init from v2.6.32.60
[mach-moxart.git] / mm / hugetlb.c
blob20f9240812c8fe63c2de4f8e99986215e77378a6
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/seq_file.h>
11 #include <linux/sysctl.h>
12 #include <linux/highmem.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/nodemask.h>
15 #include <linux/pagemap.h>
16 #include <linux/mempolicy.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
22 #include <asm/page.h>
23 #include <asm/pgtable.h>
24 #include <asm/io.h>
26 #include <linux/hugetlb.h>
27 #include "internal.h"
29 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
30 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
31 unsigned long hugepages_treat_as_movable;
33 static int max_hstate;
34 unsigned int default_hstate_idx;
35 struct hstate hstates[HUGE_MAX_HSTATE];
37 __initdata LIST_HEAD(huge_boot_pages);
39 /* for command line parsing */
40 static struct hstate * __initdata parsed_hstate;
41 static unsigned long __initdata default_hstate_max_huge_pages;
42 static unsigned long __initdata default_hstate_size;
44 #define for_each_hstate(h) \
45 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
48 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
50 static DEFINE_SPINLOCK(hugetlb_lock);
52 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
54 bool free = (spool->count == 0) && (spool->used_hpages == 0);
56 spin_unlock(&spool->lock);
58 /* If no pages are used, and no other handles to the subpool
59 * remain, free the subpool the subpool remain */
60 if (free)
61 kfree(spool);
64 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
66 struct hugepage_subpool *spool;
68 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
69 if (!spool)
70 return NULL;
72 spin_lock_init(&spool->lock);
73 spool->count = 1;
74 spool->max_hpages = nr_blocks;
75 spool->used_hpages = 0;
77 return spool;
80 void hugepage_put_subpool(struct hugepage_subpool *spool)
82 spin_lock(&spool->lock);
83 BUG_ON(!spool->count);
84 spool->count--;
85 unlock_or_release_subpool(spool);
88 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
89 long delta)
91 int ret = 0;
93 if (!spool)
94 return 0;
96 spin_lock(&spool->lock);
97 if ((spool->used_hpages + delta) <= spool->max_hpages) {
98 spool->used_hpages += delta;
99 } else {
100 ret = -ENOMEM;
102 spin_unlock(&spool->lock);
104 return ret;
107 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
108 long delta)
110 if (!spool)
111 return;
113 spin_lock(&spool->lock);
114 spool->used_hpages -= delta;
115 /* If hugetlbfs_put_super couldn't free spool due to
116 * an outstanding quota reference, free it now. */
117 unlock_or_release_subpool(spool);
120 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
122 return HUGETLBFS_SB(inode->i_sb)->spool;
125 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
127 return subpool_inode(vma->vm_file->f_dentry->d_inode);
131 * Region tracking -- allows tracking of reservations and instantiated pages
132 * across the pages in a mapping.
134 * The region data structures are protected by a combination of the mmap_sem
135 * and the hugetlb_instantion_mutex. To access or modify a region the caller
136 * must either hold the mmap_sem for write, or the mmap_sem for read and
137 * the hugetlb_instantiation mutex:
139 * down_write(&mm->mmap_sem);
140 * or
141 * down_read(&mm->mmap_sem);
142 * mutex_lock(&hugetlb_instantiation_mutex);
144 struct file_region {
145 struct list_head link;
146 long from;
147 long to;
150 static long region_add(struct list_head *head, long f, long t)
152 struct file_region *rg, *nrg, *trg;
154 /* Locate the region we are either in or before. */
155 list_for_each_entry(rg, head, link)
156 if (f <= rg->to)
157 break;
159 /* Round our left edge to the current segment if it encloses us. */
160 if (f > rg->from)
161 f = rg->from;
163 /* Check for and consume any regions we now overlap with. */
164 nrg = rg;
165 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
166 if (&rg->link == head)
167 break;
168 if (rg->from > t)
169 break;
171 /* If this area reaches higher then extend our area to
172 * include it completely. If this is not the first area
173 * which we intend to reuse, free it. */
174 if (rg->to > t)
175 t = rg->to;
176 if (rg != nrg) {
177 list_del(&rg->link);
178 kfree(rg);
181 nrg->from = f;
182 nrg->to = t;
183 return 0;
186 static long region_chg(struct list_head *head, long f, long t)
188 struct file_region *rg, *nrg;
189 long chg = 0;
191 /* Locate the region we are before or in. */
192 list_for_each_entry(rg, head, link)
193 if (f <= rg->to)
194 break;
196 /* If we are below the current region then a new region is required.
197 * Subtle, allocate a new region at the position but make it zero
198 * size such that we can guarantee to record the reservation. */
199 if (&rg->link == head || t < rg->from) {
200 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
201 if (!nrg)
202 return -ENOMEM;
203 nrg->from = f;
204 nrg->to = f;
205 INIT_LIST_HEAD(&nrg->link);
206 list_add(&nrg->link, rg->link.prev);
208 return t - f;
211 /* Round our left edge to the current segment if it encloses us. */
212 if (f > rg->from)
213 f = rg->from;
214 chg = t - f;
216 /* Check for and consume any regions we now overlap with. */
217 list_for_each_entry(rg, rg->link.prev, link) {
218 if (&rg->link == head)
219 break;
220 if (rg->from > t)
221 return chg;
223 /* We overlap with this area, if it extends futher than
224 * us then we must extend ourselves. Account for its
225 * existing reservation. */
226 if (rg->to > t) {
227 chg += rg->to - t;
228 t = rg->to;
230 chg -= rg->to - rg->from;
232 return chg;
235 static long region_truncate(struct list_head *head, long end)
237 struct file_region *rg, *trg;
238 long chg = 0;
240 /* Locate the region we are either in or before. */
241 list_for_each_entry(rg, head, link)
242 if (end <= rg->to)
243 break;
244 if (&rg->link == head)
245 return 0;
247 /* If we are in the middle of a region then adjust it. */
248 if (end > rg->from) {
249 chg = rg->to - end;
250 rg->to = end;
251 rg = list_entry(rg->link.next, typeof(*rg), link);
254 /* Drop any remaining regions. */
255 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
256 if (&rg->link == head)
257 break;
258 chg += rg->to - rg->from;
259 list_del(&rg->link);
260 kfree(rg);
262 return chg;
265 static long region_count(struct list_head *head, long f, long t)
267 struct file_region *rg;
268 long chg = 0;
270 /* Locate each segment we overlap with, and count that overlap. */
271 list_for_each_entry(rg, head, link) {
272 int seg_from;
273 int seg_to;
275 if (rg->to <= f)
276 continue;
277 if (rg->from >= t)
278 break;
280 seg_from = max(rg->from, f);
281 seg_to = min(rg->to, t);
283 chg += seg_to - seg_from;
286 return chg;
290 * Convert the address within this vma to the page offset within
291 * the mapping, in pagecache page units; huge pages here.
293 static pgoff_t vma_hugecache_offset(struct hstate *h,
294 struct vm_area_struct *vma, unsigned long address)
296 return ((address - vma->vm_start) >> huge_page_shift(h)) +
297 (vma->vm_pgoff >> huge_page_order(h));
301 * Return the size of the pages allocated when backing a VMA. In the majority
302 * cases this will be same size as used by the page table entries.
304 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
306 struct hstate *hstate;
308 if (!is_vm_hugetlb_page(vma))
309 return PAGE_SIZE;
311 hstate = hstate_vma(vma);
313 return 1UL << (hstate->order + PAGE_SHIFT);
315 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
318 * Return the page size being used by the MMU to back a VMA. In the majority
319 * of cases, the page size used by the kernel matches the MMU size. On
320 * architectures where it differs, an architecture-specific version of this
321 * function is required.
323 #ifndef vma_mmu_pagesize
324 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
326 return vma_kernel_pagesize(vma);
328 #endif
331 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
332 * bits of the reservation map pointer, which are always clear due to
333 * alignment.
335 #define HPAGE_RESV_OWNER (1UL << 0)
336 #define HPAGE_RESV_UNMAPPED (1UL << 1)
337 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
340 * These helpers are used to track how many pages are reserved for
341 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
342 * is guaranteed to have their future faults succeed.
344 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
345 * the reserve counters are updated with the hugetlb_lock held. It is safe
346 * to reset the VMA at fork() time as it is not in use yet and there is no
347 * chance of the global counters getting corrupted as a result of the values.
349 * The private mapping reservation is represented in a subtly different
350 * manner to a shared mapping. A shared mapping has a region map associated
351 * with the underlying file, this region map represents the backing file
352 * pages which have ever had a reservation assigned which this persists even
353 * after the page is instantiated. A private mapping has a region map
354 * associated with the original mmap which is attached to all VMAs which
355 * reference it, this region map represents those offsets which have consumed
356 * reservation ie. where pages have been instantiated.
358 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
360 return (unsigned long)vma->vm_private_data;
363 static void set_vma_private_data(struct vm_area_struct *vma,
364 unsigned long value)
366 vma->vm_private_data = (void *)value;
369 struct resv_map {
370 struct kref refs;
371 struct list_head regions;
374 static struct resv_map *resv_map_alloc(void)
376 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
377 if (!resv_map)
378 return NULL;
380 kref_init(&resv_map->refs);
381 INIT_LIST_HEAD(&resv_map->regions);
383 return resv_map;
386 static void resv_map_release(struct kref *ref)
388 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
390 /* Clear out any active regions before we release the map. */
391 region_truncate(&resv_map->regions, 0);
392 kfree(resv_map);
395 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
397 VM_BUG_ON(!is_vm_hugetlb_page(vma));
398 if (!(vma->vm_flags & VM_MAYSHARE))
399 return (struct resv_map *)(get_vma_private_data(vma) &
400 ~HPAGE_RESV_MASK);
401 return NULL;
404 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
406 VM_BUG_ON(!is_vm_hugetlb_page(vma));
407 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
409 set_vma_private_data(vma, (get_vma_private_data(vma) &
410 HPAGE_RESV_MASK) | (unsigned long)map);
413 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
415 VM_BUG_ON(!is_vm_hugetlb_page(vma));
416 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
421 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
423 VM_BUG_ON(!is_vm_hugetlb_page(vma));
425 return (get_vma_private_data(vma) & flag) != 0;
428 /* Decrement the reserved pages in the hugepage pool by one */
429 static void decrement_hugepage_resv_vma(struct hstate *h,
430 struct vm_area_struct *vma)
432 if (vma->vm_flags & VM_NORESERVE)
433 return;
435 if (vma->vm_flags & VM_MAYSHARE) {
436 /* Shared mappings always use reserves */
437 h->resv_huge_pages--;
438 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
440 * Only the process that called mmap() has reserves for
441 * private mappings.
443 h->resv_huge_pages--;
447 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
448 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
450 VM_BUG_ON(!is_vm_hugetlb_page(vma));
451 if (!(vma->vm_flags & VM_MAYSHARE))
452 vma->vm_private_data = (void *)0;
455 /* Returns true if the VMA has associated reserve pages */
456 static int vma_has_reserves(struct vm_area_struct *vma)
458 if (vma->vm_flags & VM_MAYSHARE)
459 return 1;
460 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
461 return 1;
462 return 0;
465 static void clear_gigantic_page(struct page *page,
466 unsigned long addr, unsigned long sz)
468 int i;
469 struct page *p = page;
471 might_sleep();
472 for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
473 cond_resched();
474 clear_user_highpage(p, addr + i * PAGE_SIZE);
477 static void clear_huge_page(struct page *page,
478 unsigned long addr, unsigned long sz)
480 int i;
482 if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) {
483 clear_gigantic_page(page, addr, sz);
484 return;
487 might_sleep();
488 for (i = 0; i < sz/PAGE_SIZE; i++) {
489 cond_resched();
490 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
494 static void copy_gigantic_page(struct page *dst, struct page *src,
495 unsigned long addr, struct vm_area_struct *vma)
497 int i;
498 struct hstate *h = hstate_vma(vma);
499 struct page *dst_base = dst;
500 struct page *src_base = src;
501 might_sleep();
502 for (i = 0; i < pages_per_huge_page(h); ) {
503 cond_resched();
504 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
506 i++;
507 dst = mem_map_next(dst, dst_base, i);
508 src = mem_map_next(src, src_base, i);
511 static void copy_huge_page(struct page *dst, struct page *src,
512 unsigned long addr, struct vm_area_struct *vma)
514 int i;
515 struct hstate *h = hstate_vma(vma);
517 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
518 copy_gigantic_page(dst, src, addr, vma);
519 return;
522 might_sleep();
523 for (i = 0; i < pages_per_huge_page(h); i++) {
524 cond_resched();
525 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
529 static void enqueue_huge_page(struct hstate *h, struct page *page)
531 int nid = page_to_nid(page);
532 list_add(&page->lru, &h->hugepage_freelists[nid]);
533 h->free_huge_pages++;
534 h->free_huge_pages_node[nid]++;
537 static struct page *dequeue_huge_page_vma(struct hstate *h,
538 struct vm_area_struct *vma,
539 unsigned long address, int avoid_reserve)
541 int nid;
542 struct page *page = NULL;
543 struct mempolicy *mpol;
544 nodemask_t *nodemask;
545 struct zonelist *zonelist = huge_zonelist(vma, address,
546 htlb_alloc_mask, &mpol, &nodemask);
547 struct zone *zone;
548 struct zoneref *z;
551 * A child process with MAP_PRIVATE mappings created by their parent
552 * have no page reserves. This check ensures that reservations are
553 * not "stolen". The child may still get SIGKILLed
555 if (!vma_has_reserves(vma) &&
556 h->free_huge_pages - h->resv_huge_pages == 0)
557 return NULL;
559 /* If reserves cannot be used, ensure enough pages are in the pool */
560 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
561 return NULL;
563 for_each_zone_zonelist_nodemask(zone, z, zonelist,
564 MAX_NR_ZONES - 1, nodemask) {
565 nid = zone_to_nid(zone);
566 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
567 !list_empty(&h->hugepage_freelists[nid])) {
568 page = list_entry(h->hugepage_freelists[nid].next,
569 struct page, lru);
570 list_del(&page->lru);
571 h->free_huge_pages--;
572 h->free_huge_pages_node[nid]--;
574 if (!avoid_reserve)
575 decrement_hugepage_resv_vma(h, vma);
577 break;
580 mpol_cond_put(mpol);
581 return page;
584 static void update_and_free_page(struct hstate *h, struct page *page)
586 int i;
588 VM_BUG_ON(h->order >= MAX_ORDER);
590 h->nr_huge_pages--;
591 h->nr_huge_pages_node[page_to_nid(page)]--;
592 for (i = 0; i < pages_per_huge_page(h); i++) {
593 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
594 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
595 1 << PG_private | 1<< PG_writeback);
597 set_compound_page_dtor(page, NULL);
598 set_page_refcounted(page);
599 arch_release_hugepage(page);
600 __free_pages(page, huge_page_order(h));
603 struct hstate *size_to_hstate(unsigned long size)
605 struct hstate *h;
607 for_each_hstate(h) {
608 if (huge_page_size(h) == size)
609 return h;
611 return NULL;
614 static void free_huge_page(struct page *page)
617 * Can't pass hstate in here because it is called from the
618 * compound page destructor.
620 struct hstate *h = page_hstate(page);
621 int nid = page_to_nid(page);
622 struct hugepage_subpool *spool =
623 (struct hugepage_subpool *)page_private(page);
625 set_page_private(page, 0);
626 page->mapping = NULL;
627 BUG_ON(page_count(page));
628 INIT_LIST_HEAD(&page->lru);
630 spin_lock(&hugetlb_lock);
631 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
632 update_and_free_page(h, page);
633 h->surplus_huge_pages--;
634 h->surplus_huge_pages_node[nid]--;
635 } else {
636 enqueue_huge_page(h, page);
638 spin_unlock(&hugetlb_lock);
639 hugepage_subpool_put_pages(spool, 1);
642 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
644 set_compound_page_dtor(page, free_huge_page);
645 spin_lock(&hugetlb_lock);
646 h->nr_huge_pages++;
647 h->nr_huge_pages_node[nid]++;
648 spin_unlock(&hugetlb_lock);
649 put_page(page); /* free it into the hugepage allocator */
652 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
654 int i;
655 int nr_pages = 1 << order;
656 struct page *p = page + 1;
658 /* we rely on prep_new_huge_page to set the destructor */
659 set_compound_order(page, order);
660 __SetPageHead(page);
661 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
662 __SetPageTail(p);
663 p->first_page = page;
667 int PageHuge(struct page *page)
669 compound_page_dtor *dtor;
671 if (!PageCompound(page))
672 return 0;
674 page = compound_head(page);
675 dtor = get_compound_page_dtor(page);
677 return dtor == free_huge_page;
680 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
682 struct page *page;
684 if (h->order >= MAX_ORDER)
685 return NULL;
687 page = alloc_pages_exact_node(nid,
688 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
689 __GFP_REPEAT|__GFP_NOWARN,
690 huge_page_order(h));
691 if (page) {
692 if (arch_prepare_hugepage(page)) {
693 __free_pages(page, huge_page_order(h));
694 return NULL;
696 prep_new_huge_page(h, page, nid);
699 return page;
703 * Use a helper variable to find the next node and then
704 * copy it back to next_nid_to_alloc afterwards:
705 * otherwise there's a window in which a racer might
706 * pass invalid nid MAX_NUMNODES to alloc_pages_exact_node.
707 * But we don't need to use a spin_lock here: it really
708 * doesn't matter if occasionally a racer chooses the
709 * same nid as we do. Move nid forward in the mask even
710 * if we just successfully allocated a hugepage so that
711 * the next caller gets hugepages on the next node.
713 static int hstate_next_node_to_alloc(struct hstate *h)
715 int next_nid;
716 next_nid = next_node(h->next_nid_to_alloc, node_online_map);
717 if (next_nid == MAX_NUMNODES)
718 next_nid = first_node(node_online_map);
719 h->next_nid_to_alloc = next_nid;
720 return next_nid;
723 static int alloc_fresh_huge_page(struct hstate *h)
725 struct page *page;
726 int start_nid;
727 int next_nid;
728 int ret = 0;
730 start_nid = h->next_nid_to_alloc;
731 next_nid = start_nid;
733 do {
734 page = alloc_fresh_huge_page_node(h, next_nid);
735 if (page)
736 ret = 1;
737 next_nid = hstate_next_node_to_alloc(h);
738 } while (!page && next_nid != start_nid);
740 if (ret)
741 count_vm_event(HTLB_BUDDY_PGALLOC);
742 else
743 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
745 return ret;
749 * helper for free_pool_huge_page() - find next node
750 * from which to free a huge page
752 static int hstate_next_node_to_free(struct hstate *h)
754 int next_nid;
755 next_nid = next_node(h->next_nid_to_free, node_online_map);
756 if (next_nid == MAX_NUMNODES)
757 next_nid = first_node(node_online_map);
758 h->next_nid_to_free = next_nid;
759 return next_nid;
763 * Free huge page from pool from next node to free.
764 * Attempt to keep persistent huge pages more or less
765 * balanced over allowed nodes.
766 * Called with hugetlb_lock locked.
768 static int free_pool_huge_page(struct hstate *h, bool acct_surplus)
770 int start_nid;
771 int next_nid;
772 int ret = 0;
774 start_nid = h->next_nid_to_free;
775 next_nid = start_nid;
777 do {
779 * If we're returning unused surplus pages, only examine
780 * nodes with surplus pages.
782 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
783 !list_empty(&h->hugepage_freelists[next_nid])) {
784 struct page *page =
785 list_entry(h->hugepage_freelists[next_nid].next,
786 struct page, lru);
787 list_del(&page->lru);
788 h->free_huge_pages--;
789 h->free_huge_pages_node[next_nid]--;
790 if (acct_surplus) {
791 h->surplus_huge_pages--;
792 h->surplus_huge_pages_node[next_nid]--;
794 update_and_free_page(h, page);
795 ret = 1;
797 next_nid = hstate_next_node_to_free(h);
798 } while (!ret && next_nid != start_nid);
800 return ret;
803 static struct page *alloc_buddy_huge_page(struct hstate *h,
804 struct vm_area_struct *vma, unsigned long address)
806 struct page *page;
807 unsigned int nid;
809 if (h->order >= MAX_ORDER)
810 return NULL;
813 * Assume we will successfully allocate the surplus page to
814 * prevent racing processes from causing the surplus to exceed
815 * overcommit
817 * This however introduces a different race, where a process B
818 * tries to grow the static hugepage pool while alloc_pages() is
819 * called by process A. B will only examine the per-node
820 * counters in determining if surplus huge pages can be
821 * converted to normal huge pages in adjust_pool_surplus(). A
822 * won't be able to increment the per-node counter, until the
823 * lock is dropped by B, but B doesn't drop hugetlb_lock until
824 * no more huge pages can be converted from surplus to normal
825 * state (and doesn't try to convert again). Thus, we have a
826 * case where a surplus huge page exists, the pool is grown, and
827 * the surplus huge page still exists after, even though it
828 * should just have been converted to a normal huge page. This
829 * does not leak memory, though, as the hugepage will be freed
830 * once it is out of use. It also does not allow the counters to
831 * go out of whack in adjust_pool_surplus() as we don't modify
832 * the node values until we've gotten the hugepage and only the
833 * per-node value is checked there.
835 spin_lock(&hugetlb_lock);
836 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
837 spin_unlock(&hugetlb_lock);
838 return NULL;
839 } else {
840 h->nr_huge_pages++;
841 h->surplus_huge_pages++;
843 spin_unlock(&hugetlb_lock);
845 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
846 __GFP_REPEAT|__GFP_NOWARN,
847 huge_page_order(h));
849 if (page && arch_prepare_hugepage(page)) {
850 __free_pages(page, huge_page_order(h));
851 return NULL;
854 spin_lock(&hugetlb_lock);
855 if (page) {
857 * This page is now managed by the hugetlb allocator and has
858 * no users -- drop the buddy allocator's reference.
860 put_page_testzero(page);
861 VM_BUG_ON(page_count(page));
862 nid = page_to_nid(page);
863 set_compound_page_dtor(page, free_huge_page);
865 * We incremented the global counters already
867 h->nr_huge_pages_node[nid]++;
868 h->surplus_huge_pages_node[nid]++;
869 __count_vm_event(HTLB_BUDDY_PGALLOC);
870 } else {
871 h->nr_huge_pages--;
872 h->surplus_huge_pages--;
873 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
875 spin_unlock(&hugetlb_lock);
877 return page;
881 * Increase the hugetlb pool such that it can accomodate a reservation
882 * of size 'delta'.
884 static int gather_surplus_pages(struct hstate *h, int delta)
886 struct list_head surplus_list;
887 struct page *page, *tmp;
888 int ret, i;
889 int needed, allocated;
891 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
892 if (needed <= 0) {
893 h->resv_huge_pages += delta;
894 return 0;
897 allocated = 0;
898 INIT_LIST_HEAD(&surplus_list);
900 ret = -ENOMEM;
901 retry:
902 spin_unlock(&hugetlb_lock);
903 for (i = 0; i < needed; i++) {
904 page = alloc_buddy_huge_page(h, NULL, 0);
905 if (!page) {
907 * We were not able to allocate enough pages to
908 * satisfy the entire reservation so we free what
909 * we've allocated so far.
911 spin_lock(&hugetlb_lock);
912 needed = 0;
913 goto free;
916 list_add(&page->lru, &surplus_list);
918 allocated += needed;
921 * After retaking hugetlb_lock, we need to recalculate 'needed'
922 * because either resv_huge_pages or free_huge_pages may have changed.
924 spin_lock(&hugetlb_lock);
925 needed = (h->resv_huge_pages + delta) -
926 (h->free_huge_pages + allocated);
927 if (needed > 0)
928 goto retry;
931 * The surplus_list now contains _at_least_ the number of extra pages
932 * needed to accomodate the reservation. Add the appropriate number
933 * of pages to the hugetlb pool and free the extras back to the buddy
934 * allocator. Commit the entire reservation here to prevent another
935 * process from stealing the pages as they are added to the pool but
936 * before they are reserved.
938 needed += allocated;
939 h->resv_huge_pages += delta;
940 ret = 0;
941 free:
942 /* Free the needed pages to the hugetlb pool */
943 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
944 if ((--needed) < 0)
945 break;
946 list_del(&page->lru);
947 enqueue_huge_page(h, page);
950 /* Free unnecessary surplus pages to the buddy allocator */
951 if (!list_empty(&surplus_list)) {
952 spin_unlock(&hugetlb_lock);
953 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
954 list_del(&page->lru);
956 * The page has a reference count of zero already, so
957 * call free_huge_page directly instead of using
958 * put_page. This must be done with hugetlb_lock
959 * unlocked which is safe because free_huge_page takes
960 * hugetlb_lock before deciding how to free the page.
962 free_huge_page(page);
964 spin_lock(&hugetlb_lock);
967 return ret;
971 * When releasing a hugetlb pool reservation, any surplus pages that were
972 * allocated to satisfy the reservation must be explicitly freed if they were
973 * never used.
974 * Called with hugetlb_lock held.
976 static void return_unused_surplus_pages(struct hstate *h,
977 unsigned long unused_resv_pages)
979 unsigned long nr_pages;
981 /* Uncommit the reservation */
982 h->resv_huge_pages -= unused_resv_pages;
984 /* Cannot return gigantic pages currently */
985 if (h->order >= MAX_ORDER)
986 return;
988 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
991 * We want to release as many surplus pages as possible, spread
992 * evenly across all nodes. Iterate across all nodes until we
993 * can no longer free unreserved surplus pages. This occurs when
994 * the nodes with surplus pages have no free pages.
995 * free_pool_huge_page() will balance the the frees across the
996 * on-line nodes for us and will handle the hstate accounting.
998 while (nr_pages--) {
999 if (!free_pool_huge_page(h, 1))
1000 break;
1005 * Determine if the huge page at addr within the vma has an associated
1006 * reservation. Where it does not we will need to logically increase
1007 * reservation and actually increase subpool usage before an allocation
1008 * can occur. Where any new reservation would be required the
1009 * reservation change is prepared, but not committed. Once the page
1010 * has been allocated from the subpool and instantiated the change should
1011 * be committed via vma_commit_reservation. No action is required on
1012 * failure.
1014 static long vma_needs_reservation(struct hstate *h,
1015 struct vm_area_struct *vma, unsigned long addr)
1017 struct address_space *mapping = vma->vm_file->f_mapping;
1018 struct inode *inode = mapping->host;
1020 if (vma->vm_flags & VM_MAYSHARE) {
1021 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1022 return region_chg(&inode->i_mapping->private_list,
1023 idx, idx + 1);
1025 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1026 return 1;
1028 } else {
1029 long err;
1030 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1031 struct resv_map *reservations = vma_resv_map(vma);
1033 err = region_chg(&reservations->regions, idx, idx + 1);
1034 if (err < 0)
1035 return err;
1036 return 0;
1039 static void vma_commit_reservation(struct hstate *h,
1040 struct vm_area_struct *vma, unsigned long addr)
1042 struct address_space *mapping = vma->vm_file->f_mapping;
1043 struct inode *inode = mapping->host;
1045 if (vma->vm_flags & VM_MAYSHARE) {
1046 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1047 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1049 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1050 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1051 struct resv_map *reservations = vma_resv_map(vma);
1053 /* Mark this page used in the map. */
1054 region_add(&reservations->regions, idx, idx + 1);
1058 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1059 unsigned long addr, int avoid_reserve)
1061 struct hugepage_subpool *spool = subpool_vma(vma);
1062 struct hstate *h = hstate_vma(vma);
1063 struct page *page;
1064 long chg;
1067 * Processes that did not create the mapping will have no
1068 * reserves and will not have accounted against subpool
1069 * limit. Check that the subpool limit can be made before
1070 * satisfying the allocation MAP_NORESERVE mappings may also
1071 * need pages and subpool limit allocated allocated if no reserve
1072 * mapping overlaps.
1074 chg = vma_needs_reservation(h, vma, addr);
1075 if (chg < 0)
1076 return ERR_PTR(-VM_FAULT_OOM);
1077 if (chg)
1078 if (hugepage_subpool_get_pages(spool, chg))
1079 return ERR_PTR(-VM_FAULT_SIGBUS);
1081 spin_lock(&hugetlb_lock);
1082 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1083 spin_unlock(&hugetlb_lock);
1085 if (!page) {
1086 page = alloc_buddy_huge_page(h, vma, addr);
1087 if (!page) {
1088 hugepage_subpool_put_pages(spool, chg);
1089 return ERR_PTR(-VM_FAULT_SIGBUS);
1093 set_page_refcounted(page);
1094 set_page_private(page, (unsigned long)spool);
1096 vma_commit_reservation(h, vma, addr);
1098 return page;
1101 int __weak alloc_bootmem_huge_page(struct hstate *h)
1103 struct huge_bootmem_page *m;
1104 int nr_nodes = nodes_weight(node_online_map);
1106 while (nr_nodes) {
1107 void *addr;
1109 addr = __alloc_bootmem_node_nopanic(
1110 NODE_DATA(h->next_nid_to_alloc),
1111 huge_page_size(h), huge_page_size(h), 0);
1113 hstate_next_node_to_alloc(h);
1114 if (addr) {
1116 * Use the beginning of the huge page to store the
1117 * huge_bootmem_page struct (until gather_bootmem
1118 * puts them into the mem_map).
1120 m = addr;
1121 goto found;
1123 nr_nodes--;
1125 return 0;
1127 found:
1128 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1129 /* Put them into a private list first because mem_map is not up yet */
1130 list_add(&m->list, &huge_boot_pages);
1131 m->hstate = h;
1132 return 1;
1135 static void prep_compound_huge_page(struct page *page, int order)
1137 if (unlikely(order > (MAX_ORDER - 1)))
1138 prep_compound_gigantic_page(page, order);
1139 else
1140 prep_compound_page(page, order);
1143 /* Put bootmem huge pages into the standard lists after mem_map is up */
1144 static void __init gather_bootmem_prealloc(void)
1146 struct huge_bootmem_page *m;
1148 list_for_each_entry(m, &huge_boot_pages, list) {
1149 struct page *page = virt_to_page(m);
1150 struct hstate *h = m->hstate;
1151 __ClearPageReserved(page);
1152 WARN_ON(page_count(page) != 1);
1153 prep_compound_huge_page(page, h->order);
1154 prep_new_huge_page(h, page, page_to_nid(page));
1156 * If we had gigantic hugepages allocated at boot time, we need
1157 * to restore the 'stolen' pages to totalram_pages in order to
1158 * fix confusing memory reports from free(1) and another
1159 * side-effects, like CommitLimit going negative.
1161 if (h->order > (MAX_ORDER - 1))
1162 totalram_pages += 1 << h->order;
1166 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1168 unsigned long i;
1170 for (i = 0; i < h->max_huge_pages; ++i) {
1171 if (h->order >= MAX_ORDER) {
1172 if (!alloc_bootmem_huge_page(h))
1173 break;
1174 } else if (!alloc_fresh_huge_page(h))
1175 break;
1177 h->max_huge_pages = i;
1180 static void __init hugetlb_init_hstates(void)
1182 struct hstate *h;
1184 for_each_hstate(h) {
1185 /* oversize hugepages were init'ed in early boot */
1186 if (h->order < MAX_ORDER)
1187 hugetlb_hstate_alloc_pages(h);
1191 static char * __init memfmt(char *buf, unsigned long n)
1193 if (n >= (1UL << 30))
1194 sprintf(buf, "%lu GB", n >> 30);
1195 else if (n >= (1UL << 20))
1196 sprintf(buf, "%lu MB", n >> 20);
1197 else
1198 sprintf(buf, "%lu KB", n >> 10);
1199 return buf;
1202 static void __init report_hugepages(void)
1204 struct hstate *h;
1206 for_each_hstate(h) {
1207 char buf[32];
1208 printk(KERN_INFO "HugeTLB registered %s page size, "
1209 "pre-allocated %ld pages\n",
1210 memfmt(buf, huge_page_size(h)),
1211 h->free_huge_pages);
1215 #ifdef CONFIG_HIGHMEM
1216 static void try_to_free_low(struct hstate *h, unsigned long count)
1218 int i;
1220 if (h->order >= MAX_ORDER)
1221 return;
1223 for (i = 0; i < MAX_NUMNODES; ++i) {
1224 struct page *page, *next;
1225 struct list_head *freel = &h->hugepage_freelists[i];
1226 list_for_each_entry_safe(page, next, freel, lru) {
1227 if (count >= h->nr_huge_pages)
1228 return;
1229 if (PageHighMem(page))
1230 continue;
1231 list_del(&page->lru);
1232 update_and_free_page(h, page);
1233 h->free_huge_pages--;
1234 h->free_huge_pages_node[page_to_nid(page)]--;
1238 #else
1239 static inline void try_to_free_low(struct hstate *h, unsigned long count)
1242 #endif
1245 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1246 * balanced by operating on them in a round-robin fashion.
1247 * Returns 1 if an adjustment was made.
1249 static int adjust_pool_surplus(struct hstate *h, int delta)
1251 int start_nid, next_nid;
1252 int ret = 0;
1254 VM_BUG_ON(delta != -1 && delta != 1);
1256 if (delta < 0)
1257 start_nid = h->next_nid_to_alloc;
1258 else
1259 start_nid = h->next_nid_to_free;
1260 next_nid = start_nid;
1262 do {
1263 int nid = next_nid;
1264 if (delta < 0) {
1265 next_nid = hstate_next_node_to_alloc(h);
1267 * To shrink on this node, there must be a surplus page
1269 if (!h->surplus_huge_pages_node[nid])
1270 continue;
1272 if (delta > 0) {
1273 next_nid = hstate_next_node_to_free(h);
1275 * Surplus cannot exceed the total number of pages
1277 if (h->surplus_huge_pages_node[nid] >=
1278 h->nr_huge_pages_node[nid])
1279 continue;
1282 h->surplus_huge_pages += delta;
1283 h->surplus_huge_pages_node[nid] += delta;
1284 ret = 1;
1285 break;
1286 } while (next_nid != start_nid);
1288 return ret;
1291 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1292 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1294 unsigned long min_count, ret;
1296 if (h->order >= MAX_ORDER)
1297 return h->max_huge_pages;
1300 * Increase the pool size
1301 * First take pages out of surplus state. Then make up the
1302 * remaining difference by allocating fresh huge pages.
1304 * We might race with alloc_buddy_huge_page() here and be unable
1305 * to convert a surplus huge page to a normal huge page. That is
1306 * not critical, though, it just means the overall size of the
1307 * pool might be one hugepage larger than it needs to be, but
1308 * within all the constraints specified by the sysctls.
1310 spin_lock(&hugetlb_lock);
1311 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1312 if (!adjust_pool_surplus(h, -1))
1313 break;
1316 while (count > persistent_huge_pages(h)) {
1318 * If this allocation races such that we no longer need the
1319 * page, free_huge_page will handle it by freeing the page
1320 * and reducing the surplus.
1322 spin_unlock(&hugetlb_lock);
1323 ret = alloc_fresh_huge_page(h);
1324 spin_lock(&hugetlb_lock);
1325 if (!ret)
1326 goto out;
1331 * Decrease the pool size
1332 * First return free pages to the buddy allocator (being careful
1333 * to keep enough around to satisfy reservations). Then place
1334 * pages into surplus state as needed so the pool will shrink
1335 * to the desired size as pages become free.
1337 * By placing pages into the surplus state independent of the
1338 * overcommit value, we are allowing the surplus pool size to
1339 * exceed overcommit. There are few sane options here. Since
1340 * alloc_buddy_huge_page() is checking the global counter,
1341 * though, we'll note that we're not allowed to exceed surplus
1342 * and won't grow the pool anywhere else. Not until one of the
1343 * sysctls are changed, or the surplus pages go out of use.
1345 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1346 min_count = max(count, min_count);
1347 try_to_free_low(h, min_count);
1348 while (min_count < persistent_huge_pages(h)) {
1349 if (!free_pool_huge_page(h, 0))
1350 break;
1352 while (count < persistent_huge_pages(h)) {
1353 if (!adjust_pool_surplus(h, 1))
1354 break;
1356 out:
1357 ret = persistent_huge_pages(h);
1358 spin_unlock(&hugetlb_lock);
1359 return ret;
1362 #define HSTATE_ATTR_RO(_name) \
1363 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1365 #define HSTATE_ATTR(_name) \
1366 static struct kobj_attribute _name##_attr = \
1367 __ATTR(_name, 0644, _name##_show, _name##_store)
1369 static struct kobject *hugepages_kobj;
1370 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1372 static struct hstate *kobj_to_hstate(struct kobject *kobj)
1374 int i;
1375 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1376 if (hstate_kobjs[i] == kobj)
1377 return &hstates[i];
1378 BUG();
1379 return NULL;
1382 static ssize_t nr_hugepages_show(struct kobject *kobj,
1383 struct kobj_attribute *attr, char *buf)
1385 struct hstate *h = kobj_to_hstate(kobj);
1386 return sprintf(buf, "%lu\n", h->nr_huge_pages);
1388 static ssize_t nr_hugepages_store(struct kobject *kobj,
1389 struct kobj_attribute *attr, const char *buf, size_t count)
1391 int err;
1392 unsigned long input;
1393 struct hstate *h = kobj_to_hstate(kobj);
1395 err = strict_strtoul(buf, 10, &input);
1396 if (err)
1397 return 0;
1399 h->max_huge_pages = set_max_huge_pages(h, input);
1401 return count;
1403 HSTATE_ATTR(nr_hugepages);
1405 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1406 struct kobj_attribute *attr, char *buf)
1408 struct hstate *h = kobj_to_hstate(kobj);
1409 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1411 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1412 struct kobj_attribute *attr, const char *buf, size_t count)
1414 int err;
1415 unsigned long input;
1416 struct hstate *h = kobj_to_hstate(kobj);
1418 err = strict_strtoul(buf, 10, &input);
1419 if (err)
1420 return 0;
1422 spin_lock(&hugetlb_lock);
1423 h->nr_overcommit_huge_pages = input;
1424 spin_unlock(&hugetlb_lock);
1426 return count;
1428 HSTATE_ATTR(nr_overcommit_hugepages);
1430 static ssize_t free_hugepages_show(struct kobject *kobj,
1431 struct kobj_attribute *attr, char *buf)
1433 struct hstate *h = kobj_to_hstate(kobj);
1434 return sprintf(buf, "%lu\n", h->free_huge_pages);
1436 HSTATE_ATTR_RO(free_hugepages);
1438 static ssize_t resv_hugepages_show(struct kobject *kobj,
1439 struct kobj_attribute *attr, char *buf)
1441 struct hstate *h = kobj_to_hstate(kobj);
1442 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1444 HSTATE_ATTR_RO(resv_hugepages);
1446 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1447 struct kobj_attribute *attr, char *buf)
1449 struct hstate *h = kobj_to_hstate(kobj);
1450 return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1452 HSTATE_ATTR_RO(surplus_hugepages);
1454 static struct attribute *hstate_attrs[] = {
1455 &nr_hugepages_attr.attr,
1456 &nr_overcommit_hugepages_attr.attr,
1457 &free_hugepages_attr.attr,
1458 &resv_hugepages_attr.attr,
1459 &surplus_hugepages_attr.attr,
1460 NULL,
1463 static struct attribute_group hstate_attr_group = {
1464 .attrs = hstate_attrs,
1467 static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1469 int retval;
1471 hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1472 hugepages_kobj);
1473 if (!hstate_kobjs[h - hstates])
1474 return -ENOMEM;
1476 retval = sysfs_create_group(hstate_kobjs[h - hstates],
1477 &hstate_attr_group);
1478 if (retval)
1479 kobject_put(hstate_kobjs[h - hstates]);
1481 return retval;
1484 static void __init hugetlb_sysfs_init(void)
1486 struct hstate *h;
1487 int err;
1489 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1490 if (!hugepages_kobj)
1491 return;
1493 for_each_hstate(h) {
1494 err = hugetlb_sysfs_add_hstate(h);
1495 if (err)
1496 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1497 h->name);
1501 static void __exit hugetlb_exit(void)
1503 struct hstate *h;
1505 for_each_hstate(h) {
1506 kobject_put(hstate_kobjs[h - hstates]);
1509 kobject_put(hugepages_kobj);
1511 module_exit(hugetlb_exit);
1513 static int __init hugetlb_init(void)
1515 /* Some platform decide whether they support huge pages at boot
1516 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1517 * there is no such support
1519 if (HPAGE_SHIFT == 0)
1520 return 0;
1522 if (!size_to_hstate(default_hstate_size)) {
1523 default_hstate_size = HPAGE_SIZE;
1524 if (!size_to_hstate(default_hstate_size))
1525 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1527 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1528 if (default_hstate_max_huge_pages)
1529 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1531 hugetlb_init_hstates();
1533 gather_bootmem_prealloc();
1535 report_hugepages();
1537 hugetlb_sysfs_init();
1539 return 0;
1541 module_init(hugetlb_init);
1543 /* Should be called on processing a hugepagesz=... option */
1544 void __init hugetlb_add_hstate(unsigned order)
1546 struct hstate *h;
1547 unsigned long i;
1549 if (size_to_hstate(PAGE_SIZE << order)) {
1550 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1551 return;
1553 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1554 BUG_ON(order == 0);
1555 h = &hstates[max_hstate++];
1556 h->order = order;
1557 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1558 h->nr_huge_pages = 0;
1559 h->free_huge_pages = 0;
1560 for (i = 0; i < MAX_NUMNODES; ++i)
1561 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1562 h->next_nid_to_alloc = first_node(node_online_map);
1563 h->next_nid_to_free = first_node(node_online_map);
1564 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1565 huge_page_size(h)/1024);
1567 parsed_hstate = h;
1570 static int __init hugetlb_nrpages_setup(char *s)
1572 unsigned long *mhp;
1573 static unsigned long *last_mhp;
1576 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1577 * so this hugepages= parameter goes to the "default hstate".
1579 if (!max_hstate)
1580 mhp = &default_hstate_max_huge_pages;
1581 else
1582 mhp = &parsed_hstate->max_huge_pages;
1584 if (mhp == last_mhp) {
1585 printk(KERN_WARNING "hugepages= specified twice without "
1586 "interleaving hugepagesz=, ignoring\n");
1587 return 1;
1590 if (sscanf(s, "%lu", mhp) <= 0)
1591 *mhp = 0;
1594 * Global state is always initialized later in hugetlb_init.
1595 * But we need to allocate >= MAX_ORDER hstates here early to still
1596 * use the bootmem allocator.
1598 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1599 hugetlb_hstate_alloc_pages(parsed_hstate);
1601 last_mhp = mhp;
1603 return 1;
1605 __setup("hugepages=", hugetlb_nrpages_setup);
1607 static int __init hugetlb_default_setup(char *s)
1609 default_hstate_size = memparse(s, &s);
1610 return 1;
1612 __setup("default_hugepagesz=", hugetlb_default_setup);
1614 static unsigned int cpuset_mems_nr(unsigned int *array)
1616 int node;
1617 unsigned int nr = 0;
1619 for_each_node_mask(node, cpuset_current_mems_allowed)
1620 nr += array[node];
1622 return nr;
1625 #ifdef CONFIG_SYSCTL
1626 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1627 void __user *buffer,
1628 size_t *length, loff_t *ppos)
1630 struct hstate *h = &default_hstate;
1631 unsigned long tmp;
1633 if (!write)
1634 tmp = h->max_huge_pages;
1636 table->data = &tmp;
1637 table->maxlen = sizeof(unsigned long);
1638 proc_doulongvec_minmax(table, write, buffer, length, ppos);
1640 if (write)
1641 h->max_huge_pages = set_max_huge_pages(h, tmp);
1643 return 0;
1646 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1647 void __user *buffer,
1648 size_t *length, loff_t *ppos)
1650 proc_dointvec(table, write, buffer, length, ppos);
1651 if (hugepages_treat_as_movable)
1652 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1653 else
1654 htlb_alloc_mask = GFP_HIGHUSER;
1655 return 0;
1658 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1659 void __user *buffer,
1660 size_t *length, loff_t *ppos)
1662 struct hstate *h = &default_hstate;
1663 unsigned long tmp;
1665 if (!write)
1666 tmp = h->nr_overcommit_huge_pages;
1668 table->data = &tmp;
1669 table->maxlen = sizeof(unsigned long);
1670 proc_doulongvec_minmax(table, write, buffer, length, ppos);
1672 if (write) {
1673 spin_lock(&hugetlb_lock);
1674 h->nr_overcommit_huge_pages = tmp;
1675 spin_unlock(&hugetlb_lock);
1678 return 0;
1681 #endif /* CONFIG_SYSCTL */
1683 void hugetlb_report_meminfo(struct seq_file *m)
1685 struct hstate *h = &default_hstate;
1686 seq_printf(m,
1687 "HugePages_Total: %5lu\n"
1688 "HugePages_Free: %5lu\n"
1689 "HugePages_Rsvd: %5lu\n"
1690 "HugePages_Surp: %5lu\n"
1691 "Hugepagesize: %8lu kB\n",
1692 h->nr_huge_pages,
1693 h->free_huge_pages,
1694 h->resv_huge_pages,
1695 h->surplus_huge_pages,
1696 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1699 int hugetlb_report_node_meminfo(int nid, char *buf)
1701 struct hstate *h = &default_hstate;
1702 return sprintf(buf,
1703 "Node %d HugePages_Total: %5u\n"
1704 "Node %d HugePages_Free: %5u\n"
1705 "Node %d HugePages_Surp: %5u\n",
1706 nid, h->nr_huge_pages_node[nid],
1707 nid, h->free_huge_pages_node[nid],
1708 nid, h->surplus_huge_pages_node[nid]);
1711 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1712 unsigned long hugetlb_total_pages(void)
1714 struct hstate *h = &default_hstate;
1715 return h->nr_huge_pages * pages_per_huge_page(h);
1718 static int hugetlb_acct_memory(struct hstate *h, long delta)
1720 int ret = -ENOMEM;
1722 spin_lock(&hugetlb_lock);
1724 * When cpuset is configured, it breaks the strict hugetlb page
1725 * reservation as the accounting is done on a global variable. Such
1726 * reservation is completely rubbish in the presence of cpuset because
1727 * the reservation is not checked against page availability for the
1728 * current cpuset. Application can still potentially OOM'ed by kernel
1729 * with lack of free htlb page in cpuset that the task is in.
1730 * Attempt to enforce strict accounting with cpuset is almost
1731 * impossible (or too ugly) because cpuset is too fluid that
1732 * task or memory node can be dynamically moved between cpusets.
1734 * The change of semantics for shared hugetlb mapping with cpuset is
1735 * undesirable. However, in order to preserve some of the semantics,
1736 * we fall back to check against current free page availability as
1737 * a best attempt and hopefully to minimize the impact of changing
1738 * semantics that cpuset has.
1740 if (delta > 0) {
1741 if (gather_surplus_pages(h, delta) < 0)
1742 goto out;
1744 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1745 return_unused_surplus_pages(h, delta);
1746 goto out;
1750 ret = 0;
1751 if (delta < 0)
1752 return_unused_surplus_pages(h, (unsigned long) -delta);
1754 out:
1755 spin_unlock(&hugetlb_lock);
1756 return ret;
1759 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1761 struct resv_map *reservations = vma_resv_map(vma);
1764 * This new VMA should share its siblings reservation map if present.
1765 * The VMA will only ever have a valid reservation map pointer where
1766 * it is being copied for another still existing VMA. As that VMA
1767 * has a reference to the reservation map it cannot dissappear until
1768 * after this open call completes. It is therefore safe to take a
1769 * new reference here without additional locking.
1771 if (reservations)
1772 kref_get(&reservations->refs);
1775 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1777 struct hstate *h = hstate_vma(vma);
1778 struct resv_map *reservations = vma_resv_map(vma);
1779 struct hugepage_subpool *spool = subpool_vma(vma);
1780 unsigned long reserve;
1781 unsigned long start;
1782 unsigned long end;
1784 if (reservations) {
1785 start = vma_hugecache_offset(h, vma, vma->vm_start);
1786 end = vma_hugecache_offset(h, vma, vma->vm_end);
1788 reserve = (end - start) -
1789 region_count(&reservations->regions, start, end);
1791 kref_put(&reservations->refs, resv_map_release);
1793 if (reserve) {
1794 hugetlb_acct_memory(h, -reserve);
1795 hugepage_subpool_put_pages(spool, reserve);
1801 * We cannot handle pagefaults against hugetlb pages at all. They cause
1802 * handle_mm_fault() to try to instantiate regular-sized pages in the
1803 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1804 * this far.
1806 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1808 BUG();
1809 return 0;
1812 const struct vm_operations_struct hugetlb_vm_ops = {
1813 .fault = hugetlb_vm_op_fault,
1814 .open = hugetlb_vm_op_open,
1815 .close = hugetlb_vm_op_close,
1818 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1819 int writable)
1821 pte_t entry;
1823 if (writable) {
1824 entry =
1825 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1826 } else {
1827 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1829 entry = pte_mkyoung(entry);
1830 entry = pte_mkhuge(entry);
1832 return entry;
1835 static void set_huge_ptep_writable(struct vm_area_struct *vma,
1836 unsigned long address, pte_t *ptep)
1838 pte_t entry;
1840 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1841 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1842 update_mmu_cache(vma, address, entry);
1847 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1848 struct vm_area_struct *vma)
1850 pte_t *src_pte, *dst_pte, entry;
1851 struct page *ptepage;
1852 unsigned long addr;
1853 int cow;
1854 struct hstate *h = hstate_vma(vma);
1855 unsigned long sz = huge_page_size(h);
1857 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1859 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1860 src_pte = huge_pte_offset(src, addr);
1861 if (!src_pte)
1862 continue;
1863 dst_pte = huge_pte_alloc(dst, addr, sz);
1864 if (!dst_pte)
1865 goto nomem;
1867 /* If the pagetables are shared don't copy or take references */
1868 if (dst_pte == src_pte)
1869 continue;
1871 spin_lock(&dst->page_table_lock);
1872 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1873 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1874 if (cow)
1875 huge_ptep_set_wrprotect(src, addr, src_pte);
1876 entry = huge_ptep_get(src_pte);
1877 ptepage = pte_page(entry);
1878 get_page(ptepage);
1879 set_huge_pte_at(dst, addr, dst_pte, entry);
1881 spin_unlock(&src->page_table_lock);
1882 spin_unlock(&dst->page_table_lock);
1884 return 0;
1886 nomem:
1887 return -ENOMEM;
1890 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1891 unsigned long end, struct page *ref_page)
1893 struct mm_struct *mm = vma->vm_mm;
1894 unsigned long address;
1895 pte_t *ptep;
1896 pte_t pte;
1897 struct page *page;
1898 struct page *tmp;
1899 struct hstate *h = hstate_vma(vma);
1900 unsigned long sz = huge_page_size(h);
1903 * A page gathering list, protected by per file i_mmap_lock. The
1904 * lock is used to avoid list corruption from multiple unmapping
1905 * of the same page since we are using page->lru.
1907 LIST_HEAD(page_list);
1909 WARN_ON(!is_vm_hugetlb_page(vma));
1910 BUG_ON(start & ~huge_page_mask(h));
1911 BUG_ON(end & ~huge_page_mask(h));
1913 mmu_notifier_invalidate_range_start(mm, start, end);
1914 spin_lock(&mm->page_table_lock);
1915 for (address = start; address < end; address += sz) {
1916 ptep = huge_pte_offset(mm, address);
1917 if (!ptep)
1918 continue;
1920 if (huge_pmd_unshare(mm, &address, ptep))
1921 continue;
1924 * If a reference page is supplied, it is because a specific
1925 * page is being unmapped, not a range. Ensure the page we
1926 * are about to unmap is the actual page of interest.
1928 if (ref_page) {
1929 pte = huge_ptep_get(ptep);
1930 if (huge_pte_none(pte))
1931 continue;
1932 page = pte_page(pte);
1933 if (page != ref_page)
1934 continue;
1937 * Mark the VMA as having unmapped its page so that
1938 * future faults in this VMA will fail rather than
1939 * looking like data was lost
1941 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1944 pte = huge_ptep_get_and_clear(mm, address, ptep);
1945 if (huge_pte_none(pte))
1946 continue;
1948 page = pte_page(pte);
1949 if (pte_dirty(pte))
1950 set_page_dirty(page);
1951 list_add(&page->lru, &page_list);
1953 spin_unlock(&mm->page_table_lock);
1954 flush_tlb_range(vma, start, end);
1955 mmu_notifier_invalidate_range_end(mm, start, end);
1956 list_for_each_entry_safe(page, tmp, &page_list, lru) {
1957 list_del(&page->lru);
1958 put_page(page);
1962 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1963 unsigned long end, struct page *ref_page)
1965 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1966 __unmap_hugepage_range(vma, start, end, ref_page);
1967 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1971 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1972 * mappping it owns the reserve page for. The intention is to unmap the page
1973 * from other VMAs and let the children be SIGKILLed if they are faulting the
1974 * same region.
1976 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
1977 struct page *page, unsigned long address)
1979 struct hstate *h = hstate_vma(vma);
1980 struct vm_area_struct *iter_vma;
1981 struct address_space *mapping;
1982 struct prio_tree_iter iter;
1983 pgoff_t pgoff;
1986 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1987 * from page cache lookup which is in HPAGE_SIZE units.
1989 address = address & huge_page_mask(h);
1990 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1991 + (vma->vm_pgoff >> PAGE_SHIFT);
1992 mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
1994 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1995 /* Do not unmap the current VMA */
1996 if (iter_vma == vma)
1997 continue;
2000 * Unmap the page from other VMAs without their own reserves.
2001 * They get marked to be SIGKILLed if they fault in these
2002 * areas. This is because a future no-page fault on this VMA
2003 * could insert a zeroed page instead of the data existing
2004 * from the time of fork. This would look like data corruption
2006 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2007 unmap_hugepage_range(iter_vma,
2008 address, address + huge_page_size(h),
2009 page);
2012 return 1;
2015 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2016 unsigned long address, pte_t *ptep, pte_t pte,
2017 struct page *pagecache_page)
2019 struct hstate *h = hstate_vma(vma);
2020 struct page *old_page, *new_page;
2021 int avoidcopy;
2022 int outside_reserve = 0;
2024 old_page = pte_page(pte);
2026 retry_avoidcopy:
2027 /* If no-one else is actually using this page, avoid the copy
2028 * and just make the page writable */
2029 avoidcopy = (page_count(old_page) == 1);
2030 if (avoidcopy) {
2031 set_huge_ptep_writable(vma, address, ptep);
2032 return 0;
2036 * If the process that created a MAP_PRIVATE mapping is about to
2037 * perform a COW due to a shared page count, attempt to satisfy
2038 * the allocation without using the existing reserves. The pagecache
2039 * page is used to determine if the reserve at this address was
2040 * consumed or not. If reserves were used, a partial faulted mapping
2041 * at the time of fork() could consume its reserves on COW instead
2042 * of the full address range.
2044 if (!(vma->vm_flags & VM_MAYSHARE) &&
2045 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2046 old_page != pagecache_page)
2047 outside_reserve = 1;
2049 page_cache_get(old_page);
2050 new_page = alloc_huge_page(vma, address, outside_reserve);
2052 if (IS_ERR(new_page)) {
2053 page_cache_release(old_page);
2056 * If a process owning a MAP_PRIVATE mapping fails to COW,
2057 * it is due to references held by a child and an insufficient
2058 * huge page pool. To guarantee the original mappers
2059 * reliability, unmap the page from child processes. The child
2060 * may get SIGKILLed if it later faults.
2062 if (outside_reserve) {
2063 BUG_ON(huge_pte_none(pte));
2064 if (unmap_ref_private(mm, vma, old_page, address)) {
2065 BUG_ON(page_count(old_page) != 1);
2066 BUG_ON(huge_pte_none(pte));
2067 goto retry_avoidcopy;
2069 WARN_ON_ONCE(1);
2072 return -PTR_ERR(new_page);
2075 spin_unlock(&mm->page_table_lock);
2076 copy_huge_page(new_page, old_page, address, vma);
2077 __SetPageUptodate(new_page);
2078 spin_lock(&mm->page_table_lock);
2080 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2081 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2082 /* Break COW */
2083 huge_ptep_clear_flush(vma, address, ptep);
2084 set_huge_pte_at(mm, address, ptep,
2085 make_huge_pte(vma, new_page, 1));
2086 /* Make the old page be freed below */
2087 new_page = old_page;
2089 page_cache_release(new_page);
2090 page_cache_release(old_page);
2091 return 0;
2094 /* Return the pagecache page at a given address within a VMA */
2095 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2096 struct vm_area_struct *vma, unsigned long address)
2098 struct address_space *mapping;
2099 pgoff_t idx;
2101 mapping = vma->vm_file->f_mapping;
2102 idx = vma_hugecache_offset(h, vma, address);
2104 return find_lock_page(mapping, idx);
2108 * Return whether there is a pagecache page to back given address within VMA.
2109 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2111 static bool hugetlbfs_pagecache_present(struct hstate *h,
2112 struct vm_area_struct *vma, unsigned long address)
2114 struct address_space *mapping;
2115 pgoff_t idx;
2116 struct page *page;
2118 mapping = vma->vm_file->f_mapping;
2119 idx = vma_hugecache_offset(h, vma, address);
2121 page = find_get_page(mapping, idx);
2122 if (page)
2123 put_page(page);
2124 return page != NULL;
2127 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2128 unsigned long address, pte_t *ptep, unsigned int flags)
2130 struct hstate *h = hstate_vma(vma);
2131 int ret = VM_FAULT_SIGBUS;
2132 pgoff_t idx;
2133 unsigned long size;
2134 struct page *page;
2135 struct address_space *mapping;
2136 pte_t new_pte;
2139 * Currently, we are forced to kill the process in the event the
2140 * original mapper has unmapped pages from the child due to a failed
2141 * COW. Warn that such a situation has occured as it may not be obvious
2143 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2144 printk(KERN_WARNING
2145 "PID %d killed due to inadequate hugepage pool\n",
2146 current->pid);
2147 return ret;
2150 mapping = vma->vm_file->f_mapping;
2151 idx = vma_hugecache_offset(h, vma, address);
2154 * Use page lock to guard against racing truncation
2155 * before we get page_table_lock.
2157 retry:
2158 page = find_lock_page(mapping, idx);
2159 if (!page) {
2160 size = i_size_read(mapping->host) >> huge_page_shift(h);
2161 if (idx >= size)
2162 goto out;
2163 page = alloc_huge_page(vma, address, 0);
2164 if (IS_ERR(page)) {
2165 ret = -PTR_ERR(page);
2166 goto out;
2168 clear_huge_page(page, address, huge_page_size(h));
2169 __SetPageUptodate(page);
2171 if (vma->vm_flags & VM_MAYSHARE) {
2172 int err;
2173 struct inode *inode = mapping->host;
2175 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2176 if (err) {
2177 put_page(page);
2178 if (err == -EEXIST)
2179 goto retry;
2180 goto out;
2183 spin_lock(&inode->i_lock);
2184 inode->i_blocks += blocks_per_huge_page(h);
2185 spin_unlock(&inode->i_lock);
2186 } else {
2187 lock_page(page);
2188 page->mapping = HUGETLB_POISON;
2193 * If we are going to COW a private mapping later, we examine the
2194 * pending reservations for this page now. This will ensure that
2195 * any allocations necessary to record that reservation occur outside
2196 * the spinlock.
2198 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2199 if (vma_needs_reservation(h, vma, address) < 0) {
2200 ret = VM_FAULT_OOM;
2201 goto backout_unlocked;
2204 spin_lock(&mm->page_table_lock);
2205 size = i_size_read(mapping->host) >> huge_page_shift(h);
2206 if (idx >= size)
2207 goto backout;
2209 ret = 0;
2210 if (!huge_pte_none(huge_ptep_get(ptep)))
2211 goto backout;
2213 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2214 && (vma->vm_flags & VM_SHARED)));
2215 set_huge_pte_at(mm, address, ptep, new_pte);
2217 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2218 /* Optimization, do the COW without a second fault */
2219 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2222 spin_unlock(&mm->page_table_lock);
2223 unlock_page(page);
2224 out:
2225 return ret;
2227 backout:
2228 spin_unlock(&mm->page_table_lock);
2229 backout_unlocked:
2230 unlock_page(page);
2231 put_page(page);
2232 goto out;
2235 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2236 unsigned long address, unsigned int flags)
2238 pte_t *ptep;
2239 pte_t entry;
2240 int ret;
2241 struct page *pagecache_page = NULL;
2242 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2243 struct hstate *h = hstate_vma(vma);
2245 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2246 if (!ptep)
2247 return VM_FAULT_OOM;
2250 * Serialize hugepage allocation and instantiation, so that we don't
2251 * get spurious allocation failures if two CPUs race to instantiate
2252 * the same page in the page cache.
2254 mutex_lock(&hugetlb_instantiation_mutex);
2255 entry = huge_ptep_get(ptep);
2256 if (huge_pte_none(entry)) {
2257 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2258 goto out_mutex;
2261 ret = 0;
2264 * If we are going to COW the mapping later, we examine the pending
2265 * reservations for this page now. This will ensure that any
2266 * allocations necessary to record that reservation occur outside the
2267 * spinlock. For private mappings, we also lookup the pagecache
2268 * page now as it is used to determine if a reservation has been
2269 * consumed.
2271 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2272 if (vma_needs_reservation(h, vma, address) < 0) {
2273 ret = VM_FAULT_OOM;
2274 goto out_mutex;
2277 if (!(vma->vm_flags & VM_MAYSHARE))
2278 pagecache_page = hugetlbfs_pagecache_page(h,
2279 vma, address);
2282 spin_lock(&mm->page_table_lock);
2283 /* Check for a racing update before calling hugetlb_cow */
2284 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2285 goto out_page_table_lock;
2288 if (flags & FAULT_FLAG_WRITE) {
2289 if (!pte_write(entry)) {
2290 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2291 pagecache_page);
2292 goto out_page_table_lock;
2294 entry = pte_mkdirty(entry);
2296 entry = pte_mkyoung(entry);
2297 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2298 flags & FAULT_FLAG_WRITE))
2299 update_mmu_cache(vma, address, entry);
2301 out_page_table_lock:
2302 spin_unlock(&mm->page_table_lock);
2304 if (pagecache_page) {
2305 unlock_page(pagecache_page);
2306 put_page(pagecache_page);
2309 out_mutex:
2310 mutex_unlock(&hugetlb_instantiation_mutex);
2312 return ret;
2315 /* Can be overriden by architectures */
2316 __attribute__((weak)) struct page *
2317 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2318 pud_t *pud, int write)
2320 BUG();
2321 return NULL;
2324 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2325 struct page **pages, struct vm_area_struct **vmas,
2326 unsigned long *position, int *length, int i,
2327 unsigned int flags)
2329 unsigned long pfn_offset;
2330 unsigned long vaddr = *position;
2331 int remainder = *length;
2332 struct hstate *h = hstate_vma(vma);
2334 spin_lock(&mm->page_table_lock);
2335 while (vaddr < vma->vm_end && remainder) {
2336 pte_t *pte;
2337 int absent;
2338 struct page *page;
2341 * Some archs (sparc64, sh*) have multiple pte_ts to
2342 * each hugepage. We have to make sure we get the
2343 * first, for the page indexing below to work.
2345 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2346 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2349 * When coredumping, it suits get_dump_page if we just return
2350 * an error where there's an empty slot with no huge pagecache
2351 * to back it. This way, we avoid allocating a hugepage, and
2352 * the sparse dumpfile avoids allocating disk blocks, but its
2353 * huge holes still show up with zeroes where they need to be.
2355 if (absent && (flags & FOLL_DUMP) &&
2356 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2357 remainder = 0;
2358 break;
2361 if (absent ||
2362 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2363 int ret;
2365 spin_unlock(&mm->page_table_lock);
2366 ret = hugetlb_fault(mm, vma, vaddr,
2367 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2368 spin_lock(&mm->page_table_lock);
2369 if (!(ret & VM_FAULT_ERROR))
2370 continue;
2372 remainder = 0;
2373 break;
2376 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2377 page = pte_page(huge_ptep_get(pte));
2378 same_page:
2379 if (pages) {
2380 pages[i] = mem_map_offset(page, pfn_offset);
2381 get_page(pages[i]);
2384 if (vmas)
2385 vmas[i] = vma;
2387 vaddr += PAGE_SIZE;
2388 ++pfn_offset;
2389 --remainder;
2390 ++i;
2391 if (vaddr < vma->vm_end && remainder &&
2392 pfn_offset < pages_per_huge_page(h)) {
2394 * We use pfn_offset to avoid touching the pageframes
2395 * of this compound page.
2397 goto same_page;
2400 spin_unlock(&mm->page_table_lock);
2401 *length = remainder;
2402 *position = vaddr;
2404 return i ? i : -EFAULT;
2407 void hugetlb_change_protection(struct vm_area_struct *vma,
2408 unsigned long address, unsigned long end, pgprot_t newprot)
2410 struct mm_struct *mm = vma->vm_mm;
2411 unsigned long start = address;
2412 pte_t *ptep;
2413 pte_t pte;
2414 struct hstate *h = hstate_vma(vma);
2416 BUG_ON(address >= end);
2417 flush_cache_range(vma, address, end);
2419 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2420 spin_lock(&mm->page_table_lock);
2421 for (; address < end; address += huge_page_size(h)) {
2422 ptep = huge_pte_offset(mm, address);
2423 if (!ptep)
2424 continue;
2425 if (huge_pmd_unshare(mm, &address, ptep))
2426 continue;
2427 if (!huge_pte_none(huge_ptep_get(ptep))) {
2428 pte = huge_ptep_get_and_clear(mm, address, ptep);
2429 pte = pte_mkhuge(pte_modify(pte, newprot));
2430 set_huge_pte_at(mm, address, ptep, pte);
2433 spin_unlock(&mm->page_table_lock);
2434 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2436 flush_tlb_range(vma, start, end);
2439 int hugetlb_reserve_pages(struct inode *inode,
2440 long from, long to,
2441 struct vm_area_struct *vma,
2442 int acctflag)
2444 long ret, chg;
2445 struct hstate *h = hstate_inode(inode);
2446 struct hugepage_subpool *spool = subpool_inode(inode);
2449 * Only apply hugepage reservation if asked. At fault time, an
2450 * attempt will be made for VM_NORESERVE to allocate a page
2451 * without using reserves
2453 if (acctflag & VM_NORESERVE)
2454 return 0;
2457 * Shared mappings base their reservation on the number of pages that
2458 * are already allocated on behalf of the file. Private mappings need
2459 * to reserve the full area even if read-only as mprotect() may be
2460 * called to make the mapping read-write. Assume !vma is a shm mapping
2462 if (!vma || vma->vm_flags & VM_MAYSHARE)
2463 chg = region_chg(&inode->i_mapping->private_list, from, to);
2464 else {
2465 struct resv_map *resv_map = resv_map_alloc();
2466 if (!resv_map)
2467 return -ENOMEM;
2469 chg = to - from;
2471 set_vma_resv_map(vma, resv_map);
2472 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2475 if (chg < 0)
2476 return chg;
2478 /* There must be enough pages in the subpool for the mapping */
2479 if (hugepage_subpool_get_pages(spool, chg))
2480 return -ENOSPC;
2483 * Check enough hugepages are available for the reservation.
2484 * Hand the pages back to the subpool if there are not
2486 ret = hugetlb_acct_memory(h, chg);
2487 if (ret < 0) {
2488 hugepage_subpool_put_pages(spool, chg);
2489 return ret;
2493 * Account for the reservations made. Shared mappings record regions
2494 * that have reservations as they are shared by multiple VMAs.
2495 * When the last VMA disappears, the region map says how much
2496 * the reservation was and the page cache tells how much of
2497 * the reservation was consumed. Private mappings are per-VMA and
2498 * only the consumed reservations are tracked. When the VMA
2499 * disappears, the original reservation is the VMA size and the
2500 * consumed reservations are stored in the map. Hence, nothing
2501 * else has to be done for private mappings here
2503 if (!vma || vma->vm_flags & VM_MAYSHARE)
2504 region_add(&inode->i_mapping->private_list, from, to);
2505 return 0;
2508 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2510 struct hstate *h = hstate_inode(inode);
2511 long chg = region_truncate(&inode->i_mapping->private_list, offset);
2512 struct hugepage_subpool *spool = subpool_inode(inode);
2514 spin_lock(&inode->i_lock);
2515 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2516 spin_unlock(&inode->i_lock);
2518 hugepage_subpool_put_pages(spool, (chg - freed));
2519 hugetlb_acct_memory(h, -(chg - freed));