init from v2.6.32.60
[mach-moxart.git] / drivers / usb / host / xhci-hcd.c
blob0641633b7f679857fe73b1814a32c4c4f110d962
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/irq.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
27 #include "xhci.h"
29 #define DRIVER_AUTHOR "Sarah Sharp"
30 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
37 /* TODO: copied from ehci-hcd.c - can this be refactored? */
39 * handshake - spin reading hc until handshake completes or fails
40 * @ptr: address of hc register to be read
41 * @mask: bits to look at in result of read
42 * @done: value of those bits when handshake succeeds
43 * @usec: timeout in microseconds
45 * Returns negative errno, or zero on success
47 * Success happens when the "mask" bits have the specified value (hardware
48 * handshake done). There are two failure modes: "usec" have passed (major
49 * hardware flakeout), or the register reads as all-ones (hardware removed).
51 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
52 u32 mask, u32 done, int usec)
54 u32 result;
56 do {
57 result = xhci_readl(xhci, ptr);
58 if (result == ~(u32)0) /* card removed */
59 return -ENODEV;
60 result &= mask;
61 if (result == done)
62 return 0;
63 udelay(1);
64 usec--;
65 } while (usec > 0);
66 return -ETIMEDOUT;
70 * Force HC into halt state.
72 * Disable any IRQs and clear the run/stop bit.
73 * HC will complete any current and actively pipelined transactions, and
74 * should halt within 16 microframes of the run/stop bit being cleared.
75 * Read HC Halted bit in the status register to see when the HC is finished.
76 * XXX: shouldn't we set HC_STATE_HALT here somewhere?
78 int xhci_halt(struct xhci_hcd *xhci)
80 u32 halted;
81 u32 cmd;
82 u32 mask;
84 xhci_dbg(xhci, "// Halt the HC\n");
85 /* Disable all interrupts from the host controller */
86 mask = ~(XHCI_IRQS);
87 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
88 if (!halted)
89 mask &= ~CMD_RUN;
91 cmd = xhci_readl(xhci, &xhci->op_regs->command);
92 cmd &= mask;
93 xhci_writel(xhci, cmd, &xhci->op_regs->command);
95 return handshake(xhci, &xhci->op_regs->status,
96 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
100 * Set the run bit and wait for the host to be running.
102 int xhci_start(struct xhci_hcd *xhci)
104 u32 temp;
105 int ret;
107 temp = xhci_readl(xhci, &xhci->op_regs->command);
108 temp |= (CMD_RUN);
109 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
110 temp);
111 xhci_writel(xhci, temp, &xhci->op_regs->command);
114 * Wait for the HCHalted Status bit to be 0 to indicate the host is
115 * running.
117 ret = handshake(xhci, &xhci->op_regs->status,
118 STS_HALT, 0, XHCI_MAX_HALT_USEC);
119 if (ret == -ETIMEDOUT)
120 xhci_err(xhci, "Host took too long to start, "
121 "waited %u microseconds.\n",
122 XHCI_MAX_HALT_USEC);
123 return ret;
127 * Reset a halted HC, and set the internal HC state to HC_STATE_HALT.
129 * This resets pipelines, timers, counters, state machines, etc.
130 * Transactions will be terminated immediately, and operational registers
131 * will be set to their defaults.
133 int xhci_reset(struct xhci_hcd *xhci)
135 u32 command;
136 u32 state;
137 int ret;
139 state = xhci_readl(xhci, &xhci->op_regs->status);
140 if ((state & STS_HALT) == 0) {
141 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
142 return 0;
145 xhci_dbg(xhci, "// Reset the HC\n");
146 command = xhci_readl(xhci, &xhci->op_regs->command);
147 command |= CMD_RESET;
148 xhci_writel(xhci, command, &xhci->op_regs->command);
149 /* XXX: Why does EHCI set this here? Shouldn't other code do this? */
150 xhci_to_hcd(xhci)->state = HC_STATE_HALT;
152 ret = handshake(xhci, &xhci->op_regs->command,
153 CMD_RESET, 0, 10 * 1000 * 1000);
154 if (ret)
155 return ret;
157 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
159 * xHCI cannot write to any doorbells or operational registers other
160 * than status until the "Controller Not Ready" flag is cleared.
162 return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
166 * Stop the HC from processing the endpoint queues.
168 static void xhci_quiesce(struct xhci_hcd *xhci)
171 * Queues are per endpoint, so we need to disable an endpoint or slot.
173 * To disable a slot, we need to insert a disable slot command on the
174 * command ring and ring the doorbell. This will also free any internal
175 * resources associated with the slot (which might not be what we want).
177 * A Release Endpoint command sounds better - doesn't free internal HC
178 * memory, but removes the endpoints from the schedule and releases the
179 * bandwidth, disables the doorbells, and clears the endpoint enable
180 * flag. Usually used prior to a set interface command.
182 * TODO: Implement after command ring code is done.
184 BUG_ON(!HC_IS_RUNNING(xhci_to_hcd(xhci)->state));
185 xhci_dbg(xhci, "Finished quiescing -- code not written yet\n");
188 #if 0
189 /* Set up MSI-X table for entry 0 (may claim other entries later) */
190 static int xhci_setup_msix(struct xhci_hcd *xhci)
192 int ret;
193 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
195 xhci->msix_count = 0;
196 /* XXX: did I do this right? ixgbe does kcalloc for more than one */
197 xhci->msix_entries = kmalloc(sizeof(struct msix_entry), GFP_KERNEL);
198 if (!xhci->msix_entries) {
199 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
200 return -ENOMEM;
202 xhci->msix_entries[0].entry = 0;
204 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
205 if (ret) {
206 xhci_err(xhci, "Failed to enable MSI-X\n");
207 goto free_entries;
211 * Pass the xhci pointer value as the request_irq "cookie".
212 * If more irqs are added, this will need to be unique for each one.
214 ret = request_irq(xhci->msix_entries[0].vector, &xhci_irq, 0,
215 "xHCI", xhci_to_hcd(xhci));
216 if (ret) {
217 xhci_err(xhci, "Failed to allocate MSI-X interrupt\n");
218 goto disable_msix;
220 xhci_dbg(xhci, "Finished setting up MSI-X\n");
221 return 0;
223 disable_msix:
224 pci_disable_msix(pdev);
225 free_entries:
226 kfree(xhci->msix_entries);
227 xhci->msix_entries = NULL;
228 return ret;
231 /* XXX: code duplication; can xhci_setup_msix call this? */
232 /* Free any IRQs and disable MSI-X */
233 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
235 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
236 if (!xhci->msix_entries)
237 return;
239 free_irq(xhci->msix_entries[0].vector, xhci);
240 pci_disable_msix(pdev);
241 kfree(xhci->msix_entries);
242 xhci->msix_entries = NULL;
243 xhci_dbg(xhci, "Finished cleaning up MSI-X\n");
245 #endif
248 * Initialize memory for HCD and xHC (one-time init).
250 * Program the PAGESIZE register, initialize the device context array, create
251 * device contexts (?), set up a command ring segment (or two?), create event
252 * ring (one for now).
254 int xhci_init(struct usb_hcd *hcd)
256 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
257 int retval = 0;
259 xhci_dbg(xhci, "xhci_init\n");
260 spin_lock_init(&xhci->lock);
261 if (link_quirk) {
262 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
263 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
264 } else {
265 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
267 retval = xhci_mem_init(xhci, GFP_KERNEL);
268 xhci_dbg(xhci, "Finished xhci_init\n");
270 return retval;
274 * Called in interrupt context when there might be work
275 * queued on the event ring
277 * xhci->lock must be held by caller.
279 static void xhci_work(struct xhci_hcd *xhci)
281 u32 temp;
282 u64 temp_64;
285 * Clear the op reg interrupt status first,
286 * so we can receive interrupts from other MSI-X interrupters.
287 * Write 1 to clear the interrupt status.
289 temp = xhci_readl(xhci, &xhci->op_regs->status);
290 temp |= STS_EINT;
291 xhci_writel(xhci, temp, &xhci->op_regs->status);
292 /* FIXME when MSI-X is supported and there are multiple vectors */
293 /* Clear the MSI-X event interrupt status */
295 /* Acknowledge the interrupt */
296 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
297 temp |= 0x3;
298 xhci_writel(xhci, temp, &xhci->ir_set->irq_pending);
299 /* Flush posted writes */
300 xhci_readl(xhci, &xhci->ir_set->irq_pending);
302 /* FIXME this should be a delayed service routine that clears the EHB */
303 xhci_handle_event(xhci);
305 /* Clear the event handler busy flag (RW1C); the event ring should be empty. */
306 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
307 xhci_write_64(xhci, temp_64 | ERST_EHB, &xhci->ir_set->erst_dequeue);
308 /* Flush posted writes -- FIXME is this necessary? */
309 xhci_readl(xhci, &xhci->ir_set->irq_pending);
312 /*-------------------------------------------------------------------------*/
315 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
316 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
317 * indicators of an event TRB error, but we check the status *first* to be safe.
319 irqreturn_t xhci_irq(struct usb_hcd *hcd)
321 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
322 u32 temp, temp2;
323 union xhci_trb *trb;
325 spin_lock(&xhci->lock);
326 trb = xhci->event_ring->dequeue;
327 /* Check if the xHC generated the interrupt, or the irq is shared */
328 temp = xhci_readl(xhci, &xhci->op_regs->status);
329 temp2 = xhci_readl(xhci, &xhci->ir_set->irq_pending);
330 if (temp == 0xffffffff && temp2 == 0xffffffff)
331 goto hw_died;
333 if (!(temp & STS_EINT) && !ER_IRQ_PENDING(temp2)) {
334 spin_unlock(&xhci->lock);
335 return IRQ_NONE;
337 xhci_dbg(xhci, "op reg status = %08x\n", temp);
338 xhci_dbg(xhci, "ir set irq_pending = %08x\n", temp2);
339 xhci_dbg(xhci, "Event ring dequeue ptr:\n");
340 xhci_dbg(xhci, "@%llx %08x %08x %08x %08x\n",
341 (unsigned long long)xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, trb),
342 lower_32_bits(trb->link.segment_ptr),
343 upper_32_bits(trb->link.segment_ptr),
344 (unsigned int) trb->link.intr_target,
345 (unsigned int) trb->link.control);
347 if (temp & STS_FATAL) {
348 xhci_warn(xhci, "WARNING: Host System Error\n");
349 xhci_halt(xhci);
350 hw_died:
351 xhci_to_hcd(xhci)->state = HC_STATE_HALT;
352 spin_unlock(&xhci->lock);
353 return -ESHUTDOWN;
356 xhci_work(xhci);
357 spin_unlock(&xhci->lock);
359 return IRQ_HANDLED;
362 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
363 void xhci_event_ring_work(unsigned long arg)
365 unsigned long flags;
366 int temp;
367 u64 temp_64;
368 struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
369 int i, j;
371 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
373 spin_lock_irqsave(&xhci->lock, flags);
374 temp = xhci_readl(xhci, &xhci->op_regs->status);
375 xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
376 if (temp == 0xffffffff) {
377 xhci_dbg(xhci, "HW died, polling stopped.\n");
378 spin_unlock_irqrestore(&xhci->lock, flags);
379 return;
382 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
383 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
384 xhci_dbg(xhci, "No-op commands handled = %d\n", xhci->noops_handled);
385 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
386 xhci->error_bitmask = 0;
387 xhci_dbg(xhci, "Event ring:\n");
388 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
389 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
390 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
391 temp_64 &= ~ERST_PTR_MASK;
392 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
393 xhci_dbg(xhci, "Command ring:\n");
394 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
395 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
396 xhci_dbg_cmd_ptrs(xhci);
397 for (i = 0; i < MAX_HC_SLOTS; ++i) {
398 if (!xhci->devs[i])
399 continue;
400 for (j = 0; j < 31; ++j) {
401 struct xhci_ring *ring = xhci->devs[i]->eps[j].ring;
402 if (!ring)
403 continue;
404 xhci_dbg(xhci, "Dev %d endpoint ring %d:\n", i, j);
405 xhci_debug_segment(xhci, ring->deq_seg);
409 if (xhci->noops_submitted != NUM_TEST_NOOPS)
410 if (xhci_setup_one_noop(xhci))
411 xhci_ring_cmd_db(xhci);
412 spin_unlock_irqrestore(&xhci->lock, flags);
414 if (!xhci->zombie)
415 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
416 else
417 xhci_dbg(xhci, "Quit polling the event ring.\n");
419 #endif
422 * Start the HC after it was halted.
424 * This function is called by the USB core when the HC driver is added.
425 * Its opposite is xhci_stop().
427 * xhci_init() must be called once before this function can be called.
428 * Reset the HC, enable device slot contexts, program DCBAAP, and
429 * set command ring pointer and event ring pointer.
431 * Setup MSI-X vectors and enable interrupts.
433 int xhci_run(struct usb_hcd *hcd)
435 u32 temp;
436 u64 temp_64;
437 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
438 void (*doorbell)(struct xhci_hcd *) = NULL;
440 hcd->uses_new_polling = 1;
441 hcd->poll_rh = 0;
443 xhci_dbg(xhci, "xhci_run\n");
444 #if 0 /* FIXME: MSI not setup yet */
445 /* Do this at the very last minute */
446 ret = xhci_setup_msix(xhci);
447 if (!ret)
448 return ret;
450 return -ENOSYS;
451 #endif
452 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
453 init_timer(&xhci->event_ring_timer);
454 xhci->event_ring_timer.data = (unsigned long) xhci;
455 xhci->event_ring_timer.function = xhci_event_ring_work;
456 /* Poll the event ring */
457 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
458 xhci->zombie = 0;
459 xhci_dbg(xhci, "Setting event ring polling timer\n");
460 add_timer(&xhci->event_ring_timer);
461 #endif
463 xhci_dbg(xhci, "Command ring memory map follows:\n");
464 xhci_debug_ring(xhci, xhci->cmd_ring);
465 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
466 xhci_dbg_cmd_ptrs(xhci);
468 xhci_dbg(xhci, "ERST memory map follows:\n");
469 xhci_dbg_erst(xhci, &xhci->erst);
470 xhci_dbg(xhci, "Event ring:\n");
471 xhci_debug_ring(xhci, xhci->event_ring);
472 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
473 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
474 temp_64 &= ~ERST_PTR_MASK;
475 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
477 xhci_dbg(xhci, "// Set the interrupt modulation register\n");
478 temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
479 temp &= ~ER_IRQ_INTERVAL_MASK;
480 temp |= (u32) 160;
481 xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
483 /* Set the HCD state before we enable the irqs */
484 hcd->state = HC_STATE_RUNNING;
485 temp = xhci_readl(xhci, &xhci->op_regs->command);
486 temp |= (CMD_EIE);
487 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
488 temp);
489 xhci_writel(xhci, temp, &xhci->op_regs->command);
491 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
492 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
493 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
494 xhci_writel(xhci, ER_IRQ_ENABLE(temp),
495 &xhci->ir_set->irq_pending);
496 xhci_print_ir_set(xhci, xhci->ir_set, 0);
498 if (NUM_TEST_NOOPS > 0)
499 doorbell = xhci_setup_one_noop(xhci);
501 if (xhci_start(xhci)) {
502 xhci_halt(xhci);
503 return -ENODEV;
506 xhci_dbg(xhci, "// @%p = 0x%x\n", &xhci->op_regs->command, temp);
507 if (doorbell)
508 (*doorbell)(xhci);
510 xhci_dbg(xhci, "Finished xhci_run\n");
511 return 0;
515 * Stop xHCI driver.
517 * This function is called by the USB core when the HC driver is removed.
518 * Its opposite is xhci_run().
520 * Disable device contexts, disable IRQs, and quiesce the HC.
521 * Reset the HC, finish any completed transactions, and cleanup memory.
523 void xhci_stop(struct usb_hcd *hcd)
525 u32 temp;
526 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
528 spin_lock_irq(&xhci->lock);
529 if (HC_IS_RUNNING(hcd->state))
530 xhci_quiesce(xhci);
531 xhci_halt(xhci);
532 xhci_reset(xhci);
533 spin_unlock_irq(&xhci->lock);
535 #if 0 /* No MSI yet */
536 xhci_cleanup_msix(xhci);
537 #endif
538 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
539 /* Tell the event ring poll function not to reschedule */
540 xhci->zombie = 1;
541 del_timer_sync(&xhci->event_ring_timer);
542 #endif
544 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
545 temp = xhci_readl(xhci, &xhci->op_regs->status);
546 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
547 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
548 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
549 &xhci->ir_set->irq_pending);
550 xhci_print_ir_set(xhci, xhci->ir_set, 0);
552 xhci_dbg(xhci, "cleaning up memory\n");
553 xhci_mem_cleanup(xhci);
554 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
555 xhci_readl(xhci, &xhci->op_regs->status));
559 * Shutdown HC (not bus-specific)
561 * This is called when the machine is rebooting or halting. We assume that the
562 * machine will be powered off, and the HC's internal state will be reset.
563 * Don't bother to free memory.
565 void xhci_shutdown(struct usb_hcd *hcd)
567 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
569 spin_lock_irq(&xhci->lock);
570 xhci_halt(xhci);
571 spin_unlock_irq(&xhci->lock);
573 #if 0
574 xhci_cleanup_msix(xhci);
575 #endif
577 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
578 xhci_readl(xhci, &xhci->op_regs->status));
581 /*-------------------------------------------------------------------------*/
584 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
585 * HCDs. Find the index for an endpoint given its descriptor. Use the return
586 * value to right shift 1 for the bitmask.
588 * Index = (epnum * 2) + direction - 1,
589 * where direction = 0 for OUT, 1 for IN.
590 * For control endpoints, the IN index is used (OUT index is unused), so
591 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
593 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
595 unsigned int index;
596 if (usb_endpoint_xfer_control(desc))
597 index = (unsigned int) (usb_endpoint_num(desc)*2);
598 else
599 index = (unsigned int) (usb_endpoint_num(desc)*2) +
600 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
601 return index;
604 /* Find the flag for this endpoint (for use in the control context). Use the
605 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
606 * bit 1, etc.
608 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
610 return 1 << (xhci_get_endpoint_index(desc) + 1);
613 /* Find the flag for this endpoint (for use in the control context). Use the
614 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
615 * bit 1, etc.
617 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
619 return 1 << (ep_index + 1);
622 /* Compute the last valid endpoint context index. Basically, this is the
623 * endpoint index plus one. For slot contexts with more than valid endpoint,
624 * we find the most significant bit set in the added contexts flags.
625 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
626 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
628 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
630 return fls(added_ctxs) - 1;
633 /* Returns 1 if the arguments are OK;
634 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
636 int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
637 struct usb_host_endpoint *ep, int check_ep, const char *func) {
638 if (!hcd || (check_ep && !ep) || !udev) {
639 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
640 func);
641 return -EINVAL;
643 if (!udev->parent) {
644 printk(KERN_DEBUG "xHCI %s called for root hub\n",
645 func);
646 return 0;
648 if (!udev->slot_id) {
649 printk(KERN_DEBUG "xHCI %s called with unaddressed device\n",
650 func);
651 return -EINVAL;
653 return 1;
656 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
657 struct usb_device *udev, struct xhci_command *command,
658 bool ctx_change, bool must_succeed);
661 * Full speed devices may have a max packet size greater than 8 bytes, but the
662 * USB core doesn't know that until it reads the first 8 bytes of the
663 * descriptor. If the usb_device's max packet size changes after that point,
664 * we need to issue an evaluate context command and wait on it.
666 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
667 unsigned int ep_index, struct urb *urb)
669 struct xhci_container_ctx *in_ctx;
670 struct xhci_container_ctx *out_ctx;
671 struct xhci_input_control_ctx *ctrl_ctx;
672 struct xhci_ep_ctx *ep_ctx;
673 int max_packet_size;
674 int hw_max_packet_size;
675 int ret = 0;
677 out_ctx = xhci->devs[slot_id]->out_ctx;
678 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
679 hw_max_packet_size = MAX_PACKET_DECODED(ep_ctx->ep_info2);
680 max_packet_size = urb->dev->ep0.desc.wMaxPacketSize;
681 if (hw_max_packet_size != max_packet_size) {
682 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
683 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
684 max_packet_size);
685 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
686 hw_max_packet_size);
687 xhci_dbg(xhci, "Issuing evaluate context command.\n");
689 /* Set up the modified control endpoint 0 */
690 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
691 xhci->devs[slot_id]->out_ctx, ep_index);
692 in_ctx = xhci->devs[slot_id]->in_ctx;
693 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
694 ep_ctx->ep_info2 &= ~MAX_PACKET_MASK;
695 ep_ctx->ep_info2 |= MAX_PACKET(max_packet_size);
697 /* Set up the input context flags for the command */
698 /* FIXME: This won't work if a non-default control endpoint
699 * changes max packet sizes.
701 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
702 ctrl_ctx->add_flags = EP0_FLAG;
703 ctrl_ctx->drop_flags = 0;
705 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
706 xhci_dbg_ctx(xhci, in_ctx, ep_index);
707 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
708 xhci_dbg_ctx(xhci, out_ctx, ep_index);
710 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
711 true, false);
713 /* Clean up the input context for later use by bandwidth
714 * functions.
716 ctrl_ctx->add_flags = SLOT_FLAG;
718 return ret;
722 * non-error returns are a promise to giveback() the urb later
723 * we drop ownership so next owner (or urb unlink) can get it
725 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
727 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
728 unsigned long flags;
729 int ret = 0;
730 unsigned int slot_id, ep_index;
733 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, true, __func__) <= 0)
734 return -EINVAL;
736 slot_id = urb->dev->slot_id;
737 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
739 if (!xhci->devs || !xhci->devs[slot_id]) {
740 if (!in_interrupt())
741 dev_warn(&urb->dev->dev, "WARN: urb submitted for dev with no Slot ID\n");
742 ret = -EINVAL;
743 goto exit;
745 if (!test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags)) {
746 if (!in_interrupt())
747 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
748 ret = -ESHUTDOWN;
749 goto exit;
751 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
752 /* Check to see if the max packet size for the default control
753 * endpoint changed during FS device enumeration
755 if (urb->dev->speed == USB_SPEED_FULL) {
756 ret = xhci_check_maxpacket(xhci, slot_id,
757 ep_index, urb);
758 if (ret < 0)
759 return ret;
762 /* We have a spinlock and interrupts disabled, so we must pass
763 * atomic context to this function, which may allocate memory.
765 spin_lock_irqsave(&xhci->lock, flags);
766 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
767 slot_id, ep_index);
768 spin_unlock_irqrestore(&xhci->lock, flags);
769 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
770 spin_lock_irqsave(&xhci->lock, flags);
771 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
772 slot_id, ep_index);
773 spin_unlock_irqrestore(&xhci->lock, flags);
774 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
775 spin_lock_irqsave(&xhci->lock, flags);
776 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
777 slot_id, ep_index);
778 spin_unlock_irqrestore(&xhci->lock, flags);
779 } else {
780 ret = -EINVAL;
782 exit:
783 return ret;
787 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
788 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
789 * should pick up where it left off in the TD, unless a Set Transfer Ring
790 * Dequeue Pointer is issued.
792 * The TRBs that make up the buffers for the canceled URB will be "removed" from
793 * the ring. Since the ring is a contiguous structure, they can't be physically
794 * removed. Instead, there are two options:
796 * 1) If the HC is in the middle of processing the URB to be canceled, we
797 * simply move the ring's dequeue pointer past those TRBs using the Set
798 * Transfer Ring Dequeue Pointer command. This will be the common case,
799 * when drivers timeout on the last submitted URB and attempt to cancel.
801 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
802 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
803 * HC will need to invalidate the any TRBs it has cached after the stop
804 * endpoint command, as noted in the xHCI 0.95 errata.
806 * 3) The TD may have completed by the time the Stop Endpoint Command
807 * completes, so software needs to handle that case too.
809 * This function should protect against the TD enqueueing code ringing the
810 * doorbell while this code is waiting for a Stop Endpoint command to complete.
811 * It also needs to account for multiple cancellations on happening at the same
812 * time for the same endpoint.
814 * Note that this function can be called in any context, or so says
815 * usb_hcd_unlink_urb()
817 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
819 unsigned long flags;
820 int ret;
821 u32 temp;
822 struct xhci_hcd *xhci;
823 struct xhci_td *td;
824 unsigned int ep_index;
825 struct xhci_ring *ep_ring;
826 struct xhci_virt_ep *ep;
828 xhci = hcd_to_xhci(hcd);
829 spin_lock_irqsave(&xhci->lock, flags);
830 /* Make sure the URB hasn't completed or been unlinked already */
831 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
832 if (ret || !urb->hcpriv)
833 goto done;
834 temp = xhci_readl(xhci, &xhci->op_regs->status);
835 if (temp == 0xffffffff) {
836 xhci_dbg(xhci, "HW died, freeing TD.\n");
837 td = (struct xhci_td *) urb->hcpriv;
839 usb_hcd_unlink_urb_from_ep(hcd, urb);
840 spin_unlock_irqrestore(&xhci->lock, flags);
841 usb_hcd_giveback_urb(xhci_to_hcd(xhci), urb, -ESHUTDOWN);
842 kfree(td);
843 return ret;
846 xhci_dbg(xhci, "Cancel URB %p\n", urb);
847 xhci_dbg(xhci, "Event ring:\n");
848 xhci_debug_ring(xhci, xhci->event_ring);
849 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
850 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
851 ep_ring = ep->ring;
852 xhci_dbg(xhci, "Endpoint ring:\n");
853 xhci_debug_ring(xhci, ep_ring);
854 td = (struct xhci_td *) urb->hcpriv;
856 ep->cancels_pending++;
857 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
858 /* Queue a stop endpoint command, but only if this is
859 * the first cancellation to be handled.
861 if (ep->cancels_pending == 1) {
862 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index);
863 xhci_ring_cmd_db(xhci);
865 done:
866 spin_unlock_irqrestore(&xhci->lock, flags);
867 return ret;
870 /* Drop an endpoint from a new bandwidth configuration for this device.
871 * Only one call to this function is allowed per endpoint before
872 * check_bandwidth() or reset_bandwidth() must be called.
873 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
874 * add the endpoint to the schedule with possibly new parameters denoted by a
875 * different endpoint descriptor in usb_host_endpoint.
876 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
877 * not allowed.
879 * The USB core will not allow URBs to be queued to an endpoint that is being
880 * disabled, so there's no need for mutual exclusion to protect
881 * the xhci->devs[slot_id] structure.
883 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
884 struct usb_host_endpoint *ep)
886 struct xhci_hcd *xhci;
887 struct xhci_container_ctx *in_ctx, *out_ctx;
888 struct xhci_input_control_ctx *ctrl_ctx;
889 struct xhci_slot_ctx *slot_ctx;
890 unsigned int last_ctx;
891 unsigned int ep_index;
892 struct xhci_ep_ctx *ep_ctx;
893 u32 drop_flag;
894 u32 new_add_flags, new_drop_flags, new_slot_info;
895 int ret;
897 ret = xhci_check_args(hcd, udev, ep, 1, __func__);
898 if (ret <= 0)
899 return ret;
900 xhci = hcd_to_xhci(hcd);
901 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
903 drop_flag = xhci_get_endpoint_flag(&ep->desc);
904 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
905 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
906 __func__, drop_flag);
907 return 0;
910 if (!xhci->devs || !xhci->devs[udev->slot_id]) {
911 xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
912 __func__);
913 return -EINVAL;
916 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
917 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
918 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
919 ep_index = xhci_get_endpoint_index(&ep->desc);
920 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
921 /* If the HC already knows the endpoint is disabled,
922 * or the HCD has noted it is disabled, ignore this request
924 if ((ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_DISABLED ||
925 ctrl_ctx->drop_flags & xhci_get_endpoint_flag(&ep->desc)) {
926 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
927 __func__, ep);
928 return 0;
931 ctrl_ctx->drop_flags |= drop_flag;
932 new_drop_flags = ctrl_ctx->drop_flags;
934 ctrl_ctx->add_flags &= ~drop_flag;
935 new_add_flags = ctrl_ctx->add_flags;
937 last_ctx = xhci_last_valid_endpoint(ctrl_ctx->add_flags);
938 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
939 /* Update the last valid endpoint context, if we deleted the last one */
940 if ((slot_ctx->dev_info & LAST_CTX_MASK) > LAST_CTX(last_ctx)) {
941 slot_ctx->dev_info &= ~LAST_CTX_MASK;
942 slot_ctx->dev_info |= LAST_CTX(last_ctx);
944 new_slot_info = slot_ctx->dev_info;
946 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
948 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
949 (unsigned int) ep->desc.bEndpointAddress,
950 udev->slot_id,
951 (unsigned int) new_drop_flags,
952 (unsigned int) new_add_flags,
953 (unsigned int) new_slot_info);
954 return 0;
957 /* Add an endpoint to a new possible bandwidth configuration for this device.
958 * Only one call to this function is allowed per endpoint before
959 * check_bandwidth() or reset_bandwidth() must be called.
960 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
961 * add the endpoint to the schedule with possibly new parameters denoted by a
962 * different endpoint descriptor in usb_host_endpoint.
963 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
964 * not allowed.
966 * The USB core will not allow URBs to be queued to an endpoint until the
967 * configuration or alt setting is installed in the device, so there's no need
968 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
970 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
971 struct usb_host_endpoint *ep)
973 struct xhci_hcd *xhci;
974 struct xhci_container_ctx *in_ctx, *out_ctx;
975 unsigned int ep_index;
976 struct xhci_ep_ctx *ep_ctx;
977 struct xhci_slot_ctx *slot_ctx;
978 struct xhci_input_control_ctx *ctrl_ctx;
979 u32 added_ctxs;
980 unsigned int last_ctx;
981 u32 new_add_flags, new_drop_flags, new_slot_info;
982 struct xhci_virt_device *virt_dev;
983 int ret = 0;
985 ret = xhci_check_args(hcd, udev, ep, 1, __func__);
986 if (ret <= 0) {
987 /* So we won't queue a reset ep command for a root hub */
988 ep->hcpriv = NULL;
989 return ret;
991 xhci = hcd_to_xhci(hcd);
993 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
994 last_ctx = xhci_last_valid_endpoint(added_ctxs);
995 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
996 /* FIXME when we have to issue an evaluate endpoint command to
997 * deal with ep0 max packet size changing once we get the
998 * descriptors
1000 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1001 __func__, added_ctxs);
1002 return 0;
1005 if (!xhci->devs || !xhci->devs[udev->slot_id]) {
1006 xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
1007 __func__);
1008 return -EINVAL;
1011 virt_dev = xhci->devs[udev->slot_id];
1012 in_ctx = virt_dev->in_ctx;
1013 out_ctx = virt_dev->out_ctx;
1014 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1015 ep_index = xhci_get_endpoint_index(&ep->desc);
1016 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1018 /* If this endpoint is already in use, and the upper layers are trying
1019 * to add it again without dropping it, reject the addition.
1021 if (virt_dev->eps[ep_index].ring &&
1022 !(le32_to_cpu(ctrl_ctx->drop_flags) &
1023 xhci_get_endpoint_flag(&ep->desc))) {
1024 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1025 "without dropping it.\n",
1026 (unsigned int) ep->desc.bEndpointAddress);
1027 return -EINVAL;
1030 /* If the HCD has already noted the endpoint is enabled,
1031 * ignore this request.
1033 if (ctrl_ctx->add_flags & xhci_get_endpoint_flag(&ep->desc)) {
1034 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1035 __func__, ep);
1036 return 0;
1040 * Configuration and alternate setting changes must be done in
1041 * process context, not interrupt context (or so documenation
1042 * for usb_set_interface() and usb_set_configuration() claim).
1044 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1045 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1046 __func__, ep->desc.bEndpointAddress);
1047 return -ENOMEM;
1050 ctrl_ctx->add_flags |= added_ctxs;
1051 new_add_flags = ctrl_ctx->add_flags;
1053 /* If xhci_endpoint_disable() was called for this endpoint, but the
1054 * xHC hasn't been notified yet through the check_bandwidth() call,
1055 * this re-adds a new state for the endpoint from the new endpoint
1056 * descriptors. We must drop and re-add this endpoint, so we leave the
1057 * drop flags alone.
1059 new_drop_flags = ctrl_ctx->drop_flags;
1061 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1062 /* Update the last valid endpoint context, if we just added one past */
1063 if ((slot_ctx->dev_info & LAST_CTX_MASK) < LAST_CTX(last_ctx)) {
1064 slot_ctx->dev_info &= ~LAST_CTX_MASK;
1065 slot_ctx->dev_info |= LAST_CTX(last_ctx);
1067 new_slot_info = slot_ctx->dev_info;
1069 /* Store the usb_device pointer for later use */
1070 ep->hcpriv = udev;
1072 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1073 (unsigned int) ep->desc.bEndpointAddress,
1074 udev->slot_id,
1075 (unsigned int) new_drop_flags,
1076 (unsigned int) new_add_flags,
1077 (unsigned int) new_slot_info);
1078 return 0;
1081 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1083 struct xhci_input_control_ctx *ctrl_ctx;
1084 struct xhci_ep_ctx *ep_ctx;
1085 struct xhci_slot_ctx *slot_ctx;
1086 int i;
1088 /* When a device's add flag and drop flag are zero, any subsequent
1089 * configure endpoint command will leave that endpoint's state
1090 * untouched. Make sure we don't leave any old state in the input
1091 * endpoint contexts.
1093 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1094 ctrl_ctx->drop_flags = 0;
1095 ctrl_ctx->add_flags = 0;
1096 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1097 slot_ctx->dev_info &= ~LAST_CTX_MASK;
1098 /* Endpoint 0 is always valid */
1099 slot_ctx->dev_info |= LAST_CTX(1);
1100 for (i = 1; i < 31; ++i) {
1101 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1102 ep_ctx->ep_info = 0;
1103 ep_ctx->ep_info2 = 0;
1104 ep_ctx->deq = 0;
1105 ep_ctx->tx_info = 0;
1109 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1110 struct usb_device *udev, int *cmd_status)
1112 int ret;
1114 switch (*cmd_status) {
1115 case COMP_ENOMEM:
1116 dev_warn(&udev->dev, "Not enough host controller resources "
1117 "for new device state.\n");
1118 ret = -ENOMEM;
1119 /* FIXME: can we allocate more resources for the HC? */
1120 break;
1121 case COMP_BW_ERR:
1122 dev_warn(&udev->dev, "Not enough bandwidth "
1123 "for new device state.\n");
1124 ret = -ENOSPC;
1125 /* FIXME: can we go back to the old state? */
1126 break;
1127 case COMP_TRB_ERR:
1128 /* the HCD set up something wrong */
1129 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1130 "add flag = 1, "
1131 "and endpoint is not disabled.\n");
1132 ret = -EINVAL;
1133 break;
1134 case COMP_SUCCESS:
1135 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1136 ret = 0;
1137 break;
1138 default:
1139 xhci_err(xhci, "ERROR: unexpected command completion "
1140 "code 0x%x.\n", *cmd_status);
1141 ret = -EINVAL;
1142 break;
1144 return ret;
1147 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1148 struct usb_device *udev, int *cmd_status)
1150 int ret;
1151 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1153 switch (*cmd_status) {
1154 case COMP_EINVAL:
1155 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1156 "context command.\n");
1157 ret = -EINVAL;
1158 break;
1159 case COMP_EBADSLT:
1160 dev_warn(&udev->dev, "WARN: slot not enabled for"
1161 "evaluate context command.\n");
1162 case COMP_CTX_STATE:
1163 dev_warn(&udev->dev, "WARN: invalid context state for "
1164 "evaluate context command.\n");
1165 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1166 ret = -EINVAL;
1167 break;
1168 case COMP_SUCCESS:
1169 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1170 ret = 0;
1171 break;
1172 default:
1173 xhci_err(xhci, "ERROR: unexpected command completion "
1174 "code 0x%x.\n", *cmd_status);
1175 ret = -EINVAL;
1176 break;
1178 return ret;
1181 /* Issue a configure endpoint command or evaluate context command
1182 * and wait for it to finish.
1184 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1185 struct usb_device *udev,
1186 struct xhci_command *command,
1187 bool ctx_change, bool must_succeed)
1189 int ret;
1190 int timeleft;
1191 unsigned long flags;
1192 struct xhci_container_ctx *in_ctx;
1193 struct completion *cmd_completion;
1194 int *cmd_status;
1195 struct xhci_virt_device *virt_dev;
1197 spin_lock_irqsave(&xhci->lock, flags);
1198 virt_dev = xhci->devs[udev->slot_id];
1199 if (command) {
1200 in_ctx = command->in_ctx;
1201 cmd_completion = command->completion;
1202 cmd_status = &command->status;
1203 command->command_trb = xhci->cmd_ring->enqueue;
1204 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
1205 } else {
1206 in_ctx = virt_dev->in_ctx;
1207 cmd_completion = &virt_dev->cmd_completion;
1208 cmd_status = &virt_dev->cmd_status;
1210 init_completion(cmd_completion);
1212 if (!ctx_change)
1213 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
1214 udev->slot_id, must_succeed);
1215 else
1216 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
1217 udev->slot_id);
1218 if (ret < 0) {
1219 spin_unlock_irqrestore(&xhci->lock, flags);
1220 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
1221 return -ENOMEM;
1223 xhci_ring_cmd_db(xhci);
1224 spin_unlock_irqrestore(&xhci->lock, flags);
1226 /* Wait for the configure endpoint command to complete */
1227 timeleft = wait_for_completion_interruptible_timeout(
1228 cmd_completion,
1229 USB_CTRL_SET_TIMEOUT);
1230 if (timeleft <= 0) {
1231 xhci_warn(xhci, "%s while waiting for %s command\n",
1232 timeleft == 0 ? "Timeout" : "Signal",
1233 ctx_change == 0 ?
1234 "configure endpoint" :
1235 "evaluate context");
1236 /* FIXME cancel the configure endpoint command */
1237 return -ETIME;
1240 if (!ctx_change)
1241 return xhci_configure_endpoint_result(xhci, udev, cmd_status);
1242 return xhci_evaluate_context_result(xhci, udev, cmd_status);
1245 /* Called after one or more calls to xhci_add_endpoint() or
1246 * xhci_drop_endpoint(). If this call fails, the USB core is expected
1247 * to call xhci_reset_bandwidth().
1249 * Since we are in the middle of changing either configuration or
1250 * installing a new alt setting, the USB core won't allow URBs to be
1251 * enqueued for any endpoint on the old config or interface. Nothing
1252 * else should be touching the xhci->devs[slot_id] structure, so we
1253 * don't need to take the xhci->lock for manipulating that.
1255 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1257 int i;
1258 int ret = 0;
1259 struct xhci_hcd *xhci;
1260 struct xhci_virt_device *virt_dev;
1261 struct xhci_input_control_ctx *ctrl_ctx;
1262 struct xhci_slot_ctx *slot_ctx;
1264 ret = xhci_check_args(hcd, udev, NULL, 0, __func__);
1265 if (ret <= 0)
1266 return ret;
1267 xhci = hcd_to_xhci(hcd);
1269 if (!udev->slot_id || !xhci->devs || !xhci->devs[udev->slot_id]) {
1270 xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
1271 __func__);
1272 return -EINVAL;
1274 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1275 virt_dev = xhci->devs[udev->slot_id];
1277 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
1278 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1279 ctrl_ctx->add_flags |= SLOT_FLAG;
1280 ctrl_ctx->add_flags &= ~EP0_FLAG;
1281 ctrl_ctx->drop_flags &= ~SLOT_FLAG;
1282 ctrl_ctx->drop_flags &= ~EP0_FLAG;
1283 xhci_dbg(xhci, "New Input Control Context:\n");
1284 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1285 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
1286 LAST_CTX_TO_EP_NUM(slot_ctx->dev_info));
1288 ret = xhci_configure_endpoint(xhci, udev, NULL,
1289 false, false);
1290 if (ret) {
1291 /* Callee should call reset_bandwidth() */
1292 return ret;
1295 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
1296 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
1297 LAST_CTX_TO_EP_NUM(slot_ctx->dev_info));
1299 xhci_zero_in_ctx(xhci, virt_dev);
1300 /* Free any old rings */
1301 for (i = 1; i < 31; ++i) {
1302 if (virt_dev->eps[i].new_ring) {
1303 xhci_ring_free(xhci, virt_dev->eps[i].ring);
1304 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
1305 virt_dev->eps[i].new_ring = NULL;
1309 return ret;
1312 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1314 struct xhci_hcd *xhci;
1315 struct xhci_virt_device *virt_dev;
1316 int i, ret;
1318 ret = xhci_check_args(hcd, udev, NULL, 0, __func__);
1319 if (ret <= 0)
1320 return;
1321 xhci = hcd_to_xhci(hcd);
1323 if (!xhci->devs || !xhci->devs[udev->slot_id]) {
1324 xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
1325 __func__);
1326 return;
1328 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1329 virt_dev = xhci->devs[udev->slot_id];
1330 /* Free any rings allocated for added endpoints */
1331 for (i = 0; i < 31; ++i) {
1332 if (virt_dev->eps[i].new_ring) {
1333 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
1334 virt_dev->eps[i].new_ring = NULL;
1337 xhci_zero_in_ctx(xhci, virt_dev);
1340 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
1341 struct xhci_container_ctx *in_ctx,
1342 struct xhci_container_ctx *out_ctx,
1343 u32 add_flags, u32 drop_flags)
1345 struct xhci_input_control_ctx *ctrl_ctx;
1346 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1347 ctrl_ctx->add_flags = add_flags;
1348 ctrl_ctx->drop_flags = drop_flags;
1349 xhci_slot_copy(xhci, in_ctx, out_ctx);
1350 ctrl_ctx->add_flags |= SLOT_FLAG;
1352 xhci_dbg(xhci, "Input Context:\n");
1353 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
1356 void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
1357 unsigned int slot_id, unsigned int ep_index,
1358 struct xhci_dequeue_state *deq_state)
1360 struct xhci_container_ctx *in_ctx;
1361 struct xhci_ep_ctx *ep_ctx;
1362 u32 added_ctxs;
1363 dma_addr_t addr;
1365 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1366 xhci->devs[slot_id]->out_ctx, ep_index);
1367 in_ctx = xhci->devs[slot_id]->in_ctx;
1368 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1369 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
1370 deq_state->new_deq_ptr);
1371 if (addr == 0) {
1372 xhci_warn(xhci, "WARN Cannot submit config ep after "
1373 "reset ep command\n");
1374 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
1375 deq_state->new_deq_seg,
1376 deq_state->new_deq_ptr);
1377 return;
1379 ep_ctx->deq = addr | deq_state->new_cycle_state;
1381 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
1382 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
1383 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
1386 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
1387 struct usb_device *udev, unsigned int ep_index)
1389 struct xhci_dequeue_state deq_state;
1390 struct xhci_virt_ep *ep;
1392 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
1393 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
1394 /* We need to move the HW's dequeue pointer past this TD,
1395 * or it will attempt to resend it on the next doorbell ring.
1397 xhci_find_new_dequeue_state(xhci, udev->slot_id,
1398 ep_index, ep->stopped_td,
1399 &deq_state);
1401 /* HW with the reset endpoint quirk will use the saved dequeue state to
1402 * issue a configure endpoint command later.
1404 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
1405 xhci_dbg(xhci, "Queueing new dequeue state\n");
1406 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
1407 ep_index, &deq_state);
1408 } else {
1409 /* Better hope no one uses the input context between now and the
1410 * reset endpoint completion!
1412 xhci_dbg(xhci, "Setting up input context for "
1413 "configure endpoint command\n");
1414 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
1415 ep_index, &deq_state);
1419 /* Deal with stalled endpoints. The core should have sent the control message
1420 * to clear the halt condition. However, we need to make the xHCI hardware
1421 * reset its sequence number, since a device will expect a sequence number of
1422 * zero after the halt condition is cleared.
1423 * Context: in_interrupt
1425 void xhci_endpoint_reset(struct usb_hcd *hcd,
1426 struct usb_host_endpoint *ep)
1428 struct xhci_hcd *xhci;
1429 struct usb_device *udev;
1430 unsigned int ep_index;
1431 unsigned long flags;
1432 int ret;
1433 struct xhci_virt_ep *virt_ep;
1435 xhci = hcd_to_xhci(hcd);
1436 udev = (struct usb_device *) ep->hcpriv;
1437 /* Called with a root hub endpoint (or an endpoint that wasn't added
1438 * with xhci_add_endpoint()
1440 if (!ep->hcpriv)
1441 return;
1442 ep_index = xhci_get_endpoint_index(&ep->desc);
1443 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
1444 if (!virt_ep->stopped_td) {
1445 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
1446 ep->desc.bEndpointAddress);
1447 return;
1449 if (usb_endpoint_xfer_control(&ep->desc)) {
1450 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
1451 return;
1454 xhci_dbg(xhci, "Queueing reset endpoint command\n");
1455 spin_lock_irqsave(&xhci->lock, flags);
1456 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
1458 * Can't change the ring dequeue pointer until it's transitioned to the
1459 * stopped state, which is only upon a successful reset endpoint
1460 * command. Better hope that last command worked!
1462 if (!ret) {
1463 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
1464 kfree(virt_ep->stopped_td);
1465 xhci_ring_cmd_db(xhci);
1467 virt_ep->stopped_td = NULL;
1468 virt_ep->stopped_trb = NULL;
1469 spin_unlock_irqrestore(&xhci->lock, flags);
1471 if (ret)
1472 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
1476 * At this point, the struct usb_device is about to go away, the device has
1477 * disconnected, and all traffic has been stopped and the endpoints have been
1478 * disabled. Free any HC data structures associated with that device.
1480 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
1482 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1483 unsigned long flags;
1484 u32 state;
1486 if (udev->slot_id == 0)
1487 return;
1489 spin_lock_irqsave(&xhci->lock, flags);
1490 /* Don't disable the slot if the host controller is dead. */
1491 state = xhci_readl(xhci, &xhci->op_regs->status);
1492 if (state == 0xffffffff) {
1493 xhci_free_virt_device(xhci, udev->slot_id);
1494 spin_unlock_irqrestore(&xhci->lock, flags);
1495 return;
1498 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
1499 spin_unlock_irqrestore(&xhci->lock, flags);
1500 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
1501 return;
1503 xhci_ring_cmd_db(xhci);
1504 spin_unlock_irqrestore(&xhci->lock, flags);
1506 * Event command completion handler will free any data structures
1507 * associated with the slot. XXX Can free sleep?
1512 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
1513 * timed out, or allocating memory failed. Returns 1 on success.
1515 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
1517 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1518 unsigned long flags;
1519 int timeleft;
1520 int ret;
1522 spin_lock_irqsave(&xhci->lock, flags);
1523 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
1524 if (ret) {
1525 spin_unlock_irqrestore(&xhci->lock, flags);
1526 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
1527 return 0;
1529 xhci_ring_cmd_db(xhci);
1530 spin_unlock_irqrestore(&xhci->lock, flags);
1532 /* XXX: how much time for xHC slot assignment? */
1533 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
1534 USB_CTRL_SET_TIMEOUT);
1535 if (timeleft <= 0) {
1536 xhci_warn(xhci, "%s while waiting for a slot\n",
1537 timeleft == 0 ? "Timeout" : "Signal");
1538 /* FIXME cancel the enable slot request */
1539 return 0;
1542 if (!xhci->slot_id) {
1543 xhci_err(xhci, "Error while assigning device slot ID\n");
1544 return 0;
1546 /* xhci_alloc_virt_device() does not touch rings; no need to lock */
1547 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_KERNEL)) {
1548 /* Disable slot, if we can do it without mem alloc */
1549 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
1550 spin_lock_irqsave(&xhci->lock, flags);
1551 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
1552 xhci_ring_cmd_db(xhci);
1553 spin_unlock_irqrestore(&xhci->lock, flags);
1554 return 0;
1556 udev->slot_id = xhci->slot_id;
1557 /* Is this a LS or FS device under a HS hub? */
1558 /* Hub or peripherial? */
1559 return 1;
1563 * Issue an Address Device command (which will issue a SetAddress request to
1564 * the device).
1565 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
1566 * we should only issue and wait on one address command at the same time.
1568 * We add one to the device address issued by the hardware because the USB core
1569 * uses address 1 for the root hubs (even though they're not really devices).
1571 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
1573 unsigned long flags;
1574 int timeleft;
1575 struct xhci_virt_device *virt_dev;
1576 int ret = 0;
1577 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1578 struct xhci_slot_ctx *slot_ctx;
1579 struct xhci_input_control_ctx *ctrl_ctx;
1580 u64 temp_64;
1582 if (!udev->slot_id) {
1583 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
1584 return -EINVAL;
1587 virt_dev = xhci->devs[udev->slot_id];
1589 /* If this is a Set Address to an unconfigured device, setup ep 0 */
1590 if (!udev->config)
1591 xhci_setup_addressable_virt_dev(xhci, udev);
1592 /* Otherwise, assume the core has the device configured how it wants */
1593 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
1594 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
1596 spin_lock_irqsave(&xhci->lock, flags);
1597 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
1598 udev->slot_id);
1599 if (ret) {
1600 spin_unlock_irqrestore(&xhci->lock, flags);
1601 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
1602 return ret;
1604 xhci_ring_cmd_db(xhci);
1605 spin_unlock_irqrestore(&xhci->lock, flags);
1607 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
1608 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
1609 USB_CTRL_SET_TIMEOUT);
1610 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
1611 * the SetAddress() "recovery interval" required by USB and aborting the
1612 * command on a timeout.
1614 if (timeleft <= 0) {
1615 xhci_warn(xhci, "%s while waiting for a slot\n",
1616 timeleft == 0 ? "Timeout" : "Signal");
1617 /* FIXME cancel the address device command */
1618 return -ETIME;
1621 switch (virt_dev->cmd_status) {
1622 case COMP_CTX_STATE:
1623 case COMP_EBADSLT:
1624 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
1625 udev->slot_id);
1626 ret = -EINVAL;
1627 break;
1628 case COMP_TX_ERR:
1629 dev_warn(&udev->dev, "Device not responding to set address.\n");
1630 ret = -EPROTO;
1631 break;
1632 case COMP_SUCCESS:
1633 xhci_dbg(xhci, "Successful Address Device command\n");
1634 break;
1635 default:
1636 xhci_err(xhci, "ERROR: unexpected command completion "
1637 "code 0x%x.\n", virt_dev->cmd_status);
1638 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
1639 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
1640 ret = -EINVAL;
1641 break;
1643 if (ret) {
1644 return ret;
1646 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
1647 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
1648 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
1649 udev->slot_id,
1650 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
1651 (unsigned long long)
1652 xhci->dcbaa->dev_context_ptrs[udev->slot_id]);
1653 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
1654 (unsigned long long)virt_dev->out_ctx->dma);
1655 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
1656 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
1657 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
1658 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
1660 * USB core uses address 1 for the roothubs, so we add one to the
1661 * address given back to us by the HC.
1663 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
1664 udev->devnum = (slot_ctx->dev_state & DEV_ADDR_MASK) + 1;
1665 /* Zero the input context control for later use */
1666 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1667 ctrl_ctx->add_flags = 0;
1668 ctrl_ctx->drop_flags = 0;
1670 xhci_dbg(xhci, "Device address = %d\n", udev->devnum);
1671 /* XXX Meh, not sure if anyone else but choose_address uses this. */
1672 set_bit(udev->devnum, udev->bus->devmap.devicemap);
1674 return 0;
1677 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
1678 * internal data structures for the device.
1680 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
1681 struct usb_tt *tt, gfp_t mem_flags)
1683 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1684 struct xhci_virt_device *vdev;
1685 struct xhci_command *config_cmd;
1686 struct xhci_input_control_ctx *ctrl_ctx;
1687 struct xhci_slot_ctx *slot_ctx;
1688 unsigned long flags;
1689 unsigned think_time;
1690 int ret;
1692 /* Ignore root hubs */
1693 if (!hdev->parent)
1694 return 0;
1696 vdev = xhci->devs[hdev->slot_id];
1697 if (!vdev) {
1698 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
1699 return -EINVAL;
1701 config_cmd = xhci_alloc_command(xhci, true, mem_flags);
1702 if (!config_cmd) {
1703 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
1704 return -ENOMEM;
1707 spin_lock_irqsave(&xhci->lock, flags);
1708 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
1709 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
1710 ctrl_ctx->add_flags |= SLOT_FLAG;
1711 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
1712 slot_ctx->dev_info |= DEV_HUB;
1713 if (tt->multi)
1714 slot_ctx->dev_info |= DEV_MTT;
1715 if (xhci->hci_version > 0x95) {
1716 xhci_dbg(xhci, "xHCI version %x needs hub "
1717 "TT think time and number of ports\n",
1718 (unsigned int) xhci->hci_version);
1719 slot_ctx->dev_info2 |= XHCI_MAX_PORTS(hdev->maxchild);
1720 /* Set TT think time - convert from ns to FS bit times.
1721 * 0 = 8 FS bit times, 1 = 16 FS bit times,
1722 * 2 = 24 FS bit times, 3 = 32 FS bit times.
1724 think_time = tt->think_time;
1725 if (think_time != 0)
1726 think_time = (think_time / 666) - 1;
1727 slot_ctx->tt_info |= TT_THINK_TIME(think_time);
1728 } else {
1729 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
1730 "TT think time or number of ports\n",
1731 (unsigned int) xhci->hci_version);
1733 slot_ctx->dev_state = 0;
1734 spin_unlock_irqrestore(&xhci->lock, flags);
1736 xhci_dbg(xhci, "Set up %s for hub device.\n",
1737 (xhci->hci_version > 0x95) ?
1738 "configure endpoint" : "evaluate context");
1739 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
1740 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
1742 /* Issue and wait for the configure endpoint or
1743 * evaluate context command.
1745 if (xhci->hci_version > 0x95)
1746 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
1747 false, false);
1748 else
1749 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
1750 true, false);
1752 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
1753 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
1755 xhci_free_command(xhci, config_cmd);
1756 return ret;
1759 int xhci_get_frame(struct usb_hcd *hcd)
1761 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1762 /* EHCI mods by the periodic size. Why? */
1763 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
1766 MODULE_DESCRIPTION(DRIVER_DESC);
1767 MODULE_AUTHOR(DRIVER_AUTHOR);
1768 MODULE_LICENSE("GPL");
1770 static int __init xhci_hcd_init(void)
1772 #ifdef CONFIG_PCI
1773 int retval = 0;
1775 retval = xhci_register_pci();
1777 if (retval < 0) {
1778 printk(KERN_DEBUG "Problem registering PCI driver.");
1779 return retval;
1781 #endif
1783 * Check the compiler generated sizes of structures that must be laid
1784 * out in specific ways for hardware access.
1786 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
1787 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
1788 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
1789 /* xhci_device_control has eight fields, and also
1790 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
1792 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
1793 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
1794 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
1795 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
1796 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
1797 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
1798 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
1799 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
1800 return 0;
1802 module_init(xhci_hcd_init);
1804 static void __exit xhci_hcd_cleanup(void)
1806 #ifdef CONFIG_PCI
1807 xhci_unregister_pci();
1808 #endif
1810 module_exit(xhci_hcd_cleanup);