init from v2.6.32.60
[mach-moxart.git] / net / core / dev.c
blob46e2a29b5df3cc062fa8b05c835efc061a0e9786
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
131 #include "net-sysfs.h"
133 /* Instead of increasing this, you should create a hash table. */
134 #define MAX_GRO_SKBS 8
136 /* This should be increased if a protocol with a bigger head is added. */
137 #define GRO_MAX_HEAD (MAX_HEADER + 128)
140 * The list of packet types we will receive (as opposed to discard)
141 * and the routines to invoke.
143 * Why 16. Because with 16 the only overlap we get on a hash of the
144 * low nibble of the protocol value is RARP/SNAP/X.25.
146 * NOTE: That is no longer true with the addition of VLAN tags. Not
147 * sure which should go first, but I bet it won't make much
148 * difference if we are running VLANs. The good news is that
149 * this protocol won't be in the list unless compiled in, so
150 * the average user (w/out VLANs) will not be adversely affected.
151 * --BLG
153 * 0800 IP
154 * 8100 802.1Q VLAN
155 * 0001 802.3
156 * 0002 AX.25
157 * 0004 802.2
158 * 8035 RARP
159 * 0005 SNAP
160 * 0805 X.25
161 * 0806 ARP
162 * 8137 IPX
163 * 0009 Localtalk
164 * 86DD IPv6
167 #define PTYPE_HASH_SIZE (16)
168 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
170 static DEFINE_SPINLOCK(ptype_lock);
171 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
172 static struct list_head ptype_all __read_mostly; /* Taps */
175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
176 * semaphore.
178 * Pure readers hold dev_base_lock for reading.
180 * Writers must hold the rtnl semaphore while they loop through the
181 * dev_base_head list, and hold dev_base_lock for writing when they do the
182 * actual updates. This allows pure readers to access the list even
183 * while a writer is preparing to update it.
185 * To put it another way, dev_base_lock is held for writing only to
186 * protect against pure readers; the rtnl semaphore provides the
187 * protection against other writers.
189 * See, for example usages, register_netdevice() and
190 * unregister_netdevice(), which must be called with the rtnl
191 * semaphore held.
193 DEFINE_RWLOCK(dev_base_lock);
194 EXPORT_SYMBOL(dev_base_lock);
196 #define NETDEV_HASHBITS 8
197 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
202 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
210 /* Device list insertion */
211 static int list_netdevice(struct net_device *dev)
213 struct net *net = dev_net(dev);
215 ASSERT_RTNL();
217 write_lock_bh(&dev_base_lock);
218 list_add_tail(&dev->dev_list, &net->dev_base_head);
219 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
220 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
221 write_unlock_bh(&dev_base_lock);
222 return 0;
225 /* Device list removal */
226 static void unlist_netdevice(struct net_device *dev)
228 ASSERT_RTNL();
230 /* Unlink dev from the device chain */
231 write_lock_bh(&dev_base_lock);
232 list_del(&dev->dev_list);
233 hlist_del(&dev->name_hlist);
234 hlist_del(&dev->index_hlist);
235 write_unlock_bh(&dev_base_lock);
239 * Our notifier list
242 static RAW_NOTIFIER_HEAD(netdev_chain);
245 * Device drivers call our routines to queue packets here. We empty the
246 * queue in the local softnet handler.
249 DEFINE_PER_CPU(struct softnet_data, softnet_data);
250 EXPORT_PER_CPU_SYMBOL(softnet_data);
252 #ifdef CONFIG_LOCKDEP
254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
255 * according to dev->type
257 static const unsigned short netdev_lock_type[] =
258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
270 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
271 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
272 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
273 ARPHRD_VOID, ARPHRD_NONE};
275 static const char *const netdev_lock_name[] =
276 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
277 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
278 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
279 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
280 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
281 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
282 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
283 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
284 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
285 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
286 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
287 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
288 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
289 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
290 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
291 "_xmit_VOID", "_xmit_NONE"};
293 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
294 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
296 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
298 int i;
300 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
301 if (netdev_lock_type[i] == dev_type)
302 return i;
303 /* the last key is used by default */
304 return ARRAY_SIZE(netdev_lock_type) - 1;
307 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
308 unsigned short dev_type)
310 int i;
312 i = netdev_lock_pos(dev_type);
313 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
314 netdev_lock_name[i]);
317 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
319 int i;
321 i = netdev_lock_pos(dev->type);
322 lockdep_set_class_and_name(&dev->addr_list_lock,
323 &netdev_addr_lock_key[i],
324 netdev_lock_name[i]);
326 #else
327 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
328 unsigned short dev_type)
331 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
334 #endif
336 /*******************************************************************************
338 Protocol management and registration routines
340 *******************************************************************************/
343 * Add a protocol ID to the list. Now that the input handler is
344 * smarter we can dispense with all the messy stuff that used to be
345 * here.
347 * BEWARE!!! Protocol handlers, mangling input packets,
348 * MUST BE last in hash buckets and checking protocol handlers
349 * MUST start from promiscuous ptype_all chain in net_bh.
350 * It is true now, do not change it.
351 * Explanation follows: if protocol handler, mangling packet, will
352 * be the first on list, it is not able to sense, that packet
353 * is cloned and should be copied-on-write, so that it will
354 * change it and subsequent readers will get broken packet.
355 * --ANK (980803)
359 * dev_add_pack - add packet handler
360 * @pt: packet type declaration
362 * Add a protocol handler to the networking stack. The passed &packet_type
363 * is linked into kernel lists and may not be freed until it has been
364 * removed from the kernel lists.
366 * This call does not sleep therefore it can not
367 * guarantee all CPU's that are in middle of receiving packets
368 * will see the new packet type (until the next received packet).
371 void dev_add_pack(struct packet_type *pt)
373 int hash;
375 spin_lock_bh(&ptype_lock);
376 if (pt->type == htons(ETH_P_ALL))
377 list_add_rcu(&pt->list, &ptype_all);
378 else {
379 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
380 list_add_rcu(&pt->list, &ptype_base[hash]);
382 spin_unlock_bh(&ptype_lock);
384 EXPORT_SYMBOL(dev_add_pack);
387 * __dev_remove_pack - remove packet handler
388 * @pt: packet type declaration
390 * Remove a protocol handler that was previously added to the kernel
391 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
392 * from the kernel lists and can be freed or reused once this function
393 * returns.
395 * The packet type might still be in use by receivers
396 * and must not be freed until after all the CPU's have gone
397 * through a quiescent state.
399 void __dev_remove_pack(struct packet_type *pt)
401 struct list_head *head;
402 struct packet_type *pt1;
404 spin_lock_bh(&ptype_lock);
406 if (pt->type == htons(ETH_P_ALL))
407 head = &ptype_all;
408 else
409 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
411 list_for_each_entry(pt1, head, list) {
412 if (pt == pt1) {
413 list_del_rcu(&pt->list);
414 goto out;
418 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
419 out:
420 spin_unlock_bh(&ptype_lock);
422 EXPORT_SYMBOL(__dev_remove_pack);
425 * dev_remove_pack - remove packet handler
426 * @pt: packet type declaration
428 * Remove a protocol handler that was previously added to the kernel
429 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
430 * from the kernel lists and can be freed or reused once this function
431 * returns.
433 * This call sleeps to guarantee that no CPU is looking at the packet
434 * type after return.
436 void dev_remove_pack(struct packet_type *pt)
438 __dev_remove_pack(pt);
440 synchronize_net();
442 EXPORT_SYMBOL(dev_remove_pack);
444 /******************************************************************************
446 Device Boot-time Settings Routines
448 *******************************************************************************/
450 /* Boot time configuration table */
451 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
454 * netdev_boot_setup_add - add new setup entry
455 * @name: name of the device
456 * @map: configured settings for the device
458 * Adds new setup entry to the dev_boot_setup list. The function
459 * returns 0 on error and 1 on success. This is a generic routine to
460 * all netdevices.
462 static int netdev_boot_setup_add(char *name, struct ifmap *map)
464 struct netdev_boot_setup *s;
465 int i;
467 s = dev_boot_setup;
468 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
469 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
470 memset(s[i].name, 0, sizeof(s[i].name));
471 strlcpy(s[i].name, name, IFNAMSIZ);
472 memcpy(&s[i].map, map, sizeof(s[i].map));
473 break;
477 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
481 * netdev_boot_setup_check - check boot time settings
482 * @dev: the netdevice
484 * Check boot time settings for the device.
485 * The found settings are set for the device to be used
486 * later in the device probing.
487 * Returns 0 if no settings found, 1 if they are.
489 int netdev_boot_setup_check(struct net_device *dev)
491 struct netdev_boot_setup *s = dev_boot_setup;
492 int i;
494 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
495 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
496 !strcmp(dev->name, s[i].name)) {
497 dev->irq = s[i].map.irq;
498 dev->base_addr = s[i].map.base_addr;
499 dev->mem_start = s[i].map.mem_start;
500 dev->mem_end = s[i].map.mem_end;
501 return 1;
504 return 0;
506 EXPORT_SYMBOL(netdev_boot_setup_check);
510 * netdev_boot_base - get address from boot time settings
511 * @prefix: prefix for network device
512 * @unit: id for network device
514 * Check boot time settings for the base address of device.
515 * The found settings are set for the device to be used
516 * later in the device probing.
517 * Returns 0 if no settings found.
519 unsigned long netdev_boot_base(const char *prefix, int unit)
521 const struct netdev_boot_setup *s = dev_boot_setup;
522 char name[IFNAMSIZ];
523 int i;
525 sprintf(name, "%s%d", prefix, unit);
528 * If device already registered then return base of 1
529 * to indicate not to probe for this interface
531 if (__dev_get_by_name(&init_net, name))
532 return 1;
534 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
535 if (!strcmp(name, s[i].name))
536 return s[i].map.base_addr;
537 return 0;
541 * Saves at boot time configured settings for any netdevice.
543 int __init netdev_boot_setup(char *str)
545 int ints[5];
546 struct ifmap map;
548 str = get_options(str, ARRAY_SIZE(ints), ints);
549 if (!str || !*str)
550 return 0;
552 /* Save settings */
553 memset(&map, 0, sizeof(map));
554 if (ints[0] > 0)
555 map.irq = ints[1];
556 if (ints[0] > 1)
557 map.base_addr = ints[2];
558 if (ints[0] > 2)
559 map.mem_start = ints[3];
560 if (ints[0] > 3)
561 map.mem_end = ints[4];
563 /* Add new entry to the list */
564 return netdev_boot_setup_add(str, &map);
567 __setup("netdev=", netdev_boot_setup);
569 /*******************************************************************************
571 Device Interface Subroutines
573 *******************************************************************************/
576 * __dev_get_by_name - find a device by its name
577 * @net: the applicable net namespace
578 * @name: name to find
580 * Find an interface by name. Must be called under RTNL semaphore
581 * or @dev_base_lock. If the name is found a pointer to the device
582 * is returned. If the name is not found then %NULL is returned. The
583 * reference counters are not incremented so the caller must be
584 * careful with locks.
587 struct net_device *__dev_get_by_name(struct net *net, const char *name)
589 struct hlist_node *p;
591 hlist_for_each(p, dev_name_hash(net, name)) {
592 struct net_device *dev
593 = hlist_entry(p, struct net_device, name_hlist);
594 if (!strncmp(dev->name, name, IFNAMSIZ))
595 return dev;
597 return NULL;
599 EXPORT_SYMBOL(__dev_get_by_name);
602 * dev_get_by_name - find a device by its name
603 * @net: the applicable net namespace
604 * @name: name to find
606 * Find an interface by name. This can be called from any
607 * context and does its own locking. The returned handle has
608 * the usage count incremented and the caller must use dev_put() to
609 * release it when it is no longer needed. %NULL is returned if no
610 * matching device is found.
613 struct net_device *dev_get_by_name(struct net *net, const char *name)
615 struct net_device *dev;
617 read_lock(&dev_base_lock);
618 dev = __dev_get_by_name(net, name);
619 if (dev)
620 dev_hold(dev);
621 read_unlock(&dev_base_lock);
622 return dev;
624 EXPORT_SYMBOL(dev_get_by_name);
627 * __dev_get_by_index - find a device by its ifindex
628 * @net: the applicable net namespace
629 * @ifindex: index of device
631 * Search for an interface by index. Returns %NULL if the device
632 * is not found or a pointer to the device. The device has not
633 * had its reference counter increased so the caller must be careful
634 * about locking. The caller must hold either the RTNL semaphore
635 * or @dev_base_lock.
638 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
640 struct hlist_node *p;
642 hlist_for_each(p, dev_index_hash(net, ifindex)) {
643 struct net_device *dev
644 = hlist_entry(p, struct net_device, index_hlist);
645 if (dev->ifindex == ifindex)
646 return dev;
648 return NULL;
650 EXPORT_SYMBOL(__dev_get_by_index);
654 * dev_get_by_index - find a device by its ifindex
655 * @net: the applicable net namespace
656 * @ifindex: index of device
658 * Search for an interface by index. Returns NULL if the device
659 * is not found or a pointer to the device. The device returned has
660 * had a reference added and the pointer is safe until the user calls
661 * dev_put to indicate they have finished with it.
664 struct net_device *dev_get_by_index(struct net *net, int ifindex)
666 struct net_device *dev;
668 read_lock(&dev_base_lock);
669 dev = __dev_get_by_index(net, ifindex);
670 if (dev)
671 dev_hold(dev);
672 read_unlock(&dev_base_lock);
673 return dev;
675 EXPORT_SYMBOL(dev_get_by_index);
678 * dev_getbyhwaddr - find a device by its hardware address
679 * @net: the applicable net namespace
680 * @type: media type of device
681 * @ha: hardware address
683 * Search for an interface by MAC address. Returns NULL if the device
684 * is not found or a pointer to the device. The caller must hold the
685 * rtnl semaphore. The returned device has not had its ref count increased
686 * and the caller must therefore be careful about locking
688 * BUGS:
689 * If the API was consistent this would be __dev_get_by_hwaddr
692 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
694 struct net_device *dev;
696 ASSERT_RTNL();
698 for_each_netdev(net, dev)
699 if (dev->type == type &&
700 !memcmp(dev->dev_addr, ha, dev->addr_len))
701 return dev;
703 return NULL;
705 EXPORT_SYMBOL(dev_getbyhwaddr);
707 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
709 struct net_device *dev;
711 ASSERT_RTNL();
712 for_each_netdev(net, dev)
713 if (dev->type == type)
714 return dev;
716 return NULL;
718 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
720 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
722 struct net_device *dev;
724 rtnl_lock();
725 dev = __dev_getfirstbyhwtype(net, type);
726 if (dev)
727 dev_hold(dev);
728 rtnl_unlock();
729 return dev;
731 EXPORT_SYMBOL(dev_getfirstbyhwtype);
734 * dev_get_by_flags - find any device with given flags
735 * @net: the applicable net namespace
736 * @if_flags: IFF_* values
737 * @mask: bitmask of bits in if_flags to check
739 * Search for any interface with the given flags. Returns NULL if a device
740 * is not found or a pointer to the device. The device returned has
741 * had a reference added and the pointer is safe until the user calls
742 * dev_put to indicate they have finished with it.
745 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
746 unsigned short mask)
748 struct net_device *dev, *ret;
750 ret = NULL;
751 read_lock(&dev_base_lock);
752 for_each_netdev(net, dev) {
753 if (((dev->flags ^ if_flags) & mask) == 0) {
754 dev_hold(dev);
755 ret = dev;
756 break;
759 read_unlock(&dev_base_lock);
760 return ret;
762 EXPORT_SYMBOL(dev_get_by_flags);
765 * dev_valid_name - check if name is okay for network device
766 * @name: name string
768 * Network device names need to be valid file names to
769 * to allow sysfs to work. We also disallow any kind of
770 * whitespace.
772 int dev_valid_name(const char *name)
774 if (*name == '\0')
775 return 0;
776 if (strlen(name) >= IFNAMSIZ)
777 return 0;
778 if (!strcmp(name, ".") || !strcmp(name, ".."))
779 return 0;
781 while (*name) {
782 if (*name == '/' || isspace(*name))
783 return 0;
784 name++;
786 return 1;
788 EXPORT_SYMBOL(dev_valid_name);
791 * __dev_alloc_name - allocate a name for a device
792 * @net: network namespace to allocate the device name in
793 * @name: name format string
794 * @buf: scratch buffer and result name string
796 * Passed a format string - eg "lt%d" it will try and find a suitable
797 * id. It scans list of devices to build up a free map, then chooses
798 * the first empty slot. The caller must hold the dev_base or rtnl lock
799 * while allocating the name and adding the device in order to avoid
800 * duplicates.
801 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
802 * Returns the number of the unit assigned or a negative errno code.
805 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
807 int i = 0;
808 const char *p;
809 const int max_netdevices = 8*PAGE_SIZE;
810 unsigned long *inuse;
811 struct net_device *d;
813 p = strnchr(name, IFNAMSIZ-1, '%');
814 if (p) {
816 * Verify the string as this thing may have come from
817 * the user. There must be either one "%d" and no other "%"
818 * characters.
820 if (p[1] != 'd' || strchr(p + 2, '%'))
821 return -EINVAL;
823 /* Use one page as a bit array of possible slots */
824 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
825 if (!inuse)
826 return -ENOMEM;
828 for_each_netdev(net, d) {
829 if (!sscanf(d->name, name, &i))
830 continue;
831 if (i < 0 || i >= max_netdevices)
832 continue;
834 /* avoid cases where sscanf is not exact inverse of printf */
835 snprintf(buf, IFNAMSIZ, name, i);
836 if (!strncmp(buf, d->name, IFNAMSIZ))
837 set_bit(i, inuse);
840 i = find_first_zero_bit(inuse, max_netdevices);
841 free_page((unsigned long) inuse);
844 snprintf(buf, IFNAMSIZ, name, i);
845 if (!__dev_get_by_name(net, buf))
846 return i;
848 /* It is possible to run out of possible slots
849 * when the name is long and there isn't enough space left
850 * for the digits, or if all bits are used.
852 return -ENFILE;
856 * dev_alloc_name - allocate a name for a device
857 * @dev: device
858 * @name: name format string
860 * Passed a format string - eg "lt%d" it will try and find a suitable
861 * id. It scans list of devices to build up a free map, then chooses
862 * the first empty slot. The caller must hold the dev_base or rtnl lock
863 * while allocating the name and adding the device in order to avoid
864 * duplicates.
865 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
866 * Returns the number of the unit assigned or a negative errno code.
869 int dev_alloc_name(struct net_device *dev, const char *name)
871 char buf[IFNAMSIZ];
872 struct net *net;
873 int ret;
875 BUG_ON(!dev_net(dev));
876 net = dev_net(dev);
877 ret = __dev_alloc_name(net, name, buf);
878 if (ret >= 0)
879 strlcpy(dev->name, buf, IFNAMSIZ);
880 return ret;
882 EXPORT_SYMBOL(dev_alloc_name);
886 * dev_change_name - change name of a device
887 * @dev: device
888 * @newname: name (or format string) must be at least IFNAMSIZ
890 * Change name of a device, can pass format strings "eth%d".
891 * for wildcarding.
893 int dev_change_name(struct net_device *dev, const char *newname)
895 char oldname[IFNAMSIZ];
896 int err = 0;
897 int ret;
898 struct net *net;
900 ASSERT_RTNL();
901 BUG_ON(!dev_net(dev));
903 net = dev_net(dev);
904 if (dev->flags & IFF_UP)
905 return -EBUSY;
907 if (!dev_valid_name(newname))
908 return -EINVAL;
910 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
911 return 0;
913 memcpy(oldname, dev->name, IFNAMSIZ);
915 if (strchr(newname, '%')) {
916 err = dev_alloc_name(dev, newname);
917 if (err < 0)
918 return err;
919 } else if (__dev_get_by_name(net, newname))
920 return -EEXIST;
921 else
922 strlcpy(dev->name, newname, IFNAMSIZ);
924 rollback:
925 /* For now only devices in the initial network namespace
926 * are in sysfs.
928 if (net == &init_net) {
929 ret = device_rename(&dev->dev, dev->name);
930 if (ret) {
931 memcpy(dev->name, oldname, IFNAMSIZ);
932 return ret;
936 write_lock_bh(&dev_base_lock);
937 hlist_del(&dev->name_hlist);
938 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
939 write_unlock_bh(&dev_base_lock);
941 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
942 ret = notifier_to_errno(ret);
944 if (ret) {
945 /* err >= 0 after dev_alloc_name() or stores the first errno */
946 if (err >= 0) {
947 err = ret;
948 memcpy(dev->name, oldname, IFNAMSIZ);
949 goto rollback;
950 } else {
951 printk(KERN_ERR
952 "%s: name change rollback failed: %d.\n",
953 dev->name, ret);
957 return err;
961 * dev_set_alias - change ifalias of a device
962 * @dev: device
963 * @alias: name up to IFALIASZ
964 * @len: limit of bytes to copy from info
966 * Set ifalias for a device,
968 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
970 ASSERT_RTNL();
972 if (len >= IFALIASZ)
973 return -EINVAL;
975 if (!len) {
976 if (dev->ifalias) {
977 kfree(dev->ifalias);
978 dev->ifalias = NULL;
980 return 0;
983 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
984 if (!dev->ifalias)
985 return -ENOMEM;
987 strlcpy(dev->ifalias, alias, len+1);
988 return len;
993 * netdev_features_change - device changes features
994 * @dev: device to cause notification
996 * Called to indicate a device has changed features.
998 void netdev_features_change(struct net_device *dev)
1000 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1002 EXPORT_SYMBOL(netdev_features_change);
1005 * netdev_state_change - device changes state
1006 * @dev: device to cause notification
1008 * Called to indicate a device has changed state. This function calls
1009 * the notifier chains for netdev_chain and sends a NEWLINK message
1010 * to the routing socket.
1012 void netdev_state_change(struct net_device *dev)
1014 if (dev->flags & IFF_UP) {
1015 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1016 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1019 EXPORT_SYMBOL(netdev_state_change);
1021 void netdev_bonding_change(struct net_device *dev, unsigned long event)
1023 call_netdevice_notifiers(event, dev);
1025 EXPORT_SYMBOL(netdev_bonding_change);
1028 * dev_load - load a network module
1029 * @net: the applicable net namespace
1030 * @name: name of interface
1032 * If a network interface is not present and the process has suitable
1033 * privileges this function loads the module. If module loading is not
1034 * available in this kernel then it becomes a nop.
1037 void dev_load(struct net *net, const char *name)
1039 struct net_device *dev;
1040 int no_module;
1042 read_lock(&dev_base_lock);
1043 dev = __dev_get_by_name(net, name);
1044 read_unlock(&dev_base_lock);
1046 no_module = !dev;
1047 if (no_module && capable(CAP_NET_ADMIN))
1048 no_module = request_module("netdev-%s", name);
1049 if (no_module && capable(CAP_SYS_MODULE)) {
1050 if (!request_module("%s", name))
1051 pr_err("Loading kernel module for a network device "
1052 "with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s "
1053 "instead\n", name);
1056 EXPORT_SYMBOL(dev_load);
1059 * dev_open - prepare an interface for use.
1060 * @dev: device to open
1062 * Takes a device from down to up state. The device's private open
1063 * function is invoked and then the multicast lists are loaded. Finally
1064 * the device is moved into the up state and a %NETDEV_UP message is
1065 * sent to the netdev notifier chain.
1067 * Calling this function on an active interface is a nop. On a failure
1068 * a negative errno code is returned.
1070 int dev_open(struct net_device *dev)
1072 const struct net_device_ops *ops = dev->netdev_ops;
1073 int ret;
1075 ASSERT_RTNL();
1078 * Is it already up?
1081 if (dev->flags & IFF_UP)
1082 return 0;
1085 * Is it even present?
1087 if (!netif_device_present(dev))
1088 return -ENODEV;
1090 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1091 ret = notifier_to_errno(ret);
1092 if (ret)
1093 return ret;
1096 * Call device private open method
1098 set_bit(__LINK_STATE_START, &dev->state);
1100 if (ops->ndo_validate_addr)
1101 ret = ops->ndo_validate_addr(dev);
1103 if (!ret && ops->ndo_open)
1104 ret = ops->ndo_open(dev);
1107 * If it went open OK then:
1110 if (ret)
1111 clear_bit(__LINK_STATE_START, &dev->state);
1112 else {
1114 * Set the flags.
1116 dev->flags |= IFF_UP;
1119 * Enable NET_DMA
1121 net_dmaengine_get();
1124 * Initialize multicasting status
1126 dev_set_rx_mode(dev);
1129 * Wakeup transmit queue engine
1131 dev_activate(dev);
1134 * ... and announce new interface.
1136 add_device_randomness(dev->dev_addr, dev->addr_len);
1137 call_netdevice_notifiers(NETDEV_UP, dev);
1140 return ret;
1142 EXPORT_SYMBOL(dev_open);
1145 * dev_close - shutdown an interface.
1146 * @dev: device to shutdown
1148 * This function moves an active device into down state. A
1149 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1150 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1151 * chain.
1153 int dev_close(struct net_device *dev)
1155 const struct net_device_ops *ops = dev->netdev_ops;
1156 ASSERT_RTNL();
1158 might_sleep();
1160 if (!(dev->flags & IFF_UP))
1161 return 0;
1164 * Tell people we are going down, so that they can
1165 * prepare to death, when device is still operating.
1167 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1169 clear_bit(__LINK_STATE_START, &dev->state);
1171 /* Synchronize to scheduled poll. We cannot touch poll list,
1172 * it can be even on different cpu. So just clear netif_running().
1174 * dev->stop() will invoke napi_disable() on all of it's
1175 * napi_struct instances on this device.
1177 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1179 dev_deactivate(dev);
1182 * Call the device specific close. This cannot fail.
1183 * Only if device is UP
1185 * We allow it to be called even after a DETACH hot-plug
1186 * event.
1188 if (ops->ndo_stop)
1189 ops->ndo_stop(dev);
1192 * Device is now down.
1195 dev->flags &= ~IFF_UP;
1198 * Tell people we are down
1200 call_netdevice_notifiers(NETDEV_DOWN, dev);
1203 * Shutdown NET_DMA
1205 net_dmaengine_put();
1207 return 0;
1209 EXPORT_SYMBOL(dev_close);
1213 * dev_disable_lro - disable Large Receive Offload on a device
1214 * @dev: device
1216 * Disable Large Receive Offload (LRO) on a net device. Must be
1217 * called under RTNL. This is needed if received packets may be
1218 * forwarded to another interface.
1220 void dev_disable_lro(struct net_device *dev)
1222 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1223 dev->ethtool_ops->set_flags) {
1224 u32 flags = dev->ethtool_ops->get_flags(dev);
1225 if (flags & ETH_FLAG_LRO) {
1226 flags &= ~ETH_FLAG_LRO;
1227 dev->ethtool_ops->set_flags(dev, flags);
1230 WARN_ON(dev->features & NETIF_F_LRO);
1232 EXPORT_SYMBOL(dev_disable_lro);
1235 static int dev_boot_phase = 1;
1238 * Device change register/unregister. These are not inline or static
1239 * as we export them to the world.
1243 * register_netdevice_notifier - register a network notifier block
1244 * @nb: notifier
1246 * Register a notifier to be called when network device events occur.
1247 * The notifier passed is linked into the kernel structures and must
1248 * not be reused until it has been unregistered. A negative errno code
1249 * is returned on a failure.
1251 * When registered all registration and up events are replayed
1252 * to the new notifier to allow device to have a race free
1253 * view of the network device list.
1256 int register_netdevice_notifier(struct notifier_block *nb)
1258 struct net_device *dev;
1259 struct net_device *last;
1260 struct net *net;
1261 int err;
1263 rtnl_lock();
1264 err = raw_notifier_chain_register(&netdev_chain, nb);
1265 if (err)
1266 goto unlock;
1267 if (dev_boot_phase)
1268 goto unlock;
1269 for_each_net(net) {
1270 for_each_netdev(net, dev) {
1271 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1272 err = notifier_to_errno(err);
1273 if (err)
1274 goto rollback;
1276 if (!(dev->flags & IFF_UP))
1277 continue;
1279 nb->notifier_call(nb, NETDEV_UP, dev);
1283 unlock:
1284 rtnl_unlock();
1285 return err;
1287 rollback:
1288 last = dev;
1289 for_each_net(net) {
1290 for_each_netdev(net, dev) {
1291 if (dev == last)
1292 break;
1294 if (dev->flags & IFF_UP) {
1295 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1296 nb->notifier_call(nb, NETDEV_DOWN, dev);
1298 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1302 raw_notifier_chain_unregister(&netdev_chain, nb);
1303 goto unlock;
1305 EXPORT_SYMBOL(register_netdevice_notifier);
1308 * unregister_netdevice_notifier - unregister a network notifier block
1309 * @nb: notifier
1311 * Unregister a notifier previously registered by
1312 * register_netdevice_notifier(). The notifier is unlinked into the
1313 * kernel structures and may then be reused. A negative errno code
1314 * is returned on a failure.
1317 int unregister_netdevice_notifier(struct notifier_block *nb)
1319 int err;
1321 rtnl_lock();
1322 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1323 rtnl_unlock();
1324 return err;
1326 EXPORT_SYMBOL(unregister_netdevice_notifier);
1329 * call_netdevice_notifiers - call all network notifier blocks
1330 * @val: value passed unmodified to notifier function
1331 * @dev: net_device pointer passed unmodified to notifier function
1333 * Call all network notifier blocks. Parameters and return value
1334 * are as for raw_notifier_call_chain().
1337 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1339 return raw_notifier_call_chain(&netdev_chain, val, dev);
1342 /* When > 0 there are consumers of rx skb time stamps */
1343 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1345 void net_enable_timestamp(void)
1347 atomic_inc(&netstamp_needed);
1349 EXPORT_SYMBOL(net_enable_timestamp);
1351 void net_disable_timestamp(void)
1353 atomic_dec(&netstamp_needed);
1355 EXPORT_SYMBOL(net_disable_timestamp);
1357 static inline void net_timestamp(struct sk_buff *skb)
1359 if (atomic_read(&netstamp_needed))
1360 __net_timestamp(skb);
1361 else
1362 skb->tstamp.tv64 = 0;
1366 * Support routine. Sends outgoing frames to any network
1367 * taps currently in use.
1370 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1372 struct packet_type *ptype;
1374 #ifdef CONFIG_NET_CLS_ACT
1375 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1376 net_timestamp(skb);
1377 #else
1378 net_timestamp(skb);
1379 #endif
1381 rcu_read_lock();
1382 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1383 /* Never send packets back to the socket
1384 * they originated from - MvS (miquels@drinkel.ow.org)
1386 if ((ptype->dev == dev || !ptype->dev) &&
1387 (ptype->af_packet_priv == NULL ||
1388 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1389 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1390 if (!skb2)
1391 break;
1393 /* skb->nh should be correctly
1394 set by sender, so that the second statement is
1395 just protection against buggy protocols.
1397 skb_reset_mac_header(skb2);
1399 if (skb_network_header(skb2) < skb2->data ||
1400 skb2->network_header > skb2->tail) {
1401 if (net_ratelimit())
1402 printk(KERN_CRIT "protocol %04x is "
1403 "buggy, dev %s\n",
1404 skb2->protocol, dev->name);
1405 skb_reset_network_header(skb2);
1408 skb2->transport_header = skb2->network_header;
1409 skb2->pkt_type = PACKET_OUTGOING;
1410 ptype->func(skb2, skb->dev, ptype, skb->dev);
1413 rcu_read_unlock();
1417 static inline void __netif_reschedule(struct Qdisc *q)
1419 struct softnet_data *sd;
1420 unsigned long flags;
1422 local_irq_save(flags);
1423 sd = &__get_cpu_var(softnet_data);
1424 q->next_sched = sd->output_queue;
1425 sd->output_queue = q;
1426 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1427 local_irq_restore(flags);
1430 void __netif_schedule(struct Qdisc *q)
1432 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1433 __netif_reschedule(q);
1435 EXPORT_SYMBOL(__netif_schedule);
1437 void dev_kfree_skb_irq(struct sk_buff *skb)
1439 if (atomic_dec_and_test(&skb->users)) {
1440 struct softnet_data *sd;
1441 unsigned long flags;
1443 local_irq_save(flags);
1444 sd = &__get_cpu_var(softnet_data);
1445 skb->next = sd->completion_queue;
1446 sd->completion_queue = skb;
1447 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1448 local_irq_restore(flags);
1451 EXPORT_SYMBOL(dev_kfree_skb_irq);
1453 void dev_kfree_skb_any(struct sk_buff *skb)
1455 if (in_irq() || irqs_disabled())
1456 dev_kfree_skb_irq(skb);
1457 else
1458 dev_kfree_skb(skb);
1460 EXPORT_SYMBOL(dev_kfree_skb_any);
1464 * netif_device_detach - mark device as removed
1465 * @dev: network device
1467 * Mark device as removed from system and therefore no longer available.
1469 void netif_device_detach(struct net_device *dev)
1471 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1472 netif_running(dev)) {
1473 netif_tx_stop_all_queues(dev);
1476 EXPORT_SYMBOL(netif_device_detach);
1479 * netif_device_attach - mark device as attached
1480 * @dev: network device
1482 * Mark device as attached from system and restart if needed.
1484 void netif_device_attach(struct net_device *dev)
1486 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1487 netif_running(dev)) {
1488 netif_tx_wake_all_queues(dev);
1489 __netdev_watchdog_up(dev);
1492 EXPORT_SYMBOL(netif_device_attach);
1494 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1496 return ((features & NETIF_F_NO_CSUM) ||
1497 ((features & NETIF_F_V4_CSUM) &&
1498 protocol == htons(ETH_P_IP)) ||
1499 ((features & NETIF_F_V6_CSUM) &&
1500 protocol == htons(ETH_P_IPV6)) ||
1501 ((features & NETIF_F_FCOE_CRC) &&
1502 protocol == htons(ETH_P_FCOE)));
1505 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1507 if (can_checksum_protocol(dev->features, skb->protocol))
1508 return true;
1510 if (skb->protocol == htons(ETH_P_8021Q)) {
1511 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1512 if (can_checksum_protocol(dev->features & dev->vlan_features,
1513 veh->h_vlan_encapsulated_proto))
1514 return true;
1517 return false;
1521 * Invalidate hardware checksum when packet is to be mangled, and
1522 * complete checksum manually on outgoing path.
1524 int skb_checksum_help(struct sk_buff *skb)
1526 __wsum csum;
1527 int ret = 0, offset;
1529 if (skb->ip_summed == CHECKSUM_COMPLETE)
1530 goto out_set_summed;
1532 if (unlikely(skb_shinfo(skb)->gso_size)) {
1533 /* Let GSO fix up the checksum. */
1534 goto out_set_summed;
1537 offset = skb->csum_start - skb_headroom(skb);
1538 BUG_ON(offset >= skb_headlen(skb));
1539 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1541 offset += skb->csum_offset;
1542 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1544 if (skb_cloned(skb) &&
1545 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1546 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1547 if (ret)
1548 goto out;
1551 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1552 out_set_summed:
1553 skb->ip_summed = CHECKSUM_NONE;
1554 out:
1555 return ret;
1557 EXPORT_SYMBOL(skb_checksum_help);
1560 * skb_gso_segment - Perform segmentation on skb.
1561 * @skb: buffer to segment
1562 * @features: features for the output path (see dev->features)
1564 * This function segments the given skb and returns a list of segments.
1566 * It may return NULL if the skb requires no segmentation. This is
1567 * only possible when GSO is used for verifying header integrity.
1569 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1571 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1572 struct packet_type *ptype;
1573 __be16 type = skb->protocol;
1574 int err;
1576 skb_reset_mac_header(skb);
1577 skb->mac_len = skb->network_header - skb->mac_header;
1578 __skb_pull(skb, skb->mac_len);
1580 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1581 struct net_device *dev = skb->dev;
1582 struct ethtool_drvinfo info = {};
1584 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1585 dev->ethtool_ops->get_drvinfo(dev, &info);
1587 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1588 "ip_summed=%d",
1589 info.driver, dev ? dev->features : 0L,
1590 skb->sk ? skb->sk->sk_route_caps : 0L,
1591 skb->len, skb->data_len, skb->ip_summed);
1593 if (skb_header_cloned(skb) &&
1594 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1595 return ERR_PTR(err);
1598 rcu_read_lock();
1599 list_for_each_entry_rcu(ptype,
1600 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1601 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1602 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1603 err = ptype->gso_send_check(skb);
1604 segs = ERR_PTR(err);
1605 if (err || skb_gso_ok(skb, features))
1606 break;
1607 __skb_push(skb, (skb->data -
1608 skb_network_header(skb)));
1610 segs = ptype->gso_segment(skb, features);
1611 break;
1614 rcu_read_unlock();
1616 __skb_push(skb, skb->data - skb_mac_header(skb));
1618 return segs;
1620 EXPORT_SYMBOL(skb_gso_segment);
1622 /* Take action when hardware reception checksum errors are detected. */
1623 #ifdef CONFIG_BUG
1624 void netdev_rx_csum_fault(struct net_device *dev)
1626 if (net_ratelimit()) {
1627 printk(KERN_ERR "%s: hw csum failure.\n",
1628 dev ? dev->name : "<unknown>");
1629 dump_stack();
1632 EXPORT_SYMBOL(netdev_rx_csum_fault);
1633 #endif
1635 /* Actually, we should eliminate this check as soon as we know, that:
1636 * 1. IOMMU is present and allows to map all the memory.
1637 * 2. No high memory really exists on this machine.
1640 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1642 #ifdef CONFIG_HIGHMEM
1643 int i;
1645 if (dev->features & NETIF_F_HIGHDMA)
1646 return 0;
1648 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1649 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1650 return 1;
1652 #endif
1653 return 0;
1656 struct dev_gso_cb {
1657 void (*destructor)(struct sk_buff *skb);
1660 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1662 static void dev_gso_skb_destructor(struct sk_buff *skb)
1664 struct dev_gso_cb *cb;
1666 do {
1667 struct sk_buff *nskb = skb->next;
1669 skb->next = nskb->next;
1670 nskb->next = NULL;
1671 kfree_skb(nskb);
1672 } while (skb->next);
1674 cb = DEV_GSO_CB(skb);
1675 if (cb->destructor)
1676 cb->destructor(skb);
1680 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1681 * @skb: buffer to segment
1683 * This function segments the given skb and stores the list of segments
1684 * in skb->next.
1686 static int dev_gso_segment(struct sk_buff *skb)
1688 struct net_device *dev = skb->dev;
1689 struct sk_buff *segs;
1690 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1691 NETIF_F_SG : 0);
1693 segs = skb_gso_segment(skb, features);
1695 /* Verifying header integrity only. */
1696 if (!segs)
1697 return 0;
1699 if (IS_ERR(segs))
1700 return PTR_ERR(segs);
1702 skb->next = segs;
1703 DEV_GSO_CB(skb)->destructor = skb->destructor;
1704 skb->destructor = dev_gso_skb_destructor;
1706 return 0;
1709 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1710 struct netdev_queue *txq)
1712 const struct net_device_ops *ops = dev->netdev_ops;
1713 int rc;
1715 if (likely(!skb->next)) {
1716 if (!list_empty(&ptype_all))
1717 dev_queue_xmit_nit(skb, dev);
1719 if (netif_needs_gso(dev, skb)) {
1720 if (unlikely(dev_gso_segment(skb)))
1721 goto out_kfree_skb;
1722 if (skb->next)
1723 goto gso;
1727 * If device doesnt need skb->dst, release it right now while
1728 * its hot in this cpu cache
1730 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1731 skb_dst_drop(skb);
1733 rc = ops->ndo_start_xmit(skb, dev);
1734 if (rc == NETDEV_TX_OK)
1735 txq_trans_update(txq);
1737 * TODO: if skb_orphan() was called by
1738 * dev->hard_start_xmit() (for example, the unmodified
1739 * igb driver does that; bnx2 doesn't), then
1740 * skb_tx_software_timestamp() will be unable to send
1741 * back the time stamp.
1743 * How can this be prevented? Always create another
1744 * reference to the socket before calling
1745 * dev->hard_start_xmit()? Prevent that skb_orphan()
1746 * does anything in dev->hard_start_xmit() by clearing
1747 * the skb destructor before the call and restoring it
1748 * afterwards, then doing the skb_orphan() ourselves?
1750 return rc;
1753 gso:
1754 do {
1755 struct sk_buff *nskb = skb->next;
1757 skb->next = nskb->next;
1758 nskb->next = NULL;
1761 * If device doesnt need nskb->dst, release it right now while
1762 * its hot in this cpu cache
1764 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1765 skb_dst_drop(nskb);
1767 rc = ops->ndo_start_xmit(nskb, dev);
1768 if (unlikely(rc != NETDEV_TX_OK)) {
1769 nskb->next = skb->next;
1770 skb->next = nskb;
1771 return rc;
1773 txq_trans_update(txq);
1774 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1775 return NETDEV_TX_BUSY;
1776 } while (skb->next);
1778 skb->destructor = DEV_GSO_CB(skb)->destructor;
1780 out_kfree_skb:
1781 kfree_skb(skb);
1782 return NETDEV_TX_OK;
1785 static u32 skb_tx_hashrnd;
1787 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1789 u32 hash;
1791 if (skb_rx_queue_recorded(skb)) {
1792 hash = skb_get_rx_queue(skb);
1793 while (unlikely(hash >= dev->real_num_tx_queues))
1794 hash -= dev->real_num_tx_queues;
1795 return hash;
1798 if (skb->sk && skb->sk->sk_hash)
1799 hash = skb->sk->sk_hash;
1800 else
1801 hash = skb->protocol;
1803 hash = jhash_1word(hash, skb_tx_hashrnd);
1805 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1807 EXPORT_SYMBOL(skb_tx_hash);
1809 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1810 struct sk_buff *skb)
1812 const struct net_device_ops *ops = dev->netdev_ops;
1813 u16 queue_index = 0;
1815 if (ops->ndo_select_queue)
1816 queue_index = ops->ndo_select_queue(dev, skb);
1817 else if (dev->real_num_tx_queues > 1)
1818 queue_index = skb_tx_hash(dev, skb);
1820 skb_set_queue_mapping(skb, queue_index);
1821 return netdev_get_tx_queue(dev, queue_index);
1824 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
1825 struct net_device *dev,
1826 struct netdev_queue *txq)
1828 spinlock_t *root_lock = qdisc_lock(q);
1829 int rc;
1831 spin_lock(root_lock);
1832 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1833 kfree_skb(skb);
1834 rc = NET_XMIT_DROP;
1835 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
1836 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
1838 * This is a work-conserving queue; there are no old skbs
1839 * waiting to be sent out; and the qdisc is not running -
1840 * xmit the skb directly.
1842 __qdisc_update_bstats(q, skb->len);
1843 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
1844 __qdisc_run(q);
1845 else
1846 clear_bit(__QDISC_STATE_RUNNING, &q->state);
1848 rc = NET_XMIT_SUCCESS;
1849 } else {
1850 rc = qdisc_enqueue_root(skb, q);
1851 qdisc_run(q);
1853 spin_unlock(root_lock);
1855 return rc;
1859 * dev_queue_xmit - transmit a buffer
1860 * @skb: buffer to transmit
1862 * Queue a buffer for transmission to a network device. The caller must
1863 * have set the device and priority and built the buffer before calling
1864 * this function. The function can be called from an interrupt.
1866 * A negative errno code is returned on a failure. A success does not
1867 * guarantee the frame will be transmitted as it may be dropped due
1868 * to congestion or traffic shaping.
1870 * -----------------------------------------------------------------------------------
1871 * I notice this method can also return errors from the queue disciplines,
1872 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1873 * be positive.
1875 * Regardless of the return value, the skb is consumed, so it is currently
1876 * difficult to retry a send to this method. (You can bump the ref count
1877 * before sending to hold a reference for retry if you are careful.)
1879 * When calling this method, interrupts MUST be enabled. This is because
1880 * the BH enable code must have IRQs enabled so that it will not deadlock.
1881 * --BLG
1883 int dev_queue_xmit(struct sk_buff *skb)
1885 struct net_device *dev = skb->dev;
1886 struct netdev_queue *txq;
1887 struct Qdisc *q;
1888 int rc = -ENOMEM;
1890 /* GSO will handle the following emulations directly. */
1891 if (netif_needs_gso(dev, skb))
1892 goto gso;
1894 if (skb_has_frags(skb) &&
1895 !(dev->features & NETIF_F_FRAGLIST) &&
1896 __skb_linearize(skb))
1897 goto out_kfree_skb;
1899 /* Fragmented skb is linearized if device does not support SG,
1900 * or if at least one of fragments is in highmem and device
1901 * does not support DMA from it.
1903 if (skb_shinfo(skb)->nr_frags &&
1904 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1905 __skb_linearize(skb))
1906 goto out_kfree_skb;
1908 /* If packet is not checksummed and device does not support
1909 * checksumming for this protocol, complete checksumming here.
1911 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1912 skb_set_transport_header(skb, skb->csum_start -
1913 skb_headroom(skb));
1914 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1915 goto out_kfree_skb;
1918 gso:
1919 /* Disable soft irqs for various locks below. Also
1920 * stops preemption for RCU.
1922 rcu_read_lock_bh();
1924 txq = dev_pick_tx(dev, skb);
1925 q = rcu_dereference(txq->qdisc);
1927 #ifdef CONFIG_NET_CLS_ACT
1928 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
1929 #endif
1930 if (q->enqueue) {
1931 rc = __dev_xmit_skb(skb, q, dev, txq);
1932 goto out;
1935 /* The device has no queue. Common case for software devices:
1936 loopback, all the sorts of tunnels...
1938 Really, it is unlikely that netif_tx_lock protection is necessary
1939 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1940 counters.)
1941 However, it is possible, that they rely on protection
1942 made by us here.
1944 Check this and shot the lock. It is not prone from deadlocks.
1945 Either shot noqueue qdisc, it is even simpler 8)
1947 if (dev->flags & IFF_UP) {
1948 int cpu = smp_processor_id(); /* ok because BHs are off */
1950 if (txq->xmit_lock_owner != cpu) {
1952 HARD_TX_LOCK(dev, txq, cpu);
1954 if (!netif_tx_queue_stopped(txq)) {
1955 rc = NET_XMIT_SUCCESS;
1956 if (!dev_hard_start_xmit(skb, dev, txq)) {
1957 HARD_TX_UNLOCK(dev, txq);
1958 goto out;
1961 HARD_TX_UNLOCK(dev, txq);
1962 if (net_ratelimit())
1963 printk(KERN_CRIT "Virtual device %s asks to "
1964 "queue packet!\n", dev->name);
1965 } else {
1966 /* Recursion is detected! It is possible,
1967 * unfortunately */
1968 if (net_ratelimit())
1969 printk(KERN_CRIT "Dead loop on virtual device "
1970 "%s, fix it urgently!\n", dev->name);
1974 rc = -ENETDOWN;
1975 rcu_read_unlock_bh();
1977 out_kfree_skb:
1978 kfree_skb(skb);
1979 return rc;
1980 out:
1981 rcu_read_unlock_bh();
1982 return rc;
1984 EXPORT_SYMBOL(dev_queue_xmit);
1987 /*=======================================================================
1988 Receiver routines
1989 =======================================================================*/
1991 int netdev_max_backlog __read_mostly = 1000;
1992 int netdev_budget __read_mostly = 300;
1993 int weight_p __read_mostly = 64; /* old backlog weight */
1995 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1999 * netif_rx - post buffer to the network code
2000 * @skb: buffer to post
2002 * This function receives a packet from a device driver and queues it for
2003 * the upper (protocol) levels to process. It always succeeds. The buffer
2004 * may be dropped during processing for congestion control or by the
2005 * protocol layers.
2007 * return values:
2008 * NET_RX_SUCCESS (no congestion)
2009 * NET_RX_DROP (packet was dropped)
2013 int netif_rx(struct sk_buff *skb)
2015 struct softnet_data *queue;
2016 unsigned long flags;
2018 /* if netpoll wants it, pretend we never saw it */
2019 if (netpoll_rx(skb))
2020 return NET_RX_DROP;
2022 if (!skb->tstamp.tv64)
2023 net_timestamp(skb);
2026 * The code is rearranged so that the path is the most
2027 * short when CPU is congested, but is still operating.
2029 local_irq_save(flags);
2030 queue = &__get_cpu_var(softnet_data);
2032 __get_cpu_var(netdev_rx_stat).total++;
2033 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
2034 if (queue->input_pkt_queue.qlen) {
2035 enqueue:
2036 __skb_queue_tail(&queue->input_pkt_queue, skb);
2037 local_irq_restore(flags);
2038 return NET_RX_SUCCESS;
2041 napi_schedule(&queue->backlog);
2042 goto enqueue;
2045 __get_cpu_var(netdev_rx_stat).dropped++;
2046 local_irq_restore(flags);
2048 kfree_skb(skb);
2049 return NET_RX_DROP;
2051 EXPORT_SYMBOL(netif_rx);
2053 int netif_rx_ni(struct sk_buff *skb)
2055 int err;
2057 preempt_disable();
2058 err = netif_rx(skb);
2059 if (local_softirq_pending())
2060 do_softirq();
2061 preempt_enable();
2063 return err;
2065 EXPORT_SYMBOL(netif_rx_ni);
2067 static void net_tx_action(struct softirq_action *h)
2069 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2071 if (sd->completion_queue) {
2072 struct sk_buff *clist;
2074 local_irq_disable();
2075 clist = sd->completion_queue;
2076 sd->completion_queue = NULL;
2077 local_irq_enable();
2079 while (clist) {
2080 struct sk_buff *skb = clist;
2081 clist = clist->next;
2083 WARN_ON(atomic_read(&skb->users));
2084 __kfree_skb(skb);
2088 if (sd->output_queue) {
2089 struct Qdisc *head;
2091 local_irq_disable();
2092 head = sd->output_queue;
2093 sd->output_queue = NULL;
2094 local_irq_enable();
2096 while (head) {
2097 struct Qdisc *q = head;
2098 spinlock_t *root_lock;
2100 head = head->next_sched;
2102 root_lock = qdisc_lock(q);
2103 if (spin_trylock(root_lock)) {
2104 smp_mb__before_clear_bit();
2105 clear_bit(__QDISC_STATE_SCHED,
2106 &q->state);
2107 qdisc_run(q);
2108 spin_unlock(root_lock);
2109 } else {
2110 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2111 &q->state)) {
2112 __netif_reschedule(q);
2113 } else {
2114 smp_mb__before_clear_bit();
2115 clear_bit(__QDISC_STATE_SCHED,
2116 &q->state);
2123 static inline int deliver_skb(struct sk_buff *skb,
2124 struct packet_type *pt_prev,
2125 struct net_device *orig_dev)
2127 atomic_inc(&skb->users);
2128 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2131 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2133 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2134 /* This hook is defined here for ATM LANE */
2135 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2136 unsigned char *addr) __read_mostly;
2137 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2138 #endif
2141 * If bridge module is loaded call bridging hook.
2142 * returns NULL if packet was consumed.
2144 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2145 struct sk_buff *skb) __read_mostly;
2146 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2148 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2149 struct packet_type **pt_prev, int *ret,
2150 struct net_device *orig_dev)
2152 struct net_bridge_port *port;
2154 if (skb->pkt_type == PACKET_LOOPBACK ||
2155 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2156 return skb;
2158 if (*pt_prev) {
2159 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2160 *pt_prev = NULL;
2163 return br_handle_frame_hook(port, skb);
2165 #else
2166 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2167 #endif
2169 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2170 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2171 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2173 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2174 struct packet_type **pt_prev,
2175 int *ret,
2176 struct net_device *orig_dev)
2178 if (skb->dev->macvlan_port == NULL)
2179 return skb;
2181 if (*pt_prev) {
2182 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2183 *pt_prev = NULL;
2185 return macvlan_handle_frame_hook(skb);
2187 #else
2188 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2189 #endif
2191 #ifdef CONFIG_NET_CLS_ACT
2192 /* TODO: Maybe we should just force sch_ingress to be compiled in
2193 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2194 * a compare and 2 stores extra right now if we dont have it on
2195 * but have CONFIG_NET_CLS_ACT
2196 * NOTE: This doesnt stop any functionality; if you dont have
2197 * the ingress scheduler, you just cant add policies on ingress.
2200 static int ing_filter(struct sk_buff *skb)
2202 struct net_device *dev = skb->dev;
2203 u32 ttl = G_TC_RTTL(skb->tc_verd);
2204 struct netdev_queue *rxq;
2205 int result = TC_ACT_OK;
2206 struct Qdisc *q;
2208 if (MAX_RED_LOOP < ttl++) {
2209 printk(KERN_WARNING
2210 "Redir loop detected Dropping packet (%d->%d)\n",
2211 skb->iif, dev->ifindex);
2212 return TC_ACT_SHOT;
2215 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2216 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2218 rxq = &dev->rx_queue;
2220 q = rxq->qdisc;
2221 if (q != &noop_qdisc) {
2222 spin_lock(qdisc_lock(q));
2223 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2224 result = qdisc_enqueue_root(skb, q);
2225 spin_unlock(qdisc_lock(q));
2228 return result;
2231 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2232 struct packet_type **pt_prev,
2233 int *ret, struct net_device *orig_dev)
2235 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2236 goto out;
2238 if (*pt_prev) {
2239 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2240 *pt_prev = NULL;
2241 } else {
2242 /* Huh? Why does turning on AF_PACKET affect this? */
2243 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2246 switch (ing_filter(skb)) {
2247 case TC_ACT_SHOT:
2248 case TC_ACT_STOLEN:
2249 kfree_skb(skb);
2250 return NULL;
2253 out:
2254 skb->tc_verd = 0;
2255 return skb;
2257 #endif
2260 * netif_nit_deliver - deliver received packets to network taps
2261 * @skb: buffer
2263 * This function is used to deliver incoming packets to network
2264 * taps. It should be used when the normal netif_receive_skb path
2265 * is bypassed, for example because of VLAN acceleration.
2267 void netif_nit_deliver(struct sk_buff *skb)
2269 struct packet_type *ptype;
2271 if (list_empty(&ptype_all))
2272 return;
2274 skb_reset_network_header(skb);
2275 skb_reset_transport_header(skb);
2276 skb->mac_len = skb->network_header - skb->mac_header;
2278 rcu_read_lock();
2279 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2280 if (!ptype->dev || ptype->dev == skb->dev)
2281 deliver_skb(skb, ptype, skb->dev);
2283 rcu_read_unlock();
2287 * netif_receive_skb - process receive buffer from network
2288 * @skb: buffer to process
2290 * netif_receive_skb() is the main receive data processing function.
2291 * It always succeeds. The buffer may be dropped during processing
2292 * for congestion control or by the protocol layers.
2294 * This function may only be called from softirq context and interrupts
2295 * should be enabled.
2297 * Return values (usually ignored):
2298 * NET_RX_SUCCESS: no congestion
2299 * NET_RX_DROP: packet was dropped
2301 int netif_receive_skb(struct sk_buff *skb)
2303 struct packet_type *ptype, *pt_prev;
2304 struct net_device *orig_dev;
2305 struct net_device *null_or_orig;
2306 int ret = NET_RX_DROP;
2307 __be16 type;
2309 if (!skb->tstamp.tv64)
2310 net_timestamp(skb);
2312 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2313 return NET_RX_SUCCESS;
2315 /* if we've gotten here through NAPI, check netpoll */
2316 if (netpoll_receive_skb(skb))
2317 return NET_RX_DROP;
2319 if (!skb->iif)
2320 skb->iif = skb->dev->ifindex;
2322 null_or_orig = NULL;
2323 orig_dev = skb->dev;
2324 if (orig_dev->master) {
2325 if (skb_bond_should_drop(skb))
2326 null_or_orig = orig_dev; /* deliver only exact match */
2327 else
2328 skb->dev = orig_dev->master;
2331 __get_cpu_var(netdev_rx_stat).total++;
2333 skb_reset_network_header(skb);
2334 skb_reset_transport_header(skb);
2335 skb->mac_len = skb->network_header - skb->mac_header;
2337 pt_prev = NULL;
2339 rcu_read_lock();
2341 #ifdef CONFIG_NET_CLS_ACT
2342 if (skb->tc_verd & TC_NCLS) {
2343 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2344 goto ncls;
2346 #endif
2348 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2349 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2350 ptype->dev == orig_dev) {
2351 if (pt_prev)
2352 ret = deliver_skb(skb, pt_prev, orig_dev);
2353 pt_prev = ptype;
2357 #ifdef CONFIG_NET_CLS_ACT
2358 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2359 if (!skb)
2360 goto out;
2361 ncls:
2362 #endif
2364 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2365 if (!skb)
2366 goto out;
2367 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2368 if (!skb)
2369 goto out;
2371 type = skb->protocol;
2372 list_for_each_entry_rcu(ptype,
2373 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2374 if (ptype->type == type &&
2375 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2376 ptype->dev == orig_dev)) {
2377 if (pt_prev)
2378 ret = deliver_skb(skb, pt_prev, orig_dev);
2379 pt_prev = ptype;
2383 if (pt_prev) {
2384 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2385 } else {
2386 kfree_skb(skb);
2387 /* Jamal, now you will not able to escape explaining
2388 * me how you were going to use this. :-)
2390 ret = NET_RX_DROP;
2393 out:
2394 rcu_read_unlock();
2395 return ret;
2397 EXPORT_SYMBOL(netif_receive_skb);
2399 /* Network device is going away, flush any packets still pending */
2400 static void flush_backlog(void *arg)
2402 struct net_device *dev = arg;
2403 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2404 struct sk_buff *skb, *tmp;
2406 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2407 if (skb->dev == dev) {
2408 __skb_unlink(skb, &queue->input_pkt_queue);
2409 kfree_skb(skb);
2413 static int napi_gro_complete(struct sk_buff *skb)
2415 struct packet_type *ptype;
2416 __be16 type = skb->protocol;
2417 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2418 int err = -ENOENT;
2420 if (NAPI_GRO_CB(skb)->count == 1) {
2421 skb_shinfo(skb)->gso_size = 0;
2422 goto out;
2425 rcu_read_lock();
2426 list_for_each_entry_rcu(ptype, head, list) {
2427 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2428 continue;
2430 err = ptype->gro_complete(skb);
2431 break;
2433 rcu_read_unlock();
2435 if (err) {
2436 WARN_ON(&ptype->list == head);
2437 kfree_skb(skb);
2438 return NET_RX_SUCCESS;
2441 out:
2442 return netif_receive_skb(skb);
2445 void napi_gro_flush(struct napi_struct *napi)
2447 struct sk_buff *skb, *next;
2449 for (skb = napi->gro_list; skb; skb = next) {
2450 next = skb->next;
2451 skb->next = NULL;
2452 napi_gro_complete(skb);
2455 napi->gro_count = 0;
2456 napi->gro_list = NULL;
2458 EXPORT_SYMBOL(napi_gro_flush);
2460 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2462 struct sk_buff **pp = NULL;
2463 struct packet_type *ptype;
2464 __be16 type = skb->protocol;
2465 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2466 int same_flow;
2467 int mac_len;
2468 int ret;
2470 if (!(skb->dev->features & NETIF_F_GRO))
2471 goto normal;
2473 if (skb_is_gso(skb) || skb_has_frags(skb))
2474 goto normal;
2476 rcu_read_lock();
2477 list_for_each_entry_rcu(ptype, head, list) {
2478 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2479 continue;
2481 skb_set_network_header(skb, skb_gro_offset(skb));
2482 mac_len = skb->network_header - skb->mac_header;
2483 skb->mac_len = mac_len;
2484 NAPI_GRO_CB(skb)->same_flow = 0;
2485 NAPI_GRO_CB(skb)->flush = 0;
2486 NAPI_GRO_CB(skb)->free = 0;
2488 pp = ptype->gro_receive(&napi->gro_list, skb);
2489 break;
2491 rcu_read_unlock();
2493 if (&ptype->list == head)
2494 goto normal;
2496 same_flow = NAPI_GRO_CB(skb)->same_flow;
2497 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2499 if (pp) {
2500 struct sk_buff *nskb = *pp;
2502 *pp = nskb->next;
2503 nskb->next = NULL;
2504 napi_gro_complete(nskb);
2505 napi->gro_count--;
2508 if (same_flow)
2509 goto ok;
2511 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2512 goto normal;
2514 napi->gro_count++;
2515 NAPI_GRO_CB(skb)->count = 1;
2516 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2517 skb->next = napi->gro_list;
2518 napi->gro_list = skb;
2519 ret = GRO_HELD;
2521 pull:
2522 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2523 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2525 BUG_ON(skb->end - skb->tail < grow);
2527 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2529 skb->tail += grow;
2530 skb->data_len -= grow;
2532 skb_shinfo(skb)->frags[0].page_offset += grow;
2533 skb_shinfo(skb)->frags[0].size -= grow;
2535 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2536 put_page(skb_shinfo(skb)->frags[0].page);
2537 memmove(skb_shinfo(skb)->frags,
2538 skb_shinfo(skb)->frags + 1,
2539 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
2544 return ret;
2546 normal:
2547 ret = GRO_NORMAL;
2548 goto pull;
2550 EXPORT_SYMBOL(dev_gro_receive);
2552 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2554 struct sk_buff *p;
2556 if (netpoll_rx_on(skb))
2557 return GRO_NORMAL;
2559 for (p = napi->gro_list; p; p = p->next) {
2560 NAPI_GRO_CB(p)->same_flow = (p->dev == skb->dev)
2561 && !compare_ether_header(skb_mac_header(p),
2562 skb_gro_mac_header(skb));
2563 NAPI_GRO_CB(p)->flush = 0;
2566 return dev_gro_receive(napi, skb);
2569 int napi_skb_finish(int ret, struct sk_buff *skb)
2571 int err = NET_RX_SUCCESS;
2573 switch (ret) {
2574 case GRO_NORMAL:
2575 return netif_receive_skb(skb);
2577 case GRO_DROP:
2578 err = NET_RX_DROP;
2579 /* fall through */
2581 case GRO_MERGED_FREE:
2582 kfree_skb(skb);
2583 break;
2586 return err;
2588 EXPORT_SYMBOL(napi_skb_finish);
2590 void skb_gro_reset_offset(struct sk_buff *skb)
2592 NAPI_GRO_CB(skb)->data_offset = 0;
2593 NAPI_GRO_CB(skb)->frag0 = NULL;
2594 NAPI_GRO_CB(skb)->frag0_len = 0;
2596 if (skb->mac_header == skb->tail &&
2597 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
2598 NAPI_GRO_CB(skb)->frag0 =
2599 page_address(skb_shinfo(skb)->frags[0].page) +
2600 skb_shinfo(skb)->frags[0].page_offset;
2601 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2604 EXPORT_SYMBOL(skb_gro_reset_offset);
2606 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2608 skb_gro_reset_offset(skb);
2610 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2612 EXPORT_SYMBOL(napi_gro_receive);
2614 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2616 __skb_pull(skb, skb_headlen(skb));
2617 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2618 skb->vlan_tci = 0;
2619 skb->dev = napi->dev;
2620 skb->iif = 0;
2622 napi->skb = skb;
2624 EXPORT_SYMBOL(napi_reuse_skb);
2626 struct sk_buff *napi_get_frags(struct napi_struct *napi)
2628 struct net_device *dev = napi->dev;
2629 struct sk_buff *skb = napi->skb;
2631 if (!skb) {
2632 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN);
2633 if (!skb)
2634 goto out;
2636 skb_reserve(skb, NET_IP_ALIGN);
2638 napi->skb = skb;
2641 out:
2642 return skb;
2644 EXPORT_SYMBOL(napi_get_frags);
2646 int napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, int ret)
2648 int err = NET_RX_SUCCESS;
2650 switch (ret) {
2651 case GRO_NORMAL:
2652 case GRO_HELD:
2653 skb->protocol = eth_type_trans(skb, skb->dev);
2655 if (ret == GRO_NORMAL)
2656 return netif_receive_skb(skb);
2658 skb_gro_pull(skb, -ETH_HLEN);
2659 break;
2661 case GRO_DROP:
2662 err = NET_RX_DROP;
2663 /* fall through */
2665 case GRO_MERGED_FREE:
2666 napi_reuse_skb(napi, skb);
2667 break;
2670 return err;
2672 EXPORT_SYMBOL(napi_frags_finish);
2674 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
2676 struct sk_buff *skb = napi->skb;
2677 struct ethhdr *eth;
2678 unsigned int hlen;
2679 unsigned int off;
2681 napi->skb = NULL;
2683 skb_reset_mac_header(skb);
2684 skb_gro_reset_offset(skb);
2686 off = skb_gro_offset(skb);
2687 hlen = off + sizeof(*eth);
2688 eth = skb_gro_header_fast(skb, off);
2689 if (skb_gro_header_hard(skb, hlen)) {
2690 eth = skb_gro_header_slow(skb, hlen, off);
2691 if (unlikely(!eth)) {
2692 napi_reuse_skb(napi, skb);
2693 skb = NULL;
2694 goto out;
2698 skb_gro_pull(skb, sizeof(*eth));
2701 * This works because the only protocols we care about don't require
2702 * special handling. We'll fix it up properly at the end.
2704 skb->protocol = eth->h_proto;
2706 out:
2707 return skb;
2709 EXPORT_SYMBOL(napi_frags_skb);
2711 int napi_gro_frags(struct napi_struct *napi)
2713 struct sk_buff *skb = napi_frags_skb(napi);
2715 if (!skb)
2716 return NET_RX_DROP;
2718 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2720 EXPORT_SYMBOL(napi_gro_frags);
2722 static int process_backlog(struct napi_struct *napi, int quota)
2724 int work = 0;
2725 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2726 unsigned long start_time = jiffies;
2728 napi->weight = weight_p;
2729 do {
2730 struct sk_buff *skb;
2732 local_irq_disable();
2733 skb = __skb_dequeue(&queue->input_pkt_queue);
2734 if (!skb) {
2735 __napi_complete(napi);
2736 local_irq_enable();
2737 break;
2739 local_irq_enable();
2741 netif_receive_skb(skb);
2742 } while (++work < quota && jiffies == start_time);
2744 return work;
2748 * __napi_schedule - schedule for receive
2749 * @n: entry to schedule
2751 * The entry's receive function will be scheduled to run
2753 void __napi_schedule(struct napi_struct *n)
2755 unsigned long flags;
2757 local_irq_save(flags);
2758 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2759 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2760 local_irq_restore(flags);
2762 EXPORT_SYMBOL(__napi_schedule);
2764 void __napi_complete(struct napi_struct *n)
2766 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2767 BUG_ON(n->gro_list);
2769 list_del(&n->poll_list);
2770 smp_mb__before_clear_bit();
2771 clear_bit(NAPI_STATE_SCHED, &n->state);
2773 EXPORT_SYMBOL(__napi_complete);
2775 void napi_complete(struct napi_struct *n)
2777 unsigned long flags;
2780 * don't let napi dequeue from the cpu poll list
2781 * just in case its running on a different cpu
2783 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2784 return;
2786 napi_gro_flush(n);
2787 local_irq_save(flags);
2788 __napi_complete(n);
2789 local_irq_restore(flags);
2791 EXPORT_SYMBOL(napi_complete);
2793 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2794 int (*poll)(struct napi_struct *, int), int weight)
2796 INIT_LIST_HEAD(&napi->poll_list);
2797 napi->gro_count = 0;
2798 napi->gro_list = NULL;
2799 napi->skb = NULL;
2800 napi->poll = poll;
2801 napi->weight = weight;
2802 list_add(&napi->dev_list, &dev->napi_list);
2803 napi->dev = dev;
2804 #ifdef CONFIG_NETPOLL
2805 spin_lock_init(&napi->poll_lock);
2806 napi->poll_owner = -1;
2807 #endif
2808 set_bit(NAPI_STATE_SCHED, &napi->state);
2810 EXPORT_SYMBOL(netif_napi_add);
2812 void netif_napi_del(struct napi_struct *napi)
2814 struct sk_buff *skb, *next;
2816 list_del_init(&napi->dev_list);
2817 napi_free_frags(napi);
2819 for (skb = napi->gro_list; skb; skb = next) {
2820 next = skb->next;
2821 skb->next = NULL;
2822 kfree_skb(skb);
2825 napi->gro_list = NULL;
2826 napi->gro_count = 0;
2828 EXPORT_SYMBOL(netif_napi_del);
2831 static void net_rx_action(struct softirq_action *h)
2833 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2834 unsigned long time_limit = jiffies + 2;
2835 int budget = netdev_budget;
2836 void *have;
2838 local_irq_disable();
2840 while (!list_empty(list)) {
2841 struct napi_struct *n;
2842 int work, weight;
2844 /* If softirq window is exhuasted then punt.
2845 * Allow this to run for 2 jiffies since which will allow
2846 * an average latency of 1.5/HZ.
2848 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2849 goto softnet_break;
2851 local_irq_enable();
2853 /* Even though interrupts have been re-enabled, this
2854 * access is safe because interrupts can only add new
2855 * entries to the tail of this list, and only ->poll()
2856 * calls can remove this head entry from the list.
2858 n = list_entry(list->next, struct napi_struct, poll_list);
2860 have = netpoll_poll_lock(n);
2862 weight = n->weight;
2864 /* This NAPI_STATE_SCHED test is for avoiding a race
2865 * with netpoll's poll_napi(). Only the entity which
2866 * obtains the lock and sees NAPI_STATE_SCHED set will
2867 * actually make the ->poll() call. Therefore we avoid
2868 * accidently calling ->poll() when NAPI is not scheduled.
2870 work = 0;
2871 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
2872 work = n->poll(n, weight);
2873 trace_napi_poll(n);
2876 WARN_ON_ONCE(work > weight);
2878 budget -= work;
2880 local_irq_disable();
2882 /* Drivers must not modify the NAPI state if they
2883 * consume the entire weight. In such cases this code
2884 * still "owns" the NAPI instance and therefore can
2885 * move the instance around on the list at-will.
2887 if (unlikely(work == weight)) {
2888 if (unlikely(napi_disable_pending(n))) {
2889 local_irq_enable();
2890 napi_complete(n);
2891 local_irq_disable();
2892 } else
2893 list_move_tail(&n->poll_list, list);
2896 netpoll_poll_unlock(have);
2898 out:
2899 local_irq_enable();
2901 #ifdef CONFIG_NET_DMA
2903 * There may not be any more sk_buffs coming right now, so push
2904 * any pending DMA copies to hardware
2906 dma_issue_pending_all();
2907 #endif
2909 return;
2911 softnet_break:
2912 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2913 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2914 goto out;
2917 static gifconf_func_t *gifconf_list[NPROTO];
2920 * register_gifconf - register a SIOCGIF handler
2921 * @family: Address family
2922 * @gifconf: Function handler
2924 * Register protocol dependent address dumping routines. The handler
2925 * that is passed must not be freed or reused until it has been replaced
2926 * by another handler.
2928 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
2930 if (family >= NPROTO)
2931 return -EINVAL;
2932 gifconf_list[family] = gifconf;
2933 return 0;
2935 EXPORT_SYMBOL(register_gifconf);
2939 * Map an interface index to its name (SIOCGIFNAME)
2943 * We need this ioctl for efficient implementation of the
2944 * if_indextoname() function required by the IPv6 API. Without
2945 * it, we would have to search all the interfaces to find a
2946 * match. --pb
2949 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2951 struct net_device *dev;
2952 struct ifreq ifr;
2955 * Fetch the caller's info block.
2958 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2959 return -EFAULT;
2961 read_lock(&dev_base_lock);
2962 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2963 if (!dev) {
2964 read_unlock(&dev_base_lock);
2965 return -ENODEV;
2968 strcpy(ifr.ifr_name, dev->name);
2969 read_unlock(&dev_base_lock);
2971 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2972 return -EFAULT;
2973 return 0;
2977 * Perform a SIOCGIFCONF call. This structure will change
2978 * size eventually, and there is nothing I can do about it.
2979 * Thus we will need a 'compatibility mode'.
2982 static int dev_ifconf(struct net *net, char __user *arg)
2984 struct ifconf ifc;
2985 struct net_device *dev;
2986 char __user *pos;
2987 int len;
2988 int total;
2989 int i;
2992 * Fetch the caller's info block.
2995 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2996 return -EFAULT;
2998 pos = ifc.ifc_buf;
2999 len = ifc.ifc_len;
3002 * Loop over the interfaces, and write an info block for each.
3005 total = 0;
3006 for_each_netdev(net, dev) {
3007 for (i = 0; i < NPROTO; i++) {
3008 if (gifconf_list[i]) {
3009 int done;
3010 if (!pos)
3011 done = gifconf_list[i](dev, NULL, 0);
3012 else
3013 done = gifconf_list[i](dev, pos + total,
3014 len - total);
3015 if (done < 0)
3016 return -EFAULT;
3017 total += done;
3023 * All done. Write the updated control block back to the caller.
3025 ifc.ifc_len = total;
3028 * Both BSD and Solaris return 0 here, so we do too.
3030 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3033 #ifdef CONFIG_PROC_FS
3035 * This is invoked by the /proc filesystem handler to display a device
3036 * in detail.
3038 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3039 __acquires(dev_base_lock)
3041 struct net *net = seq_file_net(seq);
3042 loff_t off;
3043 struct net_device *dev;
3045 read_lock(&dev_base_lock);
3046 if (!*pos)
3047 return SEQ_START_TOKEN;
3049 off = 1;
3050 for_each_netdev(net, dev)
3051 if (off++ == *pos)
3052 return dev;
3054 return NULL;
3057 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3059 struct net *net = seq_file_net(seq);
3060 ++*pos;
3061 return v == SEQ_START_TOKEN ?
3062 first_net_device(net) : next_net_device((struct net_device *)v);
3065 void dev_seq_stop(struct seq_file *seq, void *v)
3066 __releases(dev_base_lock)
3068 read_unlock(&dev_base_lock);
3071 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3073 const struct net_device_stats *stats = dev_get_stats(dev);
3075 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3076 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3077 dev->name, stats->rx_bytes, stats->rx_packets,
3078 stats->rx_errors,
3079 stats->rx_dropped + stats->rx_missed_errors,
3080 stats->rx_fifo_errors,
3081 stats->rx_length_errors + stats->rx_over_errors +
3082 stats->rx_crc_errors + stats->rx_frame_errors,
3083 stats->rx_compressed, stats->multicast,
3084 stats->tx_bytes, stats->tx_packets,
3085 stats->tx_errors, stats->tx_dropped,
3086 stats->tx_fifo_errors, stats->collisions,
3087 stats->tx_carrier_errors +
3088 stats->tx_aborted_errors +
3089 stats->tx_window_errors +
3090 stats->tx_heartbeat_errors,
3091 stats->tx_compressed);
3095 * Called from the PROCfs module. This now uses the new arbitrary sized
3096 * /proc/net interface to create /proc/net/dev
3098 static int dev_seq_show(struct seq_file *seq, void *v)
3100 if (v == SEQ_START_TOKEN)
3101 seq_puts(seq, "Inter-| Receive "
3102 " | Transmit\n"
3103 " face |bytes packets errs drop fifo frame "
3104 "compressed multicast|bytes packets errs "
3105 "drop fifo colls carrier compressed\n");
3106 else
3107 dev_seq_printf_stats(seq, v);
3108 return 0;
3111 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3113 struct netif_rx_stats *rc = NULL;
3115 while (*pos < nr_cpu_ids)
3116 if (cpu_online(*pos)) {
3117 rc = &per_cpu(netdev_rx_stat, *pos);
3118 break;
3119 } else
3120 ++*pos;
3121 return rc;
3124 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3126 return softnet_get_online(pos);
3129 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3131 ++*pos;
3132 return softnet_get_online(pos);
3135 static void softnet_seq_stop(struct seq_file *seq, void *v)
3139 static int softnet_seq_show(struct seq_file *seq, void *v)
3141 struct netif_rx_stats *s = v;
3143 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3144 s->total, s->dropped, s->time_squeeze, 0,
3145 0, 0, 0, 0, /* was fastroute */
3146 s->cpu_collision);
3147 return 0;
3150 static const struct seq_operations dev_seq_ops = {
3151 .start = dev_seq_start,
3152 .next = dev_seq_next,
3153 .stop = dev_seq_stop,
3154 .show = dev_seq_show,
3157 static int dev_seq_open(struct inode *inode, struct file *file)
3159 return seq_open_net(inode, file, &dev_seq_ops,
3160 sizeof(struct seq_net_private));
3163 static const struct file_operations dev_seq_fops = {
3164 .owner = THIS_MODULE,
3165 .open = dev_seq_open,
3166 .read = seq_read,
3167 .llseek = seq_lseek,
3168 .release = seq_release_net,
3171 static const struct seq_operations softnet_seq_ops = {
3172 .start = softnet_seq_start,
3173 .next = softnet_seq_next,
3174 .stop = softnet_seq_stop,
3175 .show = softnet_seq_show,
3178 static int softnet_seq_open(struct inode *inode, struct file *file)
3180 return seq_open(file, &softnet_seq_ops);
3183 static const struct file_operations softnet_seq_fops = {
3184 .owner = THIS_MODULE,
3185 .open = softnet_seq_open,
3186 .read = seq_read,
3187 .llseek = seq_lseek,
3188 .release = seq_release,
3191 static void *ptype_get_idx(loff_t pos)
3193 struct packet_type *pt = NULL;
3194 loff_t i = 0;
3195 int t;
3197 list_for_each_entry_rcu(pt, &ptype_all, list) {
3198 if (i == pos)
3199 return pt;
3200 ++i;
3203 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3204 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3205 if (i == pos)
3206 return pt;
3207 ++i;
3210 return NULL;
3213 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3214 __acquires(RCU)
3216 rcu_read_lock();
3217 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3220 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3222 struct packet_type *pt;
3223 struct list_head *nxt;
3224 int hash;
3226 ++*pos;
3227 if (v == SEQ_START_TOKEN)
3228 return ptype_get_idx(0);
3230 pt = v;
3231 nxt = pt->list.next;
3232 if (pt->type == htons(ETH_P_ALL)) {
3233 if (nxt != &ptype_all)
3234 goto found;
3235 hash = 0;
3236 nxt = ptype_base[0].next;
3237 } else
3238 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3240 while (nxt == &ptype_base[hash]) {
3241 if (++hash >= PTYPE_HASH_SIZE)
3242 return NULL;
3243 nxt = ptype_base[hash].next;
3245 found:
3246 return list_entry(nxt, struct packet_type, list);
3249 static void ptype_seq_stop(struct seq_file *seq, void *v)
3250 __releases(RCU)
3252 rcu_read_unlock();
3255 static int ptype_seq_show(struct seq_file *seq, void *v)
3257 struct packet_type *pt = v;
3259 if (v == SEQ_START_TOKEN)
3260 seq_puts(seq, "Type Device Function\n");
3261 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3262 if (pt->type == htons(ETH_P_ALL))
3263 seq_puts(seq, "ALL ");
3264 else
3265 seq_printf(seq, "%04x", ntohs(pt->type));
3267 seq_printf(seq, " %-8s %pF\n",
3268 pt->dev ? pt->dev->name : "", pt->func);
3271 return 0;
3274 static const struct seq_operations ptype_seq_ops = {
3275 .start = ptype_seq_start,
3276 .next = ptype_seq_next,
3277 .stop = ptype_seq_stop,
3278 .show = ptype_seq_show,
3281 static int ptype_seq_open(struct inode *inode, struct file *file)
3283 return seq_open_net(inode, file, &ptype_seq_ops,
3284 sizeof(struct seq_net_private));
3287 static const struct file_operations ptype_seq_fops = {
3288 .owner = THIS_MODULE,
3289 .open = ptype_seq_open,
3290 .read = seq_read,
3291 .llseek = seq_lseek,
3292 .release = seq_release_net,
3296 static int __net_init dev_proc_net_init(struct net *net)
3298 int rc = -ENOMEM;
3300 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3301 goto out;
3302 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3303 goto out_dev;
3304 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3305 goto out_softnet;
3307 if (wext_proc_init(net))
3308 goto out_ptype;
3309 rc = 0;
3310 out:
3311 return rc;
3312 out_ptype:
3313 proc_net_remove(net, "ptype");
3314 out_softnet:
3315 proc_net_remove(net, "softnet_stat");
3316 out_dev:
3317 proc_net_remove(net, "dev");
3318 goto out;
3321 static void __net_exit dev_proc_net_exit(struct net *net)
3323 wext_proc_exit(net);
3325 proc_net_remove(net, "ptype");
3326 proc_net_remove(net, "softnet_stat");
3327 proc_net_remove(net, "dev");
3330 static struct pernet_operations __net_initdata dev_proc_ops = {
3331 .init = dev_proc_net_init,
3332 .exit = dev_proc_net_exit,
3335 static int __init dev_proc_init(void)
3337 return register_pernet_subsys(&dev_proc_ops);
3339 #else
3340 #define dev_proc_init() 0
3341 #endif /* CONFIG_PROC_FS */
3345 * netdev_set_master - set up master/slave pair
3346 * @slave: slave device
3347 * @master: new master device
3349 * Changes the master device of the slave. Pass %NULL to break the
3350 * bonding. The caller must hold the RTNL semaphore. On a failure
3351 * a negative errno code is returned. On success the reference counts
3352 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3353 * function returns zero.
3355 int netdev_set_master(struct net_device *slave, struct net_device *master)
3357 struct net_device *old = slave->master;
3359 ASSERT_RTNL();
3361 if (master) {
3362 if (old)
3363 return -EBUSY;
3364 dev_hold(master);
3367 slave->master = master;
3369 synchronize_net();
3371 if (old)
3372 dev_put(old);
3374 if (master)
3375 slave->flags |= IFF_SLAVE;
3376 else
3377 slave->flags &= ~IFF_SLAVE;
3379 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3380 return 0;
3382 EXPORT_SYMBOL(netdev_set_master);
3384 static void dev_change_rx_flags(struct net_device *dev, int flags)
3386 const struct net_device_ops *ops = dev->netdev_ops;
3388 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3389 ops->ndo_change_rx_flags(dev, flags);
3392 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3394 unsigned short old_flags = dev->flags;
3395 uid_t uid;
3396 gid_t gid;
3398 ASSERT_RTNL();
3400 dev->flags |= IFF_PROMISC;
3401 dev->promiscuity += inc;
3402 if (dev->promiscuity == 0) {
3404 * Avoid overflow.
3405 * If inc causes overflow, untouch promisc and return error.
3407 if (inc < 0)
3408 dev->flags &= ~IFF_PROMISC;
3409 else {
3410 dev->promiscuity -= inc;
3411 printk(KERN_WARNING "%s: promiscuity touches roof, "
3412 "set promiscuity failed, promiscuity feature "
3413 "of device might be broken.\n", dev->name);
3414 return -EOVERFLOW;
3417 if (dev->flags != old_flags) {
3418 printk(KERN_INFO "device %s %s promiscuous mode\n",
3419 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3420 "left");
3421 if (audit_enabled) {
3422 current_uid_gid(&uid, &gid);
3423 audit_log(current->audit_context, GFP_ATOMIC,
3424 AUDIT_ANOM_PROMISCUOUS,
3425 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3426 dev->name, (dev->flags & IFF_PROMISC),
3427 (old_flags & IFF_PROMISC),
3428 audit_get_loginuid(current),
3429 uid, gid,
3430 audit_get_sessionid(current));
3433 dev_change_rx_flags(dev, IFF_PROMISC);
3435 return 0;
3439 * dev_set_promiscuity - update promiscuity count on a device
3440 * @dev: device
3441 * @inc: modifier
3443 * Add or remove promiscuity from a device. While the count in the device
3444 * remains above zero the interface remains promiscuous. Once it hits zero
3445 * the device reverts back to normal filtering operation. A negative inc
3446 * value is used to drop promiscuity on the device.
3447 * Return 0 if successful or a negative errno code on error.
3449 int dev_set_promiscuity(struct net_device *dev, int inc)
3451 unsigned short old_flags = dev->flags;
3452 int err;
3454 err = __dev_set_promiscuity(dev, inc);
3455 if (err < 0)
3456 return err;
3457 if (dev->flags != old_flags)
3458 dev_set_rx_mode(dev);
3459 return err;
3461 EXPORT_SYMBOL(dev_set_promiscuity);
3464 * dev_set_allmulti - update allmulti count on a device
3465 * @dev: device
3466 * @inc: modifier
3468 * Add or remove reception of all multicast frames to a device. While the
3469 * count in the device remains above zero the interface remains listening
3470 * to all interfaces. Once it hits zero the device reverts back to normal
3471 * filtering operation. A negative @inc value is used to drop the counter
3472 * when releasing a resource needing all multicasts.
3473 * Return 0 if successful or a negative errno code on error.
3476 int dev_set_allmulti(struct net_device *dev, int inc)
3478 unsigned short old_flags = dev->flags;
3480 ASSERT_RTNL();
3482 dev->flags |= IFF_ALLMULTI;
3483 dev->allmulti += inc;
3484 if (dev->allmulti == 0) {
3486 * Avoid overflow.
3487 * If inc causes overflow, untouch allmulti and return error.
3489 if (inc < 0)
3490 dev->flags &= ~IFF_ALLMULTI;
3491 else {
3492 dev->allmulti -= inc;
3493 printk(KERN_WARNING "%s: allmulti touches roof, "
3494 "set allmulti failed, allmulti feature of "
3495 "device might be broken.\n", dev->name);
3496 return -EOVERFLOW;
3499 if (dev->flags ^ old_flags) {
3500 dev_change_rx_flags(dev, IFF_ALLMULTI);
3501 dev_set_rx_mode(dev);
3503 return 0;
3505 EXPORT_SYMBOL(dev_set_allmulti);
3508 * Upload unicast and multicast address lists to device and
3509 * configure RX filtering. When the device doesn't support unicast
3510 * filtering it is put in promiscuous mode while unicast addresses
3511 * are present.
3513 void __dev_set_rx_mode(struct net_device *dev)
3515 const struct net_device_ops *ops = dev->netdev_ops;
3517 /* dev_open will call this function so the list will stay sane. */
3518 if (!(dev->flags&IFF_UP))
3519 return;
3521 if (!netif_device_present(dev))
3522 return;
3524 if (ops->ndo_set_rx_mode)
3525 ops->ndo_set_rx_mode(dev);
3526 else {
3527 /* Unicast addresses changes may only happen under the rtnl,
3528 * therefore calling __dev_set_promiscuity here is safe.
3530 if (dev->uc.count > 0 && !dev->uc_promisc) {
3531 __dev_set_promiscuity(dev, 1);
3532 dev->uc_promisc = 1;
3533 } else if (dev->uc.count == 0 && dev->uc_promisc) {
3534 __dev_set_promiscuity(dev, -1);
3535 dev->uc_promisc = 0;
3538 if (ops->ndo_set_multicast_list)
3539 ops->ndo_set_multicast_list(dev);
3543 void dev_set_rx_mode(struct net_device *dev)
3545 netif_addr_lock_bh(dev);
3546 __dev_set_rx_mode(dev);
3547 netif_addr_unlock_bh(dev);
3550 /* hw addresses list handling functions */
3552 static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr,
3553 int addr_len, unsigned char addr_type)
3555 struct netdev_hw_addr *ha;
3556 int alloc_size;
3558 if (addr_len > MAX_ADDR_LEN)
3559 return -EINVAL;
3561 list_for_each_entry(ha, &list->list, list) {
3562 if (!memcmp(ha->addr, addr, addr_len) &&
3563 ha->type == addr_type) {
3564 ha->refcount++;
3565 return 0;
3570 alloc_size = sizeof(*ha);
3571 if (alloc_size < L1_CACHE_BYTES)
3572 alloc_size = L1_CACHE_BYTES;
3573 ha = kmalloc(alloc_size, GFP_ATOMIC);
3574 if (!ha)
3575 return -ENOMEM;
3576 memcpy(ha->addr, addr, addr_len);
3577 ha->type = addr_type;
3578 ha->refcount = 1;
3579 ha->synced = false;
3580 list_add_tail_rcu(&ha->list, &list->list);
3581 list->count++;
3582 return 0;
3585 static void ha_rcu_free(struct rcu_head *head)
3587 struct netdev_hw_addr *ha;
3589 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3590 kfree(ha);
3593 static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr,
3594 int addr_len, unsigned char addr_type)
3596 struct netdev_hw_addr *ha;
3598 list_for_each_entry(ha, &list->list, list) {
3599 if (!memcmp(ha->addr, addr, addr_len) &&
3600 (ha->type == addr_type || !addr_type)) {
3601 if (--ha->refcount)
3602 return 0;
3603 list_del_rcu(&ha->list);
3604 call_rcu(&ha->rcu_head, ha_rcu_free);
3605 list->count--;
3606 return 0;
3609 return -ENOENT;
3612 static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
3613 struct netdev_hw_addr_list *from_list,
3614 int addr_len,
3615 unsigned char addr_type)
3617 int err;
3618 struct netdev_hw_addr *ha, *ha2;
3619 unsigned char type;
3621 list_for_each_entry(ha, &from_list->list, list) {
3622 type = addr_type ? addr_type : ha->type;
3623 err = __hw_addr_add(to_list, ha->addr, addr_len, type);
3624 if (err)
3625 goto unroll;
3627 return 0;
3629 unroll:
3630 list_for_each_entry(ha2, &from_list->list, list) {
3631 if (ha2 == ha)
3632 break;
3633 type = addr_type ? addr_type : ha2->type;
3634 __hw_addr_del(to_list, ha2->addr, addr_len, type);
3636 return err;
3639 static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
3640 struct netdev_hw_addr_list *from_list,
3641 int addr_len,
3642 unsigned char addr_type)
3644 struct netdev_hw_addr *ha;
3645 unsigned char type;
3647 list_for_each_entry(ha, &from_list->list, list) {
3648 type = addr_type ? addr_type : ha->type;
3649 __hw_addr_del(to_list, ha->addr, addr_len, addr_type);
3653 static int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3654 struct netdev_hw_addr_list *from_list,
3655 int addr_len)
3657 int err = 0;
3658 struct netdev_hw_addr *ha, *tmp;
3660 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3661 if (!ha->synced) {
3662 err = __hw_addr_add(to_list, ha->addr,
3663 addr_len, ha->type);
3664 if (err)
3665 break;
3666 ha->synced = true;
3667 ha->refcount++;
3668 } else if (ha->refcount == 1) {
3669 __hw_addr_del(to_list, ha->addr, addr_len, ha->type);
3670 __hw_addr_del(from_list, ha->addr, addr_len, ha->type);
3673 return err;
3676 static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3677 struct netdev_hw_addr_list *from_list,
3678 int addr_len)
3680 struct netdev_hw_addr *ha, *tmp;
3682 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3683 if (ha->synced) {
3684 __hw_addr_del(to_list, ha->addr,
3685 addr_len, ha->type);
3686 ha->synced = false;
3687 __hw_addr_del(from_list, ha->addr,
3688 addr_len, ha->type);
3693 static void __hw_addr_flush(struct netdev_hw_addr_list *list)
3695 struct netdev_hw_addr *ha, *tmp;
3697 list_for_each_entry_safe(ha, tmp, &list->list, list) {
3698 list_del_rcu(&ha->list);
3699 call_rcu(&ha->rcu_head, ha_rcu_free);
3701 list->count = 0;
3704 static void __hw_addr_init(struct netdev_hw_addr_list *list)
3706 INIT_LIST_HEAD(&list->list);
3707 list->count = 0;
3710 /* Device addresses handling functions */
3712 static void dev_addr_flush(struct net_device *dev)
3714 /* rtnl_mutex must be held here */
3716 __hw_addr_flush(&dev->dev_addrs);
3717 dev->dev_addr = NULL;
3720 static int dev_addr_init(struct net_device *dev)
3722 unsigned char addr[MAX_ADDR_LEN];
3723 struct netdev_hw_addr *ha;
3724 int err;
3726 /* rtnl_mutex must be held here */
3728 __hw_addr_init(&dev->dev_addrs);
3729 memset(addr, 0, sizeof(addr));
3730 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr),
3731 NETDEV_HW_ADDR_T_LAN);
3732 if (!err) {
3734 * Get the first (previously created) address from the list
3735 * and set dev_addr pointer to this location.
3737 ha = list_first_entry(&dev->dev_addrs.list,
3738 struct netdev_hw_addr, list);
3739 dev->dev_addr = ha->addr;
3741 return err;
3745 * dev_addr_add - Add a device address
3746 * @dev: device
3747 * @addr: address to add
3748 * @addr_type: address type
3750 * Add a device address to the device or increase the reference count if
3751 * it already exists.
3753 * The caller must hold the rtnl_mutex.
3755 int dev_addr_add(struct net_device *dev, unsigned char *addr,
3756 unsigned char addr_type)
3758 int err;
3760 ASSERT_RTNL();
3762 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type);
3763 if (!err)
3764 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3765 return err;
3767 EXPORT_SYMBOL(dev_addr_add);
3770 * dev_addr_del - Release a device address.
3771 * @dev: device
3772 * @addr: address to delete
3773 * @addr_type: address type
3775 * Release reference to a device address and remove it from the device
3776 * if the reference count drops to zero.
3778 * The caller must hold the rtnl_mutex.
3780 int dev_addr_del(struct net_device *dev, unsigned char *addr,
3781 unsigned char addr_type)
3783 int err;
3784 struct netdev_hw_addr *ha;
3786 ASSERT_RTNL();
3789 * We can not remove the first address from the list because
3790 * dev->dev_addr points to that.
3792 ha = list_first_entry(&dev->dev_addrs.list,
3793 struct netdev_hw_addr, list);
3794 if (ha->addr == dev->dev_addr && ha->refcount == 1)
3795 return -ENOENT;
3797 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len,
3798 addr_type);
3799 if (!err)
3800 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3801 return err;
3803 EXPORT_SYMBOL(dev_addr_del);
3806 * dev_addr_add_multiple - Add device addresses from another device
3807 * @to_dev: device to which addresses will be added
3808 * @from_dev: device from which addresses will be added
3809 * @addr_type: address type - 0 means type will be used from from_dev
3811 * Add device addresses of the one device to another.
3813 * The caller must hold the rtnl_mutex.
3815 int dev_addr_add_multiple(struct net_device *to_dev,
3816 struct net_device *from_dev,
3817 unsigned char addr_type)
3819 int err;
3821 ASSERT_RTNL();
3823 if (from_dev->addr_len != to_dev->addr_len)
3824 return -EINVAL;
3825 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
3826 to_dev->addr_len, addr_type);
3827 if (!err)
3828 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3829 return err;
3831 EXPORT_SYMBOL(dev_addr_add_multiple);
3834 * dev_addr_del_multiple - Delete device addresses by another device
3835 * @to_dev: device where the addresses will be deleted
3836 * @from_dev: device by which addresses the addresses will be deleted
3837 * @addr_type: address type - 0 means type will used from from_dev
3839 * Deletes addresses in to device by the list of addresses in from device.
3841 * The caller must hold the rtnl_mutex.
3843 int dev_addr_del_multiple(struct net_device *to_dev,
3844 struct net_device *from_dev,
3845 unsigned char addr_type)
3847 ASSERT_RTNL();
3849 if (from_dev->addr_len != to_dev->addr_len)
3850 return -EINVAL;
3851 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
3852 to_dev->addr_len, addr_type);
3853 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3854 return 0;
3856 EXPORT_SYMBOL(dev_addr_del_multiple);
3858 /* multicast addresses handling functions */
3860 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3861 void *addr, int alen, int glbl)
3863 struct dev_addr_list *da;
3865 for (; (da = *list) != NULL; list = &da->next) {
3866 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3867 alen == da->da_addrlen) {
3868 if (glbl) {
3869 int old_glbl = da->da_gusers;
3870 da->da_gusers = 0;
3871 if (old_glbl == 0)
3872 break;
3874 if (--da->da_users)
3875 return 0;
3877 *list = da->next;
3878 kfree(da);
3879 (*count)--;
3880 return 0;
3883 return -ENOENT;
3886 int __dev_addr_add(struct dev_addr_list **list, int *count,
3887 void *addr, int alen, int glbl)
3889 struct dev_addr_list *da;
3891 for (da = *list; da != NULL; da = da->next) {
3892 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3893 da->da_addrlen == alen) {
3894 if (glbl) {
3895 int old_glbl = da->da_gusers;
3896 da->da_gusers = 1;
3897 if (old_glbl)
3898 return 0;
3900 da->da_users++;
3901 return 0;
3905 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3906 if (da == NULL)
3907 return -ENOMEM;
3908 memcpy(da->da_addr, addr, alen);
3909 da->da_addrlen = alen;
3910 da->da_users = 1;
3911 da->da_gusers = glbl ? 1 : 0;
3912 da->next = *list;
3913 *list = da;
3914 (*count)++;
3915 return 0;
3919 * dev_unicast_delete - Release secondary unicast address.
3920 * @dev: device
3921 * @addr: address to delete
3923 * Release reference to a secondary unicast address and remove it
3924 * from the device if the reference count drops to zero.
3926 * The caller must hold the rtnl_mutex.
3928 int dev_unicast_delete(struct net_device *dev, void *addr)
3930 int err;
3932 ASSERT_RTNL();
3934 netif_addr_lock_bh(dev);
3935 err = __hw_addr_del(&dev->uc, addr, dev->addr_len,
3936 NETDEV_HW_ADDR_T_UNICAST);
3937 if (!err)
3938 __dev_set_rx_mode(dev);
3939 netif_addr_unlock_bh(dev);
3940 return err;
3942 EXPORT_SYMBOL(dev_unicast_delete);
3945 * dev_unicast_add - add a secondary unicast address
3946 * @dev: device
3947 * @addr: address to add
3949 * Add a secondary unicast address to the device or increase
3950 * the reference count if it already exists.
3952 * The caller must hold the rtnl_mutex.
3954 int dev_unicast_add(struct net_device *dev, void *addr)
3956 int err;
3958 ASSERT_RTNL();
3960 netif_addr_lock_bh(dev);
3961 err = __hw_addr_add(&dev->uc, addr, dev->addr_len,
3962 NETDEV_HW_ADDR_T_UNICAST);
3963 if (!err)
3964 __dev_set_rx_mode(dev);
3965 netif_addr_unlock_bh(dev);
3966 return err;
3968 EXPORT_SYMBOL(dev_unicast_add);
3970 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3971 struct dev_addr_list **from, int *from_count)
3973 struct dev_addr_list *da, *next;
3974 int err = 0;
3976 da = *from;
3977 while (da != NULL) {
3978 next = da->next;
3979 if (!da->da_synced) {
3980 err = __dev_addr_add(to, to_count,
3981 da->da_addr, da->da_addrlen, 0);
3982 if (err < 0)
3983 break;
3984 da->da_synced = 1;
3985 da->da_users++;
3986 } else if (da->da_users == 1) {
3987 __dev_addr_delete(to, to_count,
3988 da->da_addr, da->da_addrlen, 0);
3989 __dev_addr_delete(from, from_count,
3990 da->da_addr, da->da_addrlen, 0);
3992 da = next;
3994 return err;
3996 EXPORT_SYMBOL_GPL(__dev_addr_sync);
3998 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3999 struct dev_addr_list **from, int *from_count)
4001 struct dev_addr_list *da, *next;
4003 da = *from;
4004 while (da != NULL) {
4005 next = da->next;
4006 if (da->da_synced) {
4007 __dev_addr_delete(to, to_count,
4008 da->da_addr, da->da_addrlen, 0);
4009 da->da_synced = 0;
4010 __dev_addr_delete(from, from_count,
4011 da->da_addr, da->da_addrlen, 0);
4013 da = next;
4016 EXPORT_SYMBOL_GPL(__dev_addr_unsync);
4019 * dev_unicast_sync - Synchronize device's unicast list to another device
4020 * @to: destination device
4021 * @from: source device
4023 * Add newly added addresses to the destination device and release
4024 * addresses that have no users left. The source device must be
4025 * locked by netif_tx_lock_bh.
4027 * This function is intended to be called from the dev->set_rx_mode
4028 * function of layered software devices.
4030 int dev_unicast_sync(struct net_device *to, struct net_device *from)
4032 int err = 0;
4034 if (to->addr_len != from->addr_len)
4035 return -EINVAL;
4037 netif_addr_lock_bh(to);
4038 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len);
4039 if (!err)
4040 __dev_set_rx_mode(to);
4041 netif_addr_unlock_bh(to);
4042 return err;
4044 EXPORT_SYMBOL(dev_unicast_sync);
4047 * dev_unicast_unsync - Remove synchronized addresses from the destination device
4048 * @to: destination device
4049 * @from: source device
4051 * Remove all addresses that were added to the destination device by
4052 * dev_unicast_sync(). This function is intended to be called from the
4053 * dev->stop function of layered software devices.
4055 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
4057 if (to->addr_len != from->addr_len)
4058 return;
4060 netif_addr_lock_bh(from);
4061 netif_addr_lock(to);
4062 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len);
4063 __dev_set_rx_mode(to);
4064 netif_addr_unlock(to);
4065 netif_addr_unlock_bh(from);
4067 EXPORT_SYMBOL(dev_unicast_unsync);
4069 static void dev_unicast_flush(struct net_device *dev)
4071 netif_addr_lock_bh(dev);
4072 __hw_addr_flush(&dev->uc);
4073 netif_addr_unlock_bh(dev);
4076 static void dev_unicast_init(struct net_device *dev)
4078 __hw_addr_init(&dev->uc);
4082 static void __dev_addr_discard(struct dev_addr_list **list)
4084 struct dev_addr_list *tmp;
4086 while (*list != NULL) {
4087 tmp = *list;
4088 *list = tmp->next;
4089 if (tmp->da_users > tmp->da_gusers)
4090 printk("__dev_addr_discard: address leakage! "
4091 "da_users=%d\n", tmp->da_users);
4092 kfree(tmp);
4096 static void dev_addr_discard(struct net_device *dev)
4098 netif_addr_lock_bh(dev);
4100 __dev_addr_discard(&dev->mc_list);
4101 dev->mc_count = 0;
4103 netif_addr_unlock_bh(dev);
4107 * dev_get_flags - get flags reported to userspace
4108 * @dev: device
4110 * Get the combination of flag bits exported through APIs to userspace.
4112 unsigned dev_get_flags(const struct net_device *dev)
4114 unsigned flags;
4116 flags = (dev->flags & ~(IFF_PROMISC |
4117 IFF_ALLMULTI |
4118 IFF_RUNNING |
4119 IFF_LOWER_UP |
4120 IFF_DORMANT)) |
4121 (dev->gflags & (IFF_PROMISC |
4122 IFF_ALLMULTI));
4124 if (netif_running(dev)) {
4125 if (netif_oper_up(dev))
4126 flags |= IFF_RUNNING;
4127 if (netif_carrier_ok(dev))
4128 flags |= IFF_LOWER_UP;
4129 if (netif_dormant(dev))
4130 flags |= IFF_DORMANT;
4133 return flags;
4135 EXPORT_SYMBOL(dev_get_flags);
4138 * dev_change_flags - change device settings
4139 * @dev: device
4140 * @flags: device state flags
4142 * Change settings on device based state flags. The flags are
4143 * in the userspace exported format.
4145 int dev_change_flags(struct net_device *dev, unsigned flags)
4147 int ret, changes;
4148 int old_flags = dev->flags;
4150 ASSERT_RTNL();
4153 * Set the flags on our device.
4156 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4157 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4158 IFF_AUTOMEDIA)) |
4159 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4160 IFF_ALLMULTI));
4163 * Load in the correct multicast list now the flags have changed.
4166 if ((old_flags ^ flags) & IFF_MULTICAST)
4167 dev_change_rx_flags(dev, IFF_MULTICAST);
4169 dev_set_rx_mode(dev);
4172 * Have we downed the interface. We handle IFF_UP ourselves
4173 * according to user attempts to set it, rather than blindly
4174 * setting it.
4177 ret = 0;
4178 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4179 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
4181 if (!ret)
4182 dev_set_rx_mode(dev);
4185 if (dev->flags & IFF_UP &&
4186 ((old_flags ^ dev->flags) & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
4187 IFF_VOLATILE)))
4188 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4190 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4191 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4193 dev->gflags ^= IFF_PROMISC;
4194 dev_set_promiscuity(dev, inc);
4197 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4198 is important. Some (broken) drivers set IFF_PROMISC, when
4199 IFF_ALLMULTI is requested not asking us and not reporting.
4201 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4202 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4204 dev->gflags ^= IFF_ALLMULTI;
4205 dev_set_allmulti(dev, inc);
4208 /* Exclude state transition flags, already notified */
4209 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
4210 if (changes)
4211 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4213 return ret;
4215 EXPORT_SYMBOL(dev_change_flags);
4218 * dev_set_mtu - Change maximum transfer unit
4219 * @dev: device
4220 * @new_mtu: new transfer unit
4222 * Change the maximum transfer size of the network device.
4224 int dev_set_mtu(struct net_device *dev, int new_mtu)
4226 const struct net_device_ops *ops = dev->netdev_ops;
4227 int err;
4229 if (new_mtu == dev->mtu)
4230 return 0;
4232 /* MTU must be positive. */
4233 if (new_mtu < 0)
4234 return -EINVAL;
4236 if (!netif_device_present(dev))
4237 return -ENODEV;
4239 err = 0;
4240 if (ops->ndo_change_mtu)
4241 err = ops->ndo_change_mtu(dev, new_mtu);
4242 else
4243 dev->mtu = new_mtu;
4245 if (!err && dev->flags & IFF_UP)
4246 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4247 return err;
4249 EXPORT_SYMBOL(dev_set_mtu);
4252 * dev_set_mac_address - Change Media Access Control Address
4253 * @dev: device
4254 * @sa: new address
4256 * Change the hardware (MAC) address of the device
4258 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4260 const struct net_device_ops *ops = dev->netdev_ops;
4261 int err;
4263 if (!ops->ndo_set_mac_address)
4264 return -EOPNOTSUPP;
4265 if (sa->sa_family != dev->type)
4266 return -EINVAL;
4267 if (!netif_device_present(dev))
4268 return -ENODEV;
4269 err = ops->ndo_set_mac_address(dev, sa);
4270 if (!err)
4271 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4272 add_device_randomness(dev->dev_addr, dev->addr_len);
4273 return err;
4275 EXPORT_SYMBOL(dev_set_mac_address);
4278 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
4280 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4282 int err;
4283 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4285 if (!dev)
4286 return -ENODEV;
4288 switch (cmd) {
4289 case SIOCGIFFLAGS: /* Get interface flags */
4290 ifr->ifr_flags = (short) dev_get_flags(dev);
4291 return 0;
4293 case SIOCGIFMETRIC: /* Get the metric on the interface
4294 (currently unused) */
4295 ifr->ifr_metric = 0;
4296 return 0;
4298 case SIOCGIFMTU: /* Get the MTU of a device */
4299 ifr->ifr_mtu = dev->mtu;
4300 return 0;
4302 case SIOCGIFHWADDR:
4303 if (!dev->addr_len)
4304 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4305 else
4306 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4307 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4308 ifr->ifr_hwaddr.sa_family = dev->type;
4309 return 0;
4311 case SIOCGIFSLAVE:
4312 err = -EINVAL;
4313 break;
4315 case SIOCGIFMAP:
4316 ifr->ifr_map.mem_start = dev->mem_start;
4317 ifr->ifr_map.mem_end = dev->mem_end;
4318 ifr->ifr_map.base_addr = dev->base_addr;
4319 ifr->ifr_map.irq = dev->irq;
4320 ifr->ifr_map.dma = dev->dma;
4321 ifr->ifr_map.port = dev->if_port;
4322 return 0;
4324 case SIOCGIFINDEX:
4325 ifr->ifr_ifindex = dev->ifindex;
4326 return 0;
4328 case SIOCGIFTXQLEN:
4329 ifr->ifr_qlen = dev->tx_queue_len;
4330 return 0;
4332 default:
4333 /* dev_ioctl() should ensure this case
4334 * is never reached
4336 WARN_ON(1);
4337 err = -EINVAL;
4338 break;
4341 return err;
4345 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4347 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4349 int err;
4350 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4351 const struct net_device_ops *ops;
4353 if (!dev)
4354 return -ENODEV;
4356 ops = dev->netdev_ops;
4358 switch (cmd) {
4359 case SIOCSIFFLAGS: /* Set interface flags */
4360 return dev_change_flags(dev, ifr->ifr_flags);
4362 case SIOCSIFMETRIC: /* Set the metric on the interface
4363 (currently unused) */
4364 return -EOPNOTSUPP;
4366 case SIOCSIFMTU: /* Set the MTU of a device */
4367 return dev_set_mtu(dev, ifr->ifr_mtu);
4369 case SIOCSIFHWADDR:
4370 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4372 case SIOCSIFHWBROADCAST:
4373 if (ifr->ifr_hwaddr.sa_family != dev->type)
4374 return -EINVAL;
4375 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4376 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4377 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4378 return 0;
4380 case SIOCSIFMAP:
4381 if (ops->ndo_set_config) {
4382 if (!netif_device_present(dev))
4383 return -ENODEV;
4384 return ops->ndo_set_config(dev, &ifr->ifr_map);
4386 return -EOPNOTSUPP;
4388 case SIOCADDMULTI:
4389 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4390 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4391 return -EINVAL;
4392 if (!netif_device_present(dev))
4393 return -ENODEV;
4394 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4395 dev->addr_len, 1);
4397 case SIOCDELMULTI:
4398 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4399 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4400 return -EINVAL;
4401 if (!netif_device_present(dev))
4402 return -ENODEV;
4403 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4404 dev->addr_len, 1);
4406 case SIOCSIFTXQLEN:
4407 if (ifr->ifr_qlen < 0)
4408 return -EINVAL;
4409 dev->tx_queue_len = ifr->ifr_qlen;
4410 return 0;
4412 case SIOCSIFNAME:
4413 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4414 return dev_change_name(dev, ifr->ifr_newname);
4417 * Unknown or private ioctl
4419 default:
4420 if ((cmd >= SIOCDEVPRIVATE &&
4421 cmd <= SIOCDEVPRIVATE + 15) ||
4422 cmd == SIOCBONDENSLAVE ||
4423 cmd == SIOCBONDRELEASE ||
4424 cmd == SIOCBONDSETHWADDR ||
4425 cmd == SIOCBONDSLAVEINFOQUERY ||
4426 cmd == SIOCBONDINFOQUERY ||
4427 cmd == SIOCBONDCHANGEACTIVE ||
4428 cmd == SIOCGMIIPHY ||
4429 cmd == SIOCGMIIREG ||
4430 cmd == SIOCSMIIREG ||
4431 cmd == SIOCBRADDIF ||
4432 cmd == SIOCBRDELIF ||
4433 cmd == SIOCSHWTSTAMP ||
4434 cmd == SIOCWANDEV) {
4435 err = -EOPNOTSUPP;
4436 if (ops->ndo_do_ioctl) {
4437 if (netif_device_present(dev))
4438 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4439 else
4440 err = -ENODEV;
4442 } else
4443 err = -EINVAL;
4446 return err;
4450 * This function handles all "interface"-type I/O control requests. The actual
4451 * 'doing' part of this is dev_ifsioc above.
4455 * dev_ioctl - network device ioctl
4456 * @net: the applicable net namespace
4457 * @cmd: command to issue
4458 * @arg: pointer to a struct ifreq in user space
4460 * Issue ioctl functions to devices. This is normally called by the
4461 * user space syscall interfaces but can sometimes be useful for
4462 * other purposes. The return value is the return from the syscall if
4463 * positive or a negative errno code on error.
4466 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4468 struct ifreq ifr;
4469 int ret;
4470 char *colon;
4472 /* One special case: SIOCGIFCONF takes ifconf argument
4473 and requires shared lock, because it sleeps writing
4474 to user space.
4477 if (cmd == SIOCGIFCONF) {
4478 rtnl_lock();
4479 ret = dev_ifconf(net, (char __user *) arg);
4480 rtnl_unlock();
4481 return ret;
4483 if (cmd == SIOCGIFNAME)
4484 return dev_ifname(net, (struct ifreq __user *)arg);
4486 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4487 return -EFAULT;
4489 ifr.ifr_name[IFNAMSIZ-1] = 0;
4491 colon = strchr(ifr.ifr_name, ':');
4492 if (colon)
4493 *colon = 0;
4496 * See which interface the caller is talking about.
4499 switch (cmd) {
4501 * These ioctl calls:
4502 * - can be done by all.
4503 * - atomic and do not require locking.
4504 * - return a value
4506 case SIOCGIFFLAGS:
4507 case SIOCGIFMETRIC:
4508 case SIOCGIFMTU:
4509 case SIOCGIFHWADDR:
4510 case SIOCGIFSLAVE:
4511 case SIOCGIFMAP:
4512 case SIOCGIFINDEX:
4513 case SIOCGIFTXQLEN:
4514 dev_load(net, ifr.ifr_name);
4515 read_lock(&dev_base_lock);
4516 ret = dev_ifsioc_locked(net, &ifr, cmd);
4517 read_unlock(&dev_base_lock);
4518 if (!ret) {
4519 if (colon)
4520 *colon = ':';
4521 if (copy_to_user(arg, &ifr,
4522 sizeof(struct ifreq)))
4523 ret = -EFAULT;
4525 return ret;
4527 case SIOCETHTOOL:
4528 dev_load(net, ifr.ifr_name);
4529 rtnl_lock();
4530 ret = dev_ethtool(net, &ifr);
4531 rtnl_unlock();
4532 if (!ret) {
4533 if (colon)
4534 *colon = ':';
4535 if (copy_to_user(arg, &ifr,
4536 sizeof(struct ifreq)))
4537 ret = -EFAULT;
4539 return ret;
4542 * These ioctl calls:
4543 * - require superuser power.
4544 * - require strict serialization.
4545 * - return a value
4547 case SIOCGMIIPHY:
4548 case SIOCGMIIREG:
4549 case SIOCSIFNAME:
4550 if (!capable(CAP_NET_ADMIN))
4551 return -EPERM;
4552 dev_load(net, ifr.ifr_name);
4553 rtnl_lock();
4554 ret = dev_ifsioc(net, &ifr, cmd);
4555 rtnl_unlock();
4556 if (!ret) {
4557 if (colon)
4558 *colon = ':';
4559 if (copy_to_user(arg, &ifr,
4560 sizeof(struct ifreq)))
4561 ret = -EFAULT;
4563 return ret;
4566 * These ioctl calls:
4567 * - require superuser power.
4568 * - require strict serialization.
4569 * - do not return a value
4571 case SIOCSIFFLAGS:
4572 case SIOCSIFMETRIC:
4573 case SIOCSIFMTU:
4574 case SIOCSIFMAP:
4575 case SIOCSIFHWADDR:
4576 case SIOCSIFSLAVE:
4577 case SIOCADDMULTI:
4578 case SIOCDELMULTI:
4579 case SIOCSIFHWBROADCAST:
4580 case SIOCSIFTXQLEN:
4581 case SIOCSMIIREG:
4582 case SIOCBONDENSLAVE:
4583 case SIOCBONDRELEASE:
4584 case SIOCBONDSETHWADDR:
4585 case SIOCBONDCHANGEACTIVE:
4586 case SIOCBRADDIF:
4587 case SIOCBRDELIF:
4588 case SIOCSHWTSTAMP:
4589 if (!capable(CAP_NET_ADMIN))
4590 return -EPERM;
4591 /* fall through */
4592 case SIOCBONDSLAVEINFOQUERY:
4593 case SIOCBONDINFOQUERY:
4594 dev_load(net, ifr.ifr_name);
4595 rtnl_lock();
4596 ret = dev_ifsioc(net, &ifr, cmd);
4597 rtnl_unlock();
4598 return ret;
4600 case SIOCGIFMEM:
4601 /* Get the per device memory space. We can add this but
4602 * currently do not support it */
4603 case SIOCSIFMEM:
4604 /* Set the per device memory buffer space.
4605 * Not applicable in our case */
4606 case SIOCSIFLINK:
4607 return -EINVAL;
4610 * Unknown or private ioctl.
4612 default:
4613 if (cmd == SIOCWANDEV ||
4614 (cmd >= SIOCDEVPRIVATE &&
4615 cmd <= SIOCDEVPRIVATE + 15)) {
4616 dev_load(net, ifr.ifr_name);
4617 rtnl_lock();
4618 ret = dev_ifsioc(net, &ifr, cmd);
4619 rtnl_unlock();
4620 if (!ret && copy_to_user(arg, &ifr,
4621 sizeof(struct ifreq)))
4622 ret = -EFAULT;
4623 return ret;
4625 /* Take care of Wireless Extensions */
4626 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4627 return wext_handle_ioctl(net, &ifr, cmd, arg);
4628 return -EINVAL;
4634 * dev_new_index - allocate an ifindex
4635 * @net: the applicable net namespace
4637 * Returns a suitable unique value for a new device interface
4638 * number. The caller must hold the rtnl semaphore or the
4639 * dev_base_lock to be sure it remains unique.
4641 static int dev_new_index(struct net *net)
4643 static int ifindex;
4644 for (;;) {
4645 if (++ifindex <= 0)
4646 ifindex = 1;
4647 if (!__dev_get_by_index(net, ifindex))
4648 return ifindex;
4652 /* Delayed registration/unregisteration */
4653 static LIST_HEAD(net_todo_list);
4655 static void net_set_todo(struct net_device *dev)
4657 list_add_tail(&dev->todo_list, &net_todo_list);
4660 static void rollback_registered(struct net_device *dev)
4662 BUG_ON(dev_boot_phase);
4663 ASSERT_RTNL();
4665 /* Some devices call without registering for initialization unwind. */
4666 if (dev->reg_state == NETREG_UNINITIALIZED) {
4667 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4668 "was registered\n", dev->name, dev);
4670 WARN_ON(1);
4671 return;
4674 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4676 /* If device is running, close it first. */
4677 dev_close(dev);
4679 /* And unlink it from device chain. */
4680 unlist_netdevice(dev);
4682 dev->reg_state = NETREG_UNREGISTERING;
4684 synchronize_net();
4686 /* Shutdown queueing discipline. */
4687 dev_shutdown(dev);
4690 /* Notify protocols, that we are about to destroy
4691 this device. They should clean all the things.
4693 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4696 * Flush the unicast and multicast chains
4698 dev_unicast_flush(dev);
4699 dev_addr_discard(dev);
4701 if (dev->netdev_ops->ndo_uninit)
4702 dev->netdev_ops->ndo_uninit(dev);
4704 /* Notifier chain MUST detach us from master device. */
4705 WARN_ON(dev->master);
4707 /* Remove entries from kobject tree */
4708 netdev_unregister_kobject(dev);
4710 synchronize_net();
4712 dev_put(dev);
4715 static void __netdev_init_queue_locks_one(struct net_device *dev,
4716 struct netdev_queue *dev_queue,
4717 void *_unused)
4719 spin_lock_init(&dev_queue->_xmit_lock);
4720 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4721 dev_queue->xmit_lock_owner = -1;
4724 static void netdev_init_queue_locks(struct net_device *dev)
4726 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4727 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4730 unsigned long netdev_fix_features(unsigned long features, const char *name)
4732 /* Fix illegal SG+CSUM combinations. */
4733 if ((features & NETIF_F_SG) &&
4734 !(features & NETIF_F_ALL_CSUM)) {
4735 if (name)
4736 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4737 "checksum feature.\n", name);
4738 features &= ~NETIF_F_SG;
4741 /* TSO requires that SG is present as well. */
4742 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4743 if (name)
4744 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4745 "SG feature.\n", name);
4746 features &= ~NETIF_F_TSO;
4749 if (features & NETIF_F_UFO) {
4750 if (!(features & NETIF_F_GEN_CSUM)) {
4751 if (name)
4752 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4753 "since no NETIF_F_HW_CSUM feature.\n",
4754 name);
4755 features &= ~NETIF_F_UFO;
4758 if (!(features & NETIF_F_SG)) {
4759 if (name)
4760 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4761 "since no NETIF_F_SG feature.\n", name);
4762 features &= ~NETIF_F_UFO;
4766 return features;
4768 EXPORT_SYMBOL(netdev_fix_features);
4771 * register_netdevice - register a network device
4772 * @dev: device to register
4774 * Take a completed network device structure and add it to the kernel
4775 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4776 * chain. 0 is returned on success. A negative errno code is returned
4777 * on a failure to set up the device, or if the name is a duplicate.
4779 * Callers must hold the rtnl semaphore. You may want
4780 * register_netdev() instead of this.
4782 * BUGS:
4783 * The locking appears insufficient to guarantee two parallel registers
4784 * will not get the same name.
4787 int register_netdevice(struct net_device *dev)
4789 struct hlist_head *head;
4790 struct hlist_node *p;
4791 int ret;
4792 struct net *net = dev_net(dev);
4794 BUG_ON(dev_boot_phase);
4795 ASSERT_RTNL();
4797 might_sleep();
4799 /* When net_device's are persistent, this will be fatal. */
4800 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4801 BUG_ON(!net);
4803 spin_lock_init(&dev->addr_list_lock);
4804 netdev_set_addr_lockdep_class(dev);
4805 netdev_init_queue_locks(dev);
4807 dev->iflink = -1;
4809 /* Init, if this function is available */
4810 if (dev->netdev_ops->ndo_init) {
4811 ret = dev->netdev_ops->ndo_init(dev);
4812 if (ret) {
4813 if (ret > 0)
4814 ret = -EIO;
4815 goto out;
4819 if (!dev_valid_name(dev->name)) {
4820 ret = -EINVAL;
4821 goto err_uninit;
4824 dev->ifindex = dev_new_index(net);
4825 if (dev->iflink == -1)
4826 dev->iflink = dev->ifindex;
4828 /* Check for existence of name */
4829 head = dev_name_hash(net, dev->name);
4830 hlist_for_each(p, head) {
4831 struct net_device *d
4832 = hlist_entry(p, struct net_device, name_hlist);
4833 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4834 ret = -EEXIST;
4835 goto err_uninit;
4839 /* Fix illegal checksum combinations */
4840 if ((dev->features & NETIF_F_HW_CSUM) &&
4841 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4842 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4843 dev->name);
4844 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4847 if ((dev->features & NETIF_F_NO_CSUM) &&
4848 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4849 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4850 dev->name);
4851 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4854 dev->features = netdev_fix_features(dev->features, dev->name);
4856 /* Enable software GSO if SG is supported. */
4857 if (dev->features & NETIF_F_SG)
4858 dev->features |= NETIF_F_GSO;
4860 netdev_initialize_kobject(dev);
4861 ret = netdev_register_kobject(dev);
4862 if (ret)
4863 goto err_uninit;
4864 dev->reg_state = NETREG_REGISTERED;
4867 * Default initial state at registry is that the
4868 * device is present.
4871 set_bit(__LINK_STATE_PRESENT, &dev->state);
4873 dev_init_scheduler(dev);
4874 dev_hold(dev);
4875 list_netdevice(dev);
4876 add_device_randomness(dev->dev_addr, dev->addr_len);
4878 /* Notify protocols, that a new device appeared. */
4879 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4880 ret = notifier_to_errno(ret);
4881 if (ret) {
4882 rollback_registered(dev);
4883 dev->reg_state = NETREG_UNREGISTERED;
4886 * Prevent userspace races by waiting until the network
4887 * device is fully setup before sending notifications.
4889 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
4891 out:
4892 return ret;
4894 err_uninit:
4895 if (dev->netdev_ops->ndo_uninit)
4896 dev->netdev_ops->ndo_uninit(dev);
4897 goto out;
4899 EXPORT_SYMBOL(register_netdevice);
4902 * init_dummy_netdev - init a dummy network device for NAPI
4903 * @dev: device to init
4905 * This takes a network device structure and initialize the minimum
4906 * amount of fields so it can be used to schedule NAPI polls without
4907 * registering a full blown interface. This is to be used by drivers
4908 * that need to tie several hardware interfaces to a single NAPI
4909 * poll scheduler due to HW limitations.
4911 int init_dummy_netdev(struct net_device *dev)
4913 /* Clear everything. Note we don't initialize spinlocks
4914 * are they aren't supposed to be taken by any of the
4915 * NAPI code and this dummy netdev is supposed to be
4916 * only ever used for NAPI polls
4918 memset(dev, 0, sizeof(struct net_device));
4920 /* make sure we BUG if trying to hit standard
4921 * register/unregister code path
4923 dev->reg_state = NETREG_DUMMY;
4925 /* initialize the ref count */
4926 atomic_set(&dev->refcnt, 1);
4928 /* NAPI wants this */
4929 INIT_LIST_HEAD(&dev->napi_list);
4931 /* a dummy interface is started by default */
4932 set_bit(__LINK_STATE_PRESENT, &dev->state);
4933 set_bit(__LINK_STATE_START, &dev->state);
4935 return 0;
4937 EXPORT_SYMBOL_GPL(init_dummy_netdev);
4941 * register_netdev - register a network device
4942 * @dev: device to register
4944 * Take a completed network device structure and add it to the kernel
4945 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4946 * chain. 0 is returned on success. A negative errno code is returned
4947 * on a failure to set up the device, or if the name is a duplicate.
4949 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4950 * and expands the device name if you passed a format string to
4951 * alloc_netdev.
4953 int register_netdev(struct net_device *dev)
4955 int err;
4957 rtnl_lock();
4960 * If the name is a format string the caller wants us to do a
4961 * name allocation.
4963 if (strchr(dev->name, '%')) {
4964 err = dev_alloc_name(dev, dev->name);
4965 if (err < 0)
4966 goto out;
4969 err = register_netdevice(dev);
4970 out:
4971 rtnl_unlock();
4972 return err;
4974 EXPORT_SYMBOL(register_netdev);
4977 * netdev_wait_allrefs - wait until all references are gone.
4979 * This is called when unregistering network devices.
4981 * Any protocol or device that holds a reference should register
4982 * for netdevice notification, and cleanup and put back the
4983 * reference if they receive an UNREGISTER event.
4984 * We can get stuck here if buggy protocols don't correctly
4985 * call dev_put.
4987 static void netdev_wait_allrefs(struct net_device *dev)
4989 unsigned long rebroadcast_time, warning_time;
4991 rebroadcast_time = warning_time = jiffies;
4992 while (atomic_read(&dev->refcnt) != 0) {
4993 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4994 rtnl_lock();
4996 /* Rebroadcast unregister notification */
4997 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4999 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5000 &dev->state)) {
5001 /* We must not have linkwatch events
5002 * pending on unregister. If this
5003 * happens, we simply run the queue
5004 * unscheduled, resulting in a noop
5005 * for this device.
5007 linkwatch_run_queue();
5010 __rtnl_unlock();
5012 rebroadcast_time = jiffies;
5015 msleep(250);
5017 if (time_after(jiffies, warning_time + 10 * HZ)) {
5018 printk(KERN_EMERG "unregister_netdevice: "
5019 "waiting for %s to become free. Usage "
5020 "count = %d\n",
5021 dev->name, atomic_read(&dev->refcnt));
5022 warning_time = jiffies;
5027 /* The sequence is:
5029 * rtnl_lock();
5030 * ...
5031 * register_netdevice(x1);
5032 * register_netdevice(x2);
5033 * ...
5034 * unregister_netdevice(y1);
5035 * unregister_netdevice(y2);
5036 * ...
5037 * rtnl_unlock();
5038 * free_netdev(y1);
5039 * free_netdev(y2);
5041 * We are invoked by rtnl_unlock().
5042 * This allows us to deal with problems:
5043 * 1) We can delete sysfs objects which invoke hotplug
5044 * without deadlocking with linkwatch via keventd.
5045 * 2) Since we run with the RTNL semaphore not held, we can sleep
5046 * safely in order to wait for the netdev refcnt to drop to zero.
5048 * We must not return until all unregister events added during
5049 * the interval the lock was held have been completed.
5051 void netdev_run_todo(void)
5053 struct list_head list;
5055 /* Snapshot list, allow later requests */
5056 list_replace_init(&net_todo_list, &list);
5058 __rtnl_unlock();
5060 while (!list_empty(&list)) {
5061 struct net_device *dev
5062 = list_entry(list.next, struct net_device, todo_list);
5063 list_del(&dev->todo_list);
5065 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5066 printk(KERN_ERR "network todo '%s' but state %d\n",
5067 dev->name, dev->reg_state);
5068 dump_stack();
5069 continue;
5072 dev->reg_state = NETREG_UNREGISTERED;
5074 on_each_cpu(flush_backlog, dev, 1);
5076 netdev_wait_allrefs(dev);
5078 /* paranoia */
5079 BUG_ON(atomic_read(&dev->refcnt));
5080 WARN_ON(dev->ip_ptr);
5081 WARN_ON(dev->ip6_ptr);
5082 WARN_ON(dev->dn_ptr);
5084 if (dev->destructor)
5085 dev->destructor(dev);
5087 /* Free network device */
5088 kobject_put(&dev->dev.kobj);
5093 * dev_get_stats - get network device statistics
5094 * @dev: device to get statistics from
5096 * Get network statistics from device. The device driver may provide
5097 * its own method by setting dev->netdev_ops->get_stats; otherwise
5098 * the internal statistics structure is used.
5100 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5102 const struct net_device_ops *ops = dev->netdev_ops;
5104 if (ops->ndo_get_stats)
5105 return ops->ndo_get_stats(dev);
5106 else {
5107 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5108 struct net_device_stats *stats = &dev->stats;
5109 unsigned int i;
5110 struct netdev_queue *txq;
5112 for (i = 0; i < dev->num_tx_queues; i++) {
5113 txq = netdev_get_tx_queue(dev, i);
5114 tx_bytes += txq->tx_bytes;
5115 tx_packets += txq->tx_packets;
5116 tx_dropped += txq->tx_dropped;
5118 if (tx_bytes || tx_packets || tx_dropped) {
5119 stats->tx_bytes = tx_bytes;
5120 stats->tx_packets = tx_packets;
5121 stats->tx_dropped = tx_dropped;
5123 return stats;
5126 EXPORT_SYMBOL(dev_get_stats);
5128 static void netdev_init_one_queue(struct net_device *dev,
5129 struct netdev_queue *queue,
5130 void *_unused)
5132 queue->dev = dev;
5135 static void netdev_init_queues(struct net_device *dev)
5137 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5138 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5139 spin_lock_init(&dev->tx_global_lock);
5143 * alloc_netdev_mq - allocate network device
5144 * @sizeof_priv: size of private data to allocate space for
5145 * @name: device name format string
5146 * @setup: callback to initialize device
5147 * @queue_count: the number of subqueues to allocate
5149 * Allocates a struct net_device with private data area for driver use
5150 * and performs basic initialization. Also allocates subquue structs
5151 * for each queue on the device at the end of the netdevice.
5153 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5154 void (*setup)(struct net_device *), unsigned int queue_count)
5156 struct netdev_queue *tx;
5157 struct net_device *dev;
5158 size_t alloc_size;
5159 struct net_device *p;
5161 BUG_ON(strlen(name) >= sizeof(dev->name));
5163 alloc_size = sizeof(struct net_device);
5164 if (sizeof_priv) {
5165 /* ensure 32-byte alignment of private area */
5166 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5167 alloc_size += sizeof_priv;
5169 /* ensure 32-byte alignment of whole construct */
5170 alloc_size += NETDEV_ALIGN - 1;
5172 p = kzalloc(alloc_size, GFP_KERNEL);
5173 if (!p) {
5174 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5175 return NULL;
5178 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5179 if (!tx) {
5180 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5181 "tx qdiscs.\n");
5182 goto free_p;
5185 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5186 dev->padded = (char *)dev - (char *)p;
5188 if (dev_addr_init(dev))
5189 goto free_tx;
5191 dev_unicast_init(dev);
5193 dev_net_set(dev, &init_net);
5195 dev->_tx = tx;
5196 dev->num_tx_queues = queue_count;
5197 dev->real_num_tx_queues = queue_count;
5199 dev->gso_max_size = GSO_MAX_SIZE;
5201 netdev_init_queues(dev);
5203 INIT_LIST_HEAD(&dev->napi_list);
5204 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5205 setup(dev);
5206 strcpy(dev->name, name);
5207 return dev;
5209 free_tx:
5210 kfree(tx);
5212 free_p:
5213 kfree(p);
5214 return NULL;
5216 EXPORT_SYMBOL(alloc_netdev_mq);
5219 * free_netdev - free network device
5220 * @dev: device
5222 * This function does the last stage of destroying an allocated device
5223 * interface. The reference to the device object is released.
5224 * If this is the last reference then it will be freed.
5226 void free_netdev(struct net_device *dev)
5228 struct napi_struct *p, *n;
5230 release_net(dev_net(dev));
5232 kfree(dev->_tx);
5234 /* Flush device addresses */
5235 dev_addr_flush(dev);
5237 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5238 netif_napi_del(p);
5240 /* Compatibility with error handling in drivers */
5241 if (dev->reg_state == NETREG_UNINITIALIZED) {
5242 kfree((char *)dev - dev->padded);
5243 return;
5246 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5247 dev->reg_state = NETREG_RELEASED;
5249 /* will free via device release */
5250 put_device(&dev->dev);
5252 EXPORT_SYMBOL(free_netdev);
5255 * synchronize_net - Synchronize with packet receive processing
5257 * Wait for packets currently being received to be done.
5258 * Does not block later packets from starting.
5260 void synchronize_net(void)
5262 might_sleep();
5263 synchronize_rcu();
5265 EXPORT_SYMBOL(synchronize_net);
5268 * unregister_netdevice - remove device from the kernel
5269 * @dev: device
5271 * This function shuts down a device interface and removes it
5272 * from the kernel tables.
5274 * Callers must hold the rtnl semaphore. You may want
5275 * unregister_netdev() instead of this.
5278 void unregister_netdevice(struct net_device *dev)
5280 ASSERT_RTNL();
5282 rollback_registered(dev);
5283 /* Finish processing unregister after unlock */
5284 net_set_todo(dev);
5286 EXPORT_SYMBOL(unregister_netdevice);
5289 * unregister_netdev - remove device from the kernel
5290 * @dev: device
5292 * This function shuts down a device interface and removes it
5293 * from the kernel tables.
5295 * This is just a wrapper for unregister_netdevice that takes
5296 * the rtnl semaphore. In general you want to use this and not
5297 * unregister_netdevice.
5299 void unregister_netdev(struct net_device *dev)
5301 rtnl_lock();
5302 unregister_netdevice(dev);
5303 rtnl_unlock();
5305 EXPORT_SYMBOL(unregister_netdev);
5308 * dev_change_net_namespace - move device to different nethost namespace
5309 * @dev: device
5310 * @net: network namespace
5311 * @pat: If not NULL name pattern to try if the current device name
5312 * is already taken in the destination network namespace.
5314 * This function shuts down a device interface and moves it
5315 * to a new network namespace. On success 0 is returned, on
5316 * a failure a netagive errno code is returned.
5318 * Callers must hold the rtnl semaphore.
5321 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5323 char buf[IFNAMSIZ];
5324 const char *destname;
5325 int err;
5327 ASSERT_RTNL();
5329 /* Don't allow namespace local devices to be moved. */
5330 err = -EINVAL;
5331 if (dev->features & NETIF_F_NETNS_LOCAL)
5332 goto out;
5334 #ifdef CONFIG_SYSFS
5335 /* Don't allow real devices to be moved when sysfs
5336 * is enabled.
5338 err = -EINVAL;
5339 if (dev->dev.parent)
5340 goto out;
5341 #endif
5343 /* Ensure the device has been registrered */
5344 err = -EINVAL;
5345 if (dev->reg_state != NETREG_REGISTERED)
5346 goto out;
5348 /* Get out if there is nothing todo */
5349 err = 0;
5350 if (net_eq(dev_net(dev), net))
5351 goto out;
5353 /* Pick the destination device name, and ensure
5354 * we can use it in the destination network namespace.
5356 err = -EEXIST;
5357 destname = dev->name;
5358 if (__dev_get_by_name(net, destname)) {
5359 /* We get here if we can't use the current device name */
5360 if (!pat)
5361 goto out;
5362 if (!dev_valid_name(pat))
5363 goto out;
5364 if (strchr(pat, '%')) {
5365 if (__dev_alloc_name(net, pat, buf) < 0)
5366 goto out;
5367 destname = buf;
5368 } else
5369 destname = pat;
5370 if (__dev_get_by_name(net, destname))
5371 goto out;
5375 * And now a mini version of register_netdevice unregister_netdevice.
5378 /* If device is running close it first. */
5379 dev_close(dev);
5381 /* And unlink it from device chain */
5382 err = -ENODEV;
5383 unlist_netdevice(dev);
5385 synchronize_net();
5387 /* Shutdown queueing discipline. */
5388 dev_shutdown(dev);
5390 /* Notify protocols, that we are about to destroy
5391 this device. They should clean all the things.
5393 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5396 * Flush the unicast and multicast chains
5398 dev_unicast_flush(dev);
5399 dev_addr_discard(dev);
5401 netdev_unregister_kobject(dev);
5403 /* Actually switch the network namespace */
5404 dev_net_set(dev, net);
5406 /* Assign the new device name */
5407 if (destname != dev->name)
5408 strcpy(dev->name, destname);
5410 /* If there is an ifindex conflict assign a new one */
5411 if (__dev_get_by_index(net, dev->ifindex)) {
5412 int iflink = (dev->iflink == dev->ifindex);
5413 dev->ifindex = dev_new_index(net);
5414 if (iflink)
5415 dev->iflink = dev->ifindex;
5418 /* Fixup kobjects */
5419 err = netdev_register_kobject(dev);
5420 WARN_ON(err);
5422 /* Add the device back in the hashes */
5423 list_netdevice(dev);
5425 /* Notify protocols, that a new device appeared. */
5426 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5429 * Prevent userspace races by waiting until the network
5430 * device is fully setup before sending notifications.
5432 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5434 synchronize_net();
5435 err = 0;
5436 out:
5437 return err;
5439 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5441 static int dev_cpu_callback(struct notifier_block *nfb,
5442 unsigned long action,
5443 void *ocpu)
5445 struct sk_buff **list_skb;
5446 struct Qdisc **list_net;
5447 struct sk_buff *skb;
5448 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5449 struct softnet_data *sd, *oldsd;
5451 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5452 return NOTIFY_OK;
5454 local_irq_disable();
5455 cpu = smp_processor_id();
5456 sd = &per_cpu(softnet_data, cpu);
5457 oldsd = &per_cpu(softnet_data, oldcpu);
5459 /* Find end of our completion_queue. */
5460 list_skb = &sd->completion_queue;
5461 while (*list_skb)
5462 list_skb = &(*list_skb)->next;
5463 /* Append completion queue from offline CPU. */
5464 *list_skb = oldsd->completion_queue;
5465 oldsd->completion_queue = NULL;
5467 /* Find end of our output_queue. */
5468 list_net = &sd->output_queue;
5469 while (*list_net)
5470 list_net = &(*list_net)->next_sched;
5471 /* Append output queue from offline CPU. */
5472 *list_net = oldsd->output_queue;
5473 oldsd->output_queue = NULL;
5475 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5476 local_irq_enable();
5478 /* Process offline CPU's input_pkt_queue */
5479 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5480 netif_rx(skb);
5482 return NOTIFY_OK;
5487 * netdev_increment_features - increment feature set by one
5488 * @all: current feature set
5489 * @one: new feature set
5490 * @mask: mask feature set
5492 * Computes a new feature set after adding a device with feature set
5493 * @one to the master device with current feature set @all. Will not
5494 * enable anything that is off in @mask. Returns the new feature set.
5496 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5497 unsigned long mask)
5499 /* If device needs checksumming, downgrade to it. */
5500 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5501 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5502 else if (mask & NETIF_F_ALL_CSUM) {
5503 /* If one device supports v4/v6 checksumming, set for all. */
5504 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5505 !(all & NETIF_F_GEN_CSUM)) {
5506 all &= ~NETIF_F_ALL_CSUM;
5507 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5510 /* If one device supports hw checksumming, set for all. */
5511 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5512 all &= ~NETIF_F_ALL_CSUM;
5513 all |= NETIF_F_HW_CSUM;
5517 one |= NETIF_F_ALL_CSUM;
5519 one |= all & NETIF_F_ONE_FOR_ALL;
5520 all &= one | NETIF_F_LLTX | NETIF_F_GSO;
5521 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5523 return all;
5525 EXPORT_SYMBOL(netdev_increment_features);
5527 static struct hlist_head *netdev_create_hash(void)
5529 int i;
5530 struct hlist_head *hash;
5532 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5533 if (hash != NULL)
5534 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5535 INIT_HLIST_HEAD(&hash[i]);
5537 return hash;
5540 /* Initialize per network namespace state */
5541 static int __net_init netdev_init(struct net *net)
5543 INIT_LIST_HEAD(&net->dev_base_head);
5545 net->dev_name_head = netdev_create_hash();
5546 if (net->dev_name_head == NULL)
5547 goto err_name;
5549 net->dev_index_head = netdev_create_hash();
5550 if (net->dev_index_head == NULL)
5551 goto err_idx;
5553 return 0;
5555 err_idx:
5556 kfree(net->dev_name_head);
5557 err_name:
5558 return -ENOMEM;
5562 * netdev_drivername - network driver for the device
5563 * @dev: network device
5564 * @buffer: buffer for resulting name
5565 * @len: size of buffer
5567 * Determine network driver for device.
5569 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5571 const struct device_driver *driver;
5572 const struct device *parent;
5574 if (len <= 0 || !buffer)
5575 return buffer;
5576 buffer[0] = 0;
5578 parent = dev->dev.parent;
5580 if (!parent)
5581 return buffer;
5583 driver = parent->driver;
5584 if (driver && driver->name)
5585 strlcpy(buffer, driver->name, len);
5586 return buffer;
5589 static void __net_exit netdev_exit(struct net *net)
5591 kfree(net->dev_name_head);
5592 kfree(net->dev_index_head);
5595 static struct pernet_operations __net_initdata netdev_net_ops = {
5596 .init = netdev_init,
5597 .exit = netdev_exit,
5600 static void __net_exit default_device_exit(struct net *net)
5602 struct net_device *dev;
5604 * Push all migratable of the network devices back to the
5605 * initial network namespace
5607 rtnl_lock();
5608 restart:
5609 for_each_netdev(net, dev) {
5610 int err;
5611 char fb_name[IFNAMSIZ];
5613 /* Ignore unmoveable devices (i.e. loopback) */
5614 if (dev->features & NETIF_F_NETNS_LOCAL)
5615 continue;
5617 /* Delete virtual devices */
5618 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5619 dev->rtnl_link_ops->dellink(dev);
5620 goto restart;
5623 /* Push remaing network devices to init_net */
5624 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5625 err = dev_change_net_namespace(dev, &init_net, fb_name);
5626 if (err) {
5627 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5628 __func__, dev->name, err);
5629 BUG();
5631 goto restart;
5633 rtnl_unlock();
5636 static struct pernet_operations __net_initdata default_device_ops = {
5637 .exit = default_device_exit,
5641 * Initialize the DEV module. At boot time this walks the device list and
5642 * unhooks any devices that fail to initialise (normally hardware not
5643 * present) and leaves us with a valid list of present and active devices.
5648 * This is called single threaded during boot, so no need
5649 * to take the rtnl semaphore.
5651 static int __init net_dev_init(void)
5653 int i, rc = -ENOMEM;
5655 BUG_ON(!dev_boot_phase);
5657 if (dev_proc_init())
5658 goto out;
5660 if (netdev_kobject_init())
5661 goto out;
5663 INIT_LIST_HEAD(&ptype_all);
5664 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5665 INIT_LIST_HEAD(&ptype_base[i]);
5667 if (register_pernet_subsys(&netdev_net_ops))
5668 goto out;
5671 * Initialise the packet receive queues.
5674 for_each_possible_cpu(i) {
5675 struct softnet_data *queue;
5677 queue = &per_cpu(softnet_data, i);
5678 skb_queue_head_init(&queue->input_pkt_queue);
5679 queue->completion_queue = NULL;
5680 INIT_LIST_HEAD(&queue->poll_list);
5682 queue->backlog.poll = process_backlog;
5683 queue->backlog.weight = weight_p;
5684 queue->backlog.gro_list = NULL;
5685 queue->backlog.gro_count = 0;
5688 dev_boot_phase = 0;
5690 /* The loopback device is special if any other network devices
5691 * is present in a network namespace the loopback device must
5692 * be present. Since we now dynamically allocate and free the
5693 * loopback device ensure this invariant is maintained by
5694 * keeping the loopback device as the first device on the
5695 * list of network devices. Ensuring the loopback devices
5696 * is the first device that appears and the last network device
5697 * that disappears.
5699 if (register_pernet_device(&loopback_net_ops))
5700 goto out;
5702 if (register_pernet_device(&default_device_ops))
5703 goto out;
5705 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5706 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5708 hotcpu_notifier(dev_cpu_callback, 0);
5709 dst_init();
5710 dev_mcast_init();
5711 rc = 0;
5712 out:
5713 return rc;
5716 subsys_initcall(net_dev_init);
5718 static int __init initialize_hashrnd(void)
5720 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
5721 return 0;
5724 late_initcall_sync(initialize_hashrnd);