_COUNT
&& cmd
->stop_src
!= TRIG_NONE
)
1943 /* step 3: make sure arguments are trivially compatible */
1945 if (cmd
->start_src
!= TRIG_EXT
&& cmd
->start_arg
!= 0) {
1950 if (cmd
->start_src
== TRIG_EXT
&& cmd
->start_arg
> 39) {
1951 cmd
->start_arg
= 39;
1955 if (cmd
->scan_begin_src
== TRIG_EXT
&& cmd
->scan_begin_arg
> 39) {
1956 cmd
->scan_begin_arg
= 39;
1960 if (cmd
->convert_src
== TRIG_EXT
&& cmd
->convert_arg
> 39) {
1961 cmd
->convert_arg
= 39;
1964 #define MAX_SPEED 200000 /* in nanoseconds */
1965 #define MIN_SPEED 2000000000 /* in nanoseconds */
1967 if (cmd
->scan_begin_src
== TRIG_TIMER
) {
1968 if (cmd
->scan_begin_arg
< MAX_SPEED
) {
1969 cmd
->scan_begin_arg
= MAX_SPEED
;
1972 if (cmd
->scan_begin_arg
> MIN_SPEED
) {
1973 cmd
->scan_begin_arg
= MIN_SPEED
;
1977 /* external trigger */
1978 /* should be level/edge, hi/lo specification here */
1979 /* should specify multiple external triggers */
1980 /* if(cmd->scan_begin_arg>9){ */
1981 /* cmd->scan_begin_arg=9; */
1985 if (cmd
->convert_src
== TRIG_TIMER
) {
1986 if (cmd
->convert_arg
< MAX_SPEED
) {
1987 cmd
->convert_arg
= MAX_SPEED
;
1990 if (cmd
->convert_arg
> MIN_SPEED
) {
1991 cmd
->convert_arg
= MIN_SPEED
;
1995 /* external trigger */
1997 /* if(cmd->convert_arg>9){ */
1998 /* cmd->convert_arg=9; */
2003 if (cmd
->scan_end_arg
!= cmd
->chanlist_len
) {
2004 cmd
->scan_end_arg
= cmd
->chanlist_len
;
2007 if (cmd
->stop_src
== TRIG_COUNT
) {
2008 if (cmd
->stop_arg
> 0x00ffffff) {
2009 cmd
->stop_arg
= 0x00ffffff;
2014 if (cmd
->stop_arg
!= 0) {
2023 /* step 4: fix up any arguments */
2025 if (cmd
->scan_begin_src
== TRIG_TIMER
) {
2026 tmp
= cmd
->scan_begin_arg
;
2027 s626_ns_to_timer((int *)&cmd
->scan_begin_arg
,
2028 cmd
->flags
& TRIG_ROUND_MASK
);
2029 if (tmp
!= cmd
->scan_begin_arg
)
2032 if (cmd
->convert_src
== TRIG_TIMER
) {
2033 tmp
= cmd
->convert_arg
;
2034 s626_ns_to_timer((int *)&cmd
->convert_arg
,
2035 cmd
->flags
& TRIG_ROUND_MASK
);
2036 if (tmp
!= cmd
->convert_arg
)
2038 if (cmd
->scan_begin_src
== TRIG_TIMER
&&
2039 cmd
->scan_begin_arg
<
2040 cmd
->convert_arg
* cmd
->scan_end_arg
) {
2041 cmd
->scan_begin_arg
=
2042 cmd
->convert_arg
* cmd
->scan_end_arg
;
2053 static int s626_ai_cancel(struct comedi_device
*dev
, struct comedi_subdevice
*s
)
2055 /* Stop RPS program in case it is currently running. */
2056 MC_DISABLE(P_MC1
, MC1_ERPS1
);
2058 /* disable master interrupt */
2059 writel(0, devpriv
->base_addr
+ P_IER
);
2061 devpriv
->ai_cmd_running
= 0;
2066 /* This function doesn't require a particular form, this is just what
2067 * happens to be used in some of the drivers. It should convert ns
2068 * nanoseconds to a counter value suitable for programming the device.
2069 * Also, it should adjust ns so that it cooresponds to the actual time
2070 * that the device will use. */
2071 static int s626_ns_to_timer(int *nanosec
, int round_mode
)
2075 base
= 500; /* 2MHz internal clock */
2077 switch (round_mode
) {
2078 case TRIG_ROUND_NEAREST
:
2080 divider
= (*nanosec
+ base
/ 2) / base
;
2082 case TRIG_ROUND_DOWN
:
2083 divider
= (*nanosec
) / base
;
2086 divider
= (*nanosec
+ base
- 1) / base
;
2090 *nanosec
= base
* divider
;
2094 static int s626_ao_winsn(struct comedi_device
*dev
, struct comedi_subdevice
*s
,
2095 struct comedi_insn
*insn
, unsigned int *data
)
2099 uint16_t chan
= CR_CHAN(insn
->chanspec
);
2102 for (i
= 0; i
< insn
->n
; i
++) {
2103 dacdata
= (int16_t) data
[i
];
2104 devpriv
->ao_readback
[CR_CHAN(insn
->chanspec
)] = data
[i
];
2105 dacdata
-= (0x1fff);
2107 SetDAC(dev
, chan
, dacdata
);
2113 static int s626_ao_rinsn(struct comedi_device
*dev
, struct comedi_subdevice
*s
,
2114 struct comedi_insn
*insn
, unsigned int *data
)
2118 for (i
= 0; i
< insn
->n
; i
++)
2119 data
[i
] = devpriv
->ao_readback
[CR_CHAN(insn
->chanspec
)];
2124 /* *************** DIGITAL I/O FUNCTIONS ***************
2125 * All DIO functions address a group of DIO channels by means of
2126 * "group" argument. group may be 0, 1 or 2, which correspond to DIO
2127 * ports A, B and C, respectively.
2130 static void s626_dio_init(struct comedi_device
*dev
)
2133 struct comedi_subdevice
*s
;
2135 /* Prepare to treat writes to WRCapSel as capture disables. */
2136 DEBIwrite(dev
, LP_MISC1
, MISC1_NOEDCAP
);
2138 /* For each group of sixteen channels ... */
2139 for (group
= 0; group
< S626_DIO_BANKS
; group
++) {
2140 s
= dev
->subdevices
+ 2 + group
;
2141 DEBIwrite(dev
, diopriv
->WRIntSel
, 0); /* Disable all interrupts. */
2142 DEBIwrite(dev
, diopriv
->WRCapSel
, 0xFFFF); /* Disable all event */
2144 DEBIwrite(dev
, diopriv
->WREdgSel
, 0); /* Init all DIOs to */
2147 DEBIwrite(dev
, diopriv
->WRDOut
, 0); /* Program all outputs */
2148 /* to inactive state. */
2150 DEBUG("s626_dio_init: DIO initialized \n");
2153 /* DIO devices are slightly special. Although it is possible to
2154 * implement the insn_read/insn_write interface, it is much more
2155 * useful to applications if you implement the insn_bits interface.
2156 * This allows packed reading/writing of the DIO channels. The comedi
2157 * core can convert between insn_bits and insn_read/write */
2159 static int s626_dio_insn_bits(struct comedi_device
*dev
,
2160 struct comedi_subdevice
*s
,
2161 struct comedi_insn
*insn
, unsigned int *data
)
2164 /* Length of data must be 2 (mask and new data, see below) */
2170 ("comedi%d: s626: s626_dio_insn_bits(): Invalid instruction length\n",
2176 * The insn data consists of a mask in data[0] and the new data in
2177 * data[1]. The mask defines which bits we are concerning about.
2178 * The new data must be anded with the mask. Each channel
2179 * corresponds to a bit.
2182 /* Check if requested ports are configured for output */
2183 if ((s
->io_bits
& data
[0]) != data
[0])
2186 s
->state
&= ~data
[0];
2187 s
->state
|= data
[0] & data
[1];
2189 /* Write out the new digital output lines */
2191 DEBIwrite(dev
, diopriv
->WRDOut
, s
->state
);
2193 data
[1] = DEBIread(dev
, diopriv
->RDDIn
);
2198 static int s626_dio_insn_config(struct comedi_device
*dev
,
2199 struct comedi_subdevice
*s
,
2200 struct comedi_insn
*insn
, unsigned int *data
)
2204 case INSN_CONFIG_DIO_QUERY
:
2207 io_bits
& (1 << CR_CHAN(insn
->chanspec
))) ? COMEDI_OUTPUT
:
2212 s
->io_bits
&= ~(1 << CR_CHAN(insn
->chanspec
));
2215 s
->io_bits
|= 1 << CR_CHAN(insn
->chanspec
);
2221 DEBIwrite(dev
, diopriv
->WRDOut
, s
->io_bits
);
2226 static int s626_dio_set_irq(struct comedi_device
*dev
, unsigned int chan
)
2229 unsigned int bitmask
;
2230 unsigned int status
;
2232 /* select dio bank */
2234 bitmask
= 1 << (chan
- (16 * group
));
2235 DEBUG("s626_dio_set_irq: enable interrupt on dio channel %d group %d\n",
2236 chan
- (16 * group
), group
);
2238 /* set channel to capture positive edge */
2239 status
= DEBIread(dev
,
2240 ((struct dio_private
*)(dev
->subdevices
+ 2 +
2241 group
)->private)->RDEdgSel
);
2243 ((struct dio_private
*)(dev
->subdevices
+ 2 +
2244 group
)->private)->WREdgSel
,
2247 /* enable interrupt on selected channel */
2248 status
= DEBIread(dev
,
2249 ((struct dio_private
*)(dev
->subdevices
+ 2 +
2250 group
)->private)->RDIntSel
);
2252 ((struct dio_private
*)(dev
->subdevices
+ 2 +
2253 group
)->private)->WRIntSel
,
2256 /* enable edge capture write command */
2257 DEBIwrite(dev
, LP_MISC1
, MISC1_EDCAP
);
2259 /* enable edge capture on selected channel */
2260 status
= DEBIread(dev
,
2261 ((struct dio_private
*)(dev
->subdevices
+ 2 +
2262 group
)->private)->RDCapSel
);
2264 ((struct dio_private
*)(dev
->subdevices
+ 2 +
2265 group
)->private)->WRCapSel
,
2271 static int s626_dio_reset_irq(struct comedi_device
*dev
, unsigned int group
,
2275 ("s626_dio_reset_irq: disable interrupt on dio channel %d group %d\n",
2278 /* disable edge capture write command */
2279 DEBIwrite(dev
, LP_MISC1
, MISC1_NOEDCAP
);
2281 /* enable edge capture on selected channel */
2283 ((struct dio_private
*)(dev
->subdevices
+ 2 +
2284 group
)->private)->WRCapSel
, mask
);
2289 static int s626_dio_clear_irq(struct comedi_device
*dev
)
2293 /* disable edge capture write command */
2294 DEBIwrite(dev
, LP_MISC1
, MISC1_NOEDCAP
);
2296 for (group
= 0; group
< S626_DIO_BANKS
; group
++) {
2297 /* clear pending events and interrupt */
2299 ((struct dio_private
*)(dev
->subdevices
+ 2 +
2300 group
)->private)->WRCapSel
,
2307 /* Now this function initializes the value of the counter (data[0])
2308 and set the subdevice. To complete with trigger and interrupt
2310 static int s626_enc_insn_config(struct comedi_device
*dev
,
2311 struct comedi_subdevice
*s
,
2312 struct comedi_insn
*insn
, unsigned int *data
)
2314 uint16_t Setup
= (LOADSRC_INDX
<< BF_LOADSRC
) | /* Preload upon */
2316 (INDXSRC_SOFT
<< BF_INDXSRC
) | /* Disable hardware index. */
2317 (CLKSRC_COUNTER
<< BF_CLKSRC
) | /* Operating mode is Counter. */
2318 (CLKPOL_POS
<< BF_CLKPOL
) | /* Active high clock. */
2319 /* ( CNTDIR_UP << BF_CLKPOL ) | // Count direction is Down. */
2320 (CLKMULT_1X
<< BF_CLKMULT
) | /* Clock multiplier is 1x. */
2321 (CLKENAB_INDEX
<< BF_CLKENAB
);
2322 /* uint16_t DisableIntSrc=TRUE; */
2323 /* uint32_t Preloadvalue; //Counter initial value */
2324 uint16_t valueSrclatch
= LATCHSRC_AB_READ
;
2325 uint16_t enab
= CLKENAB_ALWAYS
;
2326 struct enc_private
*k
= &encpriv
[CR_CHAN(insn
->chanspec
)];
2328 DEBUG("s626_enc_insn_config: encoder config\n");
2330 /* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
2332 k
->SetMode(dev
, k
, Setup
, TRUE
);
2333 Preload(dev
, k
, *(insn
->data
));
2334 k
->PulseIndex(dev
, k
);
2335 SetLatchSource(dev
, k
, valueSrclatch
);
2336 k
->SetEnable(dev
, k
, (uint16_t) (enab
!= 0));
2341 static int s626_enc_insn_read(struct comedi_device
*dev
,
2342 struct comedi_subdevice
*s
,
2343 struct comedi_insn
*insn
, unsigned int *data
)
2347 struct enc_private
*k
= &encpriv
[CR_CHAN(insn
->chanspec
)];
2349 DEBUG("s626_enc_insn_read: encoder read channel %d \n",
2350 CR_CHAN(insn
->chanspec
));
2352 for (n
= 0; n
< insn
->n
; n
++)
2353 data
[n
] = ReadLatch(dev
, k
);
2355 DEBUG("s626_enc_insn_read: encoder sample %d\n", data
[n
]);
2360 static int s626_enc_insn_write(struct comedi_device
*dev
,
2361 struct comedi_subdevice
*s
,
2362 struct comedi_insn
*insn
, unsigned int *data
)
2365 struct enc_private
*k
= &encpriv
[CR_CHAN(insn
->chanspec
)];
2367 DEBUG("s626_enc_insn_write: encoder write channel %d \n",
2368 CR_CHAN(insn
->chanspec
));
2370 /* Set the preload register */
2371 Preload(dev
, k
, data
[0]);
2373 /* Software index pulse forces the preload register to load */
2374 /* into the counter */
2375 k
->SetLoadTrig(dev
, k
, 0);
2376 k
->PulseIndex(dev
, k
);
2377 k
->SetLoadTrig(dev
, k
, 2);
2379 DEBUG("s626_enc_insn_write: End encoder write\n");
2384 static void s626_timer_load(struct comedi_device
*dev
, struct enc_private
*k
,
2387 uint16_t Setup
= (LOADSRC_INDX
<< BF_LOADSRC
) | /* Preload upon */
2389 (INDXSRC_SOFT
<< BF_INDXSRC
) | /* Disable hardware index. */
2390 (CLKSRC_TIMER
<< BF_CLKSRC
) | /* Operating mode is Timer. */
2391 (CLKPOL_POS
<< BF_CLKPOL
) | /* Active high clock. */
2392 (CNTDIR_DOWN
<< BF_CLKPOL
) | /* Count direction is Down. */
2393 (CLKMULT_1X
<< BF_CLKMULT
) | /* Clock multiplier is 1x. */
2394 (CLKENAB_INDEX
<< BF_CLKENAB
);
2395 uint16_t valueSrclatch
= LATCHSRC_A_INDXA
;
2396 /* uint16_t enab=CLKENAB_ALWAYS; */
2398 k
->SetMode(dev
, k
, Setup
, FALSE
);
2400 /* Set the preload register */
2401 Preload(dev
, k
, tick
);
2403 /* Software index pulse forces the preload register to load */
2404 /* into the counter */
2405 k
->SetLoadTrig(dev
, k
, 0);
2406 k
->PulseIndex(dev
, k
);
2408 /* set reload on counter overflow */
2409 k
->SetLoadTrig(dev
, k
, 1);
2411 /* set interrupt on overflow */
2412 k
->SetIntSrc(dev
, k
, INTSRC_OVER
);
2414 SetLatchSource(dev
, k
, valueSrclatch
);
2415 /* k->SetEnable(dev,k,(uint16_t)(enab != 0)); */
2418 /* *********** DAC FUNCTIONS *********** */
2420 /* Slot 0 base settings. */
2421 #define VECT0 (XSD2 | RSD3 | SIB_A2)
2422 /* Slot 0 always shifts in 0xFF and store it to FB_BUFFER2. */
2424 /* TrimDac LogicalChan-to-PhysicalChan mapping table. */
2425 static uint8_t trimchan
[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
2427 /* TrimDac LogicalChan-to-EepromAdrs mapping table. */
2428 static uint8_t trimadrs
[] =
2429 { 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63 };
2431 static void LoadTrimDACs(struct comedi_device
*dev
)
2435 /* Copy TrimDac setpoint values from EEPROM to TrimDacs. */
2436 for (i
= 0; i
< ARRAY_SIZE(trimchan
); i
++)
2437 WriteTrimDAC(dev
, i
, I2Cread(dev
, trimadrs
[i
]));
2440 static void WriteTrimDAC(struct comedi_device
*dev
, uint8_t LogicalChan
,
2445 /* Save the new setpoint in case the application needs to read it back later. */
2446 devpriv
->TrimSetpoint
[LogicalChan
] = (uint8_t) DacData
;
2448 /* Map logical channel number to physical channel number. */
2449 chan
= (uint32_t) trimchan
[LogicalChan
];
2451 /* Set up TSL2 records for TrimDac write operation. All slots shift
2452 * 0xFF in from pulled-up SD3 so that the end of the slot sequence
2456 SETVECT(2, XSD2
| XFIFO_1
| WS3
);
2457 /* Slot 2: Send high uint8_t to target TrimDac. */
2458 SETVECT(3, XSD2
| XFIFO_0
| WS3
);
2459 /* Slot 3: Send low uint8_t to target TrimDac. */
2460 SETVECT(4, XSD2
| XFIFO_3
| WS1
);
2461 /* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running. */
2462 SETVECT(5, XSD2
| XFIFO_2
| WS1
| EOS
);
2463 /* Slot 5: Send NOP low uint8_t to DAC0. */
2465 /* Construct and transmit target DAC's serial packet:
2466 * ( 0000 AAAA ), ( DDDD DDDD ),( 0x00 ),( 0x00 ) where A<3:0> is the
2467 * DAC channel's address, and D<7:0> is the DAC setpoint. Append a
2468 * WORD value (that writes a channel 0 NOP command to a non-existent
2469 * main DAC channel) that serves to keep the clock running after the
2470 * packet has been sent to the target DAC.
2473 /* Address the DAC channel within the trimdac device. */
2474 SendDAC(dev
, ((uint32_t) chan
<< 8)
2475 | (uint32_t) DacData
); /* Include DAC setpoint data. */
2478 /* ************** EEPROM ACCESS FUNCTIONS ************** */
2479 /* Read uint8_t from EEPROM. */
2481 static uint8_t I2Cread(struct comedi_device
*dev
, uint8_t addr
)
2485 /* Send EEPROM target address. */
2486 if (I2Chandshake(dev
, I2C_B2(I2C_ATTRSTART
, I2CW
)
2487 /* Byte2 = I2C command: write to I2C EEPROM device. */
2488 | I2C_B1(I2C_ATTRSTOP
, addr
)
2489 /* Byte1 = EEPROM internal target address. */
2490 | I2C_B0(I2C_ATTRNOP
, 0))) { /* Byte0 = Not sent. */
2491 /* Abort function and declare error if handshake failed. */
2492 DEBUG("I2Cread: error handshake I2Cread a\n");
2495 /* Execute EEPROM read. */
2496 if (I2Chandshake(dev
, I2C_B2(I2C_ATTRSTART
, I2CR
)
2500 /* from I2C EEPROM */
2502 |I2C_B1(I2C_ATTRSTOP
, 0)
2504 /* Byte1 receives */
2507 |I2C_B0(I2C_ATTRNOP
, 0))) { /* Byte0 = Not sent. */
2509 /* Abort function and declare error if handshake failed. */
2510 DEBUG("I2Cread: error handshake I2Cread b\n");
2513 /* Return copy of EEPROM value. */
2514 rtnval
= (uint8_t) (RR7146(P_I2CCTRL
) >> 16);
2518 static uint32_t I2Chandshake(struct comedi_device
*dev
, uint32_t val
)
2520 /* Write I2C command to I2C Transfer Control shadow register. */
2521 WR7146(P_I2CCTRL
, val
);
2523 /* Upload I2C shadow registers into working registers and wait for */
2524 /* upload confirmation. */
2526 MC_ENABLE(P_MC2
, MC2_UPLD_IIC
);
2527 while (!MC_TEST(P_MC2
, MC2_UPLD_IIC
)) ;
2529 /* Wait until I2C bus transfer is finished or an error occurs. */
2530 while ((RR7146(P_I2CCTRL
) & (I2C_BUSY
| I2C_ERR
)) == I2C_BUSY
) ;
2532 /* Return non-zero if I2C error occured. */
2533 return RR7146(P_I2CCTRL
) & I2C_ERR
;
2537 /* Private helper function: Write setpoint to an application DAC channel. */
2539 static void SetDAC(struct comedi_device
*dev
, uint16_t chan
, short dacdata
)
2541 register uint16_t signmask
;
2542 register uint32_t WSImage
;
2544 /* Adjust DAC data polarity and set up Polarity Control Register */
2546 signmask
= 1 << chan
;
2549 devpriv
->Dacpol
|= signmask
;
2551 devpriv
->Dacpol
&= ~signmask
;
2553 /* Limit DAC setpoint value to valid range. */
2554 if ((uint16_t) dacdata
> 0x1FFF)
2557 /* Set up TSL2 records (aka "vectors") for DAC update. Vectors V2
2558 * and V3 transmit the setpoint to the target DAC. V4 and V5 send
2559 * data to a non-existent TrimDac channel just to keep the clock
2560 * running after sending data to the target DAC. This is necessary
2561 * to eliminate the clock glitch that would otherwise occur at the
2562 * end of the target DAC's serial data stream. When the sequence
2563 * restarts at V0 (after executing V5), the gate array automatically
2564 * disables gating for the DAC clock and all DAC chip selects.
2567 WSImage
= (chan
& 2) ? WS1
: WS2
;
2568 /* Choose DAC chip select to be asserted. */
2569 SETVECT(2, XSD2
| XFIFO_1
| WSImage
);
2570 /* Slot 2: Transmit high data byte to target DAC. */
2571 SETVECT(3, XSD2
| XFIFO_0
| WSImage
);
2572 /* Slot 3: Transmit low data byte to target DAC. */
2573 SETVECT(4, XSD2
| XFIFO_3
| WS3
);
2574 /* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
2575 SETVECT(5, XSD2
| XFIFO_2
| WS3
| EOS
);
2576 /* Slot 5: running after writing target DAC's low data byte. */
2578 /* Construct and transmit target DAC's serial packet:
2579 * ( A10D DDDD ),( DDDD DDDD ),( 0x0F ),( 0x00 ) where A is chan<0>,
2580 * and D<12:0> is the DAC setpoint. Append a WORD value (that writes
2581 * to a non-existent TrimDac channel) that serves to keep the clock
2582 * running after the packet has been sent to the target DAC.
2584 SendDAC(dev
, 0x0F000000
2585 /* Continue clock after target DAC data (write to non-existent trimdac). */
2587 /* Address the two main dual-DAC devices (TSL's chip select enables
2588 * target device). */
2589 | ((uint32_t) (chan
& 1) << 15)
2590 /* Address the DAC channel within the device. */
2591 | (uint32_t) dacdata
); /* Include DAC setpoint data. */
2595 /* Private helper function: Transmit serial data to DAC via Audio
2596 * channel 2. Assumes: (1) TSL2 slot records initialized, and (2)
2597 * Dacpol contains valid target image.
2600 static void SendDAC(struct comedi_device
*dev
, uint32_t val
)
2603 /* START THE SERIAL CLOCK RUNNING ------------- */
2605 /* Assert DAC polarity control and enable gating of DAC serial clock
2606 * and audio bit stream signals. At this point in time we must be
2607 * assured of being in time slot 0. If we are not in slot 0, the
2608 * serial clock and audio stream signals will be disabled; this is
2609 * because the following DEBIwrite statement (which enables signals
2610 * to be passed through the gate array) would execute before the
2611 * trailing edge of WS1/WS3 (which turns off the signals), thus
2612 * causing the signals to be inactive during the DAC write.
2614 DEBIwrite(dev
, LP_DACPOL
, devpriv
->Dacpol
);
2616 /* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
2618 /* Copy DAC setpoint value to DAC's output DMA buffer. */
2620 /* WR7146( (uint32_t)devpriv->pDacWBuf, val ); */
2621 *devpriv
->pDacWBuf
= val
;
2623 /* enab the output DMA transfer. This will cause the DMAC to copy
2624 * the DAC's data value to A2's output FIFO. The DMA transfer will
2625 * then immediately terminate because the protection address is
2626 * reached upon transfer of the first DWORD value.
2628 MC_ENABLE(P_MC1
, MC1_A2OUT
);
2630 /* While the DMA transfer is executing ... */
2632 /* Reset Audio2 output FIFO's underflow flag (along with any other
2633 * FIFO underflow/overflow flags). When set, this flag will
2634 * indicate that we have emerged from slot 0.
2636 WR7146(P_ISR
, ISR_AFOU
);
2638 /* Wait for the DMA transfer to finish so that there will be data
2639 * available in the FIFO when time slot 1 tries to transfer a DWORD
2640 * from the FIFO to the output buffer register. We test for DMA
2641 * Done by polling the DMAC enable flag; this flag is automatically
2642 * cleared when the transfer has finished.
2644 while ((RR7146(P_MC1
) & MC1_A2OUT
) != 0) ;
2646 /* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
2648 /* FIFO data is now available, so we enable execution of time slots
2649 * 1 and higher by clearing the EOS flag in slot 0. Note that SD3
2650 * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
2653 SETVECT(0, XSD2
| RSD3
| SIB_A2
);
2655 /* Wait for slot 1 to execute to ensure that the Packet will be
2656 * transmitted. This is detected by polling the Audio2 output FIFO
2657 * underflow flag, which will be set when slot 1 execution has
2658 * finished transferring the DAC's data DWORD from the output FIFO
2659 * to the output buffer register.
2661 while ((RR7146(P_SSR
) & SSR_AF2_OUT
) == 0) ;
2663 /* Set up to trap execution at slot 0 when the TSL sequencer cycles
2664 * back to slot 0 after executing the EOS in slot 5. Also,
2665 * simultaneously shift out and in the 0x00 that is ALWAYS the value
2666 * stored in the last byte to be shifted out of the FIFO's DWORD
2669 SETVECT(0, XSD2
| XFIFO_2
| RSD2
| SIB_A2
| EOS
);
2671 /* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
2673 /* Wait for the TSL to finish executing all time slots before
2674 * exiting this function. We must do this so that the next DAC
2675 * write doesn't start, thereby enabling clock/chip select signals:
2677 * 1. Before the TSL sequence cycles back to slot 0, which disables
2678 * the clock/cs signal gating and traps slot // list execution.
2679 * we have not yet finished slot 5 then the clock/cs signals are
2680 * still gated and we have not finished transmitting the stream.
2682 * 2. While slots 2-5 are executing due to a late slot 0 trap. In
2683 * this case, the slot sequence is currently repeating, but with
2684 * clock/cs signals disabled. We must wait for slot 0 to trap
2685 * execution before setting up the next DAC setpoint DMA transfer
2686 * and enabling the clock/cs signals. To detect the end of slot 5,
2687 * we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If
2688 * the TSL has not yet finished executing slot 5 ...
2690 if ((RR7146(P_FB_BUFFER2
) & 0xFF000000) != 0) {
2691 /* The trap was set on time and we are still executing somewhere
2692 * in slots 2-5, so we now wait for slot 0 to execute and trap
2693 * TSL execution. This is detected when FB_BUFFER2 MSB changes
2694 * from 0xFF to 0x00, which slot 0 causes to happen by shifting
2695 * out/in on SD2 the 0x00 that is always referenced by slot 5.
2697 while ((RR7146(P_FB_BUFFER2
) & 0xFF000000) != 0) ;
2699 /* Either (1) we were too late setting the slot 0 trap; the TSL
2700 * sequencer restarted slot 0 before we could set the EOS trap flag,
2701 * or (2) we were not late and execution is now trapped at slot 0.
2702 * In either case, we must now change slot 0 so that it will store
2703 * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
2704 * In order to do this, we reprogram slot 0 so that it will shift in
2705 * SD3, which is driven only by a pull-up resistor.
2707 SETVECT(0, RSD3
| SIB_A2
| EOS
);
2709 /* Wait for slot 0 to execute, at which time the TSL is setup for
2710 * the next DAC write. This is detected when FB_BUFFER2 MSB changes
2711 * from 0x00 to 0xFF.
2713 while ((RR7146(P_FB_BUFFER2
) & 0xFF000000) == 0) ;
2716 static void WriteMISC2(struct comedi_device
*dev
, uint16_t NewImage
)
2718 DEBIwrite(dev
, LP_MISC1
, MISC1_WENABLE
); /* enab writes to */
2719 /* MISC2 register. */
2720 DEBIwrite(dev
, LP_WRMISC2
, NewImage
); /* Write new image to MISC2. */
2721 DEBIwrite(dev
, LP_MISC1
, MISC1_WDISABLE
); /* Disable writes to MISC2. */
2724 /* Initialize the DEBI interface for all transfers. */
2726 static uint16_t DEBIread(struct comedi_device
*dev
, uint16_t addr
)
2730 /* Set up DEBI control register value in shadow RAM. */
2731 WR7146(P_DEBICMD
, DEBI_CMD_RDWORD
| addr
);
2733 /* Execute the DEBI transfer. */
2736 /* Fetch target register value. */
2737 retval
= (uint16_t) RR7146(P_DEBIAD
);
2739 /* Return register value. */
2743 /* Execute a DEBI transfer. This must be called from within a */
2744 /* critical section. */
2745 static void DEBItransfer(struct comedi_device
*dev
)
2747 /* Initiate upload of shadow RAM to DEBI control register. */
2748 MC_ENABLE(P_MC2
, MC2_UPLD_DEBI
);
2750 /* Wait for completion of upload from shadow RAM to DEBI control */
2752 while (!MC_TEST(P_MC2
, MC2_UPLD_DEBI
)) ;
2754 /* Wait until DEBI transfer is done. */
2755 while (RR7146(P_PSR
) & PSR_DEBI_S
) ;
2758 /* Write a value to a gate array register. */
2759 static void DEBIwrite(struct comedi_device
*dev
, uint16_t addr
, uint16_t wdata
)
2762 /* Set up DEBI control register value in shadow RAM. */
2763 WR7146(P_DEBICMD
, DEBI_CMD_WRWORD
| addr
);
2764 WR7146(P_DEBIAD
, wdata
);
2766 /* Execute the DEBI transfer. */
2770 /* Replace the specified bits in a gate array register. Imports: mask
2771 * specifies bits that are to be preserved, wdata is new value to be
2772 * or'd with the masked original.
2774 static void DEBIreplace(struct comedi_device
*dev
, uint16_t addr
, uint16_t mask
,
2778 /* Copy target gate array register into P_DEBIAD register. */
2779 WR7146(P_DEBICMD
, DEBI_CMD_RDWORD
| addr
);
2780 /* Set up DEBI control reg value in shadow RAM. */
2781 DEBItransfer(dev
); /* Execute the DEBI Read transfer. */
2783 /* Write back the modified image. */
2784 WR7146(P_DEBICMD
, DEBI_CMD_WRWORD
| addr
);
2785 /* Set up DEBI control reg value in shadow RAM. */
2787 WR7146(P_DEBIAD
, wdata
| ((uint16_t) RR7146(P_DEBIAD
) & mask
));
2788 /* Modify the register image. */
2789 DEBItransfer(dev
); /* Execute the DEBI Write transfer. */
2792 static void CloseDMAB(struct comedi_device
*dev
, struct bufferDMA
*pdma
,
2798 DEBUG("CloseDMAB: Entering S626DRV_CloseDMAB():\n");
2801 /* find the matching allocation from the board struct */
2803 vbptr
= pdma
->LogicalBase
;
2804 vpptr
= pdma
->PhysicalBase
;
2806 pci_free_consistent(devpriv
->pdev
, bsize
, vbptr
, vpptr
);
2807 pdma
->LogicalBase
= 0;
2808 pdma
->PhysicalBase
= 0;
2810 DEBUG("CloseDMAB(): Logical=%p, bsize=%d, Physical=0x%x\n",
2811 vbptr
, bsize
, (uint32_t) vpptr
);
2815 /* ****** COUNTER FUNCTIONS ******* */
2816 /* All counter functions address a specific counter by means of the
2817 * "Counter" argument, which is a logical counter number. The Counter
2818 * argument may have any of the following legal values: 0=0A, 1=1A,
2819 * 2=2A, 3=0B, 4=1B, 5=2B.
2822 /* Forward declarations for functions that are common to both A and B counters: */
2824 /* ****** PRIVATE COUNTER FUNCTIONS ****** */
2826 /* Read a counter's output latch. */
2828 static uint32_t ReadLatch(struct comedi_device
*dev
, struct enc_private
*k
)
2830 register uint32_t value
;
2831 /* DEBUG FIXME DEBUG("ReadLatch: Read Latch enter\n"); */
2833 /* Latch counts and fetch LSW of latched counts value. */
2834 value
= (uint32_t) DEBIread(dev
, k
->MyLatchLsw
);
2836 /* Fetch MSW of latched counts and combine with LSW. */
2837 value
|= ((uint32_t) DEBIread(dev
, k
->MyLatchLsw
+ 2) << 16);
2839 /* DEBUG FIXME DEBUG("ReadLatch: Read Latch exit\n"); */
2841 /* Return latched counts. */
2845 /* Reset a counter's index and overflow event capture flags. */
2847 static void ResetCapFlags_A(struct comedi_device
*dev
, struct enc_private
*k
)
2849 DEBIreplace(dev
, k
->MyCRB
, (uint16_t) (~CRBMSK_INTCTRL
),
2850 CRBMSK_INTRESETCMD
| CRBMSK_INTRESET_A
);
2853 static void ResetCapFlags_B(struct comedi_device
*dev
, struct enc_private
*k
)
2855 DEBIreplace(dev
, k
->MyCRB
, (uint16_t) (~CRBMSK_INTCTRL
),
2856 CRBMSK_INTRESETCMD
| CRBMSK_INTRESET_B
);
2859 /* Return counter setup in a format (COUNTER_SETUP) that is consistent */
2860 /* for both A and B counters. */
2862 static uint16_t GetMode_A(struct comedi_device
*dev
, struct enc_private
*k
)
2864 register uint16_t cra
;
2865 register uint16_t crb
;
2866 register uint16_t setup
;
2868 /* Fetch CRA and CRB register images. */
2869 cra
= DEBIread(dev
, k
->MyCRA
);
2870 crb
= DEBIread(dev
, k
->MyCRB
);
2872 /* Populate the standardized counter setup bit fields. Note: */
2873 /* IndexSrc is restricted to ENC_X or IndxPol. */
2874 setup
= ((cra
& STDMSK_LOADSRC
) /* LoadSrc = LoadSrcA. */
2875 |((crb
<< (STDBIT_LATCHSRC
- CRBBIT_LATCHSRC
)) & STDMSK_LATCHSRC
) /* LatchSrc = LatchSrcA. */
2876 |((cra
<< (STDBIT_INTSRC
- CRABIT_INTSRC_A
)) & STDMSK_INTSRC
) /* IntSrc = IntSrcA. */
2877 |((cra
<< (STDBIT_INDXSRC
- (CRABIT_INDXSRC_A
+ 1))) & STDMSK_INDXSRC
) /* IndxSrc = IndxSrcA<1>. */
2878 |((cra
>> (CRABIT_INDXPOL_A
- STDBIT_INDXPOL
)) & STDMSK_INDXPOL
) /* IndxPol = IndxPolA. */
2879 |((crb
>> (CRBBIT_CLKENAB_A
- STDBIT_CLKENAB
)) & STDMSK_CLKENAB
)); /* ClkEnab = ClkEnabA. */
2881 /* Adjust mode-dependent parameters. */
2882 if (cra
& (2 << CRABIT_CLKSRC_A
)) /* If Timer mode (ClkSrcA<1> == 1): */
2883 setup
|= ((CLKSRC_TIMER
<< STDBIT_CLKSRC
) /* Indicate Timer mode. */
2884 |((cra
<< (STDBIT_CLKPOL
- CRABIT_CLKSRC_A
)) & STDMSK_CLKPOL
) /* Set ClkPol to indicate count direction (ClkSrcA<0>). */
2885 |(MULT_X1
<< STDBIT_CLKMULT
)); /* ClkMult must be 1x in Timer mode. */
2887 else /* If Counter mode (ClkSrcA<1> == 0): */
2888 setup
|= ((CLKSRC_COUNTER
<< STDBIT_CLKSRC
) /* Indicate Counter mode. */
2889 |((cra
>> (CRABIT_CLKPOL_A
- STDBIT_CLKPOL
)) & STDMSK_CLKPOL
) /* Pass through ClkPol. */
2890 |(((cra
& CRAMSK_CLKMULT_A
) == (MULT_X0
<< CRABIT_CLKMULT_A
)) ? /* Force ClkMult to 1x if not legal, else pass through. */
2891 (MULT_X1
<< STDBIT_CLKMULT
) :
2892 ((cra
>> (CRABIT_CLKMULT_A
-
2893 STDBIT_CLKMULT
)) & STDMSK_CLKMULT
)));
2895 /* Return adjusted counter setup. */
2899 static uint16_t GetMode_B(struct comedi_device
*dev
, struct enc_private
*k
)
2901 register uint16_t cra
;
2902 register uint16_t crb
;
2903 register uint16_t setup
;
2905 /* Fetch CRA and CRB register images. */
2906 cra
= DEBIread(dev
, k
->MyCRA
);
2907 crb
= DEBIread(dev
, k
->MyCRB
);
2909 /* Populate the standardized counter setup bit fields. Note: */
2910 /* IndexSrc is restricted to ENC_X or IndxPol. */
2911 setup
= (((crb
<< (STDBIT_INTSRC
- CRBBIT_INTSRC_B
)) & STDMSK_INTSRC
) /* IntSrc = IntSrcB. */
2912 |((crb
<< (STDBIT_LATCHSRC
- CRBBIT_LATCHSRC
)) & STDMSK_LATCHSRC
) /* LatchSrc = LatchSrcB. */
2913 |((crb
<< (STDBIT_LOADSRC
- CRBBIT_LOADSRC_B
)) & STDMSK_LOADSRC
) /* LoadSrc = LoadSrcB. */
2914 |((crb
<< (STDBIT_INDXPOL
- CRBBIT_INDXPOL_B
)) & STDMSK_INDXPOL
) /* IndxPol = IndxPolB. */
2915 |((crb
>> (CRBBIT_CLKENAB_B
- STDBIT_CLKENAB
)) & STDMSK_CLKENAB
) /* ClkEnab = ClkEnabB. */
2916 |((cra
>> ((CRABIT_INDXSRC_B
+ 1) - STDBIT_INDXSRC
)) & STDMSK_INDXSRC
)); /* IndxSrc = IndxSrcB<1>. */
2918 /* Adjust mode-dependent parameters. */
2919 if ((crb
& CRBMSK_CLKMULT_B
) == (MULT_X0
<< CRBBIT_CLKMULT_B
)) /* If Extender mode (ClkMultB == MULT_X0): */
2920 setup
|= ((CLKSRC_EXTENDER
<< STDBIT_CLKSRC
) /* Indicate Extender mode. */
2921 |(MULT_X1
<< STDBIT_CLKMULT
) /* Indicate multiplier is 1x. */
2922 |((cra
>> (CRABIT_CLKSRC_B
- STDBIT_CLKPOL
)) & STDMSK_CLKPOL
)); /* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
2924 else if (cra
& (2 << CRABIT_CLKSRC_B
)) /* If Timer mode (ClkSrcB<1> == 1): */
2925 setup
|= ((CLKSRC_TIMER
<< STDBIT_CLKSRC
) /* Indicate Timer mode. */
2926 |(MULT_X1
<< STDBIT_CLKMULT
) /* Indicate multiplier is 1x. */
2927 |((cra
>> (CRABIT_CLKSRC_B
- STDBIT_CLKPOL
)) & STDMSK_CLKPOL
)); /* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
2929 else /* If Counter mode (ClkSrcB<1> == 0): */
2930 setup
|= ((CLKSRC_COUNTER
<< STDBIT_CLKSRC
) /* Indicate Timer mode. */
2931 |((crb
>> (CRBBIT_CLKMULT_B
- STDBIT_CLKMULT
)) & STDMSK_CLKMULT
) /* Clock multiplier is passed through. */
2932 |((crb
<< (STDBIT_CLKPOL
- CRBBIT_CLKPOL_B
)) & STDMSK_CLKPOL
)); /* Clock polarity is passed through. */
2934 /* Return adjusted counter setup. */
2939 * Set the operating mode for the specified counter. The setup
2940 * parameter is treated as a COUNTER_SETUP data type. The following
2941 * parameters are programmable (all other parms are ignored): ClkMult,
2942 * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
2945 static void SetMode_A(struct comedi_device
*dev
, struct enc_private
*k
,
2946 uint16_t Setup
, uint16_t DisableIntSrc
)
2948 register uint16_t cra
;
2949 register uint16_t crb
;
2950 register uint16_t setup
= Setup
; /* Cache the Standard Setup. */
2952 /* Initialize CRA and CRB images. */
2953 cra
= ((setup
& CRAMSK_LOADSRC_A
) /* Preload trigger is passed through. */
2954 |((setup
& STDMSK_INDXSRC
) >> (STDBIT_INDXSRC
- (CRABIT_INDXSRC_A
+ 1)))); /* IndexSrc is restricted to ENC_X or IndxPol. */
2956 crb
= (CRBMSK_INTRESETCMD
| CRBMSK_INTRESET_A
/* Reset any pending CounterA event captures. */
2957 | ((setup
& STDMSK_CLKENAB
) << (CRBBIT_CLKENAB_A
- STDBIT_CLKENAB
))); /* Clock enable is passed through. */
2959 /* Force IntSrc to Disabled if DisableIntSrc is asserted. */
2961 cra
|= ((setup
& STDMSK_INTSRC
) >> (STDBIT_INTSRC
-
2964 /* Populate all mode-dependent attributes of CRA & CRB images. */
2965 switch ((setup
& STDMSK_CLKSRC
) >> STDBIT_CLKSRC
) {
2966 case CLKSRC_EXTENDER
: /* Extender Mode: Force to Timer mode */
2967 /* (Extender valid only for B counters). */
2969 case CLKSRC_TIMER
: /* Timer Mode: */
2970 cra
|= ((2 << CRABIT_CLKSRC_A
) /* ClkSrcA<1> selects system clock */
2971 |((setup
& STDMSK_CLKPOL
) >> (STDBIT_CLKPOL
- CRABIT_CLKSRC_A
)) /* with count direction (ClkSrcA<0>) obtained from ClkPol. */
2972 |(1 << CRABIT_CLKPOL_A
) /* ClkPolA behaves as always-on clock enable. */
2973 |(MULT_X1
<< CRABIT_CLKMULT_A
)); /* ClkMult must be 1x. */
2976 default: /* Counter Mode: */
2977 cra
|= (CLKSRC_COUNTER
/* Select ENC_C and ENC_D as clock/direction inputs. */
2978 | ((setup
& STDMSK_CLKPOL
) << (CRABIT_CLKPOL_A
- STDBIT_CLKPOL
)) /* Clock polarity is passed through. */
2979 |(((setup
& STDMSK_CLKMULT
) == (MULT_X0
<< STDBIT_CLKMULT
)) ? /* Force multiplier to x1 if not legal, otherwise pass through. */
2980 (MULT_X1
<< CRABIT_CLKMULT_A
) :
2981 ((setup
& STDMSK_CLKMULT
) << (CRABIT_CLKMULT_A
-
2985 /* Force positive index polarity if IndxSrc is software-driven only, */
2986 /* otherwise pass it through. */
2987 if (~setup
& STDMSK_INDXSRC
)
2988 cra
|= ((setup
& STDMSK_INDXPOL
) << (CRABIT_INDXPOL_A
-
2991 /* If IntSrc has been forced to Disabled, update the MISC2 interrupt */
2992 /* enable mask to indicate the counter interrupt is disabled. */
2994 devpriv
->CounterIntEnabs
&= ~k
->MyEventBits
[3];
2996 /* While retaining CounterB and LatchSrc configurations, program the */
2997 /* new counter operating mode. */
2998 DEBIreplace(dev
, k
->MyCRA
, CRAMSK_INDXSRC_B
| CRAMSK_CLKSRC_B
, cra
);
2999 DEBIreplace(dev
, k
->MyCRB
,
3000 (uint16_t) (~(CRBMSK_INTCTRL
| CRBMSK_CLKENAB_A
)), crb
);
3003 static void SetMode_B(struct comedi_device
*dev
, struct enc_private
*k
,
3004 uint16_t Setup
, uint16_t DisableIntSrc
)
3006 register uint16_t cra
;
3007 register uint16_t crb
;
3008 register uint16_t setup
= Setup
; /* Cache the Standard Setup. */
3010 /* Initialize CRA and CRB images. */
3011 cra
= ((setup
& STDMSK_INDXSRC
) << ((CRABIT_INDXSRC_B
+ 1) - STDBIT_INDXSRC
)); /* IndexSrc field is restricted to ENC_X or IndxPol. */
3013 crb
= (CRBMSK_INTRESETCMD
| CRBMSK_INTRESET_B
/* Reset event captures and disable interrupts. */
3014 | ((setup
& STDMSK_CLKENAB
) << (CRBBIT_CLKENAB_B
- STDBIT_CLKENAB
)) /* Clock enable is passed through. */
3015 |((setup
& STDMSK_LOADSRC
) >> (STDBIT_LOADSRC
- CRBBIT_LOADSRC_B
))); /* Preload trigger source is passed through. */
3017 /* Force IntSrc to Disabled if DisableIntSrc is asserted. */
3019 crb
|= ((setup
& STDMSK_INTSRC
) >> (STDBIT_INTSRC
-
3022 /* Populate all mode-dependent attributes of CRA & CRB images. */
3023 switch ((setup
& STDMSK_CLKSRC
) >> STDBIT_CLKSRC
) {
3024 case CLKSRC_TIMER
: /* Timer Mode: */
3025 cra
|= ((2 << CRABIT_CLKSRC_B
) /* ClkSrcB<1> selects system clock */
3026 |((setup
& STDMSK_CLKPOL
) << (CRABIT_CLKSRC_B
- STDBIT_CLKPOL
))); /* with direction (ClkSrcB<0>) obtained from ClkPol. */
3027 crb
|= ((1 << CRBBIT_CLKPOL_B
) /* ClkPolB behaves as always-on clock enable. */
3028 |(MULT_X1
<< CRBBIT_CLKMULT_B
)); /* ClkMultB must be 1x. */
3031 case CLKSRC_EXTENDER
: /* Extender Mode: */
3032 cra
|= ((2 << CRABIT_CLKSRC_B
) /* ClkSrcB source is OverflowA (same as "timer") */
3033 |((setup
& STDMSK_CLKPOL
) << (CRABIT_CLKSRC_B
- STDBIT_CLKPOL
))); /* with direction obtained from ClkPol. */
3034 crb
|= ((1 << CRBBIT_CLKPOL_B
) /* ClkPolB controls IndexB -- always set to active. */
3035 |(MULT_X0
<< CRBBIT_CLKMULT_B
)); /* ClkMultB selects OverflowA as the clock source. */
3038 default: /* Counter Mode: */
3039 cra
|= (CLKSRC_COUNTER
<< CRABIT_CLKSRC_B
); /* Select ENC_C and ENC_D as clock/direction inputs. */
3040 crb
|= (((setup
& STDMSK_CLKPOL
) >> (STDBIT_CLKPOL
- CRBBIT_CLKPOL_B
)) /* ClkPol is passed through. */
3041 |(((setup
& STDMSK_CLKMULT
) == (MULT_X0
<< STDBIT_CLKMULT
)) ? /* Force ClkMult to x1 if not legal, otherwise pass through. */
3042 (MULT_X1
<< CRBBIT_CLKMULT_B
) :
3043 ((setup
& STDMSK_CLKMULT
) << (CRBBIT_CLKMULT_B
-
3047 /* Force positive index polarity if IndxSrc is software-driven only, */
3048 /* otherwise pass it through. */
3049 if (~setup
& STDMSK_INDXSRC
)
3050 crb
|= ((setup
& STDMSK_INDXPOL
) >> (STDBIT_INDXPOL
-
3053 /* If IntSrc has been forced to Disabled, update the MISC2 interrupt */
3054 /* enable mask to indicate the counter interrupt is disabled. */
3056 devpriv
->CounterIntEnabs
&= ~k
->MyEventBits
[3];
3058 /* While retaining CounterA and LatchSrc configurations, program the */
3059 /* new counter operating mode. */
3060 DEBIreplace(dev
, k
->MyCRA
,
3061 (uint16_t) (~(CRAMSK_INDXSRC_B
| CRAMSK_CLKSRC_B
)), cra
);
3062 DEBIreplace(dev
, k
->MyCRB
, CRBMSK_CLKENAB_A
| CRBMSK_LATCHSRC
, crb
);
3065 /* Return/set a counter's enable. enab: 0=always enabled, 1=enabled by index. */
3067 static void SetEnable_A(struct comedi_device
*dev
, struct enc_private
*k
,
3070 DEBUG("SetEnable_A: SetEnable_A enter 3541\n");
3071 DEBIreplace(dev
, k
->MyCRB
,
3072 (uint16_t) (~(CRBMSK_INTCTRL
| CRBMSK_CLKENAB_A
)),
3073 (uint16_t) (enab
<< CRBBIT_CLKENAB_A
));
3076 static void SetEnable_B(struct comedi_device
*dev
, struct enc_private
*k
,
3079 DEBIreplace(dev
, k
->MyCRB
,
3080 (uint16_t) (~(CRBMSK_INTCTRL
| CRBMSK_CLKENAB_B
)),
3081 (uint16_t) (enab
<< CRBBIT_CLKENAB_B
));
3084 static uint16_t GetEnable_A(struct comedi_device
*dev
, struct enc_private
*k
)
3086 return (DEBIread(dev
, k
->MyCRB
) >> CRBBIT_CLKENAB_A
) & 1;
3089 static uint16_t GetEnable_B(struct comedi_device
*dev
, struct enc_private
*k
)
3091 return (DEBIread(dev
, k
->MyCRB
) >> CRBBIT_CLKENAB_B
) & 1;
3094 /* Return/set a counter pair's latch trigger source. 0: On read
3095 * access, 1: A index latches A, 2: B index latches B, 3: A overflow
3099 static void SetLatchSource(struct comedi_device
*dev
, struct enc_private
*k
,
3102 DEBUG("SetLatchSource: SetLatchSource enter 3550 \n");
3103 DEBIreplace(dev
, k
->MyCRB
,
3104 (uint16_t) (~(CRBMSK_INTCTRL
| CRBMSK_LATCHSRC
)),
3105 (uint16_t) (value
<< CRBBIT_LATCHSRC
));
3107 DEBUG("SetLatchSource: SetLatchSource exit \n");
3111 * static uint16_t GetLatchSource(struct comedi_device *dev, struct enc_private *k )
3113 * return ( DEBIread( dev, k->MyCRB) >> CRBBIT_LATCHSRC ) & 3;
3118 * Return/set the event that will trigger transfer of the preload
3119 * register into the counter. 0=ThisCntr_Index, 1=ThisCntr_Overflow,
3120 * 2=OverflowA (B counters only), 3=disabled.
3123 static void SetLoadTrig_A(struct comedi_device
*dev
, struct enc_private
*k
,
3126 DEBIreplace(dev
, k
->MyCRA
, (uint16_t) (~CRAMSK_LOADSRC_A
),
3127 (uint16_t) (Trig
<< CRABIT_LOADSRC_A
));
3130 static void SetLoadTrig_B(struct comedi_device
*dev
, struct enc_private
*k
,
3133 DEBIreplace(dev
, k
->MyCRB
,
3134 (uint16_t) (~(CRBMSK_LOADSRC_B
| CRBMSK_INTCTRL
)),
3135 (uint16_t) (Trig
<< CRBBIT_LOADSRC_B
));
3138 static uint16_t GetLoadTrig_A(struct comedi_device
*dev
, struct enc_private
*k
)
3140 return (DEBIread(dev
, k
->MyCRA
) >> CRABIT_LOADSRC_A
) & 3;
3143 static uint16_t GetLoadTrig_B(struct comedi_device
*dev
, struct enc_private
*k
)
3145 return (DEBIread(dev
, k
->MyCRB
) >> CRBBIT_LOADSRC_B
) & 3;
3148 /* Return/set counter interrupt source and clear any captured
3149 * index/overflow events. IntSource: 0=Disabled, 1=OverflowOnly,
3150 * 2=IndexOnly, 3=IndexAndOverflow.
3153 static void SetIntSrc_A(struct comedi_device
*dev
, struct enc_private
*k
,
3156 /* Reset any pending counter overflow or index captures. */
3157 DEBIreplace(dev
, k
->MyCRB
, (uint16_t) (~CRBMSK_INTCTRL
),
3158 CRBMSK_INTRESETCMD
| CRBMSK_INTRESET_A
);
3160 /* Program counter interrupt source. */
3161 DEBIreplace(dev
, k
->MyCRA
, ~CRAMSK_INTSRC_A
,
3162 (uint16_t) (IntSource
<< CRABIT_INTSRC_A
));
3164 /* Update MISC2 interrupt enable mask. */
3165 devpriv
->CounterIntEnabs
=
3166 (devpriv
->CounterIntEnabs
& ~k
->
3167 MyEventBits
[3]) | k
->MyEventBits
[IntSource
];
3170 static void SetIntSrc_B(struct comedi_device
*dev
, struct enc_private
*k
,
3175 /* Cache writeable CRB register image. */
3176 crb
= DEBIread(dev
, k
->MyCRB
) & ~CRBMSK_INTCTRL
;
3178 /* Reset any pending counter overflow or index captures. */
3179 DEBIwrite(dev
, k
->MyCRB
,
3180 (uint16_t) (crb
| CRBMSK_INTRESETCMD
| CRBMSK_INTRESET_B
));
3182 /* Program counter interrupt source. */
3183 DEBIwrite(dev
, k
->MyCRB
,
3184 (uint16_t) ((crb
& ~CRBMSK_INTSRC_B
) | (IntSource
<<
3187 /* Update MISC2 interrupt enable mask. */
3188 devpriv
->CounterIntEnabs
=
3189 (devpriv
->CounterIntEnabs
& ~k
->
3190 MyEventBits
[3]) | k
->MyEventBits
[IntSource
];
3193 static uint16_t GetIntSrc_A(struct comedi_device
*dev
, struct enc_private
*k
)
3195 return (DEBIread(dev
, k
->MyCRA
) >> CRABIT_INTSRC_A
) & 3;
3198 static uint16_t GetIntSrc_B(struct comedi_device
*dev
, struct enc_private
*k
)
3200 return (DEBIread(dev
, k
->MyCRB
) >> CRBBIT_INTSRC_B
) & 3;
3203 /* Return/set the clock multiplier. */
3205 /* static void SetClkMult(struct comedi_device *dev, struct enc_private *k, uint16_t value ) */
3207 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKMULT ) | ( value << STDBIT_CLKMULT ) ), FALSE ); */
3210 /* static uint16_t GetClkMult(struct comedi_device *dev, struct enc_private *k ) */
3212 /* return ( k->GetMode(dev, k ) >> STDBIT_CLKMULT ) & 3; */
3215 /* Return/set the clock polarity. */
3217 /* static void SetClkPol( struct comedi_device *dev,struct enc_private *k, uint16_t value ) */
3219 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKPOL ) | ( value << STDBIT_CLKPOL ) ), FALSE ); */
3222 /* static uint16_t GetClkPol(struct comedi_device *dev, struct enc_private *k ) */
3224 /* return ( k->GetMode(dev, k ) >> STDBIT_CLKPOL ) & 1; */
3227 /* Return/set the clock source. */
3229 /* static void SetClkSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value ) */
3231 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKSRC ) | ( value << STDBIT_CLKSRC ) ), FALSE ); */
3234 /* static uint16_t GetClkSrc( struct comedi_device *dev,struct enc_private *k ) */
3236 /* return ( k->GetMode(dev, k ) >> STDBIT_CLKSRC ) & 3; */
3239 /* Return/set the index polarity. */
3241 /* static void SetIndexPol(struct comedi_device *dev, struct enc_private *k, uint16_t value ) */
3243 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXPOL ) | ( (value != 0) << STDBIT_INDXPOL ) ), FALSE ); */
3246 /* static uint16_t GetIndexPol(struct comedi_device *dev, struct enc_private *k ) */
3248 /* return ( k->GetMode(dev, k ) >> STDBIT_INDXPOL ) & 1; */
3251 /* Return/set the index source. */
3253 /* static void SetIndexSrc(struct comedi_device *dev, struct enc_private *k, uint16_t value ) */
3255 /* DEBUG("SetIndexSrc: set index src enter 3700\n"); */
3256 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXSRC ) | ( (value != 0) << STDBIT_INDXSRC ) ), FALSE ); */
3259 /* static uint16_t GetIndexSrc(struct comedi_device *dev, struct enc_private *k ) */
3261 /* return ( k->GetMode(dev, k ) >> STDBIT_INDXSRC ) & 1; */
3264 /* Generate an index pulse. */
3266 static void PulseIndex_A(struct comedi_device
*dev
, struct enc_private
*k
)
3268 register uint16_t cra
;
3270 DEBUG("PulseIndex_A: pulse index enter\n");
3272 cra
= DEBIread(dev
, k
->MyCRA
); /* Pulse index. */
3273 DEBIwrite(dev
, k
->MyCRA
, (uint16_t) (cra
^ CRAMSK_INDXPOL_A
));
3274 DEBUG("PulseIndex_A: pulse index step1\n");
3275 DEBIwrite(dev
, k
->MyCRA
, cra
);
3278 static void PulseIndex_B(struct comedi_device
*dev
, struct enc_private
*k
)
3280 register uint16_t crb
;
3282 crb
= DEBIread(dev
, k
->MyCRB
) & ~CRBMSK_INTCTRL
; /* Pulse index. */
3283 DEBIwrite(dev
, k
->MyCRB
, (uint16_t) (crb
^ CRBMSK_INDXPOL_B
));
3284 DEBIwrite(dev
, k
->MyCRB
, crb
);
3287 /* Write value into counter preload register. */
3289 static void Preload(struct comedi_device
*dev
, struct enc_private
*k
,
3292 DEBUG("Preload: preload enter\n");
3293 DEBIwrite(dev
, (uint16_t) (k
->MyLatchLsw
), (uint16_t) value
); /* Write value to preload register. */
3294 DEBUG("Preload: preload step 1\n");
3295 DEBIwrite(dev
, (uint16_t) (k
->MyLatchLsw
+ 2),
3296 (uint16_t) (value
>> 16));
3299 static void CountersInit(struct comedi_device
*dev
)
3302 struct enc_private
*k
;
3303 uint16_t Setup
= (LOADSRC_INDX
<< BF_LOADSRC
) | /* Preload upon */
3305 (INDXSRC_SOFT
<< BF_INDXSRC
) | /* Disable hardware index. */
3306 (CLKSRC_COUNTER
<< BF_CLKSRC
) | /* Operating mode is counter. */
3307 (CLKPOL_POS
<< BF_CLKPOL
) | /* Active high clock. */
3308 (CNTDIR_UP
<< BF_CLKPOL
) | /* Count direction is up. */
3309 (CLKMULT_1X
<< BF_CLKMULT
) | /* Clock multiplier is 1x. */
3310 (CLKENAB_INDEX
<< BF_CLKENAB
); /* Enabled by index */
3312 /* Disable all counter interrupts and clear any captured counter events. */
3313 for (chan
= 0; chan
< S626_ENCODER_CHANNELS
; chan
++) {
3315 k
->SetMode(dev
, k
, Setup
, TRUE
);
3316 k
->SetIntSrc(dev
, k
, 0);
3317 k
->ResetCapFlags(dev
, k
);
3318 k
->SetEnable(dev
, k
, CLKENAB_ALWAYS
);
3320 DEBUG("CountersInit: counters initialized \n");