init from v2.6.32.60
[mach-moxart.git] / kernel / hrtimer.c
blob281842251bfa710252d35203a54945023f4ba5c4
1 /*
2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
22 * Credits:
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/module.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
49 #include <asm/uaccess.h>
51 #include <trace/events/timer.h>
54 * The timer bases:
56 * Note: If we want to add new timer bases, we have to skip the two
57 * clock ids captured by the cpu-timers. We do this by holding empty
58 * entries rather than doing math adjustment of the clock ids.
59 * This ensures that we capture erroneous accesses to these clock ids
60 * rather than moving them into the range of valid clock id's.
62 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
65 .clock_base =
68 .index = CLOCK_REALTIME,
69 .get_time = &ktime_get_real,
70 .resolution = KTIME_LOW_RES,
73 .index = CLOCK_MONOTONIC,
74 .get_time = &ktime_get,
75 .resolution = KTIME_LOW_RES,
81 * Get the coarse grained time at the softirq based on xtime and
82 * wall_to_monotonic.
84 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
86 ktime_t xtim, tomono;
87 struct timespec xts, tom;
88 unsigned long seq;
90 do {
91 seq = read_seqbegin(&xtime_lock);
92 xts = current_kernel_time();
93 tom = wall_to_monotonic;
94 } while (read_seqretry(&xtime_lock, seq));
96 xtim = timespec_to_ktime(xts);
97 tomono = timespec_to_ktime(tom);
98 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
99 base->clock_base[CLOCK_MONOTONIC].softirq_time =
100 ktime_add(xtim, tomono);
104 * Functions and macros which are different for UP/SMP systems are kept in a
105 * single place
107 #ifdef CONFIG_SMP
110 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
111 * means that all timers which are tied to this base via timer->base are
112 * locked, and the base itself is locked too.
114 * So __run_timers/migrate_timers can safely modify all timers which could
115 * be found on the lists/queues.
117 * When the timer's base is locked, and the timer removed from list, it is
118 * possible to set timer->base = NULL and drop the lock: the timer remains
119 * locked.
121 static
122 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
123 unsigned long *flags)
125 struct hrtimer_clock_base *base;
127 for (;;) {
128 base = timer->base;
129 if (likely(base != NULL)) {
130 spin_lock_irqsave(&base->cpu_base->lock, *flags);
131 if (likely(base == timer->base))
132 return base;
133 /* The timer has migrated to another CPU: */
134 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
136 cpu_relax();
142 * Get the preferred target CPU for NOHZ
144 static int hrtimer_get_target(int this_cpu, int pinned)
146 #ifdef CONFIG_NO_HZ
147 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu)) {
148 int preferred_cpu = get_nohz_load_balancer();
150 if (preferred_cpu >= 0)
151 return preferred_cpu;
153 #endif
154 return this_cpu;
158 * With HIGHRES=y we do not migrate the timer when it is expiring
159 * before the next event on the target cpu because we cannot reprogram
160 * the target cpu hardware and we would cause it to fire late.
162 * Called with cpu_base->lock of target cpu held.
164 static int
165 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
167 #ifdef CONFIG_HIGH_RES_TIMERS
168 ktime_t expires;
170 if (!new_base->cpu_base->hres_active)
171 return 0;
173 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
174 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
175 #else
176 return 0;
177 #endif
181 * Switch the timer base to the current CPU when possible.
183 static inline struct hrtimer_clock_base *
184 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
185 int pinned)
187 struct hrtimer_clock_base *new_base;
188 struct hrtimer_cpu_base *new_cpu_base;
189 int this_cpu = smp_processor_id();
190 int cpu = hrtimer_get_target(this_cpu, pinned);
192 again:
193 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
194 new_base = &new_cpu_base->clock_base[base->index];
196 if (base != new_base) {
198 * We are trying to move timer to new_base.
199 * However we can't change timer's base while it is running,
200 * so we keep it on the same CPU. No hassle vs. reprogramming
201 * the event source in the high resolution case. The softirq
202 * code will take care of this when the timer function has
203 * completed. There is no conflict as we hold the lock until
204 * the timer is enqueued.
206 if (unlikely(hrtimer_callback_running(timer)))
207 return base;
209 /* See the comment in lock_timer_base() */
210 timer->base = NULL;
211 spin_unlock(&base->cpu_base->lock);
212 spin_lock(&new_base->cpu_base->lock);
214 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
215 cpu = this_cpu;
216 spin_unlock(&new_base->cpu_base->lock);
217 spin_lock(&base->cpu_base->lock);
218 timer->base = base;
219 goto again;
221 timer->base = new_base;
223 return new_base;
226 #else /* CONFIG_SMP */
228 static inline struct hrtimer_clock_base *
229 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
231 struct hrtimer_clock_base *base = timer->base;
233 spin_lock_irqsave(&base->cpu_base->lock, *flags);
235 return base;
238 # define switch_hrtimer_base(t, b, p) (b)
240 #endif /* !CONFIG_SMP */
243 * Functions for the union type storage format of ktime_t which are
244 * too large for inlining:
246 #if BITS_PER_LONG < 64
247 # ifndef CONFIG_KTIME_SCALAR
249 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
250 * @kt: addend
251 * @nsec: the scalar nsec value to add
253 * Returns the sum of kt and nsec in ktime_t format
255 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
257 ktime_t tmp;
259 if (likely(nsec < NSEC_PER_SEC)) {
260 tmp.tv64 = nsec;
261 } else {
262 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
264 tmp = ktime_set((long)nsec, rem);
267 return ktime_add(kt, tmp);
270 EXPORT_SYMBOL_GPL(ktime_add_ns);
273 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
274 * @kt: minuend
275 * @nsec: the scalar nsec value to subtract
277 * Returns the subtraction of @nsec from @kt in ktime_t format
279 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
281 ktime_t tmp;
283 if (likely(nsec < NSEC_PER_SEC)) {
284 tmp.tv64 = nsec;
285 } else {
286 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
288 tmp = ktime_set((long)nsec, rem);
291 return ktime_sub(kt, tmp);
294 EXPORT_SYMBOL_GPL(ktime_sub_ns);
295 # endif /* !CONFIG_KTIME_SCALAR */
298 * Divide a ktime value by a nanosecond value
300 u64 ktime_divns(const ktime_t kt, s64 div)
302 u64 dclc;
303 int sft = 0;
305 dclc = ktime_to_ns(kt);
306 /* Make sure the divisor is less than 2^32: */
307 while (div >> 32) {
308 sft++;
309 div >>= 1;
311 dclc >>= sft;
312 do_div(dclc, (unsigned long) div);
314 return dclc;
316 #endif /* BITS_PER_LONG >= 64 */
319 * Add two ktime values and do a safety check for overflow:
321 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
323 ktime_t res = ktime_add(lhs, rhs);
326 * We use KTIME_SEC_MAX here, the maximum timeout which we can
327 * return to user space in a timespec:
329 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
330 res = ktime_set(KTIME_SEC_MAX, 0);
332 return res;
335 EXPORT_SYMBOL_GPL(ktime_add_safe);
337 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
339 static struct debug_obj_descr hrtimer_debug_descr;
342 * fixup_init is called when:
343 * - an active object is initialized
345 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
347 struct hrtimer *timer = addr;
349 switch (state) {
350 case ODEBUG_STATE_ACTIVE:
351 hrtimer_cancel(timer);
352 debug_object_init(timer, &hrtimer_debug_descr);
353 return 1;
354 default:
355 return 0;
360 * fixup_activate is called when:
361 * - an active object is activated
362 * - an unknown object is activated (might be a statically initialized object)
364 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
366 switch (state) {
368 case ODEBUG_STATE_NOTAVAILABLE:
369 WARN_ON_ONCE(1);
370 return 0;
372 case ODEBUG_STATE_ACTIVE:
373 WARN_ON(1);
375 default:
376 return 0;
381 * fixup_free is called when:
382 * - an active object is freed
384 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
386 struct hrtimer *timer = addr;
388 switch (state) {
389 case ODEBUG_STATE_ACTIVE:
390 hrtimer_cancel(timer);
391 debug_object_free(timer, &hrtimer_debug_descr);
392 return 1;
393 default:
394 return 0;
398 static struct debug_obj_descr hrtimer_debug_descr = {
399 .name = "hrtimer",
400 .fixup_init = hrtimer_fixup_init,
401 .fixup_activate = hrtimer_fixup_activate,
402 .fixup_free = hrtimer_fixup_free,
405 static inline void debug_hrtimer_init(struct hrtimer *timer)
407 debug_object_init(timer, &hrtimer_debug_descr);
410 static inline void debug_hrtimer_activate(struct hrtimer *timer)
412 debug_object_activate(timer, &hrtimer_debug_descr);
415 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
417 debug_object_deactivate(timer, &hrtimer_debug_descr);
420 static inline void debug_hrtimer_free(struct hrtimer *timer)
422 debug_object_free(timer, &hrtimer_debug_descr);
425 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
426 enum hrtimer_mode mode);
428 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
429 enum hrtimer_mode mode)
431 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
432 __hrtimer_init(timer, clock_id, mode);
434 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
436 void destroy_hrtimer_on_stack(struct hrtimer *timer)
438 debug_object_free(timer, &hrtimer_debug_descr);
441 #else
442 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
443 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
444 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
445 #endif
447 static inline void
448 debug_init(struct hrtimer *timer, clockid_t clockid,
449 enum hrtimer_mode mode)
451 debug_hrtimer_init(timer);
452 trace_hrtimer_init(timer, clockid, mode);
455 static inline void debug_activate(struct hrtimer *timer)
457 debug_hrtimer_activate(timer);
458 trace_hrtimer_start(timer);
461 static inline void debug_deactivate(struct hrtimer *timer)
463 debug_hrtimer_deactivate(timer);
464 trace_hrtimer_cancel(timer);
467 /* High resolution timer related functions */
468 #ifdef CONFIG_HIGH_RES_TIMERS
471 * High resolution timer enabled ?
473 static int hrtimer_hres_enabled __read_mostly = 1;
476 * Enable / Disable high resolution mode
478 static int __init setup_hrtimer_hres(char *str)
480 if (!strcmp(str, "off"))
481 hrtimer_hres_enabled = 0;
482 else if (!strcmp(str, "on"))
483 hrtimer_hres_enabled = 1;
484 else
485 return 0;
486 return 1;
489 __setup("highres=", setup_hrtimer_hres);
492 * hrtimer_high_res_enabled - query, if the highres mode is enabled
494 static inline int hrtimer_is_hres_enabled(void)
496 return hrtimer_hres_enabled;
500 * Is the high resolution mode active ?
502 static inline int hrtimer_hres_active(void)
504 return __get_cpu_var(hrtimer_bases).hres_active;
508 * Reprogram the event source with checking both queues for the
509 * next event
510 * Called with interrupts disabled and base->lock held
512 static void
513 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
515 int i;
516 struct hrtimer_clock_base *base = cpu_base->clock_base;
517 ktime_t expires, expires_next;
519 expires_next.tv64 = KTIME_MAX;
521 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
522 struct hrtimer *timer;
524 if (!base->first)
525 continue;
526 timer = rb_entry(base->first, struct hrtimer, node);
527 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
529 * clock_was_set() has changed base->offset so the
530 * result might be negative. Fix it up to prevent a
531 * false positive in clockevents_program_event()
533 if (expires.tv64 < 0)
534 expires.tv64 = 0;
535 if (expires.tv64 < expires_next.tv64)
536 expires_next = expires;
539 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
540 return;
542 cpu_base->expires_next.tv64 = expires_next.tv64;
544 if (cpu_base->expires_next.tv64 != KTIME_MAX)
545 tick_program_event(cpu_base->expires_next, 1);
549 * Shared reprogramming for clock_realtime and clock_monotonic
551 * When a timer is enqueued and expires earlier than the already enqueued
552 * timers, we have to check, whether it expires earlier than the timer for
553 * which the clock event device was armed.
555 * Called with interrupts disabled and base->cpu_base.lock held
557 static int hrtimer_reprogram(struct hrtimer *timer,
558 struct hrtimer_clock_base *base)
560 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
561 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
562 int res;
564 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
567 * When the callback is running, we do not reprogram the clock event
568 * device. The timer callback is either running on a different CPU or
569 * the callback is executed in the hrtimer_interrupt context. The
570 * reprogramming is handled either by the softirq, which called the
571 * callback or at the end of the hrtimer_interrupt.
573 if (hrtimer_callback_running(timer))
574 return 0;
577 * CLOCK_REALTIME timer might be requested with an absolute
578 * expiry time which is less than base->offset. Nothing wrong
579 * about that, just avoid to call into the tick code, which
580 * has now objections against negative expiry values.
582 if (expires.tv64 < 0)
583 return -ETIME;
585 if (expires.tv64 >= cpu_base->expires_next.tv64)
586 return 0;
589 * If a hang was detected in the last timer interrupt then we
590 * do not schedule a timer which is earlier than the expiry
591 * which we enforced in the hang detection. We want the system
592 * to make progress.
594 if (cpu_base->hang_detected)
595 return 0;
598 * Clockevents returns -ETIME, when the event was in the past.
600 res = tick_program_event(expires, 0);
601 if (!IS_ERR_VALUE(res))
602 cpu_base->expires_next = expires;
603 return res;
606 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
608 ktime_t *offs_real = &base->clock_base[CLOCK_REALTIME].offset;
610 return ktime_get_update_offsets(offs_real);
614 * Retrigger next event is called after clock was set
616 * Called with interrupts disabled via on_each_cpu()
618 static void retrigger_next_event(void *arg)
620 struct hrtimer_cpu_base *base;
622 if (!hrtimer_hres_active())
623 return;
625 base = &__get_cpu_var(hrtimer_bases);
627 /* Adjust CLOCK_REALTIME offset */
628 spin_lock(&base->lock);
629 hrtimer_update_base(base);
630 hrtimer_force_reprogram(base, 0);
631 spin_unlock(&base->lock);
635 * Clock realtime was set
637 * Change the offset of the realtime clock vs. the monotonic
638 * clock.
640 * We might have to reprogram the high resolution timer interrupt. On
641 * SMP we call the architecture specific code to retrigger _all_ high
642 * resolution timer interrupts. On UP we just disable interrupts and
643 * call the high resolution interrupt code.
645 void clock_was_set(void)
647 /* Retrigger the CPU local events everywhere */
648 on_each_cpu(retrigger_next_event, NULL, 1);
652 * During resume we might have to reprogram the high resolution timer
653 * interrupt (on the local CPU):
655 void hres_timers_resume(void)
657 WARN_ONCE(!irqs_disabled(),
658 KERN_INFO "hres_timers_resume() called with IRQs enabled!");
660 retrigger_next_event(NULL);
664 * Initialize the high resolution related parts of cpu_base
666 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
668 base->expires_next.tv64 = KTIME_MAX;
669 base->hres_active = 0;
673 * Initialize the high resolution related parts of a hrtimer
675 static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
681 * When High resolution timers are active, try to reprogram. Note, that in case
682 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
683 * check happens. The timer gets enqueued into the rbtree. The reprogramming
684 * and expiry check is done in the hrtimer_interrupt or in the softirq.
686 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
687 struct hrtimer_clock_base *base,
688 int wakeup)
690 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
691 if (wakeup) {
692 spin_unlock(&base->cpu_base->lock);
693 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
694 spin_lock(&base->cpu_base->lock);
695 } else
696 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
698 return 1;
701 return 0;
705 * Switch to high resolution mode
707 static int hrtimer_switch_to_hres(void)
709 int cpu = smp_processor_id();
710 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
711 unsigned long flags;
713 if (base->hres_active)
714 return 1;
716 local_irq_save(flags);
718 if (tick_init_highres()) {
719 local_irq_restore(flags);
720 printk(KERN_WARNING "Could not switch to high resolution "
721 "mode on CPU %d\n", cpu);
722 return 0;
724 base->hres_active = 1;
725 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
726 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
728 tick_setup_sched_timer();
729 /* "Retrigger" the interrupt to get things going */
730 retrigger_next_event(NULL);
731 local_irq_restore(flags);
732 return 1;
736 * Called from timekeeping code to reprogramm the hrtimer interrupt
737 * device. If called from the timer interrupt context we defer it to
738 * softirq context.
740 void clock_was_set_delayed(void)
742 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
744 cpu_base->clock_was_set = 1;
745 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
748 #else
750 static inline int hrtimer_hres_active(void) { return 0; }
751 static inline int hrtimer_is_hres_enabled(void) { return 0; }
752 static inline int hrtimer_switch_to_hres(void) { return 0; }
753 static inline void
754 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
755 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
756 struct hrtimer_clock_base *base,
757 int wakeup)
759 return 0;
761 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
762 static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
764 #endif /* CONFIG_HIGH_RES_TIMERS */
766 #ifdef CONFIG_TIMER_STATS
767 void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
769 if (timer->start_site)
770 return;
772 timer->start_site = addr;
773 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
774 timer->start_pid = current->pid;
776 #endif
779 * Counterpart to lock_hrtimer_base above:
781 static inline
782 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
784 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
788 * hrtimer_forward - forward the timer expiry
789 * @timer: hrtimer to forward
790 * @now: forward past this time
791 * @interval: the interval to forward
793 * Forward the timer expiry so it will expire in the future.
794 * Returns the number of overruns.
796 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
798 u64 orun = 1;
799 ktime_t delta;
801 delta = ktime_sub(now, hrtimer_get_expires(timer));
803 if (delta.tv64 < 0)
804 return 0;
806 if (interval.tv64 < timer->base->resolution.tv64)
807 interval.tv64 = timer->base->resolution.tv64;
809 if (unlikely(delta.tv64 >= interval.tv64)) {
810 s64 incr = ktime_to_ns(interval);
812 orun = ktime_divns(delta, incr);
813 hrtimer_add_expires_ns(timer, incr * orun);
814 if (hrtimer_get_expires_tv64(timer) > now.tv64)
815 return orun;
817 * This (and the ktime_add() below) is the
818 * correction for exact:
820 orun++;
822 hrtimer_add_expires(timer, interval);
824 return orun;
826 EXPORT_SYMBOL_GPL(hrtimer_forward);
829 * enqueue_hrtimer - internal function to (re)start a timer
831 * The timer is inserted in expiry order. Insertion into the
832 * red black tree is O(log(n)). Must hold the base lock.
834 * Returns 1 when the new timer is the leftmost timer in the tree.
836 static int enqueue_hrtimer(struct hrtimer *timer,
837 struct hrtimer_clock_base *base)
839 struct rb_node **link = &base->active.rb_node;
840 struct rb_node *parent = NULL;
841 struct hrtimer *entry;
842 int leftmost = 1;
844 debug_activate(timer);
847 * Find the right place in the rbtree:
849 while (*link) {
850 parent = *link;
851 entry = rb_entry(parent, struct hrtimer, node);
853 * We dont care about collisions. Nodes with
854 * the same expiry time stay together.
856 if (hrtimer_get_expires_tv64(timer) <
857 hrtimer_get_expires_tv64(entry)) {
858 link = &(*link)->rb_left;
859 } else {
860 link = &(*link)->rb_right;
861 leftmost = 0;
866 * Insert the timer to the rbtree and check whether it
867 * replaces the first pending timer
869 if (leftmost)
870 base->first = &timer->node;
872 rb_link_node(&timer->node, parent, link);
873 rb_insert_color(&timer->node, &base->active);
875 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
876 * state of a possibly running callback.
878 timer->state |= HRTIMER_STATE_ENQUEUED;
880 return leftmost;
884 * __remove_hrtimer - internal function to remove a timer
886 * Caller must hold the base lock.
888 * High resolution timer mode reprograms the clock event device when the
889 * timer is the one which expires next. The caller can disable this by setting
890 * reprogram to zero. This is useful, when the context does a reprogramming
891 * anyway (e.g. timer interrupt)
893 static void __remove_hrtimer(struct hrtimer *timer,
894 struct hrtimer_clock_base *base,
895 unsigned long newstate, int reprogram)
897 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
898 goto out;
901 * Remove the timer from the rbtree and replace the first
902 * entry pointer if necessary.
904 if (base->first == &timer->node) {
905 base->first = rb_next(&timer->node);
906 #ifdef CONFIG_HIGH_RES_TIMERS
907 /* Reprogram the clock event device. if enabled */
908 if (reprogram && hrtimer_hres_active()) {
909 ktime_t expires;
911 expires = ktime_sub(hrtimer_get_expires(timer),
912 base->offset);
913 if (base->cpu_base->expires_next.tv64 == expires.tv64)
914 hrtimer_force_reprogram(base->cpu_base, 1);
916 #endif
918 rb_erase(&timer->node, &base->active);
919 out:
920 timer->state = newstate;
924 * remove hrtimer, called with base lock held
926 static inline int
927 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
929 if (hrtimer_is_queued(timer)) {
930 unsigned long state;
931 int reprogram;
934 * Remove the timer and force reprogramming when high
935 * resolution mode is active and the timer is on the current
936 * CPU. If we remove a timer on another CPU, reprogramming is
937 * skipped. The interrupt event on this CPU is fired and
938 * reprogramming happens in the interrupt handler. This is a
939 * rare case and less expensive than a smp call.
941 debug_deactivate(timer);
942 timer_stats_hrtimer_clear_start_info(timer);
943 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
945 * We must preserve the CALLBACK state flag here,
946 * otherwise we could move the timer base in
947 * switch_hrtimer_base.
949 state = timer->state & HRTIMER_STATE_CALLBACK;
950 __remove_hrtimer(timer, base, state, reprogram);
951 return 1;
953 return 0;
956 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
957 unsigned long delta_ns, const enum hrtimer_mode mode,
958 int wakeup)
960 struct hrtimer_clock_base *base, *new_base;
961 unsigned long flags;
962 int ret, leftmost;
964 base = lock_hrtimer_base(timer, &flags);
966 /* Remove an active timer from the queue: */
967 ret = remove_hrtimer(timer, base);
969 /* Switch the timer base, if necessary: */
970 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
972 if (mode & HRTIMER_MODE_REL) {
973 tim = ktime_add_safe(tim, new_base->get_time());
975 * CONFIG_TIME_LOW_RES is a temporary way for architectures
976 * to signal that they simply return xtime in
977 * do_gettimeoffset(). In this case we want to round up by
978 * resolution when starting a relative timer, to avoid short
979 * timeouts. This will go away with the GTOD framework.
981 #ifdef CONFIG_TIME_LOW_RES
982 tim = ktime_add_safe(tim, base->resolution);
983 #endif
986 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
988 timer_stats_hrtimer_set_start_info(timer);
990 leftmost = enqueue_hrtimer(timer, new_base);
993 * Only allow reprogramming if the new base is on this CPU.
994 * (it might still be on another CPU if the timer was pending)
996 * XXX send_remote_softirq() ?
998 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
999 hrtimer_enqueue_reprogram(timer, new_base, wakeup);
1001 unlock_hrtimer_base(timer, &flags);
1003 return ret;
1007 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1008 * @timer: the timer to be added
1009 * @tim: expiry time
1010 * @delta_ns: "slack" range for the timer
1011 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1013 * Returns:
1014 * 0 on success
1015 * 1 when the timer was active
1017 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1018 unsigned long delta_ns, const enum hrtimer_mode mode)
1020 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1022 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1025 * hrtimer_start - (re)start an hrtimer on the current CPU
1026 * @timer: the timer to be added
1027 * @tim: expiry time
1028 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1030 * Returns:
1031 * 0 on success
1032 * 1 when the timer was active
1035 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1037 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1039 EXPORT_SYMBOL_GPL(hrtimer_start);
1043 * hrtimer_try_to_cancel - try to deactivate a timer
1044 * @timer: hrtimer to stop
1046 * Returns:
1047 * 0 when the timer was not active
1048 * 1 when the timer was active
1049 * -1 when the timer is currently excuting the callback function and
1050 * cannot be stopped
1052 int hrtimer_try_to_cancel(struct hrtimer *timer)
1054 struct hrtimer_clock_base *base;
1055 unsigned long flags;
1056 int ret = -1;
1058 base = lock_hrtimer_base(timer, &flags);
1060 if (!hrtimer_callback_running(timer))
1061 ret = remove_hrtimer(timer, base);
1063 unlock_hrtimer_base(timer, &flags);
1065 return ret;
1068 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1071 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1072 * @timer: the timer to be cancelled
1074 * Returns:
1075 * 0 when the timer was not active
1076 * 1 when the timer was active
1078 int hrtimer_cancel(struct hrtimer *timer)
1080 for (;;) {
1081 int ret = hrtimer_try_to_cancel(timer);
1083 if (ret >= 0)
1084 return ret;
1085 cpu_relax();
1088 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1091 * hrtimer_get_remaining - get remaining time for the timer
1092 * @timer: the timer to read
1094 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1096 struct hrtimer_clock_base *base;
1097 unsigned long flags;
1098 ktime_t rem;
1100 base = lock_hrtimer_base(timer, &flags);
1101 rem = hrtimer_expires_remaining(timer);
1102 unlock_hrtimer_base(timer, &flags);
1104 return rem;
1106 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1108 #ifdef CONFIG_NO_HZ
1110 * hrtimer_get_next_event - get the time until next expiry event
1112 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1113 * is pending.
1115 ktime_t hrtimer_get_next_event(void)
1117 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1118 struct hrtimer_clock_base *base = cpu_base->clock_base;
1119 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1120 unsigned long flags;
1121 int i;
1123 spin_lock_irqsave(&cpu_base->lock, flags);
1125 if (!hrtimer_hres_active()) {
1126 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1127 struct hrtimer *timer;
1129 if (!base->first)
1130 continue;
1132 timer = rb_entry(base->first, struct hrtimer, node);
1133 delta.tv64 = hrtimer_get_expires_tv64(timer);
1134 delta = ktime_sub(delta, base->get_time());
1135 if (delta.tv64 < mindelta.tv64)
1136 mindelta.tv64 = delta.tv64;
1140 spin_unlock_irqrestore(&cpu_base->lock, flags);
1142 if (mindelta.tv64 < 0)
1143 mindelta.tv64 = 0;
1144 return mindelta;
1146 #endif
1148 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1149 enum hrtimer_mode mode)
1151 struct hrtimer_cpu_base *cpu_base;
1153 memset(timer, 0, sizeof(struct hrtimer));
1155 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1157 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1158 clock_id = CLOCK_MONOTONIC;
1160 timer->base = &cpu_base->clock_base[clock_id];
1161 hrtimer_init_timer_hres(timer);
1163 #ifdef CONFIG_TIMER_STATS
1164 timer->start_site = NULL;
1165 timer->start_pid = -1;
1166 memset(timer->start_comm, 0, TASK_COMM_LEN);
1167 #endif
1171 * hrtimer_init - initialize a timer to the given clock
1172 * @timer: the timer to be initialized
1173 * @clock_id: the clock to be used
1174 * @mode: timer mode abs/rel
1176 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1177 enum hrtimer_mode mode)
1179 debug_init(timer, clock_id, mode);
1180 __hrtimer_init(timer, clock_id, mode);
1182 EXPORT_SYMBOL_GPL(hrtimer_init);
1185 * hrtimer_get_res - get the timer resolution for a clock
1186 * @which_clock: which clock to query
1187 * @tp: pointer to timespec variable to store the resolution
1189 * Store the resolution of the clock selected by @which_clock in the
1190 * variable pointed to by @tp.
1192 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1194 struct hrtimer_cpu_base *cpu_base;
1196 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1197 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1199 return 0;
1201 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1203 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1205 struct hrtimer_clock_base *base = timer->base;
1206 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1207 enum hrtimer_restart (*fn)(struct hrtimer *);
1208 int restart;
1210 WARN_ON(!irqs_disabled());
1212 debug_deactivate(timer);
1213 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1214 timer_stats_account_hrtimer(timer);
1215 fn = timer->function;
1218 * Because we run timers from hardirq context, there is no chance
1219 * they get migrated to another cpu, therefore its safe to unlock
1220 * the timer base.
1222 spin_unlock(&cpu_base->lock);
1223 trace_hrtimer_expire_entry(timer, now);
1224 restart = fn(timer);
1225 trace_hrtimer_expire_exit(timer);
1226 spin_lock(&cpu_base->lock);
1229 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1230 * we do not reprogramm the event hardware. Happens either in
1231 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1233 if (restart != HRTIMER_NORESTART) {
1234 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1235 enqueue_hrtimer(timer, base);
1238 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1240 timer->state &= ~HRTIMER_STATE_CALLBACK;
1243 #ifdef CONFIG_HIGH_RES_TIMERS
1246 * High resolution timer interrupt
1247 * Called with interrupts disabled
1249 void hrtimer_interrupt(struct clock_event_device *dev)
1251 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1252 struct hrtimer_clock_base *base;
1253 ktime_t expires_next, now, entry_time, delta;
1254 int i, retries = 0;
1256 BUG_ON(!cpu_base->hres_active);
1257 cpu_base->nr_events++;
1258 dev->next_event.tv64 = KTIME_MAX;
1260 spin_lock(&cpu_base->lock);
1261 entry_time = now = hrtimer_update_base(cpu_base);
1262 retry:
1263 expires_next.tv64 = KTIME_MAX;
1265 * We set expires_next to KTIME_MAX here with cpu_base->lock
1266 * held to prevent that a timer is enqueued in our queue via
1267 * the migration code. This does not affect enqueueing of
1268 * timers which run their callback and need to be requeued on
1269 * this CPU.
1271 cpu_base->expires_next.tv64 = KTIME_MAX;
1273 base = cpu_base->clock_base;
1275 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1276 ktime_t basenow;
1277 struct rb_node *node;
1279 basenow = ktime_add(now, base->offset);
1281 while ((node = base->first)) {
1282 struct hrtimer *timer;
1284 timer = rb_entry(node, struct hrtimer, node);
1287 * The immediate goal for using the softexpires is
1288 * minimizing wakeups, not running timers at the
1289 * earliest interrupt after their soft expiration.
1290 * This allows us to avoid using a Priority Search
1291 * Tree, which can answer a stabbing querry for
1292 * overlapping intervals and instead use the simple
1293 * BST we already have.
1294 * We don't add extra wakeups by delaying timers that
1295 * are right-of a not yet expired timer, because that
1296 * timer will have to trigger a wakeup anyway.
1299 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1300 ktime_t expires;
1302 expires = ktime_sub(hrtimer_get_expires(timer),
1303 base->offset);
1304 if (expires.tv64 < expires_next.tv64)
1305 expires_next = expires;
1306 break;
1309 __run_hrtimer(timer, &basenow);
1311 base++;
1315 * Store the new expiry value so the migration code can verify
1316 * against it.
1318 cpu_base->expires_next = expires_next;
1319 spin_unlock(&cpu_base->lock);
1321 /* Reprogramming necessary ? */
1322 if (expires_next.tv64 == KTIME_MAX ||
1323 !tick_program_event(expires_next, 0)) {
1324 cpu_base->hang_detected = 0;
1325 return;
1329 * The next timer was already expired due to:
1330 * - tracing
1331 * - long lasting callbacks
1332 * - being scheduled away when running in a VM
1334 * We need to prevent that we loop forever in the hrtimer
1335 * interrupt routine. We give it 3 attempts to avoid
1336 * overreacting on some spurious event.
1338 * Acquire base lock for updating the offsets and retrieving
1339 * the current time.
1341 spin_lock(&cpu_base->lock);
1342 now = hrtimer_update_base(cpu_base);
1343 cpu_base->nr_retries++;
1344 if (++retries < 3)
1345 goto retry;
1347 * Give the system a chance to do something else than looping
1348 * here. We stored the entry time, so we know exactly how long
1349 * we spent here. We schedule the next event this amount of
1350 * time away.
1352 cpu_base->nr_hangs++;
1353 cpu_base->hang_detected = 1;
1354 spin_unlock(&cpu_base->lock);
1355 delta = ktime_sub(now, entry_time);
1356 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1357 cpu_base->max_hang_time = delta;
1359 * Limit it to a sensible value as we enforce a longer
1360 * delay. Give the CPU at least 100ms to catch up.
1362 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1363 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1364 else
1365 expires_next = ktime_add(now, delta);
1366 tick_program_event(expires_next, 1);
1367 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1368 ktime_to_ns(delta));
1372 * local version of hrtimer_peek_ahead_timers() called with interrupts
1373 * disabled.
1375 static void __hrtimer_peek_ahead_timers(void)
1377 struct tick_device *td;
1379 if (!hrtimer_hres_active())
1380 return;
1382 td = &__get_cpu_var(tick_cpu_device);
1383 if (td && td->evtdev)
1384 hrtimer_interrupt(td->evtdev);
1388 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1390 * hrtimer_peek_ahead_timers will peek at the timer queue of
1391 * the current cpu and check if there are any timers for which
1392 * the soft expires time has passed. If any such timers exist,
1393 * they are run immediately and then removed from the timer queue.
1396 void hrtimer_peek_ahead_timers(void)
1398 unsigned long flags;
1400 local_irq_save(flags);
1401 __hrtimer_peek_ahead_timers();
1402 local_irq_restore(flags);
1405 static void run_hrtimer_softirq(struct softirq_action *h)
1407 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1409 if (cpu_base->clock_was_set) {
1410 cpu_base->clock_was_set = 0;
1411 clock_was_set();
1414 hrtimer_peek_ahead_timers();
1417 #else /* CONFIG_HIGH_RES_TIMERS */
1419 static inline void __hrtimer_peek_ahead_timers(void) { }
1421 #endif /* !CONFIG_HIGH_RES_TIMERS */
1424 * Called from timer softirq every jiffy, expire hrtimers:
1426 * For HRT its the fall back code to run the softirq in the timer
1427 * softirq context in case the hrtimer initialization failed or has
1428 * not been done yet.
1430 void hrtimer_run_pending(void)
1432 if (hrtimer_hres_active())
1433 return;
1436 * This _is_ ugly: We have to check in the softirq context,
1437 * whether we can switch to highres and / or nohz mode. The
1438 * clocksource switch happens in the timer interrupt with
1439 * xtime_lock held. Notification from there only sets the
1440 * check bit in the tick_oneshot code, otherwise we might
1441 * deadlock vs. xtime_lock.
1443 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1444 hrtimer_switch_to_hres();
1448 * Called from hardirq context every jiffy
1450 void hrtimer_run_queues(void)
1452 struct rb_node *node;
1453 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1454 struct hrtimer_clock_base *base;
1455 int index, gettime = 1;
1457 if (hrtimer_hres_active())
1458 return;
1460 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1461 base = &cpu_base->clock_base[index];
1463 if (!base->first)
1464 continue;
1466 if (gettime) {
1467 hrtimer_get_softirq_time(cpu_base);
1468 gettime = 0;
1471 spin_lock(&cpu_base->lock);
1473 while ((node = base->first)) {
1474 struct hrtimer *timer;
1476 timer = rb_entry(node, struct hrtimer, node);
1477 if (base->softirq_time.tv64 <=
1478 hrtimer_get_expires_tv64(timer))
1479 break;
1481 __run_hrtimer(timer, &base->softirq_time);
1483 spin_unlock(&cpu_base->lock);
1488 * Sleep related functions:
1490 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1492 struct hrtimer_sleeper *t =
1493 container_of(timer, struct hrtimer_sleeper, timer);
1494 struct task_struct *task = t->task;
1496 t->task = NULL;
1497 if (task)
1498 wake_up_process(task);
1500 return HRTIMER_NORESTART;
1503 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1505 sl->timer.function = hrtimer_wakeup;
1506 sl->task = task;
1508 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1510 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1512 hrtimer_init_sleeper(t, current);
1514 do {
1515 set_current_state(TASK_INTERRUPTIBLE);
1516 hrtimer_start_expires(&t->timer, mode);
1517 if (!hrtimer_active(&t->timer))
1518 t->task = NULL;
1520 if (likely(t->task))
1521 schedule();
1523 hrtimer_cancel(&t->timer);
1524 mode = HRTIMER_MODE_ABS;
1526 } while (t->task && !signal_pending(current));
1528 __set_current_state(TASK_RUNNING);
1530 return t->task == NULL;
1533 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1535 struct timespec rmt;
1536 ktime_t rem;
1538 rem = hrtimer_expires_remaining(timer);
1539 if (rem.tv64 <= 0)
1540 return 0;
1541 rmt = ktime_to_timespec(rem);
1543 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1544 return -EFAULT;
1546 return 1;
1549 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1551 struct hrtimer_sleeper t;
1552 struct timespec __user *rmtp;
1553 int ret = 0;
1555 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1556 HRTIMER_MODE_ABS);
1557 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1559 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1560 goto out;
1562 rmtp = restart->nanosleep.rmtp;
1563 if (rmtp) {
1564 ret = update_rmtp(&t.timer, rmtp);
1565 if (ret <= 0)
1566 goto out;
1569 /* The other values in restart are already filled in */
1570 ret = -ERESTART_RESTARTBLOCK;
1571 out:
1572 destroy_hrtimer_on_stack(&t.timer);
1573 return ret;
1576 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1577 const enum hrtimer_mode mode, const clockid_t clockid)
1579 struct restart_block *restart;
1580 struct hrtimer_sleeper t;
1581 int ret = 0;
1582 unsigned long slack;
1584 slack = current->timer_slack_ns;
1585 if (rt_task(current))
1586 slack = 0;
1588 hrtimer_init_on_stack(&t.timer, clockid, mode);
1589 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1590 if (do_nanosleep(&t, mode))
1591 goto out;
1593 /* Absolute timers do not update the rmtp value and restart: */
1594 if (mode == HRTIMER_MODE_ABS) {
1595 ret = -ERESTARTNOHAND;
1596 goto out;
1599 if (rmtp) {
1600 ret = update_rmtp(&t.timer, rmtp);
1601 if (ret <= 0)
1602 goto out;
1605 restart = &current_thread_info()->restart_block;
1606 restart->fn = hrtimer_nanosleep_restart;
1607 restart->nanosleep.index = t.timer.base->index;
1608 restart->nanosleep.rmtp = rmtp;
1609 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1611 ret = -ERESTART_RESTARTBLOCK;
1612 out:
1613 destroy_hrtimer_on_stack(&t.timer);
1614 return ret;
1617 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1618 struct timespec __user *, rmtp)
1620 struct timespec tu;
1622 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1623 return -EFAULT;
1625 if (!timespec_valid(&tu))
1626 return -EINVAL;
1628 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1632 * Functions related to boot-time initialization:
1634 static void __cpuinit init_hrtimers_cpu(int cpu)
1636 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1637 int i;
1639 spin_lock_init(&cpu_base->lock);
1641 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1642 cpu_base->clock_base[i].cpu_base = cpu_base;
1644 hrtimer_init_hres(cpu_base);
1647 #ifdef CONFIG_HOTPLUG_CPU
1649 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1650 struct hrtimer_clock_base *new_base)
1652 struct hrtimer *timer;
1653 struct rb_node *node;
1655 while ((node = rb_first(&old_base->active))) {
1656 timer = rb_entry(node, struct hrtimer, node);
1657 BUG_ON(hrtimer_callback_running(timer));
1658 debug_deactivate(timer);
1661 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1662 * timer could be seen as !active and just vanish away
1663 * under us on another CPU
1665 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1666 timer->base = new_base;
1668 * Enqueue the timers on the new cpu. This does not
1669 * reprogram the event device in case the timer
1670 * expires before the earliest on this CPU, but we run
1671 * hrtimer_interrupt after we migrated everything to
1672 * sort out already expired timers and reprogram the
1673 * event device.
1675 enqueue_hrtimer(timer, new_base);
1677 /* Clear the migration state bit */
1678 timer->state &= ~HRTIMER_STATE_MIGRATE;
1682 static void migrate_hrtimers(int scpu)
1684 struct hrtimer_cpu_base *old_base, *new_base;
1685 int i;
1687 BUG_ON(cpu_online(scpu));
1688 tick_cancel_sched_timer(scpu);
1690 local_irq_disable();
1691 old_base = &per_cpu(hrtimer_bases, scpu);
1692 new_base = &__get_cpu_var(hrtimer_bases);
1694 * The caller is globally serialized and nobody else
1695 * takes two locks at once, deadlock is not possible.
1697 spin_lock(&new_base->lock);
1698 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1700 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1701 migrate_hrtimer_list(&old_base->clock_base[i],
1702 &new_base->clock_base[i]);
1705 spin_unlock(&old_base->lock);
1706 spin_unlock(&new_base->lock);
1708 /* Check, if we got expired work to do */
1709 __hrtimer_peek_ahead_timers();
1710 local_irq_enable();
1713 #endif /* CONFIG_HOTPLUG_CPU */
1715 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1716 unsigned long action, void *hcpu)
1718 int scpu = (long)hcpu;
1720 switch (action) {
1722 case CPU_UP_PREPARE:
1723 case CPU_UP_PREPARE_FROZEN:
1724 init_hrtimers_cpu(scpu);
1725 break;
1727 #ifdef CONFIG_HOTPLUG_CPU
1728 case CPU_DYING:
1729 case CPU_DYING_FROZEN:
1730 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1731 break;
1732 case CPU_DEAD:
1733 case CPU_DEAD_FROZEN:
1735 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1736 migrate_hrtimers(scpu);
1737 break;
1739 #endif
1741 default:
1742 break;
1745 return NOTIFY_OK;
1748 static struct notifier_block __cpuinitdata hrtimers_nb = {
1749 .notifier_call = hrtimer_cpu_notify,
1752 void __init hrtimers_init(void)
1754 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1755 (void *)(long)smp_processor_id());
1756 register_cpu_notifier(&hrtimers_nb);
1757 #ifdef CONFIG_HIGH_RES_TIMERS
1758 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1759 #endif
1763 * schedule_hrtimeout_range - sleep until timeout
1764 * @expires: timeout value (ktime_t)
1765 * @delta: slack in expires timeout (ktime_t)
1766 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1768 * Make the current task sleep until the given expiry time has
1769 * elapsed. The routine will return immediately unless
1770 * the current task state has been set (see set_current_state()).
1772 * The @delta argument gives the kernel the freedom to schedule the
1773 * actual wakeup to a time that is both power and performance friendly.
1774 * The kernel give the normal best effort behavior for "@expires+@delta",
1775 * but may decide to fire the timer earlier, but no earlier than @expires.
1777 * You can set the task state as follows -
1779 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1780 * pass before the routine returns.
1782 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1783 * delivered to the current task.
1785 * The current task state is guaranteed to be TASK_RUNNING when this
1786 * routine returns.
1788 * Returns 0 when the timer has expired otherwise -EINTR
1790 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1791 const enum hrtimer_mode mode)
1793 struct hrtimer_sleeper t;
1796 * Optimize when a zero timeout value is given. It does not
1797 * matter whether this is an absolute or a relative time.
1799 if (expires && !expires->tv64) {
1800 __set_current_state(TASK_RUNNING);
1801 return 0;
1805 * A NULL parameter means "inifinte"
1807 if (!expires) {
1808 schedule();
1809 __set_current_state(TASK_RUNNING);
1810 return -EINTR;
1813 hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
1814 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1816 hrtimer_init_sleeper(&t, current);
1818 hrtimer_start_expires(&t.timer, mode);
1819 if (!hrtimer_active(&t.timer))
1820 t.task = NULL;
1822 if (likely(t.task))
1823 schedule();
1825 hrtimer_cancel(&t.timer);
1826 destroy_hrtimer_on_stack(&t.timer);
1828 __set_current_state(TASK_RUNNING);
1830 return !t.task ? 0 : -EINTR;
1832 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1835 * schedule_hrtimeout - sleep until timeout
1836 * @expires: timeout value (ktime_t)
1837 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1839 * Make the current task sleep until the given expiry time has
1840 * elapsed. The routine will return immediately unless
1841 * the current task state has been set (see set_current_state()).
1843 * You can set the task state as follows -
1845 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1846 * pass before the routine returns.
1848 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1849 * delivered to the current task.
1851 * The current task state is guaranteed to be TASK_RUNNING when this
1852 * routine returns.
1854 * Returns 0 when the timer has expired otherwise -EINTR
1856 int __sched schedule_hrtimeout(ktime_t *expires,
1857 const enum hrtimer_mode mode)
1859 return schedule_hrtimeout_range(expires, 0, mode);
1861 EXPORT_SYMBOL_GPL(schedule_hrtimeout);